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Physical Probability and Locality in No-Collapse 
Quantum Theory1 

Simon	Saunders	2	

	
	

Abstract.	Probability	is	distinguished	into	two	kinds:	physical	and	epistemic,	also,	
but	less	accurately,	called	objective	and	subjective.	Simple	postulates	are	given	for	
physical	probability,	the	only	novel	one	being	a	locality	condition.	Translated	into	
no-collapse	quantum	mechanics,	without	hidden	variables,	the	postulates	imply	
that	 the	 elements	 in	 any	 equiamplitude	 expansion	 of	 the	 quantum	 state	 are	
equiprobable.	Such	expansions	therefore	provide	ensembles	of	microstates	that	
can	be	used	to	deBine	probabilities	 in	 the	manner	of	 frequentism,	 in	von	Mises’	
sense	(where	the	probability	of	𝑃	is	the	frequency	of	occurrence	of	𝑃	in	a	suitable	
ensemble).	 The	 result	 is	 the	Born	 rule.	 	 Since	 satisfying	 our	 postulates,	 and	 in	
particular	 the	 locality	 condition	 (meaning	 no	 action-at-a-distance),	 these	
probabilities	for	no-collapse	quantum	mechanics	are	perfectly	local,	even	though	
they	violate	Bell	 inequalities.	The	 latter	can	be	traced	to	a	violation	of	outcome	
independence,	used	to	derive	the	inequalities.	But	in	no-collapse	theory	that	is	not	
a	locality	condition;	it	is	a	criterion	for	entanglement,	not	locality.		

1.	Introduction		

By	 physical	 probability	 (also	 called	 ‘objective	 probability’	 or	 ‘chance’),	 I	 mean	 probability	 as	
something	‘out	there’	in	the	world,	independent	of	human	agency	and	rational	choice	theory,	and	
patterns	 of	 reasoning	more	 generally.	 The	 contrast	 is	 with	 epistemic	 probability	 (also	 called	
‘subjective	probability’,	or	‘credence’),	that	does	depend	on	those	things.		
Although	 long	hinted	at,	 for	example,	by	Laplace,	 the	 clear	 recognition	of	 the	distinction	 is	

relatively	recent,	in	Mellor	(1971),	Hacking	(1975),	and	especially	Lewis	(1980).	It	has	had	a	large	
impact	in	philosophy;	in	physics,	not	so	much.	Yet	ambiguity	on	the	meaning	of	probability	can	
seldom	have	been	more	damaging	than	in	the	case	of	the	Born	rule	of	quantum	mechanics.	If	it	is	
a	rule	for	physical	probability,	it	is	not	obvious	it	must	involve	the	notion	of	uncertainty,	clearly	an	
epistemic	notion;	whereas	if	it	is	a	rule	for	epistemic	probability,	of	what,	rationally,	to	believe,	
then	it	is	not	up	to	physics	to	say	(as	in	‘Postulate	1:	believe	the	following	postulates’).		
Here	we	consider	only	physical	probability.	We	offer	four	postulates,	three	of	which	are	widely	

if	not	universally	assumed,	at	least	in	physics.	The	fourth	is	different.	It	is	clearly	close	to	a	locality	
principle	--	in	that	it	turns	into	one,	when	implemented	in	a	theory	in	which	everything	other	than	
probability	 is	 local.	 In	 that	 case,	 and	 looking	 ahead,	when	 applied	 to	 the	 set-up	 envisaged	by	
Einstein,	Podolsky,	and	Rosen,	as	reformulated	by	Bohm	(the	EPRB	set-up),	it	clearly	is	a	locality	
condition.	By	‘locality’,	unless	otherwise	qualiBied,	I	mean	no	action-at-a-distance.	
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We	translate	those	postulates	into	quantum	mechanics,	and	speciBically	no-collapse	quantum	
theory,	where	the	dynamics	is	always	unitary.	This	is,	from	a	realist	point	of	view,	a	many-worlds	
theory,	but	the	details	need	not	concern	us,	for	all	we	need	is	no-collapse,	unitary	dynamics,	and	
no	hidden-variables.	

It	then	follows	that	states	entering	into	a	superposition,	yielding	the	total	state,	if	assigned	
probabilities,	must	be	assigned	equal	probabilities	if	their	amplitudes	(norms)	are	the	same.	The	
result	holds	with	complete	universality.	But	then,	if	the	quantum	state	is	expanded	in	terms	of	
equiamplitude	eigenstates	of	 	𝑃	 (some	projector	operator),	 the	 fraction	 in	the	expansion,	with	
eigenvalue	+1	of	𝑃,	is	the	probability	of	𝑃.		Any	other	verdict	would	violate	our	postulates.		

This	conception	of	probability	is	familiar	from	the	writings	of	von	Mises	and	others,	where	it	
is	 known	 as	 ‘frequentism’:	 probability	 is	 frequency	 of	 occurrence	 in	 a	 given	 ensemble.	
‘Fractionalism’	would	be	the	better	term	for	us,	for	as	we	shall	see,	it	may	be	only	a	superposition	
of	states	has	some	property	𝑃,	and	not	states	taken	singly.	We	shall	call	it	‘microstate-counting’,	
which	accurately	conveys	the	idea.	

Our	main	result	is	that	the	probability	of	𝑃,	thus	construed,	in	the	limit	when	the	number	of	
states	in	the	equiamplitude	expansions	increases	without	limit,	is	the	Born	rule	quantity	for	𝑃.	
The	 result	 is	 of	 interest	 in	 its	 own	 right,	 because	 unlike	 Gleason’s	 theorem,	 we	 make	 no	
assumption	of	noncontextuality.	But	it	further	sets	up	an	interesting	dilemma,	as	follows.	

Since	 implying	 the	 Born	 rule,	 probabilities	 understood	 in	 this	 way	 must	 also,	 in	 some	
circumstances,	violate	Bell	inequalities,	despite	satisfying	our	locality	postulate.	Therefore,	they	
must	violate	either	parameter	independence	or	conditional	outcome	independence,	or	both,	the	
two	conditions	which,	jointly	satisBied,	imply	factorizability,	and	hence	Bell	inequalities	(see	e.g.	
Myrvold	et	al	(2023)	for	terminology	and	the	notation	we	use	later).		Which,	or	both?		
The	answer	is	that	our	locality	postulate,	in	the	Bell	set-up,	just	is	parameter	independence.	

The	postulate	would	also	imply	conditional	outcome	independence,	and	hence	factorizability,	but	
only	if	experiments	have	unique	outcomes.	In	no-collapse	theory,	a	superposition	of	outcomes	is	
produced	by	remote	experiments,	and	locality	with	respect	to	that	is	 just	to	restate	parameter	
independence.	There	is	no	further	condition	in	no-collapse	theory,	based	on	locality,	in	the	sense	
of	our	postulates.	
That	 does	 not	mean	 outcome	 independence	 has	 no	meaning	 in	 no-collapse	 theory;	 on	 the	

contrary,	it	is	a	criterion	for	separability.		As	such,	in	the	EPRB	set-up,	where	the	two	spin	systems	
are	in	an	entangled	state,	it	is	rightly	violated.		
That	sets	up	the	dilemma.	As	argued	in	Maudlin	(2011,	2014),	and	endorsed	by	many	others,	

but	making	explicit	the	assumption	that	experiments	have	unique	outcomes	(ONE),	and	assuming	
no	retrocausation	and	the	like,	the	meaning	of	the	observed	violations	of	Bell	inequalities	(BV)	is		

𝑂𝑁𝐸 ∧ 𝐵𝑉 → ¬𝐿𝑂𝐶	

where	𝐿𝑂𝐶	is	locality,	independent	of	any	special	form	of	realism.	Taken	to	its	logical	conclusion,	
as	by	Valentini	(2025)	in	pilot-wave	theory,	the	implications	for	physics	are	revolutionary.	But	this	
sentence	is	logically	equivalent	to		

BV∧ 𝐿𝑂𝐶 → ¬𝑂𝑁𝐸.	

The	latter	seems	the	more	appropriate	way	of	stating	the	importance	of	BV,	as	there	is	abundant	
evidence	that	LOC	is	a	fundamental	principle	of	nature;	whereas	there	is	no	evidence	at	all	that	
there	is	only	a	single	world.	It	is	revolutionary	in	a	different	way.		(A	similar	claim	is	made	in	
Waegell	and	McQueen	(2020),	but	on	different	grounds;	see	Faglia	(2024)	for	discussion.)	
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2.	Postulates	for	Physical	Probability		

P1 Boolean	event	space:	there	exists	a	Boolean	space	Σ	of	elements	X ∈ Σ	equipped	with	
disjointness,	union,	and	complement.	

P2 Instantaneous	state:	the	physical	probability	𝜇	of	𝑋	depends	only	on	the	instantaneous	
physical	state	and	Σ.	

P3 Formal:	𝜇[𝑋]	is	bounded	by	0	and	1,	𝜇[Σ] = 1, 𝜇[∅] = 0;	if	𝑋,	𝑌	disjoint,	then	𝜇[𝑋 ∪ 𝑌] =
𝜇[𝑋]	+	𝜇[𝑌]	

P4 Locality:	𝜇[𝑋]	can	only	change	if	there	is	a	physical	change	in	𝑋.	

	The space Σ is intended to be as general as possible, so 𝑋, 𝑌 etc may be things, states, events, 
or properties – call ‘ontology’ – at a given time (to fit with P2). In order that Postulate 4 be non-
trivial, the physical change in 𝑋 cannot consist only in the change in its physical probability. The 
space Σ, the physical state, the notion of physical change -- all these are to be specified by 
candidate physical theories.	

In justification (and here I avoid comment on quantum mechanics, as I seek generality): 
Postulate 1 appears innocuous; some such notion appears inevitable. Postulate 2 was used in 
Einstein’s historic 1905 paper, where it was called ‘Boltzmann’s principle’: the entropy of a 
system is a function of the probability of its instantaneous state. Using this, he compared the 
entropy change in an ideal gas, with that in black-body radiation, due to fluctuation, in the Wien 
regime, to conclude they were the same – this his main argument for light quanta.  

Postulate 3 is standard. It is Postulate 4 that is new. Suppose it is realised in a physical theory 
in which 𝑋 and 𝑌 are spatially remote (naturally our postulates say nothing about any spatial 
geometry); then it says the physical probability of 𝑋 cannot be changed by a change in 𝑌 alone, 
including a change in probabilities at 𝑌. It does not forbid non-locality – the theory may be non-
local, and Postulate 4 still be satisfied (through action-at-a-distance by 𝑌 on 𝑋). But in a 
physical theory in which things, the ontology, only interact locally (‘local causality’, as Bell 
called it), Postulate 4 says that physical probability must be local as well. Evidently, in light of 
P2, the physical state and the ontology have to be closely connected. 

Postulate 4 has another virtue: it highlights the diVerence between physical and epistemic 
probability. Evidently P1 poses no problem for credence, nor P3, which follows from Dutch Book 
arguments; and perhaps it can be straightjacketed into P2; it is P4 that seems strange. Suppose 
two envelopes are sent, one to Alice and one to Bob, each remote from the other. One envelope 
is empty, the other contains a $5 bill. You don’t know which envelope was sent to which place; 
you give it even odds.  Alice opens her envelope and finds the $5 bill. The probability that it 
contains the bill is changed to 1 – and the probability that Bob’s envelope, however remote, 
contains the bill, changes to 0, although nothing else in Bob’s location is physically changed. 
Postulate 4 is clearly violated. There seems no reason, on epistemic grounds, to subscribe to 
this principle.  Yet if probability is something physical, and applicable to events causally 
separated from one another – to a theory in which causal action is otherwise local – it is another 
story. Arguably, probability should then be local as well. If there is such a thing as physical 
probability, in a local physical theory, it should not involve any spooky action-at-a-distance.  

We proceed by translating P1-P4 into quantum mechanics, where the physical state is the 
total quantum state, an element of a Hilbert space ℋ, and physical changes are unitary 
transformations on ℋ, for which a Schrödinger equation holds, and the superposition principle 
holds without restriction.  
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3.	Expansions	of	the	state	as	event	spaces		

By	 ‘state’	we	always	mean	a	vector	state	 in	 	ℋ,	complete	with	(real)	amplitude	and	(complex)	
phase,	with	no	assumption	it	is	normalised	(so	we	use	the	notation	𝜓	rather	than	|𝜓⟩).	We	take	as	
the	physical	state	some	vector		𝜓	 ∈ ℋ.	
Consider	an	arbitrary	expansion	of	𝜓	in	Binitely	many	orthogonal	vectors	

																																																				𝜓 = 𝜑! +…+ 𝜑".																																																																																													(1)	

We	take	as	the	space	Σ	the	vectors	in	Eq.(1),	and	(vector)	sums	of	such,	together	with	the	zero	
vector.	Disjointness	is	given	by	orthogonality,	and	the	complement,	for	any	𝜑 ∈ 	Σ,	is	(𝐼 − 𝑃#)𝜓 ∈
Σ.	(This	is	easily	turned	into	a	Boolean	event	space,	treating	superpositions	of	vectors	as	sets	of	
vectors,	with	meet	and	join	given	by	set-theoretic	intersection	and	union.)		
This	may	 look	unfamiliar;	more	standard	would	be	 to	deBine	a	Boolean	algebra	 in	 terms	of	

some	(commuting)	family	of	projectors	𝑃;	but	any	projector	𝑃	so	deBined	may	be	mapped	to	the	
vector	 𝑃𝜓,	 returning	 us	 to	 the	 vector	 space.	 (The	 ontology	 consists	 of	 vectors	 in	 ℋ,	 not	
projectors.)	
We	assume	probabilities	are	real-number	assignments	depending	only	on	𝜓,	Σ,	so	we	write	the	

wanted	probability	distribution	as	𝜇$! ∶ 𝜑 ∈ Σ	 → 𝜇$![𝜑] ∈ [0,1] ⊂ ℝ.	In	line	with	P3,	we	assume	
pairwise	additivity:	
																																																				𝜑, 𝜂 ∈ 	Σ, ⟨𝜑|𝜂⟩ = 0	 ⇒ 𝜇$![𝜑 + 𝜂] = 𝜇$![𝜑] + 𝜇$![𝜂].																							(2)	

It	follows	from	Eq.(2)	and	the	deBinition	of	the	complement	that	𝜇$![𝜓] = 1,	𝜇$![∅] = 0.	Notice	
that	 P1-P3,	 translated	 into	 quantum	mechanics,	 do	 not	 imply	 Gleason’s	 theorem,	 as	 there	 is	
nothing	in	these	postulates	requiring	that	a	probability	measure	be	deBined	over	non-commuting	
projectors,	as	Gleason	assumed.	P1	only	requires	the	existence	of	a	Boolean	event	space.		
In	implementing	Postulate	4,	we	assume	that	physical	changes	involve	only	unitary	mappings	

𝑈.	Contraposing,	it	says	if	𝜑 ∈ Σ		is	unchanged	under	𝑈,	its	probability	is	unchanged,	that	is:		

																																																				𝜑 ∈ Σ,			𝑈𝜑 = 𝜑	 ⇒ 𝜇%$![𝜑] = 𝜇$![𝜑]																																																						(3)	

where	𝑈𝜓&	is	the	state	𝑈𝜓	with	event	space	𝑈Σ	generated	by	𝑈𝜑!, . . , 𝑈𝜑".	Notice	that	if		𝑈𝜑 = 𝜑,	
then	𝜑 ∈ 𝑈Σ,	so	the	probability	𝜇%$![𝜑]	is	well-deBined.	
This	completes	the	translation	of	our	postulates	into	no-collapse	quantum	mechanics.		

Given	Eqs.(1)-(3),	it	is	now	easy	to	show	that	if	a	pair	of	states	in	Σ	have	the	same	amplitude,	
then	they	have	the	same	probability.	For	convenience,	we	write	Eq.(1)	in	the	notation:		

																																																				𝜓 = 𝜑' + 𝜑( + 𝜑! +…+ 𝜑")*.																																																																		(4)	

Our	proof	is	similar	to	that	in	Short	(2023),	save	that,	importantly,	ours	makes	use	of	only	unitary	
transformations.	Let	𝑈'	be	a	unitary	transformation	that	acts	as	the	identity	on	𝜑(	and	all	𝜑+ ,	with	
the	action	𝑈':	𝜑' → 𝜑, ,	where		𝜑, 	is	orthogonal	to	all	the	states	on	the	RHS	of	(4).		Similarly,	let	
𝑈(	act	as	the	identity	on	𝜑, 	and	all	𝜑+ ,	with	the	action	𝑈(:	𝜑( → 𝑧(𝜑' ,	for	some	𝑧( ∈ ℂ;	and	Binally,	
let	𝑈, 	act	as	the	identity	on	𝜑'	and	all	𝜑+ ,	with	the	action		𝑈,:	𝜑, → 𝑧'𝜑( ,	for	some	𝑧' ∈ ℂ.		
Let	𝜇$! 	be	any	assignment	of	probabilities	to	𝜑 ∈ 	Σ	satisfying	(2),(3)	and	(4).	From	(3),	noting	

that	the	antecedent	is	satisBied	when	𝑈	is	𝑈'	and	𝜑	is	𝜑(	or	one	of	the	𝜑+ ’s:		

																																									𝜇%"$![𝜑(] = 𝜇$![𝜑(]; 	𝜇%"$![𝜑+] = 𝜇$![𝜑+],			𝑘 = 1,… , 𝑛 − 2.											

From	additivity,	and	since	𝜇%"$![𝑈'𝜓] = 1,	the	sum	of	these	numbers	with	𝜇%"$![𝜑,]	is	unity,	it	
follows:	
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𝜇%"$![𝜑,] = 𝜇$![𝜑'].																																								
By	similar	reasoning	

𝜇%#%"$![𝜑'] = 𝜇%"$![𝜑(] = 𝜇$![𝜑(]											
and	
																																																				𝜇%$%#%"$![𝜑(] = 𝜇%#%"$![𝜑,] = 𝜇%"$![𝜑,] = 𝜇$![𝜑'].																						(5)	

The	result	of	the	three	changes	is	that	the	probabilities	of	𝜑'	and	𝜑(	have	been	switched,	with	all	
other	probabilities	unchanged.	 	That	seems	appropriate:	 just	 those	 two	states	were	physically	
changed.		
The	Binal	physical	state	is:	

														𝑈,𝑈(𝑈'𝜓 = 𝑧'𝜑( 	+ 𝑧(𝜑' + 𝜑! +⋯+ 𝜑")*.																		

But	now	it	follows	that	when	𝜑' ,	𝜑(	have	the	same	amplitude,	the	complex	numbers	𝑧' ,	𝑧(	are	
pure	phases;	for	from	unitarity	we	have	

‖𝑧'𝜑(	‖ = ‖𝜑, 	‖ = ‖𝜑'	‖																																	

‖𝑧(𝜑'	‖ = ‖𝜑(‖.																																																		

The	phases	𝑧' ,	𝑧(	can	be	absorbed	into	𝑈( , 𝑈' ,	whereupon	𝑈,𝑈(𝑈'𝜓	and	𝜓	are	identical.	From	
Eq.(5)	we	obtain		

		𝜇%$%#%"$![𝜑(	] = 𝜇$![𝜑(	] = 𝜇$![𝜑']										

as	was	to	be	proved.	See	Fig.1.	
	

	
	

Figure	1:	Each	unitary	transformation	𝑈' ,	𝑈( ,	𝑈, 	acts	on	only	one	state	(shown	in	red)	 in	the	
superposition.	Since	the	physical	probabilities	of	the	other	𝑛 − 1	projectors	cannot	change,	and	
must	sum	to	one,	it	follows	𝜇%"$![𝜑, 	] = 𝜇$![𝜑'].	A	similar	argument	applies	to	𝑈(	and	𝑈, .		

4.	Probabilities	as	fractions	of	ensembles	

In	 this	section	we	summarise	 the	microstate-counting	approach	 in	Saunders	(2024),	save	that	
now	it	is	freed	from	any	dependence	on	decoherence	theory.	However,	we	assume	the	dimension	
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of	the	Hilbert	space	ℋ	to	be	inBinite,	as	is	required	in	realistic	applications	of	quantum	mechanics	
(for	example,	to	deBine	physical	quantities	that	may	take	on	continuous	values).			
The	key	idea	is	to	expand	𝜓	in	equiamplitude	orthogonal	states,	of	the	form:	

																																																					𝜓 = 𝜉! +…+ 𝜉"; 			‖𝜉+‖ = [𝜉-[	, 𝑘, 𝑗 = 1,… , 𝑛																																							(6)	

and	 use	 these	 expansions	 as	 ensembles,	 in	 the	 deBinition	 of	 probabilities	 as	 frequencies	 --	 or	
better	fractions.		Call	the	vectors	𝜉+ 	microstates,	and	denote	such	an	expansion	Λ$" .		
Such	 expansions	 can	 always	 be	 found	 for	 any	𝜓,	 for	 any	 𝑛,	 and	 if	 one	 such,	 uncountably	

inBinitely	many	(this	is	true	even	when	ℋis	Binite	dimensional,	so	long	as	dimℋ > 2).	If	this	is	not	
obvious,	suppose	that	an	equiamplitude	expansion	Λ$.	of	𝜓	exists	for	𝑚 < dimℋ,	and	consider	a	
vector	𝜙	orthogonal	to	all	the	vectors	in	Σ$.	(and	hence	to	𝜓),	with	the	same	norm	as	the	𝜉+ ’s.	
Rotate	𝜙	and	all	the	vectors	𝜉+ 	in	Λ$.	about	an	axis	orthogonal	to	the	plane	containing	𝜙	and	𝜓	
through	angle	𝜃;	the	norm	of	the	inner	product	of	𝜓	with	𝜙	will	increase	monatomically	from	0	to	
‖𝜙‖*,	whilst	the	norm	of	the	inner	product	of	𝜓	with	each	𝜉+ 	will	decrease	monotonically	from	
‖𝜉+‖* = ‖𝜙‖*	to	0.	It	follows	there	is	a	unique	value	of	𝜃	where	the	two	are	equal,	whereupon	up	
to	an	overall	constant,	the	states	𝜙,	𝜉+ ,	𝑘 = 1,… ,𝑚,	rotated	through	𝜃	deBine	a	new	equiamplitude	
expansion	Λ$./!	of	𝜓.	Since	Λ$* 	can	be	constructed	for	any	𝜓,	the	proof	follows	by	induction.	There	
are	 uncountably-many,	 when	 dimℋ > 2,	 because	 any	 equiamplitude	 expansion	 of	 	𝜓	 can	 be	
rotated	about	𝜓	by	any	angle.	
The	point	of	such	expansions	is	to	exploit	the	theorem	just	proved:	any	notion	of	probability	

satisfying	our	postulates,	that	applies	to	states,	must	agree	that	the	equiamplitude	states	in	Eq.(6)	
are	equiprobable.		But	it	remains	to	provide	such	a	notion.		
Frequentism	 in	 philosophy	 of	 probability	 in	 the	 simplest	 terms	 is	 the	 notion	 that	 the	

probability	of	𝑋	 is	the	fraction	of	an	ensemble	that	is	𝑋.	Thus,	the	probability	that	a	card	in	an	
ordinary	pack	of	playing	 cards	 is	 an	Ace,	 is	 the	 fraction	of	 cards	 in	 the	pack	 that	 are	Aces.	 In	
particular,	 each	 card	 in	 the	 pack	 occurs	 just	 once,	 so	 the	 fraction	 of	 each	 card	 is	 the	 same;	 if	
fractions	 are	 probabilities,	 they	 must	 be	 equiprobable,	 and	 so	 counted	 with	 equal	 weight.	
Natanson	(1911)	made	this	point	about	the	use	of	combinatorial	formula,	based	on	frequentism,	
in	the	writings	of	Boltzmann	and	Planck.	According	to	Jammer	(1966	p.51),	this	was	an	important	
step	in	untangling	the	riddle	of	the	quantum	where	it	Birst	arose,	in	Planck’s	theory	of	black-body	
radiation.	See	also	Saunders	(2020).		
The	frequentist	probability	of	the	elements	of	the	very	ensemble	that	deBine	probability	must	

all	 be	 equal;	 this	 is	 part	 and	 parcel	 of	 this	 concept	 of	 probability.	 Yet	 it	 has	 proved	 to	 be	
exceptionally	hard	to	square	it	with	everyday	ensembles,	usually	encountered	sequentially	--	the	
probability	that	the	last	card	in	the	pack	is	an	Ace	is	either	0	or	1.	Equally	obdurate,	in	everyday	
cases,	is	the	notion	of	randomness	or	equiprobability.	However	similar	the	cards	in	the	pack,	it	is	
all	a	matter	of	how	they	are	shufBled,	and	how	they	are	dealt.	
For	 these	 and	 other	 reasons,	 frequentism	 in	 philosophy	 of	 probability	 has	 been	 mostly	

abandoned	 (see,	 for	 example,	 La	 Caze	 (2016)),	 but	 with	 little	 consideration	 for	 statistical	
mechanics	--	 let	alone	no-collapse	quantum	mechanics.	 	When	the	ensembles	are	composed	of	
quantum	microstates,	summing	in	a	superposition	to	give	the	physical	state,	there	is	no	possibility	
of	 encountering	 their	 elements	 sequentially,	 or	 of	 shufBling	 or	 skewing	 the	 superposition,	 or	
cheating	in	which	microstate	to	select:	they	are	all	selected,	by	a	unitary	evolution,	some	with	𝑃	
and	 the	 rest	without,	 each	 equally	weighted,	 so	 the	 fraction	with	𝑃	 is	 the	 probability	 of	𝑃.	 If	
justiBication	is	wanted	as	to	why	those	microstates	should	be	equally	weighted,	see	Section	3.	
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The	other	main	contrast	with	classical	frequentism	is	that	classically	the	ensemble	could	only	
be	 spread	out	 in	 space	and	 in	 time.	 In	 terms	of	 experimental	outcomes,	 this	 could	only	mean	
multiple	repetitions	of	an	experiment	at	different	places	and	times,	possibly	with	slight	variations	
from	one	run	of	an	experiment	to	the	next.	The	latter	complication	afBlicts	the	very	deBinition	of	
classical	 frequentist	 probabilities,	 and	 likewise	 their	measurement.	 In	 the	 quantum	 case,	 the	
ensemble	 is	 deBined	 for	 a	 single	 experimental	 outcome	 at	 a	 single	 place	 and	 time,	 with	 the	
ensemble	made	up	of	vectors	in	a	superposition	–	the	multiplicity	is	spread	out	in	a	superposition.		
Of	course,	to	obtain	observable	statistics,	experiments	have	to	be	run	many	times	–	with	those	

slight	 variations	 from	 one	 run	 to	 the	 next	 –	 but	 now	 the	 complication	 only	 concerns	 the	
measurement	of	chance,	not	its	very	deBinition.	All	this	is	essential	to	probability	in	the	epistemic	
sense,	as	based	on	evidence,	but	that	is	not	our	business	here.	
There	is	the	further	question	of	how	one	experimental	outcome	can	exist	in	a	superposition	

with	other,	different	outcomes,	and	what	happens	next	–	we	have	already	remarked	on	this,	it	is	
the	Everett	interpretation.	We	are	adding	an	interpretation,	not	of	macroscopic	superpositions	in	
terms	 of	 worlds	 changing	 over	 time,	 but	 of	 microscopic	 superpositions	 in	 terms	 of	 physical	
probability	at	each	instant	of	time.		
If	now	there	are	sentient	observers	before	a	measurement,	 there	will	be	observers	 in	each	

branch	following.	The	question	of	self-location	arises	–	in	which	branch	am	I	located,	the	branch	
with	spin-up	or	the	branch	with	spin-down?	There	is	a	place	for	uncertainty,	and	even	a	kind	of	
ignorance,	albeit	of	a	special	sort	(‘self-locating	uncertainty’),	a	question	much	discussed	in	the	
literature	on	the	Everett	interpretation	(it	was	Birst	introduced	in	Vaidman	(1998)).	It	is	arguably	
present	even	before	the	measurement	(as	observers,	prior	to	measurement,	know	that	that	this	
self-location	question	is	coming,	however	quickly	they	may	learn	the	answer).	There	is	a	place	for	
postulates	 in	decision	 theory	 (as	 in	Wallace	 (2012);	 for	 critical	discussion,	 see	Saunders	 et	 al	
(2010)).	Again,	all	these	things	come	with	the	notion	of	localised	sentient	observers,	with	Birst-
person	concerns	and	 limitations,	and	they	may	well	be	essential	 to	making	sense	of	epistemic	
probability	in	no-collapse	theory;	but	to	the	physical,	not	at	all.	

5.	Fractions	and	limits	of	fractions	as	physical	probabilities		

For	the	simplest	example,	consider	the	special	case	of	projectors	𝑃	on	ℋ	for	which	expansions	Λ$" 	
exist	which	diagonalise	𝑃,	meaning	either	that	every	microstate	in	Λ$" 	is	an	eigenstate	of	𝑃	(the	
usual	notion),	or	that	superpositions	of	microstates	in	Λ$" 	are	eigenstates	of	𝑃,	leaving	no	residue.		
	Let	the	superposition	of	𝑚	microstates	lie	in	𝑃,	and	let	the	superposition	of	the	remaining	𝑛 −

𝑚	lie	in	not-𝑃:		then	by	microstate-counting,	the	probability	of	𝑃	is	𝑚/𝑛.	In	terms	of	states:	let	the	
superposition	of	𝑚	microstates	equal	𝑃𝜓,	and	of	the	remaining	𝑛 −𝑚	equal	(𝐼 − 𝑃)𝜓:	then	the	
probability	of	𝑃𝜓	is	𝑚/𝑛.	
Under	the	stated	conditions,	the	Born	rule	quantity	for	𝑃	in	𝜓	is:	

																																	
‖𝑃𝜓‖*

‖𝜓‖*
=
‖𝑃(𝜉! +…+ 𝜉")‖*

‖𝜉! +…+ 𝜉"‖*
=
‖(𝜉! +…+ 𝜉.)‖*

‖𝜉! +…+ 𝜉"‖*
=
𝑚
𝑛
.											

The	 same	 would	 obtain	 for	 any	 other	 equiamplitude	 expansion	Λ$"0	 in	 which	 𝑃	 is	 diagonal,	
therefore	 (because	 the	 LHS	 is	 the	 same)	𝑚0/𝑛′ = 𝑚/𝑛.	Where	 such	 a	 fraction	 is	 deBined,	 it	 is	
unique.	
We	should	verify	that	this	notion	of	probability	satisBies	our	postulates,	 in	this	special	case.	

Consider	the	 lattice	generated	by	𝑃𝜓,	(𝐼 − 𝑃)𝜓;	 then	Eq.(2)	 is	clearly	satisBied.	For	the	 locality	
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condition	(3),		𝜇$![𝑃]	is	shorthand	for	𝜇$![𝑃𝜓],	likewise	𝜇%$![𝑃]		for	𝜇%$![𝑃𝑈𝜓].	We	want	the	
vector	to	which	we	are	assigning	a	probability	to	be	exactly	the	same,	on	the	RHS	of	Eq.(3),	namely	
𝑃𝜓 = 𝜑	(in	our	previous	notation);	so	we	require	both	𝑈𝑃𝜓 = 𝑃𝜓		and	𝑃𝑈𝜓 = 𝑃𝜓.	Therefore	the	
condition	is:			
																																																				𝑈𝑃𝜓 = 𝑃𝜓	and	𝑃𝑈𝜓 = 𝑃𝜓	 ⇒ 𝜇%$![𝑃] = 𝜇$![𝑃]	.																														(7)	

We	suppose	as	before	that	𝑃	is	diagonalised	in	the	equiamplitude	expansion	

																																																				𝜓 = 𝜉! +⋯+ 𝜉. +⋯ .+𝜉./! +⋯+ 𝜉"																																																			(8)	

where	𝑃(𝜉! +⋯+ 𝜉.) = 𝜉! +⋯+ 𝜉.,	and	𝑃(𝜉./! +⋯+ 𝜉") = 0.	Consider	the	expansion	

																																																				𝑈𝜓 = 𝑈(𝜉! +⋯+ 𝜉.) + 𝑈(𝜉./! +⋯+ 𝜉")																																											(9)	

Where,	by	hypothesis,	𝑈𝑃𝜓 = 𝑃𝜓,	and	so	conclude	
𝑈(𝜉! +⋯+ 𝜉.) = 𝜉! +⋯+ 𝜉.	.																			

Likewise,	by	hypothesis,	𝑃𝑈𝜓 = 𝑃𝜓,	and	so	conclude		

𝑃𝑈(𝜉./! +⋯+ 𝜉") = 0.																														.	

Therefore	the	fraction	of	microstates	in	(8)	that	lie	in	𝑃,	is	the	same	as	in	(9),	so	the	probability	of	
𝑃	is	unchanged.	From	uniqueness,	the	same	will	be	true	in	any	other	equiamplitude	expansion	of	
𝑈𝜓	that	diagonalises	𝑃.			

The argument extends easily to include any commuting family of projectors 𝑃 that can be 
simultaneously diagonalised in some equiamplitude expansion of 𝜓, but it extends as well to a 
much larger class – the class of projectors of infinite dimension, whose completements also 
have infinite dimension (recall from the outset we supposed dim 	ℋ = ∞	).  Localisation in 
space is a simple example; however small the region of space, the associated projector is 
infinite-dimensional, as is its complement.  

This case certainly includes the projectors of interest for Alice and Bob, in the EPRB set-up. It 
is true	we	usually	concentrate	only	on	spin	degrees	of	freedom,	ignoring,	for	example,	the	centre	
of	mass	degrees	of	freedom	of	spin	systems	–	which	require	an	inBinite-dimensional	Hilbert	
space	–	and	work	with	𝑃	as	a	projector	on	ℂ1;	but	really	we	mean	𝑃⨂𝐼;	it	and	its	complement	
(𝐼 − 𝑃)⨂𝐼	are	both	inBinite-dimensional.	Whilst	it	remains	true	that	in	any	equiamplitude	
expansion	for	𝑃	in	𝜓	(meaning	𝑃⨂𝐼),	in	general	not	all	microstates	can	be	eigenstates	of	𝑃,	but	
in	practise	(since	𝑛	can	be	as	large	as	desired)	we	can	ignore	the	complication,	and	we	will	
continue	to	speak	of	expansions		Λ$" 	that	diagonalise	𝑃,	as	always	available,	even	though	
containing	at	least	one	Schrödinger-cat	state	for	𝑃.			

For	the	details,	I	refer	to	Saunders	(2024).	That	treated	the	case	where	the	continuous	degree	
of	freedom	enters	in	the	deBinition	of	a	decoherent	history	space.	There,	the	limit	𝑛 → ∞	was	not	
taken,	 to	ensure	 that	microstates	were	all	 also	decohering	 states,	but	as	was	also	 there	noted	
(2024	§8),	the	restriction	may	well	be	lifted.	In	this	way	probabilities	as	real	numbers	(and	not	
just	rational	numbers)	can	be	derived	in	the	limit	𝑛 → ∞.	(Since	identical,	in	that	limit,	to	the	Born	
rule	quantities,	we	have	another	way	of	seeing	that	P4	must	be	satisBied:	for	it	is	formally	satisBied	
by	the	Born	rule,	with	no	collapse,	where	𝑋	is	itself	a	component	of	the	state.)	

This	method	for	deBining	real	number-valued	probabilities,	and	not	just	rational	numbers,	is	
typical	in	frequentism,	classical	or	quantum,	but	classically,	𝑛	is	the	number	of	repetitions	of	an	
experiment,	so	the	inBinite	limit	was	always	a	fantasy.	It	was	very	far	from	being	even	a	moderately	
large	number	(like	the	number	of	stars	in	the	visible	universe)	-	the	idea	of	achieving	that	Binite	
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limit	was	 also	 a	 fantasy.	 But	 in	 the	 quantum	 case,	 the	 state	 really	 can	 be	 expanded	 into	 that	
number	of	microstates;	and	to	that	number	to	the	power	of	that	number	of	microstates;	and	so	on	
ad	inBinitum.	Every	such	expansion	involves	the	same	event,	the	same	physical	state,	the	same	
projector,	the	same	instant	of	time.		

	
6.	Locality	

It	is	worth	restating	that	probability	as	microstate-counting	does	satisfy	our	postulates,	P1-P4.	
The	postulates	–	all	of	them	–	follow	on	deBining	probabilities	as	fractions.	To	take	P3,	
Kolmogorov’s	postulates,	we	noted,	follow	from	Dutch	Book	arguments,	but	they	also	follow	for	
probabilities	as	fractions:		for	a	fraction	of	an	ensemble,	any	ensemble,	is	a	real	number,	
bounded	by	0	and	1,	and	disjoint	fractions	must	be	additive.	The	argument	to	show	P4	is	
satisBied	has	already	been	given	(we	shall	shortly	give	it	again,	and	in	a	much	simpler	form,	in	
the	context	of	the	Bell	set-up).	So	in	claiming,	as	we	do,	that	physical	probability	in	no-collapse	
quantum	theory	is	local,	we	are	not	merely	restating	P4,	but	showing	how	it	may	be	true.	Our	
postulates	resemble	a	‘principle	theory’,	in	Einstein’s	sense	(as	set	out	in	his	1905	paper	
introducing	special	relativity),	whereas	microstate-counting	is	a	‘constructive	theory’	(in	special	
relativity,	as	deBined	by	electromagnetism	in	Minkowski	space).			
To	that	end,	and	in	the	language	introduced	by	Bell	(1964),	we	suppose	the	hidden	variable,	

denote	 𝜆,	 belonging	 to	 some	 space	 Λ,	 determines	 the	 probabilities	 of	 given	 outcomes	 𝑠, 𝑡	 of	
measurements	by	Alice	and	Bob	on	their	two	spin-systems.	These	we	suppose	can	be	made	in	one	
of	two	directions,	as	chosen	by	Alice,	denote	𝑎, 𝑎′,	and	in	one	of	two	directions,	as	chosen	by	Bob,	
denote	𝑏, 𝑏′.	The	outcomes	are	either	spin-up	or	spin-down,	so	𝑠	and	𝑡	range	over	the	same	two	
values,	{+1,−1}.	The	joint	probability	is	then	written	𝑝',((𝑠, 𝑡|𝜆).			
In	 effect,	 from	our	point	of	 view,	 this	 is	 to	 replace	our	physical	 state	𝜓 ∈ ℋ	 by	 the	hidden	

variable	𝜆 ∈ 	Λ,	where	the	latter	was	likewise	supposed	to	give	the	‘complete’	description	of	the	
spin	systems,	and	even	–	when	instrument	settings	are	chosen	–	of	the	entire	experimental	set-
up.	(This	also	suggests	a	new	hidden	variable	theory,	where	𝜆 ∈ 	Λ$" 	is	a	microstate;	see	Saunders	
(2025).)	
The	marginal	probability	for	Alice’s	outcome	𝑠	is	the	function:		

																																																				𝑝',((𝑠|𝜆) = x 𝑝',((𝑠, 𝑡|𝜆).
34±!

																																																																						(10)	

If	we	consider	the	events	𝑋	and	𝑌	in	Postulate	4	to	be	the	instrument	settings	𝑎, 𝑎′,	and	𝑏, 𝑏′,	then	
P4	is	the	statement	that	Alice’s	probability	of	outcome	s,	on	measuring	spin	in	direction	a,	as	given	
by	𝑝',((𝑠|𝜆),	cannot	be	changed	by	Bob’s	actions	alone,	with	no	other	change	in	Alice’s	vicinity	
(and	similarly	vice	versa,	interchanging	the	roles	of	Alice	and	Bob).	When	Bob	changes	his	choice	
from	𝑏	to	𝑏′,	we	conclude	from	P4:	

																																																				𝑝',((𝑠|𝜆) = 𝑝',(%(𝑠|𝜆).																																																																																		(11)	

But	 this	 is	 just	parameter	 independence	 (see	e.g.	Myrvold	et	al	 (2024)).	 It	 is	 clearly	a	 locality	
condition,	 in	that	were	𝜆	controllable,	violation	of	(11)	would	permit	super-luminal	signalling.	
And	in	our	theory,	𝜆	is	controllable,	for	it	is	the	quantum	state	𝜓 ∈ ℋ;	so	(11)	had	better	not	be	
violated.	(It	is	violated	in	pilot-wave	theory,	but	there	the	hidden	variable	is	generally	taken	to	be	
uncontrollable,	and	superluminal	signalling	avoided	for	that	reason.)	

We	 previously	 showed	 that	 quantum	 fractions	 as	 probabilities	 satisfy	 P4,	 in	 the	 sense	 of	
Eq.(3).	That	they	satisfy	parameter	independence	can	be	seen	much	more	simply	on	introducing	
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a	tensor	product	structure	for	the	EPRB	set-up	that	reBlects	the	dynamical	independence	of	Alice	
from	Bob.	The	probability	𝑝',((𝑠, 𝑡|𝜆)	is	then	the	probability	of	𝑃6'⨂𝑃3(	in	the	state	𝜓;	the	marginal	
probability	for	Alice	given	by	(10)	is	the	probability	of	𝑃6'⨂𝐼,	and	it	is	given	by	the		fraction	of	
microstates	in	any	equiamplitude	expansion	that	diagonalises	𝑃6' ,	regardless	of	Bob’s	choice	of	
instrument	settings	–	for	Bob	can	only	perform	local	unitary	changes	of	the	form	𝐼⨂𝑈.	Parameter	
independence	 (11)	 is	 obviously	 satisBied.	 	 And	 that	 it	 is	 satisBied	 by	 the	 Born	 rule	 is	 equally	
obvious	(this	is	the	no-signalling	theorem,	true	also	in	ordinary	quantum	mechanics).			
Consider	now	what	P4	requires	when	the	event	that	changes	remotely,	the	event	𝑌,	is	not	Bob’s	

instrument	setting,	but	the	outcome	of	his	measurement,	either	spin-up	or	spin-down.	But	now	
we	must	analyse	this	through	the	concept	of	change,	that	enters	P4	–	and	speciBically,	change	as	
restricted	 to	purely	unitary	 transformations.	What	 change	of	 this	 sort	 can	 take	place	 in	Bob’s	
vicinity,	when	he	performs	his	measurement,	if	there	is	no	collapse?	The	answer	is	that	it	can	only	
be	the	development	of	a	superposition.	So,	the	relevant	locality	condition	is	that	when	Bob	brings	
this	 about	 –	 when	 he	 not	 only	 chooses	 his	 instrument	 settings,	 but	 actually	 performs	 the	
measurement,	 producing	 the	 superposition	 –	 this	 should	 make	 no	 difference	 to	 Alice’s	
probabilities.	But	that	involves	a	simple	extension	of	parameter	independence,	already	satisBied.	
(This	point	has	been	made	many	times	before,	for	example,	in	Wallace	(2012	p.310).)	
Similar	reasoning	applies	to	Einstein’s	photon-box	thought	experiment,	which	resembles	our	

envelopes	and	dollar	bill:	the	photon	is	a	superposition,	entangled	with	two	boxes,	spatially-far	
apart.	 In	 no-collapse	 theory,	 when	 Bob	 opens	 his	 box	 he	 simply	 enters	 into	 a	 superposition,	
without	 changing	 Alice’s	 box	 or	 the	 probability	 of	 her	 Binding	 a	 photon	 therein.	 (For	 further	
discussion	in	no-collapse	theory,	see	Vaidman	(2025).)		
There	 is	 no	 further	 requirement,	 based	 on	 locality	 (so	 following	 from	 P4),	 in	 no-collapse	

quantum	theory,	to	supplement	parameter	independence.	But	then	it	follows	that	Bell	inequalities	
cannot	be	derived,	as	parameter	independence	is	not	enough	to	give	factorizability.	And	the	fact	
that	the	inequalities	can	be	violated,	in	no-collapse	quantum	mechanics,	has	nothing	to	do	with	
action-at-a-distance.	
Their	 violation,	 however,	 surely	 shows	 something.	 To	 see	 what	 it	 is,	 consider	 the	 other	

condition	that	is	often	imposed	as	a	locality	requirement,	namely	‘completeness’	(often	also	called	
‘outcome	 independence’),	which	with	parameter	 independence	 implies	 factorizability.	 It	 is	 the	
condition:	
																																																					𝑝',((𝑠, 𝑡|𝜆) = 𝑝',((𝑠|𝜆)𝑝',((𝑡|𝜆).																																																														(12)	

This	clearly	is	not	satisBied,	in	general,	when	𝜆	is	the	quantum	state;	but	it	is	when	𝜓	is	a	product	
state.		

This point is also well-known, but it is worth demonstrating in terms of microstate-counting.  
Let	𝜓 = 𝜙⨂𝜒.	Consider	the	probability	of	𝑃6'⨂𝑃3(	in	𝜓.	We	expand	𝜙	and	𝜒	in	equiamplitude	
microstates	that	diagonalise	𝑃6' ,	𝑃3(	respectively,	of	number	𝑛'	and	𝑛(;		of	these,	let	𝑚'	have	
eigenvalue	+1	for	𝑃6' ,	and	let	𝑚'	have	eigenvalue	+1	for	𝑃3( ,	with	all	the	rest	0	eigenvalues.	Then	
our	equiamplitude	expansion	for	𝑃6'⨂𝑃3(	is	the	product	of	𝜙	and	𝜒	where	(on	choosing	a	
convenient	ordering):		

																																																	𝜙 = 𝜙!! +⋯+ 𝜙."
! + 𝜙."/!

7 +⋯+ 𝜙""
7 																																														(13)	

																																																	𝜒 = 𝜒!! +⋯+ 𝜒.#
! + 𝜒.#/!

7 +⋯+ 𝜒"#
7 .																																															(14)	



 11 

with	superscripts	1	and	0	for	eigenstates	+1	and	0	respectively.	The	product	𝜙⨂𝜒	then	consists	
of	𝑛! ∙ 𝑛"	equiamplitude	microstates	each	of	the	form	(neglecting,	as	usual,	all	degrees	of	
freedom	but	spin):	
																																																			𝜙-!⨂𝜒+!; 	𝜙-7⨂𝜒+!; 	𝜙-!⨂𝜒+7; 	𝜙-7⨂𝜒+7	.																																																									(15)	

By	construction,	𝑚! ∙ 𝑚"	of	these	are	+1	eigenstates	of			𝑃6'⨂𝑃3( .	So,	the	probability	of	𝑃6'⨂𝑃3(	is		

																																															𝑝',((𝑠, 𝑡|𝜓	) =
𝑚' ∙ 𝑚(

𝑛' ∙ 𝑛(
	.																																																																																				

Similarly,	the	probabilities	of	𝑃6'⨂𝐼	and	𝐼⨂𝑃3(	are	respectively		

																																																				𝑝',((𝑠|𝜓) =
𝑚'

𝑛'
, 	𝑝',((𝑡|𝜓) =

𝑚	(
𝑛(
																																																																						

and	the	completeness	condition	is	automatically	satisBied.		
This	reasoning	breaks	down	when	𝜓	is	not	a	product	state	–	when	it	is	entangled,	with	spin	

degrees	of	freedom	in	the	singlet	state	of	spin.	The	microstates	will	still	be	an	expansion	of	
terms	of	the	form	Eq.(15),	if	Alice	and	Bob	measure	spin	in	directions	𝑎,	𝑏,	respectively;	but	they	
can	no	longer	be	obtained	as	the	product	of	two	expansions	(13),	(14).	But	this	is	to	just	restate	
the	fact	that	it	is	an	entanglement.	The	point	has	nothing	to	do	with	non-locality.		
To	understand	how	(12)	does	arise	as	a	locality	condition,	we	need	a	single-world	

perspective,	in	which,	when	Bob	performs	this	remote	experiment,	whether	by	collapse	or	by	
any	other	means,	a	unique	outcome	is	produced.	Embedded	in	any	theory	like	that,	that	outcome	
is	the	change	in	𝑌	,	and	by	P4,	ought	to	leave	the	probabilities	for	Alice’s	outcome	unchanged.		
That	suggests	the	condition	(along	with	its	conjugate)	

																																																					𝑝',((𝑠|𝜆) = 𝑝',((𝑠|𝑡, 𝜆)	.																																																																														(16)	

This	condition	is	known	as	‘conditional	outcome	independence’;	it	implies	completeness	(12).	
But	it	appears	to	depend	essentially	on	the	idea	of	uniqueness	of	outcome.	If	unique,	then	𝑌	is	
changed,	not	into	a	superposition	of	two	outcomes,	but	into	a	single	outcome.	By	P4,	the	
probability	of	𝑋	should	not	be	changed,	implying	(16).	Its	violation	does	imply	action-at-a-
distance.	But	if	the	change	in	𝑌	is	the	development	of	a	superposition,	that	is	already	looked	
after	by	parameter	independence.		
Also	produced	are	various	correlations	between	Alice’s	outcomes,	and	Bob’s.	There	are	

several	such,	and	they	are	all	relations.	But	relations	can	be	changed	by	changes	in	the	relata,	
singly	or	jointly,	without	any	action-at-a-distance,	as	witness	spatial	relations;	on	those	P4	poses	
no	constraint.	(Brown	and	Timpson	(2016	§9.2)	make	this	point.)	

If	this	reasoning	is	correct	–	if	in	a	single	world	conditional	outcome	independence	is	indeed	
an	 expression	 of	 locality	 (and	we	 are	 agreed	 that	 parameter	 independence	 is)	 --	 then	 on	 the	
premise	of	a	 single	world,	and	absent	 retrocausation	and	 the	 like	 (on	 this	point	 see	Saunders	
2025),	 the	observed	violations	of	Bell	 inequalities	 imply	non-locality.	But	 if	 that	premise	 is	 in	
question,	there	is	the	alternative	reading:	those	experiments,	together	with	locality,	imply	many	
worlds.		

I	suggest	this	is	their	true	meaning,	and	that	never	was	a	Nobel	prize	for	physics,	as	won	by	
Aspect,	Clauser,	and	Zeilinger	in	2022,	of	greater	import.			
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