
Put it to the Test: Getting Serious about
Explanation in Explainable Artificial Intelligence∗

Florian J. Boge†& Axel Mosig‡

May 14, 2025

Artificial Intelligence (AI) has become a topic of major interest to philosophers of

science. Among the issues commonly discussed is AI’s opacity. To remedy opacity,

scientists have provided methods commonly subsumed under the label ‘eXplaibable

Artificial Intelligence’ (XAI) that aim to make AI and its outputs ‘interpretable’ and

‘explainable’. However, there is little interaction between developments in XAI and

philosophical debates on scientific explanation. We here improve on this situation

and argue for a descriptive and a normative thesis: (i) When suitably embedded into

scientific research processes, XAI methods’ outputs can facilitate genuine scientific

understanding. (ii) In order for XAI outputs to fulfill this function, they should be

made testable. We will support our theses by building on recent and long-standing

ideas from philosophy of science, by comparing them to a recent framework from

the XAI community, and by showcasing their applicability to case studies from the

life sciences.

1 Introduction

Artificial Intelligence (AI) has become a topic of major interest to philosophers of science. Among

the issues commonly discussed is AI’s opacity (Creel, 2020; Sullivan, 2022b; Räz and Beisbart,

2022; Boge, 2022): The fact that it is intransparent on various levels and in various respects to

∗The version of record of this article will be published in Minds & Machines. A link/doi will be provided when
available.

†Institute for Philosophy and Political Science (IfPP), TU Dortmund University
& Lamarr Institute for Machine Learning and Artificial Intelligence

‡Ruhr University Bochum, Center for Protein Diagnostics, Gesundheitscampus 4, 44801 Bochum

1



both users and developers how common AI methods work. To remedy this situation, software

engineers, mathematicians and working scientists have provided methods that aim to make

AI and its outputs ‘interpretable’ and ‘explainable’, these efforts being commonly subsumed

under the label ‘eXplaibable Artificial Intelligence’ (XAI). At the same time, philosophers of

science from at least Hempel and Oppenheim (1948) onwards have distilled various forms

of explanation from scientific practice. Yet, there is little interaction between debates on

explanation and developments in the field of XAI.

Figure 1: How do XAI methods relate to extant notions of explanation?

This situation is not entirely unwarranted. First of all, there is major diversity on both sides:

‘explainability methods’ comprise saliency maps (Simonyan et al., 2013), layer-wise relevance-

propagation (Bach et al., 2015), network dissection (Bau et al., 2017, 2018), the information

bottleneck-framework (Schwartz-Ziv and Tishby, 2017), local approximators like LIME (Ribeiro

et al., 2016), concept-attribution vectors (Kim et al., 2018), integrated gradients (Sundararajan

et al., 2017), data-planing (Chang et al., 2018), and many, many more. Similarly, Woodward

and Ross’s oft-cited (2021) SEP-article on scientific explanation already mentions Hempel and

Oppenheim’s (1948) deductive-nomological model of explanation, Salmon’s (1970) statistical

relevance model, causal-mechanical explanation in the spirit of Salmon (1984) and Dowe (2000),

and unificationist (Friedman, 1974) and pragmatic (Van Fraassen, 1980) approaches, but does
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not yet discuss minimal model (Batterman and Rice, 2014), causal-graph theoretic (Spirtes

et al., 2000; Pearl, 2000), mathematical (Baker, 2005), functional (Cummins, 1975), simulacrum

(Cartwright and McMullin, 1984), how possibly (Dray, 1957), and mechanistic explanations in

the sense of Machamer et al. (2000) or Craver (2006). How, if at all, do these two sets relate (see

Fig. 1)?

Indeed, several critical voices (Páez, 2019; Krishnan, 2020; Buijsman, 2022) have urged that

the term ‘explanation’ in XAI is largely misguided: The ouputs of XAI methods are nothing

like the claims or propositions involved in explanations in the sense familiar to philosophers.

However, others (Räz, 2022; Erasmus et al., 2021; Baron, 2023; Watson and Floridi, 2021)

have been more optimistic, in part based on detailed investigations of individual methods and

philosophical accounts of explanation.

But even if an XAI method can be said to explain, how much can it thereby support the

progress of science? For isn’t the target of XAI methods just the behavior of an individual

Machine Learning (ML) model or some class thereof, whereas scientific explanations target

real-world phenomena?

Following recent developments in XAI (Murdoch et al., 2019; Roscher et al., 2020; Schuh-

macher et al., 2022) as well as philosophical accounts of ML’s potential in fostering scientific

understanding (Räz and Beisbart, 2022; Sullivan, 2022b; Boge, 2022), we will here argue for two

distinct theses – one descriptive, the other normative. Our descriptive thesis is that (i) when

suitably embedded into a scientific research process, an XAI method’s outputs can facilitate

genuine scientific understanding. That is, when thus embedded, the method may facilitate an

explanation of real-world phenomena, not just of a given ML model.1 Crucially, this presup-

poses a view of XAI whereupon it is not solely concerned with the workings of ML models – a

1Note that the embedding into a research process is necessary, and that ‘facilitating’ is not the same as constituting
or being an explanation. This is similar as in Lawler and Sullivan’s (2021) account of model-induced explanations.
In other words: We are neither claiming that XAI outputs are themselves typically explanations, nor that they can
deliver such explanations as stand-alone devices. However, at least the second point only makes for a difference
in degree: Any scientific model or representation needs to be interpreted by appeal to background knowledge to
facilitate understanding.
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view we shall establish in this paper.

As for the correspondence between types of explanations and XAI methods, we believe the

relation is (in general) many to many: If one aims to explain a system mechanistically, a saliency

map might turn out to be as helpful as a set of Shapley values.2 Similarly, a saliency map

might support both mechanistic explanations and the discovery of a law-like connection in the

service or a deductive-nomological explanation. But explanation is generally a pluralistic and

contextual matter: even a single phenomenon may admit of different explanations (Bokulich,

2018) and the success of explanation generally depends on the particular aims and interests of

explainer and explanation-seeker (Potochnik, 2016; Van Fraassen, 1980). Hence, this should be

unsurprising and per se implies nothing about XAI’s ability to aid explanation.

However, following especially Schuhmacher et al. (2022), we also put forward the normative

thesis that (ii) in order for XAI outputs to fulfill the function as described in (i), they (or the

explanations they facilitate) should be treated on a par with genuinely scientific explanations.

In particular, this means that they should be made testable (Douglas, 2009, 12).

The structure of the paper is as follows: In Sect. 2.1 we offer a brief account of the importance

of explanation to science, putting scientific understanding at center stage. Then, in Sect. 2.2,

we consider in what sense and how XAI could possibly help to advance science by promoting

the understanding of real-world phenomena. We will here distinguish two senses of ‘XAI’,

one of which allows the relevant targeting of real-world phenomena. Our normative thesis,

which emphasizes the testability of decidedly scientific explanations, will be supported in Sect.

3.1 by motivating why and in what ways testability matters in science. However, testability is

well-known to be a thorny issue. We will hence discuss ensuing problems in Sect. 3.2, to then

turn to a nuanced account (Schupbach, 2016) that also puts specific emphasis on the testing

of explanations. In Sect. 4.1, we show how these ideas relate to scientific practice, turning to

an approach from the XAI community that realizes several related ideas in terms of a concrete

2We will go into concrete examples in Section 4.
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framework. We shall also comment on the notions of ‘representation’ and ‘interpretability’ in

this context. All this will be supplement by case studies from the life sciences in Sect.s 4.2 and

4.3, showing how the theses defended here can be (and is already being) applied in practice.

2 From Explainable AI to Scientific Explanation

2.1 Why Value Explanation?

Understanding is a major goal of science (Elgin, 2017; de Regt, 2017; Potochnik, 2017). While

there is disagreement on whether understanding is always connected to explanation (Khalifa,

2017; Dellsén, 2020; Elgin, 2017; de Regt, 2017), there is unanimous agreement that explanation

is one major vehicle for understanding. But why exactly do we value understanding? Again,

opinions differ, but it seems clear that at least one benefit from understanding is that it typically

equips us with greater skill for action3 than mere factual knowledge:

Understanding is widely held to be a matter of grasping. [...] an important element of

grasping is knowing how to exploit the information or insight one’s understanding provides.

(Elgin, 2017, 33)

An illustrative case is the role of explanation in the cure of the scurvy disease. As British

naval surgeon James Lind could demonstrate, including lemons in the diet of sailors provided

an effective remedy against scurvy. Lind’s (1757) study is commonly considered the first

randomized controlled intervention study in medicine, and thus meets what is nowadays

commonly accepted as the gold standard for the effectiveness of medical treatments. However,

the discovery of an effective remedy was far from putting an end to sailors’ suffering from

scurvy.

Even after the British navy introduced a daily ration of lemons for all sailors in 1797, un-

explained failures of the lemon remedy occurred for more than a century to come (Harvie,

3Even though our main example involves physical actions such as interventions, we here intend to also subsume
cognitive actions like the drawing of inferences or model-development under ‘action’.
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2002). As it turned out over the course of decades, the effectiveness of lemons was severely

compromised through procedures attempting to preserve lemons by boiling lemon juice or by

storage in copper tubes. Similarly so for the replacement of Mediterranean lemons by West

Indian limes. Moreover, it remained an unsolved riddle why most animals would not suffer

from scurvy, while humans as well as guinea pigs did. In short, unexplained failures put the

remedy into question throughout more than a century.

Explanation of essentially all failures and riddles that accompanied the lemon remedy came

about with the identification of vitamin C as the antiscorbutic factor by Szent-Györgyi and

Haworth (1933). The discovery of vitamin C in turn elucidated its role in the biosynthesis of

collagen (Jeffrey and Martin, 1966), thus uncovering the biochemical disease mechanism of

scurvy as a nutritional deficiency disease. The availability of a scientific explanation had an

impact beyond resolving unexplained failures: It facilitated the necessary skills to wield one’s

knowledge in the service of action, as it led to the cheap production of synthetic vitamin C, thus

further improving the treatment.

AI is nowadays being deployed in high-stakes contexts such as medicine or pharmacology.

Hence, explanations of AI systems should satisfy the same stringent conditions as scientific

explanations, in analogy to the case of vitamin C. However, how is this even possible, if XAI

targets ML models, whereas scientific explanations target real-world phenomena such as scurvy

and vitamin C deficiency?

2.2 How could XAI help to explain real-world phenomena?

There is a well-known distinction between understanding a model or theory and understanding

with a model or theory:4 Strevens (2013, 513), e.g., distinguishes a genuine mode of under-

standing wherein “the object of [...] understanding is [...] a theory rather than a phenomenon

4Models and theories are distinct in many ways, but we will here treat them on the same footing: as representational
devices for making predictions and generating explanations in science.
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or state of affairs.” This sense of understanding is a “precondition[...] for every explanation”

(ibid.), and thus for understanding real-world phenomena (ibid., 512).5 de Regt (2017, 23) very

similarly holds that understanding a phenomenon “necessarily requires [...] the (pragmatic)

understanding of the theory that is used in the explanation.”

However, since understanding scientific phenomena is usually considered a primary aim of

science (de Regt, 2017; Elgin, 2017), there is an apparent tension between the use of ML and

science’s aims: If we take ML models to be opaque in the sense that it is difficult to understand

why their outcomes arise (Beisbart, 2021, 11643), then insofar as understanding of phenomena

presupposes the understanding of a theory or model, a science based on ML models falls short

of achieving one of its core aims.

There is a debate about the extent to which the conclusion of the preceding paragraph is true:

Sullivan (2022b, 128) argues that it is not the opacity of an ML model that potentially hinders

understanding, but rather the ‘link uncertainty’ attached to it, that is, “the amount, kind, and

quality of scientific and empirical evidence supporting the link connecting the model to the

target-phenomenon”. As a main example, Sullivan discusses Schelling’s model of segregation:

Here, it seems irrelevant how the model is implemented for it to promote understanding of

segregation phenomena in cities; all that matters is that we know how to connect its in- and

outputs to evidence about people’s housing behavior.

It is certainly right that, in order to provide understanding, a model needs to be connected to

evidence. However, we doubt that the ability to link an ML model to even lots of high-quality

evidence is per se sufficient to generate understanding. For example, DeepMind’s AlphaFold2,

the Deep Neural Network (DNN) whose successful development and deployment was recently

honored with a Nobel Prize, allowed scientists to master a task that was unsolved for half a

century (predicting protein structures from amino acid sequences). But despite a tight link

to masses of existing high-quality evidence about amino acids and proteins, there is reason to

5Confusingly, Strevens (2013) calls the former kind of understanding ‘understanding with’.
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doubt AlphaFold2’s value in promoting understanding:

AlphaFold [...] says nothing about the mechanism of folding, but just predicts the structure

using standard machine learning. It finds correlations between sequence and structure by

being trained on the 170,000 or so known structures in the Protein Data Base: the algorithm

doesn’t so much solve the protein-folding problem as evade it. (Ball, 2020)

For similar reasons, Räz and Beisbart (2022, 1) have suggested a qualified reading of Sullivan’s

account:

If we employ a weak notion of understanding, then her [Sullivan’s] claim [...] that un-

derstanding with DNNs is not limited by our lack of understanding of DNNs themselves

[...] is tenable, but rather weak. If, however, we employ a strong notion of understanding,

particularly explanatory understanding, then her claim is not tenable.

As Räz and Beisbart (2022, 12) argue, scientists might gain objectual understanding directly

from the use of ML models like AlphaFold2, where objectual understanding concerns a subject

matter or phenomenon on the whole, as in ‘S understands P ’; P being the relevant topic, subject

matter, or phenomenon.6 Thus, scientists might understand ‘the protein universe’ better, directly

from AlphaFold2’s outputs. But this contrasts with understanding why proteins fold the way

they do, where ‘understanding why’ is usually taken to be intimately connected to explanations.

Stated differently, even though AlphaFold2 has increased our understanding of protein folds, it

hasn’t rendered protein folding any more understandable, by virtue of falling short of providing

a mechanism – something that could explain why proteins fold the way they do. Hence, even if

some things may be understood more or less directly with the help of models like AlphaFold2,

it remains fair to say that the amount of understanding that transpires from opaque ML models

is in general rather limited, and to some extent even ‘off-target’.

Plausibly, XAI methods are needed to remedy this situation. This is also the conclusion

supported by Räz and Beisbart (2022).7 However, our reasons for embracing XAI-based explana-

6This might consist in an ability to map out (and ‘grasp’) dependencies pertaining to a phenomenon (Dellsén, 2020),
or in the establishment of a coherent set of beliefs about P by means of exemplification (Elgin, 2017).

7It is also somewhat tacitly admitted by Sullivan (2022b, 122) when she discussed the relevance of saliency maps.
To the extent that Sullivan hence always meant that most of the understanding comes from ML combined with
XAI (see also Sullivan, 2022a, 1072), we find ourselves largely in agreement with her.
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tions as key to understanding real world phenomena slightly diverge from theirs. For Räz and

Beisbart (2022, 14–5; emph. added), the core problem is that:

researchers do not fully understand which features the DNN picks up on, nor how these

features are combined to produce the final classification. However, understanding how this

works means understanding how the model as such behaves in general [...] and not how the

model relates to a particular [...] target.

We agree that it is the ‘features picked up on’ that matter, but we disagree that we need to

understand “how this works” or “how the model as such behaves in general”. For instance,

Lipton (2018) argues that it is possible to understand what features an ML model has picked

up on without thereby gaining any insight into what goes on inside the model. Similarly, Boge

(2022) has recently offered an account according to which the question of what the model learns

and how the model does it are conceptually entirely distinct.

As an example, consider how particle physicists have experimented with explicitly adding

physically inspired information, inferred by appeal to physical laws, to a DNN’s training data

(Baldi et al., 2014), or even statistically removing such information from the data (Chang et al.,

2018). Both procedures provided evidence that a DNN trained to distinguish signal from back-

ground data had somehow autonomously managed to acquire said physical information: Adding

the relevant quantities hardly improved its performance, while eradicating the information on

them from the data spoiled the performance entirely. But this did not at all show how the DNN

managed to acquire or store this information – it did not shed any light on the model’s inner

workings.8

8We agree, though, that very often investigating the model itself is the most promising way to understand what it
has learned. This was the case, for instance, in a study by Iten et al. (2020): Plotting the activations of nodes in
a specific layer of an autoencoder against certain physical quantities, one can show that the DNN has learned
these quantities, but also how they are encoded into it. Hence, while questions about the explanatorily relevant
information discovered by the model are conceptually distinct from questions about the model’s functioning,
individual XAI methods may happen to shed light on both (also Boge, 2022)
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2.3 Two Views of XAI

How to reconcile all this with (a) the fact that, on the face of it, XAI is concerned with the

explanation of ML models, and (b) that understanding a model is necessary for understanding

real-world phenomena? To gain clarity on (a), we propose a distinction: As we see it, ‘XAI’ is the

name of a diverse research field, broadly dedicated to the explainability of AI systems. However,

there are at least two distinct sets of explanatory targets in XAI, and hence two ways of looking

at the field in its entirety: On a narrow construal, XAI is plainly concerned with explaining

the AI itself. That is, on the narrow construal, XAI provides us with detailed insight into the

workings of algorithms used in the field of AI; or in Rudin’s (2019, 206) words: “‘explanation’

here refers to an understanding of how a model works, as opposed to an explanation of how the

world works.”

On a broader construal, though, XAI is concerned more generally with things to do with the use

of AI. Thus, Lipton (2018, 11) writes: “An interpretation may prove informative even without

shedding light on a model’s inner workings. [...] The real goal might be to explore the underlying

structure of the data [...].” In turn, this ‘underlying structure’ might be indicative of mechanisms

in the real world that give rise to specific patterns picked up on by the machine (Raghu and

Schmidt, 2020). Thus, an XAI method may not even target an ML model specifically; it may

target the real-world reasons for the model’s success – that is, the processes, mechanisms, and

relations ‘out there’ in the world, leading to specific patterns in the data picked up on by the

machine.

As an illustrative toy example (and nothing more), suppose that a classifier is used on a

range of test-cases and investigated using LIME (Ribeiro et al., 2016). As is well known, LIME

locally approximates the given Machine Learning (ML) model, f , by a distinct model, g, and

then provides an interpretable output, such as an image wherein all but the most crucial pixels

have been blackened, or a list of salient features within the input, weighted by their relative
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importance according to g. Since we are working under the assumption that LIME is being

used on a range of well-understood test cases, it would thus primarily aid in understanding

individual decisions of the machine. Furthermore, patching these together, a general pattern

might emerge that might then yield some insight into how f works as a whole.

However, assume that we instead take the model to simply be a highly reliable prediction tool

and are not interested in its inner workings. Rather, we might be interested in workings within

the domain on which the data have been taken, and of which we have little understanding.

Using LIME in similar ways as above, we might be able to find individual features of the data

that prompt a given prediction. This information could in turn be used to discern distinctive

patterns, allowing us to infer back to a mechanism that explains the presence of these patterns.

XAI methods in the
narrow sense

XAI methods in the
broad sense

Shapley values
saliency maps

counterfactuals
LIME
…

infor-
mation
bottle-
neck

…

data
planing

…

Figure 2: Relation between, and examples of, XAI in the broad and the narrow sense.

However, not all methods fall under XAI in both senses like LIME does (see Fig.2). Chang

et al.’s method of removing particle physics information statistically from the data and then

checking the ML model’s performance, which they called ‘data planing’, did not explain anything

about the model per se: It only explained which information the model was exploiting, not

at all how the model did this. Thus, we submit it should fall under XAI in the broad but

not the narrow sense. In contrast, the information bottleneck framework (Schwartz-Ziv and

Tishby, 2017), discussed also by Räz (2022), can explain how models learn to generalize, without

shedding light on what it is that they find. It should thus count as XAI narrowly, but not broadly,

construed.
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As the LIME-example shows, information gained from XAI methods in the broad, but not

necessarily in the narrow sense, can ideally be used to facilitate human-understandable rep-

resentations or models of aspects of the target domain. These may then be used to generate

explanatory hypotheses, where a hypothesis is a claim connecting some model or other represen-

tation to a class of real-world systems (Giere, 2010, 80). A hypothesis may count as explanatory

of a phenomenon if it can figure centrally in the explanation of the phenomenon on (at least)

one of the extant accounts of explanation.

We submit that it is this sort of model or representation which needs to be intelligible (needs

to be grasped). It may then facilitate understanding of phenomena, by means of facilitating

explanatory hypotheses against the backdrop of further domain knowledge. I.e., it is such a

representation which we need to understand in order to then understand with it—not, in the

first instance, the ML model itself. This is our response to (b): that understanding a model is

necessary for understanding real-world phenomena. Clearly, this is conditioned on our response

to (a): that XAI must not be construed overly narrowly as being concerned solely with the inner

workings of ML models.

Speaking in the abstract, we move from ML model to understanding by using an XAI method,

broadly construed, to reach an interpretable representation of some important information the

model has extracted from the data to successfully predict. Combining this representation with

background knowledge may lead to an explanatory hypothesis which may yield the sought-for

understanding. What can be understood depends on the specific combination of XAI method,

target system, domain knowledge available and explanatory question asked. We will return to

these issues in Section 4.1.

Note also that we assumed a many-to-many connection between XAI methods and types of

explanation, as well as explanatory pluralism about even individual phenomena. Thus, what

can be explained and by what method will be as case-by-case matter but what is clearly common
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to all cases is that, if an XAI method is supposed to serve the purpose of explaining real-world

phenomena, it cannot be an XAI method purely in the narrow sense.

We will provide some detailed case studies later, but a slightly more realistic example might

already be helpful. Turning back to the case of AlphaFold2, there is evidence (Roney and

Ovchinnikov, 2022) that it learns at least part of the physics underlying the dynamical generation

of possible protein configurations during its training. Assuming that AlphaFold2 somehow

transcribes the physics information into its activations, reading out these activations in skillful

ways could hence help to significantly constrain the physically realistic models of the folding

mechanism. It would then promote understanding of protein-folding, by aiding the genesis of

explanatory hypotheses, informed by the skillfully read-out activations.9

More concretely, Guo et al. (2022, 2) could recently demonstrate that AlphaFold2 offers

about the protein dynamics, when the model’s own confidence measure for a given part of the

structure is interpreted as a measure of that part’s flexibility, and compared with its mobility

as predicted by simulation models (Guo et al., 2022, 2). However, this was only possible by

means of matching AlphaFold2’s outputs to simulation models, which provide explanatory

information on part-flexibility.10

In sum, we have here argued that in order for thesis (i) to be true – in order for XAI to promote

scientific understanding at all – we need to (a) construe XAI broadly: As also comprising

methods that render understandable patterns in the data which the ML model exploits, and

which may also indicate the real-world reasons for the model’s success. And, (b), we argued

that it is XAI-based models or representations that need to be grasped in order to facilitate

9Methods for skillfully reading out activations in relevant ways are still in their infancy. Iten et al. (2020) simply
plotted activations of an autoencoder against known quantities determining the underlying equations of motion,
but of course no additional understanding of the real world system can be generated in this way. Wetzel
(2025) recently proposed a more advanced method, combining the latent activations of a DNN with symbolic
regression. The idea is to embed the DNN in an equivalence class of functions that can be given as an invertible
transformation of some closed form expression, and to find the intersection between that class and a relevant
class of closed-form expressions. This is a fairly ‘theory-free’ and innovative approach, but of course, defining the
inventory of relevant symbols and configuring the regression algorithm still requires background knowledge,
and only a limited set of equations can be effectively generated in this way.

10For accounts of how simulations can explain, see Durán (2017); Boge (2020); Schweer and Elstner (2023).
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explanatory understanding of phenomena, not ML models per se: If such representations are

embedded into a broader research context, this can lead to explanatory hypotheses that provide

understanding, whereas the understanding generated by means of ML directly is usually fairly

limited.

3 Put it to the Test

3.1 Untestable Explanations are Suspect

What makes an explanation scientifically credible? As is well known, in developing their DN-

account of explanation, Hempel and Oppenheim (1948) identified explanation with prediction.

The sole difference for Hempel and Oppenheim (1948, 138) was that in a prediction, a relevant

statement was to be derived from a law and antecedent conditions before the occurrence of

the predicted phenomenon, whereas in an explanation, the prediction came after the fact.

This identification was heavily challenged, for instance by Scriven (1962); among other things

because it did not seem to fit the explanatory practices in evolutionary biology.

However, more recently, Heather Douglas (2009) has defended a more modest proposal in

the broad spirit of Hempel and Oppenheim. According to Douglas (2009, 457) an explanation

need not be a prediction; in order to count as scientific, it need only make testable predictions

available. Accordingly, explanations without testable predictions are “scientifically suspect”

(ibid., 446) – a view shared by several philosophers of explanation (e.g. de Regt, 2017; Khalifa,

2017).

But why value predictivity? Of course, the idea is that the prediction might come out wrong

(Popper, 1963; Barnes, 2022; Vickers, 2019). Hence, what makes an explanation credible is, in

part, that it sticks out its neck and risks getting refuted. In line with these ideas, our normative

thesis thus is that any explanations generated with the help of XAI should be made testable,

especially when the target is not the ML model but the reality behind the data (when XAI is
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construed broadly): In order for XAI to facilitate credible explanations of the real-world reasons

for a set of ML predictions, such explanations need to make testable predictions available.

A case in point is the debate over ‘just so stories’ in evolutionary biology, usually traced to

Gould and Lewontin’s criticism of (naïve) adaptationism. As Gould and Lewontin argued, it is

fully sufficient for the presence of some detectable feature to not have been sufficiently harmful

for reproduction and survival so that the Darwinian process did not ‘select it away’. However,

adaptationists instead seek out the evolutionary utility behind each and every trait they see

in a biological specimen. The key problem attested to adaptationism by Gould and Lewontin

is that it could thus not possibly be proven wrong: With enough effort, there always is some

evolutionary story one may confabulate (Gould and Lewontin, 1979, 153–4).

Hence, two (interdependent) conditions are crucial for the testability of a given hypothesis,

H : (I) That there be definable conditions under which H is refuted or rejected, and (II) that H

be precise enough to allow for the formulation of such conditions.

Should we thus reject Darwinian explanations as unscientific? Such a conclusion would be

too strong and unwarranted: Orzack and Sober (1994, 367 ff.) discuss successful tests of the

implications of certain optimality models, which provide explanations in terms of adaptive

processes. Whether this amounts to an indirect test of adaptationism itself is another question

(see Sterelny and Griffiths, 2012). But this is exactly the point: One should not assume that

there always is an adaptationist story, but confront each and every individual adaptationist

explanation with further data instead.

Similarly, we suggest that one should not take the seemingly most plausible explanation based

on an XAI-output at face value, but subject it to further testing. In other words, if we want our

XAI-based explanations to be more than ‘just so stories’ about AI systems or their outputs, we

better find ways to subject them to rigorous empirical testing.
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3.2 Testability as Explanatory (Dis-)Confirmation

Testability is well known to be a thorny issue. Popper (1959) famously thought that science

demarcated itself from pseudo-science by having falsifiable consequences. On his account,

theory T would be falsified if a reproducible effect contradicted some consequence of T (Popper,

1959, 66). Since we have put testable predictions and the refutability of explanatory hypotheses

at center stage, it might seem that we here follow a Popperian route.11 But Popperian ideas

have long been known to be problematic, due to the arbitrariness of falsification-thresholds (e.g.

Spanos, 2019) and difficulties in even defining falsifiability (e.g. Genin, 2022).

We hence instead follow a broadly Bayesian approach (e.g. Earman, 1992; Sprenger and

Hartmann, 2019), wherein both confirmation and disconfirmation become gradual, incremental

processes. Since we are here interested in the testability of explanatory hypotheses, it will be

most helpful to adopt a framework wherein hypotheses get rejected for the very reason that

they serve as a poor explanations of the available evidence. This is the case in Schupbach’s

(2016) recent account of robustness analysis, construed as a competition between different rival

explanatory hypotheses.

For our purposes, the core elements of Schupbach’s account can be summarized as follows.

Schupbach (2016, 292 ff.) presupposes a notion of explanatory power, defined as

E(E,H |B) =
P (H |E ∧B)− P (H |¬E ∧B)
P (H |E ∧B) + P (H |¬E ∧B)

, (1)

which has been extensively justified in (Schupbach and Sprenger, 2011). Here, P is a (regular)

probability measure, determining a hypothetical agent’s rational credence, E is some new

evidence, H some explanatory hypothesis, and B some background condition, consisting of

all the past evidence. E ranges between −1 and 1, where 1 means that H explains E perfectly

11Buchholz and Raidl (2022) have recently also applied falsificationsim to ML, following ideas by Gillies (1996).
Our investigation is thus orthogonal in topic (and maybe complementary in effect) to theirs, as we are interested
in the testability of XAI- based explanations, not in the correspondence between falsification and ML training.
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well, whereas −1 means that H would explain the absence of E perfectly well, and 0 means

explanatory irrelevance. For Schupbach, robustness analysis now is a competition in the sense

of explanatory power, where several means of detecting a result have the power to exclude

different explanations.

For example, in the famous case of Brownian motion, the first experiments conducted by

Robert Brown were compatible with the explanation of the granulated pollen’s dancing motion

on water in terms of vital forces. However, when Brown also used inanimate materials and

the same behavior was seen, this ruled out the vital force-explanation (Schupbach, 2016, 276).

Similarly, in the case of Scurvy and Vitamin C, using West Indian Limes and boiled lemon juice

ruled out the explanation that scurvy could be cured simply by means of ingesting juices from

citrus fruits; it had to be some specific compound found, in sufficient quantities, only in fresh

lemons.

We are here not per se interested in the details of robustness analysis in the context of ML

or XAI (Freiesleben and Grote, 2023, for an account of ML robustness). For us, the important

point is that one explanatory hypothesis, H ′, can be ruled out by evidence E in favor of another

hypothesis, H , if the following conditions hold:

E(B,H) > 0, E(B,H ′) > 0 (2)

P (H ∧H ′) = 0 or E(E,H |H ′) ≤ 0 (3)

E(E,H |B) ≈ 1, E(¬E,H ′ |B) ≈ 1 (4)

Thus, both H and H ′ may explain the past evidence, B, but H and H ′ are mutually incom-

patible; either in the sense that both cannot be reasonably assumed true together, or at least in

the sense that assuming one takes away the explanatory power of the other. Finally, and this is

the crucial point, H is supposed to explain the new piece of evidence, E, whereas H ′ explains

its absence – just as, in the Brownian case, vital forces could explain the absence of motion in
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inanimate granules, whereas intermolecular forces inside the water would explain its presence.

Two consequences of the formal analysis are crucial: (A) The above conditions imply that

P (E|H ′ ∧B) ≈ 0 and P (E|H ∧B) ≈ 1 (Schupbach, 2016, 298). That is, H can very reasonably be

said to predict E, and H ′ to predict the absence of E. Furthermore, (B), we generally also obtain

P (H ′ |E ∧B) < P (H ′ |B), since H ′’s explaining B will typically ensure that P (H ′ |B) is sufficiently

high, P (H ′ |B)/P (E|B) is even larger so long as E is not implied by B, and P (E|H ′ ∧B) ≈ 0 will

rescale P (H ′ |B)/P (E|B) by approximately zero via Bayes theorem. Similarly, it can be shown that

P (H |E ∧B) > P (H |B), so these conditions ensure that H receives confirmation from E, whereas

H ′ is disconfirmed.

We submit that this offers a nice way of spelling out Douglas’ intuition that explanations

should make testable predictions available to count as scientific: There should be some pieces of

evidence, E, that H has the power to explain, whereas no available rival H ′ does. In virtue of E’s

obtaining, H thus receives a boost in confirmation, and the relevant rivals H ′ get disconfirmed.

If a model in particle physics, containing some new particle, say, explains the measurement

of some quantity V within open interval ∆, whereas all rival hypotheses about the particle

landscape not presupposing the particle suggest that V ̸∈ ∆, then we can see that measurement

V ∈ ∆ (incrementally) confirms the presence of the particle and disconfirms its absence.

Furthermore, our normative thesis suggests that the same standard should apply to any

explanation created with the aid of XAI, broadly construed: For an explanation, H , based

on XAI methods to rise to the rigor of a scientific explanation, there should be discernible

predictions, E, associated with H , which have the power to discriminate between H and its

rivals in their capacity to account for E. However, as explained above, for XAI to generate any

scientific explanations at all, its methods have to be embedded into broader research processes.

It is this aspect that we shall return to in detail next. We shall do so with a special focus on XAI

in the life sciences, because several recent developments in this field nicely support our case.
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4 Testing XAI-Based Explanations in the Life Sciences

4.1 Views from the XAI Community: The ‘FXAI Framework’

If explanations of an ML model’s success in terms of real-world reasons are to serve as serious

scientific explanations, we need to find ways to subject them to rigorous testing by appeal

to diverse kinds of evidence, beyond the original training and testing data of the relevant

ML model. A framework which takes this message to heart has recently been proposed by

Schuhmacher et al. (2022) in the context of medical imaging. This framework is called ‘FXAI’

by Schuhmacher et al., where ‘F’ stands for ‘falsifiable’ (though as we have urged above, this

needs to be taken with a grain of salt).

In the usual ML pipeline, as illustrated12 in Fig. 3 a), data, xi , are obtained from an experiment

or observation EI on some object of study i.13 These data are used to define the ground truth;

either by explicit labeling (as in supervised ML) or by defining, say, a target distribution as a

function of xi (as in unsupervised learning). Crucially, in the usual ML pipeline, the testing thus

never escapes the scope of existing data, as EI is not supplemented by additional experiments.

Suppose now that the ML pipeline thus construed was supplemented with an XAI method. It

would be highly problematic to infer a purported explanation of the model’s success in terms of

real-world reasons by means of the XAI outputs: Maybe the data from EI are peculiar in such a

way that, when combined with background knowledge, the XAI output leads in a completely

wrong direction. Given the connection between explanation, understanding, and an enriched

scope for action established in Sect. 2.1, this should be worrisome: If XAI was used to, say, infer

features of tumors from medical images coined tumorous by an ML model, this might lead to

the suggestion of treatments that are unsuccessful, as in the scurvy case, or in the worst case

even harmful.

Within the FXAI framework, as illustrated in Fig. 3 b), the relevant ML model is directly

12Similar illustrations are found in Murdoch et al. (2019) or Roscher et al. (2020).
13See Boge (2024) for a recent account of the differences in data-taking between experiment and observation.
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supplemented by an XAI method that produces interpretable representations hi alongside the

ML model’s outputs, yi , where hi stems from some suitable space I of representations (such as a

space of heatmaps, lists of relevant features, simplified local surrogate models, and so on). These

representations, hi , then need to be combined with domain-relevant background knowledge (or

‘domain knowledge’, for short) in order to generate an explanatory hypothesis, H .
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ỹi = EG(i)

Ground truth <latexit sha1_base64="qRn+vOHAhYTt80n++U1v53iJtHo=">AAACHHicbVDLSuRAFL3xNW37iroUIdgIrppEpHUjNrhx2YKtQncTKpUbLaykQtXNYAhZ+R+zn63zC7MTtwPzB36G1d0ufB0oOJxzb52qE+VSGPL9/87M7Nz8wo/GYnNpeWV1zV3fuDSq0Bz7XEmlryNmUIoM+yRI4nWukaWRxKvo7nTsX/1EbYTKLqjMcZSym0wkgjOyUuhuD0nIGKuyDsXQEON3GmV1UlfHdRmK0G35bX8C7ysJ3kir68IEvdB9GcaKFylmxCUzZhD4OY0qpklwiXVzWBjMbQi7wUEeJ4T3o+p+8ova27Ve7CVK25ORN1HfL1QsNaZMIzuZMro1n72x+J03KCg5GlUiywvCjE+DkkJ6pLxxJV4sNHKSpSWMa2Gf6vFbphknW9yHlPHdpJQ0ddNWE3wu4iu53G8HnXbn/KDVPZp2BA3Ygh3YgwAOoQtn0IM+cHiA3/AIf5xfzl/nyXmejs44bzub8AHOv1e+WqOf</latexit>
ỹi
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Figure 3: FXAI framework, reproduced after (Schuhmacher et al., 2022). a): In the usual ML pipeline,
a primary experiment EI on an object i yields data xi . These may be paired up with targets (labels) yi
for supervised learning, where yi may be obtained either from a ground truth experiment on i or by
annotating xi . An ML model is then trained to produce outputs that are compared to the targeted ones.
The only testable claim derivable from the output yi is whether it matches the ground truth. b) If, by
means of an XAI method, an interpretable representation hi is provided alongside yi , researchers can
generate testable explanations, H , targeting real-world reasons for the model’s outputs, by appel to
domain-knowledge. Such explanation are only scientific if they predict testable claims C, which make
reference also to further experiments EII,EIII, . . . on relevant objects i. In principle, a well-validated
explanation, H , can then also be used to improve the original ML model via ‘inductive biases’ (dashed,
gray arrow).

By means of such hypotheses, based on XAI together with domain knowledge, further, testable
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claims may become available; claims, C, that are either probabilistically (P (C|H) ≈ 1) or deduc-

tively (H ⊢ C) predicted by H . In order for H to even possibly count as a scientific explanation,

these claims need to make reference to the outcomes of further experiments, EII,EIII, . . . on i or a

relevantly similar specimen from a pre-defined class of objects (e.g., tissue samples, pharma-

ceuticals, proteins...). Further, as we argued in Sect. 3.2, the different experiments should in

principle have the power to exclude H as an explanation of relevant phenomena, in favor of

some alternative H ′. Only if it withstands such a test, can H be accepted as ‘the’ explanation of

the relevant phenomena.

For example, Schuhmacher et al. (2022) trained a DNN to classify tumorous and non-tumorous

images, but in addition equipped it with a space I of activation maps to highlight the pixels

most important for the classification. This led to certain coherent regions being highlighted

which, against the backdrop of relevant domain knowledge, suggested that the DNN had learned

to identify cancerous cells. Given, however, that activation maps are known to be problematic

as credible representations of the features that prompt successful predictions (Adebayo et al.,

2018), an alternative explanation of the DNN’s focusing on these regions would have involved,

say, bright pixels rather than actually cancerous regions. Hence, to test the hypothesis that

activations indeed correspond to cancerous regions, Schuhmacher et al. (2022) compared the

XAI-based representations to results from a second experiment, EII, wherein the highlighting of

tumorous regions came from hematoxylin and eosin staining, and this led to results consistent

with the tumor-activation identification.

We will return to the example (and also some of its limitations) in more detail below. But

as we can see already at this stage, the FXAI framework instantiates a concrete proposal from

the XAI community that satisfies our normative thesis: The explanations generated by means

of XAI are made testable, in the sense that their explanatory compatibility with a battery of

experiments can be probed, which may either lead to confirmation or disconfirmation. Our
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suggestion is that something along the lines of this framework ought to be accepted if XAI is to

serve the overarching aims of science: To explain and understand.

We have grounded XAI’s ability to facilitate explanations partly in the ‘interpretable rep-

resentations’ provided by them (similarly Fleisher, 2022). So what is meant by this term?

Representations are a heterogeneous bunch, but the following aspects are central to all scientific

representations (Frigg and Nguyen, 2021, 2022): (i) Targetedness: A representation ‘stands in

for’ some other system, the target of the representation. Thus, a model ship may stand in for an

actual ship in a lab experiment. (ii) Asymmetry: The representation represents the target, but

not vice versa. Thus, the model ship does represent the ship, but the ship does not represent

the model. (iii) Inferential surrogacy: By investigating the representation, we gain insights about

the target system. Thus, toying with the model ship in the lab, we may find out things about,

say, the real ship’s behavior in a canal. (iv) Graded accuracy: A representation typically has ways

in which it accurately represents, ways in which it misrepresents, and ways in which it fails to

represent its target. Thus, the model ship might represent the spatial relations pertaining to

parts of the original ship or its mass-distribution, misrepresent such things as material strengths

or the workings of the engine, and will fail to represent the actual size and weight of the real

ship. (v) Contextuality: Whether and how accurately a representation serves its representational

functions is relative to a set of aims and purposes of human agents. Thus, for a bunch of

scientists, the model ship may represent the real ship but for a kid, it might just be a nice toy.

It is easy to see how (i)–(v) typically apply to the outputs of XAI methods: A saliency map

will stand in for the features recognized by an DNN, but not vice versa; by investigating it,

we may gain insights into the domain from which the data originate; some things may be

well-represented by means of saliency maps, some less well, and some will be neglected; and for

a non-expert, a saliency map superimposed on the original image may just be a freaky image.

We encourage the reader to consider for herself how (i)–(v) equally apply to, say, lists of features
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suggested by LIME or the information plane of Schwartz-Ziv and Tishby (2017).

The term ‘interpretation’ is also used diversely across philosophy and science: Just compare

different uses of the term across, say, logical empiricism (e.g. Carnap, 1939), mathematical

model theory (e.g. Hodges, 2023), or the philosophy of scientific models (e.g. Hughes, 1999).

What uses of ‘interpretation’ have in common is that they involve one thing that becomes

understandable in virtue of it getting mapped to elements of something else: The symbols of

a language are equipped with meaning by being mapped to observable things or elements of

some models; the elements in a mathematical model are mapped to observable, non-observable,

or even fictive things, and we understand what the model ‘says’ by virtue of that mapping.

It might seem that we have gone full circle, because explanations were identified as something

that promotes understanding, and could sometimes be based on XAI outputs. But if XAI

outputs are representations that are understood by means of an interpretation (similarly Sullivan,

2024, 7), then we are ultimately basing understanding on understanding. However, it is

important to distinguish different forms of understanding: Strevens (2013, 511) distinguishes

‘understanding why’ from ‘understanding that’, and traces the sort of ‘grasping’ necessary

for understanding-why to understanding that something explains something else. Thus, for

Strevens, understanding-why presupposes understanding that certain explanatory relations

pertain. Similarly, de Regt (2017, 40) builds on a notion of intelligibility, defined by qualities of

a theory that facilitate the theory’s use in generating explanations.14 However, intelligibility

essentially involves grasping how the theory works (de Regt, 2017, 102).

The notion of interpretability we have in mind is a close cousin of de Regt’s notion of intel-

ligibility. We consider XAI-representations interpretable to the extent that scientists can use

them for the sake of drawing inferences about a targeted system, based on an investigation

of that representation. It might seem that ‘interpretable representation’ is thus a pleonasm,

14Reference to scientists use is well in line with various stakeholder-accounts of XAI (Páez, 2019; Langer et al., 2021;
Zednik, 2021; Buchholz, 2023).
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but it is vital to realize that a representation can fare better or worse in respects (i)–(v), and

partly due to the ‘depth’ of the interpretation.15 For example, an ML model is itself a repre-

sentation of some connection in the targeted domain. But it is usually not suited to human

aims and purposes, in efforts to infer further things about the target. The way we have defined

‘interpretability’, it means a quality of a representation that makes it easy for scientist (but not

necessarily for laypeople) to draw inferences based on it. Hence, an XAI-output may equally

serve the inferential aims of scientists better or worse, and the degree to which it does defines

its interpretability.

4.2 Case Study I: Tumor Localization in Pathology

To show how XAI may indeed become integrated into research processes in such a way as to

facilitate explanations and understanding of the underlying subject matter, we now turn to two

case studies from the life sciences. The first one deals with image analysis in pathology, and

hence extends the example briefly discussed in Sect. 4.1.

In the relevant kind of study, tissue samples, sliced into thin-sections and subsequently

captured as a microscopic image, are used for diagnosing cancer and its different subtypes.

These image-based diagnoses are then commonly the basis for a treatment decision (Van der

Laak et al., 2021). The first task in assessing the status of a tissue sample as cancerous or not

is to identify whether the sample contains tumor regions and, if so, to localize these. As deep

learning systems commonly assign a disease status to whole images, or at least fixed-sized parts

of images, XAI approaches are needed to localize which regions in the image have been identified

as tumorous. There are different approaches that can localize which pixels in the input image

were most relevant for classifying the image as tumorous, e.g. through local approximations

using LIME (Ribeiro et al., 2016), or weakly supervised learning approaches (Campanella et al.,

15This too is consistent with Strevens’ (2013, 514) ideas on grasping and understanding-that: “there are degrees of
grasping [...]: if you are not completely clear on how the correct explanation of a phenomenon goes, but you have
a good grasp of most of the explanation’s elements, then you understand it pretty well but not perfectly.”
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2019).

Whichever XAI approach will be used, it will commonly yield a heatmap in the coordinate

system of the input image, and it is straightforward to hypothesize that activation in the heatmap

localizes tumor in the input image. This tumor-localization hypothesis indeed explains the output

of an underlying ML model by linking to mechanisms, specifically those that are well-established

as the ‘hallmarks of cancer’ (Weinberg et al., 2000), which here constitute the body of domain

knowledge on which the tumor-localization hypothesis builds. However, given especially the

problematic status of heat- and saliency maps (Adebayo et al., 2018), it is important to test the

tumor localization hypothesis, i.e., whether the regions with high activation in the heatmap

exhibit the mechanisms that are understood as the hallmarks of cancer. Clearly, re-inspecting

the input image is of limited relevance, as it does not contain molecular evidence about the

presence of tumor-driving mutations or the expression of tumor proliferating genes. If the input

is a generally un-inspectable hyperspectral image (Schuhmacher et al., 2022), then re-inspecting

the input image is even categorically excluded.

In order to facilitate testability, Schuhmacher et al. (2022) suggest to refer the tumor-

localization hypothesis to the sample underlying the input image, rather than the input image

itself. This facilitates the possibility to conduct further experiments on the sample that explicitly

test different traits of the hallmarks of cancer. For example, one can microdissect the image

regions with high activation and then profile genomic mutations or gene expression patterns

in the dissected regions. However, while several rival hypotheses as to the explanation of the

ML model’s output can thus be tested on real-world data, the explanation itself refers to the

model’s reasons for a given prediction rather than some as yet ill-understood mechanisms. In

other words: The understanding promoted in this case is indeed understanding of the model

rather than the target.

The role of explanatory hypotheses becomes more pronounced in more complex classification
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tasks in pathology. One such task is to distinguish microsatellite stable (MSS) from microsatellite

instable (MSI) tumors, which is crucially important for predicting the success of immune therapy

(Le et al., 2015). Microsatellite instability is relatively well understood in terms of the underlying

cellular and molecular mechanisms: It is generally accepted that MSI is caused by defects in the

genes involved in the mismatch repair mechanism, so that microsatellites as genomic defects

accumulate in the coding regions of several genes. Some of the defective genes in turn constitute

neoantigens to the immune system, leading to a distinctively altered immune reaction, which

leads to a distinctive pattern of tumor infiltrating lymphocytes (Kather et al., 2019). In short,

MSI is associated with cellular and molecular processes that involve diverse subregions of

tumorous tissue regions and their microenvironment.

Current DNNs that classify MSS vs. MSI achieve clinical grade predictive accuracy (Wagner

et al., 2023). They also provide interpretable outputs along with the classification results, usually

through heatmaps at a coarse grained level that are obtained from the weakly supervised

learning approaches used for training. The most elaborate work in this direction has been

conducted by Wagner et al. (2023), who obtain eight different heatmaps through a multi-head

attention mechanism. The patterns highlighted by these are consistent with morphological

patterns expected on the basis of the current mechanistic understanding of the genesis of

MSI-tumors, as described above. For example, a heatmap showed that the DNN by Wagner et al.

(2023) used mucinous regions to predict the presence of MSI, which is causally linked to MSI

(see figure 4).

The explanation here invokes a mechanism, and is hence mechanistic (Machamer et al., 2000):

The tissue becoming tumorous is explained in terms of cellular and subcellular processes and

properties. Furthermore, it does ‘go out to the world’, as it relates to mechanisms inside the

body. However, almost all the work is done by the background knowledge here, which is prior

knowledge of a possible mechanism: It is only against this prior mechanistic understanding of
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Figure 4: Present understanding of the mechanism underlying microsatellite instabil-
ity in cancer.

MSI-cancers that the heatmaps can be understood as supporting that same explanation of MSI-

tumors. A different way to put it is that the explanation makes no use-novel predictions (Worrall,

1985): The prediction that these regions should identify MSI-cancers, as they relate to underlying

causes, is used to devise the explanation itself; it cannot serve as a test of that explanation, but

only whether the prediction involves factors that comply with theory ‘already on the table’.

Finding and testing such predictions would only have been possible had the heatmap suggested

the importance of factors different from those recognized in the MSI-mechanism as currently

understood (fig. 4).

We shall hence turn to a third study in which the following three factors are met: (I) explana-

tions concern the target, not the model; (II) they are successfully facilitated by the integration

with domain knowledge; and (III) they are, and can be, subjected to additional testing by means

of additional (and potentially disconfirming) evidence.

4.3 Case Study II: Single- and Dual-Target Behavior in Pharmacology

The third study that we want to look into here comes from pharmacology (Feldmann et al., 2021).

In pharmacology, molecules that bind to biological macromolecules and alter their function

are usually called ‘ligands’ or ‘compounds’, whereas the relevant biological macromolecules

themselves are then referred to as ‘receptors’ or ‘targets’ (e.g. Salahudeen and Nishtala, 2016;

Talevi, 2015). The interaction between compound and target is often conceptualized in terms of
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a lock-and-key-metaphor:

The general idea is that the ligand (the key) and the target (the lock) should have comple-

mentary features to efficiently interact and trigger some biological response (open the lock).

(Talevi, 2015, 2)

However, since in vivo-interactions are complex, this is not generally the case. Cases in

which compounds show a rather selective ‘multiple target-behavior’ (i.e., affect various different

targets) could prove beneficial, whereas ‘promiscuous’ behavior seems generally undesirable

(ibid.). Thus, a crucial task in pharmacology is to find out which compounds will exhibit

(which sort of) multiple target-behavior. Furthermore, understanding the underlying molecular

features that give rise to this kind of behaviour would certainly vastly simplify the task.

In an effort to improve this understanding with the aid of ML, Feldmann et al. (2021) trained

a range of balanced random forests and analyzed them using XAI-methods to identify features

that relate to dual-target behavior. In a prior study (Feldmann and Bajorath, 2021), it could be

shown that no global structural features seem to exist that underlie such behavior, i.e., structures

that generally determine dual-target behavior. To show this, Feldmann and Bajorath (2021) first

trained and tested a range of ML classifiers to distinguish single- from dual-target compounds

for a specific combination of compound and target-pair. They then tested these classifiers again

on a different target-pair, but could observe a performance typically no better than random

guessing. Thus, in case there are structural molecular features that determine dual-target

behavior, these appear to be “‘local’ in nature, i.e. confined to individual target combinations”

(ibid., 2)

The second study (Feldmann et al., 2021) then investigated the possibility of such local

structures. The key part here was to analyze the importance of certain features at the atomic

level (i.e., the presence of specific atoms with inter-atomic bindings) by means of Shapley

Values (Shapley, 1953). Recall that Shapley values treat features as ‘players’ in a game, where

the ‘payout’ corresponds to the ML model’s prediction at a given instance minus its average
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prediction. More concretely, Shapley values are computed by fixing a certain feature to a specific

value, combining it with all possible combinations of other features at their various allowed

values, and investigating the difference in prediction when omitting the feature in question

(Molnar, 2020, Sect. 9.5, for an illustration). Feature-contributions can be negative, meaning

that the presence of these features makes the given prediction less likely.

The fact that Shapley values probe for the importance of a feature by investigating its absence

was crucial for the results of Feldmann et al.’s second study. In a first step, Shapley values were

used to select the N most relevant features of a given dual target-compound for the classification

as ‘dual target’. Then, a smaller number M of most frequently occurring features across all these

compounds were selected. These were ranked according to frequency, and the resulting rank

was superimposed on the structural feature-representation at the atomic level.

In several cases, this resulted in highly interpretable representations. Figure 5 displays two

distinct dual target compounds that both have caffeine as a ‘coherent substructure’ (highlighted

by the Shapley-based ranks). Furthermore, the small number of single target-compounds that

do feature caffeine as a coherent substructure as well were almost all incorrectly classified. Thus,

against the backdrop of known chemistry, the XAI method strongly suggested that the relevant

ML models used the presence of caffeine (and similar coherent substructures) to predict dual

target-behavior.

Figure 5: Two distinct dual target-compounds with coherent caffeine substructures
highlighted by means of Shapley values. Taken and modified from Feldmann et al.
(2021) under a CC BY 4.0 Deed license (https://creativecommons.org/licenses/by/4.
0/). Color available online
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However, more importantly, it thus also becomes a reasonable hypothesis that caffeine is

causally responsible for dual target behavior in a certain class of chemicals containing it as a

substructure. This is an explanatory hypothesis about the causes of dual targe-behavior, which

makes reference to the target domain, and not to the ML model per se. Furthermore, this

hypothesis can be (dis-)confirmed using further evidence. Indeed, Feldmann et al. (2021, 7)

performed a literature search and found studies which independently confirmed that caffeine

derivatives act against both monoamine oxidase B and the adenosine A2A receptor. Specifically,

in the relevant study (Pretorius et al., 2008), a broad class of molecules with caffeine substructure

was identified that showed dual target behavior, which class was clearly distinct from the

sample investigated by Feldmann et al. (2021). In this way, the only reasonable explanation that

remained was that dual target behavior is indeed connected to caffeine – and neither an artifact

of the investigation nor due to some other factor related to the specific molecules investigated

by Feldmann et al. (2021).

Shapley values are known to not always admit of a causal interpretation (Heskes et al.,

2020), but in the first place establish a correlation between predictive factors and prediction

outcomes for the training, testing, and validation sets. However, the explanation provided

in this particular case is causal: Caffeine (among others) is identified as causing dual-target

behavior, when embedded into some chemical as a coherent substructure. To further confirm

this hypothesized causal link, one might – depending on chemical realizability – intervene on

the substructure to alter it, and test whether dual-target behavior still occurs. More realistically,

one might approximate an intervention by collecting a large group of diverse chemicals with

caffeine as a substructure, as well as a diverse control group of chemicals without caffeine as a

substructure, and look for dual-target effects across these groups (cf. Woodward, 2003, 95).

The domain-knowledge needed to establish this causal hypothesis concerns knowledge of

chemical structures, general knowledge of the relevance of molecular composition to pharma-
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cological behavior, and maybe even more specific knowledge about the potential relevance of

coherent substructures to dual- and single-target behavior, for sorting out the causal meaning of

the Shapley values in this particular case. Nevertheless, we submit that the thus-interpretable

XAI-representation played a non-negligible role in forming the causal hypothesis, and can hence

be said to have facilitated the explanation.

In sum, what we have shown with these case studies is that three factors important for

the successful facilitation of an explanation of real-world phenomena by XAI can be met in

practice: (I) the method is XAI broadly construed, so it may concern the target, not the model;

(II) the representation delivered can be successfully integrated with domain knowledge; and

(III) there is additional testing. In the tumor-localization case, (I) was lacking in the study on

tissue-sample images, and (II) was problematic in the MSI/MSS study, thus also impairing

(III). In the study presented here, all three factors are arguably met and we thus consider it an

actual implementation of the ideas we have put forward in this paper. Furthermore, the fact

that attribution-methods, such as saliency maps, were used in the tumor studies to identify

potential causal factors and Shapley values were used in the pharmacology study to do the

same thing further supports our claim that the relation between XAI and types of explanation is

many-to-many, and that the association between both must be established case-by-case.

5 Conclusions

In this paper, we have argued for two theses, one descriptive and the other normative: that (i)

when suitably embedded into a scientific research process, XAI methods’ outputs can facilitate

genuine scientific understanding. And (ii) that in order for XAI outputs to fulfill this function,

they should be made testable. We have supported these theses by building on ideas from

philosophy of science and from XAI, as well as by showcasing case studies from the life sciences

in which relevant implementations of them have recently shown major potential for scientific
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progress (see, especially, Feldmann et al., 2021).

To defend (i), we have suggested that there are two ways to construe the term ‘XAI’: On a

narrow construal, XAI is plainly concerned with explaining the AI itself (Rudin, 2019), but on a

broader construal, it is concerned more generally with things to do with the use of AI (Lipton,

2018). Thus, focusing on the outputs of XAI methods broadly construed, we have argued that

they correspond to representations of features of the data that are more easily interpretable

than ML models themselves, and that the integration of these with background knowledge can

give rise to explanatory hypotheses.

Furthermore, building on ideas by Douglas (2009), as well as on the debate on ‘just so stories’

in evolutionary biology, we have suggested that, (ii), the testability of explanations is key

to establishing their scientific status, where ‘testing’ may be construed as a process of (dis-

)confirming rival explanations of some phenomenon by diverse lines of evidence (Schupbach,

2016). As we have shown, these ideas can be applied, to varying degrees, in the life sciences

(Schuhmacher et al., 2022; Wagner et al., 2023; Feldmann et al., 2021), and they have recently

been implemented as a concrete framework in XAI (Schuhmacher et al., 2022).

Overall, we suggest that our conclusions support a view on XAI and the philosophy of science

in which both may profit from closer engagement: By paying close attention to practices in XAI

and the sciences making use of it, philosophers can get a clear view of changing and constant

practices of explanation and understanding in the age of AI. In turn, practicing scientists may

profit from paying attention to the epistemic subtleties associated with scientific explanation and

testing, in order to find epistemologically grounded ways for extracting genuine explanations

and understanding from XAI, and to ultimately foster progress in science.
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