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I dispute the conventional claim that the second law of thermodynamics is saved from a 
"Maxwell's Demon" by the entropy cost of information erasure, and show that instead it is 
measurement that incurs the entropy cost. Thus Brillouin, who identified measurement as 
savior of the second law, was essentially correct, and putative refutations of his view, such 
as Bennett's claim to measure without entropy cost, are seen to fail when the applicable 
physics is taken into account. I argue that the tradition of attributing the defeat of Maxwell's 
Demon to erasure rather than to measurement arose from unphysical classical 
idealizations that do not hold for real gas molecules, as well as a physically ungrounded 
recasting of physical thermodynamical processes into computational and information-
theoretic conceptualizations. I argue that the fundamental principle that saves the second 
law is the quantum uncertainty principle applying to the need to localize physical states to 
precise values of observables in order to eQect the desired disequilibria aimed at violating 
the second law. I obtain the specific entropy cost for localizing a molecule in the Szilard 
engine and show that it coincides with the quantity attributed to Landauer's principle. I also 
note that an experiment characterized as upholding an entropy cost of erasure in a 
"quantum Maxwell's Demon" actually demonstrates an entropy cost of measurement. 

 

1. Introduction  

 This paper addresses the notorious problem of "Maxwell's Demon," a hypothetical 
microscopic being who is assumed able to make use of his knowledge of system 
microstates to eQect a reduction in entropy of a system, thus violating the second law of 
thermodynamics.  I do not presume to oQer here a comprehensive background of that 
much-discussed issue. The current paper's focus is on the conventional claim, due to 
Bennett (1988), that the Demon is thwarted by the need to erase his memory.  I critique that 
claim, and show that the entropy cost that thwarts the Demon  comes instead from the 
need to measure specific observables to obtain the values needed by the Demon to 
accomplish his manipulations.  Section 2 provides some background for the issue 



 2 

discussed here, as well as some definitions and conceptual clarifications that are helpful 
in situating the proposed solution.  Section 3 presents the  specific calculation that yields 
the entropy increase. Section 4 discusses aspects of the debate that have led to what is 
arguably a dysfunctional focus on computational notions and neglect of crucial quantum-
level considerations concerning measurement. Section 5 summarizes and concludes.   

2. Background 

 Recent tradition in addressing the problem of Maxwell's Demon has been to center 
the discussion around Landauer's Principle--the claim that in computational processes, 
information erasure is always accompanied by an entropy cost (Landauer, 1961). However, 
this paper  will not discuss Landauer's Principle (except to note the irrelevance of its 
computational form to the issue of Maxwell's Demon). This is because, as we shall see, 
there is no need to invoke computation, information storage, or erasure in order to address 
and fully resolve the challenge of the Demon.  Introducing these computational concepts 
have arguably served to deflect discussion to secondary issues (such as whether 
thermodynamic irreversibility corresponds to computational/logical irreversibility) and thus 
to divert attention from the essential issue: can a microscopic being really manipulate 
gas molecules in order to achieve a disequilibrium state used to violate the second 
law? It turns out that we don't actually need any computational concepts to address this 
question, and arguably such concepts have obscured the essential physics. All we need is 
the idea that one must obtain values of observables for physical systems in order to 
manipulate them to some desired end, which is what the Demon is doing. When we 
analyze that requirement for the quantum case, we find the heretofore missing cost of 
entropy arising from measurement.  

 In preparation for that result, derived in Section 3, it is  important to distinguish 
between  the usual classical (or quasi-classical) treatment and an accurate quantum-level 
treatment. Recall that in classical statistical mechanics, probability distributions 
characterizing macrostates arise from a model in which a system is assumed to possess 
determinate properties (such as occupying phase space points), but some designated 
observer is simply ignorant of those possessed properties. This is termed epistemic 
uncertainty: it quantifies ignorance of some observer about some actually-possessed, 
well-defined property or properties. Classical epistemic uncertainty is to be contrasted 
with intrinsic indeterminacy of a system's properties typical of quantum states, the latter 
being reflected for example in the variance of a Gaussian wave packet. Intrinsic 
indeterminacy can of course also be quantified by a probability distribution, e.g., |Y(x)|2, 
but this distribution does not describe epistemic uncertainty in that it is not based on some 
observer's ignorance, but applies to the system itself. As such, it is often called ontological 
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uncertainty.1 The latter is subject to the constraints of the Heisenberg uncertainty 
principle,2 with crucial physical ramifications for the entropy of the system, as will be 
demonstrated in what follows.  

 Specifically, the thesis of the present work is that, for real physical systems such as 
gas molecules-- which are quantum systems--we (or a Demon) are not just "ascertaining" 
the requisite states in the sense of remedying our ignorance about pre-existing values of 
observables, but instead are creating them (or at least bringing them about) via 
measurement, and that is associated with an entropy cost as quantified by the entropic 
form of the Heisenberg Uncertainy Relation, to be introduced below.  Our approch thus 
refutes the fundamental assumption of the Bennettian tradition that the Demon's 
measurement process can be modeled as mere copying of some outcome-state that itself 
was arrived at without entropy cost. 

 The basic starting point is to note that the Heisenberg uncertainty principle has 
direct implications for the entropy of a system.  Consider a system, such as a gas 
molecule, described by a position-wavefunction 𝜓(𝑥) and conjugate momentum-
wavefunction  𝜑(𝑝). The relation between these two wavefunctions in terms of 
"information" arises directly from the Heisenberg uncertainty relation, and takes the form 

 −∫ ⌈𝜑(𝑝)⌉!𝑙𝑛⌈𝜑(𝑝)⌉!𝑑𝑝"
#" − ∫ ⌈𝜓(𝑥)⌉!𝑙𝑛⌈𝜓(𝑥)⌉!𝑑𝑥		 ≥ 	𝑙𝑛	 $

!
	"

#"  (1) 

This expression was pioneered by Weyl (1928) and discussed by Hirschman (1957) and 
Leipnik (1959):3   In view of the fundamental definition of thermodynamic entropy in terms 
of energies (rather than positions), the quantity properly indentified with thermodynamic 
entropy is the first term on the left hand side which depends on the momentum 
distribution, i.e.: 

S =  -k∫ ⌈𝜑(𝑝)⌉!𝑙𝑛⌈𝜑(𝑝)⌉!𝑑𝑝"
#"   (2) 

  

 
1 Ontological uncertainty may be regarded as a form of "physical information", but is not necessarily 
equivalent to thermodynamic entropy. We discuss that issue in connection with eqn. (2) and further in 
Section 3. We agree that "information" is a generalization of thermodynamic entropy, as discussed for 
example in Nosonovsky (2010). 
2 While hidden variables quantum theories, such as the DeBroglie-Bohm pilot wave theories, view position 
uncertainty as epistemic, the strong coupling of those positions to the quantum state (via the "quantum 
potential") makes the uncertainty based on the state ontologically consequential. Thus, the presumed 
determinacy of Bohmian corpuscle positions is not representable by a classical phase space description. 
3 While the diLerential form is known to lead in principle to unphysical negative values, we can eliminate 
those by reference to a discretized version that takes into account that no real system is ever infinitesimally 
localized. (This is the dimensionless form, in which a term ln h is subtracted out.) 
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We can also quantify S directly in terms of the variance of the distribution |𝜑(𝑝)|2  through 
the relation 

  𝑆(𝜎) = %
!
𝑙𝑛	(2𝜋𝜎!𝑒)      (3) 

(cf. Leipnik 1959). 

 With these tools and concepts, we turn now to the entropy cost of measurement 
that thwarts the Demon from his goal of violating the second law. 

3.  Measurement as the source of entropy increase 

 We begin this section by observing that real gas molecules are quantum systems, 
and as such are subject to (1) Thus, any localizing measurement required to implement 
work extraction must take into account the uncertainty principle, and we show that this 
incurs an entropy cost of the same amount as that obtained in Landauer's Principle, but 
without any step involving erasure of stored computational data.   

 3.1 Entropy cost of measurement 

 Let us consider the Demon in the form of Szilard's engine, treated as a gas molecule 
in a chamber from which work can be extracted once it is localized to one side or the other 
and allowed to expand against a piston.  

 

Figure 1. Typical depiction of gas molecule in Szilard's Engine. 

 First, let us note that the typical depiction  of a gas molecule as a well-localized 
particle, shown in Figure 1,  is misleading; this is an aspect of the persisent but 
inapplicable classical idealization that has long obscured the central role of measurement 
in the entropy cost of attempting to violate the second law. In fact, the molecule obeys the 
uncertainty principle and is not localized on one or the other side of the container as 
depicted. Thus, inserting the partition is actually the measurement that localizes it. That, in 
a nutshell, is the key point habitually overlooked in extant analyses. The molecule is more 
appropriately modeled as transitioning among energy eigenstates, as in the Boltzmann 
distribution. These are sinusoidal and for room temperature highly non-localized, as in 
Figure 2: 
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Figure 2. The gas molecule is not localized prior to partition insertion. 

 

 Allowing for decoherence eQects, let us approximate the molecule's position 
wavefunction y(x) by a Gaussian. The Gaussian yields the smallest possible entropy 
increase as in (1), so an energy eigenstate would yield a larger increase. Thus this treatment 
leaves no 'loopholes' exploitable by considering diQerent probability distributions, and is 
fully general in that sense. 

 The probability density |𝜓(𝑥)|!	 has a variance 𝜎&!  initially of the order of the 
(squared) length L of the box:  𝜎&,(! ~𝐿!.  (We consider the 1-D situation for simplicity and 
without loss of generality.) Then the initial variance of the conjugate momentum, applying 

to 𝜑(𝑝),  is  𝜎!,#$ ~
ℏ!

&'!
.  After we place the partition in the center, the position uncertainty is 

halved and variance has been reduced to 𝜎(,)$ ~ '!

&
 and thus the momentum variance has 

increased to 𝜎!,)$ ~ ℏ!

'!
.  The diQerence in initial and final entropies of the molecule  can be 

found using the definition (2) and the expression relating entropy to variance (3).	While (3) 
depends on the units of s, we only require the diQerence of the initial and final entropies in 
which the scaling eQect of units cancels out; thus, substituting the above initial and final 
values for 𝜎)! in (3), we find: 

 Δ𝑆 = 𝑆* − 𝑆( =
%
!
𝑙𝑛	

+!
"

+#
" 	=

%
!
𝑙𝑛	4	 = 	𝑘	𝑙𝑛	2  (4)     

      

  Thus,  the entropy cost for cutting the volume in half, and thereby bringing the 
system to a lower entropy state, is precisely the same as that appearing in Landauer's 
Principle and exactly compensates the reduction in entropy due to the smaller volume 
occupied by the system.  And it is here where we resolve the alleged paradox of Szilard's 
engine: we pay an entropic price for the work we have extracted, by the need to localize the 
molecule on one side or the other. And we pay that price before we even find out which side 
the molecule is on.  

 It may be noted that insofar as Landauer's Principle (codifying an entropy cost for 
information erasure) is valid, it arises from a form of "erasure" that is about the narrowing of 
a probability distribution over values of  observables conjugate to 4-momentum. Indeed, 
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(1) and (2) can be seen as another way of deriving Landauer's principle, but here it is in 
connection with quantum measurement and the intrinsic spread ("information") of 
wavefunctions, as opposed to computational bits in the classical sense. So the irony 
perhaps is that one can see Landauer's principle as applicable, but not to erasure in the 
sense of resetting a memory, since one does not need to refer to any sort of computational 
process or memory storage capacity in order to obtain the entropy cost saving the second 
law. The physically admissible grounding of Landauer's principle is found only in the 
narrowing of ontological uncertainty in position-related quantities.5  

 The above result is perhaps another way to look at the entropy cost pointed to in 
Norton (2025) for bringing a molecular component of a larger system from a higher to a 
lower entropy state. Norton formulates this as follows (where W refers to the number of 
complexions for the larger system): 

"In its briefest form, the relation just is Boltzmann’s celebrated relation “S = k log W” 
between entropy S and probability W. If a thermodynamic process carries a system from 
state “1” to state “2,” the driving entropy increase between the two states is DS = S2 – S1. It 
relates to the probability of successful completion, W2,  [in which the entropy of a 
component, such as a molecule, is reduced]  and the probability that a fluctuation reverts 
the system to its initial state, W1, by DS = k log (W2/W1). Thus, a probability ratio favoring 
completion in molecular-scale processes can only be enhanced by a dissipative increase 
in entropy creation DS. The outcome is that, independently of any entropy cost associated 
with erasure or the logic implemented, there is an inevitable entropy cost associated with 
the suppression of fluctuations." (Norton 2025, 6) 

In the present context, a process (insertion of the partition) forcing the molecular system 
out of equilibrium is compensated by an entropy cost of an amount given by (4), which 
matches the result from Norton's identified quantity, DS = k log (W2/W1).  In eQect the partition 
is both the agent of the creation of a disequilibrium state and of the suppression of 
fluctuations, and its insertion is indeed dissipative.  Our calculation thus coincides with 
Norton's formulation, although it arises from a somewhat diQerent consideration. This 
perhaps suggests a deep correspondence between classical statistical mechanics--which 
gets oQ the ground from a fundamental probability postulate not found in deterministic 
evolution--and non-deterministic (non-unitary) measuring interactions at the quantum 
level. The latter serve to momentarily localize particles and thus increase their momentum 

 
5 Experimental "confirmations" of Landauer's principle are supported by increases in momentum/energy 
uncertainty in processes that amount to measurement; i.e., narrowing of position-related uncertainties, not 
by computational considerations involving "erasure" of epistemic uncertainty. 

 



 7 

spread (entropy). This ubiquitous localizing process can therefore be identified as the 
physical source and justification of the fundamental probability postulate of classical 
statistical mechanics. Indeed, Brownian motion, which is the observable hallmark of 
fluctuations, arises only from genuinely Markovian dynamics in a system, which is arguably 
not obtained from classical deterministic evolution. The empirical fact of Brownian motion 
thereby suggests that non-unitary interactions are physically real at the quantum level 
(Kastner 2017). In any case, the result (4) concerning the entropy cost of measurement 
stands, irrespective of any interpretive conclusions one wishes to draw from the 
demonstrated entropy cost of measurement. 

 To summarize: a key step in the operation of a system like Szilard's engine, involving 
a single gas molecule in a chamber, is the insertion of a partition  that localizes it to one 
side or another. A standard assumption in the current debate is that there is no entropy 
cost associated with this step and that a possible entropy cost of measurement only arises 
for the step in which an experimenter must learn which side of the partition the gas 
molecule is on. The latter is the step for which Bennett's keel-key device is intended 
(Bennett, 1988; however ineQective it would be, as pointed out by Norton, 2017). However, 
that standard analysis takes place under classical idealizations, which do not apply to a 
real gas molecule. It is a quantum system that must be described by a wave function. This 
is the case even if we assume an eQectively "classical" partition function for the molecule, 
such as the Boltzmann distribution over energies. For no matter the quantum state of the 
molecule, it must undergo an entropy increase upon localization to one side or the other, 
with lower bound given by (4).  

 3.2 A possible objection refuted 

 We now address a possible objection to the above treatment: namely, questioning 
(2) as the appropriate characterization of thermodynamic entropy. Such an objection 
would arise from two possible sources: 

(i) the conventional counting of phase space microstates towards entropy; 

(ii) the information-theoretic tradition of equating Shannon information (as a general 
quantity) to thermodynamic entropy. 

 Regarding (i): due to the uncertainty principle, real quantum systems do not occupy 
phase space points, so that phase space volumes are only a classical approximation. 
Because only differences in entropy are directly measurable, this overcounting has not 
raised problems for empirical correspondence; however, it is not physically valid for 
quantum systems and therefore cannot be used as a basis for objection to the definition 
(2). Regarding  (ii): the essential point is that thermodynamic entropy is fundamentally 
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defined in terms of energy-related quantities, not position. Clausius thermodynamic 
entropy is S = Q/T .  Position appears nowhere here.  The volume factor that enters into the 
partition function for an ideal gas in the thermodynamic limit arises from the dependence 
of the energy levels on the dimension of the box. The volume factor does not arise from any 
need to count phase space position microstates.  

 Furthermore, it will not do to assert that "position information" constitutes 
thermodynamic entropy S, based on an insuQiciently critical tradition of identifying 
Shannon "information" entropy with the Clausius thermodynamic entropy. While the two 
may be related under specific conditions, as discussed for example in Kastner and 
Schlatter (2024), the fact that position appears nowhere in the original quantification of the 
Clausius entropy, along with the fact that momentum (energy) and position are 
incompatible observables, forces the conclusion that one cannot legitimately count not-
actually occupied position microstates proportional to container volume V and add them 
to W along with energy microstates. The only microstates legitimately counted are those 
contributing to quantities of heat Q and temperature T, in accordance with the Clausius 
definition of thermodynamic entropy S = Q/T .   

 A further observation might help to clarify this issue: it is a common practice to 
calculate the entropy change for a free expansion of an ideal gas by way of a reversible 
process, so that for example an expansion doubling the size of the gas results in an entropy 
change DS = Nk ln 2. This is obtained from the reversible process by calculating the work 
done and equating that to the heat exchanged with the environment to get DQ=T DS . But in 
a free expansion, no work is done on the environment and no heat is exchanged with the 
environment, yet the definition of entropy S in terms of heat Q remains. Thus for the 
irreversible process as well, one can say that a quantity of heat   DQ = Nk T ln 2 applies to 
the change in entropy. What is this quantity of heat physically? It quantifies the net energy 
(heat) flow from the smaller volume to the larger one. The point of noting this is that it 
clarifies that thermodynamic entropy S must always be reducible to heat flow to comply 
with its basic definition. Thus, quantifying entropy does not consist solely in counting 
general microstates, especially if such microstates do not correspond to some transferred 
quantity of energy.  

 

4. Critique of the 'erasure' tradition 

 4.1 Unphysical classical idealizations obscure the essential physics 

 The conventional attribution of the entropy cost to the alleged need to erase the 
Demon's memory arises from the persistent attribution of unphysical classical 
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idealizations to gas molecules, as mentioned in the previous section. The crucially relevant 
calculation of the entropy cost of measurement, presented in Section 3,  can only be seen 
once these  physically inappropriate classical idealizations of gas molecules are dropped, 
and their quantum nature taken into account.6  One can identify two aspects of this 
conventional classical idealization that require elucidation and critical re-evaluation. Both 
involve violation of the Heisenberg Uncertainty Relation. These are: 

(A) The assumption that gas molecules occupy well-defined, phase space point 
microstates at all times and that the uncertainty about the system's microstate is always 
epistemic (i.e.,, merely the ignorance of a macro-level observer concerning presumed 
actually occupied phase space points). 

(B) The assumption that a real gas molecule can be localized to a smaller volume (e.g. via 
insertion of a partition in the containing volume) without entropy cost. 

 Assumption (A) is the key premise underlying the very possibility of a Maxwell's 
Demon. In other words, the Demon is the alleged micro-level observer who is presumed to 
be immune to the macro-level ignorance of the gas' putatively occupied phase space 
points, and who need only engage in presumed non-entropy increasing actions to ascertain 
those microstates that are inaccessible to the macro-observer and commence sorting to 
create a thermodynamic gradient. Thus the Demon's supposed ability to manipulate the  
gas microstates so as to violate the second law trades precisely on a classical idealization 
of gas molecules.  This assumption is inadvertently illustrated in the ubiquitous, but 
misleading, representations of gas molecules as little localized particles floating around in 
their enclosing volumes (as in Figure 1). 

 On the contrary, and as reminded in the previous section, real gas molecules in 
confining containers are much more closely approximated by quantum bound states: 
essentially waves of definite energy and completely indefinite position. For a single 
molecule, even if we allow for interactions with the box walls, which can introduce 
decoherence eQects, there is no physical justification for modeling the state of the gas 
molecule as a phase space point, since that violates the uncertainty principle. 
 Assumption (B), that insertion of a partition does not constitute measurement and 
costs zero entropy, is traditionally applied to the step in Szilard's engine in which a partition 
capable of acting as a piston is placed in a chamber, halving the volume occupied by a 
single gas molecule (but it is assumed that a macro-level observer does not yet know on 
which side of the chamber it is).  Thus the conventional assumption is that the gas 
molecule is already determinately on or the other side of the box over the time interval 

 
6 It should be noted that Norton (2016) provides a quantum version of his Liouville-based proof that no 
Demon can violate the second law. 
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during which the partition is placed (i.e., describable by a phase space point), so that there 
is no disturbance of the molecule during the placement. This unphysical idealization is 
exemplified in a write- up by K.  Yavilberg (2025) which says "when the [partition] is inserted 
the measurement is not performed yet," despite the fact that his account purportedly 
addresses a quantum version of the engine.  But on the contrary, the partition insertion 
certainly does function as a measurement in that it forces a localization of the system with 
respect to the position observable, reducing sx   to ~V/2. By the uncertainty principle, the 
particle's conjugate momentum spread sp   increases, which from (1) and (2) means that 
the particle's entropy increases, as already shown in Section 3. 

 4.2 Erasure of memory devices fails to save second law  

 Not only has the conventional approach misidentified the source of the entropy 
increase thwarting the Demon, but the purported source of the entropy increase--erasure 
of memory degrees of freedom--actually fails to do the job.  Norton (e.g.  2005,2011, 2013, 
2016, 2017, 2025) and Earman and Norton (e.g., 1999) have already argued  that pointing to 
the alleged need for erasure is not suQicient to save the second law from a Demon, and 
provided counterexamples (reviewed in Norton, 2011). In these counterexamples, a Demon 
can carry out a reset of his memory without incurring a significant entropy cost. These 
counterexamples have not been successfully refuted. Instead they have been merely 
deflected by reference to computational considerations that are arguably not applicable 
(Norton 2011, 150). Norton has also provided extensive and detailed analyses (e.g. Norton 
2017) showing that thermal fluctuations will thwart devices such as Bennett's "keel and 
key" construction,  proposed as an ostensible way to ascertain the position of the molecule 
in the cylinder of Szilard's Engine without entropy cost. More generally, Norton's analysis 
shows that thermal fluctuations will be sources of entropy generation in any attempt to 
sustain a "reversible" process intended to manipulate micro-level degrees of freedom to 
disequilibrium states.  In any case, as noted above, such devices, when intended to 
function as measuring instruments, are presumed to carry out mere copying of presumed 
outcome states that were arrived at without entropy cost. We have already refuted this 
assumption in Section 3. 

  Thus, besides the demonstrated failure of Bennett's claim that measurement is 
always dissipationless copying, it has been shown that the Bennettian recourse to a 
memory reset is insuQicient to save the Second Law. As noted above in reference to Norton 
(2011),  there is in fact no need for an irreversible expansion for the Demon's purpose of 
preparing his memory for another measurement. The irreversible expansion step may be 
suQicient for the Demon's memory reset purpose, but it is not necessary. Consider the 
usual example where a gas molecule could be either in the left or right side of a box, with 
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the reset state being on the right. The Demon can simply apply a piston from left to right 
after every step in which he gains information. If the gas molecule is on the right, it is 
unchanged and the Demon is ready for the next cycle. If it is on the left, it is pushed to the 
right, and the Demon is ready for the next cycle. (This is similar to the 'no-erase' reset 
procedure of Norton, 2011.) This procedure does not involve compression of the phase 
space, but instead moving the occupied phase space volume from one part of the total 
phase space to the other about half the time. One might argue that this process leaves a 
trace of the gas molecules' outcome state somewhere in the system, such that erasure is 
not complete, but this does not block the conclusion that the Second Law is not saved via 
"erasure," for two reasons: 

(i) Complete erasure not required by the Demon:  All that is required, according to Bennett, 
is that the Demon be able to continue with his sorting given that he has limited memory 
storage space. And all that he needs in order to do that is to reset his memory degree of 
freedom. That is accomplished regardless of whether the erasure is "complete" in the 
sense that no trace remains. There could be a trace left in the system or somewhere else in 
the Demon's non-information bearing degrees of freedom. That does not stop him from 
sorting, since his memory degree of freedom remains available; nor does the existence of a 
trace compensate entropically for the alleged reduction in entropy due to sorting. Thus, 
pointing to the alleged need for the Demon to reset his memory in order to continue sorting 
fails to save the second law, since he can do that without suQicient entropy increase to 
compensate for the entropy decrease due to sorting. Insisting that no trace must remain 
and that one must therefore employ an irreversible expansion step amounts to an ad hoc 
addition of entropy not actually required for the Demon's stated sorting process (i.e., he 
could refuse to employ that and still carry out his procedure), and is imposed only to save 
the second law. Thus, that fails to exorcise the Demon.  

(ii) Double standard (full erasure not achieved even in Bennettian erasure): Even if we carry 
out the erasure by irreversible expansion as in the Bennettian convention, it cannot be 
claimed that no trace of the initial state remains. This point arises by the very same 
reasoning Maxwell used in his original Demon scenario: under the conventional 
assumptions of classicality (i.e., determinate phase space microstates undergoing 
deterministic evolution), a suQiciently tiny agent could discover those allegedly occupied 
phase space point-microstates. And under these assumptions, the history of the system 
could be uncovered by such an agent, along with the supposedly "erased" information, 
which is recorded in the trajectories of the microstates.  Thus, under the assumed classical 
conditions of the scenario and the alleged ability of a Demon to discover microstates 
without disturbing them--as is insisted upon in the Bennettian tradition--no microstate 
information is ever really erased, even under an irreversible expansion. The basic point is 
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that erasing "information" by turning it into "heat" never really happens in the classical 
picture, since "heat" is taken merely as inaccessible information (where the latter is 
observer-relative). Thus, ironically, complete erasure is not actually accomplished 
according to the rules assumed in the "erasure" tradition itself. So it will not do to reject the 
reset procedure discussed in (i) based on the criticism that erasure is not complete.  

 The conclusion is that asserting the need for erasure via irreversible expansion is 
merely a way of helping oneself to a compensating entropy increase that need not really be 
incurred by the Demon under the Bennettian convention (i.e., that measurement is 
dissipationless copying and that entropy is equivalent to inaccessible but physically 
instantiated information). And in any case, under the same set of assumptions (essentially 
idealized classicality and disregarding unpredictable fluctuations), the irreversible 
expansion invoked for the entropy increase does not really accomplish the claimed full 
erasure: a demon could always retrace the history of the microstates without entropy cost, 
so that the information never really goes away. Thus the whole notion of erasure as applied 
to the memory of a Maxwell's Demon is spurious.  

 4.3 Experimental corroboration of entropy cost of measurement misconstrued as a  
 cost of erasure 

 An instance of the dysfunctional state of the literature on Maxwell's Demon is a case 
in which an experiment clearly demonstrates an entropy cost of measurement in the 
operation of a quantum-level "demon" but is mischaracterized as corroborating a 
purported entropy cost of erasure. This instance is found in a Physics Today article by Lutz 
and Ciliberto (2015). The authors recount the paradox of Maxwell's Demon and then say:  
"The proper resolution of the paradox wouldn’t come for another 115 years," where their 
purported "proper resolution" is the conventional account invoking memory erasure. 
However, the authors then cite an experiment by Raizen (Raizen, 2009) in which the entropy 
cost comes from the measurement step. The experiment involves atoms and an optical 
beam constituting a quantum example of the "Demon"; the experimenters and Lutz and 
Ciliberto correctly note that the arrangement does not violate the Second Law. But the 
physics of the experiment and even the authors' own discussion of it clearly demonstrate 
that it is the measurement process associated with information gain, not erasure, that 
saves the Second Law. Their description of the experiment is as follows: 

"In the [experiment of Raizen, 2009 ], the optical potential serves as the demon. If an atom 
is determined to be moving from right to left—that is, if it encounters the excitation beam 
first, the trapdoor is opened. For all other atoms, the trapdoor is closed. Information about 
the position and internal state of the atoms is stored in the photons scattered by the 
atoms. Each time an atom scatters a photon, the entropy of the optical beam 
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increases, because a photon that was propagating coherently with the beam gets 
scattered in an uncertain direction."  

The bolded sentence (my emphasis) describes the measurement of an atom, not an 
erasure of stored information. Thus, though the authors talk about "storage" of 
"information" (in conformance with the information-theoretic tradition), the scattering of 
the beam that they acknowledge as  the source of the entropy cost is the measurement of 
the atom's state, not an erasure of any "stored information. What is particularly striking is 
that the authors' stated intent is to argue that the need for erasure is the "proper 
resolution" of the paradox.  Instead it is clear that in the referenced experiment, the Demon 
is foiled not by any erasure step but by the entropy cost associated with measurement of 
the atom.  

5. Conclusion 

 We have pointed out that real gas molecules are quantum systems, and shown that 
the measurements needed to make use of them in such devices as the Szilard engine are 
the actual, physical source of the entropy cost associated with creating the disequilibrium 
state intended to violate the second law.  This fact is a consequence of the entropic 
uncertainty relation (1) and the understanding that entropy corresponds to the spread of 
the momentum wavefunction as in (2).  This result vindicates the initial view of Brillouin 
(1951) that it is the measurement step that incurs an entropy cost, although (as noted by 
Norton, 2025) Brillouin's attempt to cast the physical processes into information-theoretic 
terms arguably diluted his point and opened the door for counterproductive digressions 
into information-theoretic accounts that obscured, rather than illuminated, the relevant 
physics. 

 Furthermore, despite the repeated claims that the "erasure" account is empirically 
corroborated, it is actually undermined in specific experiments such as that of  Raizen 
(2009).  This situation is a result of the longstanding misidentification of measurement with 
mere copying, which results from the inappropriate classical idealizations (A) and (B) 
discussed in Section 4. The conventional view, as repeated by Lutz and Ciliberto (2015) is 
that  "Bennett showed...that there is no fundamental energetic limitation on the 
measurement process."  However, Bennett did nothing of the sort, since he erroneously 
modeled measurement as mere copying--a classical process. On the contrary, we have 
shown by way of the quantum-level analysis of Section 3 that "gaining information" about 
real physical systems like gas molecules always involves an entropy cost. Denial of this 
fact is based on mischaracterizing real physical systems as idealized classical particles 
and neglecting the uncertainty principle.  
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 Thus, the tradition of exorcising Maxwell's Demon by appealing to an alleged need 
for memory erasure, and an associated entropy cost, is fatally flawed. The actual source of 
entropy that foils the demon is the measurement process. We thus concur with Norton's 
overall assessment (e.g., Norton 2025) but oQer a quantum-level analysis of the precise 
source of entropy increase in terms of the dissipation involved in ascertaining values of 
observables. Norton's criticism focuses on the failure of the "erasure" program to take into 
account fluctuations, and this is a valid point. It is certainly the case, as Norton says, that: 

"What has been overlooked, repeatedly, is that thermal fluctuations preclude the 
completion of any molecular-scale process, whether it implements a logically reversible 
computation or anything else. These fluctuations disrupt their completion unless we 
employ entropically costly procedures to suppress fluctuations." (Norton 2025, 5-6) 

What we have done here is to trace those fluctuations to their fundamental source at the 
quantum level; a molecular-scale process such as manipulating a molecule into one or the 
other side of a chamber is inherently dissipative in view of the uncertainty principle. We 
"suppress" its freedom to be on or the other side of the chamber only by an entropy 
expenditure corresponding to its increase in momentum uncertainty.  Specifically, the 
Entropic Uncertainty Relation (1) prevents any ascertainment of the position of a molecule 
suQicient to produce work (as in Szilard's engine) without a compensating entropy increase 
of Δ𝑆 = −𝑘	𝑙𝑛	𝑎 where a is the factor by which the molecule's position uncertainty is 
reduced. Thus, if we place a partitioning piston in the center of the chamber of Szilard's 
engine in order to confine the molecule to one side or the other and thus obtain work from 
it as it pushes the piston back out, we have already expended Δ𝑆 = 𝑘 ln 2  before we even 
find out which side it is on. As is pointed out in Kastner and Schlatter (2024) in a 
quantitative calculation, the original speed-measuring demon is foiled by the uncertainty 
principle in that measurement of a molecule's speed leaves its position so uncertain as to 
prevent the demon from getting it through the door. The demon must measure in order to 
sort or to extract work, and he is always foiled by the uncertainty principle, either by the 
entropy cost of extracting the work in the case of the "pressure-demon," or by being unable 
to sort in the case of the "speed-demon." 

 Thus, the Bennettian tradition of modeling "information acquisition" as mere 
copying of already-determinate states of microscopic systems that were arrived at with no 
entropy increase is untenable, in view of the fact that real physical systems are quantum 
systems. The second law is saved from Maxwell's Demon by quantum mechanics, not by 
computational considerations that demonstably (by the present analysis) have little or 
nothing to do with the relevant physics. In Norton's words: 

"The whole episode [of casting the Maxwell's Demon question into information-theoretic terms] 
indicates a shift of foundational commitments, driven by little more than an overreaching attempt 
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to promote computational conceptions. There are no novel experiments driving the change. We 
are to suppose that the giants—von Neumann!—were just confused or negligent and that a little 
more thought completely overturns their insights. My note here reviews how precisely the same 
problem afflicts Bennett and Landauer’s analysis. This is not a literature with stable 
foundations." (Norton 2025, 4) 

 In this regard, recall the so-called "von Neumann entropy", which is really a form of 
information:  𝐼,- = −𝑡𝑟	𝜌𝑙𝑛𝜌,  where r is the density operator for a system. While it has 
been argued here that we should not indentify "information" in general with 
thermodynamic entropy, they can be related, as discussed in Kastner and Schlatter (2024) 
and through (1); indeed a quantity of von Neumann information is what appears in each 
term of (1). It is well known that in general, the von Neumann Information increases in a 
measurement (e.g. Gaspard 2013), and this is related to the uncertainty principle. When 
position is measured, the conjugate von Neumann information associated with 
momentum corresponds to entropy as in (2); thus its well-known increase constitutes the 
increase of a system's entropy upon a position measurement. The Bennettian tradition of 
discounting the effects of measurement by a Demon completely disregards this crucial 
point without ever having refuted it. 

 It is the present author's hope to have provided, along with Norton's rightful 
emphasis on the literature's fatal neglect of thermal fluctuations, a bit more of a firm 
foundation for the analysis of Maxwell's demon and related issues.  
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