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Abstract

A physically realizable, philosophically grounded, and pedagogically motivated construction of

reference frames in general relativity is presented—one that fully captures the coordinate freedoms

inherent in general covariance. Inspired by Einstein’s original ‘reference mollusk’—a physically

intuitive but limited operationalization of a deformable coordinate system—this work presents a

covariant, observer-based generalization that removes structural constraints such as spatial foli-

ations. In this framework, a swarm of arbitrarily moving local observers assigns coordinates to

nearby spacetime events using four independently and arbitrarily running clocks per observer.

Freely programmable and unconstrained by synchronization or alignment, these clock readings

can reproduce any mathematically admissible coordinate chart. At the same time, their evolv-

ing readings serve as operational labels for events, providing a fully local and physical basis for

spacetime coordinate assignment. The resulting construction yields a smooth and physically trans-

parent generalization of reference frames from special relativity to curved spacetimes—retaining

their operational character without compromising general covariance. It further provides an intu-

itive bridge to standard practices in cosmology and numerical relativity, where coordinate freedom

appears as gauge choice. Beyond offering a concrete realization of operationalism in general rel-

ativity, this framework also serves as a pedagogical model—bridging conceptual foundations with

intuitive accessibility.
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I. INTRODUCTION

A central insight of Einstein’s general theory of relativity (GR) is that only events —

physical coincidences, such as the intersection of worldlines — are directly observable. Ein-

stein’s 1913 “hole argument,” and his subsequent resolution of it, made clear that general

covariance demands a reassessment of the physical significance of coordinate systems. The

essential conclusion is that it is spacetime coincidences—not the coordinate values them-

selves—that carry direct empirical meaning1. This reflects a view also emphasized by Nor-

ton, who argued that coordinate values, while devoid of intrinsic physical meaning, can

acquire empirical relevance when tied to observable coincidences or invariant structures2.

This insight has occasionally been misconstrued as suggesting that assigning operational

meaning to coordinate values constitutes a conceptual mistake. Yet general covariance fully

allows for the use of arbitrary coordinate systems, including those with physical implemen-

tations—so long as their interpretation rests on clear measurement procedures involving

observation events, such as the (near) coincidence of a local observer with the event being

recorded. Bridging the gap between mathematical coordinate freedom and operational im-

plementability remains not only a longstanding pedagogical challenge but a philosophical

one, requiring us to reconcile the abstract freedom of general covariance with the empirical

role of measurement. The framework presented here addresses both concerns: it provides an

explicit realization of coordinate systems as operational constructs and thereby reinforces

the philosophical claim that coordinate values, when tied to observable events, need not be

dismissed as physically meaningless.

Einstein himself recognized the need for operational grounding in the use of coordinate

systems. In his 1917 popular exposition, he introduced a vivid metaphor: the “reference

mollusk”—a deformable, mobile reference body intended to represent a general, non-inertial

frame in curved spacetime4. This image was not conceived as a mathematical abstrac-

tion but as a physical construct—a malleable body populated by observers equipped with

clocks, capable of assigning coordinates through local measurements. Despite its conceptual

richness, the metaphor gained little traction in physics education and found only modest

resonance beyond the discipline5.

While Einstein’s mollusk offers a powerful pedagogical metaphor—one that operational-

izes deformable coordinate systems in curved spacetime—it remains structurally limited:
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mollusk-adapted coordinates implicitly rely on a slicing into spatial hypersurfaces and co-

moving observers with fixed spatial labels. The present work extends this idea into a gen-

eral, coordinate-free framework based on programmable local observers. We adopt a fully

observer-based framework in which spacetime is populated by a freely moving swarm of lo-

cal observers, each equipped with four independently and arbitrarily running clocks. These

clocks—each running at an arbitrary rate and unconstrained by synchronization or folia-

tion—serve to assign coordinate values to nearby events without appealing to abstract field

configurations or spacetime slicing. It is important to understand that these clock read-

ings do not correspond to physically independent measures of time. Rather, the clocks serve

purely to produce numerical values—arbitrary scalar labels defined by observer-programmed

algorithms which can assume the role of general coordinates. The resulting mollusk-inspired

framework manifestly respects general covariance and offers a physically realizable and acces-

sible interpretation of general coordinates—well-suited both for teaching and for clarifying

the foundations of coordinate freedom in GR.

We emphasize an operational stance throughout the exposition of GR. Standard text-

books on general relativity typically begin by emphasizing that global inertial frames, as

defined in special relativity, cannot be extended to curved spacetimes. This limitation

motivates the introduction of curvilinear coordinates and the formal apparatus of pseudo-

Riemannian geometry6–8. However, such treatments rarely offer explicit operational proce-

dures for physically constructing these general coordinate systems. As a result, students are

often introduced to the abstract formalism of general relativity without a fully developed

physical picture that connects also curvilinear coordinates to easily measurable quantities.

While fully realistic reference systems—such as those implemented in experimental physics

or space missions—often involve technical complexities that make them unsuitable for in-

troductory exposition, the proposed swarm of observers offers a compelling compromise. It

is physically realizable in principle, fully general, and still conceptually transparent enough

to illustrate the essential role of observer-based coordinate assignments within the broader

framework of general covariance.

This dual-purpose framework is intended both as a philosophical analysis and as a pedagogical

model. The aim is to bridge the conceptual clarity demanded by foundational discussions

with the accessibility required for effective teaching. To this end, visualizations such as the

“Einstein mollusk” and the freely floating observer swarm are deliberately presented in a
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style reminiscent of scientific popularization. This stylistic choice serves pedagogical clarity

and conceptual accessibility: it serves to make the underlying ideas immediately graspable,

while maintaining their scientific and conceptual rigor.

The presented approach aligns with longstanding philosophical traditions that emphasize

the necessity of linking theoretical structures to concrete observational procedures. Thinkers

such as Bridgman9 and Reichenbach10 underscored the importance of bridging the gap be-

tween formalism and measurement. More recently, Hetzroni and Read11 have highlighted the

interplay between pedagogical strategy and philosophical commitment. Building on this tra-

jectory, recent work has sought to clarify the conceptual status of reference frames in general

relativity by distinguishing purely mathematical coordinate systems from physically mean-

ingful constructions. For instance, Bamonti12 offers a taxonomy based on the dynamical

properties of reference frames and their contribution to the gravitational field via stress-

energy. His examples include dynamical reference frames based on physical fields—such as

scalar fields obeying Klein–Gordon dynamics—that are explicitly coupled to the metric.

By contrast, the present framework introduces no such dynamical coupling: coordinate

values are assigned through freely programmable readings of four arbitrary clocks carried by

each local observer. These scalar quantities are not governed by field equations but function

purely as operational labels, capable of instantiating any mathematically admissible chart,

independent of the observers’ physical state or interaction with the geometry. While formally

reminiscent of scalar fields—each coordinate component being a smooth scalar function on

spacetime—they are not dynamical fields in Bamonti’s sense. Most importantly, they are

physically realizable: they can be instantiated by actual clocks or smartphone-like devices,

unlike hypothetical scalar fields, which have no empirical counterpart available for practical

use. This distinction ensures both empirical accessibility and full coordinate freedom without

introducing additional dynamical structure.

In particular, this approach resonates with earlier philosophical analyses of coordinate

significance, such as Anderson’s influential distinction between absolute and dynamical struc-

tures3. Yet whereas Anderson held that meaningful coordinates must be anchored in the

dynamics of physical fields or matter, the present framework advances this perspective by al-

lowing coordinate values to be freely assigned—independent of the observer’s physical state

or motion—so long as they are operationally tied to observable events. In this way, the

proposed swarm of observers pushes the principle of general covariance to its operational
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limit, while preserving its empirical content.

II. SPECIAL RELATIVITY’S REFERENCE FRAMES

To prepare for general relativity, we begin by revisiting and slightly reframing the con-

struction of physical reference frames in special relativity (SR). The foundational princi-

ple—shared by all relativistic theories—is that only local coincidences of events can be

assigned physically unique meaning. This locality principle therefore also serves as the op-

erational starting point for the formulation of reference frames.

Consequently, even in SR, an “observer” must be understood not as a pointlike abstrac-

tion but as a swarm of local observers, each equipped with measuring devices and capable

of recording only those events that occur in their immediate vicinity. A spacetime diagram,

then, is an operational representation of the totality of recorded measurements: the collec-

tive event data gathered by all these assistant observers who conceptually fill spacetime.

Each local device assigns coordinates—its own clock reading and spatial position—to the

events it directly registers.

Mathematically, these coordinates are typically denoted by xµ with µ = 0, 1, 2, 3, so that

a spacetime event is labeled by x = (x0, x1, x2, x3). The temporal coordinate is given by

x0 ≡ ct̄, where c is the speed of light and t̄ is the local clock reading. The spatial coordinates

are written as (x1, x2, x3) ≡ x̄.

Some introductory texts visually depict such a reference frame as a regular three-

dimensional lattice, composed of idealized rigid rods and locally placed synchronized

clocks13,14. These constructions are designed to illustrate the operational assumptions of in-

ertial frames in SR—such as the Euclidean geometry of space, global clock synchronization,

and the zero-distance idealization between the event and its recording observer.

An equivalent and more locality-focused depiction is shown in Fig. 1. Here, spacetime

events are assigned coordinates by a distributed network of observers, each using their lo-

cally maintained synchronized clocks and pre-established positions relative to others. When

needed, spatial alignment across the network can be re-calibrated by activating orthogonal

laser pulses, which form a transient coordinate grid. This operational picture emphasizes

that it is the observers—and not the coordinate mesh—that serve as the physical basis of

the reference frame.
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FIG. 1. A special relativistic reference frame depicted from an operational perspective.

Once established, a reference frame allows for the measurement of spatial distances, time

intervals, and kinematic quantities by combining purely local observations of events, even

when those events are separated in space and/or time. For example, measuring the length

of a small rigid rod—whether at rest or moving uniformly relative to the frame—involves

identifying two simultaneous but spatially separated events: one recorded by an observer

located at one end of the rod, and the other by a second observer at the opposite end, both

using their synchronized clocks to ensure simultaneity in the frame.

The configuration of free-floating observers shown in Fig. 1 naturally generalizes to mul-

tiple overlapping inertial reference frames, such as frame A (Alice) and frame B (Bob),

covering the same region of spacetime. Each frame is constructed independently, using only

its own network of observers, synchronized clocks, and internal measurement protocols.

As a result, any given spacetime event can be assigned two sets of coordinates—x and

x̃—depending on which frame’s observers perform the local assignment. Because the two
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networks are coextensive, observers in one frame can also access the measurements made by

their local counterparts in the other. This operational comparison allows one to empirically

determine a transformation function:

x̃ = ΛA→B(x). (1)

A striking empirical result is obtained: when two inertial frames A and B are con-

structed independently—each relying solely on its own local observers and synchronization

protocol—the transformation ΛA→B turns out not to be Galilean, as would be expected in

Newtonian mechanics. Instead, it corresponds to a Lorentz transformation (up to trans-

lations), in accordance with the Poincaré symmetry that preserves the form of Maxwell’s

equations. This result is theoretically equivalent to the constancy of the speed of light as

measured in any inertial reference frame — the principle originally postulated by Einstein

and used to derive the Lorentz transformation. In modern terms, this invariance is under-

stood as the Poincaré invariance of special relativity: the spacetime interval between any

two events remains the same in all inertial frames.

Expressing the Poincaré transformation in component form in Einstein notation as

x̃µ = Λµ
νx

ν + oµ, (2)

where the constant four-vector oµ accounts for arbitrary (but physically irrelevant) offsets

in spacetime origins between frames, and introducing the invariant Minkowski metric tensor

ηµν = diag(−1,+1,+1,+1), (3)

the invariance of the infinitesimal spacetime interval ds2 is expressed as

ds2 = ηµν dx
µdxν = ηµν dx̃

µdx̃ν . (4)

These equations involve only the differences in spacetime coordinates between events, and

as discussed above, such differences can be determined through purely local measurements

within each reference frame, using synchronized clocks and known spatial positions. Conse-

quently, the value of the invariant spacetime interval is directly computable from physically

measurable quantities in either frame.
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III. GENERAL RELATIVITY’S REFERENCE FRAMES

Introductory treatments of general relativity typically emphasize that globally inertial ref-

erence frames, as defined in special relativity, cannot be extended to generic curved space-

times. This motivates the transition to curvilinear coordinates, the adoption of general

covariance, and the use of the formalism of pseudo-Riemannian differential geometry. Yet,

during this transition, the analogy between physically realizable reference systems and their

mathematical counterparts often remains conceptually incomplete.

Only part of this analogy is typically developed. The equivalence principle establishes

a local correspondence between a freely falling physical reference frame—realized, for in-

stance, by an idealized observer equipped with rigid, mutually orthogonal measuring rods

and synchronized clocks for temporal measurement—and the mathematical notion of a lo-

cally flat infinitesimal part of a curved manifold M, and the associated tangent space TpM

at a point p ∈ M. However, no corresponding operational framework is typically provided

for constructing general finite coordinate charts on the manifold. The extension from in-

finitesimal inertial frames to arbitrary curvilinear coordinates is usually carried out purely

in the abstract, without offering concrete procedures that could be implemented by in-

dividual observers using only local measurement processes. Pedagogical analogies—when

offered—frequently appeal to cartographic projections, such as mapping Earth’s surface,

but these remain disconnected from the question of how general reference frames might be

physically realized in spacetime. The step needed to complete the analogy—constructing ar-

bitrary reference frames based solely on the data physically accessible to observers operating

independently—is often omitted, or substituted with technically elaborate formalisms. As

a result, the connection between arbitrary coordinate systems defined over finite regions of

curved spacetimes and their operational observability remains underexplained and continues

to call for more accessible and physically grounded introductions.

Even as thorough a textbook as Gravitation15 by Misner, Thorne, and Wheeler can

exemplify this tendency. It begins its treatment of coordinates (pp. 5-10) with a vivid

physical description of events as intersections of worldlines and physical interactions. The

introduction of coordinates is explicitly delayed until events have been described physically.

But it ultimately also does not fully preserve the operational foundation of reference frames.

No physical system of local observers, clocks, or measuring devices is constructed when
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making the leap to event coordinates. Coordinates are not related to physical operations, but

are introduced as abstract ordering devices applied post hoc to an idealized event structure:

Nothing is more distressing on first contact with the idea of “curved spacetime”

than the fear that every simple means of measurement has lost its power in this

unfamiliar context. [...] No numbers. No coordinate system. No coordinates.

[...] To order events, introduce coordinates! [...] Coordinates are four indexed

numbers per event in spacetime. [...] In christening events with coordinates, one

demands smoothness but foregoes every thought of mensuration.

For some students, such remarks may be sufficient to address the acknowledged “fear that

every simple means of measurement has lost its power.” However, given that Einstein’s

mollusk (and in particular its generalization, introduced below) offers a direct and concep-

tually smooth transition from the physical reference frames of special relativity to their

general-relativistic counterparts, entirely omitting it at this stage represents a lost teaching

opportunity. The leap from physical “events” to the abstract notion of purely mathematical

coordinates bypasses an important operational construction.

In what follows, we demonstrate how the extension from SR to GR reference frames can

proceed continuously and transparently, requiring only a few well-motivated generalizations.

A. The Einstein Mollusk

As previously mentioned, the first popular exposition of general relativity4 was written

by Einstein himself, who did not shy away from introducing the vivid operational image of

a physical “reference mollusk”:

What does it mean to assign to an event the particular co-ordinates x1, x2, x3, x4,

if in themselves these co-ordinates have no significance? More careful consider-

ation shows, however, that this anxiety is unfounded [...] For this reason non-

rigid reference-bodies are used, which are as a whole not only moving in any way

whatsoever, but which also suffer alterations in form ad lib. during their motion.

Clocks, for which the law of motion is of any kind, however irregular, serve for

the definition of time. We have to imagine each of these clocks fixed at a point

on the non-rigid reference-body. These clocks satisfy only the one condition, that

9



the “readings” which are observed simultaneously on adjacent clocks (in space)

differ from each other by an indefinitely small amount. This non-rigid reference-

body, which might appropriately be termed a “reference-mollusk”, is in the main

equivalent to a Gaussian four-dimensional co-ordinate system chosen arbitrar-

ily. That which gives the “mollusk” a certain comprehensibility as compared with

the Gauss co-ordinate system is the (really unjustified) formal retention of the

separate existence of the space co-ordinates as opposed to the time co-ordinate.

Every point on the mollusk is treated as a space-point, and every material point

which is at rest relatively to it as at rest, so long as the mollusk is considered as

reference-body. The general principle of relativity requires that all these mollusks

can be used as reference-bodies with equal right and equal success in the formula-

tion of the general laws of nature; the laws themselves must be quite independent

of the choice of mollusk.

A visual representation of this idea is shown in Fig. 2, which generalizes the spatial lattice

of special relativity to a fully flexible reference structure. Local observers, each equipped

with a clock that may run non-uniformly, are distributed across spatial coordinates that are

allowed to warp arbitrarily. These coordinates define a continuous network of physically

distinguishable events without relying on global synchronization or rigid rulers. The surface

shown in the figure represents a two-dimensional spatial slice. Multiple such surfaces are

imagined to be stacked spatially to fill a three-dimensional region, like the layers of an onion

or the nested shells of a matryoshka doll. The mollusk as a whole may evolve in time, with

the shape of each surface changing and clocks ticking at locally arbitrary rates — it is,

metaphorically speaking, “alive and kicking.”

It is worth emphasizing how deeply Einstein’s explanation remains grounded in physical

entities. In his account, events — even taken collectively — do not automatically correspond

to coordinate values. Rather, coordinates indicate the position of an event relative to some

other physical entity acting as a reference frame. This relational view may appear trivial at

first glance, but it is easily obscured when no attempt is made to operationalize a general

physical reference frame for general relativistic coordinates.

Since we are interested in physically realizable reference frames, and because the entire

spacetime manifold M can be covered by a countable collection of overlapping open sub-
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FIG. 2. One spatial surface of an Einstein mollusk, representing a local physical reference frame.

Observers with arbitrarily varying clocks are positioned along nonlinearly deformed spatial coordi-

nates. The surface is one of many spatial layers that, together, define a fully deformable reference

structure. The entire mollusk may change its shape over time.

sets U ⊂ M, we may approximately represent each of those regions U in which spacetime is

probed using a mollusk by a distinct physical Einstein mollusk — that is, a finite, deformable

reference frame constructed from comoving observers equipped with local clocks and mea-

suring devices25. If mollusks are defined on multiple overlapping regions, their respective

coordinate labels must be defined so as to ensure mutual consistency via smooth transition

functions on the intersections of their domains.

A mollusk-adapted coordinate system within U is then given by the coordinate functions

(x0, x1, x2, x3) := (λ(τ, x1, x2, x3), x1, x2, x3), (5)
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where each observer remains at fixed spatial coordinates xi, with i = 1, 2, 3, relative to the

arbitrarily moving mollusk, while the local clock shows λ, which increases monotonically

with the observer’s proper time τ . These functions define a smooth local coordinate chart

on spacetime, i.e., a local diffeomorphism from R4 to U . However, it is important to dis-

tinguish between the mathematical existence of arbitrary local charts—guaranteed by the

manifold structure of spacetime—and the construction of such charts via physical proce-

dures. Mollusk-adapted coordinates form a subclass of all admissible charts, characterized

by their operational origin: they arise from measurements performed by comoving observers,

each recording their proper time (or a monotonic function thereof) and fixed spatial label.

It is crucial to recognize that a mollusk is not merely a physical realization of a coordinate

chart, but a realization that is structurally constrained by its mode of implementation.

A mollusk-adapted chart is more than a smooth diffeomorphism from R4 to a spacetime

region U : it is a chart with built-in metric constraints. Specifically, the coordinate direction

x0 = λ(τ, xi) must be timelike, while the spatial directions xi must be spacelike within the

mollusk’s domain. This restriction is inherited from the mollusk’s realization by a congruence

of comoving timelike observers, each with a single clock and fixed spatial label.

We may therefore ask a sharper question: can the mollusk instantiate any admissible

mathematical chart? Importantly, we are not asking whether a mollusk-adapted chart can

be transformed into any other chart via coordinate change; rather, we ask whether it can

directly represent arbitrary charts through its physical construction. The answer is negative:

the mollusk cannot instantiate coordinate systems that require, for example, null directions,

as found in double-null charts or Eddington–Finkelstein coordinates. In such cases, there

is no way to associate the required coordinate structure with the mollusk’s single timelike

direction and its fixed spatial labeling (see Appendix A).

This limitation reveals a deeper insight: physically implemented coordinate charts typ-

ically carry not only a smooth labeling of events, but also structural constraints inherited

from the physical systems that realize them.

B. The reference swarm of unconstrained observers

To overcome this, and to realize any chart—regardless of its causal or foliation struc-

ture—we require a physical system in which the coordinate labels are fully decoupled from
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the geometry of the observers who carry them. This is precisely what the generalized ob-

server swarm provides: each observer carries four independently programmable clock read-

ings, which serve purely as numerical labels. These can be chosen to reflect any smooth

chart on spacetime, without implying anything about the causal or geometric structure of

the observer’s worldline. The role of the observers’ timelike worldlines is merely to ensure

that spacetime is locally covered by measurement devices; once this coverage is achieved, the

freely programmable clocks can assign arbitrary coordinate values to any point in spacetime,

independent of the observers’ physical motion or causal structure. In this way, the observer

swarm furnishes a physically realizable chart that is free from geometric constraints—a direct

operational realization of the full diffeomorphism freedom of general relativity.

We may arrive at the same insight from a slightly different point of view: we may build

on our earlier shift in special relativity from a rigid lattice to a distributed network of lo-

cal observers (as depicted in Fig. 1), and complete this progression by shifting attention

away from coordinate labels derived from spatial slices. Instead, we regard the observers

themselves—and in particular the information they locally assign—as the primary carriers

of coordinate structure. Specifically, we suggest eliminating any ties to fixed spatial coor-

dinate values by implementing a general physical reference frame in general relativity as

an arbitrarily moving swarm of local observers, each equipped with four independent and

arbitrarily running clocks (replacing any constant readings or fixed spatial positions). The

readings of these clocks provide unique and smooth but otherwise arbitrary numerical labels

to be associated with events observed in the neighborhood of the observer, and together

they define a fully general local coordinate system — not restricted by any geometric struc-

ture such as orthogonality, synchronization, or foliation. For concreteness and clarity we

may imagine that the four clock readings are shown on a single device — for instance, a

smartphone screen carried by each observer — as depicted in Fig. 3.

The proposed generalization thus yields an operational realization of a reference frame

that fully respects general covariance. It introduces no additional structure beyond the

smooth invertibility of the observer-assigned labels and makes no assumptions about slic-

ing, symmetries, or background geometry. Indeed, it remains agnostic even to spacetime

dimensionality (if more or fewer than four numbers are displayed).

Moreover, since the numerical displays of the observers are entirely unconstrained —

evolving arbitrarily in both space and time — the framework naturally accommodates the
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FIG. 3. A swarm, flock or cloud of unconstrained observers fills spacetime without relying on any

foliation. Each observer locally records observed events in a notebook and uses four arbitrarily

evolving numerical labels to index them — for instance, as displayed on a single device. These

values define general local coordinates in a fully covariant, slicing-independent framework.

mathematical structure of an arbitrary atlas on a smooth manifold. The local continuity

of the four numbers ensures that overlapping neighborhoods can collectively form a smooth

cover of spacetime in which chart transitions are realized algorithmically through the con-

sistent labeling of events in intersecting regions.

In more detail, let M be a smooth 4-dimensional Lorentzian manifold, and let U ⊂ M be

an open neighborhood in which we implement our physical reference frame—again assumed

to be sufficiently small to neglect self-gravitational effects and exclude collapse. We define a

local congruence of timelike worldlines by a smooth, future-directed, unit timelike vector field

uµ(x). The integral curves of uµ then define the worldlines of the observers that constitute

the swarm. Let ωp(τ) denote the worldline through point p ∈ U , parametrized by a scalar

parameter τ denoting proper time of the observer as measured by a (fifth) clock which is

no longer arbitrary (e.g. an atomic clock). Associated with this congruence we introduce

four functions Xµ(x) interpreted as the four numerical values assigned to events by local

observers, i.e. the four arbitrary clock readings or arbitrary, algorithmically defined numbers
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displayed on a screen. Because these arbitrary clock readings Xµ(x), with µ = 0, 1, 2, 3, are

local to the observers, they are naturally transported along the worldlines of the congruence.

d

dτ
Xµ(ωp(τ)) = uν∇νX

µ = LuX
µ, (6)

where LuX
µ is the Lie derivative along the vector field uν . This setup is analogous to the

situation in fluid mechanics: the observer worldlines correspond to the Lagrangian viewpoint,

while the quadruples Xµ(x) reflect an Eulerian perspective.

If we model the swarm of observers as a dust fluid (albeit with each “dust” particle

being equipped with a recording device and four arbitrarily running clocks), their energy-

momentum tensor in general coordinates can be approximated as

T µν = ρ uµuν , (7)

where ρ(x) is the mass-energy density of the observer swarm, and uµ(x) is their four-velocity

field. To ensure that the reference frame itself does not distort the results (by acting as a

source), we must conceptually take the limit ρ → 0. Operationally, this can be interpreted

as performing measurements with increasingly dilute distributions of test observers, and

extrapolating the results to the limit of vanishing density. In this way, the reference system

becomes asymptotically passive, serving only to reveal the intrinsic structure of spacetime

without back-reaction.

For the following, the Eulerian description Xµ(x) is preferred because the mapping

X : x 7→
(
X0(x), X1(x), X2(x), X3(x)

)
(8)

can define a physically realized coordinate chart on the region U ⊂ M, mapping events

to coordinate tuples in R4, provided the Jacobian ∂Xµ/∂xν is invertible. We intentionally

use Greek superscripts for both the abstract manifold coordinates xµ and the arbitrary

observer-assigned functions Xµ, to highlight their respective roles as abstract and observable

coordinates. The use of a capital X emphasizes the operational origin — a reference frame

realized physically by measurement procedures. This distinction, while useful here, may

be safely omitted in what follows, since any mathematical coordinate chart x defined on a

region U ⊂ M—for instance, one used in solving the Einstein field equations—can now be

trivially realized on the observers’ screens by choosing the observable coordinates Xµ(x) to

coincide with the abstract coordinates:

Xµ(x) := xµ.
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This construction reflects a fundamental feature of the observer swarm: the coordinate

values carried by each observer need not correspond to physically intrinsic quantities like

proper time or spatial position. Rather, these values can be freely assigned and algorith-

mically updated, allowing the observers to carry abstract coordinate labels that encode

structures not tied to their own physical state. In particular, this freedom allows the repre-

sentation of coordinate systems not adapted to the underlying timelike congruence, including

those based on null foliations, or even formal coordinate singularities such as those encoun-

tered at event horizons. The observers are thus best understood as carriers of coordinate

values—programmable labels that reflect the chosen chart, not the local dynamics of the

observers themselves. More generally, a diffeomorphism between two coordinate systems,

x 7→ x̃(x), corresponds in the operational setting to a transformation between two physically

realized coordinate systems:

X̃µ(X) = x̃µ
(
x(X)

)
, (9)

where x(X) is the inverse of the physically realized chart X : x 7→ X(x), and X̃µ denotes

the new observer-assigned coordinates. This shows that diffeomorphisms appear as trans-

formations between observable coordinate assignments, and that any mathematical chart

or coordinate transformation can be physically realized by a suitably constructed swarm of

observers and their associated quadruples of clock readings.

Once the observer-assigned labels Xµ are identified with a chosen mathematical chart xµ,

it therefore becomes convenient—though conceptually distinct—to use the same notation.

Hence, both the abstract and the physically realized coordinates may be denoted by lower

case notation, i.e. xµ and x̃µ(x), as they share the same mathematical properties and differ

only in their operational interpretation.

Operationally, coordinate transformations can be realized in different equivalent ways.

For example, we may again introduce two interspersed swarms of observers — defining two

independent reference frames, A (for Alice) and B (for Bob) — each covering the same

region U of spacetime. Alternatively, we may choose to assign multiple distinct sets of

four numerical values to each observer within a single swarm. In this case, each observer

carries several coordinate quadruples simultaneously, which may be displayed on two screens

per observer (or a shared screen for both coordinate systems). In all of these scenarios, a

general coordinate transformation between frames is implemented physically by having each

observer record both their own set of coordinate labels x and those of the nearest observer

16



from the other frame x̃. The transformation x̃µ = x̃µ(x) in all of U is then inferred from all

local comparisons.

Accordingly, an infinitesimal coordinate displacement dx̃ in the reference frame A of the

Alice observers is related to the corresponding difference dx in the reference frame B of the

Bob observers via the Jacobian:

dx̃µ =
∂x̃µ

∂xν
dxν . (10)

Again all quantities appearing in Eq. (10) correspond to observable differences: both

dx̃µ and dxν represent measurable differences between the coordinates of two nearby events,

as recorded in two distinct reference frames by the respective swarms of Alice and Bob

observers. The partial derivatives in the Jacobian can be obtained directly from such mea-

sured values using basic linear algebra, or by numerically differentiating the transformation

relation given in Eq. (9). All terms thus admit a concrete operational interpretation — each

reflects an actual measurement process followed by computational analysis.

Although physical laws must be expressed in locally covariant form to ensure consistency

under coordinate transformations, non-covariant expressions—such as coordinate values or

Christoffel symbols—retain operational significance within a fixed reference frame. Their

empirical relevance derives from the fact that they correspond to directly measurable quan-

tities, once the reference frame is specified. For example, coordinate values correspond to

actual numbers displayed on screens in Fig. 3, reflecting measurable quantities within a

physically realized reference frame. These values can be freely chosen, but once assigned,

they constitute real outputs of local measurements.

Such distinctions are easily overlooked when physical constructions of reference frames

are not explicitly considered. Yet they are both pedagogically and conceptually important.

For example, in Rovelli’s terms18, coordinate values and non-tensorial quantities like the

Christoffel symbols qualify as partial observables—quantities that are directly measurable,

even though they are not invariant under diffeomorphisms.

All operations required to verify Eqs. (9)–(10) can be carried out locally by the observers

in the frame. Any quantity computed from coordinates—whether tensorial or not—can thus

be viewed as the result of data processing based on numerical results obtained from physical

operations. Properties like tensoriality can, in principle, be operationally tested.
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C. Measuring the Metric in GR

In special relativity (SR), the flatness of spacetime26 is reflected in the ability to choose

globally rectilinear coordinates in which the metric tensor assumes its canonical Minkowski

form η. Its global constancy ensures that coordinate differences dxµ correspond directly to

physically meaningful intervals, as shown in Eq. (4). In curvilinear coordinates, coordinate

differences dxµ alone are not physically meaningful. To obtain, for example, proper distances

or durations, one must also know the locally varying metric tensor gµν(x), which allows to

extend beyond SR by encoding spacetime curvature. This section shows how this additional

structure can be gently introduced using the operational framework developed so far.

FIG. 4. A GR reference frame consists of a swarm of unconstrained observers traveling arbitrarily

in spacetime, measuring whatever happens in their immediate vicinity. A second reference frame,

in the form of an Einstein elevator, covers an infinitesimal region in space and time in which the

laws of SR hold and can be expressed in the elevator’s special relativistic coordinate system.

Einstein was led to general relativity (GR) by a second stroke of genius: he recognized the
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true reason why all bodies fall with the same acceleration in Galileo’s famous Leaning Tower

of Pisa experiment. Gravitational effects can be locally eliminated by using the coordinate

values of a freely falling reference frame. More figuratively, the interior of an infinitesimally

small, freely falling elevator constitutes a local inertial frame in which the laws of special

relativity (SR) hold—without curvature or gravitational effects—for a very short duration

and within a very small spatial region. This is the content of the equivalence principle.

This empirical insight can be applied to the analysis of any event p with coordinate values

xµ in an arbitrary GR reference frame. In the infinitesimal neighborhood of p, one can always

construct a freely falling Einstein elevator passing through the event, as illustrated in Fig. 4.

Since SR holds locally inside this tiny, transient frame, an orthonormal local SR coordinate

system x̃ can also be constructed—a latticework as in Fig. 1—but now centered on p and

valid only within an infinitesimally small region of spacetime.

For ease of visualization, we assume that the Einstein elevator has no physical walls,

allowing the observers from both reference frames—the general relativistic (GR) frame and

the local inertial special relativistic (SR) frame—to be interspersed throughout the same

region, including inside the elevator. Observers from both systems can thus record the same

events occurring within the elevator. The GR observers assign four coordinate values xµ,

while the SR observers use locally valid coordinates x̃µ. These coordinate systems are related

by a smooth transformation x̃µ = x̃µ(x), which is valid only in a small neighborhood around

the event p, but is otherwise no different from a conventional coordinate transformation.

Operationally, this transformation can be physically realized in the usual manner: each

observer in one reference frame simply records the coordinate values displayed on the device

of their neighboring counterpart in the other frame. Since the x̃µ coordinates belong to a

local SR reference frame, spacetime intervals expressed in these coordinates have immediate

physical significance; in particular, the invariant expression of the interval ds2 = ηµν dx̃
µdx̃ν

remains valid throughout the short lifetime and spatial extent of the Einstein elevator.

By applying the coordinate transformation x̃µ = x̃µ(x) and using Eq. (10), the spacetime

interval can be rewritten in terms of the general coordinates xµ, which alone do not carry

immediate physical meaning:

ds2 = ηµν
∂x̃µ

∂xα

∂x̃ν

∂xβ
dxαdxβ ≡ gαβ(x) dx

αdxβ, (11)
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where we have defined the general relativistic metric tensor by

gαβ(x) = ηµν
∂x̃µ

∂xα

∂x̃ν

∂xβ
. (12)

Once the functional form of the coordinate transformation x̃µ(x) is determined—through

local comparison of observer readings—its derivatives yield the metric components via

Eq. (12), completing the reconstruction from local SR measurements.

Alternatively, one may reconstruct the components of gµν(x) directly from physically mea-

sured infinitesimal displacements dx̃µ in the elevator frame and the corresponding coordinate

differences dxµ in the general frame, using the defining relation gαβdx
αdxβ ≡ ηµνdx̃

µdx̃ν and

standard linear algebra.

If we switch to a different GR reference frame with coordinates x′µ, and construct a

corresponding local SR frame x̃′µ, we again define the metric via local measurements as

ds2 = ηαβ dx̃
′αdx̃′β = g′µν(x

′) dx′µdx′ν . (13)

Since both the original and the new GR frames use the same underlying local SR mea-

surements (up to Lorentz or Poincaré transformations, which preserve ds2), and since both

expressions yield the same invariant interval, we have

gµν(x) dx
µdxν = g′αβ(x

′) dx′αdx′β. (14)

But the coordinate displacements are related via the Jacobian in eq. (10).

Substituting into the left-hand side of eq. (14), we get (since the infinitesimal displace-

ments were arbitrary):

g′αβ(x
′) =

∂xµ

∂x′α
∂xν

∂x′β gµν(x), (15)

which is the transformation law of a (0,2)-tensor. Thus, the metric’s tensorial character

follows from the invariance of ds2 which is operationally defined through local measurements

in overlapping reference frames.

Since the local GR metric gαβ(x) is operationally defined via a transformation from a

local SR coordinate system, it can also be used to analyze causal relationships in the GR

coordinates. For any event p with assigned coordinates xµ in a general reference frame, one

can construct the local light cone by first identifying the standard SR light cone at p in the
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local inertial frame, defined by the null condition

ds2 = ηµν dx̃
µdx̃ν = 0, (16)

and then applying the local coordinate transformation to express these directions in terms

of the GR coordinates. This yields the GR light cone at x, defined by

ds2 = gαβ(x) dx
αdxβ = 0, (17)

whose causal structure thus arises directly from the mapping of the local SR structure into

the general frame.

This provides a powerful practical insight, especially in spacetimes with potentially mis-

leading coordinate labels (such as the Schwarzschild interior). It allows one to determine

unambiguously which coordinate displacements dxα are timelike, spacelike, or null by eval-

uating the associated invariant:

ds2


< 0 timelike,

= 0 null,

> 0 spacelike.

(18)

Regardless of the coordinate names or conventions, the causal character of any direction can

thus be determined locally from the metric.

Slightly more advanced approaches may start from the idea that local light cone structures

could anyway be determined directly through the observation of light rays, without explicitly

constructing any local inertial system. This provides an independent observational route to

determining the local metric structure16. Since null displacements satisfy eq. (17), knowledge

of enough linearly independent null directions dxα, obtained for instance by tracing the

trajectories of different light rays through the same event p having coordinates x, determines

the metric gαβ(x) up to a conformal factor. The remaining scale ambiguity can be fixed, for

example, via a (fifth) clock which is no longer arbitrary but rather has to record proper time

along the timelike worldline of the observer passing through p. While this approach may be

more directly practical, it tends to obscure the conceptual link to the equivalence principle

and the analogy with locally flat coordinate patches in differential geometry.

Regardless of which operational route is chosen—local SR-based construction or direct

causal probing—the same procedure can be repeated (at least conceptually) at each event
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p, q, r, . . . in the reference frame. In this way, one reconstructs the full spacetime-dependent

metric tensor gαβ(x) over the domain of interest.

Once the metric tensor is known throughout spacetime, all geometrical quantities—such

as the connection and curvature tensors—become, at least in principle, derivable from ob-

servable data. The foundational structure of general relativity is therefore rooted in con-

ceptually transparent measurement procedures, based entirely on coordinate readings and

local observations19.

For completeness, we note that the physical framework developed so far already suffices

to describe non-gravitational physical processes in GR coordinate frames. The procedure

is straightforward: such processes are first analyzed in the local inertial SR frame, where

the known laws of special relativity apply for short durations and over small spatial re-

gions. These results are then translated into GR coordinates using the local coordinate

transformation and the metric tensor defined in Eq. (12), as needed.

In this way, locally force-free motion becomes geodesic motion in spacetime, ordinary

derivatives in SR translate to covariant derivatives in GR coordinates, and so forth. More-

over, the notion of a local inertial frame can be formalized a posteriori through the construc-

tion of Riemann normal coordinates x̃ centered at a point p, in which the metric reduces

to the Minkowski form ηµν and its first derivatives vanish20. Related constructions, such

as Fermi–Walker coordinates, show that even an accelerated observer—such as one aboard

a rocket or propelled by a jetpack—possesses an observer-specific momentary rest frame

in which the metric locally approximates Minkowski space. This approximation, however,

holds only at a single point, as the first derivatives of the metric generally do not vanish.

Nevertheless, this completes the conceptual circle: the observer swarm itself is composed of

local observers, each of whom experiences a momentarily Minkowski-like, though possibly

accelerated, description of spacetime27.

It is worth emphasizing, however, that we have so far only scratched the surface of the

mathematical structure of differential geometry. The reason further mathematical devel-

opment becomes useful is not abstract preference, but physical necessity: the local flatness

implied by the equivalence principle is conceptually analogous to the flatness of small patches

on curved surfaces. In this sense, physics has led us naturally to the tools of differential

geometry, not the other way around. This conceptual flow can be obscured in treatments

that begin with a few physical images (such as local SR latticeworks) but then make a rapid
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leap to abstract mathematics (e.g., tangent spaces to curved manifolds), without developing

the underlying physical motivation.

Moreover, since we were forced to engage in local metric reconstruction precisely because

gravity prohibits the existence of a global SR frame, it should come as no surprise that

local variations in the metric tensor gαβ(x) will also play a central role in the gravitational

field equations themselves. It is instructive to contrast this with the case of curvilinear

coordinates in special relativity, which also yield a locally varying metric, but one with a

vanishing Riemann curvature tensor20. Hence, also the operational framework developed

here makes it clear from the outset that any genuine generalization of special relativity to

include gravitation must involve field equations that yield nonzero spacetime curvature.

D. Caveats on the use of observer-based coordinate systems

Before concluding, it is worth noting several important limitations of the physical picture

developed here, in which arbitrarily moving, timelike observers serve as carriers of a general

reference frame via their four coordinate readings.

Although a smooth timelike congruence—a smoothly varying family of non-intersecting

timelike worldlines—can always be constructed locally, such congruences may not extend

globally across spacetime. Geometric features such as horizons, topological obstructions,

or the development of caustics (where worldlines intersect or focus) can prevent any single

congruence from covering an entire region smoothly. This limitation arises independently of

whether observers follow geodesics or are accelerated: even idealized observers with unlim-

ited maneuverability cannot avoid convergence in regions where spacetime geometry enforces

it. For instance, no choice of acceleration or initial conditions can prevent timelike world-

lines from intersecting inside the event horizon of a Schwarzschild black hole, where they

are geometrically compelled to converge.

The limit ρ → 0 in the dust energy-momentum tensor T µν = ρ uµuν ensures that the ob-

server swarm exerts no gravitational influence. When combined with a restriction to suitably

small local patches U ⊂ M, this limit can be safely taken: for small but finite ρ, the swarm

does not dynamically collapse onto itself within such regions. Moreover, for sufficiently small

U , one can also avoid caustic formation due to the curvature of the underlying spacetime.

For larger regions U , however, the development of caustics remains possible as a purely
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geometric effect, independently of the observers’ dynamics or backreaction, as exemplified

by the interior of a Schwarzschild black hole.

Importantly, however, these limitations are not unique to the observer swarm: they affect

all physically realized coordinate systems. In each case, the physical influence of the refer-

ence structure may be considered negligible by taking appropriate limits, yet the underlying

spacetime curvature can still prevent the existence of a global reference frame. Nevertheless,

spacetime can be probed within suitably chosen finite regions U at any regular point of

the manifold M, provided that topological defects and singularities are excluded. In this

sense, the construction of physical reference frames permits unrestricted local exploration of

spacetime structure throughout the manifold.

In addition, while going beyond the classical framework of this paper, quantum field-

theoretic considerations may impose further constraints. Even in flat spacetime, accelerated

observers detect particle-like excitations in the vacuum, as exemplified by the Unruh effect.

In curved spacetimes, even inertial (geodesic) observers may register such detections, de-

pending on the global properties of the spacetime and the choice of vacuum state21. This

raises the subtle issue that particle content—and thus part of what an observer records as

physical—can depend on the observer’s trajectory.

The observer swarm is intended to faithfully register all physically occurring phenomena,

from classical events to quantum effects such as Hawking radiation. However, it is not always

theoretically possible to cleanly separate observer-induced effects (such as Unruh radiation)

from those attributable to the ambient spacetime structure alone. All such phenomena are

real in the operational sense that they affect detectors and can be measured. Nevertheless,

their correct interpretation may require contextual knowledge of the spacetime—including

its global structure and vacuum specification—as well as corresponding artifact reduction

to distinguish motion-induced signals from external physical processes.

Thus, while the picture of an arbitrarily moving swarm of observers with freely pro-

grammable coordinate values is conceptually powerful and operationally flexible, its ap-

plication must be accompanied by care. Additional assumptions—such as the restriction

to suitably small local patches U ⊂ M, or the ability to distinguish observer-dependent

detector artifacts from physical phenomena attributable to the underlying spacetime struc-

ture—may be required to ensure completeness and consistency in more general settings.

Again, however, these considerations are not specific to the observer swarm: they apply
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equally to all physically realized reference frames.

CONCLUSION

The foundational concepts of reference frames, general curvilinear coordinates, and the

metric tensor have been systematically grounded in explicit, physically realizable operations

performed by local observers. This yields a fully general yet conceptually transparent op-

erational foundation for general relativity, one that avoids reliance on abstract geometric

structures introduced a priori.

The presented framework elucidates how fundamental concepts of relativity—such as

coordinate assignments, spacetime intervals, and the metric tensor—can be regarded as

observable in principle, regardless of their transformation properties. As such, it may serve

as useful complementary reading to ongoing debates about the physical interpretation of

observables in both classical and quantum gravity18,23,24.

The construction also modernizes and generalizes traditional pedagogical models—such

as the spacetime lattice of special relativity and Einstein’s “reference mollusk” in general

relativity—into a manifestly diffeomorphism-invariant operational scheme. A swarm of arbi-

trarily moving observers, each equipped with four freely evolving numerical labels (obtained

from four arbitrarily running local clocks, or smartphone-like displays showing four algorith-

mically changing numbers), suffices to define a general coordinate system without conceptual

or mathematical overhead. Aside from smoothness, no structural assumptions such as 3+ 1

foliations are required.

The framework developed here may also complement mathematically oriented presen-

tations of general relativity by offering a fully general yet physically grounded operational

starting point. The observers record events and function as carriers of completely uncon-

strained coordinate labels, enabling the representation of arbitrary charts—including those

based on null foliations or singular coordinates—thereby reinforcing the full coordinate gen-

erality of the physical construction.

By beginning with elementary yet fully general procedures, the present approach directly

addresses a pedagogical concern first articulated by Einstein4 and later echoed in Gravitation

by Misner, Thorne, and Wheeler15: the fear that general relativity lacks a conceptually

simple account of how spacetime concepts can be endowed with operational meaning.
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Indeed, by formulating the construction in terms so elementary that they may appear

obvious in retrospect—a perception that is itself part of its pedagogical value—the proposal

serves not merely a teaching function, but also stands as a full proof-of-concept realization

of the operationalist philosophical stance within general relativity.

Appendix A: Mollusk Limitations compared to Eddington–Finkelstein coordinates

This appendix provides a concrete example of why mollusk-adapted coordinates cannot

instantiate every mathematically admissible chart, even locally. We focus on Eddington–

Finkelstein (EF) coordinates, which are based on a null foliation, and show that such a chart

cannot be physically realized by a mollusk composed of comoving timelike observers with

fixed spatial coordinates and a single arbitrary clock.

The Einstein mollusk is often presented as a general coordinate system that deforms

freely in space and time, implemented by a continuous distribution of comoving observers.

However, we must pay close attention to what this physical realization implies. A mollusk

is not merely a smooth physical instantiation of a chart that assigns numbers to spacetime

points. Rather, it is a chart realized by a physical congruence of timelike worldlines, each

labeled by fixed spatial coordinates and equipped with a single clock that defines the time

coordinate. This construction imposes additional geometric constraints that go beyond the

mathematical smoothness of charts.

In particular, the coordinate system defined by a mollusk-adapted frame takes the form:

(x0, x1, x2, x3) := (λ(τ, x1, x2, x3), x1, x2, x3),

where λ increases monotonically with proper time τ , and the observers are located at fixed

values of (x1, x2, x3). The coordinate vector corresponding to x0 is aligned with the direction

of increasing proper time along the observers’ worldlines and must therefore be timelike.

Conversely, the spatial coordinates xi remain constant along each observer’s path and are

thus orthogonal to it, implying they must be spacelike. These are physical constraints

imposed by the implementation of the mollusk through timelike observers.

This constraint can be expressed directly at the level of the metric tensor gµν(x) in

mollusk-adapted coordinates. Since the coordinate x0 = λ(τ, xi) increases monotonically
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with proper time and the observers remain at fixed xi, the metric must satisfy:

g00(x) < 0 (timelike direction) (A1)

g0i(x) = 0 for all i = 1, 2, 3 (no cross-terms from fixed spatial labels) (A2)

Now consider the Schwarzschild metric in standard coordinates t, r, θ, ϕ:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (A3)

where dΩ2 = dθ2 + sin2 θ dϕ2. This chart and its associated metric satisfy the mollusk

conditions outside the horizon (r > 2M): the mollusk can be used as a physical reference

frame in this situation.

But in ingoing EF coordinates:

v = t+ r∗ = t+ r + 2M ln
∣∣∣ r

2M
− 1

∣∣∣ , (A4)

we have

ds2 = −
(
1− 2M

r

)
dv2 + 2dv dr + r2dΩ2, (A5)

which violates mollusk constraints: gvr ̸= 0 and gvv becomes null on the horizon.

Thus, EF coordinates cannot be instantiated by mollusk observers. EF charts require a

null direction, while mollusks require a timelike one. This reflects a structural incompatibility

due to the way the mollusk coordinate system is physically realized. It is therefore not

sufficient that the mollusk can model the local geometric situation in some coordinate system;

to be truly covariant in the operational sense, it would need to reflect the complete freedom

of coordinate choice—which it cannot.

This highlights that, while mathematically any smooth coordinate chart is admissible,

only a subset can typically be physically realized by mollusk observers who are by definition

subject to built-in causal and metric constraints.

By contrast, the observer swarm can assign arbitrary numerical values to cover such

charts, since the labels are decoupled from the observers’ physical motion.

The mollusk realizes only a constrained subset of charts.
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The observer swarm realizes them all.
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