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Abstract

We offer a category-theoretic representation of the process theory of causality.
The new formalism allows process theorists to (i) explicate their explanatory strate-
gies (etiological and constitutive explanations) using the compositional features of
string diagrams; (ii) probabilistically evaluate causal effects through the categorical
notion of functor; (iii) address the problem of explanatory irrelevance via diagram
surgery; and (iv) provide a theoretical explanation for the difference between con-
junctive and interactive forks. We also claim that the fundamental building blocks
of the process theory—namely processes, interactions, and events—can be modeled
using three types of morphisms. Overall, categorical modeling demonstrates that
the philosophical theory of process causality possesses scientific rigor and expressive
power comparable to those of its event-based counterparts, such as causal Bayes
nets.

1 Introduction

Philosophical positions on causation are primarily divided into two main categories:
event-based and process-based. Event-based theories conceive of causation as a spe-
cific type of relationship between events; for instance, the intake of aspirin causing
relief from a headache. While these theories vary concerning the nature of the re-
lationship that qualifies one event as the cause and another as the effect—be it a
constellation of logical conditions, probabilistic regularities, counterfactual or func-
tional dependence, or another factor—they concur on the ontological premise that
causal relata are events. Process-based theories, in contrast, take processes, objects,
or entities as the fundamental elements of causation. According to this perspective,
causation is a specific type of activity or behavior of a cause-thing that affects an
effect-thing. Again, the nature of this activity varies among theorists: some per-
ceive it as a physical interaction, others as the expression of an underlying power
or tendency of the cause, and so on. Nonetheless, these theories share a common
understanding that a causal relationship is something that obtains among things,
not events.

Glymour (2004) distinguishes between two argumentation styles in the philo-
sophical literature: the Socratic and the Euclidean. The Socratic tradition aims to
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clarify what constitutes causality through conceptual analysis, case studies, coun-
terexamples, and the search for necessary and sufficient conditions. Its fundamental
question is definitional: ‘Causality is about X. Then what is X?’ Event-based the-
ories identify X as a specific relationship between events or properties, and then
proceed to investigate the nature of this relationship. On the other hand, the
process-based view, upon taking X to be a specific type of process, sets out to
determine the characteristics of genuine causal processes. Is a shadow a causal pro-
cess? If not, why? Process theorists in the Socratic mode have sought to answer
such questions by providing a conceptual or empirical criterion of causal processes
based on mark transmission (Salmon, 1984), conserved quantities (Dowe, 2000), or
other properties.

The Euclidean tradition, on the other hand, seeks to model causality in the
“form of formal or informal axiomatic systems (Glymour, 2004, p. 779)” without
much concern for what causality really consists of. Glymour takes causal inference
frameworks developed in the late 20th century, such as causal Bayes nets and Rubin’s
counterfactual model, as paradigmatic examples of this category. By using directed
acyclic graphs (DAGs) or potential outcomes, these techniques provide quantitative
methods to identify causal relationships and evaluate intervention effects on the
basis of observational data. By and large, these formal methods stand on the event-
based view. Random variables are a probability-theoretic expression of events, and
edges in a causal DAG assert that events described by one variable are in specific—
probabilistic and/or counterfactual—relationships with events described by another
variable.

The success of these formal approaches has undoubtedly rendered great cred-
ibility to the event-based conception of causality. In contrast, to the best of our
knowledge, no similar development of the Euclidean kind has been made in the pro-
cess camp. This lack of formalism has limited the process theory from advancing
into a rigorous and systematic scientific methodology beyond a philosophical specu-
lation that, even if plausible, remains largely intuitive. The main goal of this article
is to fill this lacuna, by resorting to the category-theoretic approach to causal mod-
eling developed lately (e.g. Fong, 2013; Coecke and Kissinger, 2017; Jacobs et al.,
2019; Fritz and Klingler, 2022; Lorenz and Tull, 2023). In particular, we claim
that its graphical representation, string diagrams, offers formal definitions of pro-
cesses and interactions, much like directed acyclic graphs (DAG) serve as formal
representations of events and causal relationships in causal Bayes nets.

The benefits of the new formalism are several-fold. First, the compositional
features of string diagrams provide a natural way to formulate the two principal
explanatory strategies of process theorists, namely etiological and constitutive ex-
planations. Second, the categorical notion of functor enables the integration of
process theory with probabilistic analysis. Third, by incorporating the interven-
tion calculus, the categorical modeling resolves the issue of explanatory irrelevance,
which has been a significant problem for process theory. Fourth, it also captures
the crucial difference between what Salmon called conjunctive and interactive forks,
which are indistinguishable in conventional DAGs, and explains why the principle
of common cause (PCC) fails in the latter. Finally, the categorical framework offers
formal definitions of causal processes, interactions, and events, thereby clarifying
the ontological differences between event-based and process-based theories.

We begin with a brief sketch of the philosophical theories of process causality in
Section 2. Section 3 introduces string diagrams—the category-theoretic apparatus
we use to model causal processes and interactions. Section 4 connects the diagram-
matic representation of causal structures to a probabilistic analysis via a functor.
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Section 5 addresses the issue of explanatory irrelevance through interventions on
string diagrams. In Section 6, we propose a categorical modeling of conjunctive and
interactive forks, and explain why the common cause in the latter fails to screen off
its effects from each other. Section 7 turns to the ontological thesis of process theory
and defines processes, interactions, and events in categorical terms of morphisms.
Section 8 concludes.

2 Philosophical theories of process causation

In his seminal book, Wesley Salmon (1984) set out to replace what he identifies as
the “standard picture of causality ... that we have two (or more) distinct events that
bear some sort of cause-effect relations to one another,” with an alternative view
that “take[s] processes rather than events as basic entities (p. 137).” While events
are localized at points in space and time, processes have a greater time duration and
are expressed by (bunches of) world lines. A baseball hit by a bat and the pulse of
light coming from a distant star are examples of processes. By contrast, a light spot
projected onto a wall, though it persists in time and is represented geometrically
by a world line, does not qualify as a causal process: it is a pseudo-process. The
difference between causal and pseudo processes resides in the possibility of causal
interaction. An interaction between two or more genuine causal processes produces
some lasting “mark” or modification in their structure, as the ball hit by the bat
gains momentum and perhaps gets a bit of scratch on the surface. This is not
the case for pseudo-processes: superimposition of two light spots may momentarily
change their color, but this change disappears as soon as they separate. Salmon
has us see the world as a bunch of causal processes interacting with each other,
and he argues that this worldview is better suited to analyzing causality than the
event-based ontology.

Salmon’s work has laid the foundation for the subsequent development of mech-
anistic philosophy and has served as a springboard for a variety of its later offshoots.
Phil Dowe (2000) proposed replacing Salmon’s criterion, which essentially relies on
the counterfactual concept of “marking,” with the physical concept of a conserved
quantity. In his view, a causal process is the world line of an object possessing a con-
served quantity, while a causal interaction is an intersection of world lines involving
the exchange of a conserved quantity. What distinguishes a genuine causal process
such as a ball from a moving light spot is that the former, unlike the latter, possesses
certain quantities such as momentum that are transferred to another object upon
interaction. As this analysis suggests, Dowe’s primary focus (and to a large extent,
Salmon’s) is on physical science. In contrast, New Mechanist philosophers have de-
veloped a similar causal theory focused on life sciences, analyzing biological mecha-
nisms as orchestrated activities and interactions of constituent factors (e.g. Glennan,
1996; Machamer et al., 2000; Bechtel and Abrahamsen, 2005). For instance, photo-
synthesis is mechanistically explained by identifying how chemical substances and
biological components—such as water, carbon dioxide, and chlorophyll—interact
to produce oxygen and glucose. Despite the difference in focus and terminology,
this approach shares Salmon’s view that the analysis of causality should rest upon
processes (entities, components) and their interactions (activities), rather than on
events and their relationships.

These philosophical analyses attempt to identify the essence of causation and
mechanisms in processual language. Dowe (2000), for instance, explicitly frames his
goal as an “empirical analysis” that “seeks to establish what causation in fact is in
the actual world. (p. 3, emphasis in the original).” Mark-transmittable processes,
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conserved quantities, and entities engaging in activities can be thought of as an-
swers to this what-question. In the shadow of these ontological inquiries, yet almost
nothing has been said about how the causal processes and interactions understood
as such can be modeled, preferably within a certain mathematical framework. We
believe that this lack of formal modeling underlies several significant challenges to
the process-based view, one of which is the problem of explanatory relevance. As
Woodward (2003, p. 357) notes, the mere existence of a causal process “tells us
nothing about which features of the process are causally or explanatorily relevant
to the outcome.” A swinging bat transmits various marks and conserved quantities
to a ball, but the theory is silent on which of these are causally relevant to the ball’s
subsequent motion. A satisfactory solution to this problem requires a suitable mod-
eling framework that supports the analysis of contrast classes and their relevance
to the intended outcome. Another related criticism concerns the philosophical pur-
port of the theory: that is, besides providing a metaphysical description of causal
relationships, it is not clear how it “can be made to do real philosophical work
(Hitchcock, 2004).” For instance, one of Salmon’s main motivations for process
theory was the distinction between two kinds of fork structures, conjunctive and
interactive (which we discuss later in detail). However, Salmon does not explain
how the ontological difference between the two forks gives rise to their respective
probabilistic patterns, namely that the common cause screens off its effects from
each other only in the conjunctive fork but not in the interactive fork. Without
such an explanation, process theory remains on a par with event-based theory, and
this alleged anomaly cannot be used to motivate his alternative framework.

The present paper takes on this modeling challenge with the aid of the recently
developed category-theoretic approach to causal modeling.1 Our discussions focus
more on philosophical implications than on theoretical details; readers interested in
the theory itself are referred to Jacobs et al. (2019), Fritz (2020), and Lorenz and
Tull (2023). Through these discussions, we argue that the categorical framework
provides theoretical substance to the philosophical theory of process causality as
well as the means to address its problems.

3 Modeling Process Causality with String Di-

agrams

The first step in modeling process causality is to represent processes and interactions
using string diagrams, as employed in the category-theoretic approach to causal
modeling (Coecke and Kissinger, 2017; Jacobs et al., 2019; Fritz and Klingler, 2022;
Lorenz and Tull, 2023). String diagrams are composed of wires and boxes, which
symbolize causal processes and interactions, respectively.

Wires are drawn as vertical lines, with time flowing from bottom to top (or from
left to right when drawn horizontally). We let wires represent what process-theorists
call causal processes or physical objects, such as a moving ball or a pulse of light. We
stress, however, that the formalism itself is noncommittal to the ontological nature
of causal processes. Our aim in this paper is to provide a model for what theorists
regard as causal processes, leaving the criteria for distinguishing processes from
non-processes to empirical investigation. The substrate neutrality of the formalism

1The categorical framework is sometimes referred to as the “process theory (e.g. Coecke and Kissinger,
2017).” To avoid confusion, we use “process theory” exclusively to refer to the philosophical view of
causation.
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does not undermine our modeling purpose, just as constructing Bayesian networks
does not require resolving what can or cannot be represented by random variables.

Another important difference from the previous philosophical approaches is that
we allow wires to take on various states or values, as will be elaborated upon in
Section 4. In this sense, a wire in a string diagram represents a type of causal
process, rather than a specific token or concrete instance. The ‘ball’ wire does
not represent a single trajectory of a particular ball; rather, it may correspond to
different trajectories in various directions and under distinct conditions. The type
interpretation is a natural requirement stemming from the fact that a string diagram
is intended not as a mere description of individual phenomena, but as a model that
accommodates predictions and counterfactual reasoning.

Next, interactions between wires/processes are depicted by boxes. Each box
specifies the type of processes it accepts as inputs and produces as outputs. The
following boxes illustrate three different types of interactions, which Salmon (1984,
p. 203) referred to as x-, λ-, and y-type interactions, respectively.

f g h

A paradigmatic example of an x-type interaction is a collision of two processes, such
as two billiard balls. In a λ-type interaction, two processes converge to produce a
single outcome (e.g., the synthesis of water from hydrogen and oxygen). Conversely,
a y-type interaction illustrates cases where a single process ‘splits’ into multiple
processes (e.g., mitosis and atomic decay). Interactions involving more than two
processes can also be considered and are represented by boxes with multiple input
and output wires.

In modeling an interaction we may decide to focus on one process and ignore
others. Imagine a machine that stamps a quality-inspected mark on balls in a ball
manufacturing factory. This is an x-type interaction between the ball process and
the stamp machine process. But if we are interested in only the balls and not the
machine, it is reasonable to model the production line with a box having just one
input and one output, which represent the balls that enter and exit the machine,
respectively:

stamp

.

Let us call this I-type box. An I-type box may indicate either a spontaneous change
in one process, or a change arising from an interaction with other processes that are
abstracted away as background conditions for the purpose of modeling.

One particularly important variety of I-type box is identity, which leaves the
process as it is—i.e., it does not change anything. Identity is depicted by an empty
(dashed) box and can, in fact, be identified with the wire itself, as shown below:

=

.
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Figure 1: A string diagram representing photosynthesis, which takes sunlight, water,
and carbon dioxide to produce oxygen, water, and glucose, through chemical reactions
represented by the two boxes. Here the causal flow is from left to right.

This means that any process can be understood as a “null interaction” or the ab-
sence of interaction with any other processes (although we will later introduce an
alternative interpretation of a wire in Section 7).

It is also possible to abstract away the origins of processes. Consider balls being
thrown by a pitching machine—an x-type interaction involving both the balls and
the machine. However, one might be interested only in the balls that are ejected.
We can model this interaction using a special unit that has no inputs, termed states.
A state is denoted by a downward triangle, and represents the commencement of
a process without detailing its origin. For instance, the following diagram depicts
a collision between two balls, where the balls are initially set in motion by their
respective states.

collision

Wires and boxes (including their special variants like identities and states) are
the basic building blocks of a string diagram. The second step of categorical causal
modeling is to organize these elements into a coherent structure that represents
the phenomena under study. Let us proceed with an example. Photosynthesis is a
complex mechanism consisting of multi-stage chemical interactions among sunlight,
water, carbon dioxide, etc. In the first stage, known as the light-dependent reaction,
the thylakoids in chloroplasts produce chemical energy (ATP and NADPH) using
sunlight and water. The produced energy is then used to convert carbon dioxide
into glucose in the second stage, the light-independent reaction. In the terminology
of process theory, sunlight and chemical substances are causal processes, while the
two reactions are their interactions. By connecting these processes (wires) and inter-
actions (boxes) in matching types and orders, the entire photosynthesis mechanism
can be represented as shown in Fig. 1.

The diagram in Fig. 1 is constructed by connecting wires and boxes in two ways:
sequentially or in parallel. The diagram on the left below shows the sequential
connection, where the output of box f is fed into subsequent box g. Composition
means that the stacked boxes can be seen as one stretch of a mechanism g ◦ f that
takes A as the input and outputs C, as indicated by the dotted box. On the other
hand, the right diagram illustrates parallel processing, where two processes undergo
f and h independently. Here again, we can see these two parallel mechanisms as
one combined mechanism, f ⊗ h, that takes the joint input A ⊗ X and yields the
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joint output B ⊗ Y .

f

g

A

B

C

f h

A

B

X

Y

It is assumed that the order in which these two compositional operations are
applied does not matter: hence in the following diagram, whether one horizontally
combines f ’s and g’s and then stacks them vertically (as on the left), or forms two
sequential lines and then puts them side-by-side (as in the middle), the result is the
same large box on the right with the combined input A⊗X and output C ⊗ Z.

f1

g1

A

C

f2

g2

X

Z

=

f1

g1

A

C

f2

g2

X

Z

=

f1

g1

f2

g2

C ⊗ Z

A⊗X (1)

These compositional features are notable characteristics of the monoidal cate-
gory. In categorical terminology, wires and boxes are called objects and morphisms
of a category, respectively. It is customary to denote objects with capital letters
A,B,C, . . . , while morphisms with arrows f : A → B, g : B → C, and so on.
Two morphisms having a matching codomain/domain can be combined to yield a
morphism from the domain of the first morphism to the codomain of the second mor-
phism, g ◦ f : A → C, which amounts to the vertical composition discussed above.
The horizontal composition, on the other hand, exploits the monoidal property. A
monoidal category is a category equipped with a binary associative operation ⊗
that creates, (i) for any pair of objects A and B, the product object A ⊗ B; and
(ii) for any pair of morphisms f1 : A→ B and f2 : X → Y , the product morphism
f1⊗f2 : A⊗X → B⊗Y . This operation underlies the horizontal or parallel combi-
nation. The consistency of the two operations as illustrated in equation (1) is then
expressed as their interchangeability,

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2), (2)

which is ensured by the axioms of the monoidal category. In this way, string di-
agrams form a category known as an affine CD-category (Jacobs et al., 2019) or
a Markov category (Fritz, 2020), special types of symmetric monoidal categories
augmented with additional structure tailored to represent causal processes.2

The categorical modeling accommodates the explanatory strategy of mechanis-
tic philosophy, according to which phenomena are explained by being shown to
“fit into a causal nexus (Salmon, 1984, p. 19)” in two different ways. The first
is what Salmon calls etiological explanation, which places “the explanandum in a
causal network consisting of relevant causal interactions (p. 267).” This entails

2The symmetric property means that any two parallel processes X,Y may be swapped, so that there
is a natural isomorphism X ⊗ Y

∼−→ Y ⊗ X. The category of string diagrams is also equipped with
additional morphisms called discard and copier, the latter of which will be discussed in detail in Section
6.
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Figure 2: A diagrammatic representation of a constitutive explanation of photosynthesis.
A single wire or box in a higher-level description can be considered as consisting of multiple
wires or a diagram in a lower-level description. The compositional properties of a monoidal
category ensure that such composition is consistently and uniquely defined.

identifying a causal structure that elucidates how various factors interact to yield
the phenomenon being explained. In a similar vein, Machamer et al. (2000, p. 12)
identify a causal explanation with a portrayal of a mechanism that “describes the
relevant entities, properties, and activities that link them together, showing how the
actions at one stage affect and effect those at successive stages.” In the categorical
framework, this amounts to building a string diagram for the phenomena to be ex-
plained by combining relevant wires and boxes, as we just did for the photosynthesis
mechanism above in Fig. 1.

On the other hand, constitutive explanation seeks to elucidate how “the fact-
to-be-explained is constituted by underlying causal mechanisms (Salmon, 1984, p.
270).” This is a sort of reductive explanation of the functioning of the higher-level
process or interactions in terms of lower-level ones, which is a standard explanation
strategy in biomedical sciences (Craver, 2001; Bechtel, 2006). The photosynthesis
mechanism sketched above treated the two main reaction systems as black boxes,
but each can be further analyzed in terms of its constituent factors; e.g., the light-
independent reaction is decomposed into various enzymes (such as RuBisCO and
phosphoglycerate kinase) and other chemical compounds, with their interactions
being explained by more detailed physicochemical reactions.

A monoidal category offers a natural framework for representing such reductive
explanations. We previously noted that wires and boxes can be combined to form
a joint wire or box (1). Conversely, a given element in a string diagram can be
decomposed into a lower-level string diagram that comprises fine-grained parts.
For instance, at the coarsest level, photosynthesis can be depicted by a single box
representing a plant that converts one set of chemicals into another (Fig. 2, top).
The photosynthesis diagram in Fig. 1 can then be seen as a high-level decomposition
of this single box (middle). Similarly, each component of this diagram can be
further represented as a composed string diagram involving micro-level wires and
boxes, collectively elucidating the mechanisms underlying the light dependent and
independent reactions (bottom). In this way, the compositional nature of a monoidal
category allows us to formulate the constitutive explanatory strategy, as envisioned
by Craver (2001, p. 66).

In summary, string diagrams provide a formal apparatus to capture the onto-
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logical intuition of process theorists that causation is more effectively understood in
terms of processes and their interactions, rather than events and their relationships.
This formalism accommodates the two primary explanatory goals of mechanistic
philosophy: etiological and constitutive explanations, owing to the inherent com-
positional nature of monoidal categories. However, the exposition thus far remains
merely a pictorial description of process causation. Comprehensive modeling of a
causal structure should be complemented by a quantitative assessment, one that
evaluates the extent and probability with which causes influence their effects. This
is the point at which the categorical formulation demonstrates its usefulness, as we
discuss next.

4 Probabilistic Interpretation

String diagrams for process-based theory are analogous to DAGs for event-based
theory in that they both encode qualitative information about which items cause
which. Comprehensive Bayesian network modeling involves pairing a DAG with
a probability distribution that satisfies conditions such as the Markov condition.
Similarly, a string diagram must be given a probabilistic interpretation for the
quantitative analysis of process causation. This is achieved through a functor, a
systematic mapping from one category to another. In the present context, we con-
sider a functor F from the category C of string diagrams to that of finite sets and
stochastic matrices, which effectively assigns values to each wire and a conditional
distribution to each box.

We illustrate the functorial assignment with the photosynthesis mechanism de-
scribed in Fig. 1 (the following depiction is merely for illustration purposes, with
no claim for truth). The first part of the interpretation is to associate each process
(wire) with the set of possible values it can take. For instance, F (sunlight) = {+,−}
indicates that sunlight can be either abundant (+) or scarce (−). For the sake of
simplicity, let us assume that all the other five types of wire in the photosynthe-
sis diagram are also binary, so that F (H2O) = F (CO2) = F (O2) = F (ATP ) =
F (glucose) = {+,−}.

Next, we will substantiate the boxes by specifying how the interactions they
represent affect the involved processes. This is achieved by assigning to each box a
conditional distribution that determines the probability of its output values given
its input values. The photosynthesis diagram contains two boxes, LDR and LIR,
each having two inputs and two outputs. Let us assume that their operations are
described by the following conditional distributions:

LDR
sunlight + −
H2O + − + −

O+
2 , ATP

+ .7 .2 .1 0
O+

2 , ATP
− .1 .1 .2 .1

O−
2 , ATP

+ 0 .3 .1 0
O−

2 , ATP
− .2 .4 .6 .9

LIR
ATP + −
CO2 + − + −

H2O
+, glu+ .8 .5 .2 0

H2O
+, glu− .1 .1 .2 .1

H2O
−, glu+ .1 .3 .1 0

H2O
−, glu− 0 .1 .5 .9

Table 1: Conditional distributions assigned to the LDR (left) and LIR (right) by functor
F .

Each cell in the table indicates the conditional probability of a pair of output
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LDR

LIR

sunlight

Figure 3: A hypothetical example of the probabilistic interpretation of the photosynthesis
diagram in Fig. 1.

values, as listed in the leftmost column, given the combination of input process
values shown in the top rows. For instance, the top-left cell of the LDR table
indicates that in the presence of abundant sunlight and water, the LDR produces a
good amount of O2 and ATP with a probability of 0.7. If a box has i inputs, each
with n1, n2, . . . , ni values, the total number of input combinations is N =

∏i
k=1 nk;

likewise if it has j outputs, each with m1,m2, . . . ,mj values, the total number of

output combinations is M =
∏j

l=1ml. The box is then assigned an M ×N matrix
whose entries are probability masses. Such a matrix is called a stochastic matrix.
In general, the interpretation map F assigns a stochastic matrix of corresponding
dimensions to each box f .

The same procedure applies to states, represented by downward triangles that
signify the commencement of processes. In the probabilistic interpretation, a state
is assigned a marginal distribution of its output. This is expressed as an M × 1
stochastic matrix (i.e., an M -vector), where M represents the number of values of
the output wire. In the present case, F maps the states ssunlight, sH2O, and sCO2 to
2-vectors that represent marginal distributions over the abundance of the respective
elements.

Recall that the identity in a string diagram is a special type of box that performs
no operations and can thus be equated with the wire itself. For a process with
M values, the identity is interpreted by an M -dimensional identity matrix IM ,
which has ones on its diagonal and zeros elsewhere. Since multiplying an identity
matrix does not change a vector (and thus a vector representation of a probability
distribution), i.e., I ·v = v for any vector v of the matching dimension, this effectively
illustrates the null process that leaves its input unchanged.

Fig. 3 shows a complete photosynthesis mechanism interpreted with functor
F . The interpreted diagram allows one to calculate how “causal processes transmit
probability distributions (Salmon, 1984, p. 262)” via matrix calculus. For instance,
the joint distribution p(O2, ATP ) is given by F (LDR)·F (ssunlight)⊗F (sH2O), where
· is matrix multiplication and ⊗ is the Kronecker product. To obtain this, we first
calculate the joint distribution of sunlight and H2O by F (ssunlight) ⊗ F (sH2O) =
(.6, .4)T ⊗ (.5, .5)T = (.3, .2, .3, .2)T . Then multiply this vector with F (LDR) given
by the left Table 4 above, which yields (.28, .13, .09, .5)T whose values respectively
give the probabilities of (O+

2 , ATP
+), (O+

2 , ATP
−), (O−

2 , ATP
+), and (O−

2 , ATP
−).

The probability outcome of the LIR can be obtained in a similar fashion.3

The finite sets and stochastic matrices used here to interpret a string diagram

3For detailed explanation and more sophisticated reasoning such as Bayesian conditionalization, see
Jacobs, B. (unpublished). Structural probabilistic reasoning, https://www.cs.ru.nl/B.Jacobs/PAPERS.
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form a category called FinStoch. The probabilistic assignment introduced above
thus maps objects (wires) and morphisms (boxes) of category C of string diagrams
to those of FinStoch. Such a systematic mapping F from one category C to another
is called functor, if it preserves (i) identity, so that F (IdA) = IdF (A) for any object
A of C, and (ii) the composition of morphisms, so that F (f ◦ g) = F (f) ◦ F (g) for
any morphisms f, g of C.4 In the present context, (i) means that the identity wire
(empty box) is mapped to an identity matrix, while (ii) is guaranteed by the rule
of matrix multiplication. Thus in the categorical approach, a pair of category C of
string diagrams and a functor from it to FinStoch defines a causal model.

5 Intervention and Explanatory Relevance

One salient feature of the Bayesian network is its ability to estimate hypothetical
interventions via graph manipulation or do calculus (Spirtes et al., 1993; Pearl,
2000). In the categorical framework, an intervention is implemented by a diagram
surgery that replaces a box with a new state that represents a post-intervention
distribution (Jacobs et al., 2019). For instance, suppose that a scientist is interested
in how glucose production is affected by watering the plant. This can be estimated
by replacing sH2O with a new state s′H2O

, whose probability interpretation F (s′H2O
)

assigns a probability of one to H2O
+ and zero to H2O

−. The post-intervention
probability distribution for the remaining parts can be calculated on the basis of
this state by applying the matrix calculation outlined in the previous section.

The intervention calculus provides a means to address one of the most significant
challenges raised against process theory, namely the problem of explanatory irrele-
vance (Woodward, 2003; Hitchcock, 2004). The issue is that process theory cannot
distinguish factors that are relevant and responsible for a given effect from those
that are not. Consider Salmon’s example of John Jones, who regularly takes birth
control pills and fails to become pregnant. Although John’s inability to conceive
is due to biological sex rather than medication, birth control pills still represent
genuine causal processes that interact with his body when ingested. More broadly,
any event can be understood as the culmination of myriad processes that travel
within the timelike region of the light cone, though most of these processes have no
influence whatsoever on the occurrence of the event. Therefore, identifying some or
even all causal processes involved in a particular event still falls short in explaining
why that event occurred, which is arguably a primary motivation for considering
causal relationships.

The causal irrelevance can be understood as insensitivity to an intervention.
Let us illustrate this with the above episode of John Jones, modeled in Fig 4.
This simple model stipulates that pregnancy Z is determined by the interaction
between two causal processes, regular intake of birth control pills X and the repro-
ductive organ Y . Assume they are all binary, with F (X) = {pill+, pill−}, F (Y ) =
{male, female}, F (Z) = {pregnant+, pregnant−}, where + and − indicate the
presence and absence, respectively. Then, being a male is represented by the state
sY that assigns a unit probability to male. Under this condition, any intervention
on X, represented by the replacement of the original state sX with a new state s′X ,
does not affect the probability of pregnancy, for surely p(pregnant+|pill+,male) =
p(pregnant+|pill−,male) = 0. In contrast, a similar intervention on X should
change the outcome if the subject is female, for arguably p(pregnant+|pill+, female) ̸=

4Moreover, in the present context, a functor must be a monoidal functor that preserves the monoidal
structure.
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Figure 4: Intervention on X that replaces the original state sX with the new state s′X .

p(pregnant+|pill−, female). This difference between intervention outcomes bears
out our intuition that taking pills is irrelevant to John’s barrenness.

In general, a causal process X is explanatory irrelevant to an outcome Z un-
der a state sY of other processes Y if any intervention on X does not affect the
marginal distribution of Z under sY. In the do-calculus formalism, this amounts
to p(Z|do(x),Y) = p(Z|do(x′),Y) for any value x ̸= x′ of X. By incorporating
the intervention calculus by way of the diagram surgery, the categorical framework
harnesses the process theory with a means to handle explanatory irrelevance, in the
same way as the causal DAG framework.

6 Interactive vs. Conjunctive Forks

A major impetus for Salmon’s process causal theory comes from the problem of
common causes (Salmon, 1984, ch. 6). Reichenbach’s statistical explication of
the principle of common cause (PCC) suggests that two probabilistically dependent
events A and B become independent (or screened-off from each other) if conditioned
on their common cause C so that P (A,B|C) = P (A|C)P (B|C), provided that there
are no other causal connections. Salmon’s examples include two essays submitted
by students who plagiarized from the same paper in a fraternity file, and dining
companions who experience severe stomach discomfort after eating the same meal.
In both cases, the unlikely correlations—similar word usage and sickness in otherwise
healthy guests—would certainly vanish if we consider their common causes: the
source paper and the tainted food.

However, Salmon (1984, pp. 168-174) indicates that in some cases a common
cause fails to screen-off a statistical dependence. Imagine a billiard player attempt-
ing to pocket an 8-ball by striking the cue ball. However, given their arrangement,
if the 8-ball sinks into the pocket (A), the cue ball will inevitably end up in the
opposite pocket (B) as well. In this scenario, A and B remain dependent even when
conditioned on their common cause, namely their collision (C).

From this, Salmon concludes that there are two distinct common-cause struc-
tures: the conjunctive fork, which satisfies the PCC, and the interactive fork, which
does not. Their difference, however, is invisible in event-based causal modeling,
which represents both scenarios with the same triad, A ← C → B. What distin-
guishes the two types of fork, according to Salmon, is the process that connects these
events (Salmon, 1984, p. 169). The conjunctive fork consists of separate and dis-
tinct processes that share specific background conditions (the fraternity file and the
contaminated food). Conversely, the correlation in the interactive fork results from
the spatiotemporal intersections of processes (the cue ball and the 8-ball). Based
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collision

pocket pocket

cue2 8

cue1

collision

cue2 8

cue1

Figure 5: String diagrams for interactive forks. The diagram on the right is a simplified
version of the left model, in which whether or not the balls fall is fully determined by
their motion after the collision. cue1 and cue2 respectively represent the cue ball before
and after the collision.

on this observation, Salmon concludes that determining whether the PCC holds for
a given common cause structure requires attention to the underlying processes.

The categorical framework allows us to explicate Salmon’s intuition and formu-
late two types of forks as distinct string diagrams. We begin with the interactive
fork. An interactive fork is either a y-type splitting of one process into two or an
x-type interaction where one of the inputs is abstracted away. For example, the
billiard case consists of the interaction between the cue ball and the 8-ball, but only
the cue ball is singled out as the cause of the collision. The left string diagram of
Fig. 5 models this situation. In this model, the cue ball is set in motion by the
state (represented by the downward triangle) and then collides with the 8-ball. This
collision, depicted as the large box in the middle, imparts motion to both the cue
ball (left wire) and the 8-ball (right wire). Depending on their momenta, they end
up in pockets; this falling can be considered interactions between the balls and the
pockets, denoted by the small boxes. Alternatively, if we consider that pocketing is
determined entirely by each ball’s motion after the collision, we can omit the small
boxes and depict the situation as shown in the right diagram of Fig. 5. We use this
simplified model below.

To see whether this structure leads to a violation of the PCC, let us now consider
a functor that gives a probabilistic interpretation of the diagram. We assume that
all processes are binary, with F (cue1) = F (cue2) = F (8) = {+,−} representing
whether the balls are hit or not hit (for cue1) or pocketed or not (for cue2 and the
8 balls). Then F (collision) is given by the following 4× 2 stochastic matrix:

cue+1 cue−1
cue+2 , 8

+ a e
cue+2 , 8

− b f
cue−2 , 8

+ c g
cue−2 , 8

− d h

where each column gives the conditional probabilities of the outcomes when the cue
ball is hit or not hit, respectively, so that a+ b+ c+ d = e+ f + g + h = 1.

Now, as Cartwright (1999, p. 8) observes, the PCC holds if and only if ad = bc
and eh = fg. But the functorial assignment imposes no such constraint: as long
as each column sums to one, the outcome probabilities can take any value from
0 to 1. For instance, in the billiard example, one may assign a = d = 0.5 and
b = c = 0, while e = f = g = 0 and h = 1. That is, when one hits the cue ball, both
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balls either fall into the pockets or remain on the table, each with a probability
of 0.5; but when the cue ball is not struck, they both remain on the table, as
expected. With this assignment, hitting the cue ball or not does not screen-off one
outcome from the other. In general, multiple-output boxes such as the one in Fig.
5 admit any stochastic matrix, including those that do not satisfy the above screen-
off condition. In this respect, they capture the intuition underlying the interactive
fork—that interactions of two processes may result in a distribution that violates
the PCC (Salmon, 1984; Cartwright, 1999).

Next, let us turn to the conjunctive fork. According to Salmon, a conjunctive
fork consists of two non-overlapping processes, say A and B, that are independently
affected by the same condition, C. Thus, the common cause C ‘acts’ or ‘is used’
twice, so to speak: once influencing A and once influencing B. In the plagiarism
example, the same fraternity file was used independently by two students, each
without affecting the other. In the case of food poisoning, the contaminated food
was distributed to two or more guests, each of whom independently consumed their
portion and became ill. In a string diagram, such situations are modeled using a
special unit called the copier, which is denoted by a circle and serves to duplicate its
input. Using this copier, the conjunctive fork can be modeled as in Fig. 6. In this
model, the copier cpC , represented by the circle in the middle, duplicates process C
into two outputs, which then pass through distinct boxes f and g to yield A and B,
respectively. In the plagiarism example, C represents the fraternity file, the copier
symbolizes literal xeroxing or file copying, and the small boxes represent submissions
by students. In the food poisoning incident, the copier would symbolize the serving
from the contaminated pot, while the boxes represent the digestive processes of the
guests.

It is important to note that a copier does not necessarily represent a physical
duplication of the given process. Serving food from a pot onto plates does not
constitute physically copying the food; rather, it prepares multiple processes (dishes)
that operate independently with equal causal efficacy (of poisoning guests). In this
sense, a copier represents the duplication of a process’s “causal oomph” rather than
of the process itself, indicating that its multiple causal actions operate independently
of each other. The appropriateness of using a copier thus depends on the nature
of the causal influence being modeled. The use of a copier to model simultaneous
food poisoning rests on the assumption that serving plates from the same pot does
not diminish the poisonous effect of either the individual plates or the pot itself.
If, instead, our concern were with calorie intake, such an assumption would no
longer be appropriate. Hence, although a copier does not presuppose the existence
of any special mechanism that physically duplicates objects, it does represent a
certain fact about the causal process under consideration—namely, that it operates
independently on each of its causings.

To evaluate a distribution that arises from this model, we need to interpret a
copier, that is, to specify the corresponding stochastic matrix F (cpC). Duplicating
the input process means that, for an input c, a copier returns the pair (c, c). In
probabilistic terms, this implies P (c, c|c) = 1, and zero otherwise. Hence, the
stochastic matrix of a copier (of a process with n values) is the n2 × n matrix
∆ = (δ(i,j)k)(i,j)k, where δ(i,j)k = 1 if i = j = k and zero otherwise.

Without loss of generality, we again assume that all processes are binary with
F (A) = {a1, a2}, F (B) = {b1, b2} and F (C) = {c1, c2}. The stochastic matrices for
boxes f and g are then 2 × 2 matrices, F (f) = (fik)ik and F (g) = (gjk)jk with
i, j, k = {1, 2}. With this setup, the conditional probability distribution P (A,B|C)
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Figure 6: String diagram of a conjunctive fork.

is calculated by a matrix multiplication:
p(a1, b1|c1) p(a1, b1|c2)
p(a1, b2|c1) p(a1, b2|c2)
p(a2, b1|c1) p(a2, b1|c2)
p(a2, b2|c1) p(a2, b2|c2)

 = F (f)⊗ F (g) · F (cpC)

=


f11g11 f11g12 f12g11 f12g12
f11g21 f11g22 f12g21 f12g22
f21g11 f21g12 f22g11 f22g12
f21g21 f21g22 f22g21 f22g22



1 0
0 0
0 0
0 1

 =


f11g11 f12g12
f11g21 f12g22
f21g11 f22g12
f21g21 f22g22

 . (3)

Eqn. (3) satisfies the screen-off condition, because at each column k = {1, 2}, we
have f1kg1kf2kg2k = f1kg2kf2kg1k. Indeed, noting that fik = p(ai|ck) and gik =
p(bi|ck), Eqn. (3) shows that p(ai, bj |ck) = fikgjk = p(ai|ck)p(bj |ck), namely that
A and B are conditionally independent given C. Hence whenever the branching is
made via a copier, the cause process screens off branches from each other.

Taken together, the above arguments support Salmon’s claim that the two types
of common cause structures—conjunctive and interactive—are characterized by un-
derlying processes and interactions, and that only the former guarantees the satis-
faction of the PCC. The validity of the common cause principle—as well as its gener-
alized version, the causal Markov condition—has been a central point of contention
in discussions about causal Bayesian networks (e.g., Cartwright, 1999; Hausman
and Woodward, 1999, 2004; Sober, 2001; Näger, 2021). In response to counterex-
amples, proponents of the PCC have offered two types of rebuttals. One strategy is
to question the validity of examples, claiming that they are artifacts arising from a
misspecification of the model, such as a failure to incorporate the real common cause
(Spirtes et al., 1993; Hausman and Woodward, 1999). However, without an indepen-
dent proof of the PCC, this line of argument amounts to a devil’s proof, urging the
opponents to demonstrate the absence of the screening-off common cause. The sec-
ond type of response acknowledges the existence of counterexamples and introduces
additional notation to the DAG formalism that specifically denotes non-screening-
off common causes (Schurz, 2017; Gebharter and Retzlaff, 2020). However, such
responses remain ad hoc adjustments and fail to explain why common causes come
in two different forms. In contrast, the process-based formalism not only accom-
modates non-screening-off causes but also offers a formal explanation for why the
PCC holds in a specific type of fork structure—namely, those involving the copying
or duplication of the common cause.

The discussion in this section naturally raises a question regarding the com-
parative representational capability between the category-theoretic framework and
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Bayesian networks. It is known that Bayesian networks on DAGs correspond bijec-
tively to categorical models in which common causes are represented using copier
morphisms (Jacobs et al., 2019). This suggests that full-fledged categorical causal
models, including those involving interactive forks, have strictly greater represen-
tational power than Bayesian networks. A detailed analysis of this point, however,
must be deferred to future investigations.

7 Processes, Interactions, and Events

The preceding sections of this paper focused on the explanatory purport of process
theory, analyzing it through category-theoretic modeling of etiological and constitu-
tive explanations (Section 3), probabilistic interpretations (Section 4), explanatory
relevance (Section 5), and the distinction between conjunctive and interactive forks
(Section 6). This section shifts the focus to its metaphysical agenda and scru-
tinizes its ontological picture that “take[s] processes rather than events as basic
entities (Salmon, 1984, p. 139)” from a category-theoretic standpoint. We do so
by formulating and refining the basic ontological notions of the process ontology—
namely processes, interactions, and events—within the categorical framework. This
will substantiate the metaphysical intuition of process theorists that causal rela-
tionships are constituted by processes and their interactions, and also allow us to
address significant challenges, including the problem of the identity of a process.

Let us first reconsider the categorical representation of processes. In Section 3,
we identified causal processes with wires, which are usually interpreted as identity
morphisms. For any object A, its identity morphism 1A : A→ A is a morphism that
does not change anything about A. More precisely, for any morphism f : A → B,
identities 1A of A and 1B of B satisfy f = f ◦ 1A = 1B ◦ f . Representing processes
with identities is prima facie plausible because it satisfies the two major criteria
of processes, namely the one based on mark transmission (Salmon, 1984) and the
other on conserved quantity (Dowe, 2000). According to Salmon (1984, p.148), a
genuine causal process is capable of transmitting a mark introduced by an external
intervention, which, in the categorical framework, can be represented as a diagram
surgery that replaces an unmarked state sA of object A to a marked state s′A (Section
5). Then identity morphism 1A : A → A trivially satisfies the mark transmission
criterion, because F (1A) ◦ F (s′A) = F (s′A) for any functor F , or in other words,
marked state F (s′A) is transmitted intact through the process in the absence of
additional intervention or interaction. Essentially the same argument shows that
identity morphisms also accommodate Dowe’s idea, according to which a causal
process is “a world line of an object that possesses a conserved quantity (Dowe,
2000, p. 90),” like mass-energy, linear momentum, or charge. Let x denote a
distribution over such quantities, e.g., the linear momenta of a ball thrown by a
pitching machine.5 We then again have F (1A) ◦ x = x, that is, the quantities are
conserved throughout the process.

However, equating processes with identity morphisms turns out to be too restric-
tive for the purpose of modeling the dynamic aspects of causal processes. This is
because, while identity morphisms by definition preclude any possibility of change,
most actual processes that bear causal impacts are not strictly unchanging in every
aspect. A moving ball incessantly changes its momentum and surface temperature

5We assume that our pitching machine has only a finite number of options for pitching speeds. To
handle an infinite range of momenta, one must consider a functor to a broader category of standard Borel
spaces and measurable maps (Fritz, 2020, sec. 4).
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due to friction with the ambient air, no matter how slight these changes may be
(Salmon, 1994, p. 309). This is even more true for organisms and other organic
matter, as their identities are maintained only by the constant functioning of home-
ostatic mechanisms (Dupré, 2021). Identity morphisms, however, fail to capture the
intuition that a single, identical process or object may change in certain aspects.
Indeed, the dynamic nature of a process has been a source of metaphysical diffi-
culty for process theorists themselves. On what ground can we say that one process
remains the same, despite all the actual and possible changes it undergoes? This
problem of the identity of a process has remained an open question in the philo-
sophical discussion of process causality (c.f. Dowe 2000, p. 107; Salmon 1997, pp.
466-9).

The problem resolves once we note that the identity of a causal process emerges
as an abstraction that disregards differences among its temporal or spatial parts.
That is, a given spatiotemporally extended process is considered the same causal
process despite changes occurring along its course, as long as these changes are
negligible for modeling purposes. To implement this idea, we define the notion
of quasi-identities: a morphism f : A → B of category C is a quasi-identity with
respect to functor F : C → D if F (f) = 1F (A). Thus defined, quasi-identities
include identities, as F (1A) = 1F (A), but they also encompass a broader range
of non-identity morphisms that represent substantive changes in domain category
C, provided these changes are evaluated as negligible and reduced to identities in
codomain category D. In the context of this paper, where D is FinStoch and 1F (A)

is the identity matrix of rank |F (A)|, a morphism f : A→ B is considered a quasi-
identity if it does not alter the probability distribution over the values F (A) of A
under consideration. For example, suppose that the trajectory of a ball from one
time point to another is expressed by a morphism f : A → B, but we are only
interested in whether the ball is moving or stationary, such that F (A) = F (B) =
{moving, stationary}. While the morphism may induce some changes, such as a
slight reduction in momentum due to air friction, if the interval is short enough,
these changes would not result in a qualitative difference in the ball’s motion. Thus,
f can reasonably be regarded as a quasi-identity representing one and the same
continuous process. In this way, quasi-identities capture the Janus-like feature of a
causal process by the functorial relationship between two categories.

We thus let quasi-identities represent causal processes and, accordingly, interpret
wires in a string diagram as quasi-identities.6 The proposed modification brings to
the fore the role of idealization in causal modeling. Any modeling involves ideal-
ization, which regards inherently different things or phenomena as the “same.” An
appropriate idealization depends on the purpose of causal modeling (Salmon, 1994,
p.309). The speed of a ball thrown by a pitcher may well be considered constant
in a typical game situation; but when designing and improving baseball equipment,
considering how friction and air resistance affect the ball’s movement can be crucial.
Therefore, it does not make much sense to ask whether something is a process or
an interaction tout court—it all depends on the modeling purpose. The notion of
quasi-identity accommodates such a model-dependent nature of causal processes by
making explicit the role of modeling functor in their formulation.

Now let us move on to the second item of the ontological inventory of process
theorists: interactions. As noted in Section 3, interactions are represented by boxes

6Our proposal can be seen as a generalization that bases string diagrams on pairs of monoidal categories
and monoidal functors ⟨C, F : C→ FinStoch⟩. The conventional interpretation corresponds to the special
case where the monoidal functor is the identity functor ⟨C, IdC : C → C⟩, in which case quasi-identities
coincide exactly with identities.
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or (non-identity) morphisms. For instance, an x-type interaction between two causal
processes is depicted by a box with two input and two output wires. This, however,
is not sufficient to capture Salmon’s CI (causal interaction) criterion (Salmon, 1984,
p.171), which requires x-type causal interactions to yield mutual modifications of
the characteristics of the processes involved. Not all multi-pronged boxes imply
such an interplay. For instance, a parallel product of two I-type boxes, g : A → B
and h : C → D, gives rise to a box with two inputs and two outputs, g ⊗ h :
A⊗C → B⊗D (see (1) in Section 3); however, its two inputs undergo independent
processing without affecting each other.

A straightforward way to avoid this issue is to define an (x-type) interaction as
box/morphism f : A⊗C → B⊗D that is not decomposable into a parallel products
of two boxes/morphisms g : A→ B and h : C → D such that f = g ⊗ h. However,
here again we must take into account the fact that what counts as interactions
depends on the modeling context. Do two intersecting sound waves coming from
different sources interact with each other? In everyday conversation settings, we can
generally treat them as mutually independent. But a sound engineer working for a
concert hall may well take it as an interaction and be concerned with its acoustic
effect. Such model dependency can again be accounted for by defining interactions
in terms of a functor. Specifically, we call a morphism f : A ⊗ C → B ⊗ D of
C an x-type interaction with respect to a functor F : C → FinStoch if F (f) is
not decomposable into two stochastic matrices, namely there are no two stochastic
matrices, M1 of size |F (B)| × |F (A)| and M2 of size |F (D)| × |F (C)|, such that
F (f) = M1 ⊗M2. This condition imposes an interplay between the two processes,
in the sense that there is an intervention on at least one of them that makes a
difference in the counterpart.7

Interactions represent changes within the processes involved. Since changes oc-
cur over a certain interval, we believe that most, if not all, interactions extend
through time and space. Accordingly, neither processes nor interactions are instan-
taneous in our framework. This conclusion follows naturally from the compositional
nature of string diagrams. As discussed in Section 3, sequentially stacked boxes can
be viewed as a single, larger box. Through repeated composition, any string diagram
can ultimately be interpreted as a single unified box. If the interaction represented
by a box were instantaneous, it would imply that all causal changes complete in an
instant—a clearly absurd conclusion. Moreover, because interactions are spatiotem-
porally extended, they can aptly represent gradual changes, such as deceleration of
a ball’s velocity due to air resistance. A key advantage of process theory lies in
its ability to directly represent such continuous changes, without reducing them
to a finite or infinite chain of instantaneous events—thereby avoiding Zenoesque
paradoxes, as we will discuss shortly.

We have thus located the two main ingredients of the process ontology, causal
processes and interactions, within the categorical framework. Finally, let us see how
events fit in this picture. Compared to processes, “events are relatively localized”
and “represented by points” rather than lines in the space-time manifold (Salmon,
1984, p. 139). But to what extent should events be localized? Although Salmon
lists a sneeze, a baseball colliding with a window, and the activation of a photocell
by a pulse of light as examples of events, all such actions extend both in space and

7Salmon’s CI condition (Salmon, 1984, p. 171) requires that an intervention on either of the two inputs
of an x-type interaction brings about a difference in the other. However, this requirement is unduly strong,
precluding cases where one of the processes involved remains invariant during the interaction, as in the
case of a catalyst in a chemical reaction. Our proposal here weakens Salmon’s original condition to
include such cases as x-type interactions.
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time and cannot be completed “at a point.” A genuine event can only be found
in the limit where the time interval approaches zero. At such an extremity, any
change would vanish, with all characteristics of the objects involved (the person
who sneezes, the ball, the photocell, etc.) being self-identically determined.

Events in this strict sense are best modeled with identity morphisms. In our par-
lance, identities are a trivial case of quasi-identities, which are mapped to identities
by any functor. From a philosophical perspective, this amounts to regarding events
as “degenerated” processes that preclude any moment of change. Specifically, for
an object B we let its identity 1B represent an event that captures the state of B at
any given moment. Pre-composed with another morphism f : A→ B as 1B ◦ f , the
event 1B represents the state of B affected by A through f . Likewise, 1A in f ◦ 1A
indicates the state of A that causally affects B. Taken together, a morphism sand-
wiched between identities, as in f = 1B ◦ f ◦ 1A, can be read as event 1A affecting
event 1B via f . In this sense, events or identities serve as causal relata.

Two caveats are in order, however. First, events or identities are neither the
only nor the typical causal relata in our framework. Causal relata of a given causal
relationship f are the morphisms that are pre- or post-composed with f . Since
these morphisms can be non-identities, processes (i.e., quasi-identities) and even
interactions can also serve as causal relata. Second, causal relata do not determine
the causal relationship. There may be another morphism f ′ : A → B with f ′ ̸= f ,
which, when similarly composed as 1B◦f ′◦1A, represents an alternative way in which
1A influences 1B. This is contrasted with the DAG formalism, where the distinction
among causal pathways running from the same cause to the same effect can be made
only by way of intermediate nodes, such as A → C → B and A → D → B. This
is because the identity of a causal edge, defined as a pair of nodes, is determined
solely by its relata. In contrast, causal relationships in process theory stand on their
own, while events are ancillary attendants arising only as cross-sections of a causal
process.

This minimalist conception of events explains why process theory is free from
the Zenoesque paradox, which asserts the impossibility of constructing substantive
changes or the propagation of causal influences from instantaneous events (Russell,
1912; Hitchcock, 2004). In our framework, causal production and propagation are
represented by morphism f : A → B and quasi-identity g : A → A, respectively.
Consider causal production f : A → B. By introducing an intermediate event 1C ,

f can be split into two successive parts such that f = f2 ◦ f1 : A
f1−→ C

f2−→ B.
Further decompositions would result in f = fn ◦ · · · ◦ f1 with n − 1 intermediate
events 1C1 , . . . , 1Cn−1 . However, the entire causal relationship f : A→ B cannot be
reduced to these events, for if A ̸= B, the decomposition fn ◦ · · ·◦f1 must include at
least one non-trivial morphism to constitute a morphism from A to B. Even in the
case of a quasi-identity g : A→ A with g ̸= 1A, the decomposition must contain at
least one non-trivial morphism, as identities (of A) alone sum only to an identity.
Thus, in either case, there can be no substantive causal chain consisting solely of
events. From the categorical perspective, the Zenoesque paradox simply reflects a
truism: a non-identity morphism cannot be reduced to a collection of identities.

This last point highlights the fundamental difference between event-based and
process-based ontologies. In the former, the basic building blocks of the world
are static events, while anything that involves dynamic changes, including causal
relationships, has only a derivative status and must be constructed out of events.
In contrast, process-based theory takes processes to be primitive and events to be
derivative. Indeed, events are conceptualized as “degenerated” morphisms (i.e.,
identities) that may appear only at the endpoints of another morphism. They are
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like cross-sections with zero thickness of a candy stick. Cross-sections come into
existence only by cutting the candy, and one can never make the whole candy by
gluing its cross-sections together. The ontological priority of processes over events
can be understood in a similar way, and this intuition of the process ontology is
best captured by morphisms.

8 Conclusion

Ever since Hume, most philosophical discussions of causality have been framed
within the event-based ontology, analyzing causation as a special kind of relationship
between events. In opposition to this standard view, process theorists have sought
to depict causality in terms of processes and their interactions, but they have lacked
a mathematical framework to formally implement their ideas.

This paper introduced one such formalism based on the recent development of
categorical causal modeling (Jacobs et al., 2019; Fritz and Klingler, 2022; Lorenz
and Tull, 2023). The categorical framework formulates the basic building blocks of
the process ontology—namely processes, interactions, and events—as components of
string diagrams, as well as its two major explanatory strategies—etiological and con-
stitutive explanations—by way of the compositional features of monoidal categories.
Moreover, combined with a functor, it enables the probabilistic and counterfactual
analysis of causality, thereby addressing the problem of explanatory irrelevance and
providing a means to express the difference between conjunctive and interactive
forks.

The new formalism rekindles philosophical debates over the nature of causality.
Process theory adopts a richer ontology than event-based approaches, recognizing
not only events but also processes as fundamental constituents of reality. For Salmon
(1984), this ontological enrichment was driven by its explanatory purchase: he ar-
gued that it is precisely by focusing on underlying processes that we can account
for the crucial distinction between conjunctive and interactive forks. The category-
theoretic modeling gives substance to this ontological intuition by providing a formal
and unified perspective on processes and interactions, representing them as mor-
phisms. Events, in contrast, are treated as degenerate processes, namely identity
morphisms. Our discussion in Section 6 supports Salmon’s claim by distinguishing
conjunctive and interactive forks through two types of morphisms—those that in-
volve a copier and those that do not. The bijective correspondence established by
Jacobs et al. (2019) between Bayesian networks and categorical causal models that
involve only conjunctive common causes—namely, those in which all y-type interac-
tions are mediated by a copier—corroborates this point, demonstrating that models
with interactive forks lack counterparts in the framework of Bayesian networks.
Salmon, therefore, was right: the process ontology indeed offers an explanatory
advantage.

As in this case, the Principle of Common Cause has been an epicenter in philo-
sophical debates about causation (e.g. Cartwright, 1999; Hausman and Woodward,
1999, 2004; Sober, 2001). Although some proponents of the principle have tried
to derive it as an intrinsic feature of the notion of causality (Hausman and Wood-
ward, 1999), our discussion in Section 6 makes it clear that it is actually a postulate
or limitation of the DAG formalism, while the categorical framework presumes no
such restriction on the common cause structure. A natural question that follows
is when the PCC holds and when it fails—that is, what conditions license the use
of a copier. In quantum mechanics, it is known that the use of a copier is not
appropriate in situations involving arbitrary unknown quantum states, due to the
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no-cloning theorem. Can we likewise hope for conditions that distinguish between
conjunctive and interactive common causes in macroscopic, non-quantum settings?
In this way, the categorical framework provides a fresh perspective on longstanding
philosophical debates surrounding the PCC.

The present paper has focused on the philosophical merits of process theory,
particularly its capacity to offer a more encompassing view of causation. An equally
important question concerns its methodological advantages: does it allow for more
flexible or effective modeling of diverse causal structures? Recent work suggests that
the categorical framework is well-suited for formally defining abstraction between
causal models of different granularities, via natural transformations between causal
models (i.e., functors) (Rischel and Weichwald, 2021; Otsuka and Saigo, 2022). On
the other hand, the DAG formalism enjoys a wealth of methods for estimating causal
structures from observational data (Spirtes et al., 1993; Peters et al., 2017). To what
extent these results are transferable to each other is a task for future investigations.
In conclusion, we hope that the mathematical formulations of process causality
discussed in this paper will encourage further theoretical work aimed at integrating
these two perspectives, with the goal of combining their strengths and advancing a
more comprehensive understanding of causality.
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