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Abstract

Positively misleading errors are errors of statistical reasoning in which adding data
to an analysis will systematically and reliably strengthen support for an erroneous
hypothesis over a correct one. This pattern distinguishes them from other errors
of statistical inference and pattern recognition. Here I provide a general account of
positively misleading errors by describing an exemplar case from biology along with
a candidate case from clinical medicine. Though well known in biology (phylogenetic
systematics, to be precise), positively misleading errors are likely more widespread
and deserve to be brought to the attention of the wider research community. This will
facilitate a better understanding of them and sharpen our ability to assess statistical
and probabilistic methods, providing resources for researchers to more effectively
identify, diagnose, and dislodge these errors of statistical inference. This reflects the
way we have gained a better understanding of scientific reasoning from studying
other errors of statistical and probabilistic reasoning.

1 Introduction

In 1978 the biologist Joseph Felsenstein published the paper, “Cases In Which Parsimony
Or Compatibility Methods Will Be Positively Misleading” in the journal Systematic Zool-
ogy. In it he demonstrates that popular methods for reconstructing evolutionary histories
(‘phylogenies’ or ‘evolutionary trees’) will, under certain specified conditions, system-
atically yet erroneously lump together taxa as closely related when they are, instead,
separated by long evolutionary branches. This erroneous behavior has been dubbed
long-branch attraction and identified as a distinctively challenging kind of statistical in-
consistency, which Felsenstein called a positively misleading error.
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Statistical methods have the property of consistency when they converge on the correct
outcome as more data accumulate (Felsenstein, 1978); statistical inconsistency is the failure
to converge on that outcome. Felsenstein observed that inconsistency may be expressed
as convergence on an incorrect outcome (as opposed to just failing to converge at all). The
positive support attributed to the erroneous outcome comes at the expense of the correct
one, mimicking statistical consistency, and, left undiagnosed, can mislead researchers
about the systems they are studying. Hence, these errors are positively misleading.

My goal is to provide a more general account of positively misleading errors (PMEs),
arguing that they are a distinctive and important category of statistical or probabilistic
reasoning. Outside of a few fields of biology, researchers are generally less familiar with
PMEs than other errors of statistical reasoning, e.g., type I errors or base-rate fallacies.
Drawing attention to PMEs will help us gain a better understanding of them and provide
resources to researchers to more effectively identify and dislodge these errors, much as
we have gained a better understanding of good scientific reasoning from studying other
errors of statistical reasoning (Mayo, 1996).

Here, I introduce PMEs (§2) with an idealized, cartoon case (§2.1). This is intended
as an entry point into phylogenetics—the field of biology that includes reconstructing
evolutionary history (§2.2)—setting the stage for a presentation of the case from which
Felsenstein first identified and described positively misleading errors (§2.2.1). Following
a brief discussion of why PMEs are distinct from more familiar errors of statistical rea-
soning (§2.3), I explore some of the philosophically interesting features of PMEs (§2.4).
That includes how PMEs suggest adopting a minimal methodological pluralism and the
way PMEs can generate epistemic traps for researchers.

PMEs are unlikely to be limited to phylogenetics (§3). To demonstrate this I consider a
candidate case from clinical medicine (§3.1) and submit other possible cases (§3.2). This
suggests that PMEs may be more widespread than appreciated and highlights what is
at stake in understanding them. There are important and pressing consequences of this
error of statistical and probabilistic reasoning and we ought to seek ways to improve our
ability to identify, diagnose, and dislodge PMEs. A good starting point is naming the
problem and identifying exemplar cases we may study and learn from.

2 Positively Misleading Errors

Positively misleading errors were introduced by formal proof in Felsenstein (1978). This
is part of a series of papers and larger debates over treating methods for reconstructing
phylogeny (evolutionary history) as methods of statistical inference. Though not without
controversy, this stance permits an evaluation of competing phylogenetic methods by
the properties and behaviors they may exhibit as statistical methods. For our purpose,
this stance is notable in the way it promoted innovation and discovery about statistical
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inference. §2.2 will review Felsenstein’s paper and long-branch attraction as an exemplar
case. §2.3 discusses why PMEs are distinctive errors of statistical reasoning that should
not be confused with type I errors or false positives—which, in turn, should also not be
conflated.

Though Felsenstein’s paper is straightforward, a bit of an entry point into phylogenetics
may be useful for readers unfamiliar with that field. So let’s begin by introducing PMEs
and some key concepts from phylogenetics through an idealized, cartoon example.

2.1 Introducing PMEs

Imagine a population of wild sheep living in a valley splitting into two distinct popula-
tions, eventually diverging into two distinct species. The details of the split may be left
aside, though let’s suppose they remain morphologically similar despite the speciation
event. Imagine, further, that soon after this initial divergence each of the two new species
subsequently split again into two distinct populations, each eventually forming into dis-
tinct species. These latter splits follow a similar pattern, each involving a population of
sheep moving from the valley up into the surrounding mountains. After this period of
divergence there is relative stasis, though the four species continue evolving in response
to their respective environments. The ecological pressures of living at high altitude on
the sides of mountains result in both mountain species transforming (morphologically,
physiologically, etc.) away from their respective sister species in the valley, who both
still closely resemble their ancestral populations (and each other). Due to the similar
ecological pressures faced by the mountain species, they end up closely resembling each
other (morphologically, physiologically, etc.). Figure 1 shows one way biologists might
represent the patterns of descent described here, displaying the patterns of divergence,
transformation and genealogy of the extant species.

Suppose, now, that you are a biologist studying these sheep. Central to this task is recon-
structing the evolutionary history of these species, namely, the pattern of descent from
a common ancestor. Which species are most closely related? The events described in
the previous paragraph happened long before we were able to directly observe them,
so the best we can do is construct hypotheses of that history.1 One method you might
employ is to compare the morphological characters of these species, hypothesizing that
those species that are most similar to each other are also the most closely related. The
mountain species are more similar to each other in this regard than either is to the valley
species; likewise for the two valley species. So you hypothesize that the two mountain
species are sister species, as are the two valley species. You might treat as a research
question whether the ancestral species was a mountain or valley species, but we can
leave that aside here. As our investigative tools improve, we might gather more data,

1This is the problem of phylogenetic inference (Hull, 1988; Sober, 1988, 2008; Haber, 2009; Velasco, 2013;
Haber and Velasco, 2021).
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Figure 1: Patterns of Descent. X is an ancestral species that split into two distinct
species. Both of these new species subsequently speciated as well, resulting in four
extant species, A, B, C, and D. Species B and C resemble the ancestral form, while A
and D have undergone similar transformations in response to environmental conditions.
Nodes in this figure represent common ancestors; splits represent speciation events. This
tree displays that A and B are sister species, more closely related to each other than
either is to C and D. The length of branches represents the amount of transformation or
accumulation of characters in a species from a speciation event. A longer branch means
more transformation of characters than a shorter branch. Here that means that species A
and D have seen more evolutionary transformations than either B or C. Figures like this
are called phylogenetic or evolutionary trees. Biologists use these to display evolutionary
hypotheses about genealogy, character evolution, etc.

accumulating ever finer descriptions of morphological, ultrastructural, and physiological
characters (and perhaps even molecular data) of these sheep. Accumulating more data
strengthens support for your hypothesis of evolutionary history (at the expense of alter-
native hypotheses), establishing ever greater similarities between what you suppose are
sister species. Of course, your hypothesis is wrong, despite strong evidential support.
Yet, the data are good and adding more of it increasingly provides support for your
hypothesis at the expense of other, more accurate, hypotheses. Unfortunately, you are
caught in an epistemic trap, generated by a positively misleading error.

Positively Misleading Errors (PMEs) are a kind of statistical inconsistency well-known
and well-studied in certain fields of biology, such as phylogenetics. A lot more will be
said about this case and why the inference goes wrong, but for now look past what is
causing the error and focus instead on its pattern. More precisely, this is a case where

4



adding data systematically and reliably produces increasingly greater strength of sup-
port for an erroneous hypothesis at the expense of the correct one. As the number of data
approach infinity, the strength of support for the erroneous hypothesis will approach a
maximal level. Convergence, in other words, is on an erroneous conclusion. It is this
pattern of misplaced support that is characteristic of PMEs.

2.2 Phylogenetic Systematics

The basic idea of what constitutes a positively misleading error comes from Felsenstein’s
(1978) demonstration that a popular method for phylogeny reconstruction “is guaran-
teed to converge” on the wrong evolutionary tree as more data are added. The formal
proof he offers is straightforward, yet it will be helpful to provide some context about
the phylogenetic inference problem space to frame discussion of the exemplar case in
§2.2.1.

Sitting at the intersection of evolutionary biology, statistics, and computer science (Sterner
and Lidgard, 2014, 2018; Haber and Velasco, 2021), the scope of phylogenetics includes
reconstructing patterns of evolutionary history, represented as phylogenies or evolution-
ary trees. Exponentially many conflicting phylogenies may be consistent with a dataset,
and part of the phylogeneticist’s job is to identify the best of these competing hypothe-
ses (Felsenstein, 1988, though see Nakhleh, 2013 and Haber, 2019). Biologists disagree
about many aspects of this, from what constitutes ‘best’ in this context, to what data are
most informative, and whether and how to incorporate other evolutionary hypotheses or
models in phylogenetic analyses. In the 1970’s, whether phylogenetic methods should
be regarded as methods of statistical inference was a major point of debate.2 This, in
part, is the problem of phylogenetic inference.

In addition to being the first field to recognize PMEs as distinct, phylogenetics is a
science of patterns (of evolutionary history), as opposed to processes or mechanisms (of
evolution). PMEs are errors of pattern recognition, which phylogeneticists are especially
well attuned to notice.

The systems being studied in phylogenetics are composed of evolutionary lineages and
the data are distributions of characters across those lineages. For example, phylogeneti-
cists seeking to reconstruct the pattern of descent from a common ancestor of bovids
(antelopes, cattle, sheep, and relatives) might generate a dataset by sampling gene se-
quences across bovid species, each of which is taken to be a distinct evolutionary lin-
eage. Hypotheses of this pattern of descent—phylogenetic trees—are typically displayed
as branching diagrams (similar to that in figure 1), and may be tested by re-analyzing the
data used to construct those hypotheses. Those tests may include employing new models
describing the relationship between the data and the system being studied. These new

2This proposition is now more widely accepted, though there remain important and influential holdouts.
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models may be more complex (‘realistic’) than previous ones,3 take advantage of more
powerful computing resources,4 reflect new hypotheses of the underlying biology (e.g.,
processes or mechanisms of evolution), or use different modes of inference to extract
underlying patterns and test prior hypotheses.

Phylogeneticists recognize PMEs as distinct and important errors of inference. In retro-
spect, this should hardly be surprising. The advent of molecular sequencing techniques
has provided vast amounts of data for phylogenetic analysis. Conflicting patterns are
routinely strongly supported by those data, and identifying the relevant pattern is a dif-
ficult task.5 Access to increasingly powerful desktop computing and progressively richer
datasets have permitted phylogeneticists to extract ever more subtle patterns, and to chal-
lenge entrenched hypotheses of phylogeny. In some cases, support for these hypotheses
proved to be positively misleading (Yang and Rannala, 2012).

Furthermore, the backdrop against which this takes place primes phylogeneticists to
be attuned to these sorts of errors of pattern recognition. From at least the 1960’s, a
central research problem in the field concerned whether, and, if so, how evolutionary
history may be justifiably inferred, infusing the field with a strong philosophical tradi-
tion. An upshot of this is that a strongly critical focus on methods of inference is often
a driver of innovation in the field, and there is intense pressure on the details of in-
ferential support.6 Researchers devise, test, and experiment with modes and methods
of phylogenetic inference, and discovery of systematic errors in well-known or popu-
lar phylogenetic techniques constitutes a major discovery (Haber, 2009). Let’s turn our
attention to an important example of this, long-branch attraction.

2.2.1 An Exemplar: Long-Branch Attraction

Felsenstein’s “Cases in which Parsimony or Compatibility Methods Will be Positively
Misleading” (1978) introduced the phrase positively misleading to describe the systematic
errors of statistical inference characterized above. The abstract cases he describes exhibit
long-branch attraction.

3A simple evolutionary model that may be used in phylogenetic analyses is the Jukes-Cantor model, JC69

(Jukes and Cantor, 1969), which treats the substitution rate of nucleotides as uniform, i.e., the probability
that any of the four nucleotides (A, G, C, T) will be substituted for any other is equal. A more realistic, or
complex, model is HKY85 (Hasegawa et al., 1985), which distinguishes substitution rates between transi-
tions (purine/purine or pyrimidine/pyrimidine swaps) and transversions (purine/pyrimidine swaps), and
parameterizes other JC69 assumptions., e.g., base rate frequencies of the four nucleotides.

4These permit more sophisticated or effective heuristic search methods for exploring probability space.
5This is a variant of underdetermination of theory by evidence, resembling what Mayo (1997) calls the

alternative hypothesis objection. Phylogeneticists routinely dispute what criteria ought to be used to determine
which hypothesis is best supported by the evidence. For philosophical accounts of this problem see Hull
(1988); Sober (1988, 2008); Haber (2009); Velasco (2013); Haber and Velasco (2021).

6Often without focus on any specific hypothesis of phylogenetic relationship. This abstract feature of the
focus on method is one reason phylogenetics is such a philosophically rich field.
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To understand the significance of this, recall that a central research problem in 1970’s
phylogenetics was justifying phylogenetic inference as a scientific hypothesis, as opposed
to speculation, intuition or metaphysics. This reflects the central conceptual arguments
that arose in systematics as phylogenetics took hold (Hull, 1988; Sober, 1988; Haber, 2009;
Sterner and Lidgard, 2018). One popular approach, dubbed parsimony, was justified as
scientific by appeal to falsificationism (Wiley, 1975).7 The idea is simple enough: the
phylogenetic tree requiring the fewest evolutionary events to explain the data is consid-
ered a testable, bold hypothesis of the pattern of evolution of those taxa. As more data
(characters) are considered, that hypothesis is tested. If a new phylogenetic hypothesis
(tree topology) can explain the data with fewer evolutionary events, that constitutes a
rejection (falsification) of the previous phylogenetic tree as the most parsimonious. Oth-
erwise it will have survived the test and be further corroborated. An attractive feature
of this justification is that each subsequent addition of datum constitutes a test of the
most parsimonious phylogenetic hypothesis.8 Even on shedding the falsificationist spin,
the appeal here is evident (Sober, 1988, 2008).9 More good data confer greater evidential
support or corroboration for the most parsimonious hypothesis.

Only it doesn’t. Or, rather, it only does on pain of committing a PME dubbed long-branch
attraction (LBA). The proof is straightforward,10 demonstrating not merely statistical in-
consistency, but that under certain conditions parsimony methods are guaranteed to
converge on an incorrect hypothesis. LBA describes the tendency for terminal taxa at
the end of long branches11 to be incorrectly grouped together as most closely related,
rather than correctly grouped with their actual sister taxa related by a short branch. This
is reminiscent of the toy example above, in which the mountain sheep were incorrectly
grouped as most closely related, rather than with their respective valley sister species
(Figure 2).

The reason for this incorrect grouping is simple, if not readily apparent: evolution need
not be parsimonious. Convergent or parallel evolution, for example, may produce pat-
terns of biodiversity that could have emerged more parsimoniously.12 In such cases,

7Leaving aside whether or not this constitutes Popperian falsificationism (Hull, 1983; Sober, 1983).
8This characterization is a bit idealized. More precisely, it is not evolutionary events that are counted, but

hypotheses of homology that are tested against one another (Wiley, 1975).
9A referee astutely noted the connection of phylogenetic reasoning to abductive reasoning, i.e., inference

to the best explanation, wondering about the “potential trade-offs among different explanatory virtues.”
Sober noticed the same, explicitly connecting parsimony methods to abduction. Fitzhugh (2006) and Quinn
(2016) made similar connections, though in very different ways, that reflect choices about different trade-offs
that might be made in service of phylogenetic inference.

10See Felsenstein (1978).
11Branch length may be understood as corresponding to amount of evolutionary change, number of evo-

lutionary novelties, or branch transition probabilities. See figure 1.
12Other conditions may also produce patterns of descent susceptible to LBA, e.g., differential divergence

(Ward, 2014; Ward et al., 2015).
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(a) Evolutionary History (b) Parsimony Reconstruction

Figure 2: Long-branch attraction. The pattern of descent of taxa A-D (a) may include
long branches with a significant amount of convergent or parallel evolution. Though
these ‘long branch taxa’ (A and D) are most closely related to taxa that have seen rela-
tively few evolutionary changes (B and C), parsimony methods will incorrectly identify
(b) as the best supported hypothesis of evolutionary history. This incorrect clustering
of long branches is a positively misleading error called long-branch attraction. Adding
more data to a parsimony analysis increases corroborative support of (b) at the expense of
phylogenetic hypotheses displaying patterns concordant with (a). Adapted from Felsen-
stein (1978).

parsimony methods will increasingly support more parsimonious (though erroneous)
hypotheses of evolutionary history over less parsimonious (though correct) ones. This is
exactly what Felsentein demonstrates:

. . . as we accumulate more and more information the . . . parsimony method
is increasingly certain to give the wrong answer. (Felsenstein, 1978, p. 404)

and:

[Under these conditions the] parsimony method is guaranteed to converge to
the wrong estimate of the [phylogenetic] tree as we accumulate more and
more data. (Felsenstein, 1978, p. 405, emphasis added)

Felsenstein offers a diagnosis of what has gone wrong: parsimony methods implicitly as-
sume too simplistic a model of evolution,13 corrupting the analysis. Patterns in the data

13Though not, importantly, too simple a model. Indeed, if we count parameters rather than evolutionary
novelties (or hypotheses of homologies), parsimony methods may be less parsimonious than statistical ap-
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are obscured and conflated, and implicit erroneous hypotheses about the relation of the
data to the system of study are instead captured and displayed. Felsenstein concludes
that LBA undermines both the implicit theoretical assumptions and the conceptual justi-
fication of using parsimony methods for phylogenetic inference.14

Setting aside Felsenstein’s discussion of why things went wrong, the upshot is clear:
parsimony methods return positively misleading results under biologically significant
conditions. As more data are added to a parsimony analysis, erroneous hypotheses
receive increasingly positive support over correct ones. This is an error of statistical in-
ference. The cause may ultimately be understood as the result of underdetermination,
over-simplistic assumptions, or some other combination of confounders of scientific rea-
soning. But it is not the cause of the error that is of concern here; after all, under different
conditions parsimony may outperform other phylogenetic methods (Siddall, 1998). What
matters is the pattern of error that arises. As the case in §3 demonstrates, recognizing (or
failing to recognize) that pattern for what it is may carry serious consequences.

2.3 Distinction From Other Errors of Statistical and Probabilistic Reason-
ing

With erroneous conclusions receiving support at the expense of correct ones, PMEs are
similar to false positives and type I statistical errors. Yet there are important differences
that distinctively mark PMEs.

It will be helpful to first distinguish false positives from type I statistical errors. Though
sometimes treated as synonyms, these are more properly understood as analogues shar-
ing important and relevant similarities concerning slightly different scopes.15 A type I
error concerns statistical testing of hypotheses, and, along with type II errors, describes
how the role of chance may be misattributed in explaining a pattern found in a dataset.
Consider a dataset drawn from a population under study. If the sampled data display

proaches that incorporate standard models of evolutionary change, e.g., maximum likelihood (ML) methods
that stipulate a JC69 (Jukes and Cantor, 1969), K80 (Kimura, 1980) or HKY85 (Hasegawa et al., 1985) model
of transformation. Forcing a tree with the fewest number of homologies may implicitly require far more
complex (highly parameterized) underlying evolutionary models or treating rate of character transforma-
tion as highly dynamic and variably complex across a phylogenetic tree (Tuffley and Steel, 1997; Steel and
Penny, 2000; Swofford and Sullivan, 2009). This is also a nice reminder of why what counts as most parsi-
monious depends on what is being counted—which itself is a question reflecting conceptual commitments
(Haber, 2009).

14This does not, however, mean that parsimony techniques ought to be abandoned. The correct response
is a bit more complicated and subtle than that. One interpretation might be described as pragmatic; that
these techniques ought to be regarded heuristically and as part of the toolbox of methods available to
phylogeneticists that can play both a direct and indirect role in supporting good phylogenetic inference
(Hillis et al., 1994; Felsenstein, 2004; Haber, 2009; Haber and Velasco, 2021).

15Spanos (2010) argues that even this may be too strong, and that treating these as analogues in all cases
leads to mistaken conclusions about the susceptibility of frequentist testing to base-rate fallacies.
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a particular pattern, we might ask whether that pattern is present because it reflects a
pattern in the larger population from which it was drawn, or whether the pattern is the
product of unlucky or unrepresentative sampling (‘chance’). A type I error is the incor-
rect rejection of chance as the source of the pattern; a type II error incorrectly attributes
chance as the source of the pattern (see Table 1).

No Difference/ Significant Difference/
Pattern due to chance (H0) Pattern not due to chance (∼H0)

Reject H0 Type I Error Correctly Reject Chance
Accept H0 Correctly Accept Chance Type II Error

Table 1: Type I & II Statistical Errors. A type I error incorrectly rejects chance as the source
of a pattern in a sampled dataset. A type II error incorrectly attributes chance as the source of
that pattern. The framing here displays how those errors may occur in the context of hypothesis
testing.

False positives, on the other hand, concern failure rates, i.e., incorrect reports of the fea-
tures of a sample. A diagnostic test, for example, might report, incorrectly, the presence
of a protein in a blood sample that lacks that protein.16 This concerns the sensitivity
and specificity of that diagnostic test; the capacity, respectively, to correctly identify pos-
itive and negative results. Knowing the sensitivity and specifity of a diagnostic test,
along with its negative and positive predictive values, helps researchers and clinicians
make decisions about how much and what kind of testing is needed before an action-
able conclusion may be drawn (or how to balance the results of those tests against other
diagnostic evidence) (Altman and Bland, 1994a,b; see Watson et al., 2020 for an example
of this in clinical practice).

Type I errors are analogous to false positives, insofar as they are incorrect reports about
an underlying pattern or condition of the population or system from which a sample
was drawn. They differ in that type I errors faithfully report the pattern or properties of
a dataset, but of a set that fails to resemble the study population in the relevant regard.
False positives, on the other hand, fail to faithfully report an underlying condition in the
sample or dataset that the test was designed to detect. The former is a product of poor,
insufficient, or simply unlucky datasets, the latter a failure rate.

Type I errors are predictably diagnosable—a predictability that is valuable for scien-
tific reasoning (Mayo, 1996).17 The conclusions drawn from hypothesis testing may be
strengthened or themselves tested, e.g., serially testing the hypotheses using distinct

16A false negative would incorrectly report the absence of that protein when it was present (see Casscells
et al., 1978; Watson et al., 2020).

17Mayo uses this fact, among others, to develop an account of scientific reasoning that incorporates learn-
ing from error. Learning from PMEs is another example of the utility of the predictable diagnosability of
statistical reasoning.
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datasets, or increasing the size of the dataset. These will either tighten confidence limits
or allow us to place confidence limits on the overall set of analyses. That is, more good
data will tend to reveal and resolve type I errors. The limit case drives this home. If
sampling size was increased to include the entire population under study, type I errors
go away; the dataset would faithfully reflect the study population because they would
be identical.

Analogously, recognizing the specificity and sensitivity of diagnostic tools informs re-
searchers and clinicians of the epistemic value of those tests (Watson et al., 2020). So if
a clinical diagnostic test is known to have a false positive rate of 1%, a positive result
may not yet be good evidence for treatment. Knowing or refining pre-test probabilities
(base rates), serially repeating the test, or adding data to the analysis will provide clin-
icians with better information, and increase the probability of revealing a false positive
result.

In contrast, PMEs are not the result of bad data, lack of data, poor or unlucky sampling,
ignoring a base-rate, or failure within a range of confidence limits; they are not rates
of failure to correctly diagnose the underlying condition of sampled data. Neither re-
peating the analysis, nor using independent (or distinct) datasets, nor adding more data
will reveal a PME. Just the opposite. As more data are included, the relative strength
of support for the erroneous hypothesis will increase—even if the underlying model’s
confidence limits are tightening up! In contrast with type I errors, even on the limit
case—where all data are collected and included in the analysis—the PME persists. This
strongly suggests that the problem is not a function of the data or diagnostic failure, but
is symptomatic of something else gone wrong.

Positively misleading errors are neither false positives nor type I errors. They are a type
of statistical inconsistency, i.e., the failure to be statistically consistent, or to converge on
the correct value as data accumulate:

A statistical estimation method has the property of consistency when the
estimate of a quantity is certain to converge to its true value as more and
more data are accumulated. (Felsenstein, 1978, p. 402).

Yet something logically stronger than mere inconsistency is being asserted here. PMEs
are not simply failures to converge, they guarantee convergence on the wrong value:

Saying that a method is positively misleading is logically stronger than saying
it is inconsistent: The failure of an estimator to converge to the true [hypothe-
sis] does not imply that the estimator converges to an incorrect [hypothesis]—
it might not converge at all. (Chang, 1996, p. 191-2)

PMEs are the opposite of statistical consistency. The latter guarantees convergence on a
correct value as data accumulate; on PMEs, convergence is on an incorrect value. And it
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is this convergence that generates such a vexing epistemic position.

2.4 Discussion

2.4.1 Multiple Methods and the Richness of Scientific Reasoning

Ultimately, long-branch attraction was diagnosed and resolved by employing other modes
of inference and incorporating ever-more sophisticated models of evolution into phylo-
genetic techniques (Felsenstein, 2004). Long-branch attraction, for example, has been di-
agnosed using maximum likelihood and Bayesian methods. However, we cannot know
ahead of time which methods will be statistically consistent and which will generate pos-
itively misleading errors. Diagnosing this may require contrasting competing method-
ological approaches under a variety of specified conditions. Systematists use both sim-
ulation and empirical studies to test and study the relative performance of their phylo-
genetic methods under different conditions (Hillis et al., 1994; Degnan and Rosenberg,
2006).18

Even if we could know ahead of time (or come to learn) that some method was positively
misleading under certain conditions, there is no guarantee that there will be a single best
method that outperforms all others under all relevant conditions. If different methods
outperform each other under different conditions, then researchers will need to identify
the latter to select the former. This may, in fact, be the case in phylogenetics, e.g., Mark
Siddall (1998) considers the mirror-image case of Felsenstein (1978), arguing that parsi-
mony may outperform statistical methods under very specific conditions, described as
long-branch repulsion.19

Testing how competing methods perform under different conditions help us identify sys-
tematic ways these methods may succeed or fail under those conditions. That variable
yet systematic susceptibility of competing methods is, in turn, used to identify the un-
derlying conditions of a system and provide guidance for determining which methods
ought to be employed or may be subject to PMEs under those conditions. This suggests
that phylogeneticists ought to adopt at least a minimal methodological pluralism, and

18A referee observed that phylogenetics is about reconstructing an historical event, asking about possible
differences between PMEs in research design for retrospective and prospective cases. This is a good ques-
tion! Hillis et al. go some way towards answering this, maintaining bacteriophage lines to generate and
manipulate known phylogenies for experiments designed to assess competing phylogenetic methods. See
Sober (2004), Haber (2005), Velasco (2008), and Autzen (2011) for more on the use of probabilistic reasoning
for inferring historical phylogenies.

19Autzen (2018) describes a slightly different way that Bayesian approaches might fail to converge on
the correct outcome, i.e., if it is excluded from the analysis. One of the challenges in phylogenetics is that
the probability space (of possible phylogenies) is much larger than can be explored by heuristic methods,
leading to just the sort of conditions that Autzen considers. See Yang (2007) and Quinn (2016) for related
discussions.
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be wary of narrowly monist accounts of scientific reasoning (Haber, 2005, 2009).20

Furthermore, there is often epistemic value not merely in identifying a PME, but in care-
fully diagnosing and understanding the conditions that give rise to it. Exploiting those
conditions may lead to a richer, deeper understanding of that system (e.g., horizontal
gene transfer in bacteria, Galtier and Daubin, 2008).

Though the discovery of LBA was deeply disruptive, it also spurred a highly fruitful and
productive period in systematics, and the field is richer for it, e.g., it stimulated a thor-
ough study of the application of models of evolution to phylogenetic methods (Huelsen-
beck and Crandall, 1997) that ultimately provided systematists with the resources for, say,
studying both the horizontal and vertical components of phylogenetic variance and bio-
diversity (Maddison, 1997; Degnan and Rosenberg, 2006; Galtier and Daubin, 2008).21 I
call these sorts of episodes productive disruptions. There is a rich story waiting to be mined
about this ongoing period of history in systematics that carries important implications
for scientific reasoning (Felsenstein, 2001), e.g., how communities of scientists shift from
one set of commitments to another; and the constructive role that a fine understanding
of errors plays in good scientific reasoning (building on Mayo 1996).22

2.4.2 Epistemic Traps and Patterns of Errors

Positively misleading errors are not a function of bad data or poor sampling; adding
more data or increasing sample size will not resolve the error, only exacerbate it. Fur-
thermore, PMEs may result from several different causes; there is no single reason they
occur. They are errors of statistical inference or pattern recognition and may be symp-
tomatic or effects of familiar confounders, and, thus, a powerful tool for assessing and
describing reasoning and error. In the cartoon case described in §2.1, the PME was
caused by intuitively plausible assumptions that turned out to be overly simplistic, in-
cluding that morphological similarity reliably tracks relatedness;23 conflating competing
senses of similarity; an unrealistic24 model; a clustering algorithm that conflicts with

20The selection of evolutionary models in statistical phylogenetics may also be sensitive to underlying
conditions (Sullivan and Joyce, 2005). It is an empirical question whether multiple methods ought to be
employed given the various conditions under which a system might be studied. Notably, more parameter
rich (i.e., complex) models do not always perform better than simpler ones. See Sullivan and Joyce (2005) for
further discussion on the risk of overparameterization and why simply selecting the most complex model
available is a poor strategy. (Thanks to an anonymous referee that encouraged noting the philosophically
rich topic of overparameterization.)

21This coincides and overlaps with similar developments in microbial systematics, though these develop-
ments are also at times regarded as competing views (Doolittle, 2000).

22Rice and Khalifa (2025) offer a related account of how valuable misunderstandings can generate fruitful
responses through a community’s corrective processes.

23Cichlids provide an example of when this assumption is violated (Stiassny and Meyer, 1999); so too that
termites are eusocial cockroaches, and not closely related to ants (Inward et al., 2007).

24See footnote 3.
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model assumptions; and confusing an effect for a cause, among other problems (see
Felsenstein, 2004 for more details). Undiagnosed common causes, underdetermination,
conflating correlation for causation, and other familiar confounders may also produce
PMEs.

What makes PMEs particularly vexing is the epistemic position they generate. Positively
reinforced convergence conveys confidence—especially if the results reinforce intuitively
appealing entrenched commitments and are supported by a large stock of good data.
This can make dislodging a method or commitment with positively misleading support
particularly challenging. After all, this is just one of the patterns that scientists are
(rightly) trained to identify as conveying good support for a hypothesis. “Good methods
of scientific inference are expected to have desirable limiting features as the data size
goes to infinity” (Autzen, 2018, 261; see also Howson and Urbach, 1991; Mayo, 1996,
among others).25

PMEs are, thus, epistemic traps. Dislodging a PME means rejecting a hypothesis for
which there is strong support based on good data. In this way, they are contrapositives
of Gettier cases. In the latter, poor reasoning nonetheless produces the correct outcome
(Gettier, 1963). In contrast, PMEs are cases of good reasoning leading us astray. So
we have an interest in better understanding PMEs in order to effectively identify and
distinguish them from those cases they resemble yet succeed on converging on the best
(or correct, or what have you) hypothesis.26

It may be tempting to frame the problem in terms of converging on positive support, and
view this as an argument for placing primacy on rejection rather than confirmation, e.g.,
falsificationism (Popper, 1959). This would be a mistake for at least two reasons. First,
falsificationist methods are as susceptible to generating PMEs as any other (see §2.2.1).
Second, statistical methods comparing strength of support of competing hypotheses may
be used, under certain conditions, to diagnose and resolve PMEs. PMEs are errors of
pattern recognition expressed as convergence, be it corroboration, verification, or proba-
bilistic support. Luckily, at least in the case of long-branch attraction, under conditions
in which one mode of inference27 generates a PME, other modes generate statistically
consistent results on the same dataset (i.e., they will converge on the correct hypothesis).
Which modes will generate PMEs will depend on the details of the system, etc., and
different modes may perform better or worse under different conditions (Hillis et al.,
1994; Felsenstein, 2004). This constitutes a good reason for embracing at least a minimal
notion of methodological pluralism.

Any large complex dataset will likely be susceptible to PMEs, though this is, ultimately,

25Though this is hardly unique to Bayesians or frequentists.
26Here we can be agnostic about what counts as ‘best’ in this context; see also Quinn (2016).
27Phylogenetic modes of inference might include, but not be limited to, maximum likelihood comparative

analysis, Bayesian methodology, parsimony analysis, or abductive reasoning.
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an empirical question. This is one of the challenges of so-called ‘big data’. Though it
has been an epistemic feature of phylogenetics for quite some time, it is becoming more
familiar to other researchers as high throughput data grows more common across a wide
range of disciplines (Nature Editorial, 2008; Bell et al., 2009; Leonelli and Ankeny, 2012;
Vogt, 2013; Wu et al., 2014).28 Successfully managing and drawing inferences from this
generation of large amounts of data is, arguably, one of the central challenges facing
21

st century researchers and clinicians (Howe et al., 2008; Callebaut, 2012; Leonelli, 2013;
Pietsch, 2013; Wang and Krishnan, 2014). Understanding PMEs will be increasingly
relevant for meeting this challenge, and a good first step is putting a name to the problem
and building up a set of exemplar cases.

3 Candidate PMEs

Positively misleading errors are unlikely to be constrained to phylogenetics. Any field
using convergence methods for extracting patterns from sets of data will be susceptible;
all the more so as the systems of study are complex, and constituted, like evolution-
ary lineages, of levels or parts that may produce conflicting or confounding patterns.29

PMEs may also manifest themselves in more informal reasoning as well, especially if a
field includes intuitively appealing entrenched commitments that may be overly simplis-
tic yet have historically generated successful outcomes (or, at least, have been perceived
as generating those outcomes). In those cases, success may counterintuitively mask or
obscure underlying patterns, better explanations, treatments, methods, etc., for the task
at hand.

So there is a strong incentive to better diagnose PMEs and learn how to escape the
epistemic traps they generate. One way to accomplish this better understanding is to
find more cases to study, drawn from a broad range of disciplines. Below I describe a
candidate case from clinical medicine (§3.1), then suggest others that look promising but
need more careful analysis (§3.2).

3.1 Clinical Medicine: Septic Lactic Acidosis

In phylogenetics, methods or analyses are positively misleading when they converge on
an erroneous hypothesis as more data accumulate.30 In clinical medicine it is treatment
protocols or standards-of-care that may be positively misleading when they converge on the

28This is closely related to the challenges of extracting patterns from complex systems (Mitchell, 2009).
29One sort of complexity I have in mind is Wimsatt’s (1974) multiple decomposability, which Haber (2012)

argues is exhibited by evolutionary lineages.
30“A tree reconstruction method is called consistent if the probability of reconstructing the correct tree

converges to certainty as the sequence length tends to infinity.” (Galla et al., 2019, 1180)
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wrong treatment as more data accumulate as evidence.31 Though the reasoning here is
not always expressed in formal statistical or probabilistic terms, we should still consider
them positively misleading.

Research on treatment protocols in clinical cases are likely to present many of the fea-
tures that produce PMEs. The systems being studied are highly complex, with hard to
discern feedback loops, conflating and confounding patterns emerging from interacting
levels and shared parts, and a history of data from which patterns of treatment are ex-
tracted.32 Convergence will be on a standard treatment protocol (of a possible set of
responses/treatments) to administer under particular conditions. Entrenched standards-
of-care can be difficult to dislodge—especially if new treatment protocols are considered
counterintuitive or cut against tradition. Furthermore, using evidence-based approaches
may fail to identify or resolve positively misleading treatment protocols. Merely adding
high quality evidence to a study may simply exacerbate the error.

Let’s consider one candidate case: the treatment of septic lactic acidosis with sodium
bicarbonate (Forsythe and Schmidt, 2000). Though not expressed formally, the pattern
of reasoning here mirrors that of long-branch attraction, suggesting the presence of a
PME and characteristic epistemic trap.

Acidosis is the condition of blood becoming acidic. Infections may cause this drop in
arterial pH, i.e., septic lactic acidosis. For patients in critical conditions this situation is
life-threatening, with a 60-90% mortality rate in critical care units (Stacpoole et al., 1992).
An entrenched standard-of-care treatment for patients in this condition was to attempt
to neutralize the blood by raising the pH with intravenous administration of sodium
bicarbonate (NaHCO3) (a base). The justification for this rests on intuitive presumptions
(e.g., you neutralize an acid with a base) and case histories of patient improvement on
this treatment. That is, accumulation of data (case histories) produced convergence on
entrenched support for treatment of acidosis with NaHCO3.

Treatment with NaHCO3 is no longer the standard-of-care for septic lactic acidosis,
though dislodging it as the entrenched protocol proved a difficult task. The underly-
ing assumptions, though intuitive, proved to be overly simplistic characterizations of
physiology. This recognition helped reveal that support from case histories were hardly
positive, but may have been positively misleading; re-interpreting those data on a more
realistic physiological model revealed that NaHCO3 was often detrimental to patients,

31Evidence in medicine may be expert opinion, case histories, non-randomized controlled studies, ran-
domized controlled studies, etc. Institutional organizations rank different kinds of evidence by quality, e.g.,
the National Health Service in the UK ranks evidence on a scale from A to D. See Worrall (2002, 2007);
Ashcroft (2004); Cartwright (2007) and Cartwright and Stegenga (2011) for critical consideration of evidence
in evidence-based medicine.

32Social contexts and other non-epistemic factors can also play important roles. Though not discussed
here, this extends a moral and ethical imperative for considering PMEs in clinical treatment protocols (e.g.,
Liao and Carbonell, 2023).
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while a simple intravenous saline bolus proved beneficial (Cooper et al., 1990; Mathieu
et al., 1991).33 This is reminiscent of long branch attraction, where new, more realistic,
models revealed that previous ones were returning positively misleading results on the
datasets. The underlying cause of error in the two cases is different; what is analogous is
the pattern of error and the difficulty of diagnosing and dislodging it.

Let’s take a look at arguments offered against the entrenched treatment protocol, using
a prominent review (and forceful condemnation) as a representative example. Forsythe
and Schmidt (2000) argue that the convergence on treating septic lactic acidosis with
administration of NaHCO3 was an error. Worse, rather than helping patients, it may
harm them! Yet, despite strong reasons for updating standards of care, dislodging the
entrenched treatment protocols was challenging. This was further hampered by the lack
of familiarity with PMEs. Lacking good models or examples of how to assess, diagnose,
and dislodge PMEs made Forsythe and Schmidt’s job more difficult.

Let’s extract the pattern of reasoning employed by Forsythe and Schmidt to start devel-
oping these models of reasoning from positively misleading errors. Fortunately, they
carefully lay out the details, arguing that the following chain of reasoning was either ex-
plicitly or implicitly used to justify NaHCO3 treatment for septic lactic acidosis (p. 260-
1):

1. A low pH, in and of itself, is harmful (most notably by impairing cardiovascular
function).

2. Sodium bicarbonate can increase the pH when infused intravenously.

3. Raising the pH with sodium bicarbonate improves cardiovascular function.

4. Any adverse effects of sodium bicarbonate are outweighed by its benefits.

Forsythe and Schmidt proceed to consider each premise, identifying why each is too sim-
plistic, and how this can lead to ever-increasing support for an erroneous hypothesis and
sub-optimal treatment at the expense of better ones. This is just the pattern of reasoning
to be expected in the presence of PMEs, and mirrors that found in phylogenetics.

Consider Forsythe and Schmidt’s treatment of (2): sodium bicarbonate can increase the pH
when infused intravenously. They begin by noting that this relies on an overly simplistic
yet intuitive model of physiology: “It seems straightforward that adding a base to acidic
blood will raise the pH—the reality is more complex” (p. 262). For example, “because

33NaHCO3 is administered in a saline solution. The saline was improving the patient’s condition more
than the NaHCO3 was causing harm, though NaHCO3 was attributed with causing the improvement. In
other words, the PME obscured the saline-only treatment from the set of treatments under consideration.
Though this is reminiscent of other cases of error in scientific reasoning, what is novel here is the pattern of
error, not the cause.
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adults with acidosis generally also have sepsis, hypoxemia, intoxication, or hypoperfu-
sion, discerning the physiologic effects of low pH from those of endotoxemia, hypox-
emia, and so on is a challenging task” (p. 261). Just as in phylogenetics, the complexity
of the system is producing confounding and conflicting signals. The job of the clinician
here is to extract the relevant signals and recognize when discordance may present a
complicating factor (p. 262):

Yet, the body has multiple compartments separated by membranes of differ-
ing permeabilities and systems of active transport. Even when sodium bicar-
bonate added to the central veins reliably elevates the arterial pH, its effects
on the cerebrospinal fluid and intracellular spaces may not be concordant.

Even worse, though arterial pH may increase with the addition of NaHCO3, the intracel-
lular pH may drop (p. 262):

[S]odium bicarbonate can raise the blood pH when given IV. In contrast, this
therapy fails to augment reliably the intracellular pH. Indeed, intracellular
pH falls in most animal models and in most organs studied, but the effect is
variable.

So go the arguments for each of the premises described above. E.g., premise (1): Is a
low pH harmful? Perhaps, but too simplistic an analysis will merely confuse matters: “it
is overly simplistic to assume that the clinician’s window on acid-base state, the arterial
blood pH, reflects accurately the pH at a (likely more important) cellular level” (p. 261).
Counterintuitively, a low arterial pH may even be beneficial (p. 261-2):

Paradoxically, acidosis may have protective effects in critical illness. A low
pH has been shown to delay the onset of cell death in isolated hepatocytes
exposed to anoxia and to chemical hypoxia. Correcting the pH took away the
protective effect and accelerated cell death.

As with long branch attraction, an intuitively plausible assumption turned out to be
poorly supported. Only on dislodging this overly simplistic assumption about low pH
levels were clinical researchers able to see that support for the NaHCO3 protocol was
positively misleading, that it was a sub-optimal response of those available to acido-
sis.

Likewise with premise (3): Does NaHCO3 benefit patients? Though numerous animal
and whole body studies on this question have been performed, the answer is not obvi-
ous and “one must take care not to interpret these studies too simplistically” (Forsythe
and Schmidt, 2000, p. 263). Indeed, any benefits were likely derived from the saline
solution in which NaHCO3 is administered: “The hemodynamic effects were indistin-
guishable from those of saline solution” (see Forsythe and Schmidt, 2000, p. 263 for a list
of empirical studies).
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Forsythe and Schmidt conclude that though extensive case histories have been taken as
support for treatment of lactic acidosis with NaHCO3, reinterpreting these cases (data)
through the lens of a more realistic (i.e., less simplistic) model suggests otherwise (p.
265):

The oft-cited rationale for bicarbonate use, that it might ameliorate the hemo-
dynamic depression of metabolic acidemia, has been disproved convincingly.

Furthermore, echoing Felsenstein’s conclusion about long-branch attraction, Forsythe
and Schmidt take this finding to undermine both the implicit theoretical assumptions
and conceptual justification for treating septic lactic acidosis with NaHCO3 (p. 265):

Even theoretical arguments in favor of sodium bicarbonate administration
rely on a naïve representation of acid-base physiology, ignoring the complex
compartmentalization of pH, the second-level effects of bicarbonate infusion,
the impact of carbon dioxide generation, or the negative consequences of
hyperlactatemia.

Using an overly simplistic yet intuitive model of physiology produced positively mis-
leading results. Based on support from a history of case studies, there was convergence
on a sub-optimal treatment for septic lactic acidosis. Yet this support was positively mis-
leading, and obscured better treatment options. More precisely, the PME effectively ex-
cluded the saline-only treatment from the set of treatments under consideration.34

Re-analyzing these same data using more sophisticated physiological models helped
identify and diagnose this PME, revealing stronger support for other treatments and
producing a richer, more fruitful understanding of the system and condition. Had PMEs
been as well understood as false positives or type I errors, these might have been rec-
ognized more quickly. At the least, Forsythe and Schmidt would have been able to
frame their argument as an example of a well understood statistical error, aiding their
argument and providing more familiar modes of diagnosing and dislodging a PME and
more effectively made their case.

Forsythe and Schmidt’s reasoning mirrors how phylogeneticists evaluated established
hypotheses by reinterpreting the very same data used to generate those hypotheses.
Phylogeneticists used more realistic (i.e., less simplistic) models and multiple modes of
inference to reveal positively misleading errors in the entrenched analyses that first gen-
erated the established hypotheses. Furthermore, the presence of positively misleading
errors undermined the monistic theoretical justification underwriting those methods,
and challenged the intuitively appealing but overly simplistic assumptions built into
those methods.

As in phylogenetics, the PME generated by the entrenched standard-of-care generated

34Reminiscent of Autzen (2018) (see footnote 19).

19



an epistemic trap. Dislodging the NaHCO3 treatment protocol was difficult for many
of the same reasons other PME discoveries generated resistance, e.g., it had become
an entrenched standard-of care, with a history of (what was at least perceived as) suc-
cess; alternative treatment protocols struck many as counterintuitive, etc. (Forsythe and
Schmidt, 2000). The underlying cause of the PME here is less important than the pattern
of error on display. Once recognized, a better understanding of the system (and treat-
ment of it) became available. New fruitful avenues of clinical research became apparent,
and the attending commitments in the field were richer for it, e.g., a more effective
treatment of acidosis. These are good reasons to develop techniques for identifying and
diagnosing PMEs, and appears to be another case of productive disruption spurred by
diagnosing a PME.

3.2 Other Candidate Cases

In addition to long-branch attraction and septic lactic acidosis, there are other candidate
cases of positively misleading errors. These range from recently discovered PMEs to
more speculative cases. Establishing that these, or other cases, are PMEs will require a
more careful and detailed analysis, but effectively identifying whether, and, if so, what
other fields have PMEs will be important for developing a good understanding of these
errors—and how to avoid them.

A more recent PME has been identified in phylogenetics by Degnan and Rosenberg
(2006), who convincingly argue that inferring species trees from gene trees can lead to
positively misleading results under certain conditions. These ‘wicked forests’ (as they are
called) are cases where the most frequent gene tree among a group of taxa is guaranteed
to differ from the species tree; this challenges an entrenched method for inferring a
species tree from the most frequent gene tree topology. Under these conditions, as more
gene trees are included in an analysis, the incorrect species tree will receive increasingly
strong support at the expense of support for the correct tree (Degnan and Rosenberg,
2006, p. 762):

Consequently, use of the most commonly observed gene tree topology to esti-
mate the species tree topology—the “democratic vote” procedure among gene
trees—can be “positively misleading,” that is, convergent upon an erroneous
estimate as the number of genes increases.

Notably, Degnan and Rosenberg attribute both the phrase and definition of ‘positively
misleading’ to Felsenstein (1978). Furthermore, diagnosing this PME, and the conditions
under which it may be present, led to a fruitful fine-tuning of how to read support of
hypotheses off of the data (Degnan and Rosenberg, 2006, p. 767):

The counterintuitive result is that if two trees from the same wicked forest
were considered as hypotheses for a phylogeny, observing a higher propor-
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tion of gene trees that match one species tree would be evidence in favor of
the other species tree, and vice versa.

This is precisely the sort of outcome that should motivate a better understanding of
PMEs.

Though a bit more speculative, other candidate PME cases are widespread in the clinical
care literature. These include the diagnosis of brain death (Black, 1978a,b), treatment of
acute renal failure with dopamine (Denton et al., 1996), diagnosis of neonatal necrotizing
entercolitis (Holt and Friedland, 1974), and emphysematous bullae (Morgan et al., 1989).
Liao and Carbonell (2023) present a possible case with explicit social and ethical ele-
ments regarding how biases can get encoded and embedded in medical equipment like
pulse oximeters and spirometers.35 Careful analysis of each of these would be required
to demonstrate the presence of PMEs, but, at least superficially, many of the relevant pat-
terns appear to be present. This is particularly pressing in clinical medicine, given the
rapid increase in access to ‘big data’ and the challenges of extracting good information
and patterns from those datasets (Wang and Krishnan, 2014).

Economics and the social sciences also include sub-fields susceptible to PMEs. The
datasets are often complex, with individual datum dependent on each other in numerous
overlapping ways, coupled with the inclusion of overly simplistic but intuitively appeal-
ing entrenched commitments. Methods might identify any number of patterns that fail
to correspond to the feature of the system we hope to be studying. One candidate case in-
cludes the economics of professional sports, e.g., the valuation of professional athletes in
North American baseball. Entrenched methods of evaluating players were sub-optimal,
incorrectly valuing players’ contributions to generating wins for their teams. Dislodging
these entrenched methods for more sophisticated ones, and the ensuing debates, have
the hallmark of a PME-generated epistemic trap (Hakes and Sauer, 2006; for a popular
account, see Lewis, 2003).

4 Conclusion

Positively misleading errors are errors of statistical reasoning where adding more data
systematically produces increasingly greater strength of support for an erroneous hy-
pothesis over the correct one. It is this pattern that distinguishes them from other errors
of inference and pattern recognition. They are not caused by poor data, lack of data,
sampling errors, chance, or failure rates, but are symptomatic of some other confounder.

35Liao and Carbonell (2023) provides an exemplar of how philosophical methodology may be employed to
identify and resolve PMEs when social contexts and non-epistemic factors are playing a confounding role.
This will be especially important for addressing cases of algorithmic biases in data science (Fazelpour and
Danks, 2021; Knox et al., 2023).
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Though well-known in phylogenetics, PMEs are likely widespread—particularly in fields
focused on discovering patterns in large, complex datasets.

Though the focus here has been on developing a general account of PMEs by looking at
exemplar and candidate cases, there are numerous other avenues by which PMEs could
be examined. A broad recognition of PMEs promises to facilitate a better understand-
ing of reasoning and error about complex systems, and to spur a shift towards better
explanations, methods, and treatment protocols in the face of entrenched sub-optimal
commitments.

PMEs may be contrapositives of Gettier cases. In the latter, we draw the right conclusion
for the wrong reasons; PMEs, in contrast, get you to the wrong conclusion but for the
right reasons. They may thus generate epistemic traps. The pattern of support generated
by PMEs replicates at least one form of good reasoning, and, thus, can be particularly
difficult to dislodge.

In many cases PMEs will be diagnosable. One lesson of this from the exemplar case—
long-branch attraction—is that we ought to be at least minimal methodological pluralists.
Especially so if we cannot know ahead of time under which conditions various modes of
inference will generate PMEs. Even when we can know, different methods may perform
better under different conditions. More troubling is how we might be certain that a case
of convergence is not positively misleading. Appealing to an argument by convergence
to establish that we are not making a positively misleading error will simply raise a new
question of whether that argument is itself positively misleading, threatening a recursive
epistemic trap.

Type I errors and false positives are well known and well understood, with well stud-
ied responses for resolving or treating these errors. That may include increasing sample
size or re-sampling, or serially testing to guard against base-rate fallacies, respectively.
Though the treatment for resolving PMEs in both the phylogenetic and clinical medicine
case shared some similarities, more work needs to be done to identify an analogous fam-
ily of responses for resolving PMEs. In the case of phylogenetics, we have also learned
that it may not be a single response but a multi-pronged approach, e.g., identifying and
testing for specific conditions known to generate PMEs; adopting a context-sensitive as-
sessment of multiple methodologies; etc. Both cases also suggest that rather than adding
new data, it may be more informative to review analyses of old datasets when underly-
ing assumptions are updated. If those results are discordant with prevailing views, that
may be an indication that a deeper assessment for PMEs is needed.

Yet, to be a bit more speculative, if social contexts and non-epistemic factors can also gen-
erate (or contribute to) PMEs (as may be the case for the pulse oximeter and spirometer,
Liao and Carbonell, 2023), then we may need more than just statistical or probabilistic
tools to successfully identify and resolve PMEs. This adds a moral and ethical imperative
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to determining whether reasoning errors might be categorized as PMEs. One goal of this
paper is to prompt this sort of research and more.

Nevertheless, PMEs can be dislodged, and the cases above provide insight into what we
stand to gain from a better understanding of how this happens. Diagnosing a PME may
not only permit us to avoid a potentially costly error, but to also enhance our reasoning
about and understanding of complex systems. As such, we should seek to identify a
wide array of PMEs in order to build a rich set of examples for further study. As more
cases are diagnosed across disciplines, our understanding of them—and how to avoid
them—will improve. Philosophers of science are especially well positioned to get out in
front on this and explore the implications and special challenges that might accompany
positively misleading errors.
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