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Abstract: A number of authors (Morgan, 1999; Boumans, 2005; Morrison, 2009;

Massimi and Bhimji, 2015; Parker, 2017) have argued that models can be quite

literally thought of as measuring instruments. I here challenge this view by recon-

structing three arguments from the literature and rebutting them. Further, I argue

that models should be seen as cognitive rather than measuring instruments, and

that the distinction is important for understanding scientific change: Both yield two

distinct sources of insight that mutually depend on each other, and should not be

equated. In particular, we may perform the exact same actions in the laboratory but

conceive of them entirely differently by virtue of the models we endorse at different

points in time.

1 Introduction

Models are a vital part of scientific inquiry, and they are in good use, among other things, in

the evaluation of physical measurements. However, there is a view which additionally holds that

models, especially those implemented as computer simulations,

[n]ot only [...] allow us to interpret so-called measurement outputs, but [...] that the

models themselves can function as measuring instruments [...]. (Morrison, 2009, 35;

my emphasis)

Should we really think of models as measuring instruments, and if so, why exactly? Similar

views have been advanced by Morrison and Morgan (1999), Morgan (1999), Boumans (2005)
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Massimi and Bhimji (2015), andParker (2017), but it is not always straightforward to discern

the actual arguments in their favor.

The present paper has two parts. I will first reconstruct three arguments to the effect that

models function as (or ‘are’) measuring devices from the more recent literature and rebut them

in turn (Sect. 2–4). In Sect. 5, I will then, in the second part, turn to an alternative, according

to which models are cognitive rather than measuring instruments, and argue that this helps

us understand scientific practice, and especially scientific change, much better than if we lump

models and measuring instruments together.

2 The argument from indispensability

2.1 Argument: Models are indispensable for measurements

Probably the first argument for models being measuring instruments has been offered by Mor-

rison (2009), who distinguishes a “rather straightforward” (35) use of models as measuring

instruments, when these are physical models (or model-systems), from a less straightforward

one, when they are mathematical. Although the former case is interesting its own right (e.g.

Currie, 2020; Dardashti et al., 2017), I here focus on the latter case.

To illustrate her point, Morrison (2009) considers a physical pendulum for measuring the

gravitational acceleration, g, as an example (also Morrison, 1999). Recall that, if we use Newtons

second law and a small angle approximation, we retrieve the relation g = 4π2ℓ/T 2
0 , where T0 is

the (fixed) period over which the pendulum oscillates back and forth and ℓ the chord length.

However, various simplifications, approximations, and idealizations are necessary to arrive at

this result. To retrieve any realistic measurement of g, one will have to introduce all kinds of

further modeling steps that correct for the numerical artifacts thus induced (Morrison, 2009,

49). It is thus impossible to measure g without these models, as much as it is impossible without

the chord and bob. Hence:
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using the physical pendulum as an experimental apparatus requires us to have in

place a very sophisticated model of that apparatus that renders it a measuring in-

strument. (ibid.; emph. added)

The italicized phrase is ambiguous, for what does ‘it’ refer to? It could mean that having

the sophisticated model in hand renders the apparatus a measuring instrument. But given that

Morrison is interested in models being measuring instruments, I take ‘it’ to mean the model

here. Thus, Morrison effectively offers the following argument, which I call the argument from

indispensability :

P1i Due to the necessity of idealization, simplification, and approximation in applying theo-

retical formulae in physical measurements, models are indispensable for getting realistic

measurement outcomes.

P2i If something is indispensable for getting realistic measurement outcomes, it is (or ‘functions

as’) a measuring instrument.

Ci Hence, models are (or function as) measuring instruments.

This argument is fairly straightforward, and we could take it as the sole target of the paper.

However, as I shall demonstrate, ideas advocated by Parker (2017) and Boge (2021b) give rise

to further arguments to be addressed independently.

2.2 Rebuttal: Indispensability does not imply identity

What is the plausibility of the argument from indispensability? I believe that this argument can

be rebutted, when a distinction between three types of measurement by Parker (2017, 280–3) is

taken into account:

� ‘direct measurement’, which means using an instrument indication, without any “explicit

symbolic calculation”, to “assign[...] a preliminary value to the parameter that is ultimately

of interest” (280);
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� ‘derived measurement’, in which “measurement outcomes are calculated or derived from

[...] directly measured values for other parameters, using reliable scientific principles or

definitions” (281); and

� ‘complex measurement’, “which involves making multiple direct and/or derived measure-

ments and then using their results together, with the aim of obtaining a measurement

outcome that is more informative than could be achieved using just a subset of those

results” (283).

In the pendulum case, a ‘direct measurement’ would be one of ℓ with a measuring rod: We

normally take the scale on the ruler to be well-calibrated and the ambient conditions of the mea-

surement to be sufficiently non-distorting, so that the little bars on the ruler are approximately

equidistant and similar to a reference-length for a comparison between chord and ruler to be

informative. Every measurement involves some stage that should count as ‘direct’ in this sense:

There always is a step wherein the numerical readout of a physical device, or some interface that

is connected to further devices, is used to deliver a – usually preliminary – value for a quantity of

interest. However, for reasons of measurement-uncertainty, one will normally take several such

direct measurements – of ℓ, say – and then suitably average over these, making pretty much all

scientific measurements ‘derived’. Furthermore, due to the need to rely on further models and

corrections, the measurement of g, based on the former two measurements, will be ‘complex’,

as is true of many (if not most) scientific measurements.

Notice that the derived nature of measurement holds if by ‘averaging’, we mean nothing more

than computing the arithmetic mean: if m̄ is the reported value of the measurement, and mi

are individual, direct measurements, then m̄ is derived from the mi by means of the prescription

m̄ = 1
N

∑N
i=1mi. However, there are of course numerous ways (e.g. MacMahon et al., 2004) of

averaging individual measurements, mi, which are often in an even more obvious sense ways to

derive or calculate a measurement value “using reliable scientific principles or definitions”.
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Furthermore, most quantities scientists are interested in are even harder to get at, and there

is no way to ascertain their values just by suitably averaging over relevant direct measurements.

For instance, there simply can be no top-quark mass-ometer, as top quarks decay within some

10−25 seconds. Just as much may there never be a reliable attitude-ometer in psychology, as

external indicators are insufficient for determining psychological states. The unreliability of lie

detectors serves as a case in point. In other words: many scientific measurements are necessarily

complex in Parker’s sense.1

Thus, some amount of modeling is usually indispensable for scientific measurement. But at

the same time, this undermines the very basis for thinking of models as literal measuring in-

struments: Given that already derived measurement requires symbolic manipulations, scientific

measurements, in general, include both, physical activities and inferential steps. Hence, not ev-

ery action within a measurement procedure needs to count as a measurement activity properly so

called. Why not, in other words, simply view the models used in the context of measurements as

fully residing on the inference-side of activities contained within scientific measurements? P2i,

it seems, rests on shaky grounds.

One might question the distinction I have drawn between inferences and physical activities.

For example, when a charged particle passes through a drift chamber, it ionizes gas molecules

within the chamber, the ionized particles drift to the chamber wires, producing a signal that

travels down the wire to an analog-to-digital converter. That digital signal then travels through

a series of transformations in a computer before it becomes part of a readout accessed by any

physicist. By that time it is just one point relied on in the reconstruction of a track. But

1Skimming through Nature-papers from the past 20 years further supports the point: Ley et al. (2006) measured a
correlation between weight-loss through dietary changes and increases in certain bacteria in the colon. For that,
they had to extract and measure bacterial RNA in a complicated procedure from human feces, which involved
a bio-informatics tool for sequencing, and at the same time measure the weight loss of test subjects. Gross
et al. (2011) measured matter-wave quadratures within a Bose-Einstein condensate through an analogue to
homodyne detection in quantum optics, which requires models of both measuring devices and the condensate.
Among other things, comparison to a reference measurement was necessary to ensure that the data were
produced by a targeted sort of collision within the condensate. Wright and Jackson (2022) measured the
predictivity of childhood temperament for later-in-life personality. For that, they had to individually score
and then integrate temperament and personality by means of different questionnaires, which requires models
of ‘personality’ and ‘temperament’. And so on.
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where does the physical instrument end and the inference begin? Is it at the point that the

analog signal reaches the analog-to-digital converter? Why there and not further upstream or

downstream?

First, it is important to note that I have not claimed that the measurement ends somewhere

and that the inference begins there: Measurement involves both inferences and physical activi-

ties. That does not make the tools used for inference measuring-devices. And I see no problem

in sorting the cognitive, inferential activities made by appealing to, and in preparation of, a

computer simulation run in the course of a measurement from the physical actions performed

in the course of that same measurement.

To see the difference, we should ask for the purpose of programming the computer to imple-

ment a given model. Is the purpose to interpret the computer’s behavior as directly indicative

of the measured system’s behavior, as in the manual calibration of an instrument? Or is the

purpose to infer something about the system’s behavior, based on the modeling assumptions? I

think the answer is clear, and I suggest to only count activities on such devices directly indicative

of the measured system’s behavior ‘measurement activities properly so called’.

Of course, instrument-calibration2 also involves modeling assumptions, but these are modeling

assumptions as to how the measuring device will react to the measured system in the ambient

conditions (Tal, 2012). In contrast, the model informing the computer in the scenario discussed

above only concerns the behavior of the targeted system. Any considerations connected to the

computer’s behavior in devising the program will relate to its ability to accurately inform us

about the consequences of the model, not its immediate reaction to the measured system. I

believe this makes all the difference in the world.

However, instead the objection might be that the physical activity carried out by the computer

performing the transformation is itself already part of the inferences drawn, thus blurring the

distinction in a different way.3 That would be a mistake: For who should we say is drawing the

2I shall have to say more about this point later on.
3I owe the above example and this objection to an anonymous referee.
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inferences here? The computer? Unless we believe that digital computers running simulations

are thinking beings – which I do not –, such a claim would be a mere metaphor. The computer

mentioned in the above example may, in other words, be an instrument, but it is neither a

measuring instrument, nor something that draws inferences: If anything, it is an instrument

supporting certain inferences by human researchers.

3 The argument from physical involvement

3.1 Argument: Computer simulations are directly involved in

measurement-procedures

We have already leaped ahead a bit, for like Morrison later on in the paper, Parker is specifically

interested in computer simulations (CSs) and whether they “can be embedded in measurement

practices in such a way that simulation results constitute measurement outcomes” (Parker, 2017,

274). I take it that, if the output of something ‘constitutes a measurement outcome’, then that

something can be considered a measuring device.

The arguments Parker offers are different from Morrison’s though. First off, Parker (2017,

280) considers a ‘measurement outcome’

a selective representation of the system under measurement, inferred from one or

more instrument indications; it consists of values for a single parameter (a best

estimate plus uncertainty range) or, in some cases, values for multiple parameters

(each with a best estimate plus uncertainty range) that together can represent system

states, trajectories, fields, flows, and so on.

Here, an ‘instrument indication’ is “the physical state of an apparatus used in measuring, such

as a pointer position or a digital display showing a numerical readout” (ibid.). However, as

explained above, there are several ways in which one can move from an instrument indication to

a selective representation of a system under study: Some measurements are direct, some derived,
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some complex.

A surprising claim by Parker is now that values retrieved via models can not only count as

derived or complex measurement results, but that

it is possible for computer simulations to be embedded in [...] measurement practices

in such a way that simulation results constitute raw instrument readings or even

measurement outcomes. (Parker, 2017, 285)

This is an even stronger claim than Morrison’s, for the result of the CS is here construed as

the indication of an instrument, so it may even count as the result of a direct measurement.

What is the argument in support of this? To establish this claim, Parker refers back to an

example first considered by Van Fraassen (2008):

Suppose we are interested in measuring the temperature of a very small cup of hot tea

at time t0, and we insert a mercury thermometer at that time; we wait a short while

for the mercury to stop rising in the tube and take a reading. But thermodynamic

theory tells us that the thermometer itself will affect the temperature of the tea and

hence the reading obtained. To arrive at a more accurate temperature estimate for t0,

our measurement process will need to include a step that corrects the thermometer

reading for this interference. (Parker, 2017, 285)

This can be done using some calculations; however, it can also be done using the output of a

CS, and so, “[i]n those cases, simulation results can be direct measurement outcomes” (ibid.).

Let us unpack this claim a little. Recall that an instrument indication is “the physical state

of an apparatus used in measuring, [...] showing a numerical readout”. Thus, the computer

involved in the CS may satisfy this definition, and its display may count as an ‘instrument

indication’ in Parker’s sense. Furthermore, since there will be no further “explicit symbolic

calculation” involved, this process of reading off the corrected temperature may count as a

‘direct measurement’ in her sense.
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Thus, Parker seems to endorse the following argument:

P1p State X of physical apparatus Y is an instrument indication iff (if and only if) X is

interpretable as a (numerical) readout and Y is used in the process of measuring.

P2p Process P is a direct measurement iff during P , an instrument indication is used to assign

a preliminary value to a parameter of interest.

P3p When a CS is used to immediately correct for the error of a given apparatus, the physical

state of the computer on which the CS is run is interpretable as a numerical readout used

in the measuring process.

Cp Therefore, the result of the CS is an instrument indication and the process is a direct

measurement.

Call this the argument from physical involvement. As stated, this is an argument for the

CS-result being an instrument indication and for the process being a direct measurement, not

for the CS or the model underlying it being a measuring instrument. However, it immediately

supports the following subsidiary argument :

P1s If the state of a physical apparatus Y is an instrument indication in direct measurement

process P , then Y can function as a measuring instrument.

P2s According to the argument from physical involvement, the results of some CSs are instru-

ment indications in some P s.

Cs Therefore, some CSs can function as measuring instruments.

It should be noted that Parker (2017, 285) qualifies her agreement with Morrison (2009) as

follows: “computer simulation models can function as measuring instruments [...] only in the

sense that a computational instrument/apparatus (such as a [...] programmed computer) can be

part of a measurement process.” Thus, P1s should be given such a modest reading. However,
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since the argument from physical involvement was reconstructed entirely from premises Parker

endorses, and since it feeds directly into the subsidiary argument, it is unclear how much really

separates Parker’s views from Morrison’s.

3.2 Rebuttal I: Not every apparatus used in measurement is a measuring

instrument

The line of reasoning supported by the argument from physical involvement and the subsidiary

argument is a little more subtle, as it involves simulations implemented on a physical computer,

but I believe there are at least two reasons to reject it.

The first concerns P1p and the attached notion of a measuring instrument that it supports.

Recall that Parker defines an instrument indication as “the physical state of an apparatus used

in measuring, such as a pointer position or a digital display showing a numerical readout”. I

had based P1p on this definition. As shown above, this directly yields the relevant consequence

(Cs), when conjoined with other claims Parker endorses. Yet, it remains unclear whether the

CS, or even the physical computer running it, satisfies all conditions something needs to satisfy

to count as not just as ‘an apparatus used in measurement’ but a measuring instrument.

Following the thread of Sect. 2.2, I suggest that only some physical devices used in actual mea-

surements should be thought of as delivering instrument indications. Concretely, I suggest that

this should be devices directly involved in direct measurement: The ruler in the measurement

of the rod is a primitive example; a Geiger counter measuring radiation a less primitive one;

and a particle detector measuring debris from scattering particles a fairly involved one.4 What

differentiates these from a computer running a simulation in order to correct some expected

error though? Answering this requires a more careful analysis of ‘measuring instrument’.

4One could define the notion differently, but for the purposes of what I am arguing for, I presuppose Parker’s
definition, with the added specification given above. Said specification has precisely the implication that,
in the example on p. 6, only the untransformed digital signal may count as an instrument indication; the
computer-transformed signal, based on algorithms that in turn are based on physics background-knowledge,
involves an inferential step: That the ‘correct’ signal is the one as delivered by the model-based transformation.
It should hence not count as an “instrument indication”.
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For starters, Heidelberger (2003, 147) suggests that instruments can play a representative role:

In a thermometer, for example, the different states of heat accessible to our sense

of heat are transformed into different states of the instrument itself [...] that are

accessible to sight. [...] The changes the instrument undergoes can be taken as

representative of the changes of the measured phenomena.

Thus, a measuring instrument suitably correlates with the system under study in such a way

that the correlation can be exploited to retrieve the desired information about the measured

system. However, I submit that the correlation between measured system and measuring device

can only be so exploited when it is appropriately causal.

A little thought experiment may elicit the right intuitions. Imagine a freak physicist who

knows the states a given measured system will take on in advance, due to clairvoyance. She

then adjusts a certain device’s readout synchronously with the state changes so that the readout

correlates perfectly with the system’s state. This device would, nevertheless, make for a poor

measuring device, as the correlation would not be brought about in the right ways. Hence,

changes in the device which correlate with changes in the system under study must be brought

about by the system causing the device to change, in order for the device to fulfill a representative

role.

Giere (2009) has actually argued, against Morrison (2009), that it is exactly this causal con-

nection which distinguishes CS epistemically from experiment:

The epistemological payoff of a traditional experiment, because of the causal con-

nection with the target system, is greater (or less) confidence in the fit between a

model and a target system. A computer experiment, which does not go beyond the

simulation system, has no such payoff. (Giere, 2009, 61)

Against Giere, Massimi and Bhimji (2015, 74) have objected that on three possible readings

of ‘causal contact’, CSs can be relevantly in contact with the target system; namely, as either
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(i) calibration of quantities by direct contact, (ii) the tracking of interactions between variables

by quasi-direct contact, or (iii) the inference to an entity’s existence (say, a novel particle) by

means of indirect contact, when the general experimental context is taken into account.

I will turn to issues of calibration below, as this is directly connected to a third argument for

models being measuring instruments. For now note, however, that is unclear that (i)–(iii) are

all possible readings of ‘causal contact’. For instance, Boge (2019, 11–12) points out that none

of these readings

even makes contact with the real bite of Giere’s argument. [...] Any unexpected

‘recalcitrance’ occurring in a CS must [...] either be attributed to unrecognized

(maybe unintended) elements of the models used, or to unrecognized properties of

the computer itself (failures of the hardware or the operating system, limitations of

the programming language...). It cannot be contributed by the target system.

Thus, the problem with Massimi and Bhimji’s claims is that the causal contact in question is

insufficiently direct, and not suitably attached to properties of the relevant device, for the CS

to count as a measuring instrument: In order for a device to count as a measuring instrument,

changes in the instrument – especially highly unexpected changes – should be recognizable as

being brought about by properties of the system measured. In a CS, this is hardly possible,

due to the fact that the CS realizes a theoretical model (or a model derivative therefrom) on a

digital computer: Any unexpected change will be attributable to either errors in implementation

(or maybe even compilation) of the model, or to errors of hardware. The connection between

measured system and simulation model is simply too remote and too highly mediated (also Boge,

2020) for the model to count as a proper measuring instrument.

If the above is correct, however, we immediately also see that a part of P1p from the argument

from physical involvement rests on shaky grounds: The mere use of the computer on which the

simulation is run in the measurement is insufficient to establish the simulation’s status as a

measuring instrument.
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3.3 Rebuttal II: Computer displays are not numerical readouts

I claimed above that there are two main lines of attack against the argument from physical

involvement, so consider P3p now, the claim that the computer display can be interpreted as a

numerical readout in the relevant sense. There is a lengthy debate about the status of CSs; in

particular, whether they are merely automatically executed arguments, or could in some sense

count as experiments (Morrison, 2009; Parker, 2009; Massimi and Bhimji, 2015; Beisbart, 2012;

Beisbart and Norton, 2012; Boge, 2019, 2020).

The second kind of view actually subsumes two distinct views. On one of these, CSs obtain

an experimental status exactly in the sense of the view at stake here (Morrison, 2009; Massimi

and Bhimji, 2015); so presupposing this in order justify a premise that is then used to justify

the view itself would be a petitio.

This leaves the other two views: That (I) CSs are just arguments executed by computers

(Beisbart, 2012; Beisbart and Norton, 2012), or (II) that CSs are experiments literally performed

on the computer (Boge, 2019; Parker, 2009), whence the ‘simulation’ in ‘computer simulation’

obtains the same basic meaning as in other simulation studies (also Dardashti et al., 2017).

However, on option (I), the output of a CS is a conclusion, not a numerical readout. Hence, on

this view, P3p is false.

On option (II), however, the ability to infer something about the system of interest from an

experiment on the computer depends on the ability to map the computer’s final state back to

the system of interest, via a chain of models and approximate mappings (Boge, 2020): Usually,

theoretical models implemented in a CS need to be discretized, they then need to be translated

into code, complied into a language that instructs the physical computer how to behave, and

then actually run on said computer. In all these stages, information may be lost or distorted,

due to lumping effects or partial failures of isomorphism between, say, state transformations

within a discretized, mathematical model and a piece of computer code (Boge, 2020, 27–29), or

even due the need to include physically unrealistic assumptions to compensate, e.g., truncation
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or floating-point errors (Lenhard, 2007, for a pertinent example). Due to such factors, one

might end up representing “two non-trivially different target systems depending on the chosen

programming language, code execution, and the like.” (Durán, 2024, 157)

However, the above description actually concerns only the simplest kind of CS: Often, several

models will be integrated by appeal to dedicated integration modules (Durán, 2020), and infer-

ences back to the target then become even more complicated. For instance, it might only be

possible to validate the total, integrated model as a whole, so that it becomes unclear where to

locate potential errors. And the integration of different modules may require the introduction

of botched-together pieces of coding, not at all motivated by one’s conception of the target

(Lenhard and Winsberg, 2010, 2011; Lenhard and Küppers, 2006; Boge and Zeitnitz, 2020).

Based on all this, inferences made from the behavior of the computer to the behavior of the

targeted system are subject to the same uncertainties as mentioned above: If something radically

unexpected happens, researchers are likely – and likely right – to interpret this as an indication

that something on the path from theoretical modeling to physical implementation has gone

wrong. The crucial point being that the result of a CS, as displayed on the computer screen,

thus cannot possibly count as a readout in a measurement process on the system of interest : It

either counts as a readout concerning the state of the computer itself, or as a piece of inferred

information about the system of interest, as facilitated by the mapping-relations between the

models mentioned above—with all the modeling-related uncertainties as induced by measures

for model-integration, the need for discretization and the physical limitations of the computer

in realizing a given model. Hence, P3p comes out as false on (II) as well.

Insofar as these are all the relevant alternatives, P3p equally rests on shaky grounds. Moreover,

when we reject the premises of this argument, we obviously also have no serious grounds for

accepting P2s, and so for buying into the subsidiary argument.
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4 The argument from calibration practices

4.1 Argument: Model tuning serves the same purpose as instrument

calibration

A couple of authors have recently drawn attention to the fact that some models have free

parameters that are usually ‘calibrated’ to data, in similar ways as this must be done with the

flexible parts of a physical measuring instrument. The first claim to this that I am aware of is

in (Hasse and Lenhard, 2017).

Actually, Hasse and Lenhard struggle to make sense of calibration or ‘tuning’ practices in

modeling-intensive contexts, such as thermodynamics, as there are “similar terms with (only)

slightly differing connotations” (102) around. ‘Tuning’, they claim, “has a slightly pejorative

meaning”, whereas “[c]alibration [...] makes models look a bit like precision instruments” (ibid.).

This is reason enough for them to reject the term ‘calibration’ and to opt for ‘adjustment’ instead.

However, Lenhard and Hasse’s observations contrast with those made by Boge (2021b, 25),

who believes that the interpretation of parameters in models suggested by the term ‘calibration’

is “on the right track”:

The delicate status of parameters exhibited [in some measurements] leaves us in no

better position than to regard [certain] simulation models as reliable [...] instruments,

insofar as they establish a[...] connection between data and [experimental results].

(ibid.)

Assuming, for the moment, that this supports yet another argument for models’ functioning

as measuring instruments, we may reconstruct the following argument from calibration practices:

P1c If the adaptation of the parameters θM of some model M serves the same purpose as the

adaptation of an instrument I’s parts to a measurement process P , then the function of

M in P is the same as that of I.
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P2c In some measurement processes P , the adaptation of the parameters θM of some models

M serve the same purposes as the adaptation of an instrument I’s parts to P .

Cc Therefore, some M in some P can function as measuring instruments.

What are the reasons for thinking that P1c and P2c could possibly be true? First, P1c seems

almost analytic, since ‘purpose’ and ‘function’ certainly have partially overlapping meanings.

Yet one must be careful here: The ‘purpose’ refers to the adaptation, the ‘function’ to both

model and instrument. Hence, this premise is certainly not trivial.

A more convincing reason to accept it may be advanced on the basis of Parker’s notion of

complex measurement: Since both models and physical instruments are clearly involved in all

such measurements, it seems plausible that they can function in the same ways: As devices to

get at a measurement result. And if the purpose of some adjustment performed on both is the

same, this may well justify accepting their identical functioning in the overall measurement. So

let’s assume for now that P1c is at least sufficiently plausible (I will return to this point below).

Elaborating the reasons for accepting P2c, however, requires more effort. I here draw on the

case study presented by Boge (2021b), namely models used as the basis for CSs in the context

of High Energy Physics (HEP) (also Morrison, 2015). High-energy physicists searching for

traces of new particles, or measuring the properties of known ones, make use of various models

that are often not intimately connected to HEP’s fundamental theory (the ‘Standard Model’).

Furthermore, all of these models have various free parameters that, as in the thermodynamics

case, need to be calibrated to data. However, in contrast to Hasse and Lenhard (2017), Boge

(2021b) suggests to take this notion of ‘calibration’ rather seriously, based on distinct similarities

between relevant practices.

In particular, some HEP researchers (Corcella et al., 2018) have suggested to calibrate certain

models in situ in order to increase the accuracy of relevant measurements. The idea is to use

the very same data on the basis of which a measurement result for some quantity, such as a

16



Models: Measuring or Cognitive Instruments?

particle’s mass m, is supposed to be established to also adjust the parameters of the models

used in the measurement. Obviously, this implies a threat of circularity: It must be done in such

a way that the value to be measured does not influence the adjustment of the model, so that

an assumed value for quantity m is not ultimately smuggled in through the use of the model.

However, this problem is addressed in (Corcella et al., 2018) by assessing the sensitivity of the

relevant ‘calibration observables’ to the quantity m and picking them such that their dependence

on m is negligible.

Why think such a procedure offers a reason to take the notion of calibration quite seriously?

Technicians highlight field (or in situ) calibration on physical instruments as advantageous in

several respects: It means adjusting an instrument to the very conditions in which it is used (Ca-

ble, 2005). Thus, any error introduced by the mismatch between calibration- and measurement-

conditions can be excluded. The in situ calibration of a simulation model essentially serves the

same purpose: Both are strategies for reducing the error on the measurement result by mak-

ing sure that the given device – model or physical instrument – is well-adapted to the overall

measurement context.

Actually, even when the calibration is not done in situ, parallels arise. In this case, a model-

or instrument-user must argue that the calibration-conditions are relevantly similar to the mea-

surement conditions, so that any error introduced by the difference can be neglected (or is at

least known to be small).5 As Boge (2021b, 19) points out, high-energy physicists have a whole

range of different ‘tunes’ for the very same model, and the suggested use of these tunes varies

with the type of measurement they want to perform. So just as a group of physicists will take

into account the kind of measurement they want to perform with a certain physical instru-

ment, taking into account different ambient conditions, relevant models need to be calibrated

differently depending on the measurement-purpose.

In sum, there is a close parallel between the purpose of calibration on models used for mea-

5Boge (2021b) actually applies Tal’s (2012) account of calibration to these simulation models to offer a deeper
analogy, but I’ll here forego discussion.
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surement and that of physical instruments used for the same purpose. This establishes P2c as

plausible: In some measurements, parameter adjustments on models and the adjustments of the

parts of physical instruments serve the same purposes.

That the same purpose of a certain adjustment can justify that the devices adjusted (model or

physical device) fulfill the same functions also delivers a plausibility argument for premise P1c.

Call this the argument for identical functioning. In more detail, it may be stated as follows:

P1f If there is a class CP of measurements P such that models M and instruments I are both

used to get at a central result therein, then if the adaptation of the parameters θM of some

such model M serves the same purpose as the adaptation of an instrument I’s parts to a

measurement process P , the function of M in P is the same as that of I.

P2f In complex measurements, models M and instruments I are both used to get at a central

result.

Cf Therefore, if the adaptation of the parameters θM of some models M serves the same

purpose as the adaptation of an instrument I’s parts to the measurement process P in a

complex measurement, then the function of M in P is the same as that of I.

The argument from calibration practices relies on this argument as a support.

4.2 Rebuttal: Shared purposes do not imply same functioning

So what about the argument from calibration practices? The main problem I see with it lies in

its support by the argument for identical functioning; specifically, in premise P1f . First note

that this is equivalent to the following:

P1f ’ If there is a class CP of measurements P such that models M and instruments I are both

used to get at a central result therein and the adaptation of the parameters θM of some

such model M serves the same purpose as the adaptation of an instrument I’s parts to a

measurement process P , then the function of M in P is the same as that of I.
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Hence, to rebut P1f ’ (and, a fortiori, P1f ), it suffices to show that both antecedent conditions

can be met but the consequent condition remains false.

To see this, consider an arbitrary complex measurement, such as that of a particle mass, m,

in HEP. Here, both models and physical instruments clearly serve the purpose of getting at the

central result (the particle mass, with specified uncertainty margin). Furthermore, as already

argued above, both instrument calibrations in the traditional sense and model calibrations per-

formed on simulation models will be used to reduce the uncertainty margin, so they too serve

the same purpose.

However, is it correct to say that models and physical instruments hence have the same

function here? I believe that this is unjustified. Refer once more to the dual nature of complex,

or even just derived measurements: They involve both physical actions taken on the system and

inferential steps for getting at the desired result.

Thus, a similar line of argument is possible against the central implication in P1f ’ as was

possible against P2i: Just because models and physical instruments share a common goal, and

just because, relative to that goal, certain adaptations of them serve the same purpose, this still

doesn’t mean that they fulfill the same functions if that goal is itself complex.

Specifically, when ‘complex’ is interpreted to mean that the given goal involves integrating

information from distinct sources – such as model-based inferences and physical devices – we can

clearly see that goals in derived and complex measurements are complex. Hence, models and

measuring devices may be used to get at a central result and adaptations (calibrations) performed

on them may serve the same purpose, but they may fulfill different functions nevertheless.

For example, consider the measurement of the the top quark mass, mt. In order to retrieve

a credible result, physicists use measurements from different experiments at the Large Hadron

Collider (LHC), from different decay-channels therein, but also from other colliders, such as

the Tevatron at Fermilab. These are then combined in such a way as to obtain an unbiased

estimate that takes into account all uncertainties contained in individual measurements. In
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such an effort, the following three categories may be distinguished (ATLAS, CDF, CMS and D0

Collaborations, 2014, 5–6):6 uncertainties (i) “from the limited understanding of the detector

response to (and the modelling of) different types of jets”, (ii) “related to the [Monte Carlo (MC)

simulation] modelling of the [...] signal”, that is, “from the specific choice of the MC generator

and the associated [...] models used”, and (iii) “systematic uncertainties stemming from detector

resolution effects, reconstruction efficiencies, and the b-tagging performance in data relative to

the MC”, including “effects related to normalisation and differential distributions of backgrounds

events, and the modelling of the data-taking conditions in the MC simulation relative to the

data”.

At first glance, this categorization may seem to defy the claim I am arguing for: Uncertainties

stemming from different sources (models and instrumentation) are mixed up in (i)–(iii). Thus,

models and instruments seem to be treated on a par. But a closer look reveals that appearances

are deceptive, as these categories still distinguish, within themselves, between uncertainties that

arise purely from models and such uncertainties that arise purely from the physical properties

of the detector: Detector resolution effects as created by the finite size of the different cells of

the detector are clearly distinguished from, e.g., artifacts created by the choice of Monte Carlo

simulation model used for determining this impact. Thus, the given categorization cuts across—

but does not invalidate—the categorization of uncertainties as induced by their source in either

instrumentation or modeling.

To see this clearly, observe that changing the impact of resolution effects would require an

action, i.e., ‘going out into the world’: It would require manufacturing smaller cells that do not

give rise to the same sort of complication as larger ones. The effect of this action would manifest

itself in the physical contact with the debris from the scattering process of interest. In contrast,

changing the impact of potential modeling artifacts would require a mere thought process: It

would require thinking up new ways of conceptualizing the debris or the scattering, but apart

6I eschew a discussion of the physics terms here; introductions at varying levels of detail can be found in Boge
and Zeitnitz (2020); Boge (2021b); Ritson and Staley (2020); Staley (2020).
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from using (say) pen and paper, would not require actions within the real world. Using pen

and paper for conceptualizing and drawing conclusions in the mind would not alter the physical

contact with the system in an interesting sense.

It is important to carefully distinguish physics from epistemology here: For instance, in order

to evaluate the “experimental uncertainty” due to jet energy resolution, ATLAS uses two meth-

ods, one of which involves varying the cut on the differences in azimuthal angle as well as the

varying the parameters in a model used to correct for soft radiation effects (see Aad et al., 2013,

10). Thus, physicists do use improved modeling and corrections to alter measurement results,

seemingly defying the distinction I am making.7

But appearances are deceptive: The impact of resolution effects is estimated via multiple

methods, some of which are model-based. That doesn’t mean that these methods effect actual

changes in the resolution or its contribution. They are just this: ways to estimate the contri-

bution. Thus, the central implication in P1f ’ rests on shaky grounds: Even if usages of models

and physical instruments share common goals in measurement, and even if calibration on them

may serve a common purpose (uncertainty reduction), this does not establish that they function

identically therein.8

Here is an important caveat: I am not claiming that things like ‘particle jets’, or even elemen-

tary particles, are lying out there to be passively discovered by hooking them up to well-adjusted

devices. All I am saying is that there are two distinct sources of insight into reality that should

be kept apart. So we can address whatever is out there either by interacting with it, or by mak-

ing up our minds about it. Of course, both activities depend on each other, but that doesn’t

make them ‘of a piece with one another’. I will make these ideas explicit below.

7I owe this objection to an anonymous referee as well.
8In fact, Beauchemin’s (2017) analysis supports my case: As Beauchemin (2017, 282) points out, “systematic
uncertainties [...] quantify the potential variability of an experimental outcome due to all the anticipated
variations of the many theoretical assumptions [...] needed to obtain the result.” Thus, at least part of the
so-called ‘systematic’ uncertainties explicitly stem from theoretical preconceptions, not from the equipment
itself.
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5 Not Measuring, but Cognitive Instruments

5.1 Models and measuring instruments reconsidered

The foregoing suggests that models do not function as measuring instruments when employed

in measurement contexts. But then what are the differences in functioning between models

and measuring instruments, and how do models function in measurement? I will here sketch

a positive account that explains the functioning of models in measurement and highlights the

differences to measuring instruments, properly-so-called. I will then go into the epistemic im-

plications of the resulting distinction.

Recall that, following Parker (2017, 280), a measuring instrument is a device or apparatus

whose “physical state [is] used in measuring, [...] as a pointer position or a digital display

showing a numerical readout”. One key property of measuring instruments thus is that their

physical state, at some point in the process of measuring, can be used as a numerical readout,

such as a pointer position, an oscilloscope with a scale, a digit displaying a number of particle

hits or the sweat level on a test person’s skin, and so on. Furthermore, the state should count

as a ‘readout’ exactly when changes in a certain property of the system under study can be

expected to effect a corresponding change in the system used as an instrument.

This relation is typically not flawless: Parker’s (van Fraassen’s) example of the thermome-

ter that needs to be corrected serves to exemplify the point. Stated differently, background

knowledge may suggest that the read-out needs to be transformed ex post by means of an

error-correction procedure.

So measuring instruments are physical devices whose final state, after the interaction with a

system of interest, can be interpreted as a numerical readout which is informative about the

state of the measured system, though not generally in a perfect, flawless way. Their function

thus is to map, by appeal to a physical correlation, the properties of a studied system to numbers

one can base calculations on: To provide numerical data. How, in contrast, do models function
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in measurements?

Based on his investigation of calibration practices, Boge (2021b, 25; emphasis added), for in-

stance, argues that models are “cognitive [...] instruments, insofar as they establish an inferential

connection between data and [quantitative experimental results] without painting a trustworthy

picture of the underlying reality.”9 Thus, maybe we can view models in measurement as instru-

ments of some kind ; but since they do not exploit a physical correlation to provide data, maybe

they should be seen as ‘cognitive’ rather than measuring instruments.

So, what exactly is a cognitive instrument? Boge (2021b, 25) claims that models used in mea-

surements “establish an inferential connection” between data and measurement results, which

sounds somewhat like the (long-rejected) ‘inference ticket’ account of theoretical claims from

the realism-debate (e.g. Stanford, 2016), according to which theories and models are rules of in-

ference rather than claims about nature. This is a semantic thesis that was vigorously disputed

already by Nagel (1961, 139):

neither logic nor the facts of scientific practice nor the frequently explicit testimony

of practicing scientists supports [...] construing theories simply as techniques of

inference.

Hence, this better not be the whole story. In fact, Boge (2021b, 25) does side with ‘sophis-

ticated’ instrumentalists, such as Stanford (2006), whence his endorsement of an instrumental

status of models in measurement certainly goes beyond the inference-ticket view. But what does

this entail?

5.2 Cognitive instruments provide understanding (but not necessarily truth)

An anti-realist position that goes by the label ‘cognitive instrumentalism’ has recently been de-

veloped by Rowbottom (2019a). For Rowbottom (2019a, 1), cognitive instrumentalism includes

9This shows that he does not, in fact, embrace the argument from calibration practices.
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“the view that science is primarily [...] an instrument for furthering our practical ends”. On top

of that, it “has three core components”, namely that

[(i)] progress in science centrally involves [...] what it enables us to understand about

and do with observable things; [(ii)] scientific discourse may only be understood

literally when it is grounded in talk about observable things; and [(iii)] science may

reliably progress [...] without discovering new truths [...] about unobservable things.

(ibid.)

In short, cognitive instrumentalism involves the view that science progresses by advancing our

understanding of observable things. The use of ‘understanding’ here is unproblematic, insofar as

several distinct accounts of understanding require only a loose ‘tethering to the facts’ (Rowbot-

tom, 2019a; De Regt and Gijsbers, 2017; Elgin, 2017), not the full objectivity (and truth) of the

models, theories and explanations used to promote understanding. Hence, understanding only

of ‘observable things’ may well be a kind of understanding.

The glaring problem associated with such a position is its reliance on a notion of ‘ob-

servability ’—a modally laden notion that is supposed to ground all theoretical claims, including

modal ones (Ladyman, 2000). Furthermore,

In important areas of science the only perceptual experiences a scientist has when

conducting her experiment are with a computer screen. But it cannot be the aim of

science to predict our perceptions of computer screens. (Bird, 2022, 137)

Thus, if ‘observability’ is tied closely to sense-perception, cognitive instrumentalism may pro-

vide an implausible view of science.10

These objections might be countered by means of a careful analysis of the notion of ‘ob-

servation’. For instance, one might distinguish ‘observation’ in a technical sense from ‘field

10This holds true even though Rowbottom applies questions of observability to properties, not entities: “it’s a
myth that [...] so-called observable properties are known in experience; rather, with only a few exceptions,
the more interesting properties ascribed to entities are introduced via theories [...]. Mass, charge, potential,
energy, entropy are just some obvious examples of theory-driven properties.” (Psillos and Zorzato, 2020, 7–8)

24



Models: Measuring or Cognitive Instruments?

observation’ and ‘experiential observation’, where the first term means the successful establish-

ment of some claim about a given system by means of causal contact with it, the second an

unperturbing act of data-taking, and only the third the recognition of something experienced

(Boge, 2024). However, opting for any of the first two readings in defining ‘observability’ would

mean leaving serious anti-realist positions behind.

Instead of fixating on these problems with observability, though, it seems instructive to focus

on the account of understanding endorsed by Rowbottom. In advancing his own account of

‘empirical understanding’, Rowbottom (2019a, 116–7) centrally builds on Grimm’s (2012, 107–

9) notion of subjective understanding, which involves “a kind of legitimate satisfaction that

accompanies our experience of ‘having made sense of things’” and obtains when “one has grasped

a model of how the world works that ‘makes sense’”. Grimm (2012, 107) contrasts this with a

notion of objective understanding, which additionally implies that “one’s mental model of the

world is accurate”.

For Grimm (2012, 108), “objective understanding is plausibly something that we desire both

for its own sake as well as for the promise it offers of being able to control the world”. Hence,

objective understanding is both intrinsically and extrinsically valuable: Intrinsically because it

is a state of mental satisfaction, and extrinsically because of the abilities it equips us with (in

contrast to purely subjective understanding). This is consistent with various recent accounts

that hold understanding to be that which science ultimately strives for (e.g. Dellsén, 2016;

de Regt, 2017; Elgin, 2017).

However, do we need to assume the accuracy of the modeling assumptions to construe scientific

progress in terms of understanding? I believe this is not so: Since empirical understanding

implies the ability to successfully grasp the connections between things observed, it will also

promote control over aspects of the world: If, without accurately representing the goings on

tout court, a model facilitates successful inferences or enables engineering successes, this will

be enough to harvest the desired control accompanying (the not merely subjective forms of)
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understanding.

In fact, the legitimacy of the mental satisfaction associated with the grasping of the relevant

model may be rooted exactly in the promoted control over phenomena: “a model can provide

mental satisfaction [...] in so far as one grasps it and takes it to be sufficient for a desirable

end.” (Rowbottom, 2019a, 118; orig. emph.)

For instance, it is well known that the predictions made by the appeal to the zodiac do not

stand up to empirical scrutiny at all (Carlson, 1985). So an astrological world-model built around

the zodiac may provide mental satisfaction, but it is very much unsuitable for relevant actions;

it is in a clear sense illegitimate. This is different with models such as those underlying the

ideal gas law, even though they get the relevant interactions quite wrong, and quantum physics

may ultimately require us to reject the notion of ‘particles’ these models centrally involve (e.g.

Halvorson and Clifton, 2002).

In fact, the ideal gas law is well known to be highly inaccurate in many ways, yet it is often cited

as (deriving from) a model that clearly fosters scientific understanding (de Regt, 2017; Elgin,

2017; Strevens, 2013): Using the ideal gas law to infer something about the relation between

pressure and volume in certain engineering efforts can directly lead to successful construction-

principles under certain constrained conditions (e.g. Moses et al., 2024, 250). Thus, for models

to fulfill their function as cognitive instruments, and to be sufficient for desirable ends, they

need not get everything entirely correct; they may in fact get a great many things wrong.

The bottom line is that models, construed as cognitive instruments, can provide understanding

in a sense that facilitates a basis for successful action; including inferences (mental actions) but

also physical actions (such as engineering efforts). Nevertheless, understanding per se is not yet

an action. Further, this understanding does not necessarily involve the truth of the modeling-

assumptions, or only so to a limited extent: If models are to serve as cognitive instruments, we

definitely need to get the connections between things observed right in our heads by means of

them, but not necessarily anything beyond that.
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Measuring instruments are entirely different: They are physical things acted upon, and at the

same time things with which we act upon other physical things: By calibrating and tweaking

them we may bring about novel phenomena (also Heidelberger, 2003, 146 ff.); and by causally

interacting with whatever we want to measure through them, we may put numbers on the

measured system (viz., on its states and properties), as it reveals itself through the interaction.

How is this view connected to the arguments from the paper’s first part? As I have argued in

the rebuttal of the argument from indispensability, indispensabilty does not commit us to seeing

models as measuring instruments, and the arguments given in sect. 2.2 in support of this claim

equally support the view advanced here: models are the basis for inferences, measuring devices

are the basis for actions on, and interactions with, the world. We need both to measure, but

that does not make them ‘one and the same’.

Furthermore, as argued in the two rebuttals to the argument from physical involvement, one

should not be mistaken to slide from some device, such as a programmed digital computer, being

relevant to a measurement to it being a measuring device. In the most extreme case, that might

make a coffee maker a measuring device: Imagine that some brilliant technician has developed

a strong caffeine addiction and needs to first pour in some hot coffee before she can operate

the measuring devices right. There is definitely some contrived causal connection between the

measured system and the coffee maker now, and the coffee maker is physically involved in the

measurement. Clearly, that does not make it a measuring instrument though.11

In particular, the first rebuttal said that the physical involvement of a CS for correcting

errors in a measurement is insufficient for establishing it as providing instrument indications:

If the computer delivers a ‘readout’ here at all, the readout is not an instrument indication;

it is an indication as to what to expect on account of the model implemented. Similarly, in

the second rebuttal, I argued that even the notion of a ‘numerical readout’ is misplaced, as it

11Incidentally, if we imagine the technician to be the only one capable of operating the machine, this would make
the coffee maker even indispensable for the measurement, thus yielding a kind of additional reductio against
the indispensability argument.
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wrongly suggests that the CS is directly informative about the state of the measured system.

This neglects the various modeling and re-modeling steps necessary (Durán, 2020), and the

(uncertain) inferences thereby supported (Boge, 2020), for getting from computer display to

system behavior. These objections are congenial to the view advanced here: If we use a CS

to model a system’s behavior, this may allow us to understand that behavior better. This

may subsequently allow the design of different equipment, experiments, or even theories of that

system. But thus evaluating a model of some system with the help of a computer, based on

information gathered with measuring devices such as particle detectors, is not the same as

directly altering the contact with the system by altering the measuring device.

Finally, making reference to relevant case studies, I argued that the sharing of a common

purpose – getting at a credible measurement result – does not imply identical functioning for

models and measuring devices; even if parameter fits may sometimes make it seem this way.

With the views advanced in this section, we are now in a better position to understand that

proposal: Both models and measuring instruments may contribute to our access to the physical

world within measurements. However they should be seen as complementary, and mutually

dependent, sources of insight into the world: models give us cognitive access, measuring devices

give us physical access; and only together do these two sources of insight lead us to credible

measurement results. I will flesh this idea out further in the next section.

5.3 Why bother?

I have outlined how I think models can function as cognitive instruments and how this differs

from the functioning of proper measuring instruments. But why should we care about the

distinction so drawn? For instance, the numbers gathered by means of measuring instruments

will normally be used in further inferences and modeling. Thus, they will ultimately also enrich

the scope of actions we can perform in the world. And does this not show that both function in

the same ways after all?
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To appreciate the difference, as well as its epistemological impact, consider how there is a

clear dependence of measuring instruments on models: It is only through models that we can

grasp what it is that a measuring instrument measures. The point has been made extensively

by Tal (2012), who offers a model-based account of measurement: In order to understand what

happens when they use a measuring device, scientists need an elaborate model of that device

(Tal, 2012, 17–20). However, at the same time, they of course need a model of the stuff being

measured: Without any preconception of the phenomenon targeted by a measuring device, it is

unclear how any action performed with the device could count as more than idle play, let alone

a measurement of some system’s properties.12

In turn, we saw that models also depend on measurements: If we measure the properties

of a system more accurately, this may change the way we conceive of said system entirely. A

case in point is Michelson and Morley’s (1887) measurement of the speed of light in relation

to a purported luminiferous ether: Their null result ultimately suggested that there is no such

thing as a luminiferous ether. However, if it is correct that models and measuring instruments

mutually depend on each other in these ways, they indeed cannot be identified or equated.

As I see it, we have two source of insight into the world that have to function in concert in order

to yield success in scientific measurements, and to yield genuine insight: physical devices with

which to perform actions on the world, some of which may be called measuring instruments; and

cognitive devices with which to reason about the world, some of which may be called models (or

cognitive instruments). If we change the actions we perform, that may inform the ways we reason

about the world, viz., our models; and if we change the way we reason, that may inform how to

act successfully upon the world and even what it is that we are acting upon, viz., our use and

construction of measuring instruments. Both directions of influence are entirely distinct, even

though they may often happen in succession. Hence, again, models and measuring instruments

should not be equated with each other.

12Exploratory experimentation might be an exception, but it usually also does not operate in a conceptual void,
but rather in the context of overthrowing one conceptual framework by another (e.g. Steinle, 1997, S66).
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The reader may worry about vicious circularity here, as I have claimed a mutual dependence

between models and measuring instruments. However, the process described is rather an instance

of what Chang (2004, 45) calls ‘epistemic iteration’:

a process in which successive stages of knowledge, each building on the preceding

one, are created in order to enhance the achievement of certain epistemic goals.

Notably, the ‘epistemic goals’ here need not, or at least not immediately, involve truth (Chang,

2004, 46). Furthermore, while Chang advances epistemic iteration as part of his theory of

measurement, my reason to appeal to it is different: My main suggestion is that our conception

of what it is that we actually measure may drastically change with changes in the ways we

model the measured systems. Thus, for instance, activities originally interpreted as revealing the

properties of tiny lumps of discrete matter are nowadays interpreted as revealing the properties

of disturbances in extended fields by physicists, on account of the ‘Standard Model’ of particle

physics (e.g. Zee, 2010, 24).

The point is that our understanding of the reality that we measure has often changed over

time. This is possible since we need models in measurement, next to measuring devices and,

as was pointed out above, because there is only a loose connection between understanding and

truth. So many models known (or at least suspected) to contain various falsehoods have served

us well in achieving understanding, in the action-related sense also discussed above, while leaving

major room for conceptual improvement and the re-interpretation of results. Further, as has

been pointed out by various commentators (Laudan, 1977; Stanford, 2006; Rowbottom, 2019b;

Boge, 2021a; Frost-Arnold, 2019; Kuhn, 1962) the conceptual changes to come with different

conceptualization and modeling are difficult, if not impossible, to anticipate. If we equate models

with measuring instruments, instead of acknowledging the mutual dependence between the two,

we loose sight of these important epistemological lessons.
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6 Conclusions

I have argued that models in measurement are not to be literally construed as measuring devices.

To do so, I have considered and rebutted three distinct arguments that may be reconstructed

from the literature: The argument from indispensability (after Morrison, 2009), that from phys-

ical involvement (after Parker, 2017), and that from calibration practices (after Boge, 2021b).

As I have shown, all of these arguments rest on doubt worthy premises: The argument from

indispensability essentially confuses indispensability with identity, the argument from physical

involvement conflates devices used to physically implement numerical models with physical mea-

suring instruments, and the argument from calibration practices essentially confuses identity and

analogy.

Further, I have argued that models function as cognitive rather than measuring instruments,

in the sense that they provide understanding, and with it, an advanced scope for action. In

contrast, measuring instruments are things directly involved in (certain kinds of) physical action.

Distinguishing models and measuring instruments in this way allows us the see the mutual

dependence between action and cognition, instead of lumping everything together. This is

important, among other things, as it makes us aware of the fact that, while performing the

same kinds of actions on the world, we may conceive of ourselves as measuring entirely different

things, depending on the models we endorse.
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