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Abstract

We present a new ψ-ontology theorem demonstrating that the quantum wave
function is ontic (real) rather than epistemic (representing knowledge) in single-
world unitary quantum theories (SUQTs). By leveraging a protocol of repeated
reversible measurements on a single quantum system, we show that any two distinct
quantum states produce different statistical distributions of (erased) measurement
outcomes. This theoretical distinguishability implies that different quantum states
correspond to different physical realities, supporting the ontic nature of the quan-
tum state. Unlike previous ψ-ontology theorems, such as the Pusey-Barrett-Rudolph
theorem, our proof relies solely on the unitary evolution and Born rule of SUQTs,
without additional assumptions like preparation independence. This strengthens its
implications for quantum foundations, particularly in restricting non-ψ-ontic inter-
pretations like QBism without assuming an underlying ontic state and its dynamics.
The theorem applies to any pair of distinct states in a finite-dimensional Hilbert
space, with extensions to infinite-dimensional systems, offering a robust and general
argument for the reality of the quantum state.

1 Introduction

The nature of the quantum wave function—whether it describes an objective physical
reality (ontic) or merely an observer’s knowledge (epistemic)—remains a cornerstone
debate in quantum foundations [1]. Resolving this question is crucial for interpreting
quantum mechanics and understanding the physical world. ψ-ontology theorems, such
as the seminal Pusey-Barrett-Rudolph (PBR) theorem [2], argue that the wave function
is ontic by showing that distinct quantum states yield different physical predictions.
However, existing theorems often rely on assumptions about the ontic state and its
dynamics, like preparation independence, which may limit their generality or invite
debate over their physical validity.

In this paper, we propose a new ψ-ontology theorem within the framework of single-
world unitary quantum theories (SUQTs), where systems evolve unitarily, measurement
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outcomes are unique, and probabilities obey the Born rule. Our approach uses a protocol
of repeated reversible measurements on a single quantum system, enabled by SUQTs’
unitary dynamics, to distinguish any two distinct quantum states via their predicted
measurement statistics. Unlike the PBR theorem, our proof requires no additional as-
sumptions beyond the standard postulates of quantum mechanics in SUQTs, making it
more general. The theorem applies to any pair of distinct states in a finite-dimensional
Hilbert space, with extensions to infinite-dimensional systems, reinforcing the ontic na-
ture of the wave function.

The paper is structured as follows: Section 2 outlines the reversible measurement
protocol. Section 3 presents the rigorous mathematical proof of the ψ-ontology theorem.
Section 4 explores implications for SUQTs, addresses objections, and evaluates the the-
orem’s impact on non-ψ-ontic interpretations. Section 5 summarizes the findings and
suggests directions for future research.

2 Reversible Measurement Protocol

Consider a quantum system in a Hilbert space H of finite dimension d (e.g., d = 2
for a qubit). The system is prepared in a state |Ψ⟩, which is either |ψ⟩ or |ϕ⟩, where
|ψ⟩ , |ϕ⟩ ∈ H are distinct (|ψ⟩ ≠ |ϕ⟩). Alice measures the system in an orthonormal basis
{|mk⟩}dk=1, entangling it with her measurement apparatus. A superobserver reverses the
measurement, restoring the system and apparatus to their initial states. This process
repeats multiple times to generate a sequence of measurement outcomes, whose statistical
distribution we analyze.

In SUQTs, the evolution is governed by unitary operators, and measurements are
reversible [3]. The initial state is:

|Ψ⟩ |ready⟩A , (1)

where |ready⟩A is the apparatus’s initial state. The measurement applies a unitary UmA :

UmA |mk⟩ |ready⟩A = |mk⟩ |mk⟩A , (2)

where |mk⟩A is the apparatus state recording outcome k. For a general state |Ψ⟩ =∑
k ck |mk⟩, the measurement yields:

UmA |Ψ⟩ |ready⟩A =
∑
k

ck |mk⟩ |mk⟩A . (3)

The Born rule gives the probability of outcome k:

P (k) = |⟨mk|Ψ⟩|2 = |ck|2. (4)

The superobserver applies the inverse unitary Um†
A , restoring the state:

Um†
A UmA |Ψ⟩ |ready⟩A = |Ψ⟩ |ready⟩A . (5)

This reversibility ensures each measurement is independent, producing a theoretical
sequence of outcomes {k1, k2, . . . , kN} over N repetitions, with probabilities converging
to P (k) as N → ∞.
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3 Proof of the ψ-Ontology Theorem

We prove that any two distinct quantum states |ψ⟩ , |ϕ⟩ ∈ H, with |ψ⟩ ̸= |ϕ⟩, produce
different measurement statistics in the reversible measurement protocol, implying that
the wave function is ontic.

Theorem 1. In an SUQT, for any two distinct states |ψ⟩ , |ϕ⟩ ∈ H (|ψ⟩ ≠ |ϕ⟩), there
exists a measurement basis such that the probability distributions of outcomes differ, i.e.,
Pψ(k) ̸= Pϕ(k) for some outcome k. This implies that |ψ⟩ and |ϕ⟩ correspond to distinct
physical realities, supporting the ontic nature of the wave function.

Proof. Let |ψ⟩ =
∑d

k=1 ck |mk⟩ and |ϕ⟩ =
∑d

k=1 dk |mk⟩ in an orthonormal basis {|mk⟩}dk=1,
with ∑

k

|ck|2 =
∑
k

|dk|2 = 1. (6)

In the reversible measurement protocol, Alice measures in the basis {|mk⟩}, producing:

� For |ψ⟩: Probabilities
Pψ(k) = |⟨mk|ψ⟩|2 = |ck|2. (7)

� For |ϕ⟩: Probabilities
Pϕ(k) = |⟨mk|ϕ⟩|2 = |dk|2. (8)

The states are distinguishable if Pψ(k) ̸= Pϕ(k) for some k, i.e., |ck|2 ̸= |dk|2. Since
|ψ⟩ ≠ |ϕ⟩, their coefficients differ in general. If |ck|2 = |dk|2 for all k in this basis,
the states may produce identical distributions. To ensure distinguishability, consider a
general measurement basis {|nl⟩}dl=1. The probabilities are:

Pψ(l) = |⟨nl|ψ⟩|2 =

∣∣∣∣∣∑
k

ck⟨nl|mk⟩

∣∣∣∣∣
2

, Pϕ(l) = |⟨nl|ϕ⟩|2 =

∣∣∣∣∣∑
k

dk⟨nl|mk⟩

∣∣∣∣∣
2

. (9)

Since |ψ⟩ ≠ |ϕ⟩, their density operators differ:

|ψ⟩ ⟨ψ| ≠ |ϕ⟩ ⟨ϕ|. (10)

The distinguishability is maximized by choosing a basis aligned with the eigenvectors of
the difference operator:

∆ = |ψ⟩ ⟨ψ| − |ϕ⟩ ⟨ϕ|. (11)

Since ∆ ̸= 0, it has at least one non-zero eigenvalue. Let |nl⟩ be an eigenvector with
eigenvalue λl ̸= 0:

∆ |nl⟩ = λl |nl⟩ , λl = ⟨nl| |ψ⟩ ⟨ψ| − |ϕ⟩ ⟨ϕ||nl⟩ = Pψ(l)− Pϕ(l). (12)

If λl ̸= 0, then
Pψ(l) ̸= Pϕ(l). (13)
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Since |ψ⟩ ≠ |ϕ⟩, such an eigenvector exists, ensuring a basis where the distributions
differ.

The total variation distance quantifies distinguishability:

D(Pψ, Pϕ) =
1

2

∑
l

|Pψ(l)− Pϕ(l)|. (14)

For distinct states, D(Pψ, Pϕ) > 0 in some basis, as identical distributions in all bases
would imply |ψ⟩ ⟨ψ| = |ϕ⟩ ⟨ϕ|, contradicting |ψ⟩ ≠ |ϕ⟩. Over N repetitions, the empir-
ical distributions converge to Pψ and Pϕ, making the states distinguishable with high
probability as N → ∞.

If the quantum state were not ontic, intrinsic to the system, but subjective or epis-
temic, related to the observer, |ψ⟩ and |ϕ⟩ could not always yield different statistics for
repeated measurements on the system. The existence of a basis where Pψ ̸= Pϕ implies
the ontic nature of the quantum state.

4 Discussion

Our theorem demonstrates that in SUQTs, any two distinct quantum states produce dif-
ferent measurement statistics in the reversible measurement protocol, implying that the
quantum state is ontic. Below, we address potential objections and discuss implications
in detail.

4.1 Deterministic Hidden-Variable Theories

An objection arises in deterministic hidden-variable theories, such as de Broglie-Bohm
theory, where the system’s complete state includes a hidden variable λ ∈ Λ (e.g., par-
ticle positions) that determines measurement outcomes. For a single system in state
|ψ⟩ =

∑
k ck |mk⟩, a fixed λ could consistently produce the same outcome (e.g., k = 1)

across repeated measurements, yielding a sequence {1, 1, . . .} instead of the Born rule
probabilities Pψ(k) = |⟨mk|ψ⟩|2.

We address this within the single-system reversible measurement protocol (Sec-
tion 2). Each cycle involves Alice’s measurement with apparatus A, applying UmA :

|mk⟩ |ready⟩A → |mk⟩ |mk⟩A, followed by the superobserver’s reversal using Um†
A , restor-

ing |ψ⟩ |ready⟩A. The reversal, being a distinct process from the measurement, involves a
separate system (e.g., the superobserver’s apparatus) with independent hidden variables
λR.

In de Broglie-Bohm theory, the configuration is λ = (qs, qA, qR), initially distributed
as µψ(qs, qA, qR) = |⟨qs|ψ⟩|2|⟨qA|ready⟩A|2|⟨qA|ready⟩R|2. For cycle i, The measurement

evolves λ
(i)
0 = (q0s , q

0
A, q

0
R) → λ

(i)
1 = (q1s , q

1
A, q

0
R), with q1A indicating outcome ki. The

reversal, driven by Um†
A and coupled to λR, restores the wave function, evolving λ

(i)
1 →

λ
(i)
2 = (q2s , q

2
A, q

2
R), where q2s ∼ |⟨qs|ψ⟩|2. Since λR is independent of q0s and q0A, the

guidance equation resamples q2s from µψ(qs), breaking correlations with q0s . Then the
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sequence {k1, k2, . . . , kN} will reflect Pψ(k) = |⟨mk|ψ⟩|2. For distinct states |ψ⟩ ̸= |ϕ⟩,
the distributions µψ ̸= µϕ produce:

Pψ(k) = |⟨mk|ψ⟩|2 ̸= Pϕ(k) = |⟨mk|ϕ⟩|2, (15)

in some basis. In general deterministic theories, the reversal’s independent hidden vari-
ables resample λs from µψ, preserving the Born rule. The wave function’s role in driving
the statistics implies its ontic status, as it determines the system’s distinct behaviors.

4.2 Alice’s Outcome Statistics

An objection to the ψ-ontology theorem (Section 3) asserts that the statistics of Alice’s
measurement outcomes in the reversible measurement protocol (Section 2) lack physical

significance because they are erased by the superobserver’s unitary reversal (Um†
A ). Since

quantum mechanics prohibits permanently recording the sequence {k1, k2, . . . , kN}, and
the outcomes occur sequentially without coexisting at any instant, the statistical distri-
bution Pψ(k) is argued to be merely an illusion, undermining its comparison with Pϕ(k)
for a distinct state |ϕ⟩. This challenges the theorem’s assertion that differing statistics
imply |ψ⟩ ≠ |ϕ⟩ represent distinct physical realities.

This objection can be answered by noting that although the outcomes are erased
sequentially and do not coexist at any instant, the statistics are well-defined predictions
derived from the unitary evolution and Born rule, and they are physically significant as
consistent predictions of the wave function that characterize the system’s behavior across
repeated, independent measurement cycles. In each cycle, Alice applies the unitary UmA ,
producing a definite outcome ki with probability Pψ(ki). The superobserver’s reversal

(Um†
A ) restores the system to |ψ⟩ |ready⟩A, ensuring that each subsequent measurement is

independent and governed by the same probabilities. The statistics Pψ(k) do not require
the outcomes to coexist or be recorded; rather, they represent the expected frequencies of
outcomes that would be observed if the sequence were hypothetically collected, providing
a complete description of the system’s measurement behavior in the protocol.

To illustrate, consider a classical analogy: a fair coin tossed repeatedly, with each
outcome (heads or tails) erased immediately after being recorded by an observer who
then resets the coin to its initial state. The probability of heads (0.5) characterizes the
coin’s behavior, predicting that over many tosses, approximately half would yield heads
if recorded. This probability remains meaningful even if each toss’s outcome is erased
and the tosses occur sequentially, as it consistently governs the expected frequency of
outcomes. Similarly, in the quantum protocol, the system is reset to |ψ⟩ after each
measurement, and Pψ(k) predicts the frequency of outcome k across cycles, as if the
sequence {k1, k2, . . . , kN} could be observed. The reversibility of the protocol ensures
that each cycle is a fresh probe of the same quantum state, making the statistics a robust
characterization of the system’s behavior, independent of whether the outcomes persist
or coexist.
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4.3 Infinite-Dimensional Systems

The theorem assumes a finite-dimensional Hilbert space for simplicity, but a possible
objection is its applicability to infinite-dimensional systems, such as position or momen-
tum states in quantum mechanics. We extend the proof to infinite-dimensional Hilbert
spaces with discrete measurement outcomes, ensuring the theorem’s generality.

Consider a quantum system in an infinite-dimensional Hilbert space H, with states
|ψ⟩ =

∑∞
k=1 ck |mk⟩ and |ϕ⟩ =

∑∞
k=1 dk |mk⟩, where {|mk⟩} is a countable orthonormal

basis (e.g., Fock states for a harmonic oscillator), and

∞∑
k=1

|ck|2 =
∞∑
k=1

|dk|2 = 1, ⟨ϕ|ψ⟩ =
∞∑
k=1

d∗kck ̸= 0, |ψ⟩ ≠ |ϕ⟩ . (16)

The reversible measurement protocol applies as in the finite-dimensional case, with Alice
measuring in the basis {|mk⟩}, yielding probabilities:

Pψ(k) = |ck|2, Pϕ(k) = |dk|2. (17)

If |ck|2 ̸= |dk|2 for some k, the distributions differ. If |ck|2 = |dk|2 for all k, consider a
new basis {|nl⟩}∞l=1. The probabilities are:

Pψ(l) = |⟨nl|ψ⟩|2, Pϕ(l) = |⟨nl|ϕ⟩|2. (18)

The operator ∆ = |ψ⟩ ⟨ψ|− |ϕ⟩ ⟨ϕ| is non-zero, and in a separable Hilbert space, it has a
spectral decomposition. Since |ψ⟩ ≠ |ϕ⟩, there exists an eigenvector |nl⟩ with eigenvalue:

λl = Pψ(l)− Pϕ(l) ̸= 0, (19)

ensuring Pψ(l) ̸= Pϕ(l). The total variation distance remains:

D(Pψ, Pϕ) =
1

2

∞∑
l=1

|Pψ(l)− Pϕ(l)| > 0. (20)

For measurements with finitely many outcomes (e.g., a coarse-grained position mea-
surement), the sum is finite, and convergence of empirical distributions holds as in the
finite-dimensional case. For continuous outcomes, one must consider probability density
functions, but discrete measurements (common in experiments) suffice to distinguish the
states, preserving the theorem’s conclusion.

4.4 Examples of SUQTs

SUQTs are defined as quantum theories where isolated systems evolve unitarily via the
Schrödinger equation, measurement outcomes are unique, and probabilities obey the
Born rule. Several non-ψ-ontic quantum theories, often considered epistemic, qualify as
SUQTs because they use the wave function and its unitary evolution for predictions.
These include consistent histories [5], ψ-epistemic models [6], pragmatist approaches [7],
QBism [8], relational quantum mechanics [9], and perspectivalism [10, 11]. We analyze
why these theories are SUQTs and why our theorem implies their wave functions are
ontic, contrary to their conventional non-ψ-ontic interpretations.
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4.4.1 Consistent Histories

The Consistent Histories (CH) interpretation [5] is a SUQT where the wave function
evolves unitarily between events, and probabilities for consistent sets of histories are
computed via the Born rule. Measurements are modeled as unitary interactions, with
outcomes described by projectors on the Hilbert space, avoiding wave function collapse.
CH employs a single framework rule, restricting reasoning to a single projective de-
composition of the identity (PDI) to prevent paradoxes from combining incompatible
quantum descriptions. While some interpretations of CH suggest an epistemic view of
the wave function, treating it as a tool for assigning probabilities within frameworks,
our ψ-ontology theorem demonstrates its ontic status.

4.4.2 ψ-Epistemic Models

ψ-epistemic models, such as Spekkens’ toy model [6], aim to represent quantum states
as overlapping distributions over ontic states. However, when these models use the wave
function for predictions, they assume unitary evolution for isolated systems and Born
rule probabilities, qualifying as SUQTs. The different statistics for distinct states refute
the epistemic view, as overlapping ontic states would produce identical statistics. Below
is a more detailed explanation.

Assume a single quantum system, prepared in either |ψ⟩ or |ϕ⟩ (|ψ⟩ ≠ |ϕ⟩), has the
same (complete) ontic state λ0 ∈ Λ as required by a ψ-epistemic model, lying within
the overlap region where µψ(λ0) > 0, µϕ(λ0) > 0. Given that for both wave functions,
the apparatus starts in the same ontic state, and the dynamics of the ontic state of
the whole system are unique and identical, determined by the same Hamiltonian or its
corresponding quantity in the model, one would expect the statistical distributions of
measurement outcomes to be identical. Yet, the theorem demonstrates that SUQTs
predict different statistics (Pψ(k) = |⟨mk|ψ⟩|2 ̸= Pϕ(k) = |⟨mk|ϕ⟩|2) in some basis,
indicating that the ψ-epistemic model is not consistent with the prediction of SUQTs.

4.4.3 Pragmatist Approaches and QBism

Pragmatist approaches [7] and QBism [8] treat the wave function as a tool for assigning
probabilities based on an agent’s knowledge. Both rely on unitary evolution for iso-
lated systems and the Born rule for outcome predictions. In these interpretations, wave
function collapse is considered epistemic, reflecting an update in the agent’s knowledge
rather than a physical change in the system. This epistemic collapse does not affect the
reversible measurement protocol, as the protocol’s unitary operations (UmA and Um†

A ) are
applied to the system-apparatus state, which evolves unitarily in SUQTs. The superob-
server’s reversal restores the system to its initial state |Ψ⟩ |ready⟩A, independent of any
epistemic update by Alice. Thus, pragmatist approaches and QBism remain SUQTs,
as their predictions rely on the unitary dynamics and Born rule. Our theorem shows
that different wave functions yield distinct statistics, implying that they represent dis-
tinct physical realities, challenging the subjective or epistemic interpretations of these
frameworks.
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4.4.4 Relational Quantum Mechanics and Perspectivalism

Relational quantum mechanics [9] and perspectivalism [10, 11] define quantum states
relative to observers or reference systems, with unitary evolution governing the system-
apparatus interaction. Outcomes are unique relative to each observer, and probabilities
follow the Born rule, fitting the SUQT framework. The distinct statistics for different
wave functions (for the same observer Alice) suggest that these states are ontic within
each relational context.

4.4.5 Summary

The key criterion for SUQTs is the unitary evolution of the wave function for an isolated
system, coupled with the Born rule. The above theories, despite their often non-ψ-
ontic claims, meet this criterion, making our theorem applicable. The theorem’s critical
implication is that it challenges the non-ψ-ontic interpretation without assuming an
underlying ontic state, as required by the PBR theorem [2]. In QBism and similar
theories, which reject a realist ontology, the distinct statistics for different wave functions
imply that the wave function encodes objective physical differences, establishing its ontic
status.

4.5 Collapse Theories and the Many-Worlds Interpretation

In collapse theories (e.g., GRW [12]) and the many-worlds interpretation (MWI) [13]
of quantum mechanics, which are not considered in the above ψ-ontology theorem for
SUQTs, the wave function is explicitly ontic, and no proof is needed to establish its
reality.

Moreover, there are also reasons why these theories assume the reality of the wave
function. In collapse theories, if the wave function were not real, a post-measurement
superposition (e.g.,

∑
k ck |mk⟩ |mk⟩A) and a collapsed state (e.g., |mj⟩ |mj⟩A) could

represent the same physical state (a definite outcome j). This would render collapse un-
necessary, as the superposition could already correspond to a single outcome. Similarly,
in MWI, if the wave function were not real, different branches of a post-measurement
superposition (e.g.,

∑
k ck |mk⟩ |mk⟩A) could represent a single world with a definite

outcome, which would render the assumption of many worlds unnecessary.

5 Conclusions

We have presented a new ψ-ontology theorem showing that in single-world unitary quan-
tum theories (SUQTs), any two distinct quantum states produce different measurement
statistics in a reversible measurement protocol. This implies that the quantum state is
ontic. The proof’s generality, requiring no assumptions beyond unitary evolution and
the Born rule, strengthens its implications for quantum foundations, particularly in re-
stricting non-ψ-ontic interpretations like QBism without assuming an underlying ontic
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state and its dynamics. The theorem applies to finite and infinite-dimensional systems.
Future work could explore further extensions to non-SUQT frameworks.
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