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1. Introduction 

 

Climate science presents us with a plethora of models1 of different types. We have zero-, one-, 

two- and three-dimensional energy-balance models, radiative-convective models, dimensionally 

constrained models, intermediate complexity models, machine-learning-based models, 

convection-permitting models, surrogate models or emulators, general circulation models 

(GCMs), and coupled models, which are often used simultaneously in hierarchies of models. An 

unavoidable question in this context is why climate scientists need so many models. Why do they 

devote time to building such a great variety of different models instead of concentrating 

 
1 Unless specified otherwise, throughout this paper we will use (scientific) models to refer to abstract (i.e., conceptual) 

models, by which we mean all non-physical scientific models.  
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exclusively on perfecting the most ‘realistic’ climate models that we have (i.e., the Earth system 

models)?2 Why and how is this helpful for learning things about Earth’s climate system? 

This paper aims to answer this last question in a manner distinct from the 

representationalist tradition. Our main guiding intuition is that, due to the complexity of the system 

of interest, its uniqueness, and size, climate scientists are, in many ways, akin to blind mapmakers. 

By ‘blind mapmaker,’ what we have in mind is someone who must draw a map without having 

direct access to the terrain they are mapping. Suppose that, e.g., in their work, this person has to 

rely only on vague and sometimes unreliable information about a particular landscape – let’s call 

it L. Consequently, they can only make informed guesses about what L might look like. As 

expected, this approach carries a significant epistemic limitation: these maps cannot be used in the 

same way as conventional maps because one cannot learn from guesses (no matter how elaborate 

they may be) the way they learn from maps. Nonetheless, a learning process can take place. To see 

it, we just have to shift our attention from the maps to the process of (blind) mapmaking. We can 

imagine, for instance, that our blind mapmaker would resort to a variety of strategies to iteratively 

refine their map – by ‘refine’ we don’t mean improving representational accuracy, which, given 

the lack of proper epistemic access to L, they cannot properly check. Instead, we mean making 

their maps useful for specific purposes, such as estimating the time it would take someone to cross 

L from point A to point B. To achieve this, they might build a variety of maps with different degrees 

of complexity. They could also ask their colleagues to create separate maps of the same terrain and 

then compare all of them to identify common features. We submit that this is similar to what 

happens in climate science. 

A second important intuition that guides our discussion is that aboutness does not imply 

(structural) similarity. An extreme example is Picasso's Guernica, which is meant to be about the 

bombing of the Basque town of Guernica during the Spanish Civil War. However, taking this 

painting as having any kind of structural similarity to the historical events would stretch the 

concept of similarity beyond its breaking point. This has the important implication that, to the 

extent that one considers representation to involve some form of similarity (which we believe it 

should), aboutness cannot be understood solely in terms of representation. This is significant for 

 
2 Much of the effort in climate science is, of course, concentrated on perfecting the GCMs by increasing their resolution 

and complexity. We are not questioning that. What we are asking here is why climate scientists consider it important 

to develop so many other kinds of models besides GCMs. 
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our discussion because it allows us to say the following: although the maps in the blind mapmaker 

example are clearly meant to be about L, they should not be considered representations of L. The 

reason for this is, of course, different from the case of Guernica, where the focus is on eliciting a 

strong emotional response rather than accurately depicting historical events. Instead, in the blind 

mapmaker case, representational failure has to do with the lack of appropriate epistemic access to 

the system of interest. In contexts such as these, models are about the system by being tools that 

we can use in the context of an iterative process of knowledge improvement and restructuring. 

Therefore, when we claim below that climate models don’t represent the climate system, we are 

not saying that they are not about it. What we are claiming is that their epistemic role is different 

than that of regular maps.  

A final intuition relevant to our discussion is that representational accuracy is not 

necessary for epistemic usefulness. Consider again the scenario of crossing L. Imagine that our 

mapmaker and their colleagues create three different maps, each leading to the same result: it takes 

about a month to travel from point A to point B (an estimation they have some reasons to believe 

to be good). However, the reasons for this conclusion differ: the first map attributes it to the size 

of L, the second to the presence of a mountain range in L, and the third to the presence of a river 

in L that blocks the path from A to B and can only be crossed at certain points. If the only concern 

is the time required to cross L, all these maps can be considered equally useful, despite there being 

no reason to believe any of them is representationally accurate. 

Before moving forward with the discussion, it is helpful to say a few words about the view 

that we are trying to distance ourselves from in this paper, i.e. the representationalist view of 

models. From a strong representationalist perspective (Bartels 2006; da Costa and French 2003; 

French 2003; Giere 1999; Pincock 2004; van Fraassen 1980), models play their important 

epistemic role(s) in science because they bear a mind-independent relation (e.g., isomorphism, 

partial isomorphism or homomorphism) to their target systems which assures that the information 

they provide is also valid about the latter. The diversity of models can then be explained by the 

complexity of the target system, which can hardly be covered by a single model. 

 The weak (pragmatic/artefactual) representationalist view of models (Bokulich 2013; 

Currie 2017; Frigg 2022; Frigg and Nguyen 2017, 2020; Knuuttila 2011, 2021a, 2021b; Mäki 

2009; Suárez 2004) can be used to come up with a different account of what happens in climate 

science. According to this view, “no thing is a representation of something else in and of itself” 
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(Knuuttila 2011, p. 265). Models only gain a representational function if they are used in certain 

ways, and so the representational relationship holding between models and their target systems 

should be thought of in terms of what the users’ epistemic goals are and what they can accomplish. 

So, from this perspective, the great diversity of models is explained by the “‘division of cognitive 

labor’ among models” (Bokulich 2013, p. 116), i.e., the diversity of epistemic purposes that the 

climate scientists have in their inquiry pertaining to the climate system.  

 Although there are important differences between these two broadly conceived views about 

how models work, they have a lot in common, particularly regarding the way models are used to 

learn about the world. If we strip away most of the details, we can think about them as being 

essentially based on the following two central theses: 

LF (Learning-From Thesis): Scientists can learn things about the world from 

studying scientific models. 

IR (Indispensability of Representation): What makes it possible for models to 

play this important epistemic role is the existence of a representational 

relationship holding between them and their target systems. 

As we will show, this common core makes these views of models equally vulnerable to two 

important problems: the problem of inconsistency (due to the use of several inconsistent models) 

and the problem of hierarchies (due to simultaneous use of models at various levels of 

comprehensiveness). While these problems may not be insurmountable, they highlight the 

necessity of exploring an alternative approach. 

 Our aim in this paper is to provide a new view of how we learn with scientific models, 

grounded in the modelling practices of climate science, while offering insights applicable to the 

study of complex systems more broadly. In a nutshell, our account avoids the problems because it 

denies LF and IR: we do not learn things about the world from studying models (except when 

using physical models) and the learning does not depend on representation. We can learn things 

with the models, though, through a more complicated epistemic process of iterative improvements 

and reorganisations of our knowledge. 

The paper is structured in the following way. The next two sections (2 and 3) will be 

devoted to discussing the problems of inconsistency and hierarchies in more detail. In section 4, 

we will introduce our non-representational account of scientific models. We will then show how 
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our account deals with the problems of inconsistency and hierarchies in section 5. We conclude in 

section 6. 

2. Representation and Inconsistency 

 

Consistency is often declared, in the traditional way of thinking about this topic, as an essential 

aspect of a good scientific theory in two senses, internally and externally (Douglas 2009, pp. 89–

94; Kuhn 1977, pp. 321–323). The former sense applies to propositions which belong to some 

specific theory. If (some) of these propositions are logically inconsistent, then this “implies a 

fundamental contradiction within a theory, and from a clear contradiction any random conclusions 

(or predictions) can be drawn, [so] lacking internal consistency is a serious epistemic failing.” 

(Douglas, 2009, p. 94). The problem of inconsistency is not limited to scientific theories; it is also 

sometimes raised as an objection to specific scientific models. For example, Bohr’s atomic model 

has often been criticised for being internally inconsistent (see Kragh, 2011, for a review). 

External inconsistency, i.e., the use of several models based on inconsistent assumptions, 

is perhaps even more common in scientific practice. In climate science we encounter a great 

number of GCMs that are different in at least the following two important respects: they use 

different parametrisations for the subgrid-scale processes and/or they use different equation sets 

for the dynamic core (e.g., some of them, such as the Goddard Earth Observing System Model, 

use the fully compressible, non-hydrostatic Euler equations, while others, such as the European 

Centre Hamburg Model, use the hydrostatic primitive equations). These models are used largely 

for the same epistemic purposes, such as understanding climate dynamics, making climate change 

projections, understanding climate change variability, and climate change attribution studies.3 

However, as the climate scientists will confirm, “there is no single agreed-on ‘best’ model... So, 

while multiple models could be seen as ontologically incompatible (strictly speaking, they make 

conflicting assumptions about the real world), and one could argue that scientists have to assess 

how well they are supported by the data, the community seems happy with the model 

pluralism” (Knutti et al. 2019, p. 840). 

 
3 So, what we are dealing with here is not covered by what Weisberg calls “multiple-models idealisation” (MMI), i.e., 

a kind of idealisation that can be justified by the fact that the models involved in it play various competing 

representational goals (Weisberg 2007, p. 645). 
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It is worth pointing out that internal and external inconsistencies of models are particularly 

problematic if we consider scientific models to be representations of some target system in a 

similar way as a map is a representation of some area. A map is useful only if it is an (at least 

somewhat accurate) representation of the world. Hence, if a map shows a forest in the middle of 

an ocean, then it is internally inconsistent and therefore wrong – no area may be simultaneously 

covered by a deep sea and a forest. Similarly, if one map indicates that a specific location is a forest 

and another map claims the same location is an ocean and if we assume that both maps refer to the 

state of the world at the same time, then at least one (if not both) must be incorrect. This exemplifies 

how inconsistency in a representational system may be taken as a signal that something is 

fundamentally wrong with the system. 

In practice, however, scientific models often exhibit inconsistencies and yet remain in 

regular scientific use. For instance, Bohr’s model of the atom was abandoned not because of its 

known inconsistencies but because later, more precise experiments raised questions that the model 

could not answer (Kragh 2011, p. 349). Why is this the case?  

The counter-tradition approach to this issue is to bite the bullet and embrace inconsistency 

as “a fact of life in science” and not consider it as a “kiss of death” (Davey 2014, p. 3010) or 

something to be feared. As the literature on this topic shows, philosophers adopting this approach 

have developed elegant views on how scientists manage to avoid the logical problems associated 

with the presence of inconsistency in science. Examples include da Costa’s and French’s partial 

structures approach and Priest’s paraconsistent approach (see, for instance, the papers in Meheus 

2002 and the discussion in Vickers 2013). 

However, as argued among others by Davey (2014), the counter-tradition is problematic 

because the examples of inconsistency it relies on to break with the traditional way of thinking fail 

to support its case. Some involve mathematical errors, others represent intermediary stages on the 

way to better theories, and still others are cases where scientists are only committed to the claim 

that a particular model or theory of a system is good for certain purposes, while another model or 

theory of the same system is good for others. In the last situation, although the models or theories 

are different ways of representing the world, “when taken together they are better understood as 

complementary rather than contradictory” (Morrison 2011, p. 344). 

We align with Davey on this issue. However, we believe that considering models as 

complementary rather than contradictory is not valid for climate science. As discussed above, 
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GCMs are usually used for the same purposes in climate science, and it is quite common (see, for 

instance, the IPCC’s assessment reports) to consider most, if not all, of them simultaneously. We 

believe that the only way to avoid embracing inconsistency (and thus renouncing the traditional 

way of thinking) in this context is to deny that these models are representations. For this reason, 

we propose that it is better to think of climate models and models of complex systems in general 

as guesses (similar to how maps of L are guesses) rather than representations.  

Before addressing how the models are to be understood in a non-representational sense, let 

us now turn to the problem of hierarchies, which is especially pertinent in climate science. 

3. Hierarchies of Models 

 

Earth’s climate is a forced, dissipative, complex, multi-component system composed of a great 

number of nested and interlinked subsystems, that is also complex and that has a chaotic dynamic 

and a heterogeneous phenomenology. These characteristics, together with the fact that the climate 

system is very large and unique (aspects which affect our ability to make adequate observations 

and to perform experiments on it), make modelling it a very difficult undertaking. 

Take, for instance, model evaluation4 as one of the particularly difficult tasks in climate 

modelling. One of the most important questions that the climate models are supposed to answer is 

how much the anthropogenic greenhouse gas emissions will warm our planet, i.e., how severe 

climate change will be. To quantify the amount of warming to be expected, climate scientists use 

(among other things, such as the transient climate response and the Earth system sensitivity) the 

equilibrium climate sensitivity (ECS) which is supposed to measure the global average surface 

temperature response to a doubling of CO2 in the atmosphere from the preindustrial conditions and 

letting the system return to equilibrium. The estimated range of ECS is, according to the IPCC’s 

latest assessment report (AR6), 1.5℃ to 4.5℃ which is the same as the range estimated in the 

Charney Report 45 years ago (Bony et al. 2013; National Research Council 1979). Given its 

importance, a lot of research effort has been directed towards improving the estimated range. 

Unfortunately, this effort did not generate a convergence towards a particular value. Instead, the 

 
4 For our purpose here, there is no need to work with a clear meaning of ‘model evaluation’, so we chose to remain 

vague about what we mean by this. That is why, in the ensuing discussion we will try to avoid taking ‘model evaluation’ 

to mean any of the following things in particular: confirmation, verification, validation, or an assessment of the 

adequacy-for-purpose of a model. For a discussion of the difference between these, see e.g., Baumberger et al. (2017), 

Oreskes et al. (1994), Winsberg (2018, Chapter 10), Winsberg (2022). 
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model spread has increased (compared with that produced with older models), with some new 

models predicting an ECS over 5℃ (see, for instance, the discussion in IPCC 2023, Chapter 7).  

This raises the question: is there no way of determining which of the models is correct and 

which is wrong in this regard? The answer is complicated. First of all, we have to keep in mind 

that ECS is a theoretical construct (the forcing is not real, and the equilibrium is hypothetical 

because the actual Earth’s climate is always in a state of flux) and as such cannot be compared in 

a direct way with something from the system. Secondly, even if ECS had been a real physical 

quantity, directly measuring it would have been impossible due to the time scale involved (because 

of the ocean’s high heat capacity, it would take a very long time for the climate system to reach a 

new equilibrium).  

Of course, there are ways in which ECS can be estimated from the instrumental records, 

but these are not more reliable than the ones based on climate models and are also not done without 

using models (Knutti et al. 2017; Knutti and Hegerl 2008). So, what happens is that, most often, 

in order to estimate ECS, climate scientists use multiple lines of evidence (e.g., process 

understanding, paleoclimate data, instrumental records, multi-model ensembles) and a hierarchy 

of models. This hierarchy is composed of simple models at one end of the spectrum (e.g., the zero-

dimensional and the two-zone models used in Bates, 2012), which are used to understand the basic 

dynamics and the main feedback mechanisms active in the climate system, and comprehensive 

coupled models at the other end. The comprehensive models are coupled general circulation 

models which include at least the main components of the climate system (i.e., the atmosphere, 

the ocean, and the land), the interaction between them, and as many physical processes as possible. 

Due to their complexity, the use of these models is restricted by computational limitations. In the 

middle of the hierarchy, we find the Earth system models of intermediate complexity (EMICs) 

which, although they include more physical processes and interactions than the simple models, can 

be used for long-term integrations (thousands of years) and so are useful for studying long-term 

climate dynamics and feedbacks (Plattner et al. 2008). 

Why is this important for our discussion? Because it shows that the concern with 

determining whether models stand in a suitable representational relationship with the target system 

(whether this is considered relative to a particular purpose or not) is not central for (at least some 

cases of) model evaluation. In our example, what climate scientists basically end up doing when 

testing model outputs is nothing more than making inter-model comparisons. The results obtained 
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with GCMs are validated by comparing them with and interpreting them in terms of the 

understanding provided by simple models and EMICs (Ghil and Robertson 2000, p. 228).  

This situation is, of course, not specific to the case of ECS. Claims such as the one below 

made by Hegerl and Zwiers about climate change detection and attribution are quite common in 

the climate scientific literature: 

Climate change “detection and attribution requires a model of why climate may 

be changing to be able to draw conclusions from observations. Models used in 

the interpretation of observations can range from simple conceptual ‘models’ to 

climate models of intermediate complexity, and ultimately to coupled 

atmosphere-ocean general circulation models and earth system models” (Hegerl 

and Zwiers 2011, p. 585). 

 

How does this discussion square with a representationalist view of models? To the extent 

to which it shows that, in performing these important modelling tasks, the climate scientists do not 

seem particularly concerned with representational accuracy, it can be taken as a source of big 

problems for the representational views of models. This is because comparing the models with the 

target system plays only a minimal (if any) role when climate models are used. What our discussion 

hopefully makes clear is that, because the climate system has all the features listed at the beginning 

of this section, which make direct epistemic access to it impossible, climate scientists (like in the 

case of the blind mapmaker discussed in the introduction) had to come up with a different way of 

performing the modelling tasks than by checking whether the models stand in the suitable 

relationship with the system. Basically, their solution is to rely on their understanding of the main 

processes at play in the behaviour of the system. The way this understanding is tested and improved 

is not by interacting with the system, but by experimenting with a variety of configurations of 

different levels of complexity. 

4. A New (Non-Representational) View of Models 

  

In the previous sections, we identified two key issues associated with the representationalist view 

of models: inconsistency and hierarchical thinking. The discussion about these problems was not 

meant to provide a definitive argument against the representationalist position, but to pave the way 
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for our account by highlighting some of its limitations. In this section, we aim to introduce a new 

account of models that overcomes these limitations. We will do so by comparing a case in which 

representationalism seems to be the right view about how models are used to learn about the world 

– namely, the case of physical models – to the way we use models of complex systems, such as 

those for the general circulation of the atmosphere. By the end of our discussion, we hope to 

demonstrate that although the representationalist view applies to the way we use physical models, 

it is not very good for helping us understand how models of complex systems work. 

  

4.1. Learning From Physical Models 

  

As Ankeny and Leonelli, (2020, p. 6) note, “Model organisms help to create knowledge that can 

be projected beyond the immediate domain in which it was produced.” This observation extends 

to physical models more broadly. But how do these models function in generating knowledge? 

More specifically, what are the key characteristics of the epistemic process involved in 

understanding the world through physical models? Consider the use of Caenorhabditis elegans (C. 

elegans) as a model in biology. This nematode, given its simple anatomy (its body is composed of 

only 959 somatic cells), is extensively used in developmental biology and neurobiology mostly 

because of the ease with which one can create cell lineage maps that can be subsequently used to 

identify how specific cells contribute to different tissues and organs.  

In justifying the use of C. elegans as a model organism, biologists rely (mostly) on the 

following two empirical hypotheses: 

o H1: The signalling pathways and molecular mechanisms identified in C. elegans are 

evolutionarily conserved across species. 

o H2: Complex organisms and different species have homologues for the genes and proteins 

found in C. elegans that perform similar functions. 

 

What these hypotheses are meant to do is to ensure that C. elegans can play the role of a surrogate, 

i.e., that it can be used as “a more manageable experimental setup for studying a phenomenon, 

where this experimental setup serves as a substitute for another, experimentally less manageable, 

but physiologically more relevant setup” (Baetu 2016, p. 945). They act as an epistemic tether that 

guarantees that what we discover by studying this nematode is relevant to what goes on with other 
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animals. With this case in mind, we can now explore the epistemic characteristics of learning from 

physical models: 

 

1. Independence of Target Systems: Physical models either exist and function 

independently of the target systems or are composed of parts that can exist and function 

independently of the target systems (e.g., scale models in geosciences). C. elegans existed well 

before biologists decided to use it as a model organism, just as the materials used in geological 

scale models predate their application in studying mountain formation. The same, clearly, also 

holds for materials used by atmospheric scientists when constructing the Plumb-McEwan model 

for understanding the stratospheric Quasi-Biennial Oscillation. 

 

2. Need for Justification: The use of physical models requires justification, often in the 

form of empirical hypotheses. Since the models are made from preexisting materials or entities, 

they typically lack a direct connection to the target system. For example, in the absence of 

hypotheses H1 and H2, it would not make sense to use C. elegans to model the neural network 

development in humans. Similarly, the choice of materials in geological models must be justified 

by ensuring they appropriately scale the relevant forces and processes (Bokulich and Oreskes 

2017, p. 896). 

 

3. Epistemic Tethering: The justification for a model ensures that the model is epistemically 

linked to the target system, meaning it accurately represents the relevant aspects of that system. 

For example, hypotheses H1 and H2 ensure that C. elegans serves as a valid model for studying 

neuronal network development in more complex organisms, including humans. This tethering has 

two key implications: 

(a) How good a model is depends on how well it is tethered to its target system, and  

(b) a well-tethered model offers mediated access to the actual system of interest. 

 

4. Learning From Models: We learn from models by studying them, which involves 

observation, experimentation and analysis. For instance, to discover how growing axons are guided 

to their correct targets during development in C. elegans, biologists use a variety of experimental 

and observational techniques, such as mutagenesis and fluorescent labelling. 
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5. Ampliative Reasoning: Model-based reasoning extends our knowledge beyond the 

model itself. Because physical models operate according to natural laws, independent of our 

minds, they can reveal unexpected insights. By applying tethering hypotheses, findings from the 

model can be extrapolated to the target systems, thereby amplifying our knowledge about them. In 

the case of C. elegans, we can use H1 to infer that whatever we discover about axon guidance by 

studying this nematode will provide insights into similar processes in more complex organisms, 

including humans. 

 

Two important things stand out from our discussion of the case of physical models. The 

first one is that these models can be taken to provide a window into how their target systems work 

and so that we can learn from them about the target. The second is that, for the first point to be 

possible, a good tether has to be in place that can constrain the lessons that we can learn from the 

model so that they are relevant in connection to the intended target. 

What this means is that the LF and IR theses are indeed valid as far as physical models are 

concerned: the scientists can learn things about the world from these models and what makes this 

possible is a special relationship holding between the models and their targets. Hence, the 

representationalist view about the way models give us knowledge accommodates the case of the 

physical models very well. 

  

4.2. Learning With Abstract Models  

  

We will now show that scientific models of complex systems, on the other hand, often defy 

representationalist views. To illustrate this, consider the early modelling the general circulation of 

Earth’s atmosphere.5 We suggest to consider this historical example because it is both illustrative 

and manageable, and because its historical trajectory allows us to understand how the case 

developed. 

Before the early 16th century, Earth’s atmosphere was thought to lack a global structure. 

This view changed with the discovery of the trade winds—consistent east-to-west winds 

 
5 In discussing this case we are mainly following the detailed historical account presented in Lorenz (1967). 
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dominating the tropics, blowing from around 30 degrees latitude to the equator. Edmond Halley 

was the first to attempt an explanation for these winds in his 1686 paper “An Historical Account 

of the Trade Winds, and Monsoons, Observable in the Seas between and near the Tropicks, with 

an Attempt to Assign the Physical Cause of the Said Winds.” Halley proposed that the Sun’s 

heating of the tropics causes the air to become lighter and rise. Because of mass continuity, the 

rising air in the low latitudes must sink in high latitudes, resulting in a poleward drift at upper part 

and an equatorward drift in the lower part. Halley believed that the east-to-west direction of the 

trade winds was due to the air following the Sun’s path. However, his explanation cannot be 

considered a model of global atmospheric circulation because it was focused solely on wind 

patterns over the surface of the oceans, not a comprehensive global circulation pattern. 

Nearly fifty years after Halley's work, George Hadley proposed the first model of global 

atmospheric circulation in his 1735 paper, "Concerning the Cause of the General Trade-Winds." 

Hadley accepted Halley’s ideas about mass conservation and the north-south atmospheric motion 

but sought a better explanation for the direction of the trade winds. He modified Halley’s view by 

taking into account the fact that Earth is a rotating object, and that air preserves its absolute angular 

momentum.6  

A picture of global circulation may be derived from Hadley’s model: a simple toroidal 

circulation with warm air rising at the equator due to intense solar heating and mass conservation 

driving it poleward at upper levels. As the air moves, it tilts eastward because it retains the higher 

rotational speed of the equator, a result of conserving angular momentum. Upon reaching the poles, 

the air cools, sinks, and returns toward the equator at lower altitudes. The friction and rotational 

effects create a more complex flow than Halley’s initial simple equator-to-pole model. Hadley also 

deduced that the surface eastward-moving winds in the middle latitudes are necessary to prevent 

the slowing of Earth's rotation due to drag from westward-moving winds at lower latitudes. 

Friction explains why the observed winds are not stronger. Finally, Hadley’s model predicted 

westward-moving trade winds in the tropics due to the conservation of angular momentum. 

How does using this model compare with case of the physical models discussed earlier? 

Let us consider the following points: 

 

 
6 More precisely, Hadley talked about the conservation of velocity instead of absolute angular momentum. 
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1. Dependence on Target Systems: Unlike physical models, abstract models do not have an 

independent existence; they are created to serve an epistemic purpose related to a target system. 

Hadley’s model, for example, was created specifically to explain the occurrence of the trade winds 

in the tropics. The model creatively organised knowledge available to Hadley at that time and made 

it relevant to the question of interest to him. 

 

2. No Need for Justification: Since they are explicitly created in connection to a target 

system, abstract models do not need a justification for their use as models of those systems. For 

example, Hadley’s model has no need for hypotheses like those used when applying C. elegans 

model. For abstract models, the focus is on model creation rather than justification.7  

 

3. Epistemic Tethering: Unlike physical models, abstract models do not rely on epistemic 

tethers for their validity. The creation of Hadley’s model, for instance, may be reconstructed as 

following four phases of finding a solution to a mathematical problem distinguished by Polya, 

(1945, pp. 5–6): (i) understanding the problem (what exactly is required), (ii) seeing how various 

items are connected (how the unknown is linked to the data) and making a plan about how best to 

approach the problem, (iii) carrying out the plan, and finally (iv) looking back and reviewing the 

solution. Hadley could only rely on little physics (Newton’s theory was known at that time, but the 

scientific community lacked a proper understanding of the conservation of angular momentum8 

and the Coriolis effect was not yet known) and little data about the system (e.g., there was no 

knowledge of the fact that the atmosphere is layered). Remarkably, this limited knowledge was 

enough for him to construct an abstract structure in which the unknown (the trade winds) was 

connected to the known. This was a highly creative process on Hadley’s part in which tethers 

played no part. This point has two important implications: 

(a) How good a model is in helping us learn about a target system is no longer judged by 

how well it is tethered to that system but by how effectively it leverages existing knowledge. This 

 
7 The importance of the construction process for the epistemology of models is, of course, emphasized in previous 

work – most prominently perhaps by Morgan and Morrison (1999). Our approach is different because we are not 

interested in the role of theories in model construction or in making clear that models are constructed to serve specific 

epistemic purposes by making use of various representational tools Knuuttila (2021b, 2021a). Our aim is to argue that, 

if we look at how models are constructed, it becomes clear that representation plays no role. 
8 As already mentioned, Hadley made use of the conservation of velocity in his explanation of the deflection of the air 

from the simple north-east path. 
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includes the strength of the connections between the known and unknown, the model's success in 

fulfilling its intended epistemic purpose, and its alignment with observations available at the time 

of its creation. Edward Lorenz, (1967, p. 60) echoes this view, stating that a model should be 

valued if it exhibits sound dynamical reasoning and consistency with contemporary observations. 

He argues that a model of general circulation must account for the transport of angular momentum, 

energy, and water between latitudes (Lorenz 1991, p. 10). Hadley’s model meets these criteria,9 

making it dynamically consistent and epistemically valuable, even though it was later found to be 

incorrect. 

(b) However, abstract models like Hadley’s offer no direct access to the actual system of 

interest. Unlike physical models, the knowledge used to build these abstract models is not 

sufficiently constraining to reveal how the world truly works. As Lorenz notes (1967, p. 60) in 

connection to what happens in atmospheric sciences, our understanding of the equations governing 

atmospheric motion and boundary conditions is too incomplete to restrict model construction. 

Consequently, different assumptions can lead to vastly different circulations, making it difficult to 

claim that these models provide direct access to the real system. 

 

4. Learning With Models: Unlike physical models, abstract models do not simply allow us to 

learn from them but rather with them. Although we do not have the space here for a detailed 

discussion on how abstract models facilitate learning about the world (which we reserve for 

another paper), it is important to clarify that these models are not governed by natural laws and do 

not function independently of our minds. Consequently, we cannot learn about the target system 

by merely experimenting with the model and observing its behaviour under different conditions. 

Instead, learning with abstract models involves a complex process of iterative knowledge 

improvement, facilitated by the model's use. 

Consider an example from meteorology in the 19th century. Observations revealed that the 

eastward-moving winds in the middle latitudes blew from the southwest, contrary to the northwest 

direction predicted by Hadley’s model. In response, several meteorologists proposed new models, 

but the most significant was independently developed by William Ferrel and James Thomson 

around 1857-9. They introduced the concept of centrifugal force—a crucial factor that Hadley’s 

 
9 Except, of course, for the water transport requirement. But this, given the knowledge available at that time, can be 

considered irrelevant. 
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model had overlooked—and emphasised the importance of the pressure gradient. Incorporating 

these elements into the model of general circulation led to the realisation that air returning from 

the poles, slowed by friction near the ground, would lack the necessary centrifugal force (the north-

south component of the Coriolis force) relative to the air above it. As a result, the air would begin 

to drift back towards the poles, eventually forming a new atmospheric cell, now known as the 

Ferrel cell, which circulates in the opposite direction to the Hadley cell and is not driven by thermal 

forcing. 

As Edward Lorenz (1967, p. 65) notes, "Just as there was little observational evidence in 

Hadley's day to contradict his scheme, so there was little evidence in Thomson's day to contradict 

his." This highlights a key aspect of learning with abstract models: once a model serves its 

epistemic purpose and aligns well with observations, there is not much more that can be done with 

it. This differs from physical models, where new and unexpected insights can continually be drawn 

through by studying the model. 

The history of atmospheric circulation modelling continued to evolve, particularly with 

improved observations of higher atmospheric levels and growing evidence of large-scale 

asymmetries in circulation. However, this brief overview suffices to illustrate our point: with 

abstract models, learning is achieved progressively through a constant restructuring of our 

knowledge to solve specific epistemic problems that are generated by our interaction with the 

world. Hadley, Ferrel, Thomson, and later researchers like Jeffrey, Starr, and Bjerknes all used the 

knowledge available to them to refine their models in response to new observations and problems. 

 

5. Non-Ampliative Nature of Model-Based Reasoning: Abstract models are mental constructs 

based on the knowledge available at the moment of their creation and are subject to the laws of 

thought (i.e., to logic and whatever mathematical framework, if any, one uses to formulate them). 

As such, they function pretty much like any mathematical solution to a problem by organising our 

knowledge in such a way that the unknown can be linked (in a regulated way) to the known. This 

is significant because it means that what you get out of these models cannot exceed what you put 

in: the models merely help us understand the implications of our knowledge. In other words, 

model-based reasoning is nonampliative in the case of abstract models. Hadley’s model, for 

instance, explored the implications of the framework he developed but did not yield new 

information about atmospheric dynamics beyond its initial scope. Experimenting with abstract 
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models (or using the models in an exploratory way as discussed for instance in Fisher et al., 2021, 

and Massimi, 2019) is, from our perspective, nothing more than exploring the implications of 

different ways of structuring our knowledge.  

 

In our view, then, abstract models should be primarily understood as tools for organising 

and structuring knowledge to extract useful implications, where "useful" is context-dependent and 

tied to the specific needs of the scientific community in relation to a target system. Unlike 

representationalist views, which suggest we learn directly from models, our perspective suggests 

that we learn with models through an iterative process of knowledge improvement and 

restructuring. This distinction means that the "learning from" (LF) thesis, which applies to physical 

models, does not hold for abstract models. Since LF does not apply in our framework, IR also 

loses its place. Moreover, as argued earlier, the knowledge used to construct abstract models is not 

sufficiently constraining to fulfil the role that IR demands. 

Thus, for abstract models and their role in helping us understand the world, the 

following theses are more fitting than the representationalist approach: 

LW (Learning With thesis): Scientists can learn things about the world with the 

help of scientific models (but not directly from them!). 

DR (Dispensability of Representation): No special relationship (besides what 

we get from the knowledge used in the process of model construction) between 

models and target systems is needed to make it possible for models to play this 

important epistemic role. 

 

Before moving on, we want to address one potential worry, namely that our account may not be as 

non-representational as we take it to be. There is no denying, for example, that Hadley’s model is 

about the general circulation of the atmosphere. It is meant to “stand for” that system. This may 

be perceived as a source of problems for the way we are positioning our account because, as is 

generally accepted in the literature: “Representation as ‘standing for’ is embedded in 

representationalism” (Knuuttila 2011, p. 263). If this is taken to convey what representationalism 

is all about, then we have no choice but to concede: our account falls into the representationalist 

camp. However, framing things this way makes it hard to conceive the possibility of there being 
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any other camps. What we want to make clear is that the discussion in this paper is not necessarily 

aimed at representationalism in general, but at a very specific view about how using models to 

learn about the world is to be understood (i.e., the view characterised by the LF and IR theses). 

5. How Does the New View Deal With the Problems?  

 

We began this paper by highlighting the overwhelming complexity of climate scientific modelling, 

given the great number and diversity of models that climate scientists use to study Earth’s climate 

system. This diversity has even left some climate scientists puzzled, prompting them to ask: “Have 

we at once become Borges’s cartographers as well as denizens of Babel?” (Jeevanjee et al. 2017, 

p. 1760). From an epistemological perspective, this situation raises a significant problem: How 

can we use this great diversity of (at least most of the time) mutually inconsistent models to learn 

something about the target system? In other words, what epistemic utility can the information that 

we receive from a plurality of mutually inconsistent models of a physical system actually have?  

Consider, for example, the state-of-the-art coupled climate models like the Goddard Earth 

Observing System Model and the European Centre Hamburg Model. Both are designed to serve 

the same epistemic purposes, yet they have very different configurations and offer varying 

predictions about future atmospheric conditions—such as differing values for Equilibrium Climate 

Sensitivity (ECS). How, then, can these models be useful for learning about the climate system? 

As we have argued in this paper, this problem becomes particularly challenging if we 

adhere to a representationalist view of modelling—where we expect to learn directly from models 

as accurate representations of target systems. However, if we adopt the perspective on models and 

learning proposed in this paper, these issues are easily resolved. The key insight is that we do not 

learn directly from the models themselves but rather with their help. The diverse knowledge 

structures employed in modelling are not inconsistent because they are not intended to serve as 

surrogates for the target system. Therefore, they should not be judged by how accurately they 

represent that system. Instead, these models are tools designed to enhance our knowledge through 

continuous restructuring, aimed at solving specific epistemic problems that arise from our 

interaction with the world. Each model helps in organizing our knowledge with respect to the 

problem at hand. However, since our knowledge is not sufficiently constrained (as we tried to 

make clear above, this happens in the case of complex systems due to the lack of proper epistemic 
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access to the systems), we can end up with different configurations based on the same knowledge 

(by, e.g., employing slightly different assumptions). This approach makes the models 

complementary in improving and restructuring our knowledge, rather than contradictory, as we do 

not use models to directly learn what the target system is like. 

The use of model hierarchies is also easily explained. Remember that from our perspective 

modelling is similar to solving mathematical problems. In mathematics, when faced with a difficult 

problem, a common approach is to first find a similar simpler problem and solve it. By solving this 

simpler version, we can then gradually move on to more complex settings. The solution to the 

simpler problem provides a foundation for improving more complex configurations, as well as a 

means to evaluate them and identify potential sources of errors. This is mirrored in climate science, 

where results from simpler models can be used to verify, for example, whether uncertainties in 

climate sensitivity are related to convective parameterisations or some other factor. 

            The picture we are trying to paint here is that there are (at least) two fundamentally different 

types of models: physical models and abstract models, each functioning in distinct ways. Physical 

models operate as representationalists suggest all models do. These models are often easier-to-

handle configurations or chosen for other practical reasons, and they serve as proxies for a target 

system, studied with the aim of learning about that system. The key to their effectiveness lies in 

what we call "epistemic tethers"—a set of hypotheses that ensure the model shares relevant 

features with its target. These tethers allow us to extrapolate findings from the model to the actual 

system. Crucially, physical models do not encounter the problems discussed earlier in sections 2 

and 3. When epistemic tethers are well chosen, different models do not yield conflicting results 

and thereby avoid inconsistency. To use our previous example, because (as it seems) hypotheses 

H1 and H2 are true, what we learn about the neural network development from C. elegans is 

consistent with what we learn from Drosophila melanogaster, Danio rerio, Xenopus Laevis, and 

other species. If this would not have been the case, it would mean that either H1 or H2 is false and 

so that C. elegans cannot be used as a reliable model for understanding the molecular mechanisms 

underlying neuronal network development in more complex organisms. 

Why are representationalists then not also right about abstract models of complex systems? 

We believe that this is because unlike physical models, abstract models do not act as direct 

representations of the target system. Hence, a representationalist account about what the learning 

process is all about makes abstract models appear as very problematic tools for learning about the 
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world (due to the problem of inconsistency). Moreover, the view fails to adequately explain 

modelling practices such as the one encountered in climate science (due to the problem of 

hierarchies). 

6. Conclusion 

 

Abstract models of complex systems serve as tools for structuring and organising knowledge. They 

facilitate an iterative process of knowledge improvement rather than offering direct insights into 

the target systems. Our account offers a novel perspective on what learning with abstract models 

entails—one that, we believe, aligns more closely with the practices observed in climate science 

and does not render these models as problematic epistemic tools. This approach not only resolves 

the two main problems for representationalists (inconsistency and model hierarchies), but also 

supports a more accurate and practical understanding of how models contribute to scientific 

inquiry. 

Although our discussion has been motivated by challenges in climate scientific modelling, 

the insights apply more broadly to abstract models of complex systems. For example, consider the 

use of abstract models in social sciences. In social sciences, agent-based models are used to 

simulate complex social processes, like the evolution of norms or organisational adaptation 

(Epstein 2012). These models abstract away many details to focus on specific interactions and 

processes, offering insights into patterns and trends rather than precise predictions. Similarly, in 

engineering, the use of models to simulate traffic flow (Aleksander and Paweł 2020) allows for 

iterative improvements and optimisation, even though these models do not capture every detail of 

the real-world systems they represent. 

Rather than going further into how our account applies to modelling practices beyond 

climate science, we return to our central question: How do models give us knowledge? We hope 

to have established that abstract models give us knowledge not through accurate representation, 

but rather in a manner that is more akin to mathematical problem-solving: through an iterative 

process that focuses on uncovering patterns and improving understanding of the target system. 
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