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Abstract

Quantum logics are non-classical logics defined from the mathematical formalism of quantum mechanics.
While they are conventionally used to model inferential processes in physics, their scope of application
is potentially much broader. We argue that quantum logics can serve as a framework to model human
cognition, as their semantics seem able to capture not only how people make inferences about quantum
mechanics, but also how they reason in general. We begin by defining quantum logics from an algebraic
perspective in a classical first-order setting. Next, we present findings from cognitive science that suggest
these logics are apt to characterize human reasoning. We then consider how such a connection between
quantum logics and cognition contributes to longstanding philosophical debates about the epistemological
status of logic and the problem of adoption. Finally, we discuss how cognitive applications of quantum
logics could advance our understanding of human psychology and even quantum foundations.
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1 Introduction
The expression “quantum logic” can take on a variety of meanings. It can refer in a
general and informal fashion to the distinguishing features of quantum mechanics,
but also to particular interpretations of this theory (Griffiths, 2003), or more
technically to the study of quantum-logical gates (Dalla Chiara et al., 2018).
In this paper, we follow a tradition dating back to Birkhoff and Von Neumann
(1936), and take quantum logic (QL) to mean a formal logical system, ideally
equipped with syntax, semantics, and associated calculi (see also Stachel, 1976).
Because there can be many such systems, each with its own semantic variations,
we speak whenever appropriate of QLs in the plural. The purpose of this paper
is to argue that, while QLs have been traditionally used to formalize inferential
processes in physics, they can serve as a modeling framework beyond this domain.
In particular, we consider the use of QLs in models of human cognition and
examine philosophical consequences of this interdisciplinary application.

In launching their quantum-logical program, Birkhoff and Von Neumann
(1936) were moved by similar aims. They wanted to generalize the mathematical
formalism of quantum mechanics, which is essentially a non-classical theory of
probability, to make it independent of physical phenomena it was originally
meant to describe. In doing so, they hoped to solve problems connected to the
interpretation of physical results, exposing them as problems not inherent to the
theory but rather stemming from the use of classical logical tools. With this in
mind, they set out to “discover” new logical structures that could play a role
in quantum mechanics and potentially other physical theories intractable for
classical logic. They identified suitable structures in the algebras arising from
self-adjoint operators in complex Hilbert spaces. Therefore, they resolved “to find
a calculus of propositions which is formally indistinguishable from the calculus
of linear subspaces with respect to set products, linear sums, and orthogonal
complements—and resembles the usual calculus of propositions with respect to
and, or, and not” (Birkhoff and Von Neumann, 1936, p. 823). However, their
research program was prematurely abandoned because of technical and formal
difficulties (Dapprich, 2016), and interest in QL waned until the 1950s.

Around this time, the launch of new axiomatic projects in physics (Mackey,
1963) and the diffusion of philosophical frameworks like metascientific struc-
turalism (Balzer et al., 1987) made QL intriguing again from the perspective
of philosophers and physicists. Philosophers were looking for a standardized
approach to quantum theory that would help them pursue ontological programs
consistent with quantum results. At the same time, physicists sought a more rig-
orous understanding of quantum mechanics to further develop its mathematical
formalism and clarify issues connected to its interpretation. The converging needs
of these communities became especially urgent after hidden-variable accounts of
quantum mechanics were rejected on formal and experimental grounds (Giuntini,
1991). The second half of the century hence witnessed a revival of QL, among
other systems arising from philosophically grounded non-classical semantics, e.g.,
fuzzy, intuitionistic, paraconsistent, and non-monotonic logics (Cattaneo et al.,
1993; Da Costa and Krause, 1994; Engesser et al., 2007b).
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Today, QLs are actively studied but remain primarily concerned with modeling
statements about physical systems, often translating them directly from natural
language. For example, these logics would be used to formalize the statement
that a photon has a particular spin, momentum, position, range of positions,
etc. This focus on physical applications has remained practically unchanged
since QL’s inception: indeed, the state of a physical system as determined by
experimental measurement is what Birkhoff and Von Neumann (1936) originally
intended quantum propositions to express. The authors aimed to generalize
the formalism of quantum mechanics to make it applicable to other theories,
but the theories they had in mind as candidates for application were invariably
physical. Their goal was “to discover what logical structure one may hope to find
in physical theories which, like quantum mechanics, do not conform to classical
logic” (Birkhoff and Von Neumann, 1936, p. 823).

In this paper, we take a different stance. We frame QLs as a general formalism
where propositions do not concern a physical system ab initio, but more broadly
a system whose behavior is non-classical. We define a standard formalism for
QLs using classical first-order logic (FOL) as a metalanguage, which makes it
easier to expand the scope of possible applications. To illustrate just how far this
can extend beyond physics, we review recent developments in cognitive science,
where quantum probability is at the core of a fast-growing research program
(Pothos and Busemeyer, 2022), and consider the use of QLs to formalize cognitive
processes. We report key results from field and laboratory experiments that are
difficult or even impossible to reconcile with classical logic, whereas QLs could
provide a unified modeling framework.

Our proposal to apply QLs outside physics has interesting philosophical
implications. It is especially relevant to debates connected to the epistemology of
logic, which focus on the question of whether logic is empirical. Birkhoff and Von
Neumann’s (1936) effort to extract a logic from quantum mechanics suggests this
is the case, as the authors aimed to infer logical principles from empirical evidence.
The philosophical discussions that followed, accompanying and motivating QLs,
hinged precisely on the fact that these logics were “discovered” from the results
of physical experiments (Bacciagaluppi, 2009; Dummett, 1976; Putnam, 1969,
1974). In his contributions to these exchanges, Putnam (1974) argued it is
possible, if not outright necessary, to “think quantum-logically” about certain
physical results. Thus, some classical logical principles on which people rely
to make inferences in everyday life, according to classical logicians, should be
unexpectedly suspended to reason specifically about propositions in quantum
mechanics.

The question of whether logic is empirical can now be considered settled, owing
to Kripke’s (2024) oft-cited argument, dating back to 1974, that people are bound
to think classically and it is impossible to depart from classical logic by adopting
a non-classical one, including QL. This argument gives rise to what is known as
the adoption problem (Birman, 2024; Boghossian and Wright, 2024) and stymied
Putnam’s (1974) proposal. In recent years, however, cognitive science suggested
that the notion of quantum-logical reasoning is not so outlandish (e.g., Aerts,
2009). If it were the case that people think quantum-logically, and in a sense even
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more radical than envisioned by Putnam (1974), then the adoption problem could
be readily settled: QLs need not be adopted because we already reason according
to them. They are already part of our logical endowment, though we might be
unaware of it, so the question of whether they can be adopted is moot. This gives
us an opportunity to revisit longstanding epistemological issues and decouple
them from questions that purely concern the behavior of physical systems. The
prospect of deploying QLs to formalize cognitive processes, reopening debates
that are widely considered settled, represents the most important contributions
of this paper to the logico-philosophical literature.

Section 2 presents what we refer to as the standard formalism of QLs. We
define the algebraic structure and the main logical connectives, among which
implication requires special attention. We outline this formalism in a deliberately
neutral way, using axiomatic definitions within a classical first-order setting, so
as to leave the door open to philosophical positions aligned with either logical
monism (Kripke, 2024; Suszko, 1976) or pluralism (Beall and Restall, 2000).
Section 3 moves to cognitive science and reviews the core motivations and findings
of the quantum cognition program, suggesting possible routes to applications
of standard QLs. Section 4 delves into philosophical debates arising from QLs’
interpretation: in particular, we discuss the contrasting positions of Putnam
(1969, 1974) and Kripke (2024), hoping to reignite conversations about the
empirical character of logic, the adoption problem, and the “quantumness” of
logical languages built from physical results. Finally, Section 5 makes a case for
applying QLs to human cognition and offers concluding remarks.

2 Standard QLs

2.1 Preliminaries
The relation between QLs and quantum mechanics can be easily understood in
analogy to that between classical logic and Newtonian mechanics. In the classical
case, any physical system maps to a point σ in a phase space Σ, with each σ ∈ Σ
representing a unique state of the system. We usually assume Σ = R6, so that σ is
a real sextuple with three values for position and three for momentum components.
A system’s state can always be ascertained by experimental measurement, with
pure states corresponding to maximal information about position and momentum.
A classical experimental proposition p captures a natural language statement
such as “momentum along the vertical axis lies in the [0, 1] interval,” or “position
on the horizontal plane is exactly (1.5,−3.6).” These propositions are what
Birkhoff and Von Neumann (1936, p. 828) termed “physical qualities.” In the
language of probability theory (e.g., Kolmogorov, 1933) they are more generally
referred to as events. Every p is associated with a subset x ⊆ Σ consisting of all
the pure states in which p holds true. The powerset P(Σ) is taken to represent
all the possible experimental propositions.1

1Because some states are practically indistinguishable from one another, we usually restrict
P(Σ) to a subset with empirical meaning, such as the set of all measurable subsets of Σ. This
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This classical setup enables an easy translation between physical measure-
ments and logical propositions. We reserve, as usual, the symbols ∧,∨ for classical
conjunction and disjunction, and ∩,∪ for the associated set-theoretic operations
of intersection and union. For quantum-logical operations, we introduce ⊓,⊔ to
represent the meet or infimum, which corresponds to set-theoretic intersection,
and the join or supremum, which does not correspond to set-theoretic union.
Finally, we use ¬,⊥ to represent classical and quantum negations, the latter
being defined, as we shall see, by way of orthocomplementation. The set of all
classical physical propositions p yields a Boolean algebra

⟨P(Σ),∩,∪,¬,⊆, 1, 0⟩.

We can choose any standard axioms for these operations: if we choose, as is
common, Zermelo-Fraenkel set theory with the axiom of choice (ZFC), then the
operations are based on classical logical connectives: a∪ b := {x : x ∈ a∨ x ∈ b},
a ∩ b := {x : x ∈ a ∧ x ∈ b}, and a ⊆ b := {x : (x ∈ a→ x ∈ b)}.2

We can switch seamlessly between the propositional logic associated with
this structure and its physical interpretation. Moreover, logical propositions and
their interpretation can be directly transferred into a Kolmogorovian probability
space. There is always a balance in these transitions because all information and
properties of operations are preserved. The law of excluded middle holds and
pure states decide any event, because every proposition is associated with either
the subspace x of the probability space or its complement.

What is the counterpart of this formalism in quantum theory? As explained by,
e.g., Dalla Chiara and Giuntini (2002), QL is based on linear algebraic operations
that constitute the main mathematical machinery of quantum mechanics. For a
quantum system, pure states no longer represent events in which we have maximal
information about the state of a system but rather probability distributions over
such events.3 Wave functions determine which events occur upon measurement,
assigning truth values to experimental propositions. This raises a number of
critical questions: (i) how to represent experimental propositions in this quantum
setting; (ii) how to handle the transition between the physical interpretation of
set-theoretic operations and their logical counterparts; (iii) whether information
is lost in this transition, and if so, what this loss implies. With respect to (i),
the answer was already provided by Birkhoff and Von Neumann (1936). In QL,
experimental propositions correspond to closed linear subspaces of a complex
Hilbert space H, which replaces the classical phase space Σ. With regard to (ii)
and (iii), the answer requires us to first introduce the algebraic structure that
serves as the basis for a new propositional logic (Svozil, 1998).

distinction, however, is not relevant to our present purposes.
2Note that ⊆ denotes an algebraic operation and not, as usual, a relation. This notation is

conventional in the literature on QLs, including Foulis and Randall (1981), Svozil (1998), and
Dalla Chiara and Giuntini (2002), among others.

3What these distributions mean exactly and what they represent philosophically are some
of the thorniest issues related to the interpretation of quantum mechanics and QLs. However,
the mathematical framework we are about to introduce, which is used to formalize them, is
one of the few points largely agreed upon by philosophers of physics.
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In the first paragraphs of their foundational paper, Birkhoff and Von Neumann
(1936) emphasized that their effort to build a new logic was motivated not so
much by the novelty of particular logical notions but rather by the fact that these
notions were “presupposed” by a formal physical theory. Philosophically, this
remains the key distinction between QLs and other non-classical logics: QLs were
not constructed ad hoc to model an ideal situation or to study their properties
as mathematical objects. Instead, their non-classical semantics were “discovered”
within the natural interpretation of a formalism developed in response to the
demands of experimental data.

Consider two pure states ψ1, ψ2 and their linear combination or wave function
Ψ = c1ψ1 + c2ψ2, where c1, c2 ∈ C. A system in state Ψ verifies with probability
|c1|2 the experimental propositions associated with ψ1 and with probability |c2|2
those associated with ψ2. Suppose that both ψ1 and ψ2 assign probability 1 to
a proposition p, and that Ψ is also a pure state. In this case, Ψ also assigns
probability 1 to p and experimental propositions are read, under arbitrary
linear combinations, as closed subspaces of H (Dalla Chiara and Giuntini,
2002). But how does one move from these physical states to their algebraic
representations? The natural way is to take the set of all closed subspaces x ∈ H
as the representation of all possible events and take the class C(H) as the domain
for the quantum algebra. Now states are no longer points, as in the classical
case, but complex functions acting as vectors over C. Among these vectors we
define addition, scalar product, and an inner product ⟨·|·⟩ which, following Svozil
(1998), is a complex function in H×H such that:

1. ⟨x|x⟩ = 0 iff x = 0.
2. ∀x ∈ H (⟨x|x⟩ ≥ 0).
3. ∀x, y, z ∈ H (⟨x+ y|z⟩ = ⟨x|z⟩+ ⟨y|z⟩).
4. ∀x, y ∈ H, c ∈ C (⟨cx|y⟩ = c⟨x|y⟩).
5. ⟨x|y⟩ = ⟨y|x⟩∗.
6. If xn ∈ H ∧ n ∈ N ∧ limn,m→∞⟨xn − xm|xn − xm⟩ = 0, then

∃x ∈ H
(
lim
n→∞

⟨xn − x|xn − x⟩ = 0
)
.

In the resulting algebraic structure, logical operations require a reading that
is not always set-theoretic. In particular, negation is defined via orthocomple-
mentation: if x is a subspace of H, then its orthocomplement x⊥ is the set of
all vectors orthogonal to every element of x. Formally, ψ ∈ x⊥ ≡ ψ⊥x ≡ ∀ψ′ ∈
x(⟨ψ,ψ′⟩ = 0). Let Hx⊥ be the closed linear subspace associated with x⊥. We
can introduce the quantum negation of x as the class {y : ⟨y|x⟩ = 0 ∧ x ∈ Hx⊥}
of subspaces y ∈ H. Conjunction is defined by set-theoretic intersection: the con-
junction of two propositions p, q corresponding to subspaces x, y is represented
by the infimum or meet, x⊓ y, given by the class Hx⊓y := {z : z ∈ Hx ∧ z ∈ Hy}.
Disjunction is defined not by set-theoretic union but by the geometric operation
of span. This is because the union of two closed subspaces is not necessarily a
closed subspace. Hence, the disjunction of two propositions p, q is represented
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by the span or join x ⊔ y of associated subspaces, which is not x ∪ y but rather
the smallest subspace that includes x ∪ y. The closure of the span is given by
the class Hx ⊔Hy := {z : z = c1a+ c2b : c1, c2 ∈ C∧ a ∈ Hx ∧ b ∈ Hy}. A closed
subspace representing a system in C(H) can be an element of Hx ⊔Hy without
belonging to either one of Hx and Hy, because Hx⊔Hy includes not only vectors
in the union of these two subspaces but also their linear combinations. This
causes the failure of distributivity between disjunction and conjunction in the
set of linearly closed subspaces of H. Thus, in QLs, meet and join in general do
not distribute over one another.4

In the classical case, the logical operations of conjunction, disjunction, and
negation provide an adequate basis for logical connectives from which all other
operations can be defined. In particular, they can be used to define a classical
material conditional → which is needed to represent conditional statements. In
QLs, the classical definition of implication in terms of negation and disjunction
is not satisfactory. Indeed, how to represent conditionals is an open question in
this literature (Dalla Chiara and Giuntini, 2002; Hardegree, 1974). For now, it
suffices to note that we must start from the partial order relation underlying the
definition of C(H). In the next section, we look at the algebraic structure obtained
from the operations above, and then, following Dalla Chiara and Giuntini (2002),
we consider some minimal criteria for a notion of quantum conditional.

2.2 Standard QLs and conditionals
To introduce QLs algebraically, we begin with a bounded lattice, impose some
constraints to obtain an ortholattice, and then restrict distributivity to end up
with an orthomodular lattice, which serves as the algebraic counterpart of C(H).5
We begin by defining B as a poset, i.e., a set endowed with a partial-order relation
⊑, having top and bottom elements 1, 0, and satisfying ∀a ∈ B(0 ⊑ a ∧ a ⊑ 1).
Any pair of elements in B has an infimum and a supremum, so the partial
order corresponds to a bounded lattice. We define a new orthocomplementation
operation ⊥ to obtain the algebra

⟨B,⊑,⊥, 1, 0⟩.

This is an ortholattice. For some authors (e.g., Dalla Chiara and Giuntini, 2002),
an ortholattice is already sufficient to define a simple QL, termed orthologic.

Although it can be easy to work with an ortholattice, orthologic is not
characteristically quantum because it cannot be extracted directly from the closed
subspaces we use to represent physical systems. Moreover, we must introduce

4In recent literature, there have been attempts to reconstruct the formalism of quantum
mechanics while retaining the classical meet and join operations, and therefore distributivity
(Griffiths, 2003, 2014). Other authors took a different route, proposing to relinquish even
more classical principles than distributivity, motivated by a heuristic approach to quantum
mechanics. These proposals have been developed at the metalogical set-theoretic level (e.g.,
Krause, 2010), but they depart from the standard approach to QLs we take here.

5We do not consider Hilbert spaces of infinite dimensionality, but see Engesser et al. (2007a)
for a suitable definition as quasilattices. We also note that an alternative way to introduce QLs
is using the set of projectors over H isomorphic to the orthomodular lattice we define here.
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a weaker form of distributivity to capture the behavior of the span operator.
Therefore, we require ∀a, b ∈ B

(
a ⊓

(
a⊥ ⊔ (a ⊓ b)

)
⊑ b

)
, and its equivalents:

1. a ⊑ b⇒ b = a ⊔ (a⊥ ⊓ b).
2. a ⊑ b⇔ a ⊓ (a ⊓ b)⊥ = 0.

This makes the lattice orthomodular and, in general, non-Boolean. What we call
“standard QL” is the propositional logic determined by this lattice. It is already
clear at this point why it can be convenient to speak of QLs in the plural: we
have not yet finished presenting the basic structure and we already have two
logics. Even more reasons to use the plural will materialize soon, when we come
to the issue of conditionals. As we shall see, any interpretation of conditionals
we can obtain from the poset relation in H turns out to be anomalous in some
way (Dalla Chiara and Giuntini, 2002; Svozil, 1998).

With this in mind, we are now in a position to define the quantum algebra
analogous to the classical one introduced in Section 2.1:

⟨C(H),⊓,⊔,⊥,⊑, 1, 0⟩.

Given this structure, or equivalently, given the isomorphic structure generated
over P (H) based on projection operators and their lattice-theoretic counterparts,
we obtain the nondistributive orthomodular lattice. This allows us to represent
the measurement of quantum properties like spin and to algebraically model
experiments conducted with interferometers, double slits, or other devices.

It is worth remarking, as Randall and Foulis (1981, Example 9.7) previously
did, that there are significant difficulties in providing a direct lattice-theoretic
interpretation of certain operations required to capture quantum phenomena,
such as the tensor product, which is needed to model entanglement. Dvurečenskij
(1995) offered a valuable perspective on the technical discussions involved. Still,
there exists a vast literature on this subject (Svozil, 1998) and formal tools for
characterizing the tensor product within our quantum algebra do exist. The
simplest among them is the following: assuming that each subspace in C(H)
corresponds to a physical system and defines a lattice, we can use direct product
between lattices as algebras and characterize the tensor product operation
through the categorical product, in the category of lattices, just as horizontal
sum would represent the categorical coproduct. First, we define a pasting
operation between blocks, i.e., quasi-classical Boolean algebras we identify with
subalgebras of the lattice. Second, we distinguish between local and global
measures within the global lattice, so that every block is locally measurable but
non-commeasurable blocks are not globally definable. Non-commeasurable blocks
can then be grouped together or pasted into a larger propositional structure that
is generally non-Boolean. This corresponds to what in quantum mechanics is
obtained via the tensor product of Hilbert spaces.

Other difficulties arise with the introduction of a suitable conditional. Let us
pause for a moment here to consider a philosophical nuance. It is common in
QLs to try and force an interpretation of the conditional defined via the poset
relation that somehow resembles an if-then clause in natural language. However,
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we do not find this desirable. In fact, such an interpretation is questionable even
in classical logic. The paradoxes of material implication have been extensively
discussed (Ajdukiewicz, 1956; Anderson and Belnap, 1975; Grice, 1989; Jackson,
1991), spurring the development of non-classical logics that aim to better capture
the features of natural-language conditionals (e.g., Cooper, 1968). Yet we do not
necessarily want standard QLs to model natural language. Recall that Birkhoff
and Von Neumann’s (1936) philosophical motivation was precisely that one
“discovers” these logics, rather than building them for a purpose. Therefore, we
strive to detach the conditional connective based on the partial order relation
generated in the lattice from its interpretation as an implication.

With this in mind, the simplest way to introduce a conditional would be
via the class Hx→y := {Hx ⊑ Hy}. This conditional, however, is not truth-
functional, and the classical inter-definition ϕ → ψ ≡ ¬ϕ ∨ ψ does not hold.
If we were to force this and define the conditional by ϕ → ψ := ¬ϕ ∨ ψ, we
would not end up with a reasonable implication-type connective. Orthomodular
lattices need not be even relatively pseudocomplemented: given two elements
a, b ∈ B, a maximum d such that a ⊓ d ⊑ b does not necessarily exist in B. In
light of this, Kalmbach (1983) proposed five possible binary algebraic operations
↷ satisfying a ⊑ b⇔ a↷ b = 1, each leading to a different logic. We view these
as versions of the same standard logic, so we call them standard QLs. Among
these operations, it has become common to introduce the Sasaki hook (Smets,
2001) as the most suitable candidate:

a→ b := a⊥ ⊔ (a ⊓ b) .

We call two elements a, b of the orthomodular lattice compatible if and only
if a = (a ⊓ b⊥) ⊔ (a ⊓ b) and the subalgebra generated by {a, b} is a Boolean
algebra. We then can add the conditional criterion: for a and b compatible,
a → b = a⊥ ⊔ b. Finally, we introduce a weaker version of the import-export
principle: for a and b compatible, c ⊓ a ⊑ b⇔ c ⊑ a→ b.

2.3 Interpretation problems
In standard QLs, elementary propositions can be informally read as natural
language statements of the form “if we measure physical property A, we observe
the result α” (Dalla Chiara and Giuntini, 2002; Stachel, 1976; Svozil, 1998).
We call A an observable and define it as a self-adjoint operator in H, i.e., a
Hermitian matrix such that ⟨Ax|y⟩ = ⟨x|Ay⟩. We call α an eigenvalue of A. We
must remark that while this interpretation of propositions is widespread, it is
not at all binding nor does it reflect the underlying motivations of standard QLs.
An observable need not correspond to a physical measurement. This is often
assumed to be the case, but only for historical reasons connected to QL’s origin
as the “logic of quantum mechanics” (Birkhoff and Von Neumann, 1936). We
can carry out an analysis of the logical formalism without ever even settling on
a conventional meaning for quantum propositions.

If we define propositions directly from the natural language we use to interpret
quantum-mechanical results, we risk erroneously grounding them in experimental
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criteria, or worse, in purely psychological or phenomenological interpretations.
For example, if we assert that “in a Mach-Zehnder interferometer, a photon does
not follow any specific path” as an informal reading of particular properties of a
quantum system, it becomes exceedingly difficult to construct an interpretation of
the logical proposition. Such an endeavor would ultimately depend on contentious
philosophical concepts, like intuition or phenomenology.

By contrast, in standard QLs we restrict ourselves to closed subspaces in C(H)
as logical propositions or atoms, eschewing explicit natural-language readings. We
share this position in the present paper. As noted before, we build standard QLs
using no more than FOL, and neither QLs nor the underlying calculus of linear
subspaces seem to provide an intuitive interpretation of the orthomodular lattice.
The absence of a clear natural-language interpretation is one of the reasons
why Birkhoff and Von Neumann (1936) spoke of logical notions presupposed
by a mathematical formalism that waited to be “discovered.” This led to the
argument, to which we turn in greater detail below, that logic is an empirical
discipline (Putnam, 1969). Indeed, clarifying what QL’s presupposition involves
is a suitable way to sketch the debate on whether logic is empirical.

For the purpose of interpretation, this agnostic approach seems not only
convenient but also desirable. The original aim of Birkhoff and Von Neumann
(1936) was to model inferential processes in physics that surprisingly presuppose
non-classical notions, which is easier given a physical interpretation of QL’s
algebraic structure. However, our aim in this paper is different: we detach QLs
from physics and recast them simply as non-classical logics linked to algebraic
structures defined by axioms alternative to those of Boolean algebras. The devel-
opment of these logics was historically motivated by physics, but the connection
may end there. In this more general approach, propositions are formally repre-
sented as closed linear subspaces of H and remain strictly mathematical objects.
This prevents interpretative issues that affect QLs’ physical applications—for
example, how to use closed linear subspaces within the definition of physical
systems. Only if we ground QLs onto informal interpretations do we encounter
an ad hoc characterization of non-classical semantics, as typically occurs in
applications of non-classical logics. And only if we assume that the set C(H)
reveals some privileged aspect of physical reality do we render the problem of
the epistemological status of logic inherent to QLs. But taking C(H) rather
than natural language as the propositional basis, and dissociating it from quan-
tum mechanics, allows us to avoid both commitments. We find this approach
especially appropriate given our intention to introduce QLs from FOL.

The important point above can be restated as follows: we face interpretative
issues if we either use natural language as the foundation for quantum propositions
or assume that, for some reason, the scope of QLs is restricted to physics. We
sidestep these issues by characterizing QLs within FOL as non-classical logics
based on a peculiar algebra, where distributivity is replaced by orthomodularity.
These logics do not have any special relationship with physics. We limit the
construction of QLs to the algebraic counterpart of the orthomodular lattice
and avoid any natural-language interpretation. This is helpful because there are
domains where QLs could be successfully applied and which have nothing to do
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with quantum mechanics. Only if we try and force a direct logical translation of
natural-language statements—for example, by requiring that the satisfaction of
a given property for a particular physical system correspond to some first-order
sentence—do we incur interpretative problems. In our approach this does not
happen, because the system and its properties are not simple elements of the
new logic but complex formulas that already belong to FOL.6

When it comes to switching between the algebra and its interpretation, the
greatest difficulties arise when trying to read basic operations through which logi-
cal connectives are defined. Some of these operations are set-theoretic and can be
expressed directly in our chosen metalanguage, i.e., classical logic. For example, in
FOL semantics, our quantum-logical conjunction ϕ⊓ψ would be the set-theoretic
intersection of two subspaces, Hϕ and Hψ. Therefore, we can take it as an abbre-
viation of the first-order sentence: ∀x ((x ∈ Hϕ ∧Hψ) ↔ (x ∈ Hϕ ⊓Hψ)). Other
connectives, however, correspond to more complex geometric operations, such
as orthocomplementation and span. Because these are not set-theoretic, they
require us to extend the models in which we work. If we try to skip FOL and work
directly with QLs, logical objects end up belonging to different model-theoretic
levels and we have to make ad hoc decisions about how to adapt the language,
as previously done to accommodate conditionals. By working with FOL at a
metalevel, instead, we avoid this problem and the potential loss of information
in the logical interpretation of the algebraic structure.

We remark that the fact C(H) can be interpreted as the algebraic characteri-
zation of a non-classical logic does not mean we must take it as some kind of
logical atom or indefinite element. Its geometric interpretation over the field of C
in Birkhoff and Von Neumann (1936) well illustrates this point. The meta-theory
on which we build C(H) over C is ultimately the standard meta-theory consisting
of FOL and ZFC. It is classical, not in an Aristotelian but in a Fregean way. We
introduce algebraic operations that give rise to non-classical logical connectives,
but in our view, these operations merely serve to abbreviate classical sentences.
Perhaps this was not readily apparent one hundred years ago, when Birkhoff
and Von Neumann (1936) introduced QL, because the mathematical tools upon
which said operations depend were not very well understood. We are now aware
that the application of an operator that rotates a quantum state is logically
classical in all of its terms: the set of projectors over H is isomorphic up to our
algebra based on C(H). The same holds for orthocomplementation and span,
which remain within the operations of the probability space. In our view, it is
crucial to recognize not only that classical logic is present at a metalevel (Finn,
2021), but also that quantum-logical operations are, in a sense, classical.

To be more specific, they are classical in that we define them as algebraic
operations interpreted geometrically over linearly closed subspaces of H using
nothing but classical logic and proceeding axiomatically. They may be considered
non-classical because we allow the definition of nondistributive semantics. This is
the root of the purported tension between QLs and classical logic that motivates

6In this sense, we would be situated within the models of any standard set theory, no matter
which one we choose and whether we state it in second order to avoid axiomatic schemata.
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the debate on whether logic is empirical (Putnam, 1969; Bacciagaluppi, 2009;
Kripke, 2024). We believe this tension rests on this dual nature of quantum con-
nectives: classical in the sense that they are reducible to first-order axioms, and
non-classical or “quantum” in the sense that they are presupposed as elementary
operations within the quantum formalism.

This claim is highly relevant to a philosophical debate involving Hjortland
(2017), Williamson (2018), and Horvat and Toader (2024). For Williamson (2018),
the rejection of classical mathematics, including Kolmogorovian probability
theory, and of the classical logic that governs it may have internal or external
motivations. In QLs, the motivation is external as classical mathematics fail to
explain empirical results. An interesting exchange begins when the author attends
to Hjortland’s (2017) “isolationist strategy” (see also Field, 2008), according to
which the principles of classical logic are embedded in mathematics, but domains
that are not mathematized or mathematizable call for non-classical logics. The
possibility of isolating these domains, at least theoretically, gives the strategy its
name. But for Williamson (2018, p. 401) this strategy is “too optimistic about
the prospects of isolating mathematics from logical deviance in non-mathematical
discourse. [Isolationists] overlook the capacity of pure mathematics to be applied.”
He offers a few examples, such as the use of quantifiers in non-mathematical
contexts, and then considers the possible isolationist response of limiting classical
logic to pure mathematics. In the end, however, he finds that “[this] lazy strategy
does not work: mathematics must be redeveloped from scratch within the
non-classical framework” (Williamson, 2018, p. 415).

A response to this argument against non-classical logics, QLs included, can be
found in Horvat and Toader (2024). These authors argue that there is no tension
between the application of classical mathematics in a domain, e.g., quantum
mechanics, and the use of non-classical logics in that domain. Such a tension
could, for Williamson (2018), escalate to an inconsistency, forcing proponents of
non-classical logics to either rebuild mathematics on non-classical foundations or
give up classical mathematics entirely. But Horvat and Toader (2024) point out
that the tension is only apparent and the escalation can be avoided, because the
mathematical tools commonly applied in quantum settings, which follow classical
logic, and the formalism of QLs are mutually compatible. This resonates with
our claim in this paper that QLs can be defined using no more than FOL as
a metalanguage, although Horvat and Toader (2024) stop short of admitting
homogeneity between the two formalisms at a metalevel.

Our main point of divergence from Horvat and Toader’s (2024) position is
that precisely this compatibility generates interest in the relationship between
QLs and classical logic. We add nuance to Williamson’s (2018) argument by
suggesting that the tension between the application of classical mathematics and
the use of QLs is rooted in something deeper than just applied logic, and should
be traced back to Birkhoff and Von Neumann’s (1936) claim to a discovery. To
Horvat and Toader’s (2024) response, instead, we add that the compatibility
of classical logic and QLs is the source of genuine philosophical surprise. If
they were incompatible, we would be simply dealing with logical frameworks
competing for quantitatively or qualitatively better applications.

11



In light of this debate, the present paper takes a further and somewhat more
dramatic step. Having introduced QLs from a classical first-order setting, we
entertain the possibility of using QLs to formalize inferential processes outside the
domain of physics. More concretely, we focus on processes pertaining to human
cognition. Such an interdisciplinary application is feasible in principle because
we did not give C(H) any physical interpretation. This leads to a refutation of
the working hypothesis, embraced by Williamson (2018) and shared by Horvat
and Toader (2024), that we can “switch interchangeably between a logic’s origin
and its intended domain of application, as the two typically coincide” (Horvat
and Toader, 2024, p. 2). Indeed, QLs were originally meant to formalize physical
phenomena but we now consider applying them to something radically different.
We also note that if QLs could be used to formalize cognitive processes, their
application would not be limited to domains that are non-mathematized or non-
mathematizable, as Hjortland’s (2017) isolationist position suggests. We return
to this point later: for the moment, it suffices to note that QLs, as abstract and
domain-independent formalisms, are compatible with the mathematical tools
commonly used in quantum mechanics, formalized via classical logic, regardless
of differences in their motivations and origins.

3 Thinking quantum-logically

3.1 Quantum cognition
We mentioned that, in Williamson’s (2018) view, the rejection of classical logical
principles in QLs is motivated by an empirical fact, i.e., classical mathematical
tools are unable to describe the behavior of some physical systems. We also
mentioned that what distinguishes QLs from other non-classical logics is the fact
that it was not deliberately built but “discovered.” Birkhoff and Von Neumann’s
(1936) opening paragraphs emphasized not just the novelty of QL but also its
necessity to quantum mechanics. In this sense, QLs were peculiar from their
very inception, being formalisms that no one expected to find at the core of
our best physical theory. This makes the question of whether logic is empirical
(Putnam, 1969) philosophically legitimate. Indeed, QLs are motivated by the
observation or “discovery” that the classical law of distributivity fails.

Though the debate on whether logic is empirical is considered settled, we
contend it could be reopened. This would be especially germane if one happened
to find a new domain of application that is far removed from quantum mechanics
but where empirical results nonetheless point to the failure of distributivity. We
could be surprised to learn that beneath these results lies a non-classical logic,
just as Birkhoff and Von Neumann (1936) were surprised to find non-classicality
at the core of a physical theory. The application of QLsin this new setting
would support the argument that pure logic has an empirical character, and
hopefully renew philosophers’ interest in a substitutive project that replaces
distributivity with a weaker law—orthomodularity—as envisioned by Putnam
(1969, 1974). Interestingly, such a domain may have been recently identified in
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cognitive science (Aerts et al., 2013; Busemeyer and Bruza, 2012; Pothos and
Busemeyer, 2022; Wang et al., 2013). Not only is this far removed from quantum
mechanics, it is also surprisingly close to everyday experience.

The identification of this promising new domain was not happenstance. The
“unreasonable effectiveness” (Wigner, 1960) with which quantum mechanics
explain the behavior of physical systems caused many to wonder over the years
whether similar effectiveness could be achieved by redeploying the underlying
formalism to other fields of science. This is not just a philosophical whim: from
a technical standpoint, non-physical applications of the quantum formalism have
always seemed feasible, even to the founding fathers of quantum mechanics (Bohr,
1958; Schrödinger, 1944). Indeed, by the time it was apparent that quantum
theory would be empirically successful, Von Neumann’s (1932) axiomatization
had already made this theory independent of physical phenomena. These axioms
made it clear to physicists that what they had discovered was essentially a new
theory of probability, different from the classical one (Kolmogorov, 1933) but
just as broad in its scope. Since then, the interdisciplinary applications proposed
for the quantum formalism have been many and extremely diverse, especially
in the social sciences (Khrennikov, 2010; Wendt, 2015). Among these, perhaps
none attained as high a degree of legitimacy and mainstream popularity as
psychological research on quantum cognition (see Pothos and Busemeyer, 2022,
for a review). We discuss this research program here as a testament to QLs’
potential to apply far beyond the conventional domain of physics.

We underscore that our proposal to apply QLs to formalize cognitive processes
is novel. Until now, interdisciplinary applications of the quantum-mechanical
formalism, in cognition and elsewhere, have only ever been attempted with the
raw mathematical formalism. Therefore, while the probability theory at the heart
of quantum mechanics has been successfully exported to non-physical domains
(see, e.g., Pothos and Busemeyer, 2013), the logic of quantum mechanics has not.
To our knowledge, quantum-logical operations outside physics have never been
explicitly outlined, nor have their philosophical consequences for the debates
mentioned in the foregoing section ever been explored.

3.2 Motivations
Quantum cognition is a psychological research program that relies on quantum
probability theory as a framework to better understand human rationality (Pothos
et al., 2017). This contrasts with most research in psychology, which relies on
classical notions of probability (Chater and Oaksford, 2000; Oaksford and Chater,
1998, 2007). We reiterate, however, that quantum cognition does not involve the
use of QLs as an alternative to classical logic, and unlike quantum probability,
QLs remain foreign to cognitive science. We find this surprising for several reasons.
First, logic is a discipline explicitly devoted to the study of rational inference and
its application to cognitive processes is widely acknowledged as valuable (Fodor
and Pylyshyn, 1988). Second, there is a natural connection between quantum
probability and QLs as they are based on the same algebraic structure. Indeed,
the probabilistic interpretation of quantum mechanics, grounded in Born’s (1926)
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rule and Gleason’s (1957) theorem (see Pitowsky, 2006), is based on the set of
projectors isomorphic to C(H). Various factors may have contributed to QLs
remaining outside the toolbox of cognitive scientists, even as the currency of
quantum formalisms increased, but we suspect that the historical styling of QLs
as “logics of quantum mechanics” due to Birkhoff and Von Neumann (1936)
contributed to making these logics less visible and interesting.

Even without QLs, cognitive psychologists have been increasingly witnessing
the power of quantum theory to illuminate aspects of human rationality and
inference that proved impervious to classical explanations. Before research on
quantum cognition took off, there were two main routes to modeling cognitive
processes. The first, termed rational analysis (Oaksford and Chater, 1998), builds
on classical mathematical principles to characterize human thought processes.
According to this view, reasoning boils down to a probabilistic calculus that is
rational to the extent it conforms to Kolmogorov’s (1933) axioms. This includes,
for example, the law of total probability, which follows from distributivity.7
This approach is attractive because it enables the formalization of cognitive
phenomena on the basis of well-understood mathematical rules. However, there
is a price to pay in that rationality becomes computationally demanding, which
does not sit well with the longstanding psychological intuition that humans are
cognitive misers and their capacity for rational inference is limited (Simon, 1990).
This motivates the second route, known as the heuristic approach (Gigerenzer
and Gaissmaier, 2011; Kahneman et al., 1982), which denies that rationality
means conformity to a probabilistic calculus and considers inference “rational” if
it is successful in everyday life (Gigerenzer, 2000).8 In this view, people do not
abide by the rigorous calculus of a formal theory. Rather than seeing demanding
computations through, they resort to cognitive shortcuts and rules of thumb,
making inferences that are probabilistically incoherent but fast, easy, and usually
good enough (Gigerenzer and Goldstein, 1996; Kahneman, 2011).

This second approach has many merits. It explains why human thought pro-
cesses sometimes violate classical rules of inference (e.g., Tversky and Kahneman,
1983), which from the perspective of rational analysis can only be seen as a failure
of reasoning. It also echoes Simon’s (1990) idea that rationality, in the classical
sense, is rendered impractical by cognitive limits to which humans are subject
(Gigerenzer and Goldstein, 1996; Kahneman, 2003). As an alternative to rational
analysis, however, the heuristic approach can be criticized for being ad hoc and
difficult to formalize.9 It is not very parsimonious either, as dozens of cognitive
shortcuts were proposed over time to account for various kinds of deviations
from classical rationality. A model of cognition that makes so many provisions
can feel uncomfortable. This is where quantum theory comes in, as a framework
for cognitive modeling that is mathematically grounded, like rational analysis,

7Kolmogorovian probability is bound to Boolean algebras and thus to classical logic.
8From a logical point of view, this parallels the pragmatic turn and its criticism of classical

logic’s application to ordinary discourse, which led to the development of non-classical logics
like Cooper’s (1968).

9The application of logic to the heuristic proposal can only be effective on a case-by-case
basis. Moreover, it will be constrained by issues pertaining to linguistic relativity.
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but capable of accommodating deviations from classical principles (Busemeyer
et al., 2011). These are explained by quantum phenomena like incompatibility,
contextuality, entanglement, superposition, and interference.

The quantum approach to cognition aims to explain how people draw infer-
ences by translating cognitive tasks into computational procedures, positioning
itself at what cognitive scientists term the “algorithmic level of analysis” (Love,
2015; Marr, 1982). Crucially, no claim is made as to how these procedures are
implemented in the brain. In particular, there is no assumption that quantum-
mechanical interactions take place anywhere in neural substrates. The approach
only presumes that experiments performed on a cognitive system, e.g., questions
presented to a human subject in a laboratory, can be represented as observables
in a Hilbert space just like measurements in quantum mechanics. To emphasize
how different this is from actual quantum mechanics, where observables are given
a physical interpretation, cognitive applications of the quantum formalism go by
different names, such as generalized quantum models (Atmanspacher et al., 2002)
or quantum-like models (Khrennikov, 2010). Over time, it has become common
to group them under the header of quantum cognition (Pothos and Busemeyer,
2022). In what follows, we discuss in greater detail how this research program
helped cognitive psychologists overcome persistent empirical problems. In doing
so, we want to outline what it would mean to “think quantum-logically,” not in
the limited sense of how to make inferences in quantum mechanics (Putnam,
1974), but in the broader sense of how to make inferences in ordinary life.

3.3 The case for QLs
There are several reasons to consider quantum formalisms, including QLs, suitable
for cognitive applications. In coming up with quantum mechanics, physicists had
to grapple with new and unfamiliar ways to think about probability, abandoning
the set-theoretic axiomatization of Kolmogorov (1933), which remains standard in
Newtonian mechanics, for a new axiomatization based on self-adjoint operators
(Von Neumann, 1932). An analogous development is underway in cognitive
science, where quantum probability was hailed as a solution to problems that
have long beset the discipline (Pothos and Busemeyer, 2013). This approach
has been empirically successful, as we will see, but even before starting to yield
promising results it received endorsements from the physics community. Bohr
(1958) famously argued that quantum theory could be relevant to cognitive
processes: the very concept of incompatibility, which he introduced to physics
in 1928, may have originated in psychology some 40 years prior (Holton, 1970).
Physicists’ familiarity with mathematical formalisms enabled them to translate
this concept into a formal theory, and in this more rigorous form, the concept is
being reintroduced to cognitive research (Wang and Busemeyer, 2015).

The link suggested by Bohr (1958) between quantum theory and cognition did
not only inspire psychologists, however. Even in physics it sowed new perspectives
that eventually led to a deeper understanding of quantum foundations. Indeed,
some of the key constructs of quantum mechanics, such as quantum states,
notoriously lend themselves to different interpretations. One of these, which
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captures the imagination of lay audiences and physicists alike (Von Baeyer,
2013), holds that quantum states are a purely psychological construct. They do
not objectively exist: instead, they should be taken to represent beliefs held by
an experimenter about the outcomes of potential measurements. In a nod to
psychology, proponents of this interpretation claim that “the physical law that
prescribes quantum probabilities is indeed fundamental, but the reason is that it
is a fundamental rule of inference—a law of thought” (Caves et al., 2002, p. 5).
Human cognition, it seems, offers extraordinarily fertile ground for applications
of QLs. These logical systems are uniquely suited for the analysis of inferential
processes in a quantum setting. There are, in particular, five characteristics of
human cognition that are difficult if not impossible to handle for classical logic
or probability theory, but which fit very naturally in a quantum framework. We
explain them below and provide examples from empirical literature.

3.3.1 Incompatibility

To begin with, human inference is subject to order effects (Wang et al., 2014).
We can ask questions of a cognitive system, much like we can measure the
position and momentum of a physical system, only to find out that the answers
depend on the sequence in which questions were asked. Suppose we asked a
college student whether she would like to go on a trip with her friends during
the weekend, and immediately afterward asked whether she feels ready for an
exam coming up next week. The answers she gives to this sequence of questions
could differ from those she would give if we had asked first about the exam
and then about the trip. This order dependence is the mark of incompatibility,
i.e., non-commutativity of observables. As with measurements of position and
momentum, events corresponding to possible answers to some pairs of questions
are impossible to represent in the same probability space, so they cannot be
observed simultaneously. They can only be observed sequentially, and there is
no reason why different sequences should yield the same outcomes.

Order effects seem widespread in cognitive processes. In an oft-cited survey
conducted by Moore (2002) about the perceived honesty of two politicians, Bill
Clinton and Al Gore, people were more likely to answer yes to the question
of whether Clinton is honest if they were previously asked the same question
about Gore, compared to the case in which the Clinton question came first. This
survey made ripples in psychology because of its societal implications: when
interviewing subjects, pollsters seldom consider the order in which they ask
questions, but the order they choose could end up influencing elections. Similar
effects have been documented in the evaluation of medical evidence by doctors
(Bergus et al., 1998) and legal evidence by members of a jury (Kerstholt and
Jackson, 1999). It is unsettling to think that one can receive a different diagnosis
or sentence depending on the order in which documents are arranged in a pile,
but such seems to be the nature of human cognition.

Classical logic and probability theory cannot easily account for order effects
because they can only represent sequential measurements in the same prob-
ability space through set-theoretic intersection, which is commutative. As a
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result, different sequences return the same outcomes. It could be possible to
accommodate order effects in classical theory by adding events to the Boolean
algebra that obtain only in the case of particular sequences, but this makes the
algebra exponentially larger and unlikely to be useful for predictive purposes.
Quantum formalisms, instead, elegantly account for order effects by representing
sequential measurements as the product of self-adjoint operators, which do not
generally commute. In QLs, non-commutativity is allowed by the orthomodular
structure of the algebra, which may include various Boolean subalgebras where
events behave classically, but events corresponding to the outcomes of different
questions are not necessarily in the same subalgebra. Therefore, compatibility
is possible but not required. This alone would be a compelling reason to argue
that QLs can model human reasoning better than classical logic.

3.3.2 Contextuality

Human thought processes can be extremely sensitive to features of the environ-
ment, or context, in which they unfold (Bruza et al., 2023). In other words,
asking someone the same question in different situations can lead to different
answers. This sensitivity, termed contextuality, is a key principle of quantum
mechanics, rooted in the fact that physical systems interact with an experi-
menter’s measurement instruments. As a result of this interaction, the mere act
of measuring changes the state of a system, making the state before measure-
ment fundamentally unknowable. This behavior is consistent with psychological
research on the constructive nature of human beliefs and attitudes (Lichtenstein
and Slovic, 2006; Schwarz and Bohner, 2001). There is much empirical evidence
that the way people respond to experimental questions depends on font (Op-
penheimer and Frank, 2008), formatting (Alter and Oppenheimer, 2008), and
other seemingly trivial factors that can be considered part of a psychologist’s
measurement apparatus. Changes in responses that are due to manipulation of
these factors indicate that people form opinions on the fly, based on whatever
information is available at the time, as opposed to having underlying opinions
that are simply “read out” during measurement.

Evidence of contextuality can be found in Hatchett and Schuman’s (1976)
study of White Americans’ attitudes toward African Americans. This revealed
that subjects tend to express more positive opinions of African Americans
when the interviewer is Black rather than White. In principle, this could mean
the subjects are racist and feel greater pressure to disguise their beliefs before
someone who is directly offended. It turns out, however, that including the names
of popular African Americans such as Oprah Winfrey or Michael Jordan in a list
of individuals shown to subjects in the course of an unrelated task is sufficient
to elicit more positive responses (Bodenhausen et al., 1995). This occurs even if
subjects stay completely anonymous when expressing their opinions. Changes in
their reported attitudes can be attributed to exposure to the names of well-liked
public figures, which changes the information they access when formulating a
response. Thus, experimental questions do not bring to light stable properties of
a cognitive system, or beliefs that already exist and simply wait to be revealed,
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but properties that emerge through the very act of measuring.
Models based on classical logic and probability theory cannot explain why

context exerts a constructive influence, because from a classical standpoint
asking a question does not create information but merely records it. Classical
measurements detect properties of a system, so-called hidden variables, that are
assumed to be already there, even though there might be uncertainty about them.
In Section 2, we acknowledged this feature of classical models by saying that,
in these models, pure states are points in a phase space that involve maximal
information and decide all experimental propositions. In a quantum model,
however, asking a question both creates and records information. Pure states
are vectors in a Hilbert space and do not specify the values of variables but
probability distributions over them. Specific values obtain if and when their
measurements are taken, but never exist otherwise.

Contextuality is not only a key feature of quantum probability but also
of QLs, where the possibility of hidden variables was ruled out very early by
Von Neumann (1932). Indeed, “the denial that there are hidden variables is
fundamental to quantum logic” (Stairs, 1983, p. 578). Hence, QLs are better
suited than classical logic to capture the constructive nature of inferences. The
choice to model cognitive states as vectors in a Hilbert space rather than points in
a phase space also resonates with current approaches to knowledge representation
and natural language processing, which characterize meaning by way of semantic
spaces. These are effectively Hilbert-space models (Bruza and Cole, 2005).

3.3.3 Entanglement

Psychological research finds it extremely challenging to study cognitive systems by
decomposing them—that is, by reducing them to constituent parts or subsystems
to be examined in isolation. For example, it is difficult to decouple perception
from memory (Barsalou, 2008, 2010), or to activate particular areas of memory
without simultaneously activating others, even if the information they store is
distant and unrelated (Bruza et al., 2009). Similar issues of non-decomposability
arise in quantum mechanics: a photon passing through a beam splitter breaks
down into two parts, of which one is reflected and the other transmitted, but
it is impossible to analyze these parts independently. Measurements performed
on the one immediately affect the other, which is surprising, especially if in the
meantime these parts traveled far away from each other. Einstein et al. (1935)
dubbed this phenomenon “spooky action at a distance,” and expected the sheer
absurdity of it to disprove quantum mechanics. But as was subsequently shown,
first theoretically (Bell, 1964) and then empirically (e.g., Aspect et al., 1981,
1982), subsystems of a quantum system can be bound by nonlocal correlations
that are forbidden in classical models and which can produce action at a distance.
These correlations are referred to as entanglements.

If parts of a physical system are entangled, analyzing them as if they were
independent makes the system’s behavior appear inexplicable. Like photons,
cognitive systems consist of entangled subsystems, as evinced by studies on
word associations. It was found, for example, that mentioning the word “trout”
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causes people to think about trouts, but also about related concepts like fishing
and fish in general (Nelson et al., 2004). Likewise, mentioning “right” brings to
mind the concept of right, but also related concepts of correct, left, and wrong.
Nelson et al. (2003) mapped thousands of such free associations to test two
competing hypotheses: one based on the classical assumption that correlations
are local, and another allowing nonlocality. The local hypothesis requires human
thought to travel along word-to-word links and to do so more slowly when links
are indirect, because there are related concepts in the middle. The nonlocal
hypothesis, instead, allows thought to traverse associated words in synchrony
and without going through links, i.e., at a distance, as a result of which indirect
links matter just as much as direct ones. Experimental results supported the
nonlocal hypothesis, suggesting that concepts are entangled.

Classical logic does not deal well with this evidence. If the algebraic structure
of experimental propositions is Boolean, correlations can only be local (Pitowsky
and Svozil, 2001). In contrast, no provision is made about locality in QLs,
where the absence of distributivity makes the structure generally non-Boolean.
This is because experimental propositions form an orthomodular lattice, not a
distributive one. In Section 2.2, we introduced an operation that pastes together
distributive sublattices or blocks into a single orthomodular structure, where
distributivity no longer applies. This operation allows us to model the tensor
product of Hilbert spaces, on which physicists and cognitive scientists rely to
model entangled quantum systems (Aerts, 2009; Aerts and Sozzo, 2014; Sozzo,
2015). While locality remain possible in blocks, which correspond to Boolean
subalgebras, it is not required everywhere. This makes a rather strong indictment
of classical logic. It is not just that QLs can formalize cognitive processes in
a simpler and more natural fashion; rather, some cognitive processes can be
formalized only by QLs because they are classically intractable.

3.3.4 Superposition

Much like quantum processes in physics, everyday human inference can be
fundamentally and inherently random (Busemeyer et al., 2020). Both classical
and quantum models allow for randomness, but in classical ones, randomness is
only epistemic. It reflects lack of knowledge about a system’s true state, which is
at any rate assumed to be definite. In principle, epistemic randomness could be
completely eliminated by increasing the precision of measurement instruments,
making a classical system deterministic. This is impossible in quantum systems
because randomness is connatural to a quantum state and will be part of the
system for as long as this is undisturbed by measurement, no matter how precise
the instruments. If we fire a photon gun at a screen, for example, the photon hits
the screen at a random location, but this is not merely because we are uncertain
about its trajectory. Rather, the photon behaves as a wave that is everywhere
with different amplitudes. It only behaves as a particle when it hits the screen,
but before then, its position and therefore its state are indefinite.

It turns out that eliminating randomness is not possible in cognitive systems
either. Picture someone considering a choice between two attractive options, say,
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two good restaurants or two lucrative investment opportunities. In one scenario,
this person is explicitly asked what her choice is, and some time later she is
asked how confident she is a given option is superior. In another scenario, she is
only asked to rate her confidence in one of the options, without being previously
asked to make a choice. This is the general setup of an experiment performed
by Kvam et al. (2015), who found that people’s confidence in a particular option
differs across the two scenarios. In other words, asking people to make a choice
affects the degrees of confidence they subsequently report.

This behavior cannot be explained from a classical perspective because the
dynamics of classical systems require a process of evidence accumulation in favor
of one or another option to follow a particle-like evolutionary path. At any point
in time, a person may be asked if she favors one option or the other, but this
should have no impact on the future trajectory of her beliefs. Her current level
of confidence in a given option is simply read out from the underlying state
of her cognitive system, i.e., its location along the trajectory, which may be
unknown and thus epistemically random but is nonetheless definite. From a
classical perspective, if a projectile is launched against a target, photographing
it while it is in flight does not change where it eventually lands.

This is different in quantum mechanics, where a trajectory simply does
not exist. A process of evidence accumulation will not yield a definite level of
confidence about an option that can be read out, but a distribution over many
levels of confidence. One of these will realize, just like rolling a die will allow only
one of its faces to show up. In the terminology of quantum theory, this indefinite
state of the system is referred to as a superposition. Asking the subject what
her current confidence is by instructing her to make a choice, as in Kvam et al.’s
(2015) first scenario, forces the superposition to collapse to a definite state, and
if the process of evidence accumulation continues, the system evolves from there.
The superposition in which it previously was is destroyed. If the subject is not
asked to make a choice, however, the superposition persists. This is why the
second scenario results in different levels of confidence.

The capacity to represent this special kind of uncertainty makes quantum
formalisms uniquely suited to represent cognitive processes in which people
feel ambiguous or conflicted about a prospective choice, but suddenly become
confident once a choice is made. In QLs, superposition is represented via the
join operation, which yields the closure of the span of subspaces corresponding
to alternative outcomes. This includes not only the union of these subspaces,
but also the space generated by linear combinations of vectors belonging to said
subspaces, i.e., superposed states. No analogous representation is possible in
classical logic, where the join corresponds to set-theoretic union.

3.3.5 Interference

Last, but not least in importance, cognitive processes cannot be considered
rational in a classical sense because they appear to violate axioms of classical
probability (Busemeyer et al., 2011). The rules of inference prescribed by
classical axioms, e.g., Kolmogorov’s (1933), are so often violated in psychological
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experiments that “irrational” behavior has been argued to be the norm rather
than the exception (Gigerenzer and Goldstein, 1996; Kahneman et al., 1982).
One of the most frequently cited examples involves alleged violations of Savage’s
(1954) sure-thing principle, one of the tenets of classical decision theory. This
holds that, if an outcome is preferable in a certain state of the world and it is also
preferable in the complementary state of the world, then it should be preferable
if the state of the world is unknown. Consider again our earlier example about
a college student and her exam. Suppose the student already took the exam
but does not know yet if she passed or failed, and now she is being offered
the opportunity to buy tickets for a vacation at a discounted price. The offer
expires soon, so the student must decide quickly. Classical logic would lead us
to expect that if she would buy the tickets knowing she passed and knowing she
failed—though possibly for different reasons—then she should buy the tickets
even if she does not know the exam’s result.

Tversky and Shafir (1992) analyzed this hypothetical situation in experiments
with actual college students and found that most would buy the tickets knowing
they passed and knowing they failed, but not if they do not know. The same be-
havior was observed in a two-stage gambling game where players were instructed
to make a first bet and then asked whether they would make another. Before
making this decision, some players were told that they won the first bet, others
were told that they lost it, and others yet that the result was still pending. Most
players opted to make a second bet knowing the outcome of the first, whatever
this would be, but not if the outcome was pending. In a separate study (Shafir
and Tversky, 1992), the authors considered a Prisoner’s Dilemma game in which
players must decide to cooperate or defect given knowledge or uncertainty about
the action of their opponent, and obtained similar results. While recent research
questioned whether these findings violate the sure-thing principle (Gelastopoulos
and Le Mens, 2024),10 they have long been regarded as counterintuitive. The
reason is that, in a classical model, the probability of a disjunctive outcome
cannot be smaller than that of either outcome. By Kolmogorov’s (1933) axioms,
probabilities are monotonic in the size of events.

Other situations documented by cognitive psychologists suggest violations of
monotonicity in the case of conjunctive rather than disjunctive outcomes. Here,
the problem occurs when the probability of a conjunction exceeds that of one or
both conjuncts. This is precisely what Tversky and Kahneman (1983) found in
famous experiments where subjects were shown two scenarios involving fictitious
individuals: in one of them, a man named Bill was described as intelligent and
capable in mathematics, but unimaginative, compulsive, and generally lifeless.
Subjects were then presented a series of statements about Bill and asked which
would be most likely true. The series included, among others, the following
statements: (a) Bill is an accountant, (b) Bill plays jazz, and (c) Bill is an
accountant and plays jazz. Surprisingly, (c) was consistently regarded as more

10This criticism concerns the fact that informing players they won or lost the first bet,
as opposed to telling them nothing, constitutes an experimental manipulation and it makes
subsequent outcomes incomparable. The criticism is well-founded but does not apply to other
experiments that also suggested violations of classical reasoning, as discussed below.
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probable than either (a) or (b). In the second scenario, a woman named Linda
was described as single, outspoken, very bright, and concerned with issues of
discrimination and social justice. In this case, statements pinned Linda as (a) a
feminist, (b) a bank teller, and (c) a feminist and a bank teller, among various
other options. Again, subjects found (c) more likely than either (a) or (b).

These apparent failures of classical rationality were replicated by later studies,
which attempted many possible disambiguations of experimental instructions,
like clarifying the intended reading of the word “and” (Sides et al., 2002; Tentori
and Crupi, 2012). Follow-up studies also tried to ensure that subjects in these
experiments do not erroneously interpret the joint probability of two outcomes as
a conditional one (Tentori et al., 2004). However, the puzzling results persisted.
Moreover, similar results were reported by cognitive scientists preoccupied
with different questions and experiments. For example, Hampton’s (1988b;
1988a) early studies on conceptual combinations suggested that people break
the monotonicity rule when categorizing objects as instances of disjunctive or
conjunctive concepts. Similar results were obtained by Sozzo (2015). In these
cases, there was no two-stage betting or Prisoner’s Dilemma game, nor made-up
scenarios involving fictitious individuals. Subjects faced single-stage choices
about real-world objects and concepts, but their behavior still seemed to deviate
from Kolmogorov’s (1933) classical axioms.

While nonmonotonic reasoning represents a critical problem for classical
notions of rationality, it should not be automatically taken as an indication that
human thought processes are irrational. They can still be rational, or at least not
fallacious, if modeled through the formalism of quantum mechanics, because this
entails a different probability calculus (Aerts, 2009; Aerts et al., 2015; Franco,
2009). We could be simply dealing with a different model of rational inference:
one for which correctness presumes consistency with quantum axioms (Pothos
et al., 2017). In this framework, the probabilities assigned to conjunctive or
disjunctive outcomes can deviate from what would be expected under classical
axioms because of a characteristic phenomenon termed interference. This is a
phenomenon “impossible, absolutely impossible, to explain in any classical way,
and which has in it the heart of quantum mechanics” (Feynman, 1963, Section
37–1). Interference, which can be positive or negative, is a behavior typical of
waves, but landmark experiments in physics demonstrated that it also applies to
particles. Cognitive research now seems to suggest that it applies to something
even more unlikely—human thought (e.g., Aerts et al., 2013).

The notion that interference plays a role in human decision-making is not
easy to digest. Cognitive research in the tradition of rational analysis sought to
provide a less exotic explanation for conjunction and disjunction errors by suitably
extending classical models, as opposed to changing the underlying axioms. For
example, Costello and Watts (2014) proposed a probability-plus-noise explanation
in which random variation around classically rational behavior produces alleged
fallacies. Zhu et al. (2020) offered a similar but more theoretically-grounded
account by pinning this random variation on a sampling process, the result
being a fully classical model that can explain why people are liable to erroneous
judgments. This model was recently re-evaluated by Huang et al. (2024), who
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compared its performance to that of a more general quantum sampler. This
similar to Zhu et al.’s (2020), but with an extra term that represents interference.
The authors found that this more general model is better able to explain empirical
results, although there are situations where people’s behavior can be adequately
approximated by classical assumptions.

On top of being consistent with the probabilistic calculus of quantum me-
chanics, interference is consistent with the propositional calculus of QLs, where it
arises from the definition of quantum conditional (Friedman and Putnam, 1978).
Therefore, while classical logic struggles to model experimental results that
deviate from Kolmogorov’s (1933) axioms, QLs accommodates them naturally. It
thus seems that a formal theory of inference based on quantum-logical principles
could capture features of human rationality better than one based on classical
logic. But is it possible to abandon the laws of classical logic and “adopt” QLs
on empirical grounds? This question is not philosophically trivial, as logic is
not commonly regarded as an empirical science, and in any case, QLs were
originally developed to formalize a theory of mechanics. Nonetheless, we believe
the answer to this question is affirmative. We argue that QLs can be adopted
and this does not even entail a complete substitution of classical logic because,
in our framework, QLs are defined from FOL. In what follows, we delve into the
problem of adoption and examine important philosophical consequences.

4 Adopting QLs
Putnam (1969) was among the first to consider the philosophical implications
of the fact that quantum mechanics, as a physical theory, “presupposes” a logic.
He was also influenced by Quine (1951) in viewing science as an interconnected
network of knowledge subject to empirical revision. At the centre of this network
is logic, which is by no means exceptional among scientific disciplines, although
its central position means that empirical tests of logical laws can be particularly
difficult. However, difficult is not impossible, and Birkhoff and Von Neumann’s
(1936) historical effort to extract a logic from quantum mechanics suggests that
logic is in fact revisable. In two famous papers, Putnam (1969, 1974) likened the
revision process that gave birth to QL to another process that had previously
occurred in geometry:11 some Euclidean notions, which used to be considered
aprioristic knowledge capable of generating necessary truths, were eventually set
aside after the successful application of non-Euclidean geometries in physical
theories, as in the case of relativity theory. By the same token, core principles of
classical logic, such as distributivity, had been set aside after the application of
a distinctly non-classical logical formalism.

Kripke (2024) offered a response to Putnam (1969), based on arguments
11This comparison can traced back to earlier pragmatist philosophers interested in logic, such

as Peirce (1932) and Dewey (1938). These also had an empirical conception of logic and argued
that, like geometry, logic should be revisable. However, they did not make this argument for
similar reasons as Putnam (1969, 1974) and they were not acquainted with Birkhoff and Von
Neumann’s (1936) proposal.
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he outlined in unpublished work as early as 1974. The objection he raised is
that “logical principles cannot be adopted because, if a subject already infers in
accordance with them, no adoption is needed, and if subject does not infer in
accordance with them, no adoption is possible” (Birman, 2024, p. 39). This has
become known in the epistemology of logic as the adoption problem (see also
Boghossian and Wright, 2024; Padró and Barrio, 2022). The counterargument
Kripke (2024) developed on the basis of this problem is rather straightforward.
Let us first distinguish two possible meanings of the word “logic” (cf. Peirce,
1932): on one hand, we have logica utens, or Logic with a capital L, which is
the set of rules we regard as canonical and apply by default in our reasoning;
on the other hand, we have logica docens, which includes the variety of formal
systems commonly studied and taught by logicians.12 Given this distinction,
QLs supposedly belong to logica docens, while logica utens is classical.

Putnam (1969) proposed to adopt QLs as a new canon for reasoning in the
specific setting of quantum mechanics, and in doing so, he proposed to modify
logica utens. Kripke (2024) found this impossible because we cannot simply take
a system pertaining to logica docens and use it as if it were utens. In this sense,
no adoption is possible. The best we can do is momentarily entertain ourselves
with non-classical ways of reasoning, but in the end, we will inevitably defer
to the one true Logic and its classical principles. Empirical findings from the
quantum cognition program, however, point to an unforeseen possibility: we
tend to think of QLs as something that may or may not be adopted, but if the
quantum formalism plays a role in human thought processes, as this program
suggests, one could argue that QLs already belong to logica utens. No adoption
is needed because we already use the rules prescribed by these logics.

In all fairness, it is not at all obvious whether Putnam (1969) proposed to
adopt QLs as an outright substitute for classical logic, even in the narrow context
of quantum mechanics. His goal was simply to argue that some rules of inference
deemed valid a priori and necessarily true by classical logic should be considered
false for empirical reasons. There is sufficient ground to revise some aspects
of classical logic in light of quantum results, but these revisions leave us with
an improved version of the same logica utens, not a wholly different one, and
certainly not two distinct logics coexisting within the same logica utens. For
Putnam (1969), it was never a matter of pitting QL against classical logic, as if
these systems belonged to the same theoretic level. On the contrary, there was
ample room for reconciliation given his anti-exceptionalist view of logic as just
another empirical science (see also Hjortland, 2017). In this paper, we aim to
remain neutral about the epistemological status of logic. However, we believe
that applying QLs to human cognition amounts to claiming that QLs are already
part of logica utens. It means we think quantum-logically in a sense even broader
than Putnam (1974) foresaw. This avoids the adoption problem.

We also believe that the process whereby a logic is adopted, or accepted as
canonical for human reasoning, may have been formulated by Kripke (2024) and

12To further emphasize their difference from Logic, some argue that these formal systems
are not logics themselves but merely algebras (e.g., Suszko, 1976).
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other proponents of the adoption problem in a way that is unduly restrictive.
For example, Birman (2024) defines adoption as a series of steps: first, a
subject does not make inferences consistent with particular logical principles;
second, the subject accepts these principles; third, she starts making inferences
consistent with them. Crucially, these inferences are made because of the
subject’s knowledge and acceptance of new principles.13 Yet requiring a subject
to know and accept the logical principles she follows in her reasoning sounds
very demanding. People may reason according to principles that they neither
acknowledge nor accept. Therefore, we reject the claim that a subject needs to
know or accept QLs before she starts reasoning according to them.

One reason for rejecting this claim is that, if we assume a subject only
uses classical logic in the first step, as opposed to several possible non-classical
logics, we preclude the possibility of her ever reasoning non-classically. This
is because requiring the subject to know QLs before she is able to use them,
and assuming this knowledge is governed by classical logic, may render Kripke’s
(2024) conclusion that QLs cannot be adopted a petitio principii. In other words,
if the subject’s faculty of knowing rests on classical logic, and everything she
knows must be consistent with classical principles, how can she ever come to
know something that violates these principles? Ultimately, this makes it difficult
to accommodate empirical evidence from the quantum cognition program. The
crux of the matter then shifts to justifying the premise that people only rely
on classical logic to know anything. Quantum cognition directly challenges this
premise, not unlike others did before when confronted with paradoxes arising
from the use of classical logic in informal contexts (e.g., Cooper, 1968).

Some arguments can be mobilized in support of Kripke’s (2024) formulation
of the adoption problem, including one we report here in the form of thought
experiment. Imagine a classical logician named Alice who is in a room with
two other logicians, Bob and Charlie. Bob is just a neutral observer of the
situation, while Charlie adopts—per our relaxed version of adoption, which does
not require awareness—a paraconsistent logic. Suppose that Charlie is more
specifically a dialetheist, i.e., he believes that certain contradictions are true,
or at least valid, and in any case, the principle of non-contradiction is not a
metaphysically valid and universal law. At the same time, Charlie rejects the
explosion principle so that his inferences need not become trivial. Now suppose
that Alice is an authority figure for Charlie and she tells him: “Evidence shows
that p is true, so you must reject ¬p due to the principle of non-contradiction.”
Charlie thinks paraconsistently, so he replies something like: “You may be right,
and even if my intuition cautions me against this principle, I trust you as an
epistemic authority. Your statement q, by which p is true, is also true. So,
logically, p can also be false.” Confronted with this situation, Bob’s only hope
of determining who is correct requires him to make explicit the logic he uses to
evaluate Alice and Charlie’s respective statements. But what logic would this
be? According to Kripke (2024), it can only be classical.

This hypothetical exchange is meant to demonstrate the impossibility of
13See Fiore (2022) for a critical analysis and some considerations about this stepwise process.
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adoption as long as we distinguish Logic with a capital L, or logica utens, from
the swarm of alternative formal systems logicians like to study as mathematical
abstractions. On this front, we completely agree with Kripke’s (2024) conclusion
that QLs cannot be adopted. This would be further confirmed by the negative
outcome of Putnam’s (1969) own substitution project: local substitution, whereby
selected aspects of classical logic are corrected to align with QLs, failed for
technical reasons; and global substitution, whereby classical logic is entirely
replaced, never even looked viable. Where we disagree with Kripke (2024) is
in the assumption that logica utens is restricted to classical logic. This is not
something that can be inferred from the adoption problem. It could just as well
be that logica utens includes QLs, and with these already part of our logical
background, no adoption is necessary. Empirical findings from the quantum
cognition program point to this possibility, though this literature only makes a
case for quantum probability in cognitive processes, not QLs.

Despite their differences, Putnam (1969) and Kripke (2024) subscribed to
a philosophical position known as logical monism. In this paper, we aimed
to provide a new perspective on QLs by using FOL as a metalanguage, which
means treating classical logic and various non-classical systems, including QLs, as
belonging to different logical orders. While we characterize QLs as non-classical
at the propositional level, we approach them from a purely algebraic point of view
through classical reasoning. For example, we obtain orthomodular lattices and
their operations by axiomatically restricting Boolean operations. Based on this,
we could say that our approach partially agrees with Kripke’s (2024) classical
monist position. We note, however, that our approach is also compatible with
logical pluralism (Beall and Restall, 2000). The reason we model QLs using FOL
is not to defend the primacy of classical logic but to render QLs independent
from physics, in line with cognitive research suggesting that people are capable
of quantum-logical reasoning. Clinging to Kripke’s (2024) classical monism just
because we rely on FOL does not do justice to the quantum cognition program.
This approach would make it impossible to understand the program’s empirical
results from a logical standpoint: they do not square with classical logic, so we
can only see them as deviant. We think they are not.

Extending QLs to cognitive science could enable us to argue in favor of a logical
pluralism that directly applies to logica utens. This seems especially interesting
if we consider that the adoption problem challenges but does not ultimately
preclude the coexistence of multiple logics in utens. Moreover, Putnam’s (1969)
own substitution project turned out to be unfeasible. Empirical findings from
quantum cognition could enrich the philosophical debate by introducing the
question of whether a pluralist stance about logica utens is viable. Such a stance
would help making sense of well-known challenges in the application of classical
logic to informal reasoning, but at the same time, it would be consistent with
the success of classical logic in defining standard theories. Remarkably, the
conjecture of logicae utentes need not rest on an empiricist conception of logic, as
was the case for the kind of pluralism embraced by philosophers in the pragmatist
tradition (Dewey, 1938; Peirce, 1932). On the contrary, it can build on a view
of logic as a discipline characterized by laws that are valid a priori. We can
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accept a softer version of the adoption problem whereby adoption is generally
problematic, but as it turns out, in some circumstances we already reason under
non-classical and specifically quantum-logical principles.

5 Conclusions
Although QLs were initially developed to model inferential processes in physics,
recent research in cognitive science suggest that their scope of application is
potentially much broader. A wealth of evidence from the quantum cognition
program indicates that the semantics of QLs capture features of human rationality.
As a result, these logics could be suited to model not just how people reason
about quantum mechanics, as Putnam (1974) proposed, but how they reason in
general. In this paper, we evaluated this claim by reviewing cognitive findings
that point to QLs as a promising framework. We also presented a route to
building standard QLs from FOL, which thanks to its generality facilitates
interdisciplinary applications of logical formalisms. We believe that expanding
the scope of QLs in this way is an interesting exercise for logicians, but perhaps
more importantly, it can be useful to other areas of science. Cognitive applications
would be particularly relevant to formal theories of human psychology, studies
in the philosophy of logic, and research on quantum foundations.

From a psychological perspective, this endeavor is interesting because it can
equip cognitive scientists with a new and improved understanding of human
rationality. So far, this has been predicated largely on conformity to the rules of
classical logic or probability theory (Chater and Oaksford, 2000). As these rules
appear to be violated in cognitive experiments, however, many psychologists were
compelled to concede that rationality cannot be based on mathematical axioms.
The switch from classical to quantum probability in cognitive modeling started to
change this perspective, as the probabilistic calculus of quantum theory offers a
new criterion to define rationality which is both flexible and rigorous (Busemeyer
et al., 2011; Pothos et al., 2017). Still, the quantum models currently deployed
in cognitive applications are very diverse. For example, Busemeyer et al. (2011)
used a static Hilbert-space model to explain common deviations from classical
rationality and order effects; Kvam et al. (2015) used a quantum-walk model to
account for evolving preferences, borrowing from research in quantum dynamics;
and other research (Aerts, 2009; Aerts et al., 2015; Sozzo, 2015) used a Fock-
space model from quantum field theory to represent the superposition of classical
and quantum-logical reasoning. All of these models are “quantum” in the sense
that they are consistent with Von Neumann’s (1932) axioms, but they make
different assumptions about the behavior of a cognitive system. Formalizing the
assumptions and predictions of these models within a common logical language
would help ensuring they are not only consistent with the axioms of quantum
theory, but also with each other. From this standpoint, QLs hold potential to
unify and consolidate various streams of research in quantum cognition.

Another way in which QLs can help cognitive research is by enabling qualita-
tive predictions. The probabilistic formalisms previously deployed in quantum
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cognition generally require the specification of free parameters to accurately
predict empirical results.14 For example, Aerts’s (2009) seminal models of con-
ceptual conjunction require the modeler to specify the angles between subspaces
corresponding to different concepts. For an arbitrary pair of concepts, there is
no way to correctly set the angle without first looking at experimental data and
estimating or deriving it from there. However, looking at experimental data in
order to predict experimental data does not go very far in terms of providing
useful predictions. Furthermore, there is no assurance that the angle between
two arbitrary concepts is the same for any other pair. Therefore, the presence of
free parameters limits the generality of a formal theory.

Arguably, one of the most significant results of the quantum cognition program
was Wang and Busemeyer’s (2013) derivation of an accurate and parameter-free
prediction known as the quantum-question equality. This is a relation between
quantities obtained from psychological experiments involving order effects, which
is formally a consequence of quantum axioms (cf. Niestegge, 2008) and does not
necessarily hold by classical ones. The reason why it constitutes an impressive
result is that parameter-free predictions are rare, not just in psychology but
in all social sciences, and can play a pivotal role in testing the validity of a
theory. Formal logic, being concerned with qualitative as opposed to quantitative
accounts of rational processes, is especially suited to derive relations that do not
depend on free parameters. This could be exactly what research on quantum
cognition needs to demonstrate that its exotic approach is worthwhile. For the
moment, the quantum-question equality remains an exceptional result, but the
deployment of QLs could lead to more predictions of the same kind and allow
this research program to make significant leaps forward.

From a philosophical perspective, our proposed connection between QLs and
cognition is interesting because it can inject new arguments into longstanding
debates that were historically motivated by QLs. This includes discussions about
the empirical character of logic (Bacciagaluppi, 2009; Putnam, 1969, 1974) and
the adoption problem (Birman, 2024; Boghossian and Wright, 2024; Kripke,
2024). Our conclusion is that logic can be considered empirical to the extent
we can discover new logical principles underlying human thought processes and
consequently revise our understanding of logica utens. However, this kind of
empiricism is far lighter than Putnam’s (1969), as it allows for pluralistic and
even aprioristic perspectives on logica utens. We find it surprising, but also very
fitting, that a new application of QLs motivated by empirical evidence concerns
precisely human thought. If at the time of Birkhoff and Von Neumann (1936) the
main philosophical questions stemmed from the discovery of a non-classical logic
at the core of a physical theory, now that we are considering applying the same
logic to human cognition we must ask ourselves what would be the implications
of discovering that people reason according to the quantum formalism. This is a
new avenue for exploration within the philosophy of logic.

It seems reasonable to think that, if this formalism is applicable to contexts
beyond physics, its empirical nature and “quantumness” are no more than histor-

14We are grateful to an anonymous reviewer for making this suggestion.
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ical contingencies related to its initial discovery. Presenting QLs in FOL helps
conveying this idea. Genuine surprise arises from the possibility of recovering the
adoption problem in our framework, albeit in a relaxed version. Maybe our stance
is ultimately compatible with logical monism, given the role played by classical
FOL in our construction of standard QLs. However, it is also compatible with
logical pluralism as logica utens comes to incorporate more than just classical
logic in some inferential processes. This is at odds with both Putnam (1969) and
Kripke (2024), who in spite of their many differences similarly upheld logical
monism by giving a single Logic the privilege of being utens. We could avoid
the adoption problem by admitting the primacy of classical logic, but we are
drawn to pluralism. While QLs are non-classical, they can arise from a classical
setting; at the same time, they demand we forget about some classical principles
in particular contexts. The kind of pluralism we propose views different logics as
coexisting within logica utens, but at different levels. In particular, we have FOL
at a metalevel and QLs at a propositional one. This allows modeling inferences
that depend on very different logical principles, e.g., orthomodularity as opposed
to distributivity. From this angle, there is no need to adopt non-classical logics
in the sense forcefully opposed by Kripke (2024). We already have them, and we
need not be aware of them in order to use them.

Additional work is required to fully revisit philosophical debates on logical
pluralism and exceptionalism in light of these considerations. Nonetheless, our
foray into cognitive literature lends credibility to the claim that people think
quantum-logically. This should already prompt us to revise what we call Logic
with a capital L, if such a thing exists, and this revision may not occur exactly
as Putnam (1969, 1974) intended, i.e., based on results from quantum mechanics.
Instead, we flip the script by applying QLs outside quantum mechanics and then
use results from these applications as groundwork for a discussion on what Logic
should be. In our view, this should not be a logic that replaces or modifies the
classical, but a formal system consisting of multiple logics with classical FOL as
the metalogical foundation. We can consider logic empirical in a historical sense
and embrace pluralism as we work toward a notion of logicae utentes. We can also
move to an a priori pluralism, as opposed to an empirical one, which is capable
of accepting several non-classical logics as valid models of rationality. This is
possible because we soften the empiricism of QLs to the extent that it becomes a
mere historical connotation rather than a property that qualitatively distinguishes
QLs from other non-classical systems. While the cognitive arguments that drove
us to this anti-exceptionalist and pluralist position are novel to the literature on
QLs, they are consistent with Bacciagaluppi’s (2009) conclusion that, if logic
were empirical, it would be shaped by cognitive science or linguistics more than
quantum mechanics. It is noteworthy that these disciplines converge.

Finally, the connection we make between QLs and cognition can potentially
help physicists reach a deeper understanding of quantum foundations. Recent
research in this field suggested that the rules of quantum theory are so fundamen-
tal and widely applicable because they concern what all physical experiments
inevitably have in common: a human observer. They are laws of thought (Caves
et al., 2002). They do not dictate how physical systems behave but rather how
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physicists should reason about a system’s behavior. We take this perspective
further by framing QLs as a general framework for modeling inferential processes,
a tool to analyze how people reason about anything. This could shed light
on questions pertaining to the philosophy of physics, such as the interpreta-
tion of particular elements of the quantum formalism (Fuchs and Schack, 2013;
Reichenbach, 1944). As mentioned above, the adjective “quantum” should be
considered only a byproduct of the circumstances in which the formalism was
born. This adjective makes QLs retain the flavor of physical applications, but
there is nothing strictly physical about these logics, nor about the formalism, as
they are very general in nature. Many outside physics acknowledge the generality
and usefulness of the quantum formalism, yet the same cannot be said for QLs.
We hope our proposal contributes to changing this state of affairs.
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