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Abstract 

We present the case for a fixed, finite number of discrete, non-interacting, spatiotemporally 

finite, decohered spacetimes emerging from Everett’s Universal Wave Function, which we 

refer to as “Many Discrete Worlds” (MDW). No universes “split” in MDW. We argue that 

a Many Worlds Interpretation (MWI) branching structure that emerges after decoherence is 

equivalent to individual, weighted universes, each of which is divided into an immense 

number of discrete, identical copies, the  number being proportional to the individual 

weighting. This ensures that repeated experiments within any such universe will demonstrate 

consistency with the Born rule. Each of these universes should be considered as complete, 

containing every decohered outcome over the entire extent of its spacetime, including every 

event/interaction occurring beyond any cosmological particle horizon for the entire duration 

of the given universe. We show that a countably infinite number of interactions needs an 

uncountably infinite number of universes, and show why measures such as the Lebesgue 

measure will fail in that case, with the result that the Born rule would not be demonstrable. 

This leads to the conclusion that the number of universes in the multiverse must be finite 

and, as a surprising corollary, that the universes themselves are finite, both in space and 

duration. 

 

 

1 Introduction 

 
Of the dozen or so mainstream interpretations of quantum mechanics, each with its own 

many variants (for a list of the most important ones, see e.g., Freire et al., 2022), Hugh 

Everett’s Many Worlds Interpretation (MWI) (Everett, 1957) has attracted perhaps more than 

its share of controversy and debate. (For an excellent introduction to the whole debate, see 

the book edited by Saunders et al. (2010a) and Saunders’ own introduction to the book 

(Saunders, 2010b) as well as many other papers including, for example, Kent (1990, 2010), 
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Butterfield (1996, 2001), Hartle (2010), Greaves and Myrvold (2010), Zurek (2010), Barrett 

(2011), Tappenden (2011, 2019, 2023), Adlam (2014), Papineau and Rowe (2023), Vaidman 

(2023).) The purpose of our paper is to argue the case for a subset of MWI where our universe 

is one of an unimaginably large but nevertheless finite number of discrete, non-interacting, 

decohered Minkowski spacetimes distributed in proportion to the Born probabilities of the 

quantum outcomes embedded within each of those spacetimes. This means that there are 

generally multiple identical copies of any given spacetime/universe/world. We shall go on 

to argue that, counterintuitively, all of these universes are finite, both spatially and 

temporally. For brevity we refer to this picture as Many Discrete Worlds (MDW). 

 

 

2 Decohered histories 

 
Our point of departure is to consider the history of our universe viewed from an arbitrary 

world line. This history will be defined by a series of outcomes of quantum events along the 

chosen world line, where, by an “event”, we mean what is often called a “measurement” but 

is really any interaction that results in a change of state such as a change in electron spin or 

momentum. These events do not generally happen directly on the world line but originate 

instead from anywhere within the universe: the arrival of the light cone from such a distant 

event impinging upon the world line might be considered as marking a corresponding 

branching point on the world line. (The concept of the light cone signalling such a “collapse” 

is not new—see, for example, Belnap (1992), Bacciagaluppi (2002) or Figure 8.2 of 

Wallace’s book (Wallace, 2012)—but decoherence is sometimes considered to spread out at 

subluminal velocities: e.g. Marvian and Lidar (2015). For our purposes, it doesn’t matter 

which we choose.) 

 
To make this concrete, consider Fig. 1, adapted from Figure 3 of Hartle’s pedagogical 

introduction (1993) to a “coarse-grained” picture (in effect, after decoherence is complete)—

a picture that was further developed by Gell-Mann and Hartle (2007). The figure shows a 

wave function, |𝛹⟩,  expressed as the branching structure of a set of 16 alternative histories 

(i.e., branches), each containing three events/interactions marked by black dots. In our 

adaptation, we assume that the three events are mutually independent, which was 

unnecessary in Hartle’s example. One particular branch is highlighted with a heavier line, 

but in each of the 16 branches, the three events have already occurred, so that no quantum 

interference is explicitly portrayed in the figure—the branches are completely decohered. 

Any evidence of interference would only be manifest in patterns involving the alternative 

outcomes themselves: for example, interaction #3 has four different possible outcomes. If 

these four outcomes are regarded for instance as a schematic of four possible regions where 

an electron might land on a detecting screen after encountering a double slit, then the relative 

probabilities of each of the four outcomes would be a manifestation of the interference. 

These branches are generally regarded as worlds or universes. While Boughn (2018) and 

others remind us that Everett (1957) himself spoke of states branching, other authors such 
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as Wallace (2012, p.63), spoke of the branches being “not any less real”, a view endorsed 

over time by authors including DeWitt (1970), Vaidman (1998), Wilson (2013), Hall et al 

(2014); even Everett agreed that “It looks like we would have a non-denumerable infinity of 

worlds” (Werner, 1962, p. 95 marked “Tuesday am page 20”). 

 

Fig. 1  This figure, adapted from Hartle (1993), shows the branching structure 

of a set of 16 alternative histories that constitute the wave function |𝛹⟩, featuring 

three interactions. The probability amplitude associated with each interaction is 

𝛼𝑛𝑘, where n refers to interaction #n and k is the kth alternative outcome for that 

interaction. Thus, |𝛹⟩ is the superposition of the 16 histories, each history being 

the tensor product of the three vectors |𝜓𝑛𝑘⟩ associated with the three 

interactions. One of the 16 alternative branches has been highlighted for 

discussion in the text. 

 

The probability amplitude associated with each interaction in Fig. 1 is 𝛼𝑛𝑘, where n refers 

to interaction #n and k is the kth alternative outcome for that interaction (so that, in our 

figure, there are four alternative outcomes for interaction #3). Following Gell-Mann and 

Hartle (2007), the branch probability of the highlighted branch—effectively, the probability 

of finding yourself in a universe represented by this particular branch—is: 
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prob. of being in universe |𝜓112232⟩ = |𝛼11. 𝛼22. 𝛼32|2 = |𝛼11|2. |𝛼22|2. |𝛼32|2 (1) 

 

where we have used |𝜓112232⟩ for the highlighted branch. 

 

 

3 The frequency distribution of universes in MDW 

 

 

Fig. 2  The branching for the two outcomes of the 60º Stern-Gerlach experiment 

described in the text is shown in (a), with weightings according to the absolute 

squares of the probability amplitudes. The equivalent divergent/discrete picture 

is shown as two separate, weighted universes in (b). In (c), each of these two 

weighted universes is divided into multiple identical copies in numbers 

proportional to the weights. 

 

In this section we propose a frequency distribution for the parallel universes over the whole 

MDW multiverse, which will be based on the Born rule. We go on to show, in the following 

section, how this distribution will lead to experimental results in any one universe which are 
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indeed consistent with the Born rule. Note that we are not attempting to derive the Born rule 

here: we accept it as a given. 

Consider an experiment where a particle with a vertically upward spin passes through a 

Stern-Gerlach magnet inclined at 60º to the vertical. The state of the particle just before it is 

detected may be written as 
√3

2
|↑⟩ +

1

2
|↓⟩, where the spins in states |↑⟩ and  |↓⟩  are inclined 

at 60º to the vertical, in alignment with the Stern-Gerlach detector; call them “spin-up” and 

“spin-down” respectively. Fig. 2 shows the branching structure for the experiment. Figs. 2(a) 

and 2(b) follow Figure 1(a) and Figure 1(c) of Saunders (2010c), who shows how the 

branching (or “overlapping”) and discrete (or “divergent”) pictures are equivalent. The 

weights of the branches are the Born probabilities for the outcomes |↑⟩ and  |↓⟩, namely ¾ 

and ¼ respectively. (For further discussion of weighted branching, see, for instance, Lewis 

(1986), Saunders and Wallace (2008), Saunders (2010b), Wallace (2012), Wilson (2020), 

Tappenden (2023).) 

To address the problem of why an observer should give more credence to being in a universe 

with a greater weight, we use the “branch counting” method employed in different ways by 

several authors: to a given universe, we assign a number of equally weighted universes in 

proportion to its branch weight—see, for instance, Khawaja (2025), Saunders (2021), and 

Barrett and Goldbring (2024), with the latter authors using a model based on nonstandard 

analysis, which, in the opinion of Khawaja, may be compatible with branch counting. 

Wallace (2012) asks how branches can be counted when, in his words, “there is actually no 

such thing as the number of branches”. The main issue is the preferred basis—if any rotated 

basis is equally valid, how can we fix on any particular basis for counting the branches? 

Should our summation even include the branches in all of the other possible bases? Our 

approach to these questions is to consider the branches only after the interactions have 

completely decohered—in that case, whatever it was in the environment that selected the 

particular basis for the observed outcome, that same process rules out all of the putative 

alternative bases.  

In Fig. 2(c) we have replaced each of the two single, weighted branches by discrete universes 

in numbers proportional to the weights, identical to each other within a given branch. For 

the illustration we have assumed that the 60º experiment is the only event in the universe 

and that there are only 20 discrete universes in the multiverse. At first glance, Fig. 2(c) looks 

as though it might represent Saunders’ equi-amplitude branch-counting picture (Saunders 

2021), but that would be too quick. While it is true that branch-counting in Saunders’ scheme 

results in numbers proportional to the squares of the histories’ probability amplitudes, his 

approach is more subtle than ours in that it accounts for all possible branch histories, whereas 

ours is a considerably blunter instrument, selecting only the final, completely decohered 

history. So, the many universes in Fig. 2(c) are identical copies of either the single state |↑⟩ 
(the left branch), or the single state |↓⟩ (the right branch). Furthermore, we are not trying to 

derive the Born rule in any way—in MDW we simply accept that an outcome of the universal 

wave function is that, at complete decoherence, at the extreme coarse-grained level, there 

are multiple identical copies of universes in numbers proportional their respective Born 

probabilities. 
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The number of discrete, decohered universes in the multiverse, N0, is fixed—and also finite, 

as we shall argue in Section 6—and the occurrence of an event does not mean that the number 

of universes increases to contain the event’s outcomes. The distribution of these universes is 

tenseless and determinate. Each universe is discrete and doesn’t split: they are simply part 

of the structure of the multiverse. Note also that the fixed number of universes means that 

the MDW multiverse is not amenable to analysis such as that applied by Short (2023) to 

discrete many-worlds models, where his analysis exposes contradictory values for 

probabilities2. 

As we shall discuss in more detail in Section 6, the number of events in the multiverse cannot 

be greater than the number of universes, N0, needed to contain all of the different outcomes 

of each of these events. Since N0 is finite, we can identify individual events with a label, n. 

Of course, no universe in the multiverse will contain every event: the configurations of 

individual universes—meaning the complete history of all of the event outcomes that the 

universes contain, along with the spacetime locations of the outcomes from beginning to 

end—are determined by the unitarily evolving state from which the complete decohered 

history may in principle be extracted. We shall use Ni for the number of events in the ith 

universe with a given configuration of outcomes. Since a given universe/branch can contain 

only one outcome of the nth event, then the number of different universes containing a 

specific event has to be at least as great as the total number of possible outcomes of that 

event. For a given event, a list of the different possible outcomes may be found within the 

sum of the vectors for all possible outcomes of the event: 

∑ |𝜓𝑖 𝑛 𝑘𝑛
⟩

𝑘𝑛

 

where kn is the kth outcome of the nth event in the ith universe. 

For illustration, the sum of the two possible outcomes for interaction #1 in Fig. 1 would be 

(|𝜓𝑖 1 1⟩ + |𝜓𝑖 1 2⟩) 

where “1 1” and “1 2” refer to the outcomes represented by 𝛼11 and 𝛼12 respectively in Fig. 1 

(and, for instance, “2 1” and “2 2” would refer the outcomes of the event in state |𝜓2⟩ 
represented by 𝛼21 and 𝛼22 respectively). 

 
2 In effect, Short considers a multiverse containing two universes, |0⟩ + |1⟩ so that the probability of being in 

either one is ½. Then he applies a transformation that transforms |1⟩ into |1⟩ + |2⟩, leaving the |0⟩ intact, so 

that there are now three universes, |0⟩ + |1⟩ + |2⟩. By the axioms in the paper, this means that the probability 

of being in any one of the final three universes is ⅓, which is a contradiction. However, in MDW, there is no 

contradiction, and in this scenario there would be four universes at the outset, |01⟩ + |02⟩ + |11⟩ + |12⟩, with a 

probability of ¼ of being in any one, making a total probability of ½ of being in a |0⟩ -type universe. The 

transformation does no more than to highlight the already separate universes |11⟩ and |12⟩, so that the 

probabilities of being in |0⟩, |11⟩ or |12⟩ are still ½, ¼ and ¼ respectively, and there is no contradiction. 
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The complete state for any universe in the multiverse may be found as a unique branch within 

the collection of all possible combinations of the outcomes of all Ni events contained in each 

branch, where the product sign is to be understood as the tensor product: 

∏ ∑ |𝜓𝑖 𝑛 𝑘𝑛
⟩

𝑘𝑛

𝑁𝑖

𝑛=1

                                                           (2) 

Remember that the events with their outcomes are assumed here to be unentangled, i.e., 

independent. As we shall discuss in Section 5, entangled events are considered as a single 

event, but the arithmetic doesn’t change otherwise. 

Using (2), and continuing with the same illustration, the collection of all possible 

combinations of the outcomes of interactions #1 and #2 in a given universe, i, where there 

are no other events, is: 

(|𝜓𝑖 1 1⟩ + |𝜓𝑖 1 2⟩) ⊗ (|𝜓𝑖 2 1⟩ + |𝜓𝑖 2 2⟩) 

= |𝜓𝑖 1 1⟩ |𝜓𝑖 2 1⟩ + |𝜓𝑖 1 1⟩ |𝜓𝑖 2 2⟩ + |𝜓𝑖 1 2⟩ |𝜓𝑖 2 1⟩ + |𝜓𝑖 1 2⟩ |𝜓𝑖 2 2⟩ 

where the tensor product sign has been dropped. These represent the four possible branches 

in Fig. 1 containing interactions #1 and #2. 

As we mentioned, not every event in the multiverse appears in every universe. For instance, 

suppose that an event described by a state |𝜓𝑖 4 𝑘⟩ is triggered by the interaction #1, but only 

if the outcome is |𝜓𝑖 1 1⟩ and not |𝜓𝑖 1 2⟩, so that, in universes where the outcome is |𝜓𝑖 1 2⟩, 
there is no state |𝜓𝑖 4 𝑘⟩. If there are three possible outcomes to the event in state |𝜓𝑖 4 𝑘⟩, 
written |𝜓𝑖 4 1⟩, |𝜓𝑖 4 2⟩, |𝜓𝑖 4 3⟩, then, from (2), there are 8 possible configurations of 

universes, as shown by the following combinations of vectors: 

|𝜓𝑖 1 1⟩ |𝜓𝑖 2 1⟩ |𝜓𝑖 4 1⟩ + |𝜓𝑖 1 1⟩ |𝜓𝑖 2 1⟩ |𝜓𝑖 4 2⟩ + |𝜓𝑖 1 1⟩ |𝜓𝑖 2 1⟩ |𝜓𝑖 4 3⟩ 

+  |𝜓𝑖 1 1⟩ |𝜓𝑖 2 2⟩ |𝜓𝑖 4 1⟩ + |𝜓𝑖 1 1⟩ |𝜓𝑖 2 2⟩ |𝜓𝑖 4 2⟩ + |𝜓𝑖 1 1⟩ |𝜓𝑖 2 2⟩ |𝜓𝑖 4 3⟩ 

+  |𝜓𝑖 1 2⟩ |𝜓𝑖 2 1⟩ + |𝜓𝑖 1 2⟩ |𝜓𝑖 2 2⟩                                                      (3) 

where the last two terms do not contain the state |𝜓𝑖 4 𝑘⟩ by the supposition. 

We assign a unique identifier to each universe with a given configuration of event outcomes, 

so that, even although two states for a universe may be otherwise identical, they are 

nevertheless distinguished by the value of the label, i. The number distribution of such 

universes, identical but for their labels, is determined by the Born rule. The configuration of 

outcomes in a given universe within the collection of universes in (2) may be specified thus: 

∏ |𝜓𝑖 𝑛 𝑘𝑛
⟩                                                                (4)

𝑁𝑖

𝑛=1

 

where only one outcome for each event n is selected, namely outcome kn. An example would 

be the triplet of vectors in the second term of (3), namely, |𝜓𝑖 1 1⟩ |𝜓𝑖 2 1⟩ |𝜓𝑖 4 2⟩. In general, 
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the otherwise identical universes with this particular configuration may be distinguished by 

their label, i, as in this expression which uses the summation to allocate a different value of 

i to each configuration: 

∑ ∏ |𝜓𝑖 𝑛 𝑘𝑛
⟩                                                        (5)

𝑁𝑖

𝑛=1

𝑁0 ∏ |𝛼𝑛𝑘𝑛|
2𝑁𝑖

𝑛=1

𝑖=1

 

where |𝛼𝑛𝑘𝑛
|

2
 is the absolute square of the probability amplitude for the kn

th outcome of 

event n. The upper limit of the sum in (5) is the number of identical universes in the 

multiverse with the configuration in (4), as derived from the Born rule: 

𝑁0 ∏|𝛼𝑛𝑘𝑛
|

2

𝑁𝑖

𝑛=1

                                                              (6) 

Because we have used the Born rule to arrive at this number distribution, then, as we shall 

see in Section 4, the Born rule re-emerges experimentally within individual universes. 

Continuing the illustration, if we assume, say, √
3

4
 , 

1

√2
 , and √

3

5
 for the probability amplitudes 

𝛼11, 𝛼21, and 𝛼42 respectively, then we see from (6) that the number of universes in the 

multiverse having the above configuration, |𝜓𝑖 1 1⟩ |𝜓𝑖 2 1⟩ |𝜓𝑖 4 2⟩, is: 

𝑁0 ∏|𝛼𝑛𝑘𝑛
|

2

𝑁𝑖

𝑛=1

= 𝑁0 |𝛼1 1|2 |𝛼2 1|2 |𝛼4 2|2 = 40 ⨯
3

4
⨯

1

2
⨯

3

5
= 9 

where there is no |𝛼3𝑘3
|

2
 in the product because it doesn’t appear in (3). We have assumed 

for the illustration that there are just 40 universes in this multiverse, including multiple 

copies of the possible universes. Of course, nothing subtle is going on here; essentially, all 

we are saying is that, for a given configuration of outcomes, the number of identical 

universes in the multiverse with that configuration is proportional to the product of the 

probabilities of the individual outcomes according to the Born rule. 

Now we check that MDW gives the same result as (1) for the probability of the highlighted 

branch in Fig. 1. The probability amplitudes for the outcomes of the three events in the 

branch are 𝛼11, 𝛼22, and 𝛼32 respectively. 

 

Expression (6) gives the number of universes containing these three events with these 

particular outcomes: 

 

𝑁0 |𝛼11|2. |𝛼22|2. |𝛼32|2 

 

Therefore, the probability of being in such a universe is, trivially, 
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 𝑁0 |𝛼11|2.  |𝛼22|2.  |𝛼32|2

𝑁0
 = |𝛼11|2. |𝛼22|2. |𝛼32|2                        (7) 

 

which, of course, is the same result that we found in equation (1) using the branching model 

of Gell-Mann and Hartle (2007). It is also in the same format as given by Saunders (2021), 

except that he still grants some uncertainty in the precise numbers of universes because of 

any residual interference, no matter how small, whereas, in MDW, we are considering the 

universes only after any interference between event outcomes has been irreversibly wiped 

out. 

 

Everett’s universal wave function is at the heart of MDW just as it is in MWI and other 

interpretations of quantum mechanics, and this leads to the same mathematics and the same 

observed quantum-mechanical outcomes in MDW as in the other interpretations. The 

agreement between the results of equations (1) and (7) just emphasizes the equivalence of 

the overlapping picture in Fig. 2(a) and the MDW picture in Fig. 2(c).  

 

 

3.1 Beyond the cosmological particle horizon 

 
Clearly, in the branching picture, the order of events along a given world line as they are 

drawn from trunk to twig is schematic, and depends, for instance, on the spatiotemporal 

locations of the events in relation to the given world-line. In the MDW picture, since the 

Universal Wave Function is deterministic, each decohered universe contains the outcome of 

every event from the root event at the beginning to the final event in that universe. 

Importantly, in MDW, this includes events beyond the cosmological particle horizon: the 

vectors in (4) include the outcome probabilities of such events. The reasoning goes as 

follows. Consider a photon reaching Earth as part of the cosmological microwave 

background, and suppose that the photon is linearly polarized as a result of a Thomson 

scattering by a free electron during the decoupling phase some 380,000 years after the start 

of our universe, at a location which is currently just inside our particle horizon, about 46 

billion light-years from us. Let |𝑇∥⟩ be the polarization outcome of the Thomson interaction, 

with a probability amplitude, 𝛼∥, and let |𝑇⊥⟩ be the state for the alternative outcome, i.e., a 

perpendicular polarization, with a probability amplitude 𝛼⊥, where |𝛼∥|
2

+ |𝛼⊥|2 = 1. Note 

that these probabilities refer to the outcomes of the scattering interaction, and not the 

probability of the photon reaching Earth 13.8 billion years later. 

 

So, there are two weighted universes with distinct configurations: one containing the state 

|𝑇∥⟩, which happens to be the universe we inhabit, and the other one containing the 

alternative state |𝑇⊥⟩. But that Thomson interaction occurred at a location which was, at that 

time, because of inflation, beyond our particle horizon: it has only recently come inside it 

(Davis and Lineweaver, 2004). Since there are currently universes with two different 

configurations, (|𝑇∥⟩ and |𝑇⊥⟩), and since discrete universes don’t split in the MDW picture, 
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then the two separate configurations have “always” existed even though the “T” event 

occurred when it was beyond our particle horizon. 

Nevertheless, a belief may still linger that the two configurations of universe only came into 

existence at the moment when the light cone from the T event reached us (in the form of a 

cosmological background photon). The counter to that is that we can make the same 

argument for a photon received from the cosmological microwave background in a 

diametrically opposite direction in the sky from that in which the |𝑇∥⟩ photon reached Earth: 

let two such states be |𝑆∥⟩ and |𝑆⊥⟩, where |𝑆∥⟩ refers to the polarization outcome in our 

universe. So, for the two events, there are four configurations of universe, containing, 

respectively, the states {|𝑇∥⟩ + |𝑆∥⟩} (which is the universe that we inhabit), {|𝑇∥⟩ + |𝑆⊥⟩}, 

{|𝑇⊥⟩ + |𝑆∥⟩}, and {|𝑇⊥⟩ + |𝑆⊥⟩}. The key point is that the T event and the S event are 

separated by some 92 billion light-years, and so are currently beyond each other’s 

cosmological particle horizon, and yet they nevertheless appear together in four 

configurations of parallel universe. We could continue this argument by shifting Earth’s 

point of view to the S event, and then further again, indefinitely across the universe. That is 

why, in MDW, we include probabilities of all events beyond the particle horizon in 

expression (4).  

 

 

4 Experimental verification of the Born rule in MDW 

 
We recognise that such a straightforward notion of probability in equation (7) is frequentist, 

and may be challenged, particularly as we make the case in Section 6 that N0 is finite. 

Saunders (1998, 2010c) analyses the fundamentals of probability in quantum mechanics, and 

self-locating uncertainty is discussed by many authors, often as an adjunct to deriving the 

Born rule (see, for instance, Vaidman (1998, 2012, 2014), Wilson (2013), Sebens and Carroll 

(2018), McQueen and Vaidman (2019), Dawid and Friederich (2022)). However, we shall 

avoid that rabbit hole: rather than try to derive the Born rule, we shall simply acknowledge 

that it is intrinsic to the structure of MWI and MDW. 

 

We wish to show that, if the numbers of discrete universes in the MDW multiverse are 

distributed in proportion to the Born rule as in expression (6), then quantum outcomes in any 

individual universe, including our own, will also be according to the Born rule. It is by no 

means obvious that such a numbers distribution in the multiverse will indeed lead to the 

quantum probabilities that we observe in our universe, and we must be careful how we 

investigate this. Crucially, we shall not follow the routes normally chosen to demonstrate 

quantum probabilities, namely (1) the frequentist approach—Saunders (2010b) gives an 

introduction to the problems with frequentism—or (2) Bayesian and decision-theoretic 

strategy: see for instance Deutsch (1999), Wallace (2010), Greaves and Myrvold (2010). 

While these paths are well trodden and intuitive, they are not without their obstacles (see, 

for instance, Barnum et al, 2000), and, instead, we shall follow Everett: 

 



11 
 

“Imagine a very large series of experiments made by an observer. [… For] a 

‘typical’ branch, the frequency of results will be precisely what is predicted by 

ordinary quantum mechanics.” (Werner, 1962 p. 96, marked “bottom of page 

20”) 

 

So, we ask a simple question of the MDW structure: if we repeat a given quantum experiment 

many times in succession, and then aggregate all of the measured outcomes of each of the 

experiments in the series, do they converge towards the result predicted by the Born rule? 

 

 

 

 

Fig. 3  Relative frequency distributions of universes containing “spin-up” 

outcomes for series of NE = 100, 1,000 and 10,000 experiments per universe, 

within a multiverse of N0 universes. 

 

Suppose that the 60º experiment is repeated for a large number of times so that the total 

number of experiments in the series is NE, which we substitute for Ni in expression (6). There 

are only two possible outcomes for each experiment, namely |↑⟩ and |↓⟩, with Born 
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probabilities ¾ and ¼ respectively. From (6), the number of universes containing p spin-up 

and (𝑁E − 𝑝) spin-down outcomes in any particular order of outcomes is 

𝑁0 (
3

4
↑)

𝑝

(
1

4
↓)

(𝑁E−𝑝)

, where we have included the spin direction for clarity. The number of 

combinations of that number of spin-up and spin-down outcomes is the binomial coefficient, 

(
𝑁E

𝑝
). Hence, the total number of universes in which there are p spin-up outcomes and 

(𝑁E − 𝑝) spin-down outcomes in a series of NE experiments is 

number of universes with 𝑝 ↑  outcomes =  𝑁0 (
𝑁E

𝑝
) (

3

4
↑)

𝑝

(
1

4
↓)

(𝑁E−𝑝)

           (8) 

In Fig. 3 we show equation (8) plotted as histograms for the outcomes of three different 

series of 60º experiments, containing, in each universe, NE = 100, 1,000 and 10,000 

experiments respectively. We have rescaled each of these three histograms so that their peaks 

are all the same height. 

In the series of 10,000 experiments per universe, we see that in virtually all of the N0 

universes, the number of spin-up outcomes in a universe is almost exactly ¾ of the total 

number of experiments in that universe (that is, in this case, 7,500). Taking the width of the 

peak to be proportional to the percentage standard deviation of the plot, namely, 

100

√𝑁E
√(

3

4
×

1

4
), it will be seen that, as the number of experiments in the series, NE, increases, 

so the percentage of spin-up outcomes more closely matches the ideal result of 75% 

predicted by the Born rule for a series containing an indefinitely large number of 60º 

experiments in virtually every one of the parallel universes in which the series takes place. 

This echoes Saunders’ observation (Saunders 2010c) that “branches recording relative 

frequencies of outcomes of repeated measurements at variance with the Born rule have, 

collectively, much smaller amplitude than those that do not (vanishingly small, given 

sufficiently many trials)”. 

In summary, following Everett’s thought experiment, we have shown that, if the numbers of 

universes with given outcomes are apportioned across the MDW multiverse according to the 

Born rule for those outcomes as in expression (6), then, in a series of experiments within any 

single one of these universes, the results will generally be consistent with Born rule 

predictions. 

 

5 Entanglement in MDW 

 
Suppose that two particles are emitted in opposite directions along the y-axis in an entangled 

singlet state where the total spin is zero, and that the spin of each particle is measured with 

a Stern-Gerlach detector set at an angle θ to the other, as measured in the x-z plane. In MDW, 

we consider the two separate measurements of two entangled particles as a single event. 

Pictorially, in any given universe, the two measurements are embedded at two different 
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spacetime locations, and may be spacelike separated. The probability amplitudes for all four 

possible (mutually exclusive) outcomes may be written 

1

√2
sin

𝜃

2
|↑↑⟩;  

1

√2
cos

𝜃

2
|↑↓⟩;  

1

√2
cos

𝜃

2
|↓↑⟩ and  

1

√2
sin

𝜃

2
|↓↓⟩. 

where the first arrow always represents the spin of the first particle and mutatis mutandis for 

the second arrow. 

Hence, the absolute square of the probability amplitude for a match, (m), where (𝑚) =
(|↑↑⟩ or |↓↓⟩), is 

(
1

2
sin2 𝜃

2
↑↑ +

1

2
sin2 𝜃

2
↓↓) =  sin2 𝜃

2
(𝑚). 

Similarly, the absolute square of the probability amplitude for a non-match, (n), where (𝑛) =

(|↑↓⟩ or |↓↑⟩), is cos2 𝜃

2
(𝑛). Here, the brackets around “m” and “n” mean that the terms are 

used purely indicatively and have no numerical value in this position. 

If we put θ = 120º, the probabilities for a match and a non-match are, respectively, ¾ and ¼. 

Therefore, in a series of NE entanglement experiments, from expression (6), the number of 

universes containing m matched and (𝑁E − 𝑚) non-matched outcomes in any particular 

order of outcomes is 𝑁0 (
3

4
(𝑚))

𝑚

(
1

4
(𝑛))

(𝑁E−𝑚)

, so that, taking account of all possible 

combinations, the total number of universes in which there are m matches and (𝑁E − 𝑚) 

non-matches in a series of NE entanglement experiments is 

number of universes with 𝑚 matched outcomes =  𝑁0 (
𝑁E

𝑚
) (

3

4
(𝑚))

𝑚

(
1

4
(𝑛))

(𝑁E−𝑚)

. 

Since this is in the same form as equation (8), then the results of series of entanglement 

experiments can be represented by Fig. 3 where we substitute “matching” for “spin-up” in 

the text for the two axes. So we come to the equivalent conclusion, that, if we continue to 

repeat the above entanglement experiment a sufficiently large number of times in any single, 

given universe, then it is increasingly likely that we shall be able to demonstrate that we are 

in a universe where the proportion of matching outcomes approaches the result of ¾ 

predicted by quantum mechanics for this entanglement experiment. 

In treating the two measurements of the entangled particles as a single event, we are 

recognizing that the outcomes are distributed across the multiverse just as described in 

Section 3, so that, in any given universe (our own, for instance), the detection of one of the 

pair has no effect on the detection of the other. This echoes the comment of Boughn (2017): 

“[…] the magic of the correlations of Bell’s entangled system is a direct 

consequence of the quantum behavior of a single spin ½ particle.” 
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6 Spatiotemporally finite universes in a finite multiverse 
 

We used angles of 60º and 120º to illustrate the above thought experiments because the 

outcome probabilities are rational. This means that the number of identical universes with a 

given configuration can be integer, from expression (6). However, probabilities predicted by 

quantum mechanics are generally irrational. This raises the question of whether or not the 

multiverse is finite with regard to the number of universes in it. If it is not uncountably 

infinite, then quantum mechanics will turn out to be only an ideal approximation (no matter 

how accurate) to the actual structure of the multiverse according to MDW. 

To answer the question of finitude, consider, for the moment, weighted universes as in Fig. 

2(b) rather than the multiple universes of Fig. 2(c), and recall that our use of the term 

“universe” refers to its complete spatiotemporal extent after decoherence. Suppose that such 

a weighted universe contains m mutually independent quantum events: for example, m non-

entangled events, each of which is located at a spacelike distance from all the others. Since 

each of these events must have at least two possible outcomes, then there are at least 2m 

possible combinations of outcomes, with at least 2m configurations of weighted universes 

containing these outcomes. 

Recalling from Section 3.1 that events in a universe are not limited to the finite volume 

within the particle horizon, we begin by supposing that m is countably infinite, which would 

mean an uncountable infinity (at least 2m) of weighted universes in the multiverse. 

In any universe, if we trace the cause of any event successively backwards in time, we shall 

ultimately arrive at the same root event that is common to all universes. In the multiverse of 

our supposed uncountable infinity of universes, the number of universes containing an 

outcome of an event directly caused by the root event must also be uncountably infinite. In 

turn, the number of universes containing a succeeding outcome will also be uncountably 

infinite. Proceeding thus, we see that every outcome of every event in such an uncountably 

infinite multiverse will be contained in an uncountably infinite number of universes. 

In such a multiverse, the intuition is that it is not meaningful to speak of the probability of 

being in a universe with any particular configuration of outcomes. If so, then demonstrating 

the Born rule by conducting a series of 60º experiments within a given universe would not 

work, because it would no longer be meaningful to say that in nearly every universe the 

percentage of spin-up outcomes matches the 75% predicted by the Born rule within a 

specified limit. Nevertheless, if we regard each weighted universe with a given percentage 

of spin-up outcomes as the sole element of a set, then might the problem be amenable to a 

measure such as the Lebesgue measure? 

If each one of the uncountably infinite number of universes in the multiverse contained only 

the outcomes of the series of 60º experiments, then the Lebesgue measure might indeed be 

used. Using Fig. 3 to show this heuristically, the histogram bars for the series of, for instance, 

100 experiments could be laid end-to-end, as it were, on the interval [0,1] of the number line, 

and the probability of being in a universe with, say, 71 spin-up outcomes would be the 

interval on [0,1] corresponding to the length of the 71% histogram bar. 
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However, in our proposed scenario, there is a countably infinite number of other events, m, 

which also have to be included in the configuration of each weighted universe in addition to 

the 60º experiments, and it is these events that ultimately preclude the use of the Lebesgue 

measure. To see why, first imagine a universe containing no events except for a single 60º 

experiment. Then there is one weighted universe for each of the two possible outcomes of 

the experiment. Let us regard these two universes as two distinct sets, each containing just 

one element: the first set contains an element which is a universe with a spin-up outcome 

and the second set contains an element which is a universe with a spin-down outcome. 

If there were just one other independent event in each of these two universes, say event B1, 

with outcomes of, say, spin-up and spin-down, then the original set with the universe 

containing a 60º result of spin-up would have to be divided into two non-intersecting sets: 

one set containing a universe—again, a single element—where the 60º result is spin-up and 

the outcome of B1 is also spin-up, and the other set containing a universe—again, a single 

element—where the 60º result is still spin-up but the outcome of B1 is spin-down. These two 

sets are non-intersecting because the single element contained in the first set is different from 

the single element contained in the second. The set where the 60º result is spin-down would 

similarly be split into two non-intersecting sets by the same event B1, giving a total of four 

non-intersecting sets. 

If we include another independent event, B2, then this divides each of the four sets again, 

and so it will become clear that, with a countably infinite number, m, of independent events 

in each universe where a single 60º experiment is performed, the total number of non-

intersecting sets, 2m+1, is uncountably infinite. If we now consider not just one, but many 60º 

experiments in a series, as in Fig. 3, in an attempt to demonstrate the Born rule, the result is 

the same—we end up with an uncountably infinite number of pairwise disjoint (i.e., all non-

intersecting) sets. 

And this is why the Lebesgue measure fails: the measures of an uncountably infinite number 

of sets would have to be added together, but then the Lebesgue measure requires that the 

pairwise disjoint sets forming the sum must be countably additive—it will not handle 

uncountable additivity (see, for instance, Richardson (2009 p. 8)). A union of an uncountably 

infinite number of pairwise disjoint sets of universes would require uncountable additivity, 

which will give inconsistent results (for a more detailed discussion, see, for instance, Miller 

(2017 pp. 65-70)). So, despite the original hope of using the Lebesgue measure, it turns out 

that, in this case, the original intuition was correct: experiments to demonstrate the Born rule 

will at best return inconsistent results. 

In summary, if the universes in the multiverse contain just a countably infinite number of 

events, so that the number of universes in the multiverse is uncountably infinite, then, in any 

such universe, any series of experiments to measure quantum probabilities will return results 

which are inconsistent with the Born predictions. Clearly, this is also the case for events 

numbered in higher cardinalities. Since we do not live in such an inconsistent universe, the 

conclusion is (1) that there is not an uncountably infinite number of universes in the 

multiverse; and so (2) they do not contain even just countably infinite numbers of events 
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(because that would lead to an uncountably infinite multiverse): the number of quantum 

events in any universe must be finite. 

The argument at the beginning of this section started with weighted universes. The 

conclusion of a finite multiverse of finite universes is unchanged if we transform from  

weighted universes to multiple identical copies of universes in proportion to the weightings, 

in accordance with the MDW structure as in Fig. 2(c). 

Recalling the observation at the beginning of this section about irrational quantum 

probabilities, note that the finitude of the multiverse implies that the number of alternative 

basis states for any outcome is never infinite. That implies that, for instance, it must take 

only a finite number of possible positions to account for all possible interactions registering 

on the detecting screen of a two-slit experiment. This approximation to the quantum ideal of 

an infinitely finely grained screen should not be seen as a fundamental impediment, because, 

in practice, the constituent atoms of the screen will determine the basis, limiting it to a finite 

number of distinct detecting locations. 

The consequences of a finite number of quantum events in any universe are significant. The 

cosmological principle of isotropy and homogeneity extends beyond our own particle 

horizon, and so, if our universe were spatially infinite, then the number of events would also 

be infinite. Given the finite number of events in our complete spacetime, we conclude that 

our isotropic and homogeneous universe must be spatially finite. (Notice that a finite number 

of events in our complete spacetime implies that our future is also finite, inasmuch as there 

must be one final event in the far distant future, which is indeed conceivable. So, in that 

sense, we can say that our universe is also temporally finite.) 

Astronomical observations that we are living in a spatially flat universe (e.g. Aiola et al 

(2020), Aghanim et al. (2020)) do not necessarily negate our conclusion that our universe is 

spatially finite, because the observed flatness can be explained by models of inflation (e.g.  

Starobinskii (1979), Guth (1981), Linde (1982)). As it happens, inflation does not 

necessarily rule out using the universe’s topology as a means of falsifying our finite-universe 

conjecture. Since the topology of the universe will still be the same now as it was initially, 

current work (e.g., Asselmeyer-Maluga et al (2022), Thébault (2023)) may lead to future 

developments in cosmology that will suggest ways to determine the topology of the pre-

inflationary universe, which would then be a test of its spatial finiteness, and therefore of 

MDW. 

 

 

7 Discussion 
 

The MDW picture of discrete universes diverging from each other rather than branching at 

every interaction is essentially that of modal realism described by Lewis (1986). However, 

the motivation for our proposal stems ultimately from the need to account for quantum 

uncertainty, whereas Lewis developed his thesis from a different philosophical perspective, 

lying outside of the ambit of this paper. The case for discrete, diverging universes is also 

considered by Saunders and Wallace (2008), Saunders (2010b), Wallace (2012), Wilson 
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(2020). None of these authors, though, promotes the notion of a finite number of discrete, 

diverging universes, with Wallace saying that you shouldn’t think of each universe as an 

individual unit (his picture is of “slabs” of universes) and Wilson being agnostic on whether 

the number of universes is either finite or infinite. Deutsch (1985) argues for a continuous 

infinity of worlds. No author uses their model to deduce that the universes in MWI are 

spatially finite. 

Authors who consider an uncountable infinity (a continuum) of universes include Deutsch 

(1997), Boström (2015), Holland (2005), Poirier (2010), Parlant et al. (2012), Schiff and 

Poirier (2012). (Others, such as Wilson (2020 p. 178) accept the possibility of a continuum 

of universes, but are open to the prospect that the number may yet be finite.) 

Exceptionally, Hall et al (2014), Vaidman (2014) and Sebens (2015), among a few others, 

are unconvinced by the notion of a continuum of universes, the latter two authors making 

the case that regions containing infinite densities of worlds cannot be compared in assessing 

probabilities of being in a particular world. 

Returning for a moment to the two papers of Hall et al (2014) and Sebens (2015), their 

authors having arrived independently at essentially the same quantum interpretation, the key 

idea is to apply the quantum potential of the de Broglie-Bohm interpretation not just to 

particles in a single universe but to particles in a configuration space containing a finite 

number of discrete universes. However, in contrast to the universes in MDW, these universes 

appear effectively to interact, ultimately as a result of how the de Broglie-Bohm quantum 

potential determines the configurations of universes in this interpretation. This interaction is 

most clearly manifest as a mutual repulsion in configuration space, which increases with 

increasing similarity between the worlds. This would effectively rule out universes being 

identical, or indeed identical for any significant part of their trajectories, whereas such 

identical universes are integral to the MDW interpretation. 

Boström (2015) maintains that it is legitimate to use the Lebesgue measure over a continuum 

of universes, effectively pointing out that, with universes that are continuous in configuration 

space, the Lebesgue measure can be used as a measure of the proportions of universes 

contiguously adjacent to each other sharing a particular state. However, while his argument 

would be correct for universes containing, for instance, only a series of 60º experiments, that 

contiguity is broken by the uncountable number of unrelated outcomes, which is another 

way to view the above argument that the Lebesgue measure cannot cope with an uncountably 

infinite number of pairwise disjoint sets of universes. 

MDW shares some features of the many-threads picture described by Barrett (1999). Each 

thread is the history—the “experience”—of one trajectory through the dendritic tracery of 

MWI. In contrast to MDW, however, where two or more identical universes are allowed, 

there is apparently only one thread for each trajectory upwards through the branches, and 

there is an infinite number of threads in its multiverse (Barrett, 2019). 
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8 Conclusion 

 
We have presented the case for a fixed, finite number of discrete, non-splitting, non-

interacting, spatiotemporally finite, decohered spacetimes emerging from Everett’s 

Universal Wave Function. The MDW approach gets round the problem of why an observer 

should give more credence to being in universes with greater branch weights by using the 

“branch counting” method. This divides universes with given branch weights into multiple 

identical universes in numbers proportional to the branch weights. As expected, probabilities 

derived from branch weights according to Gell Mann and Hartle (2007) are equal to those 

calculated for the corresponding discrete universes in the MDW picture. 

 

We showed that each universe should be considered as containing all decohered outcomes 

over the entire extents of their spacetimes, including events/interactions occurring beyond 

any cosmological particle horizon. We also showed that a series of experiments as prescribed 

by Everett within a universe will demonstrate consistency with the Born rule. It turns out 

that a countably infinite number of interactions needs an uncountably infinite number of 

universes, and we showed why measures such as the Lebesgue measure would fail in that 

case, with the result that the Born rule would not be demonstrable. This leads us to conclude 

that the number of universes in the multiverse must be finite and, as a corollary, that the 

universes are finite in space and duration. 

While one or more of the above features of MDW are to be found in other interpretations of 

quantum mechanics, the force of the arguments in this paper strongly suggests to us that, 

uniquely, these features are combined in our multiverse of Many Discrete Worlds. 
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