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Preface 
 
This is an introduction to the idea that our universe is just one of many universes: it is part of a 
multiverse. This idea is very topical. A multiverse of one kind or another is seriously advocated 
by many philosophers. And similarly for physics: many physicists advocate a multiverse---usually 
of a different kind than that of the philosophers. So the time seems ripe to assess the various 
versions of this idea. In this book, I will assess three versions of it. One is from philosophy: 
more specifically, from logic’s treatment of possibility. The other two are from physics: more 
specifically, the Everettian interpretation of quantum theory, and inflationary cosmology. I will 
discuss these in order; and then in a final Chapter, compare them and relate them to each other.  
 
 
I should declare at the outset that the book has three main limitations. First: I set aside 
completely the treatment of the multiverse in countless novels, plays and films. Agreed, the 
parallel worlds (so called) in, for example, the films ‘Sliding Doors’ and ‘Everything Everywhere 
All at Once’, raise plenty of philosophical issues. But in this book, I will pursue the issues in 
themselves, in an academic manner. I have no aptitude for literary matters; so I set aside (albeit 
with some regret) these entertaining examples.     
      Second: within physics and philosophy, there are multiverse proposals other than the three I 
will assess. But among these, there are two which I will discuss during my assessments of my 
main three. The first of these is the multiverse of string theory; (string theory is a speculative 
physical theory). This proposed multiverse, often called ‘the landscape’, gives the main rationale 
for the cosmological multiverse; and so I will discuss it in that context. The second is the 
‘Pythagorean’ proposal that all of reality is mathematical, and that for this reason our universe is 
one of many universes. I will discuss this towards the end of my assessment of the philosophical 
multiverse, based on logic’s treatment of possibility.  
      Third: this book is a philosopher’s introduction. I mean this both in the sense that I am a 
philosopher, not a physicist; and that my intended readership is people who are interested in 
philosophy and the philosophical aspects of physics---but who are newcomers to it. So I 
endeavour to explain every term which is “in-house” for the disciplines of either physics or 
philosophy. For example, I will explain the terms ‘truth-table’ (in philosophy) and ‘wave-
function’ (in physics). But the tone is brisk and breezy. References are few, and almost entirely 
confined to suggested readings as the end of each Chapter. Thus it will be evident throughout 
that my discussion is inconclusive, and my conclusions tentative.  
 
 
Of course, being inconclusive is hardly surprising. For a subject as large in every sense (and more 
importantly: multi-faceted) as the multiverse, even a learned and exhaustive investigation would 
surely be inconclusive. No human mind could know all the relevant strands of evidence and of 
argumentation, from all of physics and philosophy. And even if one did know all that, the 
process of weighing them against each other---for there are bound to be conflicts---would 
involve judgments which could no doubt be disputed.  
      So while I admit that my discussion is inconclusive, I console myself with the thought that a 
brief and non-exhaustive investigation can serve a purpose. Indeed, I hope it can satisfy the 
curiosity of the newcomer reader, and prompt their own thinking, about as well as a long and 
learned book could. (In Chapter 1, I will say more in defence of this philosophical outlook: 
namely, that one should “dive in” and speculate, even when one’s evidence is small and perhaps 
defective.)      
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Chapter 1: Introduction 
 
 
I write these words, believing that I have always lived in one world: and that it is the same world 
in which my family, friends, historical figures, all humankind, including you, dear reader, live or 
have lived or will live. But our topic is the speculation, made by many authors past and present, 
that this world is by no means all there is: that it is one of a vast collection of worlds---dubbed a 
multiverse. 
 Here and throughout this book, I will use the word ‘world’, not for a planet, but for a 
cosmos, a universe, extended throughout all of space and all of time. So the actual world---as I 
will use that phrase---contains all objects and events that are at some distance, no matter how 
great, from us here on Earth. And it contains all objects and events that are in the distant past or 
distant future, as well as those that are now. As one might put it: the actual world contains all 
objects and events at any ‘temporal distance’, no matter how great, from us now, just as it 
contains all objects and events at any spatial distance.  

So our topic is the idea that the actual world, though very inclusive, is not all of reality. 
Indeed, it is only a tiny part of reality. Let me say this a bit more precisely. The idea is that there 
is a vast collection of worlds, i.e. universes, differing in myriad ways one from another. The 
actual world---the universe, as we usually use that word---is just one member, one element, of 
this vast collection. And it is no more real than all the other members. Agreed: it seems 
“especially real” to us. But, so the idea goes, that is only because we are in it, rather than in 
another world.  

This is supposed to be rather like how in the actual world, any place---such as Westminster 
Abbey, London, or the Sydney Opera House---can seem especially real to a person at it. But such 
a person will readily agree that other places are equally real. They are just spatially distant: and 
therefore they are usually hard to know about since, for example, they are not visible. Similarly, 
the idea is that the proposed other worlds are just as real as the actual world: though they are in 
general harder to know about than the actual world.  This vast collection, or multitude, of 
universes is the multiverse. (Some people say ‘pluriverse’, but I will always say ‘multiverse’.) 

The multiverse is a timely topic. For in the last thirty years, ‘multiverse’ has become a buzz-
word in both physics and philosophy. In both disciplines, it has been proposed that our universe 
is just a tiny part of a multiverse.  

Of course, what is meant by a multiverse, and therefore the reasons given for it, differ 
between the disciplines. We can glimpse this variety already in my introductory words above: 
when I said that according to proponents of a multiverse, the actual world, comprising 
everything at some spatial or temporal distance from us-here-now, is just one of a vast collection. 
For we shall see that on some multiverse proposals, the objects in the other worlds are indeed 
related in space and time to us-here-now. It is just that these relations are very different from the 
distances across space and time that we are familiar with (even very large ones). 

Besides, even within a discipline, authors differ about their reasons for believing in a 
multiverse. Broadly speaking, these differences are as one might expect. Physicists who propose 
a multiverse tend to take their reasons for it to be empirical. Here, ‘empirical’ does not just mean 
‘derived from immediate experience’. It also includes data from experiments, maybe very 
advanced or delicate ones. Thus physicists tend to argue for a multiverse on the grounds that 
postulating it explains---or explains better than rival suggestions do---some significant physical 
facts, that would be otherwise puzzling, even mysterious. But in propounding these arguments, 
physicists tend to down-play the ways in which conceptual, i.e. non-empirical, considerations can 
also contribute to the explanation.  
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On the other hand, philosophers who propose a multiverse tend to take their reasons for it 
to be conceptual, i.e. non-empirical, even with ‘empirical’ understood in a wide or liberal sense 
that includes data from arcane experiments. Thus philosophers proposing a multiverse tend to 
argue that it provides the best account of some problematic concept; not that it explains, or 
explains better than rival ideas, some empirical evidence. (As we shall see in the next Section, the 
main problematic concept at issue is that of possibility.) 
So philosophers tend not to consider whether any empirical considerations---in particular, 
physicists’ reasons for their notion of a multiverse---bear on the account of the concepts, like 
possibility, that the philosophers focus on.   

But in fact, the various proposals share important common themes. Besides, the reasons for 
(and against) each proposal combine empirical and conceptual considerations.  So the topic calls 
for an interdisciplinary treatment. Thus my aim will be to assess these proposals, by comparing 
them with each other and by articulating common themes. Among these themes, there will be 
major open philosophical problems.  
 
 
Chapter 1 Section 1: The plan: three multiverse proposals 
My plan will be to discuss, in order, three different multiverse proposals. There will be one from 
philosophy, and two from physics. The philosophical proposal is about logically possible worlds. 
The first physical proposal is about the many worlds of the Everettian interpretation of quantum 
mechanics; and the second is about the bubble universes proposed by inflationary cosmology 
and string theory. For each proposal, I will explain it, and the reasons why people advocate it.  

As one would expect, each proposal comes in various versions that have, in relation to 
each other, various advantages and disadvantages: in other words, features that are agreed, by at 
least some parties to the debate, to make the version in question, respectively, more plausible or 
less plausible. To keep things simple (as befits an Introduction), I will by and large not try to 
formulate different versions, but instead focus on one version that is mainstream: at least in the 
uncontentious sense of having got plenty of attention, for and against, in the literature. But I 
should admit at the outset that each of these mainstream versions has been met in some quarters 
with incredulity, and even indignation. As we will see, here physics joins philosophy in being very 
controversial.   

And as befits a philosophical Introduction, I will for each proposal, emphasize a 
philosophical question that it raises, which then moulds my discussion of the later proposals. 
Each question will be a major philosophical problem---a problem which is unsolved: indeed, a 
problem about which I of course hope this book will prompt further effort.   

So there will be six Chapters (including this one): as follows. The three main Chapters, 
discussing my three multiverse proposals, are Chapters 3, 4 and 5. Chapter 3 is about the 
philosophical multiverse, the logically possible worlds. Chapter 4 is about  Everettian quantum 
mechanics; and Chapter 5 is about the cosmological multiverse. But before these central 
Chapters, I need to do some stage-setting. In this Chapter, I will describe how one assesses such 
proposals---or at least, how I propose to assess them. This will largely be a matter of being wary 
of pitfalls, and being self-conscious about one’s assumptions. In Chapter 2, I will review those 
aspects of physics and philosophy from 1600 to 1900 that we will need, in order to understand 
how in both physics and philosophy, the ground was fertile, by about 1970, for multiverse 
proposals. Then follow the three central Chapters. In the final Chapter, Chapter 6, I review the 
relations between the multiverse proposals, and conclude.  

As a result of this plan, Chapters 1, 2 and especially 3 are more about philosophy, while 
Chapters 4 and 5 are more about physics. To a large extent, all these five Chapters can be read 
independently, so that a reader can follow their interests. The main exception is that Chapter 5’s 
discussion of the cosmological multiverse will make a slight appeal to Chapter 4’s explanation of 
Everettian quantum mechanics.    



 11 

  To give a glimpse of what follows, here is some more detail about the three proposals, 
and the three questions they raise.  

The first proposal I consider is from philosophy (Chapter 3). It says that all the logically 
possible worlds---all the myriadly many ways that the universe could be, without contradiction---
are equally real. We ‘just happen’ to be in one of these worlds. (As I announced in this Chapter’s 
preamble: here and throughout, ‘world’ means, not a planet, but a cosmos or universe, 
throughout all space and time.) The rationale for this proposal is that it gives the best account of 
a concept that is problematic but apparently indispensable: namely the concept of possibility. For 
example, an everyday statement like ‘it might have rained today’ (said on a dry day) is surely 
about an alternative way the world could be. So to make sense of such statements being true, we 
surely need to countenance, i.e. accept as existing, the alternative ways the world could be: other 
possible worlds. 

Besides, there are several other concepts that are closely related to that of possibility (and 
equally problematic but apparently indispensable), which can be readily understood in terms of 
possible worlds. So much so that the arch-advocate of possible worlds, David Lewis, dubbed the 
possible worlds ‘a philosopher’s paradise’. (Although Lewis’ name is unknown to the general 
public, unlike e.g. Bertrand Russell and Ludwig Wittgenstein, he is generally agreed by 
philosophers to be one of the greatest philosophers of the twentieth century. He died in 2001, at 
the age of 60.) Details of this paradise are in Chapter 3. For now, I just note that one such 
related concept is that of a statement or proposition, i.e. the meaning of a sentence. 

I call Lewis ‘the arch-advocate’ although the idea of a set of all the possible worlds of course 
goes back much further than the recent decades of philosophy (at least to Leibniz). I do so for 
two reasons. First, he defended his own version of the proposal with great clarity, imagination 
and resourcefulness.  

Second, his own version is, despite his fine defence, almost universally rejected, i.e. not 
believed by other philosophers. For Lewis proposes that the other worlds are, in their nature, 
just like the actual world. Thus we all believe that the actual world consists (at least partly) of 
material objects that are, in the philosophical jargon, concrete rather than abstract: like a table, a 
rock, a molecule or an animal, rather than, say, a number or a proposition or an idea. Lewis 
argues that the other worlds are just as concrete as the actual world; they also consist (at least 
partly) of concrete material objects. This is a doctrine that almost all other philosophers, even 
those who endorse using possible worlds to address philosophical problems, find impossible to 
believe. They say: surely every non-actual possible world is in some way abstract, rather like a 
number or a proposition? So in Chapter 3, I will report this debate between Lewis (whose 
version is called ‘modal realism’) and other “more abstract” versions of the philosopher’s 
paradise.  

This yields the philosophical question associated to this proposed multiverse. Though 
philosophy is of course a subject in which any question leads rapidly to several others, I choose 
to emphasize the obvious one: what exactly are these different ‘ways’ that the universe could be? 
That is: what exactly is a possible world, or a possibility?  

In fact, we will see at the end of Chapter 3 that the concrete/abstract distinction is not in 
good order. For it can be made precise in several different ways that cut across one another. This 
undermines the traditional idea that numbers, triangles and the other entities mentioned in 
mathematics, are abstract. And as a result, some have advocated the ‘Pythagorean” view that all 
of reality---the apparently concrete objects like a table, no less than the apparently abstract ones 
like a number---is mathematical. This leads to another multiverse proposal. For since there are, 
presumably, vastly many possible mathematical structures, reality being wholly mathematical 
would make for a mathematical multiverse. So at the end of Chapter 3, I will also discuss this 
proposal: albeit more briefly, as an epilogue to my assessment of the multiverse of possible 
worlds.     
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 I turn to the two proposals from physics. They are from quantum theory and from 
cosmology.  

Quantum theory is famous---one might say: notorious---for the conundrums about how 
to interpret it. Above all, there is the measurement problem. It arises from the fact that quantum 
theory attributes to the objects it successfully describes, e.g. atoms, a lack of definite properties; 
or in other words, indefinite properties. For example, an object such as a particle that one 
expects to have a definite position gets attributed no definite position. (The buzz-word here will 
be ‘superposition’.)  One might accept this indefiniteness of properties for the unfamiliar and 
unvisualizable realm of microscopic objects like atoms. But the problem is that this 
indefiniteness of properties can be transmitted from the atomic realm to the everyday 
macroscopic realm---where such indefiniteness seems ludicrous.  This is the measurement 
problem. It is summarized iconically by Schroedinger’s cat. In a famous paper in 1935, 
Schroedinger described how in principle, an indefiniteness about a radioactive atom (viz. about 
whether it has decayed, or not) could be transmitted by a quantum measurement apparatus, so as 
to render a cat indefinite as to the property of being alive. That is: at the end of the process that 
Schroedinger describes, the cat is neither alive nor dead. And this indefiniteness is not due to the 
vagueness of our words ‘alive’ and ‘dead’, but concerns the cat in itself. It is somehow “in 
limbo”.   

The second multiverse proposal (Chapter 4) is a proposal for how best to interpret 
quantum theory, and especially how to solve the measurement problem. It was first suggested in 
1957 by Hugh Everett. (Like the philosophers’ proposal, there are various versions in the 
subsequent literature; I will focus on one mainstream version developed in the last thirty years.) 
So it is sometimes called the ‘Everettian interpretation’ of quantum theory. But it is also often 
called the ‘many worlds interpretation’. For the idea is that there is a quantum state of the 
multiverse as a whole; and this state encodes myriadly many different macroscopic worlds 
(sometimes called branches or realms), including the various macroscopic worlds that include 
(one each of) the various possible results of a quantum measurement process. So in particular, 
for Schroedinger’s thought-experiment, the quantum state at the end of the process encodes (at 
least) two macroscopic worlds. There is one, i.e. at least one, with a cat that is alive; and also at 
least one with a cat that is dead.  Besides, and here is the punch-line: all these macroscopic 
worlds are equally real.  

As we will see, this proposal links back to the philosophers’ multiverse proposal; and it 
raises many conceptual, indeed philosophical, questions. But I will emphasize one question: 
namely, what is chance? Here, ‘chance’ means objective probability, i.e. a probability that is made 
true by the subject-matter concerned. Nowadays, a standard example is radioactivity (quite apart 
from Schroedinger’s mention of it in his thought-experiment). For example, there is the chance 
of this Uranium atom decaying in the next hour; and it has a particular numerical value. So 
chance is contrasted with subjective probability, which are degrees of belief about a subject-
matter, e.g. my degree of belief that this horse will win the race. Such degrees of belief are made 
true by my state, not the horse’s. (For they are shown in my behaviour, for example by what 
odds I would be willing to accept in a bet on the race.) As we will see, the nature of chance is a 
central aspect of the statement, and the assessment, of the many worlds interpretation.  

 The third proposal (Chapter 5) is from cosmology. The last sixty years have been a 
golden age for the science of cosmology. Our understanding of the structure and evolution of 
the universe has grown immeasurably. So it is now an established fact that the universe we see, 
and see to be expanding, originated some 13.8 billion years ago in a very hot dense fireball---
which itself originated, perhaps, in a singularity of infinite density, dubbed ‘the Big Bang’. 
However, since the early 1980s, cosmologists have also speculated (prompted by good empirical 
reasons) that very early on, there was a very brief period of rapidly accelerating expansion, called 
‘inflation’.  
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It is this conjectured inflationary epoch that leads to the multiverse proposal. For the 
conjectured mechanism driving inflation also yields countless bubble, or pocket, domains (so 
called) that branch off from all the material that then expanded to become the observable 
universe which we now see. And each of these domains would itself expand and become a 
universe. So each of the countless bubbles (pockets, domains) is a universe, and the whole 
collection is a multiverse. 

As we will see in Chapter 5, there are two main sources of this multiverse proposal. The 
first source, in the early 1980s, was what came to be called ‘fine-tuning’. For the cosmological 
theory developed in the 1980s to be adequate, the value of certain physical quantities (such as a 
measure of how dense is the matter in the universe) had to be “just-so”. That is, their exact 
numerical value was theoretically constrained to many decimal places. For example, the quantity 
about matter-density was constrained to sixteen decimal places: for the theory to be adequate, its 
value could differ from 1 by at most 10-16. This is a minuscule difference, i.e. a very tight 
constraint. For 10-16 is approximately the ratio between the width of a human hair (viz. a tenth of 
a millimeter) and the average distance between Earth and Mars (viz. 225 million kilometres)! In 
the early 1980s, cosmologists realized that this glaring conundrum---why should there be such 
fine-tuning?---could be resolved if there was, very soon after the Big Bang, a very brief period of 
rapidly accelerating expansion. Roughly speaking, such a period made these quantities’ values 
generic rather than exquisitely fine-tuned. But this speculation, for all its merits as an explanation 
of the quantities’ values, prompts the question: what could be the mechanism of this brief 
accelerating expansion?  

Here enters the second source. Namely, string theory: this is a speculative physical theory 
(developed from the mid-1980s onwards) that aims to reconcile quantum theory with Einstein’s 
general relativity, which is our best theory of gravity. It suggests not only a mechanism, but also 
one that generates countless bubble (pocket, domain) universes. Besides, these bubble universes 
will in general differ from one another as regards the value of physical quantities, such as the 
speed of light or the electric charge on an electron, that we normally call ‘constants of nature’, 
since we find them to be constant across the whole observable universe. So the cosmological 
multiverse, as elaborated using string theory, envisages a variety in the values of these so-called 
constants.      

Again, this proposal (of which, again, there are many versions) links back to the previous 
ones, and raises many questions, including philosophical ones. Of these, I will emphasize the 
question that is most directly suggested by the conundrum of exquisite fine-tuning: what counts 
as an explanation?  

So that is the overall plan of the book. In short: there will be three multiverse proposals, 
and three associated questions. But throughout the book, I will also discuss how various themes 
which the book downplays---such as (i) the proposal for a Pythagorean or mathematical 
multiverse, and (ii) the philosophical justification of induction---fit in.  
 
 
Chapter 1 Section 2: What do I believe? 
So much by way of a prospectus. You will want to know—maybe so as to gauge my sanity, 
before deciding whether to read what follows---where I stand about these speculations.  

I began this Chapter by saying I believe that I have always lived in one world. Of course, that 
could be so, even while there are many other worlds. It could even be so, while there are many 
other worlds and also, we can have some knowledge of them; or at least, we have some 
warranted beliefs about them. So you will want to press the question: do I believe there are such 
worlds? 

To cut a long story very short: my answer is ‘Yes, No and Maybe’. (Needless to say, my 
reasons, about all three proposals, will be less than conclusive.) That is: I believe in the 
philosophical multiverse, though not in Lewis’ modal realist version with its “concrete” worlds. 
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But I do not believe in quantum theory’s Everettian multiverse. And for the cosmological 
multiverse, I say, as the film producer Sam Goldwyn is meant to have done: ‘a definite Maybe’.  

In Chapter 6, I will discuss these verdicts in more detail, in the light of the evidence and 
arguments we will by then have in hand. But for the moment, I want to emphasize two points. 
The first is about what I mean by ‘belief’. The second is about what my beliefs imply for you, the 
reader. This will take a longer discussion, which is in the next Section. 

First: here and throughout the book, I use the word ‘believe’ in an everyday sense: a belief is 
a conviction, on which I am willing to bet a great deal, even my life. We all make these kinds of 
bet all the time. I believe the plane will fly safely, so I get on it without worrying. Agreed, some 
people have their doubts about planes. But the same point is made, even more vividly, by even 
more humdrum examples. As I walk across the room, I believe the floor will continue to support 
me; as I eat the bread, I believe it will not poison me. And so on. Agreed: we all have, for many 
propositions, degrees of belief that fall short of conviction. Recall the example above, of my 
degree of belief (subjective probability) that this horse will win the race. But for most of this 
book, we can set subjective probabilities aside, and so take belief to involve a subjective 
probability so close to 1 (100%) that the difference is negligible. Hence my word above, 
‘conviction’.      

So I intend my beliefs as reported above, ‘Yes, No and Maybe’, in this everyday sense. But 
stated so briefly, they are also “merely autobiographical”. They just report that after surveying 
the evidence and arguments as well as I can, I cannot believe this, while I could believe that.  

 
 

Chapter 1 Section 3: What should you believe? 
This leads to the second point. Being “merely autobiographical”, these verdicts should have little 
weight with you, the reader. While I am happy to tell you straight-up what I believe, you should, 
and of course will, make up your own mind. You may well reach more positive conclusions 
about these multiverse proposals than I have. For as we will see: much deeper thinkers than I 
have believed in a multiverse, and made an extended case for the multiverse they believe in. I 
only hope that my survey of the evidence and arguments is open-minded and clear-headed 
enough to give you good material for reaching your own conclusions. 

The reason you and I may differ is that in the current state of knowledge, and combining the 
insights of both physics and philosophy, it is impossible to now know for sure about any of the 
three multiverse proposals. Thus I do not give my Yes and No, respectively, to the first two 
multiverse proposals, on the basis of some evidence or argument that I take to be irrefutable, or 
‘knock-down’. Indeed, I doubt that we could get such irrefutable evidences or arguments, either 
for or against these proposals.  

Within philosophy, this situation---of admitting that while one finds some evidence or 
argument cogent, and even persuasive, it is certainly not conclusive or irrefutable---is of course 
familiar. It is also to be expected. For philosophy is by its nature controversial. Since the 
problems it addresses are abstract and general, it is hard to pinpoint what evidence, or 
considerations, would definitively solve them. (Or if one prefers to think of philosophy as asking 
questions: it is hard to pinpoint what evidence, or considerations, would provide a definitive 
answer.)  

Of course, to say that philosophy’s problems are abstract and general makes it sound like 
mathematics, or perhaps physics. But there is a difference. Philosophy’s problems are also about 
concepts that are either not completely precise, and-or are contested, i.e. rejected as bad concepts 
by some people. (Here, ‘bad’ means, roughly speaking, ‘useless and even misleading’, e.g. because 
the concept has a mistaken presupposition.) This is obvious for concepts that are the focus of 
moral and political philosophy: concepts like freedom, responsibility, equality, justice, class, and 
just war. For example, someone might reject the concept of political equality, in the sense that 
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they maintain its only role is to mislead: namely, the ruling elite uses it as a slogan to deceive the 
ruled that they have a say in how politics and government are run.  

But as we will discuss, imprecision and being contested are similarly features of concepts that 
are a focus of philosophy of science, and so of this book---even within its discussion of the 
multiverse proposals from the less controversial discipline of physics. 

For example, think of the concepts in the three questions that I listed as being raised by the 
three multiverse proposals: namely, possibility, chance and explanation. Each of these concepts 
is not precise; and even when it is made precise, philosophers disagree over claims involving it; 
and some philosophers reject the concept (even once made precise) as bad. Besides, we shall see 
that these concepts are linked to several other such concepts: that is, concepts that are apparently 
valuable for making philosophical sense of science, but are not completely precise, and-or are 
contested. Two examples are the concept of a law of nature, and the concept of causation: to 
both of which we will return.  

So for any problem whose formulation uses an imprecise and perhaps even contested 
concept, it is inevitably controversial how we should assess proposed solutions to the problem. 
For there will be no prior agreement on the kinds of evidence, either empirical or conceptual, to 
which a solution should be answerable. And as I said: this is as expected---all in a day’s work---
within philosophy.  

Agreed: physics is, by and large, far less controversial than philosophy. Its concepts are more 
precise, and less contested; and so its problems are better defined. And so also are the kinds of 
evidence to which a proposed solution is answerable.  

But obviously, for physics’ two multiverse proposals, these contrasts with philosophy fall 
away. The Everettian multiverse is one proposal of several in the debate about the best way to 
interpret quantum theory. That debate still rages, with a mixture of empirical and conceptual 
reasons for and against the various proposals. So assessing the Everettian multiverse is as 
controversial as most of philosophy.  

The cosmological multiverse is also controversial, though for rather different reasons. It is 
not in the first instance an interpretative proposal, in the way that the Everettian multiverse is. So 
one would expect the empirical evidence, or indeed conceptual considerations, that would count 
for or against the proposal to be easier to state, i.e. to be better defined---easier for different 
people to agree on. But any relevant empirical evidence is fearfully hard to get: as of course one 
would expect, since the proposal is precisely that there are universes other than---beyond---all 
that we can directly observe. And it is also hard to agree on the relevant conceptual 
considerations that would weigh one way or the other. For as we will see, the proposal raises 
interpretative, and therefore controversial, issues; even though it is not primarily an interpretative 
proposal. One main way that it raises such issues is that it turns out to be closely related to the 
debate about the best way to interpret quantum theory. (Hence it is clearest to postpone 
discussing it until after the Everettian multiverse.)  

So in short: my personal assessments of the three proposals, ‘Yes, No and Maybe’, will be 
tentative. I do not urge them as definitive. For we must recognize that different people are very 
likely to disagree about how to weigh the various pieces of evidence and lines of argument; not 
least because they may disagree about the usefulness of the concepts in which the evidence or 
argument is formulated.  

Besides, it seems too much to hope that all such disagreements could be resolved in 
principle, by arranging some resolutely open-minded exchange of opinions that was allowed to 
last “as long as it takes”. If in order to resolve such a disagreement, you were to lock “the jury” 
in a room with coffee and refreshments, and let them out only when they agree---argh, the jury 
might never come out. Agreed, some such disagreements might be thus resolved. For example, a 
conflicting assessment of some specific line of argument might be shown to turn on people 
using different versions of some controversial concept such as explanation. But I doubt that all 
can be thus resolved. 
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But this is not a bland or indifferent agnosticism. I agree that it would be good---indeed, 
wonderful---to know whether any of the three proposals is true. Or if knowledge is not to be 
had: at least to have conclusive reasons for belief, one way or the other. But we must recognize 
that enquiry about these proposals is both inconclusive and fallible; (as it is also, no doubt, for 
many topics). For these multiverse proposals, the best we can do is to marshal the available 
evidence, both empirical and conceptual, and to try to be open-minded and clear-headed in 
assessing the proposals.  
 
 
Chapter 1 Section 4: What would you risk? Confidence vs. caution 
I have just delivered a right-minded sermon about what one might call ‘cognitive modesty’. The 
summary is: we should accept that our views are tentative, not conclusive; that even the concepts 
with which we formulate our views may be contested by other people; and that maybe some of 
our disagreements with them could not be resolved by an open-minded exchange of opinions, 
no matter how long we allowed the exchange to go on. 

But there is another aspect of cognitive modesty that I should also register---and extoll. It 
arises from the fact that people differ in their attitude to risk, i.e. in how willing they are to take a 
risk. We will see that these attitudes influence people’s views, especially about the topics of this 
book. 

We are all familiar with the fact that what is an unacceptably large risk to one person can be a 
tolerably low, or even negligible, risk to another. We are also all familiar with the fact that, 
although to some extent one can urge reasons on someone to change their attitude to risk: 
beyond a certain point, such attitudes are a matter of basic temperament, and one cannot expect 
reasons to change the person’s attitude.  

The same goes, say I, for enquiry. People differ in their attitude to risk in enquiry, just as 
much as in action. It is just that in enquiry, the risk is of error, of false belief, rather than of some 
traumatic event. (Of course, false belief can engender traumatic events.) So each of us, when 
pursuing abstract and general questions, that cannot be easily settled by some well-defined body 
of evidence, takes a stance about how tolerant, or how averse, we are to ending up with a false 
belief. (Of course, the falsity may seem harmless as regards our personal safety and well-being, 
just because the topic of the belief lies so far from practical matters.) 

Of course, this stance is almost never a matter of a decision being made consciously. Did 
anyone, even a philosopher, ever say to themselves: ‘I hereby decide that I am too cautious, too 
averse to having a false belief, to either endorse or reject this philosophical proposition (about, 
say, a multiverse proposal)---I must remain entirely agnostic’? I doubt it. Nevertheless, each of 
us, when we engage with philosophical debates, in particular the debates in this book, thereby 
endorses or rejects, or at least assesses, various philosophical propositions. And we thereby 
adopt some stance, in the spectrum from tolerance to aversion, about the risk of false belief. 

I believe that like the everyday examples of attitude to risks about actions, rather than 
about beliefs, this stance is ultimately a matter of temperament. And this is even so, for beliefs 
whose topic is far-removed from practical matters; such as philosophical beliefs.  

Like the everyday examples, your stance can be changed, to some extent, by reasons. 
Other people engaged in the same philosophical debate, i.e. assessing the same philosophical 
propositions as those you are focussed on, can offer you reasons to change your stance. Thus 
they might say to you: ‘You should be more willing to endorse this proposition about the 
multiverse, because your background philosophical beliefs about possibility (or about 
explanation, or what-not) make it more plausible.’ Or they might say: ‘your background beliefs 
are such that, even if it is false, this would spell little damage to---force only a minor revision of--
- your other philosophical beliefs.’ (These examples show that the reasons urged for being less 
risk-averse can concern either a specific proposition, or the coherence of the pattern of one’s 
beliefs. Similarly of course for reasons for being more risk-averse.)  
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But I maintain that beyond a certain point, such reasons cannot persuade. Your stance 
cannot be wholly determined by discursive reasoning, i.e. by reasons that can be put in a 
discourse of words and arguments. It is ultimately a matter of what I would call ‘intellectual 
temperament’. So when the words give out in this way, the most that can be reasonably asked of 
you is that you should be self-conscious about this matter of temperament. And a fortiori, you 
should not be dogmatic about it: you should not proclaim that it is the only stance that is 
defensible, or rational. 

Because a person’s attitude to the risk of false belief, as moulded both by reasons and by 
their individual temperament, will be a factor in---will play a role in---the position they take in 
various debates throughout this book, it will be convenient for us to have a label for the range of 
attitudes. That is: I recommend adopting a label for this spectrum of risk-tolerance through to 
risk-aversion. So I will say: ‘confident’ vs. ‘cautious’. (Another possible label is: ‘ambitious’ vs. 
‘modest’.) 

Besides, this discussion of one’s attitude to the risk of false belief---confidence vs. 
caution---can be generalized. Hitherto, I discussed the topic simply in terms of whether a belief 
is true or false, without distinguishing whether the proposition believed is: (i) “mildly” or 
“merely” false in that, though it is false, all the concepts it involves are correct, or at least are 
concepts that the agent herself does not reject or contest; or (ii) “more sickly” false, or wrong-
headed, in that some of the concepts it involves are rejected or contested, at least by the agent 
herself.  

But we must allow for (ii). That is: we must allow that someone might be cautious about 
using a concept, whatever claim is then made using it; (and so they will be tempted to reject it). 
So one can be cautious about a concept, as well as about a claim or proposition. In subsequent 
Chapters, we will see several examples of philosophers and physicists (including myself, and 
maybe you the reader) being cautious about, or definitely rejecting, some concept or other.    

For the moment, let me give an example of this distinction between (i) and (ii), by 
considering the broad enterprise of “making sense” of physical science. Think of how physicists 
go about their business.  They invent general theories; they specialize them in various ways with 
models and approximations; and they do experiments, to help improve the theories, the models 
and the approximations. Now let us ask: does making sense of this overall enterprise need the 
concept of a law of nature? Of course, ‘law of nature’ is vague, and different advocates will make it 
precise in different ways. But the main idea is that a law of nature is an especially informative 
proposition about how the natural world “works”: a proposition that is true, but which can be 
unknown, even un-formulated, by us humans. Some philosophers accept this concept (making it 
precise in one way or another). And some even say that it is a central goal of physics, or of all of 
science, to discover laws of nature.  

But the point here is: a person might reject the very concept of a law of nature. That is: a 
person might reject the idea of a true and especially informative proposition about nature; 
especially such a proposition that is not yet formulated, but nevertheless said to be the goal of 
enquiry. They might say it is an illusion, a will of the wisp. So according to this view, we can, and 
should, make sense of the overall enterprise of physics---the theorizing, modelling, 
approximating and experimenting---without ever invoking the idea of a law of nature, in any 
precise version. Using my jargon of ‘confident’ vs. ‘cautious’: such a person, such a view, is 
cautious. (Chapter 3 will return to this example.) 

Again, I should come clean about my own attitudes, my own position in the spectrum 
from confidence to caution. In later Chapters, I will give details in the context of each 
discussion. But to try and be honest and clear-headed about my intellectual temperament: let me 
say in advance that broadly speaking, about the dozen or so contested (usually philosophical) 
concepts that arise in multiverse proposals, I am inclined to be:  
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(i): confident, i.e. accepting, of concepts that are proposed within physics, or in logic or 
in metaphysics; examples of such concepts include: the quantum state of the universe, logical 
necessity, possible world, supervenience; but: 

 (ii): cautious, i.e. rejecting, about concepts proposed within epistemology and 
methodology; examples include: the idea of a law of nature, the idea of explanation. 

I should also say in advance that for several philosophical issues, my views are close to 
David Hume’s. This will be most evident in the stage-setting Chapter 2, especially its Sections 4 
and 5; and, to a lesser extent, in Chapter 3. But I think my assessments of the Everettian and 
cosmological multiverses, in Chapters 4 and 5, are largely independent of my Humean 
sympathies.  

So as the book proceeds, it may be useful to you, the reader, to know that these are my 
tendencies. But again, this report of my intellectual temperament is “merely autobiographical”. 
So do not let them have undue weight. As I said above: each of us must, in the end, decide their 
position for themselves. 
 
 
Chapter 1 Section 5: Beware the beguiling power of words 
I have just followed my sermon about ‘cognitive modesty’ with an admission of the role of 
intellectual temperament, and a confession of my own temperament. I turn to giving a warning 
about how confusing words can be.  

The warning is this. Once one has a word to use, one readily falls in to thinking that it 
represents a concept in good order: that one understands, or can explain, something---though 
often one doesn’t understand, and cannot explain anything. This warning is of course of a piece 
with my previous point that a person may reject a concept as bad, because misleading: recall the 
example of rejecting the concept of political equality, on the grounds that it is only the elite’s tool 
for duping those they rule.    

This is a time-honoured warning. Sometimes, it is expressed as a joke. In Moliere’s play 
The Hypochondriac, the target of the joke is doctors who give a learned label, suggestive of 
understanding, to something they do not understand at all. When asked to explain why opium 
induces sleep, they answer in a learned tone of voice---as if they knew something---that opium 
has a ‘dormitive virtue’. (Here, derived from Latin: ‘virtue’ means ‘causal power’, so that 
‘dormitive virtue’ means ‘tendency to induce sleep’, and the doctors’ answer merely repeats the 
question.)  

This warning also occurs in some great philosophical texts. Since the next Chapter will 
discuss the natural philosophers, i.e. philosophers-cum-physicists, of the seventeenth century, let 
us enjoy the prose of one such author, John Locke, in a famous passage.  

Locke, in the `Epistle to the Reader' at the start of his An Essay Concerning Human 
Understanding (1690) praises the contemporary great physicists (as we would now call them), 
Huygens and Newton; for whom Locke sees himself as an under-labourer, who can help by 
doing what one might call ‘conceptual house-keeping’---and in particular by seeing through 
beguiling words. Thus he writes: 
   
‘The commonwealth of learning is not at this time without master-builders, whose mighty 
designs, in advancing the sciences, will leave lasting monuments to the admiration of posterity: 
but every one must not hope to be a Boyle or a Sydenham; and in an age that produces such 
masters as the great Huygenius and the incomparable Mr. Newton, with some others of that 
strain, it is ambition enough to be employed as an under-labourer in clearing the ground a little, 
and removing some of the rubbish that lies in the way to knowledge; which certainly had been 
very much more advanced in the world, if the endeavours of ingenious and industrious men had 
not been much cumbered with the learned but frivolous use of uncouth, affected, or 
unintelligible terms, introduced into the sciences, and there made an art of ... Vague and 
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insignificant forms of speech, and abuse of language, have so long passed for mysteries of 
science ... that it will not be easy to persuade either those who speak or those who hear them, 
that they are but the covers of ignorance, and hindrance of true knowledge. ... Few are apt to 
think they are deceived in the use of words; or that the language of the sect they are of has any 
faults in it ...’ 
 

By the way: similar sentiments, also famous, can be found in Francis Bacon, who warns 
against the danger of being misled by what he calls the ‘idols of the market-place’: i.e. false ideas 
engendered by human communication and abuse of language. He also warns against three other 
idols, i.e. sources of false ideas. Roughly speaking, they are: (i) universal human tendencies, such 
as relying uncritically on perception, and jumping to conclusions (called ‘idols of the tribe’, where 
‘tribe’ means humankind); (ii) idiosyncratic or communal prejudices and other deficiencies of 
judgment (called ‘idols of the den’, where ‘den’ refers to a benighted community, as in the 
metaphor of the cave in Plato’s Republic); (iii) being misled by abstract, general and high-falutin’ 
theories (called ‘idols of the theatre’, where ‘theatre’ connotes a fantastical representation).  

In short: we have been warned … 
 
 
Chapter 1 Section 6: Can we be sure that we are in the same universe?  
Finally, let me broach a teasing question: if there is a multiverse, how can we be sure that we are 
in the same universe? In particular, how can I, as I write this book, be sure that you the reader 
are in the same universe as me?  

Of course, this question is more pressing for advocates of a multiverse, than for 
agnostics. But it needs to be addressed. For if the answer is ‘in a multiverse, the reader of my 
book might be in a different universe from me’, then writing a book becomes a curious 
enterprise: especially if most (the vast majority?) of the readers are not in the author’s universe. 
And the worry is of course not just about writing and reading, or speaking and hearing, or 
communication in general. It seems that in a multiverse, there could be all sorts of 
“disconcerting” causal processes from one universe to another: for example, with objects 
disappearing from one universe and appearing in another. (Of course, science fiction makes great 
play with these ideas; with the channels between universes called ‘portals’ and ‘wormholes.) 

But rest assured. We will see (especially in Chapter 6.2) that on the three multiverse 
proposals I will consider, causal processes between objects, or events or states of affairs in 
different universes, are either downright impossible or very rare and arcane---because they 
require very special circumstances.   

So the overall situation about whether you and I, as reader and writer, are in the same 
universe is as follows. Agreed: any or all of these multiverse proposals may be very weird, and-or 
very hard to believe, and-or plain false. But even if such a proposal is true: at least there is 
nothing problematic about an advocate of such a proposal believing that you, dear reader, are in 
the same universe as them (and as me). And accordingly, they write their books . . .  
 
 
 
 
Chapter 1: Notes and Further Reading  
The subsequent Chapters give more detailed suggestions for further reading. Here, I will do just 
four things. (1): I advertise some internet resources. (2): I list three other books about the idea of 
a multiverse in general. (3): I list two academic but introductory books about topics at the 
interface of philosophy and physics, other than the multiverse. (4): I add a little to the “sermon” 
about philosophical method that I gave in Sections 3, 4 and 5. 
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(1): For all of philosophy, the Stanford Encyclopedia of Philosophy is an excellent resource; with 
many excellent entries in philosophy of science, and philosophy of physics in particular. It is 
Open Access.  

Also excellent is the Routledge Encyclopedia of Philosophy (requiring a subscription). 
At: https://www.rep.routledge.com  

There are electronic archives for individual articles (both research and expository) in 
both physics and philosophy. 

For physics, the main archive is the ‘arxiv’, at: https://arxiv.org. For this book, the main 
sections of it are: in the Section called ‘Physics’, the sub-section ‘History and philosophy of 
physics’; the Section called ‘General relativity and quantum cosmology’ and the Section called 
‘Quantum Physics’.  

For philosophy of science, the main archive is maintained by the University of 
Pittsburgh, at: http://philsci-archive.pitt.edu.  

In all of these archives, one can search by author, title, subject-area etc. 
 

(2): A fine academic book that philosophically assesses the cosmological multiverse (the topic of 
my Chapter 5), and gives briefer discussions of the philosophical and Everettian multiverses, is:  
S. Friederich, Multiverse Theories: a philosophical perspective, Cambridge University Press, 
2021: https://www.cambridge.org/core/books/multiverse-
theories/68CE18BE78DE31550C67855107A57942 

There are several good popular books by physicists that discuss the multiverse in detail. 
Two main ones are Max Tegmark’s The Mathematical Universe (2014), which advocates the 
multiverse (in several senses, both physical and philosophical); and Sabine Hossenfelder’s Lost in 
Math (2018) which is very critical of multiverse proposals in physics, and of several other trends 
in recent physics.  

I reviewed these books, and stand by what I wrote. (Although this book does not repeat 
the content of those long reviews, there will be some overlap in later Chapters.) The reviews are 
most conveniently available at the Pittsburgh archive: respectively at: https://philsci-
archive.pitt.edu/10760/ ; and: https://philsci-archive.pitt.edu/15724/ .  

 
(3): There are many topics apart from the multiverse, lying at the interface of philosophy and 
physics; and many academic but introductory books about them. Two excellent ones are: 
D. Wallace, Philosophy of Physics; which is in Oxford University Press’ Very Short Introduction 
series; the series has many related books. 
N. Huggett, Everywhere and Everywhen, Oxford University Press, 2010; also available online at:  
https://academic.oup.com/book/9556?searchresult=1 
 
(4): I think my view, in Sections 3, 4 and 5, of philosophy and its method is very widespread in 
academic philosophy. After all, hardly anyone would disagree that in debates involving concepts 
that are not precisely defined, and are perhaps contentious, one cannot expect conclusive 
arguments; and so the best we can do is try to assess all the evidence and arguments in an open-
minded way---and beware of the beguiling power of words. But three further comments may 
interest philosopher readers.  
 First: I wrote throughout in an “objectivist” manner. I presupposed that there are truths 
about the concepts of interest, even though the concepts are not precisely defined. (More 
precisely: there are truths about those concepts one does not reject as bad; cf. Section 3.) Or in 
other words: I presupposed that philosophy addresses genuine questions or problems that have a 
correct answer or solution. By this, I stand. I agree that even if the concepts were made precise 
(perhaps in an arbitrary stipulative way), the truths would remain fearfully hard to know, just 
because the concepts are multiply connected with other concepts, in an open sea of both 
empirical and conceptual considerations. But in the face of this, we must not get disheartened 

https://philsci-archive.pitt.edu/10760/
https://philsci-archive.pitt.edu/10760/
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about the validity of our enquiry. We must not let the difficulty of the problems prompt a failure 
of nerve. 
 Second: In Sections 3, 4 and 5 (and just above) I for the most part combined together 
the sorts of evidence one can get from science, and from philosophy. I combined in a single 
phrase, such as ‘empirical and conceptual considerations’ or ‘evidence and arguments’, the 
contingent facts we might learn from the sciences, and the apparently necessary (non-contingent 
or analytic) facts we might learn by analysing our concepts (by ‘armchair reflection’, in the 
traditional image of philosophy). So let me here be more explicit. I do indeed think that empirical 
science and philosophy are continuous with one another, in that both are about---and should 
attend assiduously to---both sorts of consideration. In philosophy, this view is much associated 
with Quine. But one can endorse it without also joining him (in his essay ‘Two dogmas of 
empiricism’: 1951) in denying the validity of the analytic-synthetic distinction. (In fact, I do not 
join him in the denial. I endorse the distinction---and Putnam’s diagnosis (in his essay ‘The 
analytic and the synthetic’: 1962) of the grain of truth in Quine’s view. Incidentally, this diagnosis 
is prefigured in Kemeny’s insightful review of Quine’s essay, immediately after its publication: in 
the Journal of Symbolic Logic for 1952.) 
 My third comment is more programmatic. Namely: my view of philosophy and its 
method (and indeed, my acceptance of the analytic-synthetic distinction) is reminiscent of that 
great influence on analytic philosophy, David Hume. Thus recall my comment at the end of 
Section 4. In particular: I should announce now that in Chapters 2 and 3, I will endorse his 
scepticism about the idea of necessity in nature; and thereby, his modest and low-key conception 
of the sort of explanation and understanding of nature that empirical science, indeed all human 
enquiry, can provide us with. 
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Chapter 2: Physics and Philosophy  
from 1600 to 1900 

 
 
The main aim of this Chapter is to review some aspects of philosophy and of physics in the three 
centuries from 1600 to about 1900. That may seem a tall order. But we will only need those 
aspects that will help me explain how by about 1970, both philosophy and physics were ripe for 
formulating the three multiverse proposals, on which Chapters 3, 4 and 5 will focus. So those 
Chapters will also review the developments in the twentieth century that prepared the ground for 
their multiverse proposal. (The time-frames will vary between the three cases. For example, the 
relevant twentieth-century developments in logic and philosophy cover a century, from 1870 to 
1970; while for cosmology, they happened in the sixty-year period, from 1910 to 1970.)  

The historical aspects up to about 1900, reviewed in this Chapter, and the twentieth-
century developments in the early Sections of Chapters 3, 4 and 5, will not just be stage-setting. 
They will also help us to assess the multiverse proposals.  

For philosophy, this Chapter will mostly be about how a modest conception of scientific 
enquiry, separated from the idea of necessity and from the framework of logic, emerged in the 
eighteenth century. In this development, the main name will be David Hume. For physics, the 
Chapter will mostly be about the rise of mechanics; for which the main name will be, of course, 
Isaac Newton.  
 I begin with the tradition of natural philosophy: a tradition from which both physics and 
philosophy, as we now conceive those disciplines, sprang. This will lead in to the rise of 
mechanics, especially Newton’s mechanics. I will emphasize how accepting action-at-a-distance 
in Newton’s theory of gravity paved the way to the modern, Humean, modest---one might even 
say: pessimistic---conception of what it is to understand the natural world. At the end of this 
Chapter, we will see that this conception, and the emergence in the nineteenth century of the 
distinction between applied mathematics and pure mathematics, contributed to the rise of logic 
as central to philosophy. These factors also prompt a philosophical question, ‘What is pure 
mathematics about?’. This question has been at the centre of twentieth-century philosophy, and 
we will return to it in Chapter 3.  
 
 
Chapter 2, Section 1: The tradition of natural philosophy  
‘Natural philosophy’ is a venerable phrase. It refers to enquiry into the natural world. It 
encompasses enquiry that is empirical, including experiments as well as everyday observation; 
and also enquiry that is conceptual, including using quantitative e.g. mathematical methods. It is 
especially associated with the seventeenth century. Figures such as Galileo, Descartes and 
Newton all saw themselves as engaged in natural philosophy. Indeed, Newton’s masterpiece that 
propounds his theory of mechanics and gravitation (published in 1687) is entitled: ‘The 
Mathematical Principles of Natural Philosophy’. But this field of enquiry goes much further 
back, to ancient times: as the seventeenth century thinkers of course recognized. Thus when 
figures such as Aristotle, Lucretius, Aquinas, Galileo and Newton asked what was the nature of 
space, or of time, or of matter, or of causation, they shared a common field of enquiry---however 
great the disagreements between their resulting answers.   
 Various developments from the eighteenth century onwards broke up this intellectual 
unity between philosophy and what we now call ‘the sciences’, especially physics. The parting of 
the ways is symbolized by the invention of the word ‘scientist’ (by Whewell in 1834), and the 
phrase ‘natural philosophy’ falling completely out of use by the late nineteenth century. (But the 
phrase remains, even today, in some British universities’ title of one of their Professorships of 
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physics. This is, for anyone enthusiastic about the connections between physics and philosophy, 
an evocative reminder of yesteryear’s synergy between the disciplines.) 

The broadest of these developments that broke up the unity might be summed up as: the 
growth of knowledge. For our purposes, the main development within physics was the 
establishment of Newtonian mechanics as describing with increasing detail, and quantitative 
accuracy, not just astronomical observations but also many terrestrial phenomena. (I will give 
some more details below.) As the eighteenth century went on, this success increasingly used 
technical notions and advanced mathematics: which of course made for intellectual 
specialization.  

Agreed: great figures in physics, such as Euler, continued to write natural philosophy: as 
did some great figures of nineteenth century physics, such as Helmholtz, Maxwell and Mach---
despite the explosion of knowledge within physics, during the 1800s. But broadly speaking, the 
increasing specialization of physics over the course of these two centuries, 1700 to 1900, meant 
that such writings became less central to physicists’ detailed researches. 

So much by way of a lightning summary of how physics grew away from philosophy 
between 1700 and 1900. During the same period, philosophy also grew away from physics, and 
more generally from science. This was not only due to the obvious point that philosophy is 
about so many topics other than the natural world and our knowledge of it (such as moral and 
political philosophy). Also there was, even within metaphysics (i.e. the theory addressing the 
general nature of all entities) and epistemology (the theory addressing what knowledge is), a self-
conscious turning away from the details of physics, and of science. This occurred as part of the 
legacy of Kant (and so it occurred especially in German philosophy). The reason in short is that 
Kant announced a new and ambitious conception of metaphysics and epistemology that 
rendered them autonomous from other disciplines, and in particular independent of the details 
of the sciences. Though Kant himself wrote a lot of natural philosophy, much of German 
philosophy got more and more separated from science after his death, in the work of figures like 
Fichte and Hegel. (In my opinion, it also got more and more obscure and high-falutin’.)  

Then in the early twentieth century the quantum and relativity revolutions erupted, and 
brought tumult to physics; (more details in Chapter 4). The controversies about how to develop, 
and even how to “just” understand, these new theories threw physicists back to addressing basic 
conceptual questions, like those I listed above: what is space, what is time, what is matter, what is 
causation? The ensuing debates in which philosophers, especially in Vienna and Berlin (which 
were centres of the new physics), took part, had an enormous influence on philosophy. Indeed, 
they moulded the logical positivist movement; and this led to the idea of philosophy of science 
as a sub-discipline of philosophy. In this way, natural philosophy---under the new name ‘the 
metaphysics and epistemology of the sciences’--- became again, by the mid-twentieth century, a 
research subject.  

We will see later (in Chapters 4 and 5) how since 1970, the metaphysics and epistemology 
of physics has really taken off: being nowadays called ‘the philosophy of physics’. But in this 
Chapter, I will develop three themes from natural philosophy in the earlier period, between 1650 
and 1900. We will need these themes in order to understand our multiverse proposals, especially 
the first two proposals (from philosophy, and from quantum physics).  

The first theme is about what the natural philosophers believed. The second is about 
their optimism that, by adopting their views, humans could achieve an understanding of the 
natural world that was completely clear and satisfying. Here my point will be that this optimism 
was dashed by the success of Newton’s physics, and indeed, by Hume’s philosophy. The third 
theme is the status of logic during these three centuries. In short, logic was for most of this 
period in the doldrums; but from the mid-nineteenth century onwards, it became vigorous---
which will lead in to Chapter 3. 
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Chapter 2, Section 2: The mechanical philosophy  
Several of the greatest natural philosophers of the seventeenth century believed that all the 
processes in the natural world would ultimately be explained in terms of objects’ parts, including 
their tiniest parts, interacting with one another by causal “pushes and pulls”. Here, the phrase 
‘the natural world’ was to include biological processes, such as the growth of plants. For some of 
these authors, it was to include also psychological processes, such as perception, both in humans 
and in animals. And for most of these authors, the causal “pushes and pulls” required that the 
two objects (usually called ‘bodies’) touch one another, i.e. be in contact, like the gear-wheels in a 
machine such as a windmill.  

Hence the phrase ‘mechanical philosophy’. Other jargon: the principle that there could 
be no interaction without contact came to be called ‘the principle of contact action’. Another 
slogan for the same idea was that there should be no ‘action-at-a-distance’. (So here, the main 
meaning of ‘action-at-a-distance’ is causation between spatially separated bodies being 
unmediated by something in between them, rather than the causation being instantaneous—that 
is secondary.) 
 Advocates of this view included Galileo, Hobbes and Descartes. They knew, of course, 
that their view had ancient precursors: in particular, the ancient atomists, Democritus and 
Lucretius, who maintained that matter ultimately consisted of small indivisible lumps in a void 
(vacuum). Thus Democritus (ca. 460-370 BC) said: ‘The first principles of the universe are atoms 
and empty space; everything else is merely thought to exist . . . Sweet exists by convention, bitter 
by convention, colour by convention; atoms and Void [alone] exist in reality.’ (Here of course, 
‘by convention’ means something like ‘as a result of how humans’ sensory organs happen to 
work’; rather than the modern meaning, viz. ‘by a human decision that could have been made 
otherwise’.)  

Of course, the mechanical philosophers disagreed amongst themselves. Some, such as 
Descartes, denied that there is a void (vacuum). They said instead that matter fills space 
completely (even on the tiniest length-scales), and what seems to be empty space, e.g. between 
the planets, is filled with a “very thin” fluid through which solid objects pass easily, rather like a 
boat through water. And some (including again Descartes) denied that all biological and-or 
psychological processes could be thus explained. So they limited the scope and ambition of their 
mechanical philosophy to explaining, in terms of contact-action, all processes in the inanimate 
world: or all processes in either the inanimate world or within organisms that are not sentient.       

Nowadays, the conception of matter as lumps in the void is the everyday conception. It 
is so-called ‘common sense’. For we all learn in primary school that matter is made of atoms, 
which are separated from each other by empty space i.e. a vacuum. (Agreed: our atoms differ 
from Democritus’, in that they can be divided.) But it is important to recognize that this vision 
was hard-won over the centuries. At the time, the mechanical philosophers’ vision seemed not 
just radical, but thoroughly implausible.  

Indeed, there are four points here.   
First: to the extent that the lumps-in-the-void conception of matter is true, it is not at all 

obvious that it is true. This is so even for inanimate objects, nevermind the objects involved in 
biological and psychological processes. It is far from obvious that air and other gases are mostly 
empty space; or indeed that liquids and solids consist of tiny particles jostling each other, with 
interstices between them. On the contrary, the naïve appearance of all the gases, liquids and 
solids we see around us is that they consist of matter that fills space completely (even on the 
tiniest length-scales): such matter is called ‘continuous’.   

Second: even if we accept that all matter consists of tiny lumps in a void, these 
philosophers’ other claim---that all processes can be explained as accumulations of microscopic 
interactions, “pushes and pulls”, occurring when the lumps are in contact---by no means follows. 
Indeed, it seems a radical, even thoroughly implausible, speculation. One naturally asks: how 
could all the variety and complexity of the processes we see, including biological and even 
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psychological processes, be explained in such simple terms? It is really only in the last hundred 
years or so that the claim has become believable---indeed well-confirmed by countless pieces of 
detailed evidence. Think of how the existence of atoms, and the way they compose molecules, 
was understood only in the early twentieth century, together with how they explain chemical 
processes. And the understanding of biological processes, such as how muscles contract, how 
nerves send signals, or how genes are passed from parent to offspring, came only with the rise, in 
mid-twentieth century, of physiology and molecular biology.  

There is, of course, another aspect to these achievements. Namely, they require much 
more subtle interactions between the tiny lumps in the void than the phrase “pushes and pulls”, 
i.e. collisions or impacts, suggests. In fact, they require quantum physics with its strange features. 
A classical physics of “tiny billiard balls bouncing off each other” certainly cannot explain all 
these processes. But I postpone quantum physics till Chapter 4. At the moment, I want to stress 
two other ways in which the claims of the mechanical philosophers were radical: and so, at the 
time, hard to believe. Again, the moral will be that we should recognize that their later 
acceptance was not really common sense, but was instead hard-won. So these will be my third 
and fourth points. 

Third: the mechanical philosophers fashioned concepts with which to describe with 
quantitative accuracy the contact, and collisions, of bodies. I mean concepts such as velocity, 
acceleration, mass, momentum, and energy. Nowadays these concepts are everyday notions: they 
are broadly familiar from e.g. car travel, and are taught in detail in school. But we should 
remember how non-obvious they are. For example: it took decades for physics to settle on each 
of the following. (i): The idea that acceleration is change in velocity during a given interval of 
time; rather than change in velocity during traversal of a given distance. (ii): The idea that mass is 
an intrinsic property of a body, different from its weight, that is a measure of its resistance to 
being accelerated. (iii): The idea that although in most cases the sum of bodies’ momenta is 
evidently not conserved (i.e. constant over time) before and after a collision---think of a car-
crash, or more safely, of throwing two marshmallows together---nevertheless, it is useful to 
consider the special, simple cases where the sum of the bodies’ momenta is indeed the same 
before and after the collision. 

Fourth: So far, I have summarized mechanical philosophy’s claims that matter consists 
simply of lumps, and that mere contact-action among such lumps (especially tiny ones), 
theorized in terms of momentum etc., can explain the great variety we see around us. And I have 
praised these claims as bold and implausible, at the time---but vindicated by history. But I 
confess: I have over-simplified. There is an elephant in the room. Namely, Newton and his 
theory of gravity. 
 
 
Chapter 2, Section 3: Newton’s theory of gravity: unbelievable? 
For Newton’s theory denies the principle of contact action, that bodies cannot interact unless 
they are in contact. And in its description of gravity, the theory’s replacement for this principle is 
utterly precise. What came to be called ‘Newton’s universal law of gravitation’ says that at any 
time any two bodies attract one another with a force along the geometrical line between them at 
that time; and that this mutual attraction is unmediated---it occurs even when there is a vacuum 
between them. (The law also says how the force decreases with the distance between them, and 
how it depends on the bodies’ masses. I will discuss these other features in a moment.) 

So the law explicitly proclaims action-at-a-distance: exactly what Galileo, Descartes and 
the other mechanical philosophers denied. It is indeed very hard to believe. Take as the two 
bodies, the Sun and the Earth; and think of how light takes eight minutes to travel through the 
vacuum from the Sun to the Earth. Newton’s law says that if somehow you could shift the entire 
Sun during the course of, say, a minute, by some distance, say a thousand miles, then the 
direction along which the Sun pulls the Earth would be different at the end of the minute---
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before the light arrived. Indeed, the direction of the pull would change instantaneously during 
the course of the minute, sweeping through the sky like a lighthouse-beam. Of course, the angle 
through which it sweeps would be tiny, because the Sun-Earth distance is so much greater than a 
thousand miles. But that is only because I imagined shifting the Sun by a “modest” astronomical 
distance. If instead I had imagined shifting the Sun by, say, half the radius of the Earth’s orbit, 
then the direction of the Sun’s pull would have changed by a much larger amount---but again, 
instantaneously during the course of the shift. So the important point is that the attraction is 
unmediated, and that the change in direction is instantaneous. 

This law is yet harder to believe when one notices that it claims this instantaneous 
attraction-at-a-distance occurs between any two bodies; for example, between an apple and a 
planet.  

Besides, the law says that the attractive forces are equal in size (though opposite in 
direction). So the apple pulls on the planet with exactly the same “strength” that the planet pulls 
on the apple. That is well-nigh incredible. In particular, notice that it goes far beyond the familiar 
anecdote about Newton seeing the apple fall and thinking of the Earth as pulling the apple 
down. In that anecdote, as it is usually told, there is no suggestion that the apple pulls the Earth 
upward---let alone that it does so with a force equal in size to the force exerted by the Earth. 

Newton’s explanation of our not noticing the Earth’s upward acceleration is that the 
Earth’s mass is so vastly greater than the apple’s mass, that its acceleration is correspondingly 
smaller. For according to Newton, force = mass times acceleration. So the equal and opposite 
forces make the small mass of the apple accelerate fast enough for us to observe and measure it; 
but they make the vast mass of the Earth accelerate only a minuscule, and unobservable, amount. 

What are we to make of all this? As regards physics and its history, the verdict has been, 
in short: gradual acceptance. Indeed, the acceptance was eventually so complete that by about 
1800 or 1850, physicists were sanguine, even placid, about the idea of action-at-a-distance, and 
about the idea that the gravitational forces between any two bodies are equal in size (though 
oppositely directed).   

Let me spell this out in a bit more detail. Newton himself favoured the principle of 
contact action. For example, in a now-famous letter to Bentley, he wrote: ‘That gravity should be 
innate inherent and essential to matter so that one body may act upon another at a distance 
through a vacuum without the mediation of any thing else by and through which their action or 
force may be conveyed from one to another is to me so great an absurdity that I believe no 
man who has in philosophical matters any competent faculty of thinking can ever fall into it.’ 
Besides, he wrote in a Scholium (i.e. comment) added to his Principia that he had endeavoured 
to find a means, a mechanism, by which gravity acted, and had been unsuccessful. (I will return 
to this admission at the end of Section 6.) In short: it is no wonder that initially, Newton’s 
readers were incredulous about his theory. 

But Newton also argued, with considerable justice, that as regards the gravitational force 
between each planet and the Sun, the detailed astronomical observations which he had in hand 
(especially those encapsulated in what became known as ‘Kepler’s laws’) implied that he could 
deduce that the gravitational force acted along the instantaneous line between the planet and the 
Sun. Furthermore, he argued that he could deduce that the force decreased with distance in the 
precise way his law of gravitation said. (Namely, by what is called ‘the inverse-square’. This 
means: doubling the distance reduces the force by a factor of 4, i.e. multiplies it by a quarter; 
tripling the distance reduces the force by a factor of 9, i.e. multiplies it by a ninth; and so on.)  

This quantitative precision of Newton’s theory meant that, once combined with 
astronomical observations, it made precise predictions about the planets’ movements. Many such 
predictions were tested in the decades following his theory’s publication (i.e. after 1687)--- and 
they turned out to be true. In time, this impressive quantitative success trumped people’s doubts; 
in particular, their incredulity about action-at-a-distance.   
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(These successes depended of course on developing the calculus that Newton and 
Leibniz had invented, and applying it in ever greater detail to mechanics and astronomy. These 
successes were mostly achieved, not in Britain, but in continental Europe by figures such as 
Euler and Lagrange.)  

Thus by about 1800, most natural philosophers accepted the claims that gravity involved 
action-at-a-distance, and equal and opposite forces that decreased with distance according to the 
inverse-square. And so it went. The theory garnered more and more successes; so that by 1850, 
physicists---by then, professionally identified as such---were sanguine, even placid, about these 
claims.  

Agreed: there were dissenting voices, such as the physicist-philosopher Ernst Mach. And 
calm comes before a storm. In the early twentieth century, Einstein (inspired in part by Mach’s 
misgivings) created an amazing new theory of gravity, which he called ‘general relativity’ (1915). 
According to this theory, there is no action-at-a-distance. Gravitational influence does take time 
to propagate across space: namely, it travels at the same speed as light. So for my imaginary 
example above, in which the entire Sun is shifted by a thousand miles during the course of a 
minute, Einstein’s general relativity says that eight minutes must elapse (from the beginning of 
the Sun’s shift) before the direction along which the Sun pulls the Earth begins to change. For 
eight minutes is the travel-time from Sun to Earth, for gravity as well as for light 

In Chapters 4 and 5, I will briefly return to general relativity. But for this book’s 
purposes, it is the philosophical consequences of Newton’s postulate of action-at-a-distance that 
will matter---more than its two centuries of success, followed by its demise at the hands of 
Einstein. 

For as I shall explain in the next Section, the success of Newton’s theory also 
contributed to the decline of the mechanical philosophers’ extraordinary “cognitive optimism” 
about our ability to understand nature’s innermost workings. Another factor in that decline was 
David Hume’s philosophy: which, together with Newton’s theory, paved the way for what is 
now the mainstream “modest”, or “pessimistic”, picture of how much humans can understand 
nature.  

 
 
 

Chapter 2, Section 4: Optimism about understanding nature: ‘we will soon deduce the cause 
from the effect’ 
We have seen that the mechanical philosophers had a bold and ambitious vision, about 
understanding all the processes of nature as mechanical. Some of them, including Galileo and 
Descartes, were also accomplished proselytizers---one might say, propagandists---for the 
movement. They confidently proclaimed that detailed and successful mechanical explanations 
would soon be achieved---“if not tomorrow, then the next day”. (And of course, they promised 
that the explanations would conform to their own principles, rather than some rival’s favoured 
principles.) 
 But there was also another strand to the mechanical philosophers’ confidence. It is about 
the quality of understanding that such prospective explanations were expected to provide. 
Crudely and metaphorically: the quality was going to be the very best. To go beyond metaphor, I 
need to invoke a topic that my account has so far suppressed. It is the ultimate “elephant in the 
room”: namely, God and God’s understanding of nature.  

Thus the mechanical philosophers believed that God had complete insight into the 
innermost workings of nature; any natural process was completely “intellectually transparent” to 
God. So far, so unsurprising. After all, He is meant to have created the natural world. But they 
believed also that we humans, being made ‘in the image of God’ (Genesis 1:27), can hope to 
emulate this complete insight and understanding. Of course, we are finite creatures, and God is 
infinite. So we cannot hope for such understanding all at once, and for all of nature: to hope for 
that would be grossly hubristic. But for individual “patches” of nature, perhaps “small” ones---
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for example: the collisions of solid bodies moving in straight lines---we can attain an insight and 
understanding, as complete and intellectually transparent as God’s own. (Or rather, most of the 
mechanical philosophers believed these claims. Of course, theological controversies abounded as 
much as philosophical ones; even to the extent that some of them, for example Hobbes, were 
accused of atheism.) 

One main way in which this idea of complete understanding was made more precise was 
in terms of deduction. So here at last we broach the discipline of logic. In the Western tradition, 
Aristotle had founded the subject, mainly by classifying valid patterns of argument.  

Thus recall what it means to say that an argument with premises and conclusion is valid: 
in other jargon, that one can deduce the conclusion from the premises, or that the premises 
imply, or entail, the conclusion. All these different jargons are synonymous. Namely: if all the 
premises are true, or (supposing them to be in fact false) if they were true, then the conclusion 
must be true. That is: any way in which all the premises are made true must also make the 
conclusion true.  

In many cases, the validity of an argument turns on the placing within the premises and 
conclusion of words like ‘all’, ‘some’, ‘none’, ‘and’, ‘or’ and ‘not’, irrespective of the other words. 
In such cases, we say there is a valid pattern. An elementary Aristotelian example turns on the 
behaviour of the word ‘all’. Consider the argument-pattern: ‘Premise: all As are Bs. Premise: all 
Bs are Cs. Therefore, Conclusion: All As are Cs’. This pattern is evidently valid, whatever ‘A’, ‘B’ 
and ‘C’ stand for, i.e. whatever plural nouns or noun phrases (‘horses’, ‘red things’ etc.) one puts 
in for them. 

Since medieval times, logic (based on Aristotle’s work) had been a basic part of university 
studies. (Along with grammar and rhetoric, the three disciplines together comprised the ‘trivium’, 
the ‘three ways’). So it was natural for the mechanical philosophers to conceive the complete 
understanding, that they were proclaiming to be imminent in their description of nature, in terms 
of deduction.  

Besides, there is a tempting metaphor that yields an analogy between, on the one hand, 
the relation between premises and conclusion, and on the other, the relation between cause and 
effect. Namely, the metaphor of containment. Since the premises being true forces the 
conclusion to be true, it is natural to say that the conclusion is contained in the premises. Or 
rather, since the premises and conclusion are sentences, i.e. pieces of language, we should 
express this as: the proposition expressed by the conclusion, i.e. the content of the conclusion, is 
contained in the conjunctive proposition expressed by all premises taken together. And 
analogously for causation. It is natural to say that the effect is contained in the cause: at least, 
provided that the cause is described in sufficient detail so that all relevant factors are included.  

This analogy suggests that from a sufficiently detailed description of the cause, one 
should be able to deduce a description of the effect: rendering the effect completely 
comprehensible “to the light of reason”. Indeed, Descartes says exactly this in his famous 
Meditations (the Third Meditation). He writes: ‘Now it is already clear by the light of nature that 
the complete efficient cause must contain at least as much as the effect of that cause. For where, 
pray, could the effect get its reality if not from the cause? And how could the cause supply it, 
without possessing it itself?’  

This argument (with, of course, variations in its exact formulation) occurs frequently in 
the writings of Descartes and his contemporaries. As an illustrative example, one variation 
appeals to the idea that there can be no creation ex nihilo, i.e. creation out of nothing; (except of 
course by God, as in the creation of the world). So the effect with ‘its reality’ (as Descartes puts 
it) must somehow be latent in what occurred before: which prompts the argument above.   

Thus the common theme is that over the next hill---“if not tomorrow, then the next 
day”---there will be a science (“mine, not that of my rivals”) whose concepts and claims will be 
so clear to the light of reason that they do not merely command our assent, but also provide 
complete understanding and certain knowledge. In particular, this science will provide 
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deductions of effects from their causes: the premises describing the causes will entail the 
conclusion describing the effect.  
 
 
Chapter 2, Section 5: Lowering our sights: Hume  
In the eighteenth century, this optimistic view withered away. Two main reasons for this were 
Hume’s critique of the view, and the success of Newton’s theories. These reasons are the topic 
of this Section and the next one. 

Hume argued (in his Treatise of Human Nature (1739) and his Enquiry concerning 
Human Understanding (1748)) that, whatever the concepts and claims of a successful science 
might turn out to be, there is no hope at all of a genuine deduction of effect from cause. For a 
deduction of a proposition E stating the effect from a proposition C stating the cause would 
require that if C is true, then it is logically impossible for E to be false. This implies that no 
matter how detailed one’s description of the cause, it is hopeless to aim for a deduction. For it is 
logically possible that the cause as described occurs, with the effect being absent. In support of 
his claim of logical possibility, Hume takes two examples: that an impact of a body, say of a 
billiard ball, causes another body, another ball, to move; and that bread causes nourishment. For 
these examples, he points out that one can conceive, i.e. imagine, that the impact occurs without 
the second ball moving away; and that I eat the bread (just as it is, in look, smell and chemical 
composition) without getting nourished. 

To make a genuine deduction of the effect, i.e. a valid argument whose conclusion states 
that the effect occurs, one obviously needs an extra premise. This could be a general premise. It 
could be along the lines: all impacts of such-and-such a kind (including the one in question) are 
followed by the second ball moving. And similarly for the bread example: anyone eating a loaf of 
such-and-such a kind, is later nourished. Here, I say ‘followed by’ and ‘is later’, since for the aim 
of validly implying that the effect occurs, the extra premise need not claim a causal relation. It is 
enough---but essential---that it claims the effect’s occurrence. Or the extra premise could be a 
specific one, along the lines: this impact is followed by the second ball moving; my eating this 
bread is followed by my being nourished.  

Hume agrees that once such an extra premise, either general or specific, is supplied, there 
is undoubtedly a valid argument to the effect. Indeed, these arguments will illustrate the simple 
and familiar pattern, modus ponens, viz: ‘Premise: P; Premise: if P then Q. Therefore, 
Conclusion: Q’. For we have here the pattern: ‘Premise: The cause occurs; Premise: If the cause 
occurs then the effect occurs. Therefore, Conclusion: The effect occurs’. Here, the second 
premise, the if-then premise, can be either general or specific; as we have seen. And in both 
premises ‘the cause’ is to be understood, i.e. described, in sufficient detail as to justify the second 
premise. The impact must be sufficiently forceful, the first ball rigid enough (not made of jelly) 
etc.; the bread must be made from wheat or barley or … but not from cyanide. 

All this is nowadays so obvious to us that it is tempting to criticize Hume as flogging a 
dead horse. One thinks: ‘Of course, the later effect---the second ball moving away, the person 
being nourished---does not follow with sheer logical necessity from the earlier state, no matter 
how detailed our specification of that earlier state. Only on the assumption of a suitable linkage, 
like the extra premises above, will there be a deduction.’ Agreed: that is so. But it being so does 
not mean that Hume’s critique was misdirected, i.e. that all Hume’s predecessors acknowledged 
the point. As I urged in the last Section: they did not. 

This point is often put in terms of the idea of rationality. For the topic of whether or not 
there is, in cases like the billiard balls or the bread, a deduction can be put in terms of the 
question: why is it rational to believe that, given a sufficiently detailed specification of the impact 
or of the bread, the second ball will move, or that the person will be nourished? Of course we all 
do believe this. But why? And is it rational to do so?  
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When we put the question in this way, the temptation to criticize Hume is very likely to 
be expressed as follows. ‘Yes it is rational to believe these propositions: though it is not a matter 
of deduction, as Hume emphasizes. But Hume’s emphasizing this shows that he is using an 
unduly narrow notion of rationality. He recognizes only deductive rationality: that is, the 
obligation on rational beings to believe the deductive (sheer logical) consequences of what they 
believe. But not everything that it is rational for us to believe follows by sheer logic (a 
deductively valid argument) from other propositions we already believe. In short: Hume should 
loosen up about what rationality requires of us.’ 

To which I reply, on behalf of Hume---at least, the historical Hume---as follows. Once 
we set aside deductive rationality---which is a notion, and an obligation, that we can surely all 
agree on---rationality is a contested concept, in the sense I discussed in Chapter 1. For let us ask: 
given some collection of propositions we already believe, what else should we believe (additional 
of course to the deductive consequences of the collection)? That is: what principles, additional to 
deduction, should govern the formation of beliefs from other beliefs, taken as evidence? That is 
a very difficult and multi-faceted question which philosophers, and of course scientists and 
statisticians, have addressed in many different ways since Hume’s time. For example, some 
believe probability must be the central idea for answering the question, while others abjure it. 
Large bodies of theory, with specialist names like ‘inductive logic’, ‘statistical inference’ and 
‘causal inference’, have been developed---and debated. For the jury is still out concerning how 
best to make this question precise (perhaps as several sub-questions); and accordingly, about 
what the answers are.  

To which I say: ‘More power to your elbow: tough work, and we should all look forward 
to, and value, the answers’. But what is relevant here is that Hume also, not just we moderns, can 
say this. He need not deny---he has no reason to deny---that there are principles about belief-
formation that go well beyond deductive rationality.  

For his point remains: that his predecessors thought they did not need to formulate and 
assess any such principles. They thought their new science would need only deductive rationality. 
Thus the objection that Hume is using an unduly narrow notion of rationality, and should loosen 
up about what rationality demands, is doubly wrong. For first: Hume is merely examining the 
same deductive notion that his predecessors touted as both sufficient for science, and as 
promising a complete understanding of cause-effect relations. Hume shows that it is not 
sufficient, and it does not usher in any such complete understanding. And second: Hume can 
and should accept (along with the rest of us) that there are principles about the non-deductive 
formation of beliefs. And he, like us, can investigate what they are. 
 
 
Chapter 2, Section 6: Newton again 
So much by way of expounding, and defending, Hume. I turn to my second reason why the 
mechanical philosophers’ optimism died way: why, to use the jargon above, eighteenth century 
natural philosophers stopped claiming that their description of an effect, or of how it came 
about, was ‘clear to the light of reason’. This second reason is: the success of Newton’s theory of 
gravity with its action-at-a-distance. 

We saw above how radical, indeed unbelievable, Newton’s theory was. The point now is 
that during the course of the eighteenth century, it gathered ever more empirical successes, so 
that the conclusion became inescapable: our most successful framework for quantitative 
empirical knowledge explicitly abjures there being any intelligible (‘clear to the light of reason’) 
causes of gravitation.  

For indeed, it is not intelligible that a change in the position of the Sun would 
instantaneously alter the direction of pull felt by the Earth; since any process propagating from 
the change of position would take time to arrive at Earth. For example, a process at the speed of 
light would take eight minutes. But though unintelligible, this conditional proposition, ‘If the Sun 
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were to move …, the Earth’s direction of pull would instantaneously alter’, is a consequence of 
our well-confirmed theory---and we should accept it. Thus the idea that the effect is necessarily 
connected to the cause, in particular by its being somehow contained in the cause, withers away. 
We must accept that the effect is just an event that invariably succeeds the cause.  

This situation shows that intelligibility in the above sense is not a sine qua non, a 
necessary condition, of exact empirical knowledge. And it shows that, although you might want 
intelligibility in your scientific theory, seeking intelligibility is sometimes (i.e. at some stages in 
enquiry, and for some aspects of nature---here, mechanics) not fruitful. 

This lowering of one’s sights about what our understanding of nature should involve was 
formulated already by Newton himself in a famous passage in the General Scholium that he 
added to the second edition (1713) of his 1687 masterpiece The Mathematical Principles of 
Natural Philosophy. The passage includes his reporting that (as I mentioned above) he had tried, 
but not succeeded, to understand gravity other than as action-at-a-distance. Thus he writes:  
 
‘Thus far I have explained the phenomena of the heavens and of our sea by the force of gravity, 
but I have not yet assigned the cause of gravity. Indeed, this force arises from some cause that 
penetrates as far as the centres of the sun and planets, without any diminution of its power to act  
. . .  I have not as yet been able to deduce from phenomena the reason for these properties of 
gravity, and I do not feign hypotheses. . . . And it is enough that gravity really exists, and acts 
according to the laws that we have set forth and is sufficient to explain all the motions of the 
heavenly bodies and of our sea.’ 
  

Newton’s final words neatly sum up this discussion. His magisterial ‘it is enough’ (in 
Latin: ‘satis est’) lowers our sights about what to require in scientific theories: we cannot require 
intelligibility in the strong sense above. But it also offers the solace that even without such 
intelligibility, we can achieve amazing quantitative accuracy. Thus Newton resolutely sets the 
path of the future of physics.  

Besides, the subsequent history of physics has vindicated him, in the sense that amazing 
quantitative accuracy has been achieved in various fields of physics while giving up, not just 
intelligibility in the specific sense above viz. requiring contact-action, but also in other senses. In 
Chapter 4, we will see examples of this. The first will be the treatment of matter by classical 
physics (from about 1750) as made of point-particles, i.e. masses that are not just tiny but 
extensionless---located at just one point of space. (So their density, understood in the usual way 
as the mass per unit volume---in other words: as mass divided by volume---is infinite.) But the 
main example will be quantum theory, with its paradoxical combination of amazing quantitative 
accuracy and notorious interpretative difficulties.      
 
 
Chapter 2, Section 7: Logic in the doldrums---and its revival 
For this Chapter, one task remains: to describe the changing fortunes from 1600 to 1900 of the 
discipline of logic. In short, it went from bad times (1600 to 1850) to good (from 1850 onwards). 
But the revival of logic in the late nineteenth century can only be understood as part of a wider 
change within mathematics: namely, the emergence of the distinction between applied 
mathematics and pure mathematics. So the next (and final) Section will be about that distinction, 
and its impact on the landscape of logic and philosophy.  
 But let us start with the earlier period, from 1600 to about 1850. I have said that the 
mechanical philosophers knew their logic, and envisaged a science in which one could validly 
deduce the effect from the cause. Nevertheless, it is fair to say that in their time, and more 
generally in the period 1600 to 1850, logic was in the doldrums. Indeed, it was in the doldrums in 
two senses.  
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First, it was generally regarded as a completed subject, in which the last word had been 
said. Logic was of course to be respected in any discourse. But there was no recognition that 
valid patterns of argument additional to those codified by Aristotle and his successors (including 
medieval successors) might yet be discovered and codified. (For the mechanical philosophers, 
this indifference was part of their rebellion against the Aristotelian tradition.) Thus in 
philosophical texts, the teachings of logic were sometimes summed up as the principle of 
‘excluded middle’, i.e. ‘P or not-P’; or as the principle of non-contradiction, i.e. ‘not both P and 
not-P’. Venerable principles indeed: but there is so much more to the subject. 

It was also in the doldrums in a second, and more subtle or controversial, sense (which is 
connected with the first). In short, philosophers in this period tend not to address what for us 
are natural philosophical questions about logic: questions such as what exactly is the nature of 
logical necessity, and exactly which propositions are indeed necessary. Their discussions of such 
questions often presuppose that Euclidean geometry and arithmetic are both, indeed, necessary. 
But what exactly makes them necessary is not a question that they really engage with. (I shall 
return to this sort of question shortly.) 

I admitted that this second sense is subtle or controversial, because the work of each of 
two great philosophers, Leibniz and Kant, prompts a qualification. Leibniz aimed to reconcile 
the insights of the new learning of the mechanical philosophers with the doctrines of the 
Aristotelian tradition. And famously, his philosophy engaged with the nature of necessity. He 
proposed that there is a realm of all possible worlds, and a proposition’s being necessary is a 
matter of it being true in any, and so in all, of them. Similarly, a contingent proposition is true in 
some but not all worlds; and an impossible proposition is true in none. He also said that God in 
his omnipotence created just one world; and in his benevolence, created the best possible world-
--a claim later satirized devastatingly in Voltaire’s Candide. Setting these theological aspects aside, 
Chapter 3 will of course return to assess the idea that necessity consists of truth in all possible 
worlds.  

The second qualification is that although Kant said little about necessity as such, he said 
a great deal about how a proposition could have that apparently similar and associated feature, of 
being a priori: meaning, roughly, ‘knowable (and so true) independently of any experience’. For 
he believed that the propositions of both Euclidean geometry and of arithmetic are a priori. But 
he also believed they are informative about the world. (His label for this was ‘synthetic’, as 
against ‘analytic’: which he construed as ‘the predicate being contained in the subject’, though his 
usage corresponds well to the common modern formulation of ‘being true in virtue of the 
meanings of the words’.) How a proposition could be both a priori and synthetic thus became 
his central question: which his masterpiece, The Critique of Pure Reason (1781), answered by 
saying that they result from the way our human cognitive constitution moulds, or imposes 
structure on, raw experience.  

About this answer, the jury is still out. Agreed: we all accept, in everyday thought as 
much as technical science, that our concepts, and so what we perceive, believe and even know, 
reflect contributions from the side of the subject, us, as well as the from the side of object 
thought about or perceived. We also accept that such contributions can be common to the 
species (and so presumably of biological origin), or to a population (and so of historical or 
cultural or linguistic origin); or specific to an individual (so idiosyncratic, in a non-perjorative 
sense). But Kant’s conception of these contributions was less straightforward, and less empirical, 
than this. He maintained that by philosophical reflection he could formulate the contributions, as 
being a necessary condition of objective experience---and that he could thus justify, not just that 
there are some synthetic a priori propositions, but also that Euclidean geometry and arithmetic 
consist of such.  

I myself think that even his first claim is wrong: there are no synthetic a priori 
propositions. (This of course goes with my admiration for Hume, evident in the previous 
Sections.) But even if his first claim is right, his second claim fails. For as I will report in the next 
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Section: in the nineteenth century, mathematicians developed various non-Euclidean geometries 
and showed their consistency: the world, and our experience of it, could be described by each 
such geometry. (Kant also claimed that the so-called ‘law of causality’, that every effect has a 
cause, and several principles of Newtonian mechanics were synthetic a priori: claims that failed 
with the advent of twentieth-century physics.)  

But this is not the place to belabour Kant. Instead, I wanted just to record his work as 
prompting a qualification of my summary statement that logic was in the doldrums.  

As to why logic was thus side-lined between 1600 and 1850, one obvious reason was its 
being associated with the Aristotelian tradition, so that it became a target of the mechanical 
philosophers’ rebellion. But another reason arises from the cognitive optimism of those 
philosophers. As I discussed in Section 4, they believed their forthcoming science would be 
certain, and “intellectually transparent”: clear to the light of reason. Being convinced of achieving 
such certainty naturally prompted them to ignore questions about whether their science’s 
doctrines are necessary. Besides, if such questions had been pressed, the doctrine that the science 
would indeed deduce an effect from a cause would prompt the confident reply, that Yes, the 
doctrines are necessary. For after all: to every valid argument---say: Premise: P1, Premise: P2; 
Therefore, Conclusion: C---there corresponds a necessary proposition, viz: ‘If P1 and P2, then 
C’. In short: if these philosophers’ optimistic programme had succeeded, the proposition saying 
that the effect is deducible would indeed be necessary. 

The broader context of mathematical, indeed scientific, thought is that from ancient 
times until the mid-nineteenth century, mathematics was taken to consist of, on the one hand, 
the study of numbers (arithmetic, and algebra in the sense of equations about numbers with 
variables ‘x’ and so on; and later, the calculus); and on the other hand, the study of space, viz. 
Euclid’s geometry. And both these were universally regarded as providing an absolutely certain 
body of knowledge, that could never be overturned.  

Here, I use the single word ‘mathematics’ very deliberately. For no distinction was made, 
as we now do, between: (i) applied mathematics, which describes the physical world, objects in 
space and time, using mathematical concepts (numbers and geometrical concepts); and (ii) pure 
mathematics, which is about numbers, triangles etc. “in themselves”, regardless of what is in the 
physical world.  

From a modern philosophical viewpoint, the first thing to say about this distinction is 
that pure mathematics, so understood, is obviously problematic from a philosophical viewpoint. 
For no matter how certain we may agree its claims to be, resulting as they do from rigorous 
mathematical proofs, there is the question: how do we come to have such knowledge? For we 
are physical organisms, embodied in space and time. So presumably our ideas, beliefs and 
knowledge originate in our experience of the physical world. But since the subject-matter of pure 
mathematics (numbers, triangles etc.) is not in the physical world, i.e. not located in space and 
time, it is then a pressing question how we come to have any ideas about that subject-matter. 
Besides, assuming we have such ideas: how can we come to believe, even know, propositions 
about this subject-matter, by following mathematical proofs? 

This is a central, perhaps the central, question of the philosophy of (pure) mathematics 
since about 1850, i.e. after the applied/pure distinction gets articulated. I will briefly discuss this 
question in the next Section and the next Chapter. But to philosophers and mathematicians of 
the eighteenth century, this question was simply invisible. One main reason for this was that they 
conceived numbers in terms of lines within physical space. This conception, we will see, led to 
trouble.  
 
 
Chapter 2, Section 8: Houses built on sand---and how to repair them 
To introduce this, let us recall how we learn in school that besides the integers, positive and 
negative, there are, firstly, the rational numbers, where ‘rational’ stands for ratio or proportion. 
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These numbers are a ratio of integers like 1/3, 2/5, 10/2 (= 5), or - 42/9. Expressed as a 
decimal, they either terminate, e.g. 2/5 = 4/10 = 0.4, or recur, e.g. 1/3 = 0.333… with the 3s 
going on forever. Here, the idea of recurring includes eventually settling down to a finite 
sequence of digits that then repeats forever, e.g. 137.95421372137213721372137…, where ‘2137’ 
repeats forever. But as the ancient Greeks discovered, there are also irrational numbers, e.g. the 
square root of 2, that cannot be expressed as a ratio of integers. When expressed as a decimal, 
these numbers neither terminate nor recur. The decimal expression goes on forever. But it never 
settles down into a repeating digit, nor even into a repeating sequence of digits. For example, the 
square root of 2 begins as 1.41421… but it never settles down. Another example is p (the Greek 
letter ‘pi’), defined as the ratio of the length of a circle’s circumference to its diameter. It begins 
as 3.14159… but it never settles down. The set including all rational numbers (taken as including 
the integers, as in 10/2 = 5), and also all irrational numbers, is called the set of real numbers.  

So for our purposes, the point here is that until the mid-nineteenth century, philosophers 
and mathematicians conceived of real numbers in an intuitive way, as segments of physical space. 
For example, they took the square root of 2 to be the diagonal of a square whose sides are of 
length 1. With this intuitive treatment, mathematicians produced amazing developments in the 
theory of real numbers; and from 1690 onwards, in the calculus that Newton and Leibniz had 
invented, and in the applications of these theories within mechanics and astronomy.  

But it was a house built on sand. For the intuitive treatment I have just sketched led to 
paradoxes. One could construct apparently valid arguments within the calculus whose 
conclusions were contradictions. Agreed: with talent and care, mathematicians could insulate 
their work from these paradoxical arguments. But they remained as discomforts, so to speak; and 
they prompted efforts in the nineteenth-century to make the calculus more rigorous, and thereby 
expunge the paradoxes.  

These efforts went along with a more general movement towards rigour, and especially 
rigorous proof, and therefore towards formalizing and axiomatizing mathematical theories. By 
the end of the nineteenth century, ‘formalizing’ came to mean writing the theory, not in a natural 
language such as English or Latin (augmented of course with technical terms like ‘isosceles 
triangle’ or ‘limit of a sequence’), but in an artificial language with: a precisely specified 
vocabulary (usually a very small one); and precise rules of grammar dictating exactly which 
sequences of vocabulary items count as grammatical sentences; and precise rules of inference 
dictating exactly which passages from finite sequences of such sentences (thought of as 
premises) to another sentence (thought of as conclusion) count as an allowed inference. 
Accordingly, ‘axiomatizing’ came to mean that, having written all the claims of a theory in a 
formal language of this sort, one finds a small subset of these claims with the feature that any 
claim of the theory can be inferred from some choice of finitely many elements of the subset as 
premises, using only the proclaimed rules of inference. Thus the small subset are the axioms, and 
all the other claims are theorems. (In almost all cases, the set of axioms is not unique: even 
assuming a fixed formal language, there are several equally good ways to axiomatize the theory.)          

This movement towards formalization and axiomatization was also prompted by two 
other developments, additional to the efforts at rigorizing the calculus. The first was the rise of 
what one might call ‘heterodox’ theories of numbers and geometrical figures; the second was the 
rise of the theory of sets.  

First: new mathematical theories were proposed that surprised, even shocked, 
mathematicians by the fact that their subject-matters (numbers and geometrical figures) explicitly 
disobeyed the familiar postulates and rules, that had traditionally been considered necessary for 
numbers and figures. Yet these new theories seemed consistent: scrutinizing the arguments 
within the theories revealed no contradictions. The best-known examples of such theories are 
the non-Euclidean geometries, which were developed from the 1830s. As I mentioned in the last 
Section, the consistency of these geometries, and the fact that the world and our experience of it 
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could be described by them, spelled trouble for Kant’s view that the propositions of Euclidean 
geometry are synthetic a priori.  

In addition to the new geometries, there were also new notions of quantity different 
from the familiar real numbers, which obeyed strange rules. For example, both Hamilton and 
Grassmann introduced (in two different ways) theories in which multiplication of numbers was 
not commutative, i.e. did not obey the rule that x times y = y times x. So these new theories 
were, to put it mildly, unintuitive. The new ideas of quantity underlying the strange rules were 
hard to understand; and indeed, hard to accept as correct mathematics. To do so, 
mathematicians needed to adopt, and did adopt, an abstract and formal approach. The idea was 
similar to that for geometry: “Just follow the postulated rules, and you will see they they lead to a 
novel, but consistent and even elegant, algebra”. And the claim of consistency, the reassurance, 
could be secured more easily if the theory was written in a formal language, with its precise rules 
of grammar, and of inference.  

Here I should stress that until these new theories were proposed, the only mathematical 
theory that had been conceived as an axiomatized theory was Euclidean geometry. And if one 
adopted these new nineteenth-century standards of ‘formal’ and ‘rigorous’, then the venerable 
textbook that had been used for two millennia, Euclid’s Elements, was very informal and 
unrigorous---whether written in English or in Latin. Accordingly, mathematicians developed 
axiomatisations of Euclidean geometry in the modern style. Thus their formal languages had very 
small vocabularies. For example, the language might have just four basic predicates, such as ‘… 
is a point’, ‘… is a line’, ‘… lies on …’ (ascribed to a point and a line), and ‘… is between … and 
…’  (ascribed to three points). From a few axioms making claims, using only this tiny set of 
predicates, about points and lines, all the hundreds of theorems of Euclidean geometry would 
follow.  

The second development that prompted formalization and axiomatization arose from 
another new theory from the late nineteenth-century, that led to paradox: to another house built 
on sand. Namely, mathematicians developed the theory of sets. Its basic ideas are simple, and 
nowadays familiar from school mathematics; e.g. the intersection of two sets of objects is the set 
of those objects that are elements of both the given sets. But considering infinite sets, i.e. set 
with infinitely many elements led, like the calculus had done earlier, to paradoxes. Again, one 
could construct apparently valid arguments, with plausible premises about infinite sets, whose 
conclusions were contradictions.  

Taken together, these various problems---about calculus, about the new theories of 
geometry and algebra, about sets---amounted to a crisis in the foundations of mathematics. In 
response, over the years 1870 to 1930, various different repairs were proposed. That is, several 
mathematical research programmes were launched, with distinctive proposals about how to 
rigorize, and thereby vindicate as free of paradoxes, all these mathematical fields: the real 
numbers, the new geometries and algebras, the theory of sets. Thus ensued a vigorous multi-
faceted debate, that lasted some sixty years.  

And in all this, the role of logic was second to none. This was not just because 
diagnosing the errors in paradoxical arguments is obviously a job for logic. Also, paradoxes 
apart, the effort to rigorize proofs was a matter of breaking them down in to simpler steps that 
can be explicitly checked as conforming to some announced rule of inference: clearly, a matter of 
logic.  

Furthermore, there were deep similarities between logic and set theory. Since arguments 
can be about anything, and sets can be made up of any objects, both fields seem to have no 
specific subject-matter. In philosophical jargon, they are topic-neutral. And the truths of the two 
fields seem similar, or even the same. For example, recall the valid argument pattern I 
mentioned: ‘All As are Bs, and all Bs are Cs; therefore all As are Cs’. That corresponds exactly to 
the truth of set theory that if a set A is a subset of a set B, and B is a subset of another set C, 
then A is a subset of C.  
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Indeed, these similarities inspired one of the research programmes mentioned above. 
The great German logician Frege created the logicism programme. He proposed that all of pure 
mathematics was really logic. This proposal promises a ready explanation of why pure 
mathematics is necessary. For Frege took logic to be a body of necessarily true propositions. We 
saw the idea here near the end of Section 7: it is that to every valid argument---say: Premise: P1, 
Premise: P2; Therefore, Conclusion: C---there corresponds a necessary proposition, viz: ‘If P1 
and P2, then C’. Thus where Aristotle and countless logicians after him saw the study of logic as 
the investigation of valid arguments, Frege took it as the production of necessary truths. So if 
mathematics is “just” a part of logic, so understood, it is guaranteed to be necessary. 

So Frege endeavoured to show that the necessary propositions of logic are the axioms 
and theorems of a formal axiomatic system; and then that from this system, all of pure 
mathematics, e.g. arithmetic, the calculus, geometry etc., could be derived merely by adding 
appropriate definitions of the various mathematical symbols (like numerals). This came to be 
called the reduction of mathematics to logic (or reducing mathematics to logic).      

Logicism was enormously influential in philosophy from 1900 to 1930, partly through 
the writings of Russell and Whitehead, and later, the logical positivists. To cut a long story short: 
the details of this turned out to depend on writing pure mathematics in terms of a (paradox-free) 
theory of sets, and then arguing that this theory of sets is really logic in disguise. Broadly 
speaking, the first aim was achieved: all of pure mathematics could indeed be presented in terms 
of sets, and nowadays most textbooks proceed in this way. But Frege and the other logicists 
failed in their second, philosophical, aim, i.e. showing that theory of sets is really logic in disguise. 
Nowadays, the consensus is that after all, the theory of sets is not really logic; and so logicism 
failed. 

But for our purposes, what matters is not so much the failure of logicism, as its  
historical role and its legacy. In this Section, we have sketched how it arose from the 
applied/pure mathematics distinction, and the concurrent crisis in the foundations of 
mathematics. In the next Chapter, we will see its legacy: placing logic, and so the nature of logical 
necessity, at the centre of philosophy. 
 
 
 
 
Chapter 2: Notes and Further Reading  
For the topics of this Chapter, the best reading list is of course the original masterpieces 
themselves. Though daunting, one should at least dip into them. For Newton, Hume, Kant and 
Frege, I suggest the following. 

I. Newton, The Principia: Mathematical Principles of Natural Philosophy; translated by 
I.B. Cohen and A Whitman; with a Guide by I.B. Cohen; University of California Press 1999. (In 
Section 6 above, I quoted this translation of Newton’s General Scholium; which is discussed in 
Chapter 9 of Cohen’s Guide.) 

D. Hume’s Treatise of Human Nature (1739) and Enquiry concerning Human 
Understanding (1748) are available in many editions. For example, the Treatise is published by 
Penguin (1969), edited by E. Mossner; and the Enquiry by Oxford University Press (1894 
onwards), edited by L. Selby-Bigge. The pre-eminent passages for Hume’s discussion of 
causation and inductive inference (Section 5 above) are: the Treatise, Book 1: Part I, Sections 1, 4 
and 5; and Part III, Sections 12 and 14; the Enquiry, Sections 3 to 7.  

I. Kant’s Critique of Pure Reason (1781; second edition 1787) is available in English in 
many editions. The pre-eminent passages for his claim that geometry and arithmetic consist of 
synthetic a priori propositions are in: The Preface, Introduction, and the Transcendental 
Aesthetic. 
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G. Frege’s logicism is best approached through his Foundations of Arithmetic (1884), 
which is available in many editions, and translated into English by J.L. Austin (Blackwell, Oxford 
UK: 1950 onwards). Frege’s proposed definition of the numbers 0, 1, 2 and all the positive 
whole numbers, in terms of logic is in the final Part IV; (after a critique of previous authors’ 
accounts of arithmetic, including Kant). 

On the internet, there are of course editions, sometimes definitive, of these works and 
many others by these Maestri. The first three are especially well served; Frege less so. I 
recommend:  

For Newton: The Newton Project, which is at: https://www.newtonproject.ox.ac.uk 
For Hume: Hume Texts Online, which is at: https://davidhume.org 
For Kant: The Gutenberg Project, which is at: 
https://www.gutenberg.org/files/59023/59023-h/59023-h.htm 
For Frege: The Foundations of Arithmetic is online, in German, at the Gutenberg 

Project, namely at: https://www.gutenberg.org/ebooks/48312. Also, a selection of his 
philosophical writings (ed. P.  Geach and M. Black: 1960) is on the Internet Archive at  
https://archive.org/details/the-philosophical-writings-of-gottlob-frege. But a very complete 
selection of his writings, including extracts from The Foundations of Arithmetic, is The Frege 
Reader, ed. M. Beaney, Wiley-Blackwell 1997.  

 
 

For secondary reading, there are excellent entries about all the topics of this Chapter in the 
internet resources, such as The Stanford Encyclopedia of Philosophy, suggested in the Notes 
and Further Reading for Chapter 1.  
 Among these excellent entries are many about natural philosophy, and even the history 
of physics, in its philosophical aspects. For example, the Newton scholar G. Smith has an entry 
on Newton’s Principia. It is at: https://plato.stanford.edu/entries/newton-principia/ 

A superb survey of the role of philosophical ideas in the historical development of 
physics (which also covers twentieth century physics, especially relativity and quantum theory) is: 
J. Cushing, Philosophical Concepts in Physics (Cambridge University Press, 1998; online 2012).  
Available at: https://www.cambridge.org/core/books/philosophical-concepts-in-
physics/F285F13FE71F225BD8BE01F754F8C2E5 
 I also recommend the British Academy’s Dawes Hicks series in the history of philosophy 
(both Lectures and Symposia). They are all available online at: 
https://www.thebritishacademy.ac.uk/events/lectures/listings/dawes-hicks-lectures-
philosophy/ 
For this Chapter, I especially recommend:  

(i) the lecture by I. Hacking, Leibniz and Descartes: Proof and Eternal Truths (1973); 
which is at: https://www.thebritishacademy.ac.uk/documents/2191/59p175.pdf ; and 

 (ii) the Symposium Mathematics and Necessity: Essays in the History of Philosophy, 
which is three essays by J. Bennett, M. Burnyeat and I. Hacking (ed. T. Smiley): which is at: 
https://www.thebritishacademy.ac.uk/publishing/proceedings-british-academy/103/ 
 History apart, the justification of induction and the nature of inductive inference, remain 
central topics in philosophy of science. And about these, J. Norton’s two excellent books, The 
Material Theory of Induction, and The Large-Scale Structure of Inductive Inference, represent 
the current state-of-the-art. They are both available in the British Society for Philosophy of 
Science Open Access series at: https://press.ucalgary.ca/series/bsps-open/ 
 
 
Beyond this, I will here just give a bit more detail about three of this Chapter’s themes, as 
follows.  (1): My interpretation of Hume (my Sections 4 and 5). (2): The development of physics 

https://archive.org/details/the-philosophical-writings-of-gottlob-frege
https://www.cambridge.org/core/books/philosophical-concepts-in-physics/F285F13FE71F225BD8BE01F754F8C2E5
https://www.cambridge.org/core/books/philosophical-concepts-in-physics/F285F13FE71F225BD8BE01F754F8C2E5
https://www.thebritishacademy.ac.uk/events/lectures/listings/dawes-hicks-lectures-philosophy/
https://www.thebritishacademy.ac.uk/events/lectures/listings/dawes-hicks-lectures-philosophy/
https://www.thebritishacademy.ac.uk/documents/2191/59p175.pdf
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from 1600 to 1900 (my Sections 1, 2, 3 and 6). (3): The nineteenth-century development of logic 
(Section 7 and 8).  
 
(1): In Sections 4 and 5, I reported Hume’s critique of the cognitive optimism of his 
predecessors, such as Descartes. I should add here that although my account is part of an 
interpretation of Hume that is widely endorsed, there is a rival interpretation.  

The difference, in short, is between: (i) arguing that we can know about some 
problematic concept X, because once we analyse X carefully, we see that there is less to know 
than we first thought---and so no problem; and (ii) arguing that indeed we cannot know about X, 
while still saying we do have the original concept X.  

In reading Hume, the main example of X one needs to consider is the concept of 
causation. Thus (i) becomes his view that once we analyse our concept of causation, we see that 
it is really the concept of the cause and effect invariably accompanying one another 
(simultaneously or one soon after the other). That is: the property by which we specify the cause, 
e.g. this object being bread, is invariably accompanied by the property by which we specify the 
effect, e.g. this object being nourishing. In Hume’s famous phrase, causation is constant 
conjunction.  

There is no doubt that much of Hume’s writing supports this interpretation, (i). For he 
maintains in general that the analysis of a concept requires tracing its origin in our experience; (in 
his jargon: the analysis of an idea requires tracing the impressions from which it originated). And 
then he argues at length that our idea of causation can be traced back to our experience of 
constant conjunction. There is no more to it than that. We have no experience of, nor insight 
into, a necessary---in particular, a deductive---link from cause to effect.  

So in the bread example: not only do we believe bread causes nourishment---in ordinary 
language: ‘this piece of bread will be nourishing’---because of our previous experiences. This 
‘because’ claim is naturally understood as a surely uncontentious causal claim about our 
psychology. Hume is also arguing that the content of our belief is only that being bread and 
being nourishing accompany one another. There is no more to the content of the belief than 
that. (Again, the example can be varied without affecting the issues. The accompaniment can be 
either simultaneous or soon-thereafter; the belief can be either about this new piece of bread, not 
yet tasted, or about bread in general.) In other words, we have no concept of “necessitation-in-
nature”: a sort of ontological “oomph”, by which the cause “forces” the effect to occur---as 
alleged by Hume’s predecessors, such as Descartes. 

As I said, this interpretation of Hume is widely endorsed. One persuasive statement of it 
which makes the connection with Newton (my Sections 3 and 6), and is connected with my later 
theme (Chapter 4) of probability, is: I. Hacking, The Emergence of Probability (Cambridge 
University Press, 1975), Chapter 5. For more detailed support of this interpretation of Hume, I 
especially recommend: E. Craig, The Mind of God and the Works of Man (Oxford University 
Press, 1987), Chapters 2 and 3. This book is a superb overview of philosophy from 1600 to the 
present day. As its title hints, it articulates two dominant philosophical themes: the first about 
knowledge, and the second about action. The first, from 1600 till about 1800, is that we finite 
creatures can, and should, aspire to know nature, or rather parts of it, with the full understanding 
that God enjoys for all of nature (cf. my Section 4). The second, from 1800 till now, is that we 
(‘Man’) are, not passive knowers of nature, but active agents in it, imposing our will on it. The 
transition between these themes is, very neatly, Kant. For his doctrine that our cognitive 
constitution imposes structure on raw experience (cf. my Section 7) keeps the first theme’s stress 
on knowledge but adds the idea of the human mind as active.  

But agreed, there are passages in Hume’s texts that suggest the interpretation which I 
labelled (ii), again with X taken as the concept of causation. That is: some passages say---or seem 
to say---that we do have a concept of necessitation-in-nature, of ontological “oomph”;   but that 
nevertheless, we cannot know anything about how it “works”. A recent full defence of this sort 
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of interpretation is: G. Strawson, The Secret Connexion: causation, realism and David Hume 
(Oxford University Press, 1989, revised edition 2014.)  
 
(2): In treating physics from 1600 to 1900, this Chapter has focused solely on mechanics, 
especially as applied to astronomy (Sections 1, 2, 3 and 6). I shall now: (a) add some details about 
mechanics; (b) mention other fields of physics; and (c) return to the topic at the end of Section 6, 
about physics after 1700 having forsaken intelligibility in senses additional to forsaking contact-
action (i.e. to requiring action-at-a-distance, as Newton’s gravity did).  

Although the references in (2a) to (2c) are about the history of physics, I choose them 
for their emphasis on philosophical issues.    
 
(2a): A magisterial study of theories of motion, from Aristotle to Newton and beyond, and 
focused on the contrast between “absolute” and “relative” conceptions of motion, and is: J. 
Barbour, Absolute or Relative Motion? (Cambridge University Press, 1989). Barbour favours the 
relative conception, following in the spirit of Ernst Mach (mentioned at the end of Section 3). 
The book was reprinted by Oxford University Press in 2001, entitled ‘The Discovery of 
Dynamics’. It is available at; https://academic.oup.com/book/54639.  

An excellent popular book describing physics’ changing conceptions of the vacuum, not 
just from 1600 to 1900, but also in contemporary physics, is: J. Weatherall, Void: the strange 
physics of nothing (Yale University Press, 2016). It gives many philosophically important 
references, and is on the Internet Archive at: 
https://archive.org/details/voidstrangephysi0000weat_u9b4. 

For details of Newton himself, two excellent biographies are: R. Westfall Never at Rest 
(Cambridge University Press, 1980), and A.R. Hall, Isaac Newton: adventurer in thought 
(Cambridge University Press, 1992). In this Press’ Companion series (usually for philosophers), 
The Cambridge Companion to Newton (ed. I.B. Cohen and G. Smith, 2002), which is available 
at: https://www.cambridge.org/core/books/cambridge-companion-to-
newton/B92293E01C97D041CA42B30396E2EA22 ; while Oxford University Press has The 
Oxford Handbook of Newton (ed. E. Schliesser and C. Smeenk, 2017), which is available at: 
https://academic.oup.com/edited-volume/34749.      
 
(2b): M. Hesse, Forces and Fields: the concept of action-at-a-distance in the history of physics 
(Philosophical Library, London, 1961) is a fine overview of the struggles from 1700 onwards to 
accept action-at-a-distance, as in Newton’s theory of gravity, and its gradual replacement, from 
1850 onwards, by the concept of an all-pervasive field, as in Maxwell’s electromagnetism  
concept (discussed in Chapter 4). It is on the Internet Archive at: 
https://archive.org/details/forcesfieldsconc0000hess.  
P. Harman, Energy, Force and Matter (Cambridge University Press, 1982) is a general history of 
nineteenth-century physics. It is available at: https://www.cambridge.org/core/books/energy-
force-and-matter/00A35E995E821EEF4A20A7AE1D37202F.   
The Oxford Handbook of the History of Physics (ed. J Buchwald and R. Fox: Oxford University 
Press, 2013) is a fine anthology whose Parts I, II and III cover the period from 1600 to 1900. It 
is available at: https://academic.oup.com/edited-volume/38638   
 
(2c): Section 6 ended by saying that physics after 1700 had forsaken intelligibility in senses 
additional to forsaking contact-action (i.e. additional to requiring action-at-a-distance, as 
Newton’s gravity did). I gave the example of point-particles (introduced ca. 1750), and said that 
quantum theory (Chapter 4) will add more. There are two further points worth making here.  

First: in the early days of quantum theory, it was much debated whether a physical theory 
should be visualizable (in German: anschaulich), in the way that Schroedinger’s version of 

https://archive.org/details/voidstrangephysi0000weat_u9b4
https://www.cambridge.org/core/books/cambridge-companion-to-newton/B92293E01C97D041CA42B30396E2EA22
https://www.cambridge.org/core/books/cambridge-companion-to-newton/B92293E01C97D041CA42B30396E2EA22
https://academic.oup.com/edited-volume/34749
https://archive.org/details/forcesfieldsconc0000hess
https://www.cambridge.org/core/books/energy-force-and-matter/00A35E995E821EEF4A20A7AE1D37202F
https://www.cambridge.org/core/books/energy-force-and-matter/00A35E995E821EEF4A20A7AE1D37202F
https://academic.oup.com/edited-volume/38638
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quantum theory (wave mechanics) seemed to be and Heisenberg’s version (matrix mechanics) 
was not.  

Second, recently philosophers of science have sought a general account of intelligibility 
of a theory (usually, under the label ‘understanding’): accounts that usually do not require 
visualizability, nor subsume understanding as just as aspect or result of having a scientific 
explanation (which is Chapter 5’s topic). In this trend, a good and influential book is H. De Regt 
Understanding Scientific Understanding (Oxford University Press, 2017): which discusses 
nineteenth-century mechanical models, as well as Newton’s action-at-a-distance, and the failure 
of Anschaulichkeit in quantum theory. It is available at: https://academic.oup.com/book/36363. 
 
 
(3): About the nineteenth-century development of logic, and of rigour and formalization in pure 
mathematics,(Section 7 and 8), there is an enormous literature; and excellent coverage in 
Philosophy curricula and internet resources like The Stanford Encyclopedia of Philosophy. So I 
will be brief (also because the next Chapter will give ample references to logic). Thus apart from 
Frege (above) I recommend: (a) two superb overviews, and (b) two superb specialist books. 
 (3a): M. Kline’s 1200-page book, Mathematical Thought from Ancient to Modern Times 
(Oxford University Press, 1972) is now available very conveniently as three paperbacks. For our 
topics, Chapters 36, 37, 40-43, and 51 are relevant. It is available at: 
https://global.oup.com/academic/product/mathematical-thought-from-ancient-to-modern-
times-9780195061376?lang=en&cc=gb 

Much more recent (and emphasising logic, rather than mathematics) is: M. Potter, The 
Rise of Analytic Philosophy, 1879-1930 (Routledge, 2020). As the dates (and the sub-title, ‘From 
Frege to Ramsey’) hint, this book also discusses not just Frege, but also Russell Wittgenstein and 
Ramsey (in roughly equal measure). It is available at: 
https://www.taylorfrancis.com/books/mono/10.4324/9781315776187/rise-analytic-
philosophy-1879–1930-michael-potter 
 (3b): J. Alberto Coffa, The Semantic Tradition from Kant to Carnap: to the Vienna 
station (Cambridge University Press 1991) is a deep study of the origins of logical positivism.   
(So its details about German and Austrian philosophers apart from Frege make a good 
complement to the books in (3a).) It is available at: 
https://www.cambridge.org/core/books/semantic-tradition-from-kant-to-
carnap/E448B2413A076ED2275A87C87811D419 

For philosophers of physics, geometry provides a central “sub-plot” in the story of 
increasing rigour and formalization, from 1850 onwards. A deep study of this is: R. Torretti, The 
Philosophy of Geometry from Riemann to Poincare (Springer, 1978). It is on the Internet 
Archive at: 
https://archive.org/details/philosophy-of-geometry-from-riemann-to-poincare-roberto-
torretti#:~:text=It%20is%20a%20technical%20but,physics%20%26%20mathematics%20and%
20its%20applications 
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Chapter 3: All the logically possible worlds 
 

 
 
In this Chapter, I will proceed in four stages. At the end of the last Chapter, I said that although 
logicism failed, it was a major reason why early twentieth-century philosophy placed logic centre-
stage. Since then, logic has remained central, and this Chapter’s first stage (Sections 1 and 2) will 
be to present some details about this. We will then be ready to discuss the philosophers’ 
multiverse, in three further stages. 

In the second stage (Section 3), I will urge that in everyday life, and technical science, and 
philosophy, we are up to our necks in modality. This word is philosophers’ jargon for the topic 
of necessity, possibility and impossibility. That is: in order to state what we believe to be true, 
whether in everyday life or in technical science, we need to accept non-actual possibilities. Once 
we see this, it becomes clear how, by about 1970, philosophy was ripe for the proposal that there 
is a multiverse of all the logically possible worlds. 

In the third stage (Sections 4 to 8), I will sketch some of the benefits for philosophy, of 
adopting an explicit framework of a set of possibilities. The prototypical example of such a set---
a cautious prototype, in Chapter 1’s spectrum of attitudes---is the set of instantaneous possible 
states of some physical system, as postulated by some physical theory. As I shall explain, this set 
is called the state-space of the theory.  But more ambitiously (agreed, much more ambitiously): 
one might accept maximally specific possibilities for the cosmos as a whole. These are the 
possible worlds. So one envisages a set W of all the possible worlds. The exact nature or status 
of these worlds thus becomes this Chapter’s main concern.  

One can take either a cautious or a confident attitude to them. The most confident 
attitude says: ‘They are all equally real; the non-actual worlds are merely not “hereabouts”, in 
much the same way that for a person in England, all the other countries e.g. France and 
Australia, are equally real, but merely not hereabouts.’ Agreed, that is hard to believe. And 
indeed: almost no philosopher does believe it. But the great philosopher David Lewis, who 
thought hard and deeply about possible worlds, believed it. The doctrine is called modal realism.  

Lewis argued for it at length; especially in his book, On the Plurality of Worlds (1986). 
He did not claim to have a knock-down i.e. irrefutable argument. As we discussed in Chapter 1, 
in philosophy such arguments cannot be expected. Rather, he argued that modal realism was on 
balance better than the rival, cautious, conceptions of possible worlds.  

But he also agreed that most of the philosophical benefits of using a set of logically 
possible worlds do not require his modal realism. They can also be had while adopting much 
more cautious conceptions of what the worlds are.  

So in the third stage, I will show how various philosophically important concepts and 
doctrines can be made precise in terms of the framework of possible worlds. There are many 
such concepts and doctrines. But I will restrict my examples to ones we will need in later 
Chapters.  

Finally in the fourth stage (Sections 9 and 10), I turn to the outstanding question: What 
exactly is a possible world? This question is compulsory, for cautious conceptions of possible 
worlds as much as confident conceptions, in particular Lewis’ modal realism. Several possible 
answers are defended in the philosophical literature. But to avoid anti-climax, I announce now, at 
the outset, that I will not settle on one answer. So the Chapter will end inconclusively, and 
perhaps disappointingly. For I will leave this question hanging, without endorsing any answer. 
But there is some consolation: the following Chapters will not depend on my having endorsed an 
answer. Besides, the next Chapter might help. For it will suggest a new answer, derived from 
quantum physics. 

A final preliminary. There is another perspective on the material in the second to fourth 
stages of this Chapter. For the most part, I will not articulate it, since it will be clear what one 
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would say about it. But I will be explicit at the start of the fourth stage (Section 9). In short, this 
other perspective focusses on the idea of a proposition rather than, as I will, on possibility. It will 
be clear that this difference is largely a matter of jargon, reflecting the fact that ‘proposition’ (and 
similar words one might use, like ‘statement’) are really terms of art, to be defined by the logician 
or philosopher as they see fit. So for the most part, when I talk about a possibility, or about a 
possible world, one could instead talk about a proposition, or (corresponding to a possible 
world) about a maximally specifically i.e. logically strongest proposition. But as I said: more 
details in the fourth stage.     

 
 
 
Chapter 3, Section 1: The legacy of logicism: the endeavour of reduction 
Since 1900 logic has been central to philosophy, in two main ways: which I take up in this 
Section and the next. The first way amounts to the legacy of logicism. Although logicism failed 
because (as we discussed at the end of Chapter 2) set theory is not really the same as logic, 
logicism nevertheless engendered two broader visions which have persisted. They both involve 
the idea of reduction; and they are the topic of this Section. I discuss them in (1) and (2) 
respectively. 

The first vision is about pure mathematics. And it has not merely persisted after the 
demise of logicism. This vision has been, in effect, proven to be true, through detailed work by 
various mathematicians from about 1890 to 1920. The second vision, discussed in (2), is about 
philosophy, especially about what the task (or at least, one task) of philosophy should be. 
Philosophy being controversial, this second vision remains of course unproven. 
 
 
(1): The first vision is easily stated. As logicism developed, it became clearer that its task, of 
proving that all of pure mathematics was really logic, amounted to two sub-tasks: first, show that 
all of pure mathematics, e.g. arithmetic, the calculus, geometry etc., can be written in terms of a 
(paradox-free) theory of sets; second, show that this theory of sets is really logic in disguise. So 
even if---as agreed---we cannot do the second sub-task, i.e. even if set theory is not logic, we can 
still complete the first. And this was indeed achieved, by the collective work of various 
mathematicians. 

Thus by about 1910, there was a vision, endorsed by many opponents of logicism as well 
as by its advocates, that set theory is a universal framework in which to formulate all of pure 
mathematics. More precisely, the vision says: a paradox-free set theory adequate for formulating 
all mathematics can be written in a formal language, with precise vocabulary, rules of grammar, 
and of inference (as discussed at the end of Chapter 2). 

 Indeed, the requisite formal language is very simple. It has exactly one basic predicate, 
representing the relation of set-membership. This is always written with the Greek letter epsilon, 
e. So in set theory, ‘x e y’ means that x (which may itself be a set) is an element of the set y.  

Besides, the rules of grammar and the rules of inference were also very simple. They 
were the rules proposed for predicate logic: which had been invented by Frege in 1879. Here, 
‘predicate logic’ comprises the logical behaviour of both (i) ‘and’, ‘or’ and ‘not’ (called 
‘propositional logic’, or ‘Boolean logic’) and (ii) ‘every’ (similarly: ‘any’, ‘all’), ‘some’ and ‘none’. 
(Here, ‘or’ is understood inclusively, as synonymous with ‘and-or’. So ‘Bill is tall or blond’ is true 
if Bill is both tall and blond.)  

Thus predicate logic is concerned with valid patterns of argument whose validity turns 
on the placing of these words within the argument. Here are two examples, (1) and (2); example 
(2) also uses some propositional logic.  

    (1): Premise: ‘Some As are Bs’. Premise: ‘All Bs are Cs’.  
    So, Conclusion: ‘Some As are Cs’.  
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   (2): Premise: ‘Some As are Bs’. Premise: ‘All Bs are Cs or Ds’ (meaning: ‘any B is a C or 
is a D’; not ‘all Bs are Cs, or all Bs are Ds’).  

    So, Conclusion: ‘Some As are Cs or Ds’ (where ‘or’ is again understood as inclusive). 
Thus the vision had three parts. The first part is about set theory; the second about pure 

mathematics (apart from set theory); and the third part about how to show that the second part 
can be understood as included in the first part: as follows. I will label the parts (A), (B) and (C).  

 (A): There is a paradox-free formulation of set theory in a formal language with just one 
basic predicate, ‘… e …’, representing set-membership; and whose rules of grammar, and rules 
of inference, are just those of predicate logic. So in this language, the only allowed inferences are 
those that depend on the words listed in (i) and (ii) above, like my examples (1) and (2). Indeed 
this formulation of set theory is an axiomatization. All the theorems, all the truths of set theory 
to be appealed to, follow by these allowed inferences from a few initial axioms.  

(B): Take all the accepted truths of pure mathematics, apart from set theory: the truths of 
arithmetic, of the calculus, and of geometry and the other traditional areas of mathematics. Here, 
‘accepted truths’ means: claims accepted as proved by mathematicians. Of course, the usual 
formulations of these truths, in textbooks etc., are enormously varied, in that the different areas 
have their own special vocabularies. Arithmetic has the numerals ‘1’, ‘2’,…, the ratios (rational 
numbers), ‘2/5’, ‘42/9’, …, the signs + and ´ for addition and multiplication. Geometry has 
nouns for geometric objects, e.g. ‘point’, ‘line’, ‘triangle’, and predicates for relations between 
them, e.g. ‘intersects’, ‘is perpendicular to’. And so on, for other areas of mathematics. 

(C): Despite the sparse simplicity in (A), and the variety and complexity in (B), it is 
possible to give an explicit definition of each of the special vocabulary items, in each of the many 
areas of mathematics in (B), in terms of sets, in such a way that: once we add these definitions to 
the sparse and simple set theory (A), each of the claims of (B)---now understood, using the 
added explicit definitions, as claims about certain sets---can be derived within (A), using only 
(A)’s strictly limited rules of inference. 

Here of course, (C) is the punch-line. It offers you re-interpretations of your traditional 
familiar mathematical words, e.g. the numerals ‘1’, ‘2’,…, ‘2/5’,… ‘intersects’, ‘is perpendicular 
to’, in such a way that all the mathematical claims you accept, if thus re-interpreted, follow, by 
simple and compelling rules of inference, about ‘and’, ‘or’, ‘all, ‘some’ etc., from the axioms of a 
simple and compelling set theory. In short: (C) shows a way to interpret (B), i.e. the truths in (B), 
as really “already there” in (A).  

Philosophers and logicians call this a reduction of (B) to (A). So (C) is the claim that each 
of the traditional areas of mathematics (and so also: the grand conjunction of all their accepted 
claims) can be reduced to set theory. So set theory is called the reduction-basis.  

Of course, the definitions offered of the traditional familiar words must be judiciously 
chosen. For if you define these words in terms of sets wholly at random, it will only be by the 
greatest coincidence that your beloved mathematical truths, e.g. ‘2+2=4’, ‘there are infinitely 
many primes’, ‘all equilateral triangles are equiangular’, turn out to be theorems of set theory. 
Very probably, your haphazard definitions will render these claims as false statements of set 
theory; or even as not a grammatical sentence about sets at all.  

On the other hand, needing to choose judiciously does not mean that there is only one 
choice that would work. For example, there is a great variety in which set to choose as the 
interpretation of the numeral ‘1’. But having made a choice, your choices for the other numerals, 
‘2’, ‘3’…, and so for other number-expressions like ‘2/5’ etc. for the rationals, are heavily 
constrained. For they need to “align” or “mesh” with your choice for the numeral ‘1’, if your 
accepted truths are to follow as theorems of set theory.    

  So let me sum up this vision. It is (C) that was achieved---proven true---by various 
mathematicians from about 1890 to 1920. It is a very remarkable achievement. Indeed, it is 
undoubtedly one of the greatest transformations in the entire history of mathematical thought.  
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Nowadays, this achievement is, as the saying goes, hidden in plain sight. Both research 
articles and pedagogic writings (textbooks) usually start by invoking the framework of set theory 
(almost always informally, without mentioning axiomatization), and then proceed informally, in 
natural language augmented with mathematical symbols. They never mention that the proofs of 
all the text’s theorems can be formulated without loss, using the very limited rules of inference 
endorsed by the predicate logic.  

(Of course, becoming hidden in plain sight is often the fate of major changes. They 
become ubiquitous, entrenched---and unnoticed. Another example in the history of mathematics 
is the adoption of Arabic in place of Roman numerals. The advantages for addition and 
multiplication are so great that we hardly ever think of adding or multiplying Roman numerals, 
and so we forget how cumbersome it would be.) 
 But in the early twentieth century, this vision, and its achievement, had a large impact on 
philosophy. It led to what at the start of this Section I labelled as ‘the second vision’ bequeathed 
by logicism: a vision about what the task (or at least, one task) of philosophy should be. So to 
this, I now turn. 
 
 
(2): As discussed in Chapter 1, much of philosophy has throughout the centuries been about 
“conceptual house-keeping”. That is: scrutinizing concepts to see if they are in order, and if so, 
giving an account or even an analysis of them; (and if they are misleading, rejecting or maybe 
revising them). One even sees this at the beginning of Western philosophy, in Plato. Socrates 
besets the people whom he accosts in the agora (market-place), with requests for definitions 
(analyses) of virtue, courage etc. And much of philosophy since---about many diverse topics, 
such as virtue, free will, knowledge, causation, number or necessity---can be read as aiming to 
give an account of the concept in question; and maybe even an analysis of it. 

Here, ‘giving an account’ means describing how the concept relates to other kindred 
concepts (e.g. one implies the other, or one tends to cause the other); and stating what are the 
important accepted truths involving the concept (and of course, kindred concepts). And ‘giving 
an analysis’ means something more specific and ambitious: defining the concept in terms of 
previously understood concepts (and so displaying their logical connections), in such a way as to 
recover the accepted truths involving the concepts. And here, ‘to recover’ means, ideally at least: 
to derive, i.e. deduce, from other accepted truths invoking the previously understood concepts.  

Thus we return, in the more general context of philosophy, to the above idea of 
reduction. If the scrutinized concept or concepts are considered to be in order, then we can aim, 
ideally, to deduce the accepted truths invoking them, viz. (B) in the above labelling, by adding to 
a previously understood and accepted body of doctrine (A), some judiciously chosen definitions, 
analyses, of (B)’s concepts in terms of (A)’s.  

The second vision is now clear. Seeing mathematicians’ achievement of reducing all of 
traditional pure mathematics to the sparse and simple framework of set theory and predicate 
logic, philosophers conceived the task of similarly reducing accepted bodies of doctrine about 
other matters: in particular physical theories, or even everyday propositions about the empirical 
world.  

Of course, philosophers differed about the details of the proposed task. Russell with the 
programme (ca. 1910 to 1920) that he called ‘logical atomism’ proposed to analyse all our 
everyday empirical knowledge, as did Carnap with his Aufbau programme (1928). But their 
contemporary Reichenbach aimed in his 1920s work “only” to axiomatize Einstein’s relativity 
theories. But these programmes had much in common. In particular, they agreed on the answer 
to the immediate question, ‘What is the previously understood and accepted body of doctrine to 
which you propose a reduction should be made?’. Namely, a staunchly empiricist answer: 
propositions about sensory experience.  
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Thus the programmes of Russell’s logical atomism, and somewhat later, the logical 
empiricism of Carnap, Reichenbach and others in Vienna and Berlin, should be seen as modelled 
on the successful set-theoretic (though not logicist) reduction of pure mathematics. 
 
 
 
Chapter 3, Section 2: Logic as a toolbox of formal systems: modal logics 
I will describe in (1) how programmes like Russell’s and Carnap’s led eventually to a modest 
conception of logic’s role in philosophy; and then in (2) consider modal logic.  
 
 
(1): Clearly, the reduction programmes of Russell and Carnap were very ambitious. Everyday 
empirical knowledge is a vast open sea. It far outstrips a single knowing mind; its content shades 
continuously into technical science; and we have no agreed chart for it, i.e. no agreed taxonomy 
breaking it down into parts appropriately (e.g. logically) related to one another. Besides, we have 
no agreed language in which to talk about the reduction-basis, i.e. sensory experience. In my 
jargon above: there is no uncontroversial ‘previously understood and accepted body of doctrine’. 
So unsurprisingly, these programmes failed. As the Bible warns us: pride comes before a fall 
(Proverbs 16:18). 
 But programmes with a much more modest aim---for example, axiomatizing a single 
physical (not: pure mathematical) theory, using predicate logic and a basic vocabulary that was 
small, but not required to be solely about sensory experience---fared much better. A single 
physical theory, such as Newton’s theory of gravity or Einstein’s special relativity, is pretty well-
defined. The textbooks largely agree in how they present it to us, and in what its special 
vocabulary is. And in axiomatizing it we do not need to reach for some other vocabulary, e.g. 
solely about sensory experience, and for some doctrine using that vocabulary, to serve as a 
reduction-basis. Rather, the axioms we seek will be the reduction-basis. Nor was it just 
philosophers like Reichenbach who undertook such efforts. Mathematicians, including great 
ones like Hilbert and von Neumann, did so too. 

Thus arose a more modest and flexible conception of the role of logic in philosophy, 
which has persisted till today. Namely, as a resource, a toolbox, for formalizing various bodies of 
doctrine, without necessarily axiomatizing them or reducing them to another body of doctrine. 
Of course, the bodies of doctrine are to be chosen because of their philosophical interest. They 
use concepts central to everyday life and thought (like my list above: virtue, free will, knowledge 
etc.) and-or science (like space, time, matter, causation). And so this conception goes along with 
philosophers’ traditional endeavour of conceptual analysis. 

Nowadays, there are countless such examples of “logic in action”. (Indeed there are even 
logics of action, as well as logics of concepts that seem more amenable than action, to a logical 
treatment---such as knowledge.) We already saw one example of this in Chapter 2. It was about 
what it is rational to believe---what principles should govern what we believe?---in addition to 
the indisputable requirement that we should believe the deductive consequences of what we 
already believe. Thus since the mid-twentieth century, philosophers have developed formal 
systems prescribing how to change your beliefs when you get evidence (often called ‘inductive 
logics’). 

For the purposes of this Chapter, the most important example is of course: the logic of 
modality. (Recall that ‘modality’ is jargon for the topic of necessity, possibility and impossibility.)  
 
 
(2): Aristotle himself initiated modal logic, by discussing such principles as that necessity implies 
truth. That is: if a proposition is necessary (must be true), then it is in fact true. And similarly, 
truth implies possibility: if a proposition is in fact true, then it is possibly true. For the actual 
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situation counts as one of the possibilities. (Here, we set aside the conventional rule of 
conversation whereby calling something ‘possibly true’ connotes that it is in fact false.)  

The natural way to think of such principles is that the phrase ‘It is necessary that …’ has 
an empty slot or argument-place … into which a sentence ‘P’ can be inserted, to produce a 
sentence ‘It is necessary that P’. So there is a valid argument: ‘It is necessary that P; therefore P’. 
Similarly, ‘P; therefore it is possible that P’ is a valid argument. And as I mentioned in Chapter 2: 
to these valid arguments, there correspond conditional propositions that are themselves 
necessary. Namely: ‘if it is necessary that P, then P’; and ‘if P, then it is possible that P’.  

Medieval logicians developed the logic of modality. But as we have seen in Chapter 2, 
philosophy in the modern period, i.e. from the seventeenth century, neglected logic up until the 
late nineteenth century. And then, although logicians like Frege and Russell took logic to be a 
collection of necessary truths, they showed no interest in studying the logic of modality, i.e. 
studying the logical behaviour of phrases like ‘It is necessary that …’, and ‘It is possible that …’. 
Thus the logic of modality lay dormant until spear-headed in about 1915 by the philosopher, 
Clarence Lewis; (usually cited as ‘C.I. Lewis’: no relation of David Lewis---about whom, more 
shortly).  

C.I. Lewis was the first person to write down formal logics of modality, called ‘modal 
logics’. They build on the logics we noted in the previous Section. Thus recall that propositional 
logic comprises the logical behaviour of (i) ‘and’, ‘or’ and ‘not’; while predicate logic adds to this 
the logical behaviour of (ii) ‘every’, ‘some’ and ‘none’. C.I. Lewis proposed adding to any system 
of propositional logic a new symbol, which I will write as ‘N(…)’ (for ‘necessary’) which accepts 
a sentence ‘P’ in its argument-place … to make another sentence, ‘N(P)’: which we read as ‘it is 
necessary that P’. (Beware: though I write ‘N’ for ‘It is necessary that…’; it is traditional to write 
for this, either ‘L’ or a box: £ .) 

It follows that ‘It is possible that …’ does not need a separate treatment. For recall that 
‘not’ makes a sentence from a sentence: ‘not-P’ is true if P is false, and vice versa. (Any piece of 
language that makes a sentence from a sentence, like ‘N(…)’ and ‘not’, is called a sentence-
operator.) So ‘It is possible that P’ can be rendered as ‘not-necessarily-not-P’. That is: as ‘not-
(N(not-P))’. (But some expositions do use a separate symbol for ‘It is possible that…’. For this, it 
is traditional to write either ‘M’ or a diamond: ¯ .) 

So far, so straightforward. But building such a system of modal logic soon leads to 
interestingly controversial issues. For sentence-operators can be iterated. So what should we say 
about ‘NN’, in particular in relation to ‘N’? One may well be content that the argument 
‘N(N(P)); therefore N(P)’ is valid, whatever our choice of proposition P. (For it is itself an 
instance of our previous valid form: ‘N(P); so P’. Into this valid form, one inserts ‘N(P)’ in place 
of ‘P’.) But what about the converse argument, i.e. the argument: ‘N(P); therefore N(N(P))’? Is 
this second form of argument valid, for all choices of P?  

On such questions, C.I. Lewis himself took a liberal view. He developed various systems 
of modal logic, that obeyed various sets of principles, while sharing those I began with. Namely, 
the principles that ‘It is necessary that P; therefore P’ is a valid argument, and that ‘It is possible 
that P’ is rendered as ‘not-necessarily-not-P’.  

  Matters become even more controversial when one considers how ‘N’ should behave in 
relation to the ‘every’, ‘some’ and ‘none’ of predicate logic. Thus suppose ‘is F’ is some predicate, 
e.g. ‘is red’ or ‘is a horse’. And let us suppose that ‘For every object, it is necessary that the object 
is F’ is true. Does it follow---is it valid to infer---that ‘It is necessary that for every object, it is F’, 
i.e. ‘It is necessary that every object is F’?  

There is good, though I think not compelling, reason to deny this. For the premise is 
naturally read as about all actually existing objects: and as saying of each of them that it is 
necessarily F, i.e. that however the world happened to be, the object in question would be F. 
Notice here how natural it is to say ‘world’ i.e ‘possible world’. But the conclusion is naturally 
read as: however the world happened to be, every object in that world would be F. So if we 
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envisage that the world could contain objects that it actually does not contain, then the way is 
open to denying that the inference is valid. For we can admit the premise, that all actually 
existing objects must be F, but insist that there could be yet other objects: some of which, in 
some worlds, are not F. 

On the other hand, this reason is not compelling. For it seems tenable that the actual 
world is “privileged” among all possible worlds, in being “the ultimate resource” for objects.  
That is: any object that possibly exists, actually exists. So the idea is: “no newcomers are allowed 
to come into view, as my mind’s eye goes from the actual world to another possible world.”       

So the interplay between modality and the notion of object is controversial. And the 
controversies show up in questions about which principles combining the modal operators with 
the ‘every’ etc. of predicate logic we should accept. These controversies were pursued by C.I. 
Lewis and others (including Carnap) in the mid-twentieth century. They were also much clarified 
and enlivened in the 1960s by the work of David Lewis, Saul Kripke, David Kaplan and others: 
all of whom emphasized the semantics of modal logic. This semantics explicitly invoked possible 
worlds, and so made vivid the central question of this Chapter: what exactly are possible worlds? 
And as we shall see in Sections 5 to 7, this semantics also led to detailed proposals about the 
semantics of natural languages.  

Furthermore, some questions central to philosophy turn on examples of principles of the 
above sort, i.e. principles combining modal operators with the ‘every’ etc. of predicate logic. In 
Section 8’s discussion of materialism and physicalism, we will see an example of this which uses 
the principle I have just discussed: i.e. the principle that for a property F, ‘if everything is 
necessarily F then it is necessary that everything is F’. In Section 8, the property F in question 
will be ‘being material’ (or in the jargon of philosophy: being concrete, as against abstract). As we 
will see, it is a problematic property.   

This completes this Chapter’s first stage: a summary of logic’s role in philosophy up to 
about 1970, especially the development of modal logics. As I announced in the Chapter’s 
Preamble, we are now ready to discuss the proposed multiverse of possible worlds, in three 
further stages.  
 
 
 
Chapter 3, Section 3: Up to our necks in modality 
In this Section---which is the second stage of the Chapter---I will argue that in order to state 
what we believe to be true, whether in everyday life or in technical science, we need to accept 
non-actual possibilities. Then the main question for the rest of the Chapter will of course be: 
exactly what does this commitment involve?  
 
 
(1): Let us begin with our beliefs in everyday life. Consider some belief of yours that is true. It 
can be utterly mundane, e.g. that grass is green. Then the negation of what you believe, the 
proposition that grass is not green, is false. It represents a non-actual possibility: but what exactly 
is that?  

There is a temptation to dismiss this question, saying that after all, grass could not fail to 
be green, thanks to its genetic make-up encoding that it produce chlorophyll, i.e. the green 
pigment essential for photosynthesis. But this dismissal is unconvincing. For suppose we agreed 
that grass must be green, and also that there is no need to accept the impossibility, grass not 
being green, as some sort of ghostly non-fact---we can take the impossibility to be nothing at all. 
Nevertheless, there are surely countless everyday propositions that are in fact false but could be 
true. Suppose I stay at home tonight: then the false proposition ‘I go to the cinema tonight’ 
surely could be true. (For this example, it does not matter whether I have free will, i.e. whether I 
could freely choose to go to the cinema. The example only needs that ‘I go to the cinema’ could 
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be true.) So there is a way the world could be that makes this proposition true. So accepting that 
it might have been true commits us to such ‘ways’, i.e. to non-actual possibilities---in some sense. 
Besides, some of these propositions that are in fact false but could be true are among our beliefs-
--yours and mine. So we cannot duck out of the issue by just focusing on true beliefs. For any of 
our false beliefs that could be true has as its content, i.e. what it represents about the world, a 
non-actual possibility. 
     This discussion may seem suspiciously abstract. Let me make it more vivid by giving two 
main ways in which our beliefs invoke non-actual possibilities. The first way concerns 
deliberation and decision. Suppose a person hesitates between two options for action, 
deliberating which to do, and then does one. The options could, again, be utterly mundane: for 
example, which of two keys to try so as to unlock a door. We cannot understand the process of 
deliberation, what the person thinks, purely in terms of the one actual course of events that ends 
in, say, trying the bigger key. To explain the process of deliberation and the eventual action, we 
need to attribute to the person beliefs, some of which are about non-actual possibilities. For 
suppose the bigger key is the wrong one. So the proposition ‘the bigger key fits’ is false. It 
represents a non-actual possibility: but the person believes this proposition and acts on it. 
 Examples like the choice of key are the bread-and-butter of a discipline, decision theory, 
that lies at the interface of philosophy with economics and psychology. We shall meet decision 
theory again in the next Chapter: for it has a surprising application in support of Everettian 
quantum theory, i.e. the quantum multiverse. But for the moment, I will just state decision 
theory’s general description of a deliberating person, so as to bring out its ubiquitous use of non-
actual possibilities. 

Decision theory assumes that a deliberator has: 
    (i) various degrees of belief, i.e. subjective probabilities, about various possible states 

of the world, i.e. degrees of belief in propositions about the world;  
    (ii) desires of various strengths that various such propositions be true; and  
    (iii) a set of options for action, which are again taken as propositions---propositions 

that the person can at will make true (like trying the bigger key).  
Decision theory then formulates principles that prescribe which option for action is best for the 
deliberator. A common idea of these principles is that the best option has the highest ‘score’. 
Here, a ‘score’ is defined as the weighted-average strength of the desired propositions (ii), where 
the average is computed with degree-of-belief weights given by (i). (Of course, one should also 
allow for first-equal scores: then the best option is any of the options with the highest score.) 

This common idea can be made precise in various ways, that in some cases disagree 
about which option they prescribe. But we need not discuss these disagreements and the ensuing 
controversies in decision theory. For us it is enough that, as the common idea shows: when a 
person decides and acts, they are up to their necks in modality.  

Besides, this involvement with modality holds good for propositions about the past, just 
as much as for those about the future. For think of memory rather than decision-making. 
Suppose that yesterday I stayed home and learn today that I missed a good film at the cinema, 
and I regret not going. In such a case, my mind is again focused on a non-actual possibility. 

Turning from decision-making and memory to technical science: it also is up to its neck 
in modality. Of course, decision theory itself counts as science. But let me stress examples in 
physics. For again, this will help us prepare for the next Chapter. 
 
 
(2): Mention of subjective probabilities prompts an obvious suggestion. Namely, chance: 
Chances are objective probabilities that are made true by the subject-matter rather than by the 
state of mind of a person thinking about it. As I mentioned in Chapter 1, a standard example is 
radioactivity: e.g. the chance of this Uranium atom decaying in the next hour. Again, the very 
concept of chance commits one to non-actual possibilities, going beyond the one actual course 
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of events. For chance requires a range of future alternatives: in my atom example, just two---
atom decayed after an hour, and atom undecayed. 

But even without probabilities, physics endemically invokes non-actual possibilities. This 
occurs in every physical theory: from the most elementary, such as Newtonian mechanics, to the 
most advanced, like quantum theory and general relativity. (And it occurs in speculative theories, 
like Chapter 5’s cosmological theories and string theory, as much as in well-established theories.) 
To explain this, I will introduce some physics jargon, which will also be useful in later Chapters; 
and then consider the simplest theory, Newtonian mechanics (which is familiar from Chapter 2).         
 Any physical theory describes a certain kind of object by ascribing to it numerically 
measurable properties like position or momentum (i.e. mass times velocity) or energy. In the 
jargon of physics, the objects are called systems; their properties like position etc. are called 
quantities (also: ‘magnitudes’, but I will not use this word); and the amounts or degrees of such 
properties that are ascribed are called values (almost always real numbers). (In the jargon of 
philosophy, the quantities are determinables, and each of their values is a determinate. The 
standard philosophical example of a determinable is colour; of which a particular shade of scarlet 
is a determinate.) Then a state of a system, according to a physical theory that describes the 
system, is a list, or conjunction, stating what are the system's values for the various quantities that 
apply to it.   
 The state of course changes over time, as the values of the various quantities go up or 
down. So the state is also called the instantaneous state. A physical theory gives descriptions of 
these changes. In most theories (including all that this book will discuss), the theory provides an 
equation stating exactly how the state (the values of all the system's quantities) changes over 
time. This is the system's equation of motion. Typically, it fixes the rate of change of some 
chosen quantity (or quantities) of interest, as a function of the values of that quantity, and usually 
also other quantities, at some initial time. Given those other values, and thereby the rate of 
change of the chosen quantity, one then solves the equation so as to find the value of the chosen 
quantity at later times. In short, one predicts the future values of that quantity, on the basis of 
some present state.  
 Newtonian mechanics is of course the archetypal case. Imagine that a small solid object, 
say a sphere, is our system of interest. In Newtonian mechanics, this is usually called a ‘body’. If 
we know the forces that are now, and that will later, be exerted on the sphere (say by other 
bodies, e.g. gravitational forces or electric forces), and we also know the sphere’s present 
position and momentum: then the equation of motion for its position can be solved. That is: the 
position at later times (and so also the momentum at later times) can be calculated. 
 Agreed, two qualifications are needed. We already glimpsed the first, in Chapter 2. When 
two bodies collide, what happens is very complicated. They usually distort each other, or even 
break up, so that describing what happens often outstrips the resources of Newtonian 
mechanics---for example, because the collision generates heat. So let us set aside collisions: for 
example, by imagining the sphere is in empty space, a vacuum, and is far away from all other 
bodies.  
 Secondly, even apart from collisions, the sphere’s motion can be influenced by motions 
internal to the sphere, for example if it is spinning or is not completely rigid. So (as I mentioned 
in Chapter 2) mechanics often idealizes the situation. We imagine the sphere is so small and rigid 
as to be effectively extensionless: a point-particle (also called a ‘point-mass’). The instantaneous 
state of such a point-particle, sufficient for solving the equation of motion, is indeed just its 
position in space (so three real numbers, for its x-, y- and z-coordinates) and its momentum 
(again, three real numbers, for its mass times its speed in each of the x-, y- and z-directions). 
That is: the state of a point-particle is given by an ordered set of six real numbers: a 6-tuple. So 
for a mass m, and writing vx for the speed in the x-direction and so on, we could write this 6-
tuple of all position and momentum values as: (x, y, z, mvx, mvy, mvz).       
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 Here, what matters most is not these qualifications, but the fact that Newtonian mechanics 
explicitly postulates the set of all possible instantaneous states of the sphere. And similarly for 
other systems that the theory describes.  
 For the simplest possible system, a point-particle, that means: the set of all 6-tuples of real 
numbers. Unlike the set of triples of real numbers, which we of course visualize as familiar three-
dimensional Euclidean space, this space cannot be visualized. We should instead think of its 
structure as follows: at each point of physical space, i.e. at each possible position of the point-
particle, we have attached a separate copy of the set of all triples of real numbers. This copy 
represents all possible triples of momenta in the three spatial directions, that a point-particle at 
that location in space could possess. It is a dizzying idea.  
 Besides, when we consider more and more complicated systems, the set of all possible 
instantaneous states rapidly becomes very intricately structured. Even for two point-particles,  
which we label ‘1’ and ‘2’, with masses m1 and m2, we need 12-tuples of real numbers: which we 
could write as (x1, y1, z1, m1vx, m1vy, m1vz; x2, y2, z2, m2wx, m2wy, m2wz). (Here, I use ‘v’ for speeds 
for the first particle, and ‘w’ for speeds for the second particle.) But to set aside collisions, the 
two triples representing particle positions, (x1, y1, z1) and (x2, y2, z2), must be different. So the 
structure of this set is: for every pair of distinct positions throughout physical space, we attach to 
each position in the pair, a copy of the set of all triples of real numbers, representing all possible 
triples of momenta for a particle located there. 
 And so it goes. To write down Newtonian mechanics, we need to mention these sets of 
possible instantaneous states, endowed with their intricate structures. Although these sets are of 
course not physical space, nor located in physical space---one would naturally call them pure 
mathematical entities, albeit usefully applicable to physical systems---they are called ‘spaces’: 
more specifically, state-spaces. Calling a structured set a ‘space’ (and its elements ‘points’) is 
ubiquitous in mathematics: the rationale is that often the structure is suggested by our visual 
intuitions about physical space, or even by precise geometric ideas like distance. 
 Similarly for all other physical theories: both the classical theories developed between 1700 
and 1900 of light, electricity and magnetism, and of heat; and their twentieth-century 
descendants, which adapted their ideas and techniques to quantum theory and relativity theory. 
All these theories postulate, for each system they describe, an intricately structured set of all 
possible instantaneous states of the system. This set is again called a state-space. Of course, for 
these theories the quantities involved will in general not be just position and momentum, as in 
our example of Newtonian mechanics. Quantities such as energy, or electric field might be 
included. (Chapter 4 will give more details about the state-space for a quantum system.)  
 In short: the theories simply cannot be written down without describing this space. Thus I 
rest my case that physics is, as the catchphrase goes, up to its neck in modality. In each case, the 
system concerned is like a toy-model of the universe, i.e. a very simple way the world could be, 
according to the theory. For example, according to Newtonian mechanics, a system of two 
point-particles is a toy universe: the instantaneous possibilities for such a universe are the points 
in the two-particle state-space. And similarly for a system of five, or seventeen, or any number of 
point-particles. Each is a toy Newtonian universe, whose possibilities are the points of the 
corresponding state-space. 
 
 
(3): We can also now readily see how useful the idea of a state-space is: again, in any of these 
theories. A sequence of instantaneous states is a possible history of the system. (Here, ‘history’ 
means not just the system’s past states, but includes future states, so that a history is an entire 
“life-story” of the system.) We can think of this as a curve in the state-space. Then the structure 
of the state-space, especially its geometric structure like distance between points, helps us to  
understand the behaviour of these curves, i.e. these possible histories. For example, that two 



 51 

curves converge represents the two histories becoming more similar, i.e. the two systems’ values 
for quantities becoming closer.  
 In particular, we can now state the idea of determinism. There are various precise 
formulations, but the general idea is of course that the state at one time determines the state at 
other times. So one common formulation is that any state in the state-space determines the 
sequence of states for all future, and indeed all past, times. In terms of curves in the state-space: 
through any point of the state-space, there is a unique curve to the future, and indeed to the past.  
 Again, Newtonian mechanics is the archetypal case; (setting aside collisions, as I did 
above). Consider again the case of a point-particle at some position, with some momentum, at a 
given time (`now’). And suppose the forces that are exerted on it, not just at the given time 
(`now’) but throughout the past and the future, are specified. Then according to Newtonian 
mechanics, there is a unique history or curve in the state-space that passes through the particle’s 
present instantaneous state. (To be precise: this claim assumes not only that the forces are given 
throughout time, but that they satisfy some “good behaviour” properties.) So we say that 
Newtonian mechanics is a deterministic theory.  
 But I stress that many other theories are also deterministic: and not just non-quantum 
theories---in the next Chapter, the Everettian version of quantum theory will be deterministic. (I 
will return to determinism later in this Chapter, in Section 8, when I discuss an important 
philosophical notion: supervenience.) 
 
 
 
Chapter 3, Section 4: A philosopher’s paradise 
So much by way of arguing that our everyday and our scientific beliefs commit us to non-actual 
possibilities. I turn to this Chapter’s third stage. In the next few Sections (4 to 8), I describe how 
a set of possibilities gives us a framework for formulating many philosophically important ideas 
and doctrines. (I will restrict my examples to ones we will need in later Chapters.)  

By and large, the benefits of such a framework can be had, even with only a cautious or 
modest conception of the possibilities. For example, they can be the elements, the states, in the 
state-space of a physical theory, so that the system concerned is a “toy-universe”. And even if, 
more confidently and ambitiously, one accepts a vast set of possibilities for the cosmos as a 
whole, the possible worlds, still the benefits can be had, by and large, without addressing the 
question ‘What exactly are the possible worlds?’. In particular, they can be had without endorsing 
Lewis’ modal realism: a flexibility that Lewis himself emphasized. (As announced in the 
Chapter’s preamble, I will address this question only in the Chapter’s fourth stage, Sections 9 and 
10.) 

So in effect, the next few Sections are an advertisement for using the framework of 
possible worlds---whatever exactly they are. Thus Lewis called this framework ‘a philosopher’s 
paradise’; and I concur. (The phrase deliberately echoes the achievement I lauded in Section 1, of 
formulating all of pure mathematics as set theory. For the mathematician Hilbert called set 
theory ‘Cantor’s paradise’, after Georg Cantor who was the main inventor of set theory.) But 
again: Lewis allowed---and I agree---that most of the benefits of using possible worlds do not 
require his modal realism. After all, he called it ‘a philosopher’s paradise’, not ‘a modal realist’s 
paradise’. 

In Section 5, I will take as my first example of how useful possible worlds are, semantics. 
More specifically: a scheme called intensional semantics, which is inspired by ideas of Frege and 
Carnap about how words gets their references in the world. It is clearest to start with Frege, who 
expresses the ideas without regard to modality or possible worlds. It was Carnap, and later 
writers like Montague and Lewis himself, who adopted possible worlds. (As I mentioned at the 
end of Section 1, Frege and his contemporaries like Russell did not think about modal logic.) 
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To make this semantics vivid, and to reflect the intentions of its proponents, I shall 
explain it with examples from natural language, and so invoke possible worlds representing the 
cosmos as a whole. So we will be envisaging a vast set W of all the logically possible worlds. 

But as I suggested above, readers too cautious for such examples, and the worlds they 
invoke, could---and I say: should---still accept the scheme’s ideas for some modest fragment of 
language with correspondingly modest possible worlds. On this cautious or modest approach, 
the obvious cases are: the languages and claims of physical theories; and their state-spaces. In 
such cases, the possible worlds will be the instantaneous states; or if change over time is a topic, 
the possible worlds will be the system’s possible histories (curves through state-space). 
 
 
 
Chapter 3, Section 5: Paradise, Part I: Intensional semantics 
I proceed in three stages. In (1), I present Frege’s basic ideas about meaning for simple 
sentences, without regard to modality. In (2), I extend this to truth-functional compound 
sentences. Then in (3), I bring in modality, i.e. possible worlds.  
 
(1): Frege’s first idea is that the meaning of a word or phrase has two main aspects.  The idea 
applies to proper names like ‘Plato’ and ‘Copenhagen’; and to definite descriptions (i.e. ‘the F’ 
phrases) like ‘the most famous pupil of Socrates’ and ‘the capital of Denmark’; and to predicates 
like ‘is red’, ‘walks’, or ‘is a horse’.  

The first and more obvious aspect is the referent (in German: Bedeutung). This is the 
object or objects in the world that, as we say, the word or phrase denotes or refers to. For my 
examples of proper names and definite descriptions, these are, respectively: a human being, and a 
city. By ‘referent’, Frege means the “concrete” object---a human body, a conurbation etc.---
located in space and time, and with its countless properties. Such properties can include: being 
tall, for a human; being populous, for a city; being famous, for a human or a city. Thus the 
referent is not some feature of the object that is connoted or signalled by the word. Nor is it 
someone’s, e.g. the speaker’s, ideas or beliefs about the object. The referent is the object itself.  
So one and the same object, i.e. referent, can be referred to in diverse ways. We say: ‘Plato is the 
most famous pupil of Socrates’, ‘Copenhagen is the capital of Denmark’ etc.  

It is these ways of referring that are the second aspect of meaning, according to Frege. 
He calls it ‘the mode of presentation’ by means of which the word presents the referent to us (i.e. 
draws our attention to the referent). The idea is clearest for definite descriptions, like ‘the capital 
of Denmark’; especially those that do not include a proper name: for example, ‘the tallest human 
alive today’. Suppose it happens to be a tall German doctor called Gustav Lauben, who lives in 
Hamburg and is the best-known doctor there. Then clearly, ‘the tallest human alive today’ 
presents Lauben to us in a different way than ‘the best-known doctor in Hamburg’.  

Frege’s jargon for these modes of presentation is ‘sense’ (in German: Sinn). So these two 
definite descriptions have different senses. This is of course why ‘the tallest human alive today is 
the best-known doctor in Hamburg’ conveys useful information, going far beyond saying that a 
certain person is identical with themself. Frege also argues that proper names have senses, 
though they are vaguer and more idiosyncratic than the senses of definite descriptions. Thus for 
me, ‘Plato’ might have the sense: the most famous pupil of Socrates; while for you, it has the 
sense: the teacher of Aristotle. (Agreed: for Frege to fully explain along these lines how each of 
us refers by saying ‘Plato’, he must hold that we each associate an appropriate sense with 
‘Socrates’ and ‘Aristotle’, respectively. In fact, the name ‘Gustav Lauben’ is from Frege’s 
example, which he uses to expound this very topic. It occurs in one of his most famous essays, 
called ‘The Thought: a logical inquiry’.) 

Similarly, says Frege, for predicates. A predicate has instances: the objects it is true of. 
The set of instances is called the predicate’s extension. Then Frege says that the extension, i.e. 
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the set of instances, is the referent of the predicate. (Here, I have simplified the history. In fact, 
Frege said that a predicate’s referent is a special notion of his own, which he called a ‘concept’ (in 
German: Begriff). Then he added that a concept has an extension. But according to Frege, two 
predicates refer to the same concept if and only if they have the same extension. In philosophical 
jargon, we say that Frege’s concepts are individuated by their extensions. As a result, most 
systems of semantics in Frege’s spirit simplify as I have done: they say the referent of a predicate 
is its extension.)   

But the same set of objects could be the referent of another predicate. One standard 
example assumes that all and only those animals that have a heart (i.e. a pump for a circulatory 
system for nutrients) have a kidney (to remove waste products). That assumption can of course 
be questioned, depending on the meanings of ‘heart’ and ‘kidney’. But let us accept it. Then the 
predicates ‘has a heart’ and ‘has a kidney’ have the same set of instances i.e. extension: what 
Frege calls the ‘referent’. But indeed, the predicates present the referent in different ways; and 
intuitively, they have different meanings. Thus Frege says they have different senses. And again: 
that is why ‘an animal has a heart if and only if it has a kidney’ conveys useful information, going 
beyond saying that a certain set of animals is self-identical.       

Frege then puts these assignments to words, of senses and thereby of referents, to work 
in a compositional semantics. That is: he gives an account of how the senses and referents of 
individual expressions combine to determine (i.e. to uniquely specify) the senses and referents of 
the composite expressions in which they occur. Think for example of how the senses of ‘tall’, 
‘human’ ‘alive’ etc. combine to fix the sense of ‘the tallest human alive today’. Similarly: just as a 
proper name and a predicate combine in a simple sentence, such as ‘Plato is a teacher’, ‘Dr 
Lauben walks’, so also their senses combine to make a proposition. And this proposition is true 
if and only if the referent of the name is in (i.e. is an element of the set that is) the referent of the 
predicate; and otherwise, it is false.  
 
 
(2): Frege then extends the ideas of referent and sense to propositions and to sentences. Thus he 
proposes that the truth-value, True or False, i.e. the property or status of being true/false, of any 
proposition is the referent of the sentence expressing it. Thus the referent of any true sentence is 
the truth-value True; and the referent of any false sentence is the truth-value False.  

Frege’s rationale for this proposal is, in part, that this promises a smooth treatment of 
compound sentences, like a conjunction ‘P and Q’ or a disjunction ‘P or Q’. Thus the truth-value 
of ‘P and Q’ is true if and only if both sentences are true. Here, we think of ‘and’ as a sentence 
operator, ‘… and …’. That is: ‘… and …’ accepts two sentences ‘P’ and ‘Q’ into its two slots or 
argument-places, to produce a sentence ‘P and Q’. Similarly, ‘…or …’ is two-place sentence 
operator.  

Both operators are truth-functional in the sense that the truth-value of the resulting 
sentence (‘P and Q’, ‘P or Q’) is completely determined by the truth-values of the pair of input 
sentences. Thus ‘and’ is associated with a function, sending the pair (True, True) to True, and 
each of the other three pairs, viz. (True, False), (False, True) and (False, False), to False.  

Here I use ‘function’ in the mathematical sense: a rule that sends each appropriate 
“input” (usually called an ‘argument’ of the function) to an “output” (usually called the ‘value’ of 
the function for the given argument).  

Thus Frege can propose that the referent of ‘and’ is this function, from pairs of referents 
of sentences as inputs/arguments, to referents of sentences, i.e. True or False, as outputs/values. 
And similarly for disjunctions: the referent of ‘or’ (in our inclusive and-or sense) is the function 
taking three of the pairs of truth-values, i.e. all except (False, False), to True. Functions like this, 
that map truth-values, or pairs of them, or even triples etc., to truth-values are called truth-
functions.  
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So according to Frege, the referent of ‘and’ is a truth-function. This function can be 
exhibited in a truth-table in which each row shows, for a pair that is an argument of the function, 
what is the corresponding value. Writing ‘T’ for True and ‘F’ for False, we have: 

 
P     Q     P and Q 
T      T          T 
T       F          F   
F       T          F   
F       F          F   

 
And similarly for ‘or’. In our inclusive and-or sense of ‘or’ the truth-table displaying the truth-
function, i.e. the Fregean referent of ‘or’, is:   
 

P     Q     P  or Q 
T      T          T 
T       F         T   
F       T         T   
F       F          F   

   
By the way: we will see shortly that we need an innocuous generalization of the idea of a 

function, viz. to allow that for some arguments, the rule produces no output, no value. It is 
simply silent: this is called a partial function.     
 
 
(3): So far, so Frege. I have not mentioned possible worlds at all; and I have invoked the actual 
world only “in the background”, namely as making true a sentence such as ‘Plato is a teacher’. 

But here enter Carnap, and his followers like Lewis and Montague. They show how these 
Fregean ideas, about a sense being a mode of presentation of a referent, and using functions in a 
compositional semantics, can be smoothly developed in a framework of possible worlds.  

For example: the capital of Denmark is in fact Copenhagen. But it might not have been. 
It could have been Aarhus, or Odense. Following Carnap, we understand this as: in some 
possible worlds, but not the actual one, the capital is Aarhus; while in yet others, it is Odense. 
Thus the referent of the definite description, ‘the capital of Denmark’, varies from world to 
world. (On the other hand, proper names like ‘Denmark’ seem, at least usually, to have the same 
referent in the various worlds.) Similarly, of course for predicates. Plato might not have been a 
teacher; and so the referent of ‘is a teacher’, i.e. the predicate’s set of instances, varies across the 
worlds. And so on, e.g. for ‘has a heart’.  

All this can be neatly formulated in terms of functions. Since at a possible world, ‘the 
capital of Denmark’ denotes a city (in Denmark), we can say that the sense of ‘the capital of 
Denmark’ is a function whose arguments (inputs) are possible worlds, and whose value (output) 
for a given world as argument is the city in that world which is the seat of government for 
Denmark. And for a proper name like ‘Denmark’ with, we may suppose, the same referent 
across the worlds, we can say that the sense is again a function from worlds as arguments to 
objects, viz. countries, within the “argument-world”. It is just that for a proper name, this 
function is constant: it always outputs the same value. And again, similarly for predicates. For 
example, the sense of ‘is a teacher’ is a function from worlds as arguments to the set of teachers 
within the “argument-world”.  

Here, I should make two clarifications. The first, (1), is rather technical, and not 
important for us. But the second, (2), is philosophically important.   

(1): Agreed: we need to allow that at some (presumably vastly many) worlds, there is no 
country Denmark; or there is such a country, but it has no capital (seat of government).  So at 
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many worlds, a name such as ‘Denmark’, or a definite description such as ‘the capital of 
Denmark’, simply has no referent. Similarly for predicates: at a possible world with no animals 
with circulatory systems, the predicates ‘has a heart’ and ‘has a kidney’ will have no instances. 
(Here again, I assume, so as to make the point as simply as possible, that we take the meanings 
of ‘heart’ and ‘kidney’ to require a circulatory system.) 

But this pervasive scarcity, across all the worlds, of referents causes no trouble. We 
simply use the idea mentioned above of a partial function. That is, we say that the sense of a 
word (a proper name, a definite description etc.) is a partial function: worlds are the arguments, 
but for many arguments, the function produces no output, no value. Agreed: as a result, the 
sense of a compound expression (such as a definite description) in which the given expression 
occurs will also in general be a partial function. Besides, one will need some sensible rules about 
e.g. what should be the truth-value (referent, for Frege) of a sentence at a world that contains no 
referent of some proper name within the sentence.  

But there are such sensible rules---and we need not consider them here. I turn to the 
second, philosophically important, clarification. 

(2): Beware of the preposition ‘at’! That is to say: it is tempting to think that in this 
semantics, a phrase such as ‘the referent of ‘the capital of Denmark’ at a given world’ means: the 
city that within the world is called by some speakers in that world ‘the capital of Denmark’. That 
is not so. The semantics being provided is a semantics for our language (in my examples, 
English), as we actually speak it. What language is spoken by people within a possible world is in 
general not relevant to the semantics of our language; and in particular, it is not relevant to how 
facts about a possible world make various sentences of ours true at that world.  

Here, I say ‘in general’ because I agree: some of our sentences, albeit rather long and 
contrived ones, are indeed about a language that could be spoken---if you like, a variant of 
English. So according to our possible world semantics, such sentences are about a language that 
is spoken by people within a possible world. For example, one such long and contrived sentence 
is: ‘People could have spoken a variant of English that used the name ‘Denmark’ for Sweden 
(but without other changes); in which case their sentence ‘Stockholm is the capital of Denmark’ 
would be true in their language.’  But these contrived sentences do not alter the general point. 
Namely: this semantics---though it invokes other worlds, in some of which people use our words 
but with different senses---is a semantics for our language. That is: it is a semantics for our 
language as we actually speak it, with our senses.  

Though this clarification is straightforward, it is important. For as we will see later on in 
this Chapter (Section 9:A), the erroneous temptation goes along with a wrong answer to our 
main philosophical question: what exactly are the worlds?  

So much by way of the two clarifications. To finish this exposition, note that just as 
Frege put his assignments to words, of senses and thereby of referents, to work in a 
compositional semantics referring only to the actual world: so also the scheme proposed by 
Carnap, Lewis et al., with senses as partial functions, gives a compositional semantics, in which 
senses get composed together according to the syntactic structure of the composite linguistic 
expressions. In particular, the sense of a whole sentence i.e. the proposition it expresses, is 
naturally taken as a function from worlds to the two truth-values, True and False. But which 
worlds get sent to True, and which to False, depends on the senses of the sentence’s parts.  

Thus consider the sentence ‘Plato is a teacher’. Its sense sends a world to True provided 
that the sense of ‘Plato’ takes the world to an object (in the world) that is in (i.e. is an element of 
the set that is) the output of the sense of ‘is a teacher’, for that world as input. And similarly for 
compound sentences. The sense of a conjunction ‘P and Q’ sends a world to the output of the 
truth-function that is the Fregean referent of ‘and’ (recall Part (2) of this Section above), for 
inputs that are the truth-values at that world of ‘P’ and ‘Q’, i.e. are the outputs of the senses of 
‘P’ and of ‘Q’. (Another way to think of this is to identify a proposition with the set of worlds in 
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which it is true. Then the sense of ‘and’ can be stated in a less cumbersome way: it is precisely 
the operation of intersection on sets of worlds.) 

Finally, a note about jargon. You will ask: Why is this scheme called ‘intensional 
semantics’? The answer is that Carnap suggested using ‘intension’ instead of ‘sense’, and  
‘extension’ instead of ‘referent’. So a more informative, but long-winded, label would have been 
‘semantics by intensions and extensions’; but the single adjective ‘intensional’ was adopted.  

In any case, Carnap’s jargon has become widespread. In particular, it is well-nigh 
universal usage to call the set of instances of a predicate its ‘extension’. This usage is adopted 
even by those who are wary about intensional semantics. And setting aside talk of possible 
worlds: this usage is adopted even by those who are wary about Frege’s notion of sense as 
applied (e.g. by Frege himself) to just the one actual world. 

So much by way of sketching intensional semantics, especially as it applies to names, 
definite descriptions and predicates. In the next two Sections, we will see how it can be readily 
extended to treat two further topics. First: modality, so as to give semantics for expressions like 
‘It is necessary that …’; and second: counterfactual conditionals, i.e. if-then sentences, whose 
antecedent (after the ‘if’) is contrary to fact, i.e. is actually false.   
 
 
 
Chapter 3, Section 6: Paradise, Part II: Modality and laws of nature 
Intensional semantics, with its set W of logically possible worlds, also treats sentences with 
modal locutions, like ‘It is necessary that …’, ‘It is possible that …’, or the corresponding 
adverbs, ‘Necessarily, …’ and ‘Possibly, …’.  As we discussed in Section 2 of this Chapter, a 
sentence P is to be inserted in the place marked by dots …. . So these are sentence operators: 
they make a sentence as “ouput” from a sentence P as “input”.  

But note that unlike ‘and’, ‘or’ and ‘not’ (discussed in Section 5), they are not truth-
functional. For suppose P is true but contingent, i.e. could have been false, e.g. ‘I stay at home 
tonight’; while Q is true and necessary, e.g. ‘2+2=4’. Then ‘Necessarily, P’ is false, while 
‘Necessarily, Q’ is true. So the truth-value of the output of the sentence operator ‘Necessarily, 
…’ does not depend solely on the truth-value of the input.   

To give a semantics of these operators, the main idea will of course be the intuitive (and 
Leibnizian) one which we already discussed.  Namely: ‘Necessarily, P’ is true at a world w if and 
only if P is true at all the worlds w in W; and ‘Possibly, P’ is true at a world w if and only if P is 
true at some world w in W. 
 This idea gets developed in various ways. For example, one considers what is the sense 
or intension of ‘Necessarily, …’, analogous to the sense of ‘and’ being the operation of 
intersection on sets of worlds. And (as I mentioned in Section 2) one considers how this 
operator relates to other logical words like ‘some’ and ‘all’.  

But for this book’s purposes, the development that matters is about restricting the set of 
worlds that a sentence operator, ‘L(…)’ say, requires one to check (for the truth at that world of 
the argument/input proposition P) in order for ‘L(P)’ to be true. So here, ‘L(…)’ is not short for 
‘Necessarily, …’ or ‘Possibly, …’: it is just my notation for some other operator that we will 
interpret in terms of a subset of W, not the whole of W. (So it would not be appropriate to call 
such an operator ‘Necessarily, …’, ‘Possibly, …’ etc. But philosophers still use the word 
‘modality’. That is, they say such an operator represents a restricted notion of modality.)    

One philosophically important example of such a restriction is the idea of a law of 
nature. (In Chapter 1, Section 4, this was an example of a concept that is philosophically 
contentious; but that contentiousness will not undermine any points here.)  

Thus someone might say: ‘it is logically possible for you to fly to the Sun in less than 8 
minutes, but it is not physically possible, i.e. it is not compatible with the known laws of physics’. 
Or they might say: ‘it is physically possible for you to fly to the Sun in 8 hours (namely, by going 
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at one sixtieth of the speed of light), but it is not practically possible, i.e. it is not compatible with 
present technology---supplies of rocket fuel, funding etc.’ 

Such examples prompt the idea of abstracting from the laws of physics, or another 
science, that we happen to know (or at least: that we believe we know).  So for the example of 
flying to the Sun, the idea is to go beyond what I dubbed ‘known laws of physics’. After all, 
‘known’, as I used it above, is a weasel-word. Agreed, our confidence that a person cannot travel 
faster than light is a central claim of an extraordinarily well-confirmed theory (Einstein’s relativity 
theory) which we can hardly imagine being overturned by future physics. Nevertheless:  strictly 
speaking, ‘known’ implies ‘being true’. And we must accept that all laws as at present formulated, 
even the laws of relativity theory, are fallible.  

Thus such examples suggest that we have a notion of a law of nature. That is, roughly 
speaking: the notion of a proposition that: (i) is perhaps not formulated by us---and might never 
be formulated by humans---but that: (ii) is true about the cosmos (the actual one!), and is deeply 
informative about the way the cosmos “works”. This last phrase is intended to set aside the 
countless true propositions we never have and never will formulate, that are dull, maybe arcane, 
matters of happenstance: as it might be, that all the children living on my street have prime-
number birthdays.  

Philosophers differ about how to make precise the phrase, ‘deeply informative about the 
way the cosmos works’. One popular suggestion is by David Lewis, building on ideas of John 
Stuart Mill and Frank Ramsey. In short, it is that ‘deeply informative’ means being both logically 
strong and simple. But we do not need the details of this suggestion, or of other rival 
suggestions. We just need the idea that the laws of nature form an elite minority of the 
countlessly many true propositions about the cosmos, and that the conjunction, L say, of all 
these laws is thus an elite proposition that is deeply informative about the way the cosmos 
works.  

The Humean tradition (cf. Chapter 1, Section 4; Chapter 2, Section 5) then suggests: 
although this conjunction L is true, it is contingent. It is not necessarily true. For example, 
consider the classical theory of electricity and magnetism, formulated by Maxwell in the late 
nineteenth century. This theory, embodied in Maxwell’s famous equations, is extraordinarily 
successful. But it is in fact not true: for we live in a quantum world. But this theory could have 
been true. That is: there are logically possible worlds that are exactly and accurately described by 
the theory. 

A note for afficionados: To make this more precise and more convincing, let me keep 
matters simple by imagining that there is no massive or charged matter---for agreed, matter is 
quantum. So I imagine just some configuration of electric and magnetic fields, propagating 
across spacetime, e.g. the spacetime of special relativity (called ‘Minkowski spacetime’), obeying 
Maxwell’s equations. That is indeed logically possible: physicists call it ‘a solution of Maxwell’s 
equations (in vacuum)’.  

Thus with the set W containing all the logically possible worlds, we conclude with Hume 
that the conjunction L of all the actually-true laws of nature is contingent. That is: the set of 
worlds where L is true is a subset of W. Then ‘physical possibility’ corresponds to being true in 
some world that is in this subset of worlds. 

Now we can easily make sense of our opening example. It was the sentence: ‘it is logically 
possible for you to fly to the Sun in less than 8 minutes, but not physically possible, i.e. not 
compatible with the known laws of physics’. We assume that ‘No object can move faster than 
light’ is indeed a contingent law of nature, i.e. a conjunct in the long conjunction L. Then ‘it is 
logically possible, but not physically possible, for you to fly to the Sun in less than 8 minutes’ is 
indeed true. There is a logically possible world---but not a world making L true---in which you 
fly to the Sun in less than 8 minutes. 
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A final note about jargon. Nomos is the Greek word for ‘law’. So the restriction of 
modality to what conforms to the laws of nature is sometimes called nomic modality (also: 
nomological modality.   
 
 
 
Chapter 3, Section 7: Paradise III: Counterfactual conditionals 
My next example of the philosophers’ paradise is counterfactual conditionals. These are 
propositions of the form, ‘If P were so, then Q would be so’. Here the phrase ‘were so’ signals 
that the antecedent P is actually false (‘contrary to fact’: hence the name). To say it in terms of 
possible worlds: P is false at the actual world.  

The discussion will have two stages, in (1) and (2) below. The first stage is 
uncontroversial: I will report these propositions’ curious logical behaviour, which was noticed by 
philosophers and logicians in the 1950s and 1960s. The second stage, in (2), is more 
controversial: I will report the proposal, made by Lewis and Stalnaker in about 1968 
(independently of each other), that we should understand this behaviour in terms of degrees of 
similarity between possible worlds. This will amount to a generalization of the last Section’s idea 
of restricted modality. For the proposal will be that to formulate what makes a counterfactual 
true---in the jargon: to give the truth-condition of a counterfactual---we must invoke, not a single 
subset of the set W of all worlds, but a collection of such subsets, where the collection gets 
defined in terms of similarity between worlds.  
 
 
(1): So first: the curious logical behaviour. A conditional connective, ‘if…, then…’, is a sentence 
operator. Like ‘and’, it accepts two sentences as “inputs”, and “outputs” a third sentence. The 
intuitive idea of a conditional, of ‘if…, then…’, suggests several logical principles which one 
naturally expects the connective to obey.  

One example is transitivity. This is the principle that, writing the connective as ", the 
following inference is valid, for any sentences P, Q and R: ‘P " Q;  Q " R. So, P " R’. One 
naturally says: surely, any ‘if, then’ will obey transitivity. For it accords with the idea that the truth 
of a conditional goes along with an argument being valid, or anyway in some sense good or 
plausible; and such arguments can be concatenated to give valid or good arguments. 

Another example is strengthening the antecedent. This is the principle that given a true 
conditional, adding a conjunct to the antecedent (usually making it logically stronger) yields 
another true conditional. That is: one expects the following inference is valid, for any 
propositions P, Q and R: ‘ P " Q. So, (P and R) " Q’.       

But many examples show that the counterfactual conditional violates these principles.  (It 
also violates several other principles that are, at first sight, equally plausible for any conditional 
connective.) 

Here is one example showing that counterfactuals do not obey transitivity: an example 
from the Cold War in 1950s USA. So we need to recall that J. Edgar Hoover was then (in the 
actual world!) head of the FBI, and an ardent anti-Communist. Then the first two statements 
below are true. Or at least we can take them to be, in some conversational context that 
determines what possibilities are relevant or likely. But the third is false; or at least we can take it 
to be.  

1) If J. Edgar Hoover were Russian, he would be a Communist. (The idea here is: 
Hoover’s ambitious but conformist temperament is retained under the supposition that he grows 
up in Russia.) 

2) If J. Edgar Hoover were a Communist, he would be a traitor. (The idea here is: under 
the supposition that Hoover is a Communist, we still imagine him as an American 
citizen living in the USA, indeed perhaps as head of the FBI.) 
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3) If J. Edgar Hoover were Russian, he would be a traitor. (The reason this is false, or at 
least we can take it to be, is exactly as in 1): Under the supposition that Hoover 
grows up in Russia, his ambitious but conformist temperament is retained; and so 
under this supposition, there is no reason to think he is a traitor to the Communist 
one-party state.) 

And here is an example showing that counterfactuals do not obey the principle of 
strengthening the antecedent.  The first statement below is true, the second false. (Or again, at 
least we can take them to be true and false respectively, in some conversational context.) 

4) If I were to strike this match on the side of the matchbox, it would ignite. 
5) If I were to strike this match on the side of the matchbox and the matchbox was wet, 

it would ignite.  
 
 
(2): How should we explain such strange logical behaviour? There is a natural proposal, due to 
Lewis and Stalnaker, for what ‘If P were so, then Q would be so’ means; and this proposal 
explains the logical behavior. Namely: Lewis and Stalnaker propose ‘If P were so, then Q would 
be so’ means ‘In the world or worlds that are most similar to the actual world while making P 
true, it is also true that Q’. (As I mentioned; this specification of meaning in terms of what would 
make a proposition true is called a ‘truth-condition’.)  

Lewis and Stalnaker differ about the details of this proposal. The main difference is that 
Stalnaker proposes that for any world w (in particular, the actual world) and any proposition P 
that is not true at w, there is a unique world that is most similar to w while making P true; 
whereas Lewis proposes, more cautiously, that relative to any world w (in particular, the actual 
world), other worlds are ordered by their similarity to w, but in this ordering, two worlds might 
well be equally similar to w. This makes the proposal readily visualizable, if we think of worlds as 
dots on the page that are closer together, the more similar the worlds are. Thus Lewis envisages 
that around any world w, we can draw a sequence of concentric circles that have (the dot 
representing) w as their common centre. As we go out from w, we successively include worlds 
that are more and more dissimilar to w.  

But these differences of detail do not affect the main point: that if we accept the 
proposed truth-condition for ‘If P were so, then Q would be so’, then the strange logical 
behaviour is readily explained.  For different antecedents, i.e. different counterfactual 
suppositions P, will ``carry us’’ to different worlds making P true, at which we then ask whether 
Q is true. So suppositions that are more outlandish, more different from actuality, will carry us to 
worlds more dissimilar to the actual world, that are represented by dots in a bigger circle. And 
these explanations are readily visualized.  
 
Here is how this goes, with diagrams, for our two examples. For simplicity, I will adopt 
Stalnaker’s proposal that for any world w, and any proposition P not true at w, there is a unique 
world that is most similar to w while making P true. (There are analogous, and equally 
visualizable, explanations of various other curious logical behaviours.)  

The failure of transitivity in the Hoover example is due to it being more outlandish, more 
different from actuality, to imagine Hoover growing up in Russia, than his being a Communist 
within the USA. So a world where he is Russian and Communist (and so not a traitor) is more 
dissimilar from the actual world then a world where he is American and Communist (and so a 
traitor). To make a diagram to display this, with worlds as dots on the page: we put the dots 
closer together, the more similar the worlds are. It is also usual to write @ for the actual world, 
w1, w2 etc. for other worlds; and to write beside each world the propositions that are true at it. 
The counterfactual conditional is usually symbolized with a box-arrow, £". Hence, with ‘R’ for 
‘Hoover is Russian’, ‘C’ for ‘Hoover is Communist’ and ‘T’ for ‘Hoover is a traitor’, we have the 
following diagram. The distances between the dots, i.e. the varying amounts of similarity between 
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the worlds, make the two counterfactuals ‘R £" C’ and ‘C £" T’ true at the actual world @; 
and make ‘R £" T’ false at the actual world @.  

 
 
@    . w1    . w2 
not-R, not-C, not-T  not-R, C, T   R, C, not-T 

 R £" C , C £" T 
 not-(R £" T) 

  
In an analogous way: counterfactuals do not obey ‘strengthening the antecedent’ because 

strengthening the antecedent, from ‘P’ to ‘P and R’, can make the antecedent carry us to worlds 
more dissimilar to the actual world than does P (i.e. more dissimilar to the actual world than the 
most similar P-world(s)). Indeed, in everyday life we make sure that matchboxes stay dry, and so 
the antecedent of 5) above is more outlandish than the antecedent of 4). So we adopt an obvious 
notation: ‘S’ for ‘I strike the match’, ‘I’ for ‘the match ignites’, and ‘W” for ‘the matchbox is wet’. 
Then the obvious diagram takes all these three propositions to be actually false, and so we have: 

 
@    . w1    . w2 
not-S, not-I, not-W  not-W, S, I   S, W, not-I 

 S £" I , not-([S & W] £" I) 
  

 
 
 
Chapter 3, Section 8: Paradise IV: Supervenience: materialism, physicalism and determinism 
My last example of ‘the philosophers’ paradise’, i.e. the uses of possible worlds, is the notion of 
supervenience (also known as ‘determination’).  This notion is important in many philosophical 
discussions. But for this book’s purposes, I need to describe how it is useful for formulating (and 
so also assessing) just three ideas: materialism, physicalism and determinism. As we will see: for 
both supervenience in general, and for its application to these three ideas, one can be either 
confident or cautious in the sense of Chapter 1.3. In (1), I introduce supervenience. Then in (2), 
(3) and (4), I discuss materialism and physicalism. (5) discusses determinism. 
 
 
(1): Supervenience is a relation describing how one set of properties and relations determines 
another. In philosophy,  ‘attribute’ is sometimes used as an umbrella term for ‘properties and 
relations’; but I shall just say ‘properties’, for short. All the properties in each set are about some 
single subject-matter or topic. Because of this kinship between the properties, it is common to 
call the sets ‘families’. So philosophers talk of supervenience as a relation between families of 
properties (or attributes). Thus the objects in the subject-matter can be described by which 
properties they have; and the set of properties amounts to a taxonomy or classification-scheme 
for the objects.  

For example: think of botanical taxonomy as a subject-matter or topic. It classifies 
objects as plants or non-plants, and then further classifies the plants as daffodils, roses etc. So 
botanical taxonomy can be presented as the family of properties: being a plant, being a daffodil, 
being a rose etc. And the set of all the botanical-taxonomic facts is just the classification of all 
appropriate objects (especially the plants) with respect to this family: the assignment of each 
object to its botanical pigeonhole. 

Similarly for other subject-matters: including larger, more encompassing ones such as, for 
our example, biology (or better: biological taxonomy). We can think of the set of all the 
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biological facts as the classification of all appropriate objects (all organisms) in terms of all the 
many biological properties.  

So supervenience is to be a relation between sets of properties. Or in alternative jargons: 
a relation between subject-matters or taxonomies or classification-schemes. What relation? The 
answer is: the classification of any of the objects using one set of properties implies how it is 
classified by the other set. This is as the word ‘determination’ (the alternative jargon to 
supervenience) suggests: the classification of an object using one set of properties determines 
(also ‘fixes’: in the sense of ‘makes unique’, not ‘repairs’) its classification by the other set. 

By taking facts as given by what properties objects have, we can also put this in terms of 
facts. Thus supervenience is: all the facts about one family of properties, one subject-matter, F1 
say, are fixed by all the facts about another family F2. In other words: specifying all the facts 
about F2 involves, ipso facto, specifying all the facts about F1. We say: F1 supervenes on F2. We 
also say: F2 subvenes F1. (Thus ‘subvenes’ is a synonym for ‘determines’.) 

Here is an example that is standard, since it is uncontroversial. At least, it is 
uncontroversial by the standards of philosophy. The objects in question are pictures. Then it is 
very plausible that the aesthetic properties of pictures---the classification of them as being 
beautiful, being well-composed, having a dark palette etc.---supervene on their pictorial 
properties, i.e. the properties about how exactly the paint, and of what kind, is distributed on the 
canvas or paper: being an oil painting, having magenta in the top left square centimetre etc. So 
the idea is: any two pictures that match in all (all, not just some) of their pictorial properties  
must also match in all their aesthetic properties (again: all, not just some). That is: two pictures 
that are replicas of each other as regards pictorial properties, must also be replicas as regards 
aesthetic properties. So both are beautiful, or both are ugly; and both are well-composed, or both 
are badly composed; and so on. The pictorial properties subvene or determine the aesthetic 
properties. To put it the other way around: pictures cannot differ from one another as regards 
some aesthetic property, without also differing as regards some pictorial property. In a slogan: no 
aesthetic difference without a pictorial difference. This is what it means to say that aesthetic 
properties supervene on pictorial properties. (Agreed: the example is not wholly uncontroversial. 
For example, one might claim that being an original is an aesthetic property of a picture, not a 
“merely historical” property; and if so, aesthetic properties certainly do not supervene on the 
pictorial properties.)   
 
 
(2): There are various major topics in philosophy where the question, whether a certain family of 
properties or subject-matter supervenes on a certain other one, is central. One is the relation 
between mind and matter (sometimes called the ‘mind-body relation’). Do mental properties of 
sentient animals (like seeing yellow in the top-left of the visual field, or feeling hungry, or hoping 
for a sunny day) supervene on their natural scientific properties, i.e. their panoply of physical, 
chemical and biological properties? (Here, I use ‘natural science’ to include only physics, 
chemistry and biology, i.e. to exclude psychology and other sciences.) That is: If two animals 
matched as regards all their physical, chemical and biological properties, must they also match as 
regards seeing yellow in the top-left of the visual field, and also as regards feeling hungry?  

Saying ‘Yes’ to this question is often called materialism. The idea is that all the facts 
about matter, as explored by the sciences of physics, chemistry and biology, fix all the facts about 
an animal, even the facts about its mental life. Nowadays, this is very widely endorsed. But 
agreed: in the nineteenth century, it was reasonable to deny it. It is only with the cumulative 
successes of physiology, molecular biology and neuroscience in describing mental states that the 
idea of special mental causes (of at least some such states) has died away.  

Analogous comments apply to the dependence, nowadays evident, of biology on 
chemistry, and of chemistry on physics. That is: in the nineteenth century, it was reasonable to 
believe in what were called ‘vital forces’: causal factors occurring only in living organisms that 
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“rode free” from their underlying chemical and physical descriptions. But the successes of 
physiology, e.g. its explanations in physico-chemical terms of the nerve impulse, muscle-
contraction and vision, put paid to vital forces. And until 1930 or even later, it was reasonable to 
believe that chemical phenomena, in particular chemical bonding, would not be explicable by the 
physics of atoms. But since 1930, quantum theory has achieved ever more precise descriptions 
and explanations of chemical phenomena: in a way that was impossible---indeed, provably 
impossible---according to the earlier classical physics.  
 
 
(3): Thus arises the doctrine of physicalism. This is a strengthening of materialism, that gives 
physics a pre-eminent role, as compared with the other sciences. So as a claim of supervenience, 
physicalism amounts to: all the facts described by chemistry, biology and the other sciences, in 
particular psychology, are determined (fixed) by the panoply of all the physical facts. 

Obviously, this sketch of materialism and physicalism as claims of supervenience leaves a 
lot to be made precise. What exactly are the sets of objects being described by the two (or more) 
subject-matters or taxonomies, of which one is said to supervene on the other? And what exactly 
are the sets of properties (and relations) defining the subject-matters, or taxonomies. For 
example, what exactly is the set of physical properties? As you would expect, different 
philosophers give different answers to these questions: influenced, usually, by different 
judgments about which precise concepts of e.g. ‘physics’ or ‘all sentient animals’ make for a 
supervenience thesis that is---not obviously true, but---debatable enough to be worth assessing 
for truth. And in debating such formulations, there are choices about whether to be confident or 
cautious in the sense of Chapter 1, Section 4. For example: would you be confident or cautious 
about a firm distinction between physical properties and other ones? 

But we do not need to go in to the details of these debates. Here, I only want to describe 
one main way that possible worlds help us to be precise in formulating such supervenience 
claims. This concerns what one might call the ‘modal range’, or ‘modal extent’ of the claim.  

For consider the actual world, i.e. the actual cosmos spread throughout all space and all 
time, past present and future. (We adopted this use of ‘actual world’ at the start of Chapter 1.) 
And suppose we take a supervenience claim as being only about actual objects: we set aside 
possible worlds. That is: suppose we say that two actual objects that match exactly as regards all 
the properties in a set (family) F2 also match as regards all the properties in another family F1.  

Then there is likely to be problem. For the families of properties F2 we are concerned 
with are bound to be rich, i.e. to make fine distinctions. Recall our examples: all pictorial 
properties; all material properties as described by physics, chemistry and biology; all physical 
properties. In all these examples, the idea is that the family F2 has to be rich, in order to have a 
chance of fixing all of F1. And there is the rub. For any reasonably rich taxonomy (family of 
properties), the actual objects are likely to be a very varied set. Agreed: two actual objects often 
match for some property; both have it or both lack it. But it is very likely that no two actual 
objects match for every property in F2. And if so, the supervenience claim restricted to actual 
objects---'if they match in this way, then they also match for all of F1’---loses its force, or 
content. For the antecedent ‘they match in this way’ is never true. (Philosophers and logicians 
call this ‘vacuous truth’.)  

The answer to this problem lies in recognizing that the basic idea of supervenience is 
modally involved. It is not an assertion only about a case of two actual objects matching for all 
of F2. For as we have just seen: for most of philosophy’s interesting supervenience claims, there 
are no such cases. Rather, it is about trans-world matching of objects. Thus we again see the 
theme of Section 3: that throughout our thought and language, both everyday and scientific, we 
are up to our necks in modality.   

To show how supervenience is about trans-world matching of objects, let us take as an 
example physicalism; and what it says about, say, the mental life of a cat supervening on its 
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physical state, i.e. on all its physical properties. For illustration, I again take just one mental 
property (i.e. in the family F1): viz. seeing yellow in the top-left of the visual field. Then 
physicalism says, in particular: if there were a replica of this actual cat that is now seeing yellow in 
the top-left of its visual field, and this replica was ‘physically perfect’ i.e. utterly matched all the 
actual cat’s physical properties, then the replica would also see yellow in the top-left visual field.  

Besides, the usefulness of possible worlds for formulating supervenience claims is not 
limited to providing possible objects: e.g. cats that are atom-for-atom replicas of some actual cat. 
There is also the question of whether the supervenience claim being considered, e.g. materialism 
or physicalism, is propounded as contingent or as necessary. And if it is propounded as 
contingent, that means in a possible worlds framework: true in some possible worlds but not all. 
And this prompts the further question: across exactly what set of worlds is supervenience 
claimed? For example, for physicalism: across exactly what set of worlds must an atom-for-atom 
replica of some actual cat utterly match all the actual cat’s mental properties? 

Again, we do not need to take a view about the answer. What matters for us are three 
points, all of which echo some previous themes.  

 
 

(4): First: most philosophers do indeed formulate materialism and physicalism as logically 
contingent claims, not necessary ones. This is of course because the success, since 1800, of the 
natural sciences, and especially of physics, in describing and explaining phenomena lying outside 
their original scope---as illustrated above---was undoubtedly contingent. It did not have to be so. 
We might have discovered vital forces underpinning metabolic processes, or phototropism in 
plants, or what-not. And we might have discovered distinctive chemical forces that explained 
bonding, chemical valences etc., independently of the electron orbitals around atoms’ nuclei. 
This contingency---this happenstance of a “one-way street” for 200 years, from the other 
sciences towards chemistry and then on to physics---makes it very natural to formulate 
materialism and physicalism as contingent claims. 

Second, answering the question ‘Across exactly what set of worlds is supervenience 
claimed?’ leads us back to the idea of a law of nature. For one natural answer is: ‘the set of 
worlds that share with the actual world their laws of nature---the nomically possible worlds’. 
(This answer is natural, but by no means compulsory. For as we discussed in Chapter 2 and 
Section 6 in this Chapter: one might well be cautious, rather than confident, about the very idea 
of a law of nature.) So for example, it is natural for a physicalist to say: ‘I accept the idea of a law 
of nature, and I believe they are all contingent. And I claim that physical matching of any two 
objects implies their total matching, across the set of nomically possible worlds.’ 

Third: my last point returns to the theme at the end of Section 2, about the principle, 
about some property F, that if all objects are necessarily F, then necessarily all objects are F. This 
principle’s connection with materialism becomes clear when we take as the property F in 
question, being material: that is, being made of matter. So for this property, the principle says 
that if all objects are necessarily material, then necessarily all objects are material. This 
conditional obviously relates to the formulation of materialism, and in particular to its modal 
range. Thus one can imagine a materialist who believes the antecedent of the conditional. They 
believe that all actually-existing objects are material, and that for each such object, it could not 
have been immaterial. As they might put it: this actual rock and plant and animal are each of 
them material; and though each might have had other features (this rock might have been 
heavier, this plant taller etc.), none of them could have been immaterial---on pain of not being 
that very object. But if this materialist takes materialism to be a contingent supervenience thesis 
(my first point above), they will probably deny the consequent of the conditional. That is, they 
will deny that necessarily all objects are material. For once they consider possible worlds beyond 
the range of their supervenience thesis---as it might be: worlds that lack the actual world’s laws 
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of nature (my second point above)---they may well allow that some such worlds contain 
immaterial objects.        

Again: in this book, we do not need to pursue the intricacies that these three points 
reveal about the formulation, and assessment, of materialism. For us, these points teach two 
relevant morals. First, they show the value of the possible worlds framework for articulating the 
various philosophical issues, and relating them to each other.  

Second, these points (especially the third) bring out a feature that will be important for 
Section 9’s question, about what exactly a possible world is. Namely, the feature that the 
property I called ‘being material’, ‘being made of matter’ is vague. If the materialist uses it (or 
some similar phrase) to formulate their materialism, should they take it to require matter of the 
known kinds---whatever they might choose to mean by ‘known’? For example, does it include 
the dark matter that cosmologists nowadays believe in, though they do not know what it is 
composed of, nor what laws it obeys? In this book, I will not need to resolve this vagueness (not 
least because materialism is not our main topic). But in Sections 9 (Part C) and 10, we will see 
that this vagueness causes trouble for an otherwise attractive account of what exactly a possible 
world is.  
 

 
(5): As a final illustration of the power of possible worlds, I turn to determinism. I briefly 
discussed this at the end of Section 3 above. We saw that all physical theories postulate a space 
of instantaneous states of the system they describe, so that a possible history of the system (i.e. 
life-history, comprising both past and future) is represented by a curve through the state-space. 
Thus I reported the idea of determinism, as follows. A physical theory is deterministic if the state 
of the system at one time determines its state at all past and future times. In terms of histories as 
curves through the state-space: through any point in the state-space, there is a unique curve to 
the future and the past. (More precisely: this uniqueness holds good, once we specify the external 
influences that the system is subject to during the past and future. Recall the need, at the end of 
Section 3, to know the forces on the point-particle.) 

It is now clear that, like physicalism, determinism is a supervenience claim---as my word 
just now, ‘determines’, rightly signals. For in view of the word ‘determine’, the definition just 
given means: any two systems (of the sort that the theory describes) that match exactly in their 
states at one time (and in the external influences they are subject to), match exactly in their states 
at all past and future times. This is clearly a statement of supervenience. Namely: the past and 
future states of the system concerned supervene on its present state---fixing the latter implicitly 
fixes the former.  

Besides, we here see again the contrast, being confident or being cautious, about a 
concept; (cf. Chapter 1, Section 4). What I just said gave only a cautious construal of 
determinism as a property of a given theory that applies to a given type of system; and the 
possible worlds involved were cautious ones, viz. instantaneous states of the given type of 
system.  

But one might be more confident. Thus suppose we accept the idea, not just of the laws 
of a given theory, but of a law of nature. (Recall the discussion in Chapter 1, Section 4 and 
Section 6 above.) Then we can think of the conjunction of the laws of nature at a given possible 
world w as ‘the theory of w’.  (We might call it ‘the theory of everything at w’. But nowadays, the 
phrase ‘theory of everything’ is always used for an ambitious and more specific idea: an idea that 
is like physicalism, as defined above. Namely: the facts described by a single theory of physics 
might determine all the facts of all the sciences. But ‘the theory of w’, as just defined, might well 
not be a physical theory.)  

Given this notion of the theory of a given possible world, we can define what it is for an 
entire possible world to be deterministic. It is for the theory of that world to be a deterministic 
theory, in the previous sense. But here, the space of possibilities will be the confident (ambitious) 
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space of all possible worlds: not a cautious (modest) state-space of a single theory, such as 
Newtonian mechanics. So we say that a world w is deterministic if: for any possible world that 
also makes true the theory of w (i.e. all the laws of nature at w), and whose state at some time 
matches exactly the state of w at some time---the two worlds match exactly at all times, i.e. to 
both past and future of the assumed matching. (Note incidentally a benefit of accepting the idea 
of the theory of an entire possible world. Since by definition it cannot be subject to external 
influences---in physics jargon: it is a closed system, not an open one---the definition of 
determinism as supervenience of past and future on the present does not need to include the 
qualification about specifying such influences.)    

Let me sum up this discussion of determinism. If we confidently accept the idea of the 
theory of a possible world, then determinism of a world is, again, supervenience. Namely, 
supervenience of all the past and future states, of an entire possible world, on its present state.  
 
 
 
 
Chapter 3, Section 9:  Existential angst: what are possible worlds?  
So much by way sketching the philosophical benefits of using possible worlds. So much by way 
of tasting the fruits in the philosophers’ paradise. I turn, in this Section and the next, to the 
fourth and final stage of this Chapter. That is: to the question which I announced in the 
Chapter’s preamble: What exactly is a possible world? 

As I said there: this question is compulsory, for cautious conceptions of possible worlds 
as much as for confident conceptions; and several possible answers are defended in the 
philosophical literature. It is also agreed to be a very hard question. Though we can readily agree 
that our thought and language, everyday and scientific, continually invokes non-actual 
possibilities (cf. Section 3 above), what exactly they are is an open, and stubbornly difficult, 
question.  Hence this Section’s title says: angst. Besides, focusing on this question illustrates 
Chapter 1’s announcement that my discussion of each of the three multiverse proposals will end 
by urging an open philosophical problem that the proposal prompts. 

So unsurprisingly (and as I admitted in this Chapter’s preamble): I cannot honestly urge 
one answer as correct. I will instead address the question by, first, refuting two tempting 
suggestions (in Parts A and B). They are tempting, but definitely false. And they are suggested, I 
am sorry to say, by proposals from renowned philosophers: Berkeley and Wittgenstein. Then in 
Part C, I will discuss a third suggestion that fares better. But it is still, I fear, wrong. The upshot 
(in the next Section) will be that the Chapter ends where it began: by stressing that Lewis’ modal 
realism is a coherent intellectual possibility, even though probably, you---like I---find it 
incredible, in the literal sense. 
 
 
Chapter 3, Section 9: A: Acts of Imagination?   
One natural suggestion is that a non-actual possibility is something we imagine. But here, we 
have to be careful to distinguish the event or state of affairs---a person, say you, imagining that 
P---from the proposition P being imagined to be true. The distinction applies not just to 
imagination, but to many mental acts, such as hope, belief, desire, regret. Thus we say that ‘John 
imagines/hopes/believes/desires/regrets that P’. Philosophers have a jargon for this distinction. 
They say that to imagine, to hope, to believe etc. are propositional attitudes; and that the 
proposition P “on which the mind is focussed” is the content of the attitude; (i.e. the content of 
the event or state of affairs of John imagining etc.).  

This distinction is clear enough. But it makes trouble for the ‘something-we-imagine’ 
suggestion. There is a dilemma: the first horn makes no progress, and the second is definitely 
wrong. (But there will be some good news as a consolation: each horn will teach a philosophical 
lesson.) 
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Suppose, first, that the suggestion is: the non-actual possibility is the content or 
proposition. This suggestion may well be right. For as I said at the end of this Chapter’s 
preamble, the question what is a possibility is tantamount to the question what is a proposition. 
(I touched on this again at the start of Section 3, when I remarked that the content of any false 
belief such as ‘I go to the cinema tonight’ (assuming I in fact stay home) represents a non-actual 
possibility.) So then our question becomes: what exactly is a proposition?  

Now we see that we are no further ahead.  For (as I also said) ‘proposition’ and similar 
words like ‘statement’ are terms of art, with no agreed precise meaning: it is up to each 
philosopher or logician to say what they mean. Nor does the framework of intensional semantics 
(reviewed in Section 5) help answer the question. There we saw how it systematically portrays 
how propositions (taken as the Fregean senses of sentences), the Fregean senses of words and 
phrases, truth-values (True and False) and possible worlds all relate to each other in a 
compositional semantics; and how the various senses get expressed by language. But that survey 
gave no opinion about what a possible world, or more generally a non-actual possibility or 
proposition, actually is. So we are no further ahead.  

(To further justify a little this verdict of “no progress”, let me sketch the kind of trade-
off between taking as basic possible worlds or propositions. Thus in Section 5, possible worlds 
and truth-values were basic posits, not further analysed. Thus at the end of that Section, a 
proposition was taken as a mathematical function from possible worlds to the set of two truth-
values. But agreed: one might instead take propositions, or Fregean senses of sub-sentential 
words and phrases, as basic, and build possible worlds from them, using the language of 
functions; or more generally, using set-theory. For example, a possible world might be taken as a 
maximally logically strong (‘maximally opinionated’) proposition. But the question, of the nature 
of the basic posits, would remain.) 

   Suppose, on the other hand, that the suggestion is: the non-actual possibility is the 
event or state of affairs of imagining. That certainly makes the non-actual possibility 
unproblematic, and “down to earth” as a short-lived episode (of a mind or brain) within the 
actual world. But it is definitely wrong. For obviously, there are countless non-actual possibilities 
that nobody ever actually imagines.  

Besides, this suggestion implies that any non-actual possibility has as a necessary 
concomitant, as an implication, the existence and imaginative activity of a mind. Which is not so. 
Here we return to the clarifying comment (2) at the end of Section 5 above. There, I stressed 
that possible worlds provide a semantics for our language as we actually speak it; and that 
(setting aside some contrived sentences about how we might have spoken), how people in other 
worlds---if there are any---speak is in general irrelevant to the semantics of our sentences. This  
also means that a possible world with no people, indeed no animals, or other sentient beings, is 
entirely coherent. Such a world can make true a proposition of our language, such as ‘the world 
consists entirely of five boulders of granite floating in a Newtonian space, without any living or 
conscious being’.  No sentience—in particular, no visualisation of the boulders---is needed 
within the world.  In short: the idea of possibility as such does not imply the existence and 
imaginative activity of a mind. 

   Incidentally, here we also see the flaw in claims made by the eighteenth-century idealist 
philosopher Berkeley, in his Treatise concerning the Principles of Human Knowledge (1710). 
Berkeley claims that: (i) we cannot imagine an unperceived object; and therefore (allegedly!) that 
(ii) any object must be perceived. (He sums this up in a famous slogan, that for an object, to be is 
to be perceived; in Latin, esse est percipi.)  

The flaw lies in an equivocation. If (i), i.e. ‘we cannot imagine an unperceived object’, 
means ‘we cannot imagine a possible world containing an unperceived object’, then (i) is false. 
(Just think of the boulder world, above.) But I am willing to concede: so understood, (i) implies 
(ii). That is: if (i) were true, (ii) would also be true. If on the other hand, (i) means ‘we cannot 
imagine ourselves within a possible world without perception’, then I can concede that (i) is true. 
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Indeed, it is necessary if ‘ourself’ implies being able to perceive. But it by no means implies (ii). 
(Again: just think of the boulder world.)  

This ends my rebuttal of appealing to imagination as the way to understand possibility. I 
turn to my second tempting, but wrong, suggestion.  
 
 
Chapter 3, Section 9: B: Combinations? 
Here the “culprit” will be Wittgenstein, in his early work, the Tractatus Logico-Philosophicus 
(1921); a work which he later disavowed, partly for the reasons I will present. Indeed, we will see 
that for our purposes, he is “more guilty” than Berkeley. For he does not just make claims that 
prompt the false suggestion: he explicitly makes the suggestion. 

The idea of the suggestion is, at the start, modest. It proposes that we should lower our 
sights about understanding what a possibility, or possible world, or proposition, really is; and 
assuming we accept these notions, we should focus instead on the following question---which, 
admittedly, is vague: How can a proposition be necessary? What explains that?  

This echoes the questions we pursued at the end of Chapter 2 (Section 8) and the start of 
this Chapter (Section 1). Namely: What is pure mathematics really about? What is its subject-
matter? And can it be reduced, as logicism claimed, to logic?  

It is in the context of those questions that Wittgenstein, in the Tractatus, suggested that 
for any necessary proposition, whatever its subject-matter, its necessity is exactly like that of 
what propositional logic calls tautologies. These are special sentences whose necessity can be 
agreed by all parties to be utterly unproblematic. For they are defined as those sentences built 
from others using ‘and’, ‘not’ and ‘or’ (which, as discussed in Section 5 above, are truth-
functions), with the feature that whatever the truth-values of the component sentences, the 
compound sentence must be true---just because of the order in which the truth-functions, such 
as ‘and’, ‘not’ and ‘or’, have been applied to the components. Examples starting with one 
component sentence include: ‘P or not-P’, and ‘not-(P and not-P)’. An example starting with two 
components, P and Q, is: ‘(P or Q) or (not-P)’. (Here ‘or’ is understood, as usual, in our inclusive 
and-or sense.) 

The simple diagrams called truth-tables, introduced in Section 5, make the idea clear. We 
give each component sentence a column, and underneath we assign a row to each combination 
of truth-values that could occur; and then we apply the truth-functions to calculate, in each row, 
what is the truth-value of the compound sentence. We say that the compound sentence is a 
tautology if it comes out True in every row.  

Thus to calculate the truth-table for ‘(P or Q) or (not-P)’, we need four rows: one for ‘P 
true and Q true’, one for ‘P true and Q false’, one for ‘Q true and P false’ and one for ‘P false 
and Q false’.  Then, by applying the truth-functions ‘not’ and ‘or’ appropriately, we calculate that 
‘(P or Q) or (not-P)’ comes out True in every row. As follows: 
 

P   not-P    Q      P or Q.  (P or Q) or not-P 
T      F        T          T        T 
T      F        F          T          T 
F      T        T          T         T  
F      T        F          F          T 
 
So we think of each row, each combination of truth-values for the component sentences, 

as a ‘way the world could be’, as described by those sentences. In short: it is a toy-model of a 
possible world. Then calculating that the truth-value must be True in every row explains why the 
whole sentence is necessary, in a completely unproblematic way.  

The crucial word here is ‘combination’, as in ‘combination of truth-values’. No necessity, 
nor any other unexplained modal status or mutual logical relation, is attributed to the component 
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sentences. They can be true or false, quite independently of each other: all combination of truth-
values are genuinely possible. This is called their being logically independent. So the idea is: 
whatever their combination of truth-values, the placing of ‘and’, ‘not’ and ‘or’ in the whole 
sentence forces it to be true: i.e. true in that row, that combination. 

Thus Wittgenstein proposed that all necessity had this lucid combinatorial origin and 
explanation: that all necessary propositions are really---could be analysed into---tautologies. 

So far, this is entirely programmatic: a mere declaration. Indeed, there are three large 
kinds of necessary propositions, whose necessity seems to have little if anything to do with the 
placing of ‘and’, ‘not’ and ‘or’ in any sentences.   

First: the truths of pure mathematics, like ‘2+2=4’, ‘there are infinitely many prime 
numbers’, ‘equilateral triangles are equiangular’, seem to be necessary. But this necessity seems to 
be very different from---and much more problematic than---the placing of ‘and’, ‘not’ and ‘or’ in 
any sentences. Recall from Chapter 2, Sections 7 and 8, the struggles since Kant to explain the 
necessity of mathematics; and in particular, the growing separation of pure and applied 
mathematics, with the former accorded a special non-empirical subject-matter, such as numbers 
and geometric figures. And though the logicism of Frege and Russell tried to reduce pure 
mathematics to logic, they really succeeded in reducing it to set theory. Agreed: that was a great 
achievement, as extolled in Section 1 above. But set theory is not logic: it has a special non-
empirical subject-matter, viz. sets.  

Second: there are propositions (about any subject-matter) whose necessity turns upon the 
placing of logical words other than ‘and’, ‘not’ and ‘or’: especially those other logical words, ‘all’, 
‘any’, ‘some’ and ‘none’, that---as also explained in Section 1 above---are studied in predicate 
logic. For example, consider the necessary proposition (for any predicates A and B): ‘Either it is 
not true that everything is both A and B, or something is A’. Its necessity is a matter of the 
placing of, not just ‘and’, ‘not’ and ‘or’, but also ‘everything’  and ‘something’. So even if we set 
aside pure mathematics i.e. the first kind of necessary proposition above (whether or not it is 
really set theory), here is another kind a necessary proposition that is not a matter of tautologies. 
Besides, we saw in Section 2 that the logical words on which propositional and predicate logic 
focus---‘and’ and its brethren, ‘all’ and its brethren---are not all the logical words, i.e. words on 
the placing of which the necessity of a proposition (or the validity of an argument) can depend. 
We saw in particular that C.I. Lewis developed modal logic, about the logical words ‘It is 
necessary that …’ and ‘It is possible that …’.  

(An incidental comment. Here, the propositional form ‘Either not-P or Q’ is logic’s 
much-used “weaker cousin” of the form, ‘If P then Q’. Thus one readily agrees that the 
proposition ‘If everything is both A and B, then something is A’ is necessary; whereas my 
example above is a tongue-twister, whose necessity is hard to see. But I use the tongue-twister 
form, ‘Either not-P or Q’, to avoid subtleties about the meaning of the English ‘If…, then …’: 
subtleties that are not needed in this book, but which are rather like those we saw for the 
counterfactual conditional in Section 7.)   

Third: there are propositions whose necessity depends, not upon the placing of any 
logical words in the sentence expressing them, but upon relations between the meanings of other 
words. For example, consider: ‘All bachelors are unmarried’, and ‘A vixen is a female fox’. 
(Though philosophers use ‘analytic’ in different senses, the common thread in their usages is 
undoubtedly the idea of being true in virtue of the meanings of words. So these sentences would 
certainly count as analytic.)   

To sum up: in order to show that all the necessary propositions of these three kinds are 
really tautologies, one would have to show, somehow or other, that they are built up from---can 
be analysed into---component propositions that are logically independent, i.e. component 
propositions for which every combination of their truth-values is genuinely possible.  That 
would be a programme of reduction, in roughly the sense of Section 1 above.  
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Wittgenstein in the Tractatus was committed to such a programme. He was of course 
influenced by the logicism of Frege and Russell, and so made some suggestions about how to 
cope with the first and second kinds above. For example, maybe ‘all’ could be reduced to the 
idea of conjunction, though a possibly infinite one; (and similarly ‘some’ to a possibly infinite 
disjunction). But there were few details. The main lacuna is his silence about the third kind; the 
difficulties about analysing them as tautologies is just glimpsed at assertion 6.3751 of the 
Tractatus. Indeed, this shortcoming was one of the main reasons why Wittgenstein, a few years 
later, abandoned its claims. 

Furthermore, no one else has succeeded in this combinatorial approach to explaining 
necessity. In particular, I note that its prospects do not improve if we adopt a cautious 
conception of possible worlds, suggested by the state-spaces of physical theories. The problem is 
simply stated. The different values of a quantity---whether a physical quantity like position of a 
point-particle, or a psychological quantity like ‘magenta in the top-left of the visual field’---
obviously exclude one another. And this means that the propositions ascribing such values 
cannot be logically independent. Far from it: that values exclude each other means precisely that 
each proposition ascribing a specific value implies the negation of each of the other propositions 
ascribing specific values.  

 
 

Chapter 3, Section 9: C: Sentences and sets?   
I turn to my third suggestion about what a possible world is. As I announced, it fares better than 
the first two. But I fear (following Lewis’ critique of it) that it too is wrong.  

The idea is that a possible world is like a novel: that is, the sentences, rather than the 
propositions they express. (Saying ‘the propositions expressed’ would get us no further ahead, as 
we discussed under the first suggestion.) At first sight, the advantage of this suggestion is that a 
sentence is an unproblematic object to believe in. For it can surely be taken as the set of all its 
physical inscriptions in pencil, ink etc., and all the events of its being spoken.  

But being more precise brings difficulties. Surely most possible worlds that our thought 
and talk invokes (cf. Section 3) never get represented in even one inscription or utterance of a 
sentence. And setting aside whether there is an actual inscription or utterance: surely most 
cannot be represented in all their myriad details by a finite sentence, even of a richly expressive 
language like English. And surely, infinitely long sentences do not exist, i.e. exist in the actual 
world.  

These difficulties prompt one to generalize the idea from sentences of an existing 
language such as English, to sets of actual objects, and also of actual properties and relations. For 
set theory provides countlessly many sets, many with very intricate structures; (since the 
operation of making a set out of some given sets---‘putting a curly bracket around them’---can be 
iterated endlessly). Here we return to the discussions in Chapter 2, Section 8 and Section 1 
above, about set theory as a lingua franca for expressing all of pure mathematics. The idea now 
is, in effect, that it is a lingua franca for expressing anything.  

Thus the suggestion is that: (i) possible worlds are sets of a certain kind built from actual 
constituents, i.e. actual objects, properties and relations; and (ii) the structure of such a set, i.e. 
the pattern of curly brackets by which it is built up, encodes how it represents a possibility, in a 
manner similar to that in which the grammatical structure of a sentence encodes how it 
represents. (Recall Section 5’s idea of compositional semantics.) Or in other words: the idea is 
that the set’s structure exactly mirrors the structure of the possible world. And this makes the set 
the preferred official proposal for being the possible world.  

To many philosophers, this suggestion has seemed promising. One main reason they find 
it attractive is that it seems to secure for us a deeply felt contrast between the actual world and all 
other worlds, viz. that the actual world is “concrete” while non-actual worlds are “abstract”. As 
the scare-quotes show, these two words are philosophical jargon, and vague: ‘concrete’ does not 



 70 

mean ‘cement’! But many philosophers, though they accept sets built from actual objects etc. as 
being themselves legitimate objects, think of sets as abstract objects; and they also think of 
ordinary actual objects as not abstract---which they dub ‘concrete’. So to these philosophers, the 
suggestion that any non-actual possible world is a set, while the actual world is not a set, seems 
to classify worlds rightly, as regards concrete vs. abstract. 

But I fear that this suggestion does not work. There are several objections; but I shall 
present just two. (They are urged by Lewis himself, along with others. My presentation 
summarizes some passages in his On the Plurality of Worlds; viz. in Section 1.7 and Section 3.2, 
p. 150 f.) 

 
 
The first objection is that the advantage just mentioned, of classifying worlds rightly as regards 
concrete vs. abstract, is spurious: for three reasons, of which I think the third is more important.  

(i): Since there will be set-theoretic representation, a mock-up or replica, of the concrete 
actual world, just as there are of non-actual worlds, intensional semantics will presumably specify 
the actual referents of our words as ingredients (barely visible, deep in a forest of curly brackets) 
of the actual world’s mock-up. But that apparently conflicts with the idea that we refer to 
concrete objects.  

(ii): Having the actual world be concrete, and all the other worlds abstract, is an “absolute 
fact”, holding across all the worlds, rather than a proposition that is true at individual worlds. 
This makes for a conflict with the idea that much of what is actually true is contingently so, i.e. 
that it is contingent which world is actual. We should no doubt hold fast to that idea: it is at the 
root of our commitment to other possibilities, at the root of our being up to our necks in 
modality (Section 3). But if the actual world is concrete, and all the others abstract, the idea that 
“things could have gone differently” requires that an abstract item could have been concrete---
which most philosophers who endorse an concrete/abstract distinction would resist.          

(iii): The words ‘concrete’ and ‘abstract’ are not just vague, in the sort of way that being 
red, or being bald, are vague: namely, made precise by specifying a position somewhere in one, 
or perhaps a few, reasonably well-defined spectra, like hue, brightness and number of hairs on 
the head. These words are not so much vague as ambiguous, in the sense that making them 
precise is not a matter of position in one or a few spectra. Thus different philosophers make 
‘concrete’ precise in very different ways. Some only give examples. The paradigm much-used 
example is tables and chairs (wittily dubbed ‘medium-sized dry goods’ by the philosopher J.L. 
Austin), but one surely should add much smaller and much bigger “ordinary objects”, such as 
bacteria and stars. On the other side, the paradigm much-used example of ‘abstract’ is sets, and 
other objects of pure mathematics such as numbers and geometrical figures. But listing examples 
gives no indication of where the boundary lies. And the general notions often invoked cut across 
one another. Thus should ‘concrete’ be taken to mean being material?  As I mentioned in Section 
8, this is itself ambiguous; (matter of a familiar sort? having mass? having energy?). Or should 
‘concrete’ be taken to mean being located in space and time? Or as being either a cause or an 
effect (or both)? Besides, a good case can be made that those paradigm abstract objects, sets, can 
be concrete according to some of these proposals. For example, why not say that a set of 
ordinary objects each of which is located in space and time is multiply located at the places 
where the objects are? And some philosophical accounts of causation take causes and effects (i.e. 
events, the relata of causation) to be sets. To sum up this discussion: the concrete/abstract 
distinction is very unclear. Of course, this is not the place to try and “clean it up”. But all I need 
here is the point that because it is unclear, the suggestion above, that non-actual worlds are sets, 
cannot claim any substantive merit in classifying such worlds as abstract. 
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The second objection is that the suggestion assumes the notion of possibility; it does not analyze 
or explain it. For if a possible world is a set of sentences, then they must be consistent with each 
other, i.e. possibly all true. (Equivalently, a possible world taken as a long conjunction must be 
possibly true.) But there is no unproblematic, in particular no syntactic, test for consistency. For 
inconsistency is not just a matter of the set containing ‘P’ and ‘not-P’, for some P. (Equivalently: 
not just a matter of the long conjunction containing ‘P’ and ‘not-P’ as conjuncts.) That is only 
one, very simple, way to be inconsistent. Relations between the meanings of non-logical words 
provide many other examples. Here we return to the third kind of proposition that beset the 
early Wittgenstein’s combinatorial account of necessity (cf. Part B above). Think of ‘Fred is a 
married bachelor’, or ‘A male vixen got into the chicken-hutch’. And there is no reason to think 
that we can somehow analyze all our language, so as to devise a syntactic test for consistency. (In 
particular, there is no reason to think as the early Wittgenstein did that any proposition is a truth-
function of a set of logically independent propositions, so that consistency can be tested by 
truth-tables: i.e. ascertained by finding at least one row with a ‘T'.)   

Nor does it help to move from sentences to sets. Just as there are sets of sentences, or 
conjunctions, that are inconsistent without “wearing it on their sleeve”, i.e. without a syntactic 
sign of it: so also there are countless sets that, once we endeavour to interpret each of them as 
representing a possibility, in fact represent an impossibility---without the structure of the set 
encoding any sign of it. So again, the suggestion assumes, but does not explain, the notion of 
possibility.  

Here is a simple example. Consider: ‘Butterfield is in Rome in August 2024.’ That is false, 
but possibly true. Following the suggestion, we are to apply set theory to actual objects and 
properties so as to build, with appropriate representational conventions, a set-theoretic “mock-
up” or “replica” of this possibility.  

Let us adopt very simple representational conventions, as follows. (They probably work 
smoothly only for very simple examples, but that will not matter.) We take a period of time, such 
as August 2024, to be a spacetime region: for example, the Earth during that month. (I set aside 
the need for further conventions about where and when on Earth, the month begins and ends.) 
In terms of semantics (Section 5), the referent of ‘August 2024’ is the spacetime region. And let 
us for simplicity take a city, such as Rome, during a period of time to be the set of all its contents 
during that period, or any part of the period.  So there is a set we can label by the description, 
‘Rome-in-August-2024’. This set in the actual world contains e.g. Pope Francis, and the actual 
Italian Prime Minister; but not Butterfield.    

But with our representational conventions, we can still represent very simply the 
possibility that Butterfield is in Rome in August 2024. For recalling how intensional semantics 
gives descriptions like ‘the capital of Denmark’ different referents at different worlds (cf. Section 
5), we see that, according to the suggestion: this possibility just is a set-theoretic fact. Namely: it 
is the fact that Butterfield is a member of (the set that is) the referent of ‘Rome-in- August-2024’, 
at various worlds. (Amongst these worlds, those most similar to the actual world, according to 
our prevailing criteria of similarity, will no doubt “retain” most of Rome’s actual contents during 
August 2024, e.g. Pope Francis. “There is room in town for both of us”.) 

So far, so good. So far, the suggestion that a possibility is a set has held up well. For I 
have exhibited a set that is appropriately structured to be the possibility that Butterfield is in 
Rome in August 2024.  

But the problem for possibilities as sets is parallel to that for possibilities as sentences (or 
sets of them). Namely: given our representational conventions (about periods of times, about 
cities as sets of their contents etc.), we are equally committed to countless sets that represent an 
impossibility, with no sign of why they do---and with no hope of evading the problem, by some 
change of representational conventions.   
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For example, I take it to be impossible that I am a fried egg. So ‘Butterfield is a fried egg’ 
is necessarily false. Yet there are countless sets that, in an exactly parallel manner to the previous 
example, put me in the extension (set of instances) of the predicate ‘is a fried egg’.  

Here I admit: if we assume we have in place a framework of intensional semantics that 
respects the meanings of our words, so that all assignments of extensions to predicates at the 
various worlds are genuinely possible, and are not ruled out like a married bachelor, male vixen 
or human fried egg, then indeed, all will be well. That is: ex hypothesi, the sets mentioned by our 
semantics as representing possibilities, e.g. properties that a man or a fox could have, will 
succeed in doing so. The sets will not “lead us astray” by making impossibilities appear possible, 
masquerading in an appropriately structured nest of curly brackets. 

But of course even if we make this assumption, the basic problem remains: as it did for 
sentences, rather than sets. Namely: assuming such a framework of meaning-respecting 
intensional semantics means assuming, not explaining, the notion of possibility.  

We can sum up this objection to possible worlds (or possibilities) being sentences or sets, 
as follows. Saying that the sentence ‘Butterfield could be in Rome in August 2024’ is made true 
by the existence of a certain set looks plain wrong. For by parity of reasoning, one would have to 
also say that ‘Butterfield could be a fried egg’ is made true by the existence of an equally 
legitimate set.  

 
 
 

Chapter 3, Section 10:  Lewis’ modal realism   
So I end with what began this Chapter: Lewis’ modal realism. Lewis believes that:  

(i) all the possible worlds are equally real;  
(ii) the actual world is in no way special, except from our standpoint within it; and 
(iii) although we use ‘actual’ (and ‘real’ and similar words) restrictedly, for the actual 

world, ‘actual’ is like the word ‘here’: it is what philosophers call an indexical, i.e. 
it is a word whose referent depends on the context of utterance---but for ‘actual’ 
the relevant aspect of context (with respect to which one asks for the referent) is 
the world, not the spatial place. 

So this is the philosophical multiverse, par excellence. 
As I said in the preamble to this Chapter: Lewis does not claim to have an irrefutable 

argument in favour of his view. His extended defence of it (especially in On the Plurality of 
Worlds) claims only to show that on balance, it is more credible than rival views. He gives 
several of these rival views a good run for their money. (This includes the last Section’s 
‘sentences and sets’ suggestion, which is roughly equivalent to what he calls ‘linguistic ersatzism’.) 
His defence also includes much else. Here I just briefly report three main aspects, out of many.  

(a): He replies in great detail to various objections to his view (several of which he 
himself thought of). In particular, he “takes the sting” out of the objection that according to him, 
the possibles worlds are each concrete, just like the actual world is concrete---and that surely 
non-actual worlds should be classified as abstract. Namely, as I reviewed in Section 9.C: the 
concrete/abstract distinction is so unclear, that this ‘surely’ claim stumbles.  

(b): He defends his view about what it is for an object to be in two worlds, as in the 
previous Section’s closing example of Butterfield and Rome. In short: he denies that the selfsame 
object can be in two worlds. Instead, given an object in one world, another world may contain a 
suitably similar object: which Lewis calls a ‘counterpart’ of the given one.  

(c): He also explains, using his persuasive account of causation, why there is no causation 
between worlds, i.e. why no event in any world is a cause of an event in another. So his views 
satisfy our requirement, at the end of Chapter 1 (Section 6), that advocacy a multiverse should 
not be undermined by the bewildering idea that most of one’s readers or hearers are in another 
universe. 
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I shall say more about (a) to (c) in Section 2 of Chapter 6. 
But to conclude: let me try to live up to Chapter 1’s announced standards of being 

honest about what one can believe, and self-aware about one’s intellectual temperament. I must 
admit that (like most philosophers) I simply cannot believe Lewis’ view.  

So for me, concerning the question what a possible world exactly is: the jury is still out. 
So this Chapter is inconclusive, and perhaps disappointing. But there is some consolation: the 
next two Chapters will not depend on my having endorsed an answer to this question. And the 
topic of the next Chapter, the Everettian interpretation of quantum theory, will suggest another 
answer, another conception of what a possible world exactly is. I myself do not find it 
persuasive; but it is certainly worth considering, and I will do so in Chapter 6.  

In any case, this is not the place to further expound or assess Lewis’ views. For this 
book’s purposes, it suffices to have established in this Chapter the following three main points. 
Namely: (i) we are, in our thought and language, up to our necks in modality; (ii) logicians and 
philosophers have developed detailed frameworks for describing and analysing modal concepts; 
and (iii) nevertheless, the basic question, ‘what exactly is a possibility, or a possible world?’, still 
remains stubbornly difficult. 

So I shall end with a glimpse of “Lewis in action”. He was a very active philosophical 
correspondent; and in a letter of 15 June 1984 to the cartoonist Roz Chast, he asked to use her 
witty cartoon ‘Parallel Universes’ from The New Yorker magazine as a frontispiece of his book, 
On the Plurality of Worlds. (The cartoon represents what it calls ‘our universe’ by a realistic 
scene of a woman baking cookies; and three successively more dissimilar universes by weirder 
and weirder analogues of that first scene. Unfortunately, the cartoon was not used in the book.) 
In this letter, Lewis gave a vivid and witty summary of his modal realism. He wrote:  
 
Dear Roz Chast, 

I’m writing to explore the possibility of using your ‘Parallel Universes’ as a frontispiece in 
a forthcoming book of mine about possible worlds. 

I have gained some notoriety among philosophers by claiming that this world we are part 
of is just one of many possible worlds; in no way is it special, except from the standpoint of us 
who inhabit it. It turns out that systematic philosophy goes more smoothly if we suppose that 
there are many worlds, and I take that to be a good reason why we should believe that there are. 
My views are highly controversial, to put it mildly; I think ‘crazy’ is how many would prefer to 
put it. For years, I’ve been helping myself to the other worlds when I wrote about one or another 
philosophical problem. But I never wrote at length about what it mean to believe in them, and 
why we ought to. Now I have. I’ve written (well, almost finished writing) a book titled On the 
Plurality of Worlds.  … It is written in prose, not math; but I fear that it still will be a book 
mostly for specialists, because it presupposes familiarity with a good deal of recent philosophical 
writing. I’d be glad to send you a copy of the manuscript if you like, but I didn’t want to inflict it 
on you uninvited. 

When ‘Parallel Universes’ appeared, it put many philosophers who saw it in mind of my 
notorious views. And rightly so: I do claim that there are four such universes. So I thought it 
would be quite appropriate and fun if your cartoon could appear as a frontispiece in my book. It 
would please me very much if that could be arranged. … 

…  It wouldn’t do for me to use it if some other author on possible worlds already has. 
Of course, there are infinitely many other authors who are using it; but I hope all of them are 
safely off in other worlds, and no thisworldly author has beaten me to it! 

Thank you very much for considering my request. And thank you also for the enjoyment 
that ‘Parallel Universes’ has given me. … 

Sincerely, 
David Lewis. 
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Chapter 3: Notes and Further Reading  
Since this Chapter’s topic, logic, has been centre-stage in philosophy for a century, there is an 
enormous literature. But like for Chapter 2, my main suggestion for reading is some of the 
original masterpieces. As I said for Chapter 2: though daunting, one should at least dip into 
them. For such masterpieces, I will emphasize Frege and Lewis: who---as is clear from the 
Chapter---are my heroes.   

For Frege, I suggested in the Notes for Chapter 2, his Foundations of Arithmetic (1884) 
and the selection of his writings, The Frege Reader, ed. M. Beaney, Wiley-Blackwell 1997. More 
specifically, for the material in Section 5 of this Chapter, I recommend two of his great essays 
(which are in The Frege Reader). (i): ‘On Sense and Reference’, which was also reprinted 
(translated) in The Philosophical Review in 1948, and is available at the JStor archive of learned 
journals, i.e. at: https://www.jstor.org/stable/2181485. (ii): ‘The Thought: a logical inquiry’: 
which was also reprinted (translated) in Mind in 1956, and is also available at the JStor archive, 
i.e. at https://www.jstor.org/stable/2251513. I should add, about (ii), that in the title, the word 
‘Thought’ (German ‘Gedanke’) is Frege’s term of art for what I, and most analytic philosophers, 
call a proposition: in short, the content or meaning of a sentence. (Frege’s term ‘Gedanke’ is 
unfortunate since he intended his notion to abstract away from the psychological aspects of 
meaning.)  

For Lewis, the pre-eminent reference for this Chapter is his On the Plurality of Worlds 
(Blackwell, 1986). As I said in Section 4, the phrase ‘a philosophers’ paradise’ is his. It is the title 
of that book’s Chapter 1; which develops the themes of my Sections 5 to 8. The book’s other 
Chapters (Chapters 2 to 4 respectively): (i) answer objections, (ii) rebut accounts of possible 
worlds that are rivals to his modal realism, and (iii) develop his counterpart theory account of 
what it is for an object to be in two worlds (as mentioned in (b) of my Section 10).  

Further details are in some other masterpiece papers by Lewis. His main exposition of 
intensional semantics (my Section 5) is in ‘General semantics’ in the journal Synthese (1970); and 
available in the JStor archive at: http://www.jstor.org/stable/20114749. A companion paper 
synthesizing this semantics with his account of the pragmatic and social aspects of language 
(about which I have said nothing) is ‘Languages and Language’, in Minnesota Studies in the 
Philosophy of Science, volume 7, ed. K. Gunderson (1975). Both these papers are reprinted in 
Lewis’ first collection of selected papers, called Philosophical Papers, volume I (Oxford 
University Press, 1983); which is available at: https://academic.oup.com/book/36015. 

Furthermore, these papers, together with all (so far as I know!) of Lewis’ papers, can be 
downloaded from a website built by Andrew Bailey; (which also contains details of his books and 
book reviews). It is at:  https://andrewmbailey.com/dkl/ 

Of his books other than On the Plurality of Worlds, the one most relevant to this 
Chapter is his Counterfactuals (Blackwell, 1973). It expounds his version of the analysis I 
summarized in Section 7, invoking similarity between possible worlds. It also gives (in its Section 
3.3) Lewis’ first statement of his account of laws of nature, which is Humean and kindred to 
ideas in Mill and Ramsey (my Section 6 above): which has been very influential in philosophy of 
science.  

Finally, Lewis’ philosophical correspondence has been published by Oxford University 
Press: in two volumes, edited by H. Beebee and A. Fisher. Volume 1 (about causation, modality 
and ontology: and containing the letter to Roz Chast, which I quoted in Section 10) is at: 
https://global.oup.com/academic/product/philosophical-letters-of-david-k-lewis-
9780198855453?lang=en&cc=gb. 
And Volume 2 (about mind, language and epistemology) is at:  

https://www.jstor.org/stable/2181485
https://www.jstor.org/stable/2251513
https://academic.oup.com/book/36015
https://andrewmbailey.com/dkl/
https://global.oup.com/academic/product/philosophical-letters-of-david-k-lewis-9780198855453?lang=en&cc=gb
https://global.oup.com/academic/product/philosophical-letters-of-david-k-lewis-9780198855453?lang=en&cc=gb
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https://global.oup.com/academic/product/philosophical-letters-of-david-k-lewis-
9780198855842?cc=gb&lang=en&q=Industrial%20Policy%20and%20Development:%20The%
20Political%20Economy%20of%20Capabilities%20Accumulation&tab=overview 
 Apart from Frege and Lewis, I should list under ‘masterpieces’, the books by Berkeley 
and Wittgenstein mentioned in the first two proposals about what a possibility really is (i.e. 
Section 9, Parts A and B). They are: G. Berkeley,  Treatise concerning the Principles of Human 
Knowledge (1710), which is available in many editions, including online, for example at: 
https://www.cambridge.org/core/books/berkeleys-a-treatise-concerning-the-principles-of-
human-knowledge/DAB1D1CB81E7D0659900B4CDF270E3C2 
and L. Wittgenstein,  Tractatus Logico-Philosophicus (1921) , which is also available in many 
editions, including online at the Internet Archive, at: 
https://archive.org/details/tractatuslogicop1971witt/page/n5/mode/2up 
 
Turning to secondary reading: again, there are excellent entries about the topics of this Chapter 
in the internet resources suggested in the Notes for Chapter 1. For example, the entry in The 
Stanford Encyclopedia of Philosophy on ‘Possible Worlds’, discusses Lewis’ modal realism in its 
Section 2.1, and combinatorialism (cf. my Section 9, Part B) in its Section 2.3. It is at: 
https://plato.stanford.edu/entries/possible-worlds/ 

As to books, an excellent monograph on Leibniz’s views is: Benson Mates, The 
Philosophy of Leibniz: Metaphysics and Language, Oxford University Press 1989; available at 
Oxford Scholarship Online, and on the Internet Archive at  
https://archive.org/details/benson-mates-the-philosophy-of-leibniz-metaphysics-and-language 

Looking beyond logic to the philosophy of science, specifically to the topic of 
determinism (cf. my Section 8): an excellent survey of the issues is J. Earman, A Primer on 
Determinism (Kluwer, 1986). Earman’s work throughout the philosophy of science, especially of 
physics, has been magisterial. This book is available at: 
https://sites.pitt.edu/~jearman/Earman_1986PrimerOnDeterminism.pdf 
and other books and papers can be downloaded from the parent site, 
https://sites.pitt.edu/~jearman/ 
 
 
So much by way of masterpieces, and secondary reading, in the philosophy of logic and language. 
Going beyond this, I will here just give a bit more detail about just two of this Chapter’s themes, 
as follows. (1): The subject-matter of pure mathematics; this will develop themes in my Sections 
1 and 9 Part C. (2): The endeavour of reduction (cf. my Section 1).  

My rationale for these two choices is that (1) will lead to a brief discussion of another 
“Pythagorean” multiverse proposal; while (2) will connect reduction with other philosophical 
themes such as supervenience (cf. Section 8) and emergence, which will figure in the next 
Chapter. 
 
 
(1): This Chapter touched on the philosophical question, what is the subject-matter of 
mathematics, at two places. Section 1 reviewed the achievement of the early twentieth century in 
casting all of pure mathematics as part of set theory; and Section 9 Part C criticized the 
concrete/abstract distinction as being very unclear---so that in particular, saying that sets are 
abstract might not prevent them from being located in space and time, or from being causes or 
effects.  
 The point now is that those two discussions pull in opposite directions---and that seeing 
the tension between them can prompt a “Pythagorean” view of the nature of mathematics. For 
the first discussion consolidates the late nineteenth century distinction between pure and applied 
mathematics (cf. Chapter 2, Sections 7 and 8): a distinction that seems, when one hears 

https://global.oup.com/academic/product/philosophical-letters-of-david-k-lewis-9780198855842?cc=gb&lang=en&q=Industrial%20Policy%20and%20Development:%20The%20Political%20Economy%20of%20Capabilities%20Accumulation&tab=overview
https://global.oup.com/academic/product/philosophical-letters-of-david-k-lewis-9780198855842?cc=gb&lang=en&q=Industrial%20Policy%20and%20Development:%20The%20Political%20Economy%20of%20Capabilities%20Accumulation&tab=overview
https://global.oup.com/academic/product/philosophical-letters-of-david-k-lewis-9780198855842?cc=gb&lang=en&q=Industrial%20Policy%20and%20Development:%20The%20Political%20Economy%20of%20Capabilities%20Accumulation&tab=overview
https://www.cambridge.org/core/books/berkeleys-a-treatise-concerning-the-principles-of-human-knowledge/DAB1D1CB81E7D0659900B4CDF270E3C2
https://www.cambridge.org/core/books/berkeleys-a-treatise-concerning-the-principles-of-human-knowledge/DAB1D1CB81E7D0659900B4CDF270E3C2
https://plato.stanford.edu/entries/possible-worlds/
https://archive.org/details/benson-mates-the-philosophy-of-leibniz-metaphysics-and-language
https://sites.pitt.edu/~jearman/Earman_1986PrimerOnDeterminism.pdf
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philosophers say ‘concrete’ and ‘abstract’, to be precisely a distinction between studying abstract 
objects (as in pure mathematics) and studying concrete objects (as in applied mathematics). So 
since the second discussion criticized the concrete/abstract distinction as unclear, what should 
we conclude about the validity of the distinction between pure and applied mathematics?  

This is a live question in the philosophy of mathematics. We philosophers do not have 
an agreed uncontroversial view of what the objects of mathematics---numbers, geometrical 
figures etc.---really are, notwithstanding the twentieth century’s achievement in showing that by 
adopting appropriate definitions of them as sets, one can recover, i.e. derive, the sentences taken 
as true in mathematics: sentences like ‘2+2=4’, and ‘all equilateral triangles are equiangular’---
albeit now understood as about certain sets, not about numbers and triangles as sui generis 
entities.  

Of course, this is not a book about the philosophy of mathematics. Fortunately for me. 
So I do not need to justify an answer to the above question; or to related ones, like (i) how best 
to repair (i.e. make precise) the concrete/abstract distinction, or indeed the basic question (ii) 
what exactly is a number, or a triangle?  

But in philosophy, perhaps more than any other discipline, one question leads to 
another. And indeed: if one rejects the concrete/abstract distinction, one may be tempted by 
what I called a “Pythagorean” view of the nature of mathematics. Namely, that the world, i.e. the 
actual world of tables and chairs (‘medium-sized dry goods’) and bacteria and stars (cf. Section 9 
Part C), is mathematical. That is: the world is, not just accurately described by mathematics, but 
is made of mathematical objects. Numbers and triangles are literally in the actual (allegedly 
concrete!) world.  

And for us, with our focus on multiverse proposals, this Pythagorean view is relevant in 
two ways. First: if true, it would alter (but not necessarily solve) the problem that in Section 9  
Part C we saw confront the suggestion that non-actual possible worlds are sets (“abstract”) while 
the actual world is not a set (“concrete”). The problem was that set theory is too “profligate” in 
its ability to construct sets. That is: under whatever representational conventions we adopt, there 
are bound to be sets that represent impossibilities (like Butterfield being a fried egg) in just the 
same way that there are sets representing possibilities. So on the Pythagorean view, the status of 
this problem---solved? still recalcitrant?---will depend on what the Pythagorean says about the 
constructive, or generative, power of its in-the-actual-world mathematical objects. Maybe it can 
somehow avoid being profligate and representing impossibilities. But the jury is out. 

 Second: I should report that the popular book advocating a multiverse (in several 
senses), which I recommended in the Notes at the end of Chapter 1, also advocates this 
Pythagorean view of mathematics. The book is Max Tegmark’s The Mathematical Universe 
(2014). In a review of it, I criticized Tegmark’s proposals, especially his Pythagorean view, at 
some length. I will not here repeat the details of my criticisms; (for the review is also cited in 
those Notes, and is on the internet). But to help orient the reader, I will just summarize his 
claims, and the “core” of my critique.   

First, Tegmark advocates the cosmological multiverse and the Everettian multiverse; 
which I will treat in the next two Chapters. He labels these multiverses as ‘Levels’; and he 
distinguishes within the cosmological multiverse whether the laws of physics vary across the 
different universes that are contained in the multiverse. (More details about this idea in Chapter 
5.) So Tegmark labels the cosmological multiverse as comprising ‘Level 1’ and ‘Level II’. And he 
labels the Everettian multiverse as ‘Level III’: more details in Chapter 3. But the relevant point 
here is that he then goes on to advocate, not just that his cosmological-cum-Everettian 
multiverse is described by mathematics, i.e. instantiates a mathematical structure; but that it is 
mathematics. This is of course the Pythagorean view discussed above.  

He also says that all mathematical structures exist: including all the structures large and 
intricate enough to encode or represent, as we would naturally say---though Tegmark would say: 
be---various possible cosmological-cum-Everettian multiverses. (Tegmark does not say how 
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‘various possible’ should be understood; but nevermind that here.) So the upshot is that the 
cosmological-cum-Everettian multiverse that Tegmark first advocated, and labelled Levels I to 
III, is just one of countlessly many mathematical structures. They are all equally real: just as real 
as the multiverse at Levels I to III which he first advocated. Thus Tegmark is claiming that all of 
reality, comprising the physical and the mathematical, is a mathematical multiverse: which he 
labels ‘Level IV’.  

So much by way of summary. The “core” of my critique lies in the fact that even if one is 
a Pythagorean like Tegmark, the distinction between pure and applied mathematics remains. One 
sees the distinction in play, in the idea of a physical quantity.  

All agree that when physics describes the world using mathematics, it does not just 
attribute a pure (“raw”) number (or similar quantitative measure or magnitude) to “bits of 
reality”. The attribution is always of some number of units of a physical quantity: 5 units of 
energy, 7 units of angular momentum, 9 units of electric charge etc. Without mention of the 
quantity concerned, the description is so incomplete as to be meaningless, e.g. ‘This object has 
number 5’. Thus even if numbers and the other objects considered part of the subject-matter of 
pure mathematics are in the world, as the Pythagorean claims, nevertheless there is undoubtedly 
more to the physical world than these numbers etc. Namely, the pattern of occurrence of the 
quantities; (where ‘pattern’ includes their relations to one another, and the relations of their 
values, as stated in the laws of a physical theory).  

On the other hand, no such quantity gets mentioned in a work of pure mathematics. 
That is, the enterprise of pure mathematics as it is conceived today wholly disregards which 
quantities physics needs (energy, charge) and which it does without (such as erstwhile contenders 
like caloric). (If like me you endorse the Humean doctrine from Chapter 2 that physics is 
contingent, you may well see (as I do) this disregard as part and parcel of pure mathematics’ 
enterprise being to formulate, and justify by proof, necessary propositions.)  

In this way, the distinction between pure and applied mathematics is, I think, mandatory 
in the light of the development of logic and mathematics in the last 150 years---as we reviewed at 
the end of Chapter 2 and in this Chapter. Indeed, it is a defect of Tegmark’s book that he does 
not connect his multiverse proposals to this development, nor to its philosophical ramifications 
such as this Chapter’s philosophical i.e. modal multiverse. In any case: the upshot for Tegmark is 
that we can accept his “Level IV” claim that all mathematical structures exist . . . but if this 
means pure-mathematical structures in the modern sense, i.e. regardless of physical quantities, 
then his claim has little bearing on the debates about the physical multiverses of his Levels I to 
III. And accordingly, the rest of this book will set his Level IV aside.  

Finally, a note about using the label ‘Pythagorean’ for the view that the empirical world is 
made of numbers. The historical Pythagoras (ca. 572 – 497 BC) is lost in the mists of time; see 
for example the entries ‘Pythagoras’ and ‘Pythagoreanism’ in The Stanford Encyclopedia of 
Philosophy. So for our purposes, the label is admittedly anachronistic: it is just rooted in the fact 
that Pythagoras seems to have led a sect of “number-mystics”.  

The broader theme here is of course the fact that philosophers have for centuries---from 
Plato to Russell---been preoccupied by the nature of mathematics, especially as a realm of certain 
knowledge apparently not derived from experience. Cf. again the end of Chapter 2; and from its 
Notes, the three essays by J. Bennett, M. Burnyeat and I. Hacking in Mathematics and Necessity: 
Essays in the History of Philosophy (ed. T. Smiley). 

  
 

(2): In Section 1, I reviewed the idea of reduction of one theory to another: understood as adding 
to the latter (“reducing”) theory, some judiciously chosen definitions of the terminology of the 
former (“to-be-reduced”) theory that enable a deduction of the claims of the latter (those claims 
now reinterpreted through the definitions). In the first half of the twentieth century, the 
paradigm example was the reduction of pure mathematics (arithmetic, algebra, geometry etc.) to 
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set theory: which, as I said, was very influential in the philosophy of science, as a template for 
how a pair of scientific, in particular physical, theories might be related.  

Of course, not all pairs. Reduction might fail: one theory could be irreducible to another. 
And there seem to be other important inter-theoretic relations apart from reduction and its 
denial. In particular: a theory might supervene on, or be determined by, another theory (in senses 
of ‘supervenience’ and ‘determination’ like those in Section 8); and a theory might be emergent 
from another (a topic which will figure in the next Chapter).  

Hence there is nowadays a large literature in philosophy of science about these various 
inter-theoretic relations. Since I have written three articles that each try to both survey the 
situation, and to argue for some topical, perhaps contentious, claims: I recommend them here. 

The first two (from 2011) form a pair, focused on the relations between reduction, 
supervenience and emergence. The third relates reduction to a doctrine, functionalism: which 
was first introduced as a label for a position in the philosophy of mind, but was recently brought 
in to the philosophy of physics. (The position is vague, but normally associated with a failure of 
reduction, though compatible with supervenience. I aim to show that work of Lewis (the same 
one!) makes functionalism more precise, and shows it to be compatible with reduction.) 

The papers are:     
(i): ‘Emergence, Reduction and Supervenience: a Varied Landscape’, Foundations of Physics, 41, 
2011, 920-960. Available at: http://arxiv.org/abs/1106.0704: and at: http://philsci-
archive.pitt.edu/5549/ 
(ii): ‘Less is Different: Emergence and Reduction Reconciled’, in Foundations of Physics, 41, 
2011, 1065-1135; http://arxiv.org/abs/1106.0702;  and at: http://philsci-archive.pitt.edu/8355/ 
(iii): ‘Functionalism as a species of reduction’ with H. Gomes. In Current Debates in Philosophy 
of Science, ed. C. Soto, Springer: Synthese Library 477 (2023), pages 123-200. Available at: 

https://arxiv.org/abs/2008.13366; http://philsci-archive.pitt.edu/18043/ 
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Chapter 4: All the worlds encoded in the 
quantum state of the cosmos 

 
 

 
This Chapter expounds the multiverse proposed by the Everettian interpretation of quantum 
theory. The first half is largely independent of previous Chapters’ philosophical discussions. But 
philosophical themes will emerge as the Chapter unfolds. 

The Chapter proceeds in four stages. First, I introduce quantum theory (Chapters 4.1 to 
4.3). I build on the last Chapter’s discussion of state-space (Chapter 3.3), so as to emphasize how 
strange the conception of quantum state is. This leads, in the second stage, to the measurement 
problem, symbolized by Schroedinger’s cat (Chapters 4.4 and 4.5). This problem has no agreed 
solution. But I will, in the third stage, (Chapters 4.6 to 4.10) develop just one approach: the 
Everettian interpretation, with its multiverse. In this approach, a physical process called 
decoherence will be crucial.  

These first three stages will all emphasize what one might call ‘synchronic issues’: issues 
about the quantum state at a single time. The topic of time, or diachronic issues, will enter only 
at the last stage (Chapters 4.11, 4.12), which focus on how the Everettian treats probability. 
There, I will press one philosophical question that this multiverse raises---what exactly is 
objective probability? 
 
 
 
Chapter 4.1: What is matter? From lumps in the void to fields  
So far, our rapid review of physics has consisted of: (i) the rise of mechanics, especially Newton’s 
theory of gravity (Chapter 2.3 to 2.6), and the idea of a state-space (Chapter 3.3).    
To understand the Everettian multiverse, we need to understand how in quantum physics, the 
notion of state is very different from the notion in classical physics.  

To prepare for that, the clearest and most vivid route is to review how our conception of 
matter developed historically, from ancient times to the end of the nineteenth century.  

In this development, the main theme is that the idea of matter as a lump of stuff 
surrounded by void (vacuum) gave way to the idea of a field that pervaded all of space. (Here, I 
hasten to explain that ‘field’ has nothing to do with fields of wheat etc. in the countryside.) A 
field is, rather, there being a physical quantity associated with each place in space; and a state of 
the field is therefore an assignment of a value to the quantity at each place. An elementary 
example is the temperature of the air throughout a room: hotter here, cooler there. Strictly 
speaking, temperature does not make sense at an extensionless point of space: it is an average 
property of the air in a small volume, say a cubic millimetre, around the point. But let us idealize, 
and speak of a temperature at every point of space in the room. Then an assignment of 
temperature values to all points is a state of the temperature field. 

So let us begin with lumps in the void. We discussed this conception of matter in 
Chapter 2.2 and 2.3. We saw that it was advocated not just by ancient atomists like Democritus 
and Lucretius, but by many seventeenth-century mechanical philosophers, including Newton 
himself. In particular, we discussed how non-obvious, indeed unclear, it is: as regards both how 
it might explain the very varied phenomena we see around us, and how such lumps might 
interact (whether by contact-action, or by action-at-a-distance).  

Then in Chapter 3.3, we noted how complicated a collision between two such lumps 
really is. This led to the idea of the point-particle: mass concentrated at an extensionless spatial 
point. So on this conception, ordinary objects are clouds, more or less dense, of such point-
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particles. This idea was introduced as an idealization by Euler (1707-1783), and then advocated 
as physically real, i.e. the true nature of matter, by Boscovich (1711-1787).  

Again, we should pause over how non-obvious, even problematic, the idea is. For any 
point-particle, its density, i.e. the ratio of mass to volume, is infinite. So if one advocates point-
particles with different masses, one must accept different sizes of infinity, in order to describe 
their mass-densities. Besides: how do point-particles exert force on each other? And what 
happens if they ever collide? Boscovich himself---writing in an era when Newton’s theory of 
gravity with its action-at-a-distance was accepted---suggested that at very short distances, a 
repulsive force, that is ever stronger at shorter distances, comes in to play and overcomes the 
particles’ gravitational attraction: so that collisions never occur. But whatever you say about 
collisions, the question arises: can you give a good account of the contact and interaction of 
ordinary objects?  

Difficult questions like these suggest a rival conception of matter, as continuous. On this 
view, there is no void anywhere, not even on the tiniest length-scales: matter fills space 
completely. As we mentioned in Chapter 2, Descartes endorsed this conception. He explicitly 
identified matter and extendedness; (while in his metaphysics, mind was essentially unextended). 
During the eighteenth century, this conception went on being developed. Indeed, the exact 
mathematical description of how continuous matter moves, and how one part of it exerts forces 
on, and responds to forces from, various other parts, is a very subtle affair. It requires a lot of 
advanced calculus, as well as physical insight. Unsurprisingly, there was, from the time of Euler 
onwards, a century-long struggle to achieve this description. 

The result, in brief, is to describe matter as a field, in the above sense. For think of a 
continuous piece of matter. To begin, let us suppose for simplicity that the matter is utterly rigid. 
That is: the distance between any two of its material parts, no matter how tiny, remains constant 
over time. So think of a metal bar, and set aside your knowledge that it has layers of microscopic 
structure, i.e. crystals, atoms etc. Although it is rigid, properties such as mass-density and 
temperature may well vary across its expanse; and so these properties call for a field description. 
Besides, for continuous matter that is not rigid---that can be deformed (like an elastic solid: think 
of a pencil eraser) and-or compressed (like a liquid or gas)---the positions and velocities of its 
material parts are not “locked-in-step” together. So the parts’ positions and velocities, as well as 
of their density and temperature, also call for a field description. No wonder that some advanced 
calculus is required. 

In the nineteenth century, electricity and magnetism “went the way” of continuous 
matter such as fluids. That is: it turned out that, whatever the ultimate micro-structure of matter 
was (point-particles or continuous), electric and magnetic forces take time to propagate across 
space, between, say, positively and negatively charged matter. As discussed in Chapter 2.3, this is 
unlike the gravitational force, as it had been described by Newton. According to him, 
gravitational force propagates instantaneously and unmediated, i.e. without need of an 
intervening medium.  

Besides, these propagating electric and magnetic forces call for a field description. That 
is: one needs to attribute to each point of physical space, a vector, i.e. a line-segment in physical 
space (given by three real numbers relative to a coordinate system at the point) which is the 
(value of the) electric field at that point. This vector represents the electric force that would 
accelerate a stationary point-like electric charge, if the charge were at that point. And similarly for 
the magnetic field: though with the difference that it represents the force felt by a moving 
electric charge. (Here, the phrases ‘if it were at’, and ‘would accelerate’ signal a counterfactual 
conditional. This is another example of science being up to its neck in modality: cf. Chapter 3.3, 
3.7.) 

Besides, this field description of the electric (or the magnetic) field is not “just” a very 
convenient way of stating an infinite conjunction of counterfactual conditionals: namely, as a 
mathematical function from spatial points to vectors located there. For Maxwell (1831-1879), in 
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his stupendously successful theory of the electric and magnetic fields, showed that there is much 
more to these fields that their describing how a charge would accelerate.  

His theory unified electricity and magnetism as two aspects of a single field: the 
electromagnetic field. It also showed light (and later: radio waves etc.) to be waves in this field. 
That is: light is an oscillating pattern of electric and magnetic vectors at points of apparently 
empty space. It is a pattern that propagates, like a wave-form on the surface of the ocean.  But it 
propagates at the speed of light.  

Furthermore, this field has energy and momentum: quantities previously attributed only 
to matter, i.e. to stuff that had mass. That is: the field can convey energy and momentum from 
one place to another. Thus when you listen to the radio, your aerial is energetically excited, i.e. 
given energy, by the arriving pattern in the electromagnetic field; and the pattern of excitation is 
then decoded and amplified into sound.  

To sum up:  by the end of the nineteenth century, classical physics had a broadly dualist 
ontology of matter and field. The picture was that matter with mass (and with energy and 
momentum) is localized in space. It was unknown, and controversial, whether it consisted 
ultimately of point-particles or of continuous, space-filling, matter.  But in the space between 
localized pieces of matter, there was: not just Newtonian gravity, with its action-at-a-distance; but 
also an all-pervading electromagnetic field that is the medium by which electromagnetic 
interactions between bits of charged matter occur, and that also itself possesses energy and 
momentum. 

In the twentieth century, this dualism was overcome---with all-pervading fields getting 
the upper hand. This happened in various ways. But we need only state two.  

First: Einstein’s relativity theory (from 1905) identified mass and energy; so that one 
speaks of ‘mass-energy’. So the quantity, mass, that had from Newton onwards been attributed 
only to matter, was now seen as also an attribute of the electromagnetic field.  

Second and more important for us: from the mid-1920s, quantum theory replaced 
classical physics’ matter---even a single point-particle, not only extended matter---by a field. But 
it is a very strange field even for a single point-particle. And it replaces the classical 
electromagnetic field by another field that is also strange, in a way exactly parallel to the strange 
field that it postulates for a piece of matter such as a point-particle.   

This strangeness is the source of all the problems about interpreting quantum theory---
and it will dominate this Chapter.   

     
 
 

Chapter 4.2: The quantum state: probabilities for classical alternatives 
The clearest way to grasp this strangeness is to go back to the idea of that a theory attributes to 
the physical systems it describes, instantaneous states.  

We saw in Chapter 3.3, that in classical physics, specifically Newtonian mechanics, the 
state of a point-particle is given by an ordered set of six real numbers, a 6-tuple: three numbers 
for its position in space, and three for its momentum. This meant that the state-space of a point-
particle, that can be anywhere and have any momentum, is the set of all 6-tuples of real numbers. 
This is a six-dimensional space: where we use the word ‘space’ because, although this is not 
physical space, we can use geometrical ideas in describing it. And we saw that for more 
complicated systems, the state-space rapidly becomes more complicated and intricately 
structured. Even if we set aside all the momenta, and consider only the positions of the 
component parts---which is called the configuration of the system---the space of configurations 
(called ‘configuration-space’) rapidly becomes complicated.    

Now that we have the idea of a classical field, we can also talk about an instantaneous 
state of such a field. Think for example of the electric field throughout 3-dimensional physical 
space. Following the discussion above (Chapter 4.1), its state is of course the assignment of an 
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electric field vector at each spatial point. Such a state is also called a field-configuration. So this 
requires infinitely many real numbers to specify it: because, for each of infinitely many points in 
physical space, we must specify three real numbers. We say the field’s state-space, i.e. its set of 
instantaneous states or configurations, is an infinite-dimensional space. (Again, we say ‘space’ 
and ‘dimensional’ because we can again use geometrical ideas: much of the intuition, and precise 
results, about finite-dimensional spaces carries over to infinite-dimensional spaces.) 

Now we can state how quantum theory is strange. It lies in a striking contrast between 
states in classical physics and states in quantum physics. This contrast applies equally to (i) a 
point-particle, and to (ii) a finite set of them---any such set would have a finite-dimensional 
classical state-space---and even to (iii) a field (which has an infinite-dimensional classical state-
space).  

In short, the contrast is this. A classical state is an assignment of specific values to 
appropriate quantities. For our purposes here, we can neglect ideas about momentum, and focus 
only on position and similar quantities, i.e. on configurations. So a classical state is an assignment 
of specific values: either to the positions of a material object’s component parts, or to field-
quantities such as the electric field at all the points of physical space.  But …  

A quantum state is an assignment of a “square root of a probability” to every possible 
configuration of the corresponding classical system!  

So a quantum state is a function in the mathematical sense. Its inputs (as we discussed: 
also called ‘arguments’) are the classical configurations, and its outputs are “square roots of 
probabilities”.  Here, what matters most---and what is most revolutionary about quantum 
theory---is, not the curious “square root of probability” outputs (which I will discuss shortly), 
but: the fact that a single quantum state mentions, i.e. takes as its domain of inputs, all possible 
classical configurations. 

 This fact will be the origin of both the measurement problem, and of the Everettian 
proposal about how to solve it. 

Even for a point-particle, the proposal is hard to get one’s mind around. For classical 
physics posited a point-particle. Its possible configurations were its possible spatial positions. 
Agreed, the theory is involved in modality (as discussed in Chapter 3.3). But only one 
configuration is actual: where the point-particle happens to be. Now quantum physics tells us: 
there are no such point-particles, each with a single actual position. Each such is replaced by 
what gets called a ‘quantum particle’. But this entity hardly deserves the name ‘particle’.  For it 
has no single position. Indeed, it seems thoroughly smeared out in space. For the actual state of 
this entity, at some time, is an assignment to each point of space---i.e. to each possible 
configuration of yesterday’s classical point-particle---of a number, which (once squared) gives a 
probability. In short, the state of this so-called quantum particle is a field.  

But it is not a field like Newton’s gravity, or Maxwell’s electric field. For the so-called 
particle is not, as I put it, ‘thoroughly smeared out in space’, in the sense of being a cloud of 
mass or of electric charge. It is a field of probabilities (or rather, of their square roots). This field, 
this function on classical configurations that assigns to each configuration a square root of a 
probability, is called a wave-function. It is almost always written as a Greek letter, especially y 
(pronounced ‘psi’) or f (pronounced ‘phi’).  

Besides, where classical physics posited two point-particles, and so configurations that 
are 6-tuples, and so a six-dimensional configuration space: quantum theory says the state is a 
wave-function on this six-dimensional space. So the ‘smearing’ of what is (undeservedly) called 
the ‘quantum two-particle system’ is a smearing, not in physical space, but in the abstract space 
of 6-tuples. And so on, for the quantum replacements of more complicated classical systems. 
That is: the quantum state, the wave-function, has as its domain of inputs (its arguments) the 
more complicated classical configuration space. 

So far, I have summarized the mathematical idea of the quantum state as a function on 
classical configurations. But the picture gets yet stranger, when we ask what is the physical 
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meaning of this function. Again: stranger, even for a point-particle---or rather for what replaces 
the classical point-particle and is honorifically labelled ‘quantum particle’. For one asks: 
probability of what? And the answer is a mouthful, that refers to the outcome of a possible 
measurement, if you were to undertake one, on the system.  

For the answer is, for a quantum particle: for each place (i.e point) x in space, the value 
(output) of y at the argument x gives the probability, were you to measure the quantity position 
on the system, that you would get the outcome ‘It is at x’. (Strictly speaking, the value is what I 
called the curious “square root of probability”. But this idea of square root is a minor aspect, 
which we can postpone to the next Section.)  

Equivalently, we can think of measuring a quantity with just two values ‘Yes’ and ‘No’ 
(or if you prefer: ‘1’ and ‘0’) that is defined in terms of the place x. In effect, to measure this 
quantity is to ask the system the question ‘Are you at x?’. Thus the value of y at the argument x 
gives the probability of getting the answer ‘Yes’ to this question.  

The reason why I call this answer ‘strange’ is that it means that the basic interpretation of 
the theory’s most central mathematical notion, its very concept of state, is in terms of 
measurement. For think what this implies. Suppose I ask the quantum theorist what their theory 
of, say, an atom, written in their mathematical language, means in physical terms. I ask: what 
information about the atom is contained in this mathematical notion y that they ascribe to the 
atom? And their official reply is that y gives probabilities of measurement outcomes: 
measurements using an apparatus that (for an experiment on an atomic system) is typically more 
than a million million million times bigger than the system being measured.  

One naturally asks: how can this interpretation of y possibly hold up? For it invokes 
systems, viz. measurement apparatuses, that are not only utterly different from the system we are 
concerned with, but also vastly larger---and vastly varied. Can such a grossly extrinsic conception 
of state, for e.g. an atom, really be true?  

To this, the short answer is that until now, more than eighty years after this conception 
of state was formulated, it is indeed still unrefuted. It is unrefuted for the simple but all-
important reason that calculating with it, with due care, delivers the right answers to countless 
experiments---right answers that underpin countless modern technologies. But on the other 
hand: not only does every newcomer, every student of quantum theory, find this conception of 
state very hard to believe---indeed, bewildering. Also, most physicists and philosophers who 
consider in detail this conception, and the questions it raises, conclude that it is not satisfactory.  

More precisely: either they conclude that though unsatisfactory, this conception is the 
best we can now do, and we must hope that the future will bring insight, maybe even a whole 
theory replacing quantum theory; or they conclude that we already have some special account of 
the mathematics of quantum theory, and-or how we apply this mathematics to the empirical 
world, that vindicates this conception. But there are many such special accounts, which get called 
‘interpretations of quantum theory’. There are about half a dozen main ones, each with many 
distinctive varieties. The debate between them still rages, decades after quantum theory was 
formulated---and one such interpretation is the Everettian interpretation, with its multiverse. 

But before discussing that, there is more to say about this strange conception of state.  
 
 
 

Chapter 4.3: Amplitudes and quantum fields 
We can sum up the exposition so far, in terms of how quantum theory replaces the classical 
physical description of two or more particles.  For two particles, the quantum state is an 
assignment, to each pair of points of physical space, of a number which (once squared) gives the 
probability, were you to measure the two position quantities, of getting the answer “Yes” to the 
two specific questions, “Is one of the particles here?”, for the two points. And similarly for how 
quantum physics replaces classical physics’ description of N particles. The state is an assignment 
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to each N-tuple of points of physical space, <x1,y1,z1,x2,y2,z2,…,xN,yN,zN> (i.e. each sequence of 
3N real numbers) of a square root of a probability. 

There are two further comments to make. The first comment is about quantities other 
than the system’s position; the second comment is about how quantum theory treats fields rather 
than particles.     

(1): Recall that I called the wave-function’s outputs, i.e. the values of the function, 
“curious square roots of probabilities”. The explanation is that there is a kind of number which 
this book has so far not mentioned, called a complex number.  In effect, a complex number 
encodes a pair of real numbers in ways that are fruitful. In particular: taking the square of a 
complex number delivers a third real number; (in almost all cases, different from both the given 
real numbers). So the values of the wave-function are complex numbers. They are called 
amplitudes (also: probability amplitudes).  

Using complex numbers is fruitful for quantum theory because it underpins the 
treatment of quantities apart from position. Recall how our interpretation of the wave-function, 
above, was in terms of probabilities for outcomes of measurements of position. I said nothing 
about other quantities such as momentum. But it is natural to expect quantum theory’s 
conception of state to say something about them. Indeed it does, by encoding the extra 
information in its use of complex numbers, rather than real numbers.  

Amazingly, the system’s wave-function gives, for any quantity (momentum, energy, what-
not), the probabilities of the various possible outcomes of measuring that quantity on the system. 
So the conception of state is again bewildering, as regards any quantity. For measuring any 
quantity on e.g. an atom will involve an apparatus that is vastly larger than the atom. But I should 
also note that the mathematics of how the wave-function encodes all the probabilities for all the 
quantities is unified and very elegant: indeed very geometrical. For calculating probabilities for 
various different quantities turns out to be a matter of expressing a vector (not in physical space, 
but in an abstract space) as a sum of vectors, in various different ways. I will say a bit more about 
this in the next Section.  

(2): Finally, let me return to the idea of fields. I introduced this idea for classical fields. 
Recall the classical description of a fluid, taken as being made, not of atoms jostling each other in 
a void, but as made---on all length-scales, no matter how minuscule---of extended stuff. Or recall 
the electric field, whose state is an electric vector at each point of physical space. But then we 
learnt that the quantum replacement of a classical point-particle is a field of (square roots of) 
probabilities, defined on configuration space. So one naturally asks: what about the quantum 
replacement of a classical field, such as the electric field?  

Amazingly, the same strange idea of state works again; as follows. We saw that the 
configuration of a classical field is given by an infinite number of real numbers (not by 3N real 
numbers for some whole number N). Thus the quantum replacement of such a field has as its 
state an assignment, to each possible configuration of the classical field (one of which, we used 
to imagine, is physically real), of a complex number: a probability amplitude. This quantum 
replacement is called, of course, a quantum field; and the theory of them is called quantum field 
theory.  

Note the dizzying mathematical abstraction. The configuration space of the classical field 
was itself infinite-dimensional; and now quantum theory posits a state space of functions, each of 
which has as its arguments that infinite-dimensional space. This makes quantum field theory 
much more complicated, mathematically, than the theory of quantum particles, i.e. the theory of 
wave-functions on finite-dimensional classical configuration spaces. 

Besides, quantum field theory gives a supremely successful replacement not just of what 
classical physics called fields, like the electric field, but also of what classical physics called 
‘particles’. So there is here another step of conceptual novelty---and again, a dizzying one. For 
quantum field theory revises what I have said so far about quantum particles---though ‘revises’ 
means here ‘extends’ rather than ‘overturns’. 
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Thus consider the electron. As we have seen: classical physics treats it as a point-particle, 
located in space at some actual position, moving with some momentum. And similarly for a pair, 
or any finite number N, of electrons. In short: once you fix the number N, a classical state-space 
is defined. And so far in this Chapter, we have learnt that quantum physics replaces this with 
something probabilistic. Namely: the state provides, for any quantity, a probability distribution 
over its possible values, where ‘values’ are understood to be outcomes of a possible 
measurement. But we can deduce all these probability distributions from a single representation 
of the state, the wave-function. And as in the classical case: once you fix the number N, the 
quantum state-space---which, to repeat, consists of wave-functions assigning amplitudes to each 
possible configuration of N classical point-particles---is defined.  

So much by way of summarizing the story so far. Quantum field theory goes beyond this. 
Its state-space is “even bigger” than those we just mentioned. Thus we have so far mentioned: 
the space of wave-functions for one particle (i.e. complex-valued functions of position in 
physical space), the space of wave-functions for two particles (i.e. complex-valued functions of 
pairs of positions in physical space), … , the space of wave-functions for N particles (i.e. 
complex-valued functions of N-tuples of points of physical space). But for quantum field theory, 
the state-space contains all these infinitely many spaces of wave-functions. More precisely: there 
is a way of adding together two or three or … even infinitely many such spaces. (The definition 
of how to add together spaces is in terms of all the ways of adding together elements of the 
spaces.) So for quantum field theory, the state-space is the sum of all the spaces just mentioned, 
for all positive whole numbers N. This vast sum state-space is called Fock space.  

Thus quantum field theory envisages the number of particles as a property of the system, 
that can vary from one state to another. That is: it envisages the number of particles as a quantity 
of the system. This amounts to treating the system as a field; and to treating the quantum 
particle, discussed above, as itself a state: a state of this field.  

So quantum field theory’s conception of an electron is that it is an excitation (an 
“agitation” with an associated energy) of the field. Similarly, two particles are a pair of such 
excitations; and so on. Thus the treatment of, say, five electrons that a quantum theorist first 
learns (using wave-functions on 5-tuples of points of physical space, as in Section 2 above) turns 
out to be just the five-particle part of a treatment that encompasses any number of electrons. In 
the jargon: the elementary quantum state-space for five electrons is a subspace of Fock space. 

Again, the degree of abstraction is dizzying. But so is the empirical success. The quantum 
field theoretic treatment, both of what classical physics called ‘fields’, e.g. the electric and 
magnetic fields, and of what classical physics called ‘particles’, e.g. electrons, yields vastly many 
precise predictions that have been confirmed. So much so, that quantum field theory is now 
regarded as the lingua franca of physics.  

And yet . . .  questions remain. For the official interpretation of the state of a quantum 
field is exactly parallel to what I reported, and questioned, in the last Section, for the quantum 
theory of a fixed number of quantum particles. Thus for the electric field, the state (i.e. the 
function on configurations of the classical electric field) encodes probabilities for the various 
possible values of any quantity, such as energy or momentum of the field, that you might decide 
to measure on it. So our interpretative worries at the end of the last Section---can such a grossly 
extrinsic conception of state really be true?---persist. 
 
Chapter 4.4: The measurement problem: Schroedinger’s cat  
The worries raised in the last Section about how to interpret the quantum state can be sharpened 
into an argument, whose conclusion is that quantum theory makes a wealth of flagrantly false 
predictions about the macroscopic world around us. This argument is called the measurement 
problem (also: ‘the reality problem’). It is vividly illustrated---indeed, symbolized---by 
Schroedinger’s cat: which is a thought-experiment presented by Schroedinger in 1935.  



 86 

So in this Section, I will expound the measurement problem, and then the cat. To do 
this, I first need to explain: (1) the idea of superposition, and (2) how the famous equation of 
motion of quantum theory, the Schroedinger equation, “preserves superpositions”.  
 
(1): So far, we have seen that a quantum state prescribes, for any quantity, a probability 
distribution over the possible outcomes of measuring that quantity (on a system in the given 
state). For example, a quantity might have four possible values, whose probabilities are 1/4, 
1/3,1/3, 1/12: (these add up to 1). Of course: a probability equal to 1 for one value, with 
probability 0 for any other value, counts as a legitimate probability distribution. It is called a 
trivial distribution (though ‘dogmatic’ would be a better name). And for a given quantum state, 
there are quantities that get such a distribution: one outcome is ascribed probability 1, all the 
others probability 0.  Quantum theory has jargon for this. We say that: the state is an eigenstate 
of the quantity; (and the quantity is an eigen-quantity of the state---though this second word is 
less common); and the outcome that is “favoured”, i.e. gets probability 1, is the eigenvalue.  

As to the more general situation, viz. each outcome getting a probability less than 1 
(maybe some get 0, but all together, they add up to 1): the treatment of this situation turns on the 
idea that quantum states can be added. This is because states are functions, and any two 
functions that have numbers as their values can be added by, at each individual argument, adding 
their values. That is: given any two functions f and g defined on the same domain, i.e. the same 
set of arguments, their sum is defined to be the function, written f+g, whose value for any 
argument, a say, is the number f(a)+g(a). (This is called ‘point-wise addition’ of the functions. 
But ‘argument-wise’ would be a better name, since there is no need for the arguments to be 
points in a space, in particular in physical space.) In particular, this is true for quantum states i.e. 
functions y and f. We can add them argument-wise, writing y + f. 

This addition of functions is exactly parallel to how we add vectors; which therefore help 
to give one geometrical intuition. Think of vectors as directed line segments, with their “tails” at 
the origin, in the plane or in three-dimensional space. We define addition for them by adding 
them nose-to-tail, and this corresponds to adding their respective coefficients. Thus in three-
dimensional space (recall the triples in Chapter 3.3): one adds the two x coefficients to get the 
sum-vector’s x coefficient; and similarly one adds the two y coefficients to get the sum-vector’s y 
coefficient: and similarly for the z coefficients. So given two vectors (x1, y1, z1) and (x2, y2, z2), 
their sum is defined to be the vector (x1+x2, y1+y2, z1+z2). In short: we add corresponding 
coefficients of a vector, just like we add corresponding values of a function.   

Returning to quantum theory: if you add two eigenstates for a quantity that ascribe 
probability 1 to two different eigenvalues as possible outcomes of a measurement (i.e. the 
eigenstates disagree!), the result is a state that ascribes probability 1/2 to each eigenvalue. This 
state is called a superposition of the two given eigenstates. Again: we write a ‘+’ sign for addition 
of states. 

This example was one of equal weighting. (One could also call it ‘50-50 weighting’.) But 
we can also increase one weight and decrease the other. This is like lengthening one directed 
line-segment and shrinking the other, before we add them, nose-to-tail. The resulting state is 
again called a ‘superposition’, and is written with a ‘+’ sign. It gives the two eigenvalues different 
probabilities.  And again: the probabilities that the state prescribes are the squares of its values 
for the two possible outcomes i.e. the two eigenvalues. So writing Ö for ‘square root’ (and setting 
aside the topic of complex numbers, cf. (1) in Section 3): the values might for example be 
Ö(6/10) and Ö(4/10). Besides, thinking of the state as a vector rather than a function: it has 
coefficients (Ö(6/10), Ö(4/10)). 

Note that for any given quantity, almost all states are superpositions for that quantity: its 
eigenstates are a small, special set of states. In other words: For any given quantity on our 
system, almost all the probability distributions that quantum theory envisages for it are non-
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trivial. That is, more than one possible value (eigenvalue) of the quantity gets a probability 
greater than zero.  

 
(2): Just as classical theories have equations of motion that describe how the system’s state 
changes over time (cf. Chapters 2.6, 3.3, 3.8, 4.1), so does quantum theory. Its equation is called 
the Schroedinger equation; (he published it in 1926). It has two crucial features.  

First: it is deterministic, in the sense of our previous discussions (Chapter 3.3, 3.8). That 
is: given the system’s quantum state at a time, and the forces exerted on it in past and future, the 
equation prescribes what the state is at all other times. As we put it there: the equation prescribes 
a unique curve through the quantum state-space, i.e. the space of wave-functions. Later (in 
Sections 5 and especially 11), we will confront the obvious question: how can this determinism 
be reconciled with quantum theory’s use of probabilities?  

But here in this Section, what matters is the second crucial feature of the Schroedinger 
equation. Namely: it preserves the addition structure of quantum states. That is: 

 if (i) a system’s quantum state, y, would evolve (i.e. change), in say five seconds, to a 
state y’, and 

 (ii) another of its states, f, would evolve in that same five seconds to a state f’, then: 
 any superposition state of y and f, got by for example “lengthening” y and “shrinking” 

f, e.g. the state (Ö(6/10)psi + Ö(4/10)f), would evolve in that same five seconds to the 
corresponding superposition, i.e. to (Ö(6/10)y’ + Ö(4/10)f’).  

In short: quantum states’ addition structure---including the numbers that are the weights, 
Ö(6/10) etc.---is preserved under time-evolution. This property of the Schroedinger equation is 
called linearity: the Schroedinger equation is linear.  (Here, for simplicity, I have written familiar 
real numbers, Ö(6/10) and Ö(4/10), for the weights, rather than the complex amplitudes i.e. 
‘curious square roots of probabilities’, as mentioned in (1) of Section 3. The point about linearity 
is unaffected.) 

 
So far, this Section has just done some stage-setting: the addition of functions and vectors, and 
the jargon of eigenstates, eigenvalues, superpositions and linearity. But now quantum theory, in 
its orthodox formulation, makes an interpretative claim. It is a very important claim, since it is 
restrictive---and it leads directly to the measurement problem.  

Namely: quantum theory says that if for a given quantity, the state is a superposition for 
that quantity (so: not an eigenstate---it ascribes a non-trivial, “non-dogmatic”, distribution over 
possible measurement outcomes), then the system has no value whatsoever of the quantity.  

The paradigm case is the quantity position, for a quantum point-particle: as in Section 2 
above. The state is a wave-function y that assigns a complex number to positions in space, 
whose squares give probabilities of outcomes of position measurements. In picturesque 
language: the state gives probabilities of getting the answer ‘Yes’ (‘1’) to asking the system ‘Are 
you at position x?’. (From now on, I will say ‘system’ rather than ‘point-particle’ or ‘particle’ since 
the word ‘particle’ strongly connotes a definite position (and definite momentum etc.): which, as 
I will stress, quantum theory denies.)  

Now imagine that the value of y is non-zero only in two separated spatial regions, which 
we call ‘L’ and ‘R’. Here, ‘L’ and ‘R’ are mnemonics for ‘Left’ and ‘Right’. For nothing here will 
depend on space being three-dimensional; so we may as well imagine it as one-dimensional---
“life on a railway line”. So if we draw a graph of the values of y (more precisely: their squares), it 
looks like two humps with a flat line between them. (Think of the road-sign for ‘Bumps in the 
road ahead.’)  

So quantum theory says that y is a superposition of two states. One of these two states is 
an eigenstate for being in L. So this state says: the system would with probability 1 be found in L, 
if measured. The other state is an eigenstate for being in R; so this state says, correspondingly: 
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the system would with probability 1 be found in R, if measured. This superposition can be 
written with a ‘+’ sign for addition of states. We could write mnemonically: y = in L + in R.  

It is also common to write states between a vertical line and an angle bracket; (a notation 
invented by Dirac (1902-1984), one of the great quantum physicists). So for the equal or ‘50-50’ 
weighting of L and R, we write: |y > = |in L > + |in R > .   

But, says quantum theory: a system in state y has literally no position at all. So the 
system exists---but it has no location. It only has dispositions to be found in L, or in R, if we 
were to measure position.   

Similarly for other quantities, such as momentum. A system might be in a superposition 
of momentum eigenstates, for two different values (measurement-outcomes) of momentum, say 
‘1’ and ‘2’. So for equal weighting of ‘1 and ‘2’, we can write the state as: |momentum 1> + 
|momentum 2>. Again, quantum theory says that a particle in this state has literally no 
momentum at all. 

To sum up: since for any given quantity, almost all states are superpositions, quantum 
theory’s denial that systems in superpositions have a value (for that quantity) makes the lack of 
values endemic. Obviously, this situation prompts the question: how can this lack of values be 
reconciled with the apparent fact that objects do have values for position, momentum and other 
quantities such as energy?  

Besides: recall how classical physics gives supremely successful descriptions and 
explanations of the physical behaviour of macroscopic objects, by ascribing them definite values 
of position, momentum etc., subject to equations of motion (cf. Chapters 2.6, 3.3, 3.8, 4.1). Once 
we recall this, the question becomes more pointed: how can quantum theory’s denial of values be 
reconciled with the supreme success of classical physics?       

This question is now easily sharpened in to an argument: an argument that the lack of 
values contradicts countless facts that macroscopic objects have definite values. We only need to 
transmit the lack of values from the microscopic realm of electrons, atoms etc., for which 
quantum theory is indeed successful, to the macroscopic realm of tables, chairs etc., where 
classical physics with its definite values is successful. This is done by describing, within quantum 
theory, a measurement of a quantity on a microscopic system (say, an electron) that is in a 
superposition (for that quantity). In such a description, we can see how the lack of values is 
transmitted to the macroscopic realm---surely contradicting countless facts of definiteness. 

So let us assume we have a measurement apparatus for measuring an electron’s 
momentum that is reliable on each of the two eigenstates, |momentum 1> and |momentum 2>, 
in the following sense. Starting the apparatus in an appropriate ‘ready’ state, the state of the pair 
of systems changes over time, so that at the end of the measurement interaction, the pointer on 
the apparatus reads the corresponding eigenvalue of momentum. Thus we think of the pointer as 
being, at the end of the measurement, in front of the digit, ‘1’ or ‘2’, painted on a dial.  

Let us use an arrow, ®, to symbolize the change of state over the period of the 
measurement. And let us write the state of the pair of systems by simply juxtaposing their states 
on the paper. This state of the pair is, in the jargon of logic or philosophy, the conjunction of the 
two components’ individual states. In physics jargon, it is called a product state (or ‘the product 
of the individual states’).  

Then our assumption of reliability, that measuring either of the electron eigenstates yields 
a veridical reading at the end, can be written as: 

|momentum 1> |ready>   ®   |momentum 1> |reads ‘1’> 
and 

 |momentum 2> |ready>   ®   |momentum 2> |reads ‘2’>  .       
So far, so good. But now suppose the electron’s initial state is a superposition: for 

example, of our two eigenstates, |momentum 1> and |momentum 2>. Then the composite 
system of electron and apparatus has the conjunction or product state, as its initial state: 
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(|momentum 1> + |momentum 2> )|ready>. This can also be written as: |momentum 
1>|ready> + |momentum 2> |ready>.   

Then because the Schroedinger equation is linear, we must accept: 
(|momentum 1> + |momentum 2> )|ready>    ®   
|momentum 1> |reads ‘1’> + |momentum 2> |reads ‘2’>  .   

This is the punchline. For consider the state of the composite system after the 
measurement: i.e. the second line, or right-hand-side, of this formula. Consider what it says 
about the apparatus, in particular the position of its pointer. The main point to notice is that it is 
not an eigenstate of the quantity pointer-position, i.e. of the quantity position, for the pointer.  

(There is also another point to notice about this state. It is not a product state: it is not a 
conjunction of states for the components. Such a state is called entangled; and the theory 
allowing for such states is called entanglement. We will return to this in Section 4.7.)     

So quantum theory denies that the pointer has any position. The situation is like in the 
example above,|y > = |in L > + |in R >. Namely: the pointer only has dispositions to be 
found in front of the numeral ‘1’ on the dial, or to be found in front of the numeral ‘2’ on the 
dial---if we were to measure it.  

But the pointer not having any position surely contradicts the fact that macroscopic 
apparatuses give definite readings. Besides, the argument is so simple---depending only on 
microscopic superpositions and the Schroedinger equation being linear---that it suggests more 
generally that orthodox quantum theory’s denial of values in the microscopic realm will 
contradict countless facts of definiteness about the macroscopic realm. 

So this is the measurement problem. As I said at the start of this Chapter, it has no 
agreed solution. So our first job, in the next Section, will be to consider some possible solutions: 
including the Everettian proposal, on which we will then focus.  

But before that, it is worth summing up the measurement problem, with Schroedinger’s 
own description of his eponymous cat. In his paper of 1935---which is still worth reading for 
many reasons, some of which we will touch on later---he writes (at the end of Section 5 of his 
paper: translation from 1980):            
 
One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with the 
following diabolical device (which must be secured against direct interference by the cat): in a 
Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps in the course of 
one hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, 
the counter tube discharges and through a relay releases a hammer which shatters a small flask of 
hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the 
cat still lives if meanwhile no atom has decayed. The first atomic decay would have poisoned it. 
The wave-function of the entire system would express this by having in it the living and the dead 
cat (pardon the expression) mixed or smeared out in equal parts.  

It is typical of these cases that an indeterminacy originally restricted to the atomic domain 
becomes transformed in to macroscopic indeterminacy. 
 
 
 
Chapter 4.5: Solving the problem: the usual suspects 
There are three main strategies for addressing the measurement problem. It will be clear that 
each is a broad church that includes many versions; and that jointly, they are exhaustive. So one 
has to endorse one of the three. But I will not try to formulate the strategies precisely, and will 
only give two or three examples of each strategy. Nor is this trio of strategies, and their versions, 
original to me. Many surveys of the measurement problem give a similar trio. Hence this 
Section’s title: the usual suspects.  
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I especially admire the survey by Bell, which I will follow (1986). It is a brilliant, and 
equation-free, introduction to quantum theory and its interpretation. Bell describes, for each of 
his three strategies, a pair of versions; and for each pair, he gives what he wittily calls a romantic 
version, and an unromantic version. Unsurprisingly, the Everett interpretation will be the 
romantic version within its pair.  

Bell also makes it clear that for each pair, he prefers its unromantic version. That is 
perhaps disappointing. But as I discussed in Chapter 1.4, we each have an intellectual 
temperament which is hard to change, and about which we are obliged only to be self-aware. 
(John Bell (1928-1990) was a profound quantum physicist, as well as a gifted writer. He also 
originated what is now called ‘Bell’s theorem’: it is about how correlations between quantum 
systems defy a very natural form of probabilistic explanation.)     

The first strategy is to reject, somehow or other, the formulation of the problem. That is, 
one rejects the premises of the argument leading to the contradiction. The main idea must be to 
deny that the quantum state is “physically real”, in any sense of that phrase that makes the final 
post-measurement state (at the end of the last Section) contradict the macroscopic pointer 
having a definite position.  

Bell calls his two versions of this strategy: ‘pragmatism’ (the unromantic version) and 
‘complementarity’ (the romantic version). Here, ‘pragmatism’ means---not the philosophical 
tradition launched more than a hundred years ago by American philosophers such as Peirce, 
James and Dewey---but ‘being practical’. That is: using the theory to calculate probabilities of 
outcomes, without taking its words and concepts to describe any reality other than those 
outcomes. (Philosophers often call this ‘instrumentalism’: the theory is an instrument, a tool for 
predicting observable facts, but not a description of the world, especially not the world beyond 
observations.) Obviously, pragmatism, in this instrumentalist sense, shades in to simply not 
wishing to ponder whether the theory goes beyond predicting observable facts, rather than the 
firm view that it does not go beyond such predictions.  

On the other hand, ‘complementarity’ is Bohr’s word for his views that attempted to go 
beyond pragmatism and, by explicitly philosophical argumentation, to solve the measurement 
problem. His core idea was that since measurement outcomes must be stated using the concepts 
of classical physics, there is no contradiction with, in Schroedinger’s phrase, ‘macroscopic 
determinacy’. And this is so, even though: (1) the Schroedinger equation, with its linearity, is 
always correct; and (2) quantum systems have no values for quantities except the eigenvalue for 
those quantities for which they are in an eigenstate.  

The other two strategies deny, respectively, these claims, (1) and (2). These were, of 
course, the premises of our formulation of the measurement problem. So one might say that the 
first strategy aims to dissolve, rather than solve, the problem; while these other two strategies 
accept that the problem is genuine, and then propose to solve it. Bell himself clearly prefers these 
two strategies (in their unromantic versions) over the first. As he puts it in another paper: ‘either 
the wave-function, as given by the Schroedinger equation, is not everything or it is not right’ 
(1987, p. 201). Here, ‘the wave-function is not everything’ means that a system has values for 
quantities additional to the eigenvalues ascribed by orthodoxy, i.e. (2) is wrong. And ‘the wave-
function is not right’ means that the system is being attributed the wrong state, because (1) is 
wrong. In our paradigm case of the pointer: we should attribute to it a state of definite position, 
not a superposition of position eigenstates, and to do so, we should revise the Schroedinger 
equation. 

So suppose we deny (1), that the Schroedinger equation is always correct. Again, this 
strategy comes in various versions.  

The simplest version says that at the end of a measurement process (like that at the end 
of the last Section), the troubling superposed final state is replaced by an eigenstate of pointer 
position, so that indeed, the pointer has a definite position. (Usually, advocates of this version 
also say that the measured system goes in to an eigenstate of the measured quantity: in our 
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example, the electron goes in to a momentum eigenstate. But we can concentrate on the 
measurement apparatus and its pointer.) Besides, which eigenstate replaces the troubling 
superposed state is said to be a matter of sheer chance, with each eigenstate occurring with a 
probability equal to its weight (more precisely: the square of its complex amplitude weight) 
within the superposed state.  

Again, there is jargon: this replacement of the superposition by the eigenstate is called 
‘the projection postulate’, or ‘the collapse of the wave-function’. (But this second phrase is also 
used as a vivid label for the measurement problem, not just for this approach to solving it.) And 
the prescribed probabilities (the squares of the complex amplitude weights) are called ‘Born-rule 
probabilities’. (This is in honour of Max Born (1882-1970), one of the half-dozen co-discoverers 
of quantum theory who realized this role of probabilities in a 1926 paper.)     

This simplest version of denying (1) occurs in many textbooks of quantum theory. But 
evidently, it is vague and contentious. For when exactly is the state calculated from the 
Schroedinger equation to be ‘replaced’? Or in other words: what is the exact definition of ‘the 
end of the measurement process’? And since a measurement is, after all, a physical process, how 
is this suspension of the theory’s equation of motion to be justified? Clearly, this version is close 
to what Bell called ‘pragmatism’: and we are back at our initial bewilderment that the notion of a 
system’s state should invoke the idea of measurement, which is so extrinsic to the system.  

Two other versions of this strategy, developed in response to these difficulties, are worth 
mentioning. The first is very speculative; the second is down-to-earth. So Bell calls them, 
respectively, romantic and unromantic; (and as I said, he prefers the latter). 

The first says, in a slogan, that consciousness collapses the wave-function. The idea is 
that the Schroedinger equation only falters at the interface between mind and matter. Although 
the inanimate physical world may get in to states superposing macroscopically distinguishable 
alternatives (e.g. of positions of a pointer), once a conscious being “looks”, the state changes to a 
macroscopically definite state.  

Obviously, people will differ about how plausible they find this proposal. Someone who 
is a physicalist (cf. Chapter 3.8) will almost certainly reject it. Yet it might at first sight appeal to 
the practically-minded physicist, on the grounds that it makes the measurement problem 
“someone else’s problem”. They might say: ‘surely, physics has no responsibility to describe the 
relation between mind and matter’. But I would say that this response is just a verdict about 
disciplinary boundaries, or the division of cognitive labour: about who needs to worry. 
Whichever discipline one takes the problem to fall within, the proposal is obviously hard to 
make precise, hard to gather evidence for, and indeed: hard to believe. In particular, why should 
these collapses of the wave-function due to consciousness respect the Born-rule probabilities? 

The other version of this strategy is much more down-to-earth: as Bell says, unromantic. 
It seeks, as quantum theory’s fundamental equation of motion, a “cousin” of the Schroedinger 
equation. This equation is to be chosen so as: (i) to agree with the Schroedinger equation for 
microscopic systems like atoms, so that it also gets the vast amount of confirmation that the 
Schroedinger equation has gathered over the last hundred years; and yet (ii) to disagree with the 
Schroedinger equation for macroscopic systems like pointers, and cats. So according to this 
version, the wave-function of a quantum system does indeed collapse i.e. transit to an 
appropriate eigenstate, in suitable---in particular: suitably large---systems. And this occurs in the 
inanimate world, wholly irrespective of consciousness: the collapse of the wave-function is an 
indeterministic physical process. So our task is to find the equation that describes these collapses 
precisely, in a way that meshes with the established successes of the Schroedinger equation. This 
will include recovering the Born-rule probabilities for experimental outcomes. In short: our task 
is “theoretical physics as usual: find the right equations”. 

In the last forty years, a great deal has been learnt about such cousin equations, both 
mathematically and physically. But no single proposed equation has yet won the allegiance of 
physicists, on either theoretical grounds or by being confirmed by experiment. So the question 
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whether the Schroedinger equation will indeed be overturned remains open.  For this, we must 
wait upon the future of physics.    

Finally, suppose we deny (2). That is: we say that quantum systems do have values for 
quantities for which their state is not an eigenstate. The motivation for saying this is of course to 
keep the post-measurement state given at the end of the last Section, but nevertheless to ascribe 
a definite position to the pointer.  

One version of this strategy is, again, “theoretical physics as usual”. It was invented by de 
Broglie (1892-1987). In the mid-1920s, he was another of the half-dozen creators of quantum 
theory; and his formulation of the theory explicitly attributes values to quantities additional to 
eigenvalues (of quantities for which the state is an eigenstate). To be precise, let us consider a 
system that orthodox quantum theory (the textbook) calls ‘N quantum particles’. De Broglie 
proposed that this system’s real physical state includes, in addition to the wave-function y on 
configuration space, that always obeys the Schroedinger equation, also---our “old friends”: N 
point-particles, each with a definite actual position.  

In themselves, these point-particles are as described by classical physics: at any instant, 
each has a definite position in space, and over time each moves in a continuous trajectory. The 
difference from classical physics lies in how they move. Namely: at each instant, their velocity is 
determined by a combination of: (i) the wave-function, and (ii) the positions of the other point-
particles in the system. (The position of another particle contributes to determining the given 
particle’s velocity in an action-at-a-distance manner, similar to Newtonian gravity---except that 
the influence does not diminish if there is a larger distance between the particles.) The idea in (i), 
that the wave-function, though it lacks mass and energy, “guides” all the particles in the system, 
has given rise to the theory’s name: pilot-wave theory. (Think of how a pilot guides a ship: but he 
does not do so by the effects of his mass or energy.)  

We do not need the details of this theory. What matters for us is that the pilot-wave 
description of how the point-particles move gives the key idea for solving the measurement 
problem. (This merit became clearer in the work of David Bohm (1917-1992), who in 1952 re-
discovered the pilot-wave theory.)  In the last Section’s measurement scenario, the pilot-wave 
theory takes the pointer to really be a cloud of point-particles. Then it gives a detailed description 
of how, in each individual measurement, this cloud of particles is guided by the wave function 
(which always obeys the Schroedinger equation), so as to be either in front of the digit ‘1’ painted 
on the dial, or in front of the digit ‘2’. In short: the pilot-wave theory, by ascribing values of 
position additional to those ascribed by orthodox quantum theory, secures a definite outcome 
for each individual measurement---solving the measurement problem. 
 The second version of this strategy, i.e. the second way to claim that quantum systems do 
have values for quantities for which their state is not an eigenstate while the Schroedinger 
equation is nevertheless always correct, is the Everettian proposal---with its multiverse. It will be 
our topic for the rest of this Chapter. 
 
 
 
Chapter 4.6: Everett’s proposal: a bluff? 
Let me start by stating baldly the Everettian proposal. This will show how it counts as a version 
of this last strategy. (From now on, I will talk about ‘the Everettian’, rather than Everett himself, 
since the proposal has developed a good deal since Everett’s paper in 1957. Besides, there is 
controversy about whether the version of the proposal that is nowadays dominant---on which I 
will concentrate---matches Everett’s own ideas.) 

The key ideas are as follows. The cosmos as a whole has a quantum state, which always 
evolves according to the Schroedinger equation: indeed, a very grand version of the equation that 
describes quantitatively how all the cosmos’ component parts interact, exerting forces on one 
another. Needless to say, no one has come close to writing down this version of the 
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Schroedinger equation. But the Everettian proposes that it is, as usual, deterministic; so that the 
wave-function of the cosmos never collapses. (In Section 11, we will confront the obvious 
question: how can this determinism be reconciled with quantum theory’s use of probabilities?)   

This state is usually written as Y: where the use of the capital Greek letter (again 
pronounced ‘Psi’) is, so to speak, honorific---for no one has the faintest idea how to write it 
down in detail.  

Y is usually called ‘the universal state’, or ‘the universal wave-function’. But in this book, 
I have adopted, since the Introduction: ‘multiverse’ as the name of all of reality in the most 
inclusive sense; and ‘world’ or ‘universe’ as the name for its “more familiar” parts, where as we 
discussed, each part is understood to mean ‘throughout all of time and space’. So using my 
jargon: the cosmos’ quantum state Y is the multiverse’s quantum state. But since no one says 
‘the multiversal state’ or ‘the multiversal wave-function’, I will in this Chapter talk of ‘the 
cosmos’ quantum state’. Hence this Chapter’s title.      

Our knowledge of quantum theory, and our empirical success in applying it to small 
systems, suggests that superpositions will promulgate, in the way we saw in the measurement 
problem at the end of the Section 4. So we have good reason to think that the cosmos’ quantum 
state is a vast superposition, i.e. a vast sum, of product states. Each of these is a long 
“conjunctive state” for countless component systems---not just an electron and a measurement 
apparatus or its pointer, but countless electrons, quarks, molecules, specks of dust etc.  

Again, there is jargon: when items, like numbers or vectors or these product states, get 
added together, they are called terms, or summands (for ‘item that gets summed’). So these 
product states are terms of the vast superposition.   

The Everettian proposes a literal interpretation of this vast superposition. Just as this 
state contains vastly many product states, so also the cosmos (i.e. the multiverse) contains a 
plethora of Everettian ‘worlds’. (These are also called ‘branches’.) Each is represented by such a 
product state. Some (perhaps many) of these worlds are something like the macroscopic realm 
familiar to us: with all macroscopic objects (pointers, tables etc.) in definite positions.  

But the worlds differ among themselves about these positions; and it is relative to each 
such world that there are extra values, i.e. values additional to orthodox quantum theory’s 
attributing only eigenvalues. Think, for example, of Section 4’s toy-model of a momentum 
measurement. The two possible outcomes were distinguished by two different positions of the 
pointer: in front of ‘1’, or in front of ‘2’. The Everettian proposes that the two outcomes, the 
two positions, are in different worlds. 

This bald statement of the Everettian proposal prompts the obvious question: ‘If this is 
so, how come I have no evidence of the other worlds? In particular, how come I experience a 
single definite macrorealm: a macrorealm whose objects are definite in position, and other 
quantities like momentum?’.  

As I see matters, there are two main Everettian answers to this question: a traditional 
one, which was prevalent in the literature between Everett’s original paper in 1957 and about 
1990; and a modern one which has been prevalent since the mid 1990s. The first answer was cast 
in terms of measurement processes and their outcomes, as in Section 4’s toy-model. I think this 
first answer is unsatisfactory. It seems like a bluff, or a mere debating tactic. I will discuss it in 
this Section. But the second answer is satisfactory; although not wholly convincing. It is not cast 
solely cast in terms of measurement processes and their outcomes. It considers equally all 
macroscopic objects that classical physics successfully treats as having definite values for 
position, and other quantities like momentum. And some of these are indeed tiny, for example 
specks of dust that are too small to be visible; (though I will still say ‘macroscopic’). This second 
answer secures definiteness of position etc. (relative to a world) even for such tiny specks. It 
does so by appealing to a very important phenomenon that I have so far not mentioned: 
decoherence. I will take it up in the next Section.  
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I say ‘as I see matters’, because since Everett’s original paper in 1957, many different 
Everettian answers have of course been proposed---and then disagreed with on various grounds. 
But my claim that there have been two main answers is widely agreed. 

So first, here is what I called the traditional answer. It says: the reason why appearances 
are indeed definite---just as much as they are on a proposal that the wave-function collapses---is 
that the objects involved in the problematic superposition, say at the end of a quantum 
measurement, each split into many copies, corresponding to the various worlds. So in our toy 
model of measurement with two outcomes, the apparatus’ pointer splits into copies, some with 
the ‘1’ outcome, and some with the ‘2’ outcome. Authors advocating this answer differed about 
how to understand the splitting; in particular, about how many copies there are. Some said that 
for two outcomes, there are just two copies; some said that for each outcome, there are many 
copies, perhaps infinitely many. (I will return to this in later Sections.) But the common idea is 
that this splitting secures definite appearances. For appearances only “appear” within a world: 
and within a world, the wave-function is, by definition, the corresponding term—which is an 
eigenstate of the quantity, such as pointer position, that in order to solve the measurement 
problem, we want to have a definite value.  

The trouble with this answer is not that the idea of splitting is plain wrong. It is that, 
stated so briefly, the answer is too programmatic: it raises more questions than it answers. If the 
splitting is a bona fide physical process, we need to hear details: for example, about how it can be 
consistent with laws like the conservation of mass or of energy. If it is somehow a conceptual 
splitting, without a physical description, then there is philosophical work to do, to explain what it 
involves. In particular, if the splitting is ‘conceptual’ in the sense of being a distinction made by a 
conscious mind, then presumably, there is no splitting in those regions of the cosmos without 
conscious minds. In that case, the proposal is similar to that considered in the last Section, that 
consciousness collapses the wave-function; and it is thereby similarly hard to make precise and to 
gather evidence for.  

In my opinion, until about 1990 most of the Everettian literature did not adequately 
answer such questions. Hence my accusation that it seems like a bluff. Of course, I am not alone 
in my misgivings: many authors pressed such questions. In particular, Bell was very doubtful. In 
his 1986 paper which I recommended and summarized in Section 5, he says that the Everettian 
proposal ‘is surely the most bizarre’ and ‘extravagant, and above all extravagantly vague, 
hypothesis. I could almost dismiss it as silly’ (1986, pp. 192, 194). But as I announced above: 
since about 1990 (when Bell died), the Everettian literature has appealed to decoherence, which 
does address the questions.  

That will be the topic of the next three Sections. But first, it is worth discussing---and 
criticising---an analogy that is sometimes suggested in defence of the suspiciously programmatic 
‘splitting’ answer above.    

The alleged analogy is that the ‘splitting’ answer is like what is surely the right reply to the 
objection (perhaps apocryphal) against the proposal by Galileo and other advocates of a 
heliocentric astronomy, i.e. the proposal that the Earth goes around the Sun. The idea of the 
objection (i.e. in defence of the traditional, Aristotelian geocentric astronomy, that the Sun goes 
around the Earth) is to appeal to appearances. Namely: it looks (especially at sunrise and sunset) 
as if the Sun goes around the Earth. So the objection is that the heliocentrists’ radical proposal 
seems to conflict with the appearances.  

The reply that Galileo and the heliocentrists are said to have made is that in fact, 
assuming that the Earth goes around the Sun leads to the very same appearances. That is: the 
appearance at sunrise is exactly the same whether you describe this as the sun rising above the 
horizon, or as the horizon sinking below the sun. (And similarly, of course, at sunset: the 
appearance is exactly the same whether you say the sun is sinking, or the horizon is rising.)  

Similarly, it is alleged, for the Everettian’s “splitting” answer. If we assume such a 
splitting, the appearances will be just as the objector says they are: that is, perfectly definite. 
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But I submit that this analogy has a merely rhetorical force. Agreed: the broad logic of 
the two disputes is the same. In both cases, the new radical proposal (Galileo’s, or Everett’s) 
replies to the objection that it conflicts with appearances, by saying: ‘No, I do not: I accord 
perfectly well with appearances’.  But there is a big difference between the two cases.  

For Galileo and the other advocates of a heliocentric astronomy can readily spell out 
how they accord with appearances. It is a matter of optics, i.e. the paths of light rays. In 
particular, it is straightforward to argue that: (i) the appearance at sunrise is a matter of the angle 
between a ray of sunlight and one’s line of sight to the horizon increasing (and similarly, at 
sunset: decreasing); and (ii) this increase (respectively: decrease) depends only on a relative 
motion of sun and horizon. But the Everettian’s idea of splitting gives no such straightforward 
argument for recovering definite appearances: it leads only to the questions I pressed above.  

 
 
 
 
Chapter 4.7: Doing better with decoherence 
However, as I said: by appealing to a process called decoherence, the Everettians can make much 
better sense of their proposed splitting; and since about 1990, they have done so. So in this 
Section and the next two, I will spell out what decoherence is, and how it clarifies what splitting 
involves. It will also be clear that decoherence is important for all approaches to quantum theory, 
not just for Everett’s: any of Section 5’s interpretations need to accommodate it.    

There will be three stages, one in each Section. This Section gives the basic idea of 
decoherence.  In the next, decoherence helps make more precise the definition of an Everettian 
world (or ‘branch’). After that, decoherence will suggest that macroscopic objects such as cats or 
pointers are---not aggregates of stuff, but---enduring and stable patterns. (Then in the Chapter’s 
final Sections, I will turn to other topics, especially probability.) The plan for this Section is that I 
will (1) state the idea of decoherence, and then (2) state a merit, and a demerit, of it.  

 
   

(1): ‘Decoherence’ means, in this context, the diffusion of coherence. Here, ‘diffusion’ means 
spreading: namely, spreading from the system of interest to its environment with which it is 
interacting.  

‘Coherence’ is physics’ jargon for some characteristic differences between (i) the 
probability distributions prescribed by quantum states, especially superpositions, and (ii) those 
prescribed by classical states. We saw already in Section 4 that a quantum superposition 
prescribes a non-trivial probability distribution over the possible outcomes of a measurement of 
the quantity concerned; while eigenstates are “dogmatic” or “opinionated”---they give probability 
1 to just one outcome.   

Classical states---meaning states prescribed by classical physics---also prescribe 
distributions, once we include probabilistic mixtures of states. Thus imagine being given, say, 
three states, and taking a quarter-quarter-half mixture of them. This means, for example, taking a 
thousand systems: of which 250 are in the first state, 250 are in the second state, and 500 in the 
third. Then the predicted statistics for measuring any quantity on a randomly selected member of 
the set of a thousand systems would be the average, with weights ¼, ¼, ½, of what the three 
given states prescribe.   

The important point here is that superpositions cannot be understood as such classical 
mixtures. For although for a single quantity, a superposition and a classical mixture might 
prescribe exactly the same distribution: there will be other quantities (which are said to not 
commute with the first one), about which their distributions differ. The numerical differences, 
outcome by outcome, between these distributions (for this other quantity) are called interference 
terms.  
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So in short: interference terms are the signature of a state being a superposition. (The 
word ‘interference’ comes from the physics of waves. When the peaks of two water waves meet 
and make yet higher peak, we say that the waves interfere constructively; when a peak of one 
wave meets a trough of the other, and they cancel out to give a level surface, we say that the 
waves interfere destructively.)       

 So imagine a quantum system interacting with its environment. Given our interest in the 
measurement problem, a paradigm case is the pointer of an apparatus (or a cat) interacting with 
the air around it, by air molecules bouncing off it. So quantum theory tells us, of course, that the 
quantum state of the composite system, pointer plus air, prescribes probabilities for the various 
possible outcomes of measuring any quantity on either component, the pointer or the air.  And 
in general, this composite quantum state will be a superposition of product states, so that the 
probabilities it prescribes will include interference terms---even for a quantity on a component 
system. That is: one expects, a priori, that the component system’s state will be superposed, i.e. 
its probabilities will have interference terms.   

Now we can state the punch-line about decoherence. Namely: according to many realistic 
models of how a macroscopic object like a pointer interacts with its environment like air 
molecules, the interaction establishes very rapidly a composite quantum state that falsifies this a 
priori expectation, as regards the macroscopic object. That is: very soon after the interaction 
starts, the composite quantum state prescribes probabilities for the macroscopic object whose 
interference terms are negligible. In other words: the composite quantum state determines a state 
for the pointer that is almost a mixture, in the classical sense above. For it differs from a mixture 
only by tiny interference terms. 

More is true.  The states within this mixture, that the pointer is “almost in”, are the states 
that we intuitively want, in order to solve the measurement problem. For they are, roughly 
speaking, states of definite position: for example, position of the centre-of-mass of the pointer. 
Thus for Section 4’s toy-model of measurement: once we augment the model by including in our 
analysis the air molecules, then the post-measurement state of the pointer, as determined by the 
state of the entire composite system (measured system and pointer and air molecules) is---
neglecting tiny interference terms---a mixture of the centre-of-mass being in front of the numeral 
‘1’, and it being in front of the numeral ‘2’. 

And yet more is true. One does not just get such promising-looking mixtures in 
situations of explicit measurement, involving everyday-sized objects like pointers. Nowadays, 
there are detailed models of much smaller objects, immersed in their environment, that give 
mixtures of states that give definite values to the quantities that intuitively we want to be definite. 
For example: a tiny dust-particle, a tenth of a millimetre in diameter, floating in outer space, will 
be in a mixture of states of definite position, thanks just to its interacting merely with the dim 
light of the stars.  

(Two paragraphs above, I said ‘roughly speaking, states of definite position’, because in 
many models, the states in the mixture obtained are so-called coherent states. These are states 
whose probability distributions are sharply peaked for both position and momentum, so that a 
system in such a state seems almost definite in both position and momentum. I say ‘sharply 
peaked’ because the distributions have enough spread so as to obey quantum theory’s 
Uncertainty Principle, which vetoes having absolutely precise values for both position and 
momentum.) 

So to sum up so far: decoherence is the fast and ubiquitous process whereby, for 
appropriate physical quantities on a system immersed in its environment, the interference terms 
that are characteristic of a quantum state (a ‘superposition’) as against classical states (a 
‘mixture’), become tiny. In effect, the coherence has diffused from the system to its 
environment.  

We will see in the next two Sections how with decoherence the Everettian can give a 
much better account of the splitting of worlds. I end this Section by stressing two important 
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features of decoherence, that apply not just to Everettians, but to all approaches to the 
measurement problem. The first is positive; the second is a limitation. 
 
 
(2): The positive feature is flexibility. The need to be flexible becomes clear when we realize that 
in order to solve the measurement problem, we need the classical physical description of the 
world to be vindicated only approximately, not in every detail, by quantum theory. Thus we 
should admit that we need only some subset of quantities, not all quantities, to have definite 
values. And we should allow that maybe this subset is specified contextually, even vaguely. And 
besides, maybe the values should only be definite within some margins of error, even vague ones. 

The point now is that decoherence secures this sort of flexibility. For which quantity on 
the system is “preferred” (i.e. rapidly becomes definite, in that the state is a mixture of its 
eigenstates) is determined by the physical process of interaction---whose definition in the model 
can be legitimately varied in several ways. Here are three examples of such ways. One can vary 
the definitions of: the system-environment boundary; the time at which the interaction is taken 
to end; and what counts as the state being ‘sharply peaked’ for a quantity.  

I now turn to the limitation. It is very important since it is often ignored---in the research 
literature as well as in popular accounts of decoherence. 

The limitation is that decoherence does not just by itself solve the measurement problem. 
More precisely: it does not imply that in any individual case, the macroscopic system actually is in 
one of the states in the mixture. It implies only that the quantum probabilities for any quantity 
are as if the system were in one such state.  

Furthermore, quantum theory implies that the macroscopic system is in fact not in one 
of those states. This last is a subtle point, which many textbook discussions miss. Some authors 
signal this point by using a special jargon. They call the mixture that the macroscopic system is in 
an improper mixture; and for a mixture for which the system in any individual case is indeed in 
one of the states getting mixed, they use the phrase: a proper mixture, or an ignorance-
interpretable mixture.  

So decoherence secures that the macroscopic is in an improper mixture. In other words, 
setting aside this jargon: to say instead that the macroscopic system is in any individual case in 
one of the states getting mixed would contradict the original hypothesis that the entire composite 
system including the environment is in a superposition, not a mixture.  

Though this point is subtle, it is uncontroversial. In fact, it is already clear in 
Schroedinger’s 1935 paper, in which he introduced his eponymous cat. For in Sections 10 to 13 
of that paper, he discusses entanglement (indeed, he introduces this word), and expounds the 
point.  

This limitation of decoherence can be made vivid in terms of Schroedinger’s cat. 
Namely: at the end of the measurement and after the decoherence process, the quantum state 
still describes two cats, one alive and one dead. It is just that the two cats are correlated with very 
different microscopic states of the surrounding air molecules. For example: an air molecule will 
bounce off a wagging upright tail (as in a living cat), and a stationary horizontal one (as in a dead 
cat), in different directions. 

Indeed, we can put the point in cartoon form. Think of the cat being alive as its having 
vertical legs, and a vertical tail, and a smile on the mouth. Similarly, think of its being dead as its 
having horizontal legs, and a horizontal tail, and a frown on the mouth. Then the usual image for 
the measurement problem, i.e. the Schroedinger cat paradox, is the combination of these two 
configurations of the cat. Using plastic transparencies, as in a traditional class-room: one would 
overlay one transparency, portraying the dead “horizontals” cat, on another transparency, 
portraying the living “verticals” cat---getting the usual paradoxical double image.  

Now the advocate of decoherence points out to us that the cat is really in an 
environment of air molecules etc. So they point out that a realistic image for the living cat, 
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standing and smiling, should show many air molecules bouncing off the cat with such-and-such 
trajectories; while a realistic image for the dead cat, lying down and frowning, should show some 
similar large number of air molecules bouncing off the cat, but with different, so-and-so, 
trajectories. And so the realistic final state of the entire composite system, cat plus air molecules, 
is the superposition of states corresponding to these two images.  

All this we must accept. But it seems blatantly to not solve the basic problem: that 
quantum theory describes the cat as blurred between being alive (“verticals”) and being dead 
(“horizontals”). This problem seems wholly unaffected by invoking the air molecules. After all, 
think again of plastic transparencies. Adding scattered dashes portraying such-and-such 
trajectories to the transparency for the living “verticals” cat, and adding different scattered 
dashes portraying so-and-so trajectories to the transparency for the dead “horizontals” cat, does 
nothing towards unblurring the image. If anything, it makes the situation worse. For it shows the 
air molecules being blurred, “suffering” indefiniteness of position, just as much as the limbs of 
the cat.   

In Section 9, we will see how the Everettian can accommodate this limitation by taking 
the cat, and other macroscopic objects, to be enduring and stable patterns. But to prepare for 
that, we need more detail about the Everettian’s concept of a world. 
 

 
 
 

Chapter 4.8: A sketch definition of ‘world’ 
In this Section, we will see how decoherence clarifies the Everettian’s idea of worlds and thus of 
how they “split”. I will first, in (1), use decoherence to state a sketch definition of ‘world’. Then 
in (2), I will explain two ways in which this sketch definition needs to be improved. 
 
(1):  At the beginning of Section 6, I introduced the Everettian proposal as saying that the 
cosmos as a whole has a quantum state Y which is a vast superposition, i.e. a vast sum, of 
product states describing countless component systems---not just an electron and a measurement 
apparatus or its pointer, but countless electrons, quarks, molecules, specks of dust etc. So the 
Everettian now needs to be more precise about how to extract from this state a set of worlds: 
each of them (or maybe just: some of them) like our familiar macroscopic realm, with all its 
tables etc. in definite positions.  

In this endeavour, decoherence is a promising resource, not least because as we discussed 
near the end of the last Section: it is flexible. The idea will be that to get something like our 
familiar macroscopic realm, the Everettian will adopt a definition of ‘macroscopic object’, or for 
short ‘macrosystem’, and will then take the cosmos as the vast composite system consisting of: 

(i) all the macrosystems; together with 
(ii) all the countless microscopic systems that are not in a macrosystem, which   
are treated collectively as a single system, the rest of cosmos.  

Accordingly, the quantum state-space of the cosmos is broken down, in the mathematics of the 
theory, into the state-spaces of its components: all the state-spaces of the macrosystems, and the 
state-space of the rest of cosmos. In the mathematics, the state-spaces combine rather like 
numbers being multiplied, rather than added. So the component state-spaces are called factor-
spaces, and the state-space of the cosmos is a product space. I shall assume there is some vast 
finite number N of macrosystems, and so there are exactly N+1 factor-spaces in all.  

   So far, so mathematical. But now decoherence prompts two distinctively physical 
suggestions.  

First: the Everettian can legitimately define ‘macrosystem’ along the lines: ‘any system 
whose interaction with its environment rapidly makes its state almost a mixture in quantities such 
as position (and momentum), i.e. the quantities whose values, as attributed by classical physics, 
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gave such a successful description’. For we learnt in the last Section that nowadays physicists’ 
models of decoherence are so many and so varied that a definition along these lines will 
encompass, not just everyday objects like a table or a pointer of an apparatus, but also a tiny 
dust-particle floating in outer space---and countless objects in between, such as a lock of hair or 
a dew-drop. So in effect, every object that anyone has described, or could successfully describe, 
with classical physics will be among the Everettian’s vast set of N macrosystems. 

Second: I have so far considered only a single macrosystem interacting with its 
environment: as the saying goes, being decohered by (i.e. its state becoming a mixture, due to) its 
environment. But such decoherence interactions are happening continuously, to each of the N 
macrosystems. For the rest of the cosmos is a vast, common environment for them all: for the 
table, the pointer, the lock of hair, the dew-drop, the tiny dust-particle in outer space. Above the 
atmosphere, where the air molecules give out---for our purposes: not for human breath, but as a 
sink into which the quantum interference terms can diffuse---the dim light of the stars can take 
over. 

Now, with a bit more stage-setting, I can state an Everettian definition of ‘world’. There 
are two preliminary steps, and then the definition itself. (After stating it, I will comment on how 
it remains only a sketch definition.) 

(1): We adopt a definition of ‘macrosystem’ along the lines above. Suppose that 
throughout the cosmos, there are N macrosystems, as thus defined. Then we factorize (break 
into its factors) the cosmos’ state-space into N+1 factor spaces: one factor for each of the N 
macrosystems (dust-particles etc.) that gets decohered by its environment, and one factor for 
their common environment---the vastly complicated and dispersed rest of the cosmos. 

(2):  Then we express the cosmos’ quantum state, Y, as a superposition whose 
components (i.e. summands) are (N+1)-fold product states, i.e. products of N+1 states, one in 
each factor-space.  We choose these product states by: (i) for each of the first N factors, taking 
an eigenstate, on the corresponding macrosystem, for the quantity that gets “preferred” (i.e. 
selected) by the decoherence process; and (ii) for the last factor, i.e. the (N+1)-th factor 
associated to the rest of the cosmos, taking what is called the relative-state of the rest of cosmos. 

 (We do not need to pause on the notion of relative-state, although it was a centre-piece 
of Everett’s original paper (in 1957). Suffice it to say that, stated for a two-component system 
(rather than a N+1-component system), the relative-state is roughly: what the component system 
“looks like”, assuming the other component system is in a given state.  More precisely: it is the 
state that would be assigned to the component, after a projection-postulate measurement that 
results in the given state on the other component.) 

Finally, a world is defined as: the physical reality described by a summand, in this way of 
writing Y.   

In other words, again using some of the jargon we have introduced: (i) for each of the N 
macrosystems, we consider a component of its “post-decoherence” improper mixture (i.e. an 
eigenstate of the quantity selected by decoherence); and then (ii) for the rest of universe, we 
consider the relative state. We then consider the product of (i) and (ii): which is an (N+1)-fold 
product state. This product state defines a world. The world is to have as values for quantities 
just what that product state ascribes, according to orthodox quantum theory, i.e. just the 
corresponding eigenvalues. 

It is clear that in a world, as I have just defined it, each macrosystem has, by 
construction, a definite value for the quantity on that macrosystem that was selected by the 
decoherence process. Thus the promise of decoherence for the Everettian lies in the fact that in 
many models of many sorts of macrosystem, the definite-valued quantity is calculated to be 
position or momentum, or something “close” to these---in short, the sort of quantity that, to 
solve the measurement problem, we intuitively want to have definite values. 

 So this definition makes ‘world’ precise in a way that meshes with the basic ideas of 
Everett’s proposal. It helps the Everettian answer Section 6’s accusation of bluffing.  
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(2): But I stress that this definition of ‘world’ is very much a sketch definition. There are at least 
two broad ways in which one would like to see it improved. In listing these ways, I am not being 
controversial. For the physics of decoherence remains an active area of research, both 
theoretically and experimentally. Besides, it will be clear that not only the Everettian, but anyone 
interested in the interpretation of quantum theory, will want to see progress about these two 
ways.   

First: this definition assumed a notion of macrosystem, which I initially said would be 
defined in terms of: ‘getting a mixture in quantities … whose values, as attributed by classical 
physics, gave such a successful description’. Such an assumption seems suspiciously close to 
postulating what one wants, rather than arguing for it. I think this suspicion lessens once one 
sees the detail in the definition of ‘world’: the factorization of the cosmos’ state-space, and the 
decoherence of each component system. But I agree that much more detail is needed. Not just 
more than I have given here; but more than the research literature has so far achieved. As I said: 
this is an active area of research.  

In broad terms: one would like to see models of decoherence that are more rigorous and 
of wider scope (i.e. cover more systems) and that make definite the “right” quantities. One 
aspect of this is a limitation of my sketch-definition, as I stated it. Namely, it takes the 
environment (the rest of the cosmos) to be spatially external to the macrosystems; e.g. air 
molecules external to an apparatus’ pointer, starlight external to a dust-particle floating in outer 
space. But in many cases, the environment is internal. For example, an iron bar can have long-
wavelength and short-wavelength vibrations (called ‘modes’); and when these modes are treated 
quantum mechanically, they are themselves systems, and the long-wavelength modes get 
decohered by the short-wavelength modes. In this way, the long-wavelength modes, taken 
together, form a macrosystem. Thus defining the factorization of the cosmos’ state-space in 
terms of N macrosystems will be a lot more subtle and complicated than just “listing” all the N 
“lumps of matter” (cf. Section 1) such as pointers and dust-particles.  

In this endeavour, one can of course appeal to the flexibility of decoherence which I 
praised at the end of the last Section. Thus I said that one can vary the definitions of: the system-
environment boundary; the time at which the interaction is taken to end; and what counts as the 
state being ‘sharply peaked’ for a quantity. So in seeking a better definition of ‘macrosystem’, in 
terms of which to make the factorization, one can hope to exploit this variety or “wiggle-room”. 

So to sum up this first issue: the Everettian hopes that the physics of decoherence will 
enable us to avoid taking ‘macrosystem’ as a primitive concept; but there is much work yet to do. 
I will return to this challenge at the end of the next Section. 

Second: there is an issue about the fact that our sketch definition of ‘world’ appeals to a 
factorization of the cosmos’ state-space, prior to and independent of what the state of the 
cosmos Y actually is---which seems wrong. This issue is independent of the first. For even if the 
first issue was completely dealt with by a satisfactory rigorous definition of ‘macrosystem’ etc., it 
will surely still be true that what macrosystems there are, and how many there are, will be very 
much a matter of happenstance, a matter of contingency. This contingency involves two points.  

The first is a matter of everyday belief, and regardless of quantum theory, Everettian or 
otherwise. (It is also regardless of the first issue, i.e. how to define ‘macrosystem’ precisely.) It 
goes back to Chapter 3.3, about our being up to our necks in modality. Namely: there surely 
could have been different macrosystems than there in fact are; not just different tables, or locks 
of hair, or stars, but also more mundanely, different dust-particles. Secondly, even if one agrees 
with the Everettian in boldly postulating a quantum state of the cosmos Y: still it is presumably a 
contingent fact what that state is. After all, Y is an element of a vast state-space, with countless 
other elements; and nothing in the Everettian proposal, as so far stated, forbids the cosmos 
being instead in one of those other states.  
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Putting these points together, the obvious suggestion is that we should allow the 
factorization of the cosmos’ state-space to depend on the state. By doing that, the second point--
-the happenstance about what the cosmos’ state in fact is---might perhaps cover, en passant, the 
first point, viz. that we need to accept happenstance about what, and how many, macrosystems 
there are.  

(I say ‘might perhaps cover’, not ‘does cover’, because we cannot now be certain that our 
convictions about the possible varieties and numbers of macrosystems will follow from what 
quantum theory turns out to say about which states of the cosmos Y are possible. And our 
uncertainty is all the greater because of the first issue, i.e. our not knowing how to define 
‘macrosystem’ precisely. ) 

I will return to this second issue in Chapter 6. But nothing I say there will undermine the 
present conclusion: that we should let the Everettian’s factorization of the cosmos’ state-space 
depend on the state---which our sketch definition above does not do.   
 
 
 
Chapter 4.9: On what there is: objects as patterns 
‘On what there is’ is the title of a famous article by the philosopher Quine about deciding what 
truly exists. In this Section and the next, I will pursue this theme, as regards the Everettian 
multiverse. This Section will be largely positive, i.e. pro the Everettians. I will start in (1) with an 
explanation of how objects being patterns implies that at the end of the Schroedinger-cat 
experiment, there really are two cats. Then in (2) I will state my misgivings. (The next Section 
will raise another objection to Everettians; and it will lead in to the last two Sections about 
probability.)  

This Section’s main idea is in the title: ‘objects as patterns’. Nowadays, Everettians build 
on the previous Sections’ account of decoherence, so as to justify their metaphor of the world 
splitting into many alternatives corresponding to, for example, the various outcomes of a 
measurement process. In this justification, their main new idea is that a macroscopic object is not 
a lump of stuff, or an aggregate of tiny lumps, or even a cloud of point-particles. (Recall Section 
1 above, and Chapter 2’s discussion of the seventeenth-century mechanical philosophers.) It is 
really a pattern in the quantum state: in the quantum state of the cosmos. 

As we will see, this idea promises to overcome the limitation I explained at the end of 
Section 7 above: that decoherence does not by itself solve the measurement problem, since it 
does not imply that in any individual case, the system actually is in one of the states in the 
improper mixture obtained after the decoherence process. I made this limitation vivid in terms 
of Schroedinger’s cat. Thus I complained that this improper mixture still describes two 
(contradictory) states of a cat, being alive and being dead: it is just that the two states of the cat 
are correlated with very different microscopic states of the surrounding air molecules.  

Now, the idea that macroscopic objects are patterns will vindicate the proposal that: (i) at 
the end of a Schroedinger-cat experiment, there are indeed---not just two (contradictory) states 
of a cat---but two cats; and (ii) the two cats are in different worlds (branches), what Section 7 
called ‘cases’. For there are indeed two patterns in the quantum state of the whole system (say: 
the cat, the apparatus, and air). Therefore, there really are two cats. In other words, the 
Everettian claims: the final quantum state being an improper mixture describing two states of a 
cat, being alive and being dead, is a matter of the state encoding two patterns---and, since cats 
just are patterns, that description is a description of two cats. 

This claim is certainly dizzying. But it is, I think, completely coherent. (My misgivings at 
the end of this Section will not refute it, but just make it less plausible.) It becomes clearer if we 
assume that the quantity selected by decoherence (i.e. having negligible interference terms in the 
final mixture) is a familiar one; and one which, to solve the measurement problem, we intuitively 
want have a definite value. Let it be our old friend: position. That assumption is reasonable. For 
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as hinted in Section 7: in models of decoherence, the final mixture typically contains coherent 
states, in which both position and momentum are very close to definite in value.  

Of course, there is no single position quantity for the cat. For the cat has very many 
parts, both macroscopic like legs and tail, and tiny like individual cells and molecules. Similarly of 
course for the pointer of a measurement apparatus. When we discussed its being in front of the 
numeral ‘1’ on the dial, or in front of ‘2’, we were exploiting the assumed rigidity of the pointer, 
so as to get by with a description using a single position quantity, viz. the position of the centre 
of mass. 

So we need to recall from Section 2 above (and Chapter 3.3’s discussion of state-spaces 
in classical physics) that even the classical configurations of a composite system, with say N 
point-particles as its components, form a vast state-space. With each point-particle placed 
somewhere in three-dimensional physical space, the classical configuration space is the set of 
(3N)-tuples of real numbers. For one needs three real numbers for the spatial position of each 
point-particle. So in all, one needs 3N real numbers. The state of the corresponding quantum 
system is then a wave-function (with complex numbers as values) on this classical configuration 
space. (As we saw in Section 2, this system is called ‘N quantum particles’. But as I lamented 
there: the word ‘particle’ is misleading. For it strongly suggests the system is localized: whereas, 
according to orthodox quantum theory, it in fact only has tendencies i.e. dispositions (quantified 
as probabilities) to be found in various locations, if measured by a position apparatus.)  

So we need to ask: how many parts should we take a cat to have? In other words: what is 
a good guess for the number N, such that a successful quantum description of a cat can use a 
wave function on the set (3N)-tuples of real numbers? (Again, the factor 3 just encodes the fact 
that physical space is three-dimensional.) Let us for simplicity think of an atom as a single 
particle. (Again, we mean ‘particle’ in the Pickwickian quantum sense that we take merely to 
define a location in physical space, in our effort to estimate the number N). But chemistry 
teaches us that atoms are minuscule. For example, in twelve grams of carbon, the number of 
carbon atoms is 6 followed by twenty-three noughts. This is written: 6 x 1023. (This is called 
‘Avogadro’s number’.) 

So for a cat weighing say a thousand grams (1 kilogram: so roughly 12 x 100), the 
number of atoms---most of which will weigh less than carbon---will be enormous. It will be 
about 6 x 1023 x 100. Which is roughly: 1000 x 1023. So we can take as a guess for N: 1026. So even 
with our simplifying assumption to think of an atom as a single particle, the classical 
configuration space is stupendously large. It consists (3 x 1026)-tuples of real numbers. So it has 
dimension 3 x 1026: a vast number—in which the ‘3’ is hardly worth keeping track of. So the 
quantum state is a wave-function whose arguments (inputs) are elements of this space. Each 
argument is a (3 x 1026)-tuple, i.e. an exact classical configuration for all the 3 x 1026 atoms. 

I can now say how the Everettian claims that in the myriad complexity of such a wave 
function, there is a pattern that deserves to be called ‘a living cat’, and another pattern that 
deserves to be called ‘a dead cat’. (I say ‘claims’, since it will be clear that there remains a lot of 
intellectual work to do.)  

The idea is to focus on the fact that in a classical description, there is a set of 
configurations that would all count as a living cat. Indeed, there are vastly many configurations 
of about 1026 classical point-particles that would count as constituting a living cat. We can put 
the point in the cartoon form which I adopted at the end of Section 7. Think again of the cat’s 
being alive as its having vertical legs, and a vertical tail, and a smile on the mouth. Similarly, think 
of its being dead as its having horizontal legs, and a horizontal tail, and a frown on the mouth.  
So there is a similarly vast set of configurations that would all count as a dead cat.  Notice that 
these two sets, though both vast, do not overlap at all. No configuration of a classical cat with 
the point-particles composing its legs and tail aligned vertically is also a configuration in which 
the legs and tail are aligned horizontally.  
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And so---now returning to quantum theory--- the Everettian claims that the quantum 
state at the end of Schroedinger’s experiment is, as regards the cat, a wave function with two 
peaks. That is: they claim that there are two regions of the classical configuration space, i.e. the 
set of arguments of the wave-function, where the function’s value, i.e. the output or amplitude, is 
non-negligible.  

(And the Everettian claims that for countless other configurations, the amplitude is 
negligible. Bear in mind that, a priori, these 1026 point-particles could be configured to be any 
classical object of the same total mass. For example: a puddle, or a saucepan with risotto, or a 
small dachshund, or any of myriadly many nameless and often monstrous combinations that 
only a horror movie might devise, such as a half-cat-quarter-dachshund-quarter-risotto.) 

Summing the amplitudes for all the configurations in each of these two regions, we get a 
(square root of) a probability that is substantial. In Schroedinger’s original version of the 
experiment (end of Section 4), where there is about a 50% probability of an atomic decay causing 
the release of the poison, the probability for each of the two regions is about 50%. That is: 50% 
for being alive, and 50% for being dead.  

But whether the probabilities are 50-50, or nearly so, doesn’t matter here. What matters 
is the claim that there are two such patterns in the quantum state: two regions of the classical 
configuration space where the amplitude is vastly greater (as a ratio) than it is for points outside 
both regions. So if we accept that a cat is such a pattern, then there really are two cats. 

Note that the essential idea here is independent of quantum theory’s details; (as 
Everettians note). For the idea is closely analogous to one which we all unhesitatingly endorse 
for several other physical theories. Namely, theories in which states can be added together to 
give a sum-state, in which the component states do not influence each other, or only do so 
negligibly. This is called the state being dynamically isolated from each other. Examples include 
the theory of water-waves, and the theory of electromagnetism. (Recall from (1) at the start of 
Section 4, that just as we add two vectors by adding corresponding coefficients, we add two 
functions such as wave-functions by adding their values for each given argument.) 

For example: the water in Portsmouth harbour can get into many different states. It can  
can get into (i) a state which we describe as, e.g. a wave passing through the harbour’s centre 
heading due West; or into (ii) a state which we describe as a wave passing through the centre 
heading due North; or (iii) into a state which is the sum of these. But does this last case (iii) 
imply that we face a ‘Portsmouth water paradox’? Should we agonize about how the Portsmouth 
harbour water-system can in one place (viz. the harbour’s centre) simultaneously have the 
contrary properties of being Westward and being Northward?  

Of course not! Rather, we say that waves are patterns in the water-system. (Agreed, we 
call such patterns ‘objects’; in the jargon of philosophy, they are often called higher-level 
objects.) And so we say that there are two waves, with the contrary properties, one Westward 
and one Northward. Since the contrary properties are possessed by two distinct objects, there is 
no contradiction. 

Similarly for other theories whose states can be added together, with the component 
states not influencing each other. For example: think of the electromagnetic field in a certain 
region, and e.g. pulses of laser light travelling in different directions across it---as happens in a 
light-show at a rock concert. There is no ‘laser light-show paradox’.  

Analogously, says the Everettian, we should endorse this idea when it is applied to the 
end of Schroedinger’s experiment. Thus the Everettian claims to overcome the limitation at the 
end of Section 7 above. For with macroscopic objects as patterns in the quantum state, not 
lumps of stuff, we see that solving the measurement problem does not require that in any 
individual case, the quantum system is actually in just one of the states in the improper mixture 
obtained after the decoherence process. The system is in none of these states. But each state is a 
pattern; and that---a pattern---is what a macroscopic object such as a cat really is. So there are 
two cats, with contrary properties: one in each ‘case’, i.e. world. 
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So much by way of expounding the Everettian’s claim that there are two cats. Now for 
my misgivings. 

 
 

(2): Recall that to expound the Everettian’s claim, I put it in cartoon form (above and at the end 
of Section 7): with being alive corresponding to vertical legs, a smile etc. So clearly there is a vast 
amount of intellectual work still to do. The Everettian owes us details about which classical 
configurations are to count as ‘being alive’. More generally, setting aside cats and Schroedinger’s 
experiment and biology: we need to be told which classical configurations are to count as the 
system we are concerned with, having each of a host of properties that we routinely ascribe to 
macroscopic objects. ‘Being alive’ is of course a property ascribed in both everyday life and 
scientific work. But we can concede that it would be enough for the Everettian to give a 
“translation-manual” from the regions of their vast classical configuration space to just scientific 
properties; or even just properties used in physics. For example, which regions (and so which 
quantum states, with a peak, a non-negligible amplitude, over those regions) count as: having a 
density of 7 grams per cubic centimetre, or being made of lead, or being a fluid, or being a good 
electrical conductor? Only if the Everettian can give us such a translation-manual will it be 
plausible that the familiar macroscopic realm---and more precisely, the vast empirical success of 
classical physics---can be understood as emergent from the quantum state of the cosmos.  

Obviously, this is a vast challenge. Besides, the challenge is all the greater, when we 
remember two points made above. First: there are countless configurations of 1026 particles that 
correspond to no recognizable macroscopic object, not even a horror-movie monstrosity like a 
half-cat-quarter-dachshund-quarter-risotto. Think of a vastly variegated and spatially very 
dispersed “sludge”: about a cubic centimetre of cool lead here, a cubic centimetre of hot 
methane gas there, and so on, and, say, 100 miles away, a (more appealing) hunk of ice-cream. 
Nothing in our Everettian description of a quantum measurement avoids such a sludge getting a 
non-negligible amplitude. So why don’t we ever see it? 

The second point aggravating the challenge was at the end of Section 8. Namely: the 
example of a how a system’s decohering environment is in some cases spatially internal showed 
that defining the factorization of the cosmos’ state-space in terms of N macrosystems will be a 
lot more subtle and complicated than just “listing” all the N systems which we tend to think of 
as “lumps of matter”, such as pointers and dust-particles. This point is all the sharper once we 
realize that the macroscopic realm which the Everettian must recover consists of patterned 
configurations that are a minuscule subset of a configuration space, most of whose elements are 
nameless and unstructured “sludge”. 

But I do not say that this challenge is impossible. And I stress that in fulfilling it, 
decoherence will undoubtedly play a crucial role. We can illustrate this by going back to the cat, 
i.e. to biology. Recall from, for example, your biology lessons that biochemistry successfully 
describes the metabolism of cats (and of course all other organisms) in a completely classical 
way. Its models of chemical reactions in the cell assume that the proteins, DNA-sequences etc. 
are localized: these molecules are modelled as minuscule cousins of the ball-and-stick models on 
the biochemist’s table-top; (balls for the atoms, sticks for the bonds between them).  

That this classical description of what is after all a quantum reality can succeed so well 
reflects the efficiency and ubiquity of decoherence. For the protein and DNA molecules are, on 
the atomic scale, very large: they often contain well over 10,000 atoms (and so are often called 
‘macromolecules’). And they are constantly bombarded by tiny molecules such as water 
molecules that decohere them, and so---in the “improper mixture sense” (Section 7)---localize 
them. The upshot is that at the length-scale of macromolecules and at longer lengths, a classical 
description of protein molecules, DNA-sequences etc. as having well-nigh definite positions can 
succeed. And this success is well illustrated by the models filling biochemistry textbooks.  
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(With these remarks about biology managing well while treating quantities like the 
position of a macromolecule classically, without regard to quantum theory, I do not mean to 
deny that some important biological processes “cue in” to quantum aspects. Examples of this, 
including crucial processes like photosynthesis, are nowadays a focus of research in the new field 
called ‘quantum biology’.) 
 

 
 

Chapter 4.10: A reversal of ideas 
So much by way of expounding the Everettians’ claim that indeed there are two cats, just 
because there are two patterns: or more generally, that indeed the world splits---there is a 
multiplicity of objects---at the end of a decoherence process, since the state is then an improper 
mixture with two or more components corresponding to macroscopic realms with different 
values for the quantities selected by decoherence. As I said: I think this claim is, though dizzying, 
coherent. And suppose we now set aside all my misgivings at the end of the last Section. 

Should we then conclude that the Everettian is home free? That is: does their solution to 
the measurement problem (specifically: their appeal to decoherence to justify talk of splitting) 
have no internal conceptual difficulties? I say ‘internal’ because we may prefer a rival solution---
perhaps one of those reviewed in Section 4 above---for other reasons; (including perhaps reasons 
that boil down to our intellectual temperament, as discussed in Chapter 1.4).  

I say: No. I submit that there are two main difficulties remaining. Both are distinctively 
philosophical, or interpretative, rather than physical. One difficulty is about the topic of 
probability: I will address it in the next (and final) two Sections. In this Section, I raise a difficulty 
about the quantity selected by decoherence.  

I do not claim that it is a knock-down objection: it is a conceptual tension or 
embarrassment facing the Everettian, rather than an outright problem. But it is worth articulating 
for two reasons. First: so far as I know, it is not addressed in the Everettian literature. Second: 
there is an interesting analogy between it and a criticism of Bohr’s complementarity 
interpretation (cf. Section 5 above) that Schroedinger made in the great 1935 paper that 
formulated his cat paradox (and that also, as I mentioned, analysed entanglement). I will first, in 
(1), state the objection; and then in (2), explain the analogy with Schroedinger’s criticism of Bohr.  
 
 
(1): To explain this difficulty, I need first to stress the striking conceptual unity of classical 
physics’ successes from the time of Newton till about 1900 (reviewed in Chapters 2.3, 2.6, 3.3 
and Section 1 above). In classical physics, each of a very small set of quantities fulfils two roles 
that are, a priori, disparate.  Namely: (i) being postulated as basic for the description of matter’s 
tiniest components (whether point-particles or small extended pieces of matter); and (ii) being 
used to describe composite systems with vastly many such components. The paradigm examples 
are position and momentum within mechanics. In classical physics, a single quantity’s fulfilling 
these disparate roles (i) and (ii) was unified by various procedures: especially summing or 
averaging of the values for the tiny components in (i), to get the values for composite systems in 
(ii). The simplest case is elementary and familiar: the centre-of-mass of a composite object is a 
weighted average of the positions of its components, with weights equal the components’ 
masses.   

Agreed: with the development of other branches of physics, especially the rise of field 
theory (Section 1 above), quantities other than position and momentum, such as electric charge 
and electric field, had to also be accepted. Nevertheless, classical physics manages with a very 
small set of quantities. (Depending on how finely you distinguish quantities, there are between 
about a dozen and about fifty of them.) And most of the quantities fulfilling role (i) also fulfil 
role (ii): again with various procedures, especially summing and averaging, unifying the roles. 
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Against this background, we can now see the conceptual tension or embarrassment 
facing the Everettian.  The Everettian makes two claims that are in tension with each other. 
Namely, they say: 

 
(a): Although classical physics took quantities such as position and momentum to be exact, and 
to always have exact values: such quantities are in fact only definable approximately, through the 
process of decoherence. (Jargon: philosophers might call them ‘emergent’; physicists also say 
‘effective’).  

But they also say:--- 
(b): These classical notions are needed to define the quantum state-space. For as we saw: the 
quantum state is a wave-function defined on classical configuration space. Agreed, I have 
hitherto simplified. For quantum states can be represented as complex-valued functions (also 
called ‘wave-functions’) with other sets of arguments than components’ positions. The main 
such alternative representation uses momentum. That is: the set of arguments for a N-particle 
system are the 3N-tuples of all the possible values of the components’ classical momentum in 
each spatial direction. But here again, it is the classical notion, viz. of momentum, that needs to 
be invoked; and so the same conceptual tension arises. 
 
  So the difficulty, or tension, is that notions which according to the Everettian is really 
approximate (emergent, effective) must be appealed to, in order to interpret the theory at the 
smallest and most basic level. 
 As I said, I do not think this is a knock-down objection. For example, the Everettian 
might reply that we often learn new theories by understanding its new concepts through the 
prism of the old theory, but that in due course there is a gestalt-shift, so that we re-interpret the 
old via the new. Fair comment. But I am uneasy that today in 2025, a hundred years after the 
quantum revolution, we (including the Everettians!) have not yet achieved the envisaged gestalt-
shift.  
 
 
(2): Finally, an analogy. In Section 5’s quick review of the main strategies for solving the 
measurement problem, I mentioned Bohr’s complementarity interpretation. I can now explain 
how this difficulty for the Everettian is analogous to a striking criticism of Bohr that 
Schroedinger made in his “cat” paper of 1935.   

Schroedinger’s criticism is based on a historical fact about classical physics being in 
tension with Bohr’s (as one might say: “the Complementarian’s”) claim that classical concepts 
are indispensable within quantum physics. Adopting a labelling to show the analogy with my (a) 
and (b) above: the fact and the claim are, respectively, as follows.   

 
(a’): Despite the conceptual unity of classical physics’ successes (described above), classical 
physicists did not claim that the classical quantities were indispensable for physics; nor did they 
claim that such indispensability would be shown by future physics. Indeed, many expected these 
quantities to be superseded by future physics.  

But Bohr claims that:-- 
(b’): Classical quantities are indispensable for physics, although of course quantum physics has 
shown they do not always have exact values. For Bohr, the principal reason for this “lesson” 
from quantum theory is that position and momentum cannot be measured simultaneously with 
arbitrary accuracy. (This is the famous Uncertainty Principle (in it best known form). In the 
mathematics of quantum theory, this is represented by position and momentum not commuting 
with each other.) And by ‘indispensable’, Bohr means, roughly speaking: indispensable for 
reporting experimental results in an objective language. (But here, we do not need the details of 
Bohr’s doctrine, or of why he held it: which are controversial.) 
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So the difficulty, or tension, which Schroedinger is articulating as a criticism of Bohr is 

that: notions which classical physicists expected to be superseded by future physics, and which 
according to the Complementarian are indeed really limited (a lesson taught us by quantum 
theory), must be appealed to, in order to interpret quantum theory. Indeed, the 
Complementarian says they are needed in order to report experimental results objectively.  

Let me end by quoting Schroedinger’s own words against Bohr; (at the end of Section 2 
of his 1935 paper). He begins with (a’).  He praises classical physicists' intellectual modesty about 
their theory (which he calls ‘model’ and ‘picture’): in particular, about whether its quantities 
(which he calls ‘determining parts’) can be measured on a microscopic object in nature (which he 
calls ‘natural object’). He writes: 
 
‘Scarcely a single physicist of the classical era would have dared to believe, in thinking about a 
model, that its determining parts are measurable on the natural object. Only much remoter 
consequences of the picture were actually open to experimental test. And all experience pointed 
toward one conclusion: long before the advancing experimental arts had bridged the broad 
chasm, the model would have substantially changed through gradual adaptation to new facts.’ 
 
Then he goes on to criticize what he calls the ‘reigning doctrine’ (i.e. Bohr’s complementarity) 
for declaring that only familiar classical quantities (position, momentum) are measurable. He 
writes: 
 
‘Now while the new theory [i.e. quantum theory: JB] calls the classical model incapable of 
specifying all details of the mutual interrelationship of the determining parts (for which its 
creators intended it), it nevertheless considers the model suitable for guiding us as to just which 
measurements can in principle be made on the relevant natural object. ... This would have 
seemed to those who thought up the picture a scandalous extension of their thought-pattern and 
an unscrupulous proscription against future development. Would it not be pre-established 
harmony of a peculiar sort if the classical-epoch researchers, those who, as we hear today, had no 
idea of what measuring truly is, had unwittingly gone on to give us as legacy a guidance scheme 
revealing just what is fundamentally measurable for instance about a hydrogen atom!?’ 

     
 

 
Chapter 4.11: Angst about probability: what is objective probability? 
As this Chapter’s Preamble announced: I have so far emphasized synchronic issues, i.e. issues 
about the quantum state at a single time. I have neglected issues about time and change, except 
to say that I postpone till this Section the question of how the deterministic Schroedinger 
equation can be reconciled with quantum theory’s use of probabilities. So I now focus on how 
the Everettian answers this question. This will raise the philosophical question: what exactly is 
objective probability (also known as: chance)? 

The first point to make is that the question really breaks down into two problems that 
the Everettian faces. The Everettian literature calls them ‘the qualitative problem of probability’, 
and ‘the quantitative problem of probability’. Discussing the first will lead in to the second, 
which I address in the next Section.  

The qualitative problem is that probability seems to make no sense, if all possible 
outcomes of a putatively probabilistic process in fact occur. But this is what the Everettian 
claims, at least for quantum measurements and the other processes, such as radioactive decay 
(remember the poison for Schroedinger’s cat), in which the quantum state evolves to include a 
term, i.e. a summand in the sum, for each outcome. (Here, ‘outcome’ was made more precise by 
Section 8’s sketch definition of ‘world’.) 
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In short, the Everettian’s answer to this question is that even though all possible 
outcomes occur, there is subjective uncertainty. Roughly speaking, it is the uncertainty of an 
experimenter just before doing a quantum measurement, about the question ‘Which outcome 
will I see?’ Again, this answer comes in several versions, but I will develop just one main version. 
I begin in (1) by explaining how subjective uncertainty is invoked in some other physical 
theories; and then in (2) returning to the Everettian. 
 
 
(1): It will be clearest to begin by explaining how, in a broadly similar way, probability is taken as 
subjective uncertainty, for deterministic processes of the kind familiar within classical physics, 
e.g. Newtonian mechanics. (Recall the discussion of determinism in Chapter 3.8.) For such a 
process, a unique future sequence of states is determined by the present state. (More precisely: by 
the present state, together with the process’ deterministic law: which in mechanics would be a 
specification of the future forces exerted on the system.) But a person, for example an 
experimenter, may not know this future sequence of states in advance: either because she does 
not know the present state in full detail or because it is too hard to calculate from that state what 
the future sequence will be. Given our present interest in how to understand probabilities, let us 
set aside the latter cause of uncertainty, since it is a matter of calculational intractability rather 
than ignorance of which among several alternatives occurs. It is ignorance of this latter kind 
which gives scope for the idea of probability. So in the context of classical physics, probability is 
reconciled with determinism by subjective uncertainty: by the idea of a person not knowing 
which alternative really occurs, but having various degrees of belief, i.e. subjective probabilities 
(cf. Chapter 3.3), about the matter. In the context of deterministic physics: these will be 
subjective probabilities about what exactly is the present state. 

But here, the phrases ‘degrees of belief’ and ‘subjective probabilities’ should be 
understood in a logically weak sense. They do not imply that the probabilities, i.e. the numbers 
½, 1/3 etc. assigned by the person, are a matter of idiosyncratic taste or temperament: that is, are 
undetermined by all the objective evidence.  For there is a branch of classical physics, called 
‘statistical mechanics’, that studies composite systems with vastly many components: a large and 
important branch, though I have not yet had occasion to mention it. (It was developed from the 
late nineteenth century onwards: among its main figures were Maxwell (1831-1879) who we met 
in Section 1, Gibbs (1839-1903) and Boltzmann (1844-1906).) Thus statistical mechanics studies 
systems like a sample of gas taken as composed of classical molecules, tiny “lumps in the void”. 
It surmounts the utter unknowability of the exact microscopic state---the exact positions and 
momenta of all the classical molecules---by postulating a probability distribution over the  
possible states, and then calculating average (also called: expected) values of quantities like energy 
etc. Here, the probability distribution gives the weights to be used in calculating the average. The 
many resulting predictions meet with great empirical success.  

Now the point is: a very good case can be made for calling this distribution ‘objective’, 
even though it is not determined by the exact microscopic state. Making this case invokes 
technical notions which go by names like ‘mixing’ and ‘ergodicity’. But we need not go into 
details. For us it is enough that some rather natural assumptions about these notions select the 
empirically successful probability distribution from the countless horde of mathematically 
possible distributions: a selection that has nothing to do with idiosyncratic taste or temperament. 

Besides, a similar strategy for reconciling probabilities to determinism, and justifying 
them as objective, occurs in the pilot-wave theory that we mentioned at the end of Section 5. 
Recall that like the Everettian, the pilot-wave theorist says that the Schroedinger equation is 
always ‘right’ (as Bell vividly put it: 1987, p. 201); but unlike the Everettian, the pilot-wave 
theorist says a quantum system has values for quantities other than its state’s eigenvalues. For 
there are also point-particles with exact positions. With this as background, the pilot-wave 
theorist goes on to say: the apparent indeterminism of quantum theory arises from the utter 
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unknowability of these positions; and quantum theory’s orthodox (and again: empirically 
successful) Born-rule probability distribution over those positions can be derived from rather 
natural assumptions about notions like mixing and ergodicity, applied to the quantum state.   

To sum up: both classical statistical mechanics and the pilot-wave theory reconcile the 
use of probabilities with the future sequence of states being determined by all the details of the 
present microscopic state, by: (i) invoking the utter unknowability of all the details of that state 
(in short: particles’ positions); and (ii) arguing that the empirically successful probability 
distribution over these details is not a matter of taste or temperament, but of natural physical 
assumptions. 
 
 
(2): Now we can say how the Everettian’s answer to the qualitative problem of probability is 
analogous to all this. They claim that also in the Everettian framework, probability can be taken 
as subjective uncertainty about a deterministic process. But now, it will be uncertainty about a 
deterministic process of the unfamiliar Everettian kind. For such a process, a unique future 
sequence of states for the composite system---in principle, the entire cosmos---is determined by 
the present quantum state (together with the Schroedinger equation encoding all the forces that 
are acting). Yet, says the Everettian, there can still be subjective uncertainty. But the situation 
differs from the classical one in that this uncertainty arises, even if we assume the person, e.g. the 
experimenter, does know the present state in all its detail, and also all the forces that are acting, 
and so also knows how to calculate  the entire future sequence of states.  

Here, I should clarify that Everettians have an account connecting their state of the 
cosmos Y (which of course no one knows) with the various quantum states we ascribe, with 
great empirical success, to objects in the laboratory in real-life experiments. So although of 
course no one can write down Y, the Everettian framework can recover the successful real-life 
ascriptions of quantum states to electrons, atoms and even dust-particles. (We can skip the 
details of this account: suffice it to say that it uses the ideas in Sections 7 and 8.) Thanks to this 
account, the Everettian can recover the idea, which is realized every day in real-life experiments, 
of the experimenter ascribing a quantum state to a microscopic system such as an atom that is 
about to be measured, and thereby deducing from that state the orthodox Born-rule 
probabilities, i.e. those numbers. 

But do those numbers deserve to be called ‘probabilities’? After all, according to the 
Everettian, each of the various measurement outcomes truly occurs. To this the Everettian 
answers: ‘Yes: the experimenter is uncertain since, thanks to the impending ‘splitting’ during the 
process of measurement, she will experience, not all the outcomes, but just one---and so she can 
ask ‘Which outcome will I see?’. And that is enough for the numbers to be called ‘probabilities’.’   

I think this answer is tenable. For I think the core meaning of ‘probability’ requires that 
there are various cases, with numerical weights (or if you prefer: measures or intensities) assigned 
to them that are to guide in some suitable way agents’ beliefs and actions. But this core meaning 
does not require that only one case really occurs.  However, I agree that this answer is 
incomplete, in that it raises philosophical issues: indeed, at least three.  

First: the answer leads to the issue of the identity over time of persons and-or 
consciousnesses. For it clearly depends on taking the question ‘Which outcome will I see?’ to be 
analogous in relevant respects to the question in the context of classical physics or pilot-wave 
theory, ‘Which alternative (among the many microscopic states compatible with my incomplete 
knowledge) actually occurs?’. So the analogy involves accepting that the ‘I’ which sees just one 
outcome, could---in some good sense of ‘could’---see another outcome. Here, we again see 
Chapter 3.3’s theme: that in science, no less than in everyday thought, we are up to our necks in 
modality. But here, the modality at issue is different from that in Chapter 3. For as we have seen: 
for the Everettian, what could occur i.e. the unexperienced alternative is real (if you prefer: 
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actual), albeit in an unseen branch. (In Chapter 6.3, I will return to this comparison of possible 
worlds with Everettian branches.)   

The second issue is related to the first. In recent decades, quite independently of these 
quantum conundrums, philosophers of mind and metaphysicians have identified the need for a 
notion of possibility that generalizes Chapter 3’s idea of a possible world. It is sometimes called a 
‘centred world’. The general notion of possibility is needed to understand the content of 
sentences that contain (and mental states that are naturally expressed using) words like ‘I’, ‘you’, 
‘now’, ‘then’, ‘here’, ‘there’, ‘this’ and ‘that’---i.e. words whose referent depends on the context of 
utterance (cf. Chapter 3, Section 5). Such words are called ‘indexicals’ or ‘token-reflexives’; and 
the need for the generalized notion of possibility, that is shown by such sentences, is called ‘the 
essential indexical’. We need not go into this issue in detail: both here and in Chapter 3, we have 
had enough to do. I just note that the uncertainty that the Everettian’s answer invokes---viz.  
uncertainty despite full calculational ability, and full knowledge of the composite system state, 
and of all the forces encoded in the Schroedinger equation---invites comparison with the kind of 
indexical uncertainty that philosophers nowadays address using centred worlds.   

The third issue is: why should this uncertainty be quantified by the Born-rule 
probabilities derived from the quantum state? Why are they the right, or somehow appropriate, 
degrees of belief for the experimenter to have about ‘which outcome I will see’?  So this is what 
the Everettian literature calls ‘the quantitative problem of probability’.  

 
 
 

Chapter 4.12: Subjective probability to the rescue? 
Indeed, this problem can be made sharper by imagining that a quantum system is subjected to a 
sequence of measurements. This prompts a tempting line of thought that the Everettian should 
regard the Born-rule probabilities as wrong. This line of thought was a focus of discussion for 
what in Section 6 I called ‘the first Everettian answer’ (spanning about 1960 to 1990): which 
formulated the splitting of worlds in terms of measurement outcomes, and which made no 
appeal to decoherence. The line of thought goes as follows.   

According to the Everettian, the quantum state evolves over the course of a sequence of 
measurements, so as to encode all possible sequences of outcomes. Formally, the final state has a 
term (i.e. a summand in the sum) representing each sequence of outcomes. For example, 
consider a toy-model in which there are ten measurements, each with two outcomes (say, H and 
T, for ‘heads’ and ‘tails’). Then there are 210 = 1024 sequences of outcomes; and so the 
Everettian must say there are 1024 terms in the final quantum state.  

Since according to the Everettian, each such sequence actually occurs, it seems at first 
sight that the Everettian probability of a sequence should be given by the naïve counting 
measure. That is, the Everettian should say: each sequence has probability 1/1024. And so more 
generally, it seems that the probability of an event corresponding to a set of sequences, such as 
three of the ten measurements having outcome H, is the sum of the basic probabilities (each 
equal to 1/1024) of the sequences in the set. But this amounts to assuming that the two 
outcomes H and T are equiprobable; (and that the measurements form independent trials in the 
sense of probability theory). And this spells disaster for the Everettian. For the counting measure 
probabilities bear no relation to the quantum Born-rule probabilities, and so the procedure of 
counting Everettian worlds just by their sequences of outcomes seems to conflict with quantum 
theory’s treatment of probability. 

So much by way of sharpening the quantitative problem. I will now report what is 
nowadays the best-known and most developed Everettian answer to it. (But the Notes and 
Further Reading will also mention a recent alternative.) This answer has two parts. The first part 
builds on the preceding Sections’ material; but the second part is wholly novel, and will occupy 
the rest of the Section. 
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The first part is to point out that decoherence, thanks to its flexibility, refutes the toy-
model with its naïve counting measure. (Recall the end of Section 7, and Section 8.)  That is: on 
any precise definition of ‘world’ for the systems concerned, there will be many trillions of worlds, 
wholly independently of the number of kinds of outcome registered by the measurement 
apparatus (in my example: just two, H and T). And more important: because one can vary the 
exact definitions of decoherence’s crucial notions (like ‘system-environment boundary’), there is 
no definite number, not even in the trillions, of worlds which we need to—or could!---appeal to, 
in order to give an account of probability in terms of counting. In short: the naïve counting 
measure is a mirage. It is woefully ill-defined, and the Everettian can and should just reject it.  

The second part of the Everettian’s answer is a remarkable recent development, that is 
wholly unlike anything in the previous discussion (either by me in this Chapter or in the 
Everettian literature I have so far drawn on). In terms of the previous Section’s discussion, it is 
an analogue of the arguments within classical statistical mechanics and pilot-wave theory that I 
mentioned. Recall that they justify those theories’ probability distributions, not by their empirical 
success, but by their following from natural assumptions. Analogously, Everettians have recently 
developed theorems that justify the Born rule, not by its empirical success, but by its uniquely 
following from certain general assumptions. But there are also two striking differences between 
the two cases.  

(1): The arguments within statistical mechanics and pilot-wave theory make assumptions 
about how the system changes over time, albeit general ones. In the jargon: the assumptions 
about mixing and ergodicity are assumptions about dynamics. But the assumptions of the recent 
Everettian arguments do not refer to how the system changes: they are synchronic, or kinematic. 
We do not need details: but in short, they turn on the linear structure of the quantum state-space.  

(2): The second difference is even more striking. The arguments within statistical 
mechanics and pilot-wave theory, and their assumptions, make no appeal to general principles 
about subjective probability; in particular, to principles about how rationality should govern a 
person’s subjective probabilities. That is as we saw in the previous Section. Although I 
introduced the reconciliation of probability with determinism in classical physics by invoking 
subjective probabilities about what is the exact state, it is details of physics, such as assumptions 
about how a system changes over time, that are the dominant considerations determining which 
probability is correct; (and in particular, which probability is empirically successful). But the 
Everettians’ assumptions are indeed about what principles of rationality should govern a person’s 
subjective probabilities. 

This is very remarkable since such principles are formulated and compared in a 
discipline, decision theory (briefly discussed in Chapter 3.3), that belongs to psychology and 
economics, and so prima facie has absolutely nothing to do with physics. So the Everettians’ idea 
is remarkably inventive. The idea is, first, to appeal to such principles of rationality as applied to 
a person’s degrees of belief in the various outcomes of various quantum measurements; and 
then, to go on to prove that these principles imply that the person’s degrees of belief must be 
given by the Born rule. So let me end this Chapter with some details about this. 

In decision theory, there is a tradition of proving what are called ‘representation 
theorems’. They are so-called because they show that under certain conditions a rational person’s 
behaviour reveals that their degrees of belief can be represented as numerical probabilities. That 
is: their degrees of belief must conform to the usual rules about probabilities, viz. that the 
probabilities of all the envisaged alternatives must add up to 1, and that the probability of either 
Alternative A or Alternative B, where A and B are incompatible (cannot both be true) is the sum 
of the individual probabilities. Thus there are theorems to the following effect. Imagine a person 
whose preferences for gambles (encoding certain degrees of belief and certain desires) conform 
to a certain set of axioms: axioms that seem rationally compelling, i.e. compulsory for a rational 
person. The axioms say, for example, that a person who prefers A to B and B to C must also 
prefer A to C, and that a person would not enter a bet (or a collection of bets) that is guaranteed, 
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whatever the outcomes, to yield a loss. Then the person must have degrees of belief that 
conform to the rules of probability. In other words, their degrees of belief are represented by a 
probability distribution.  

We do not need further details, technical or even philosophical, about such theorems. 
But let us note that these theorems do not dictate a unique probability distribution over the 
various alternatives. This is of course as one would expect. Imagine two people are offered bets 
on horses in a race. So which bets they are willing to take, and which bets they decline, reveal 
their degrees of belief in the alternative propositions about which horse wins. Even if the two 
people are rational in the sense of the axioms listed in the representation theorems, we surely do 
not expect the two people to accept bets at exactly the same odds. For they can have legitimate 
differences of opinion. In short: we of course do not expect rationality to dictate specific degrees 
of belief in arbitrary propositions. (We touched on this in Chapter 2.5’s discussion of Hume and 
inductive logic.)   

But the recent Everettian theorems secure precisely this uniqueness, about the specific 
scenario of a person making gambles on the outcomes of various quantum measurements. 
Besides: the probability distribution that is uniquely dictated by the axioms about the person---
which, as in the tradition of decision theory, seem to encode merely the compulsory requirement 
that they are rational---is indeed quantum theory’s Born-rule probability distribution over the 
various outcomes.   

A bit more precisely: the theorems show that a person who: (i) is an Everettian and is 
about to observe a sequence of quantum measurements, and also (ii) knows the initial state of 
the quantum system to be measured, and (iii) is forced to gamble on which outcomes she will see 
(using the Everettian sense of ‘splitting’, to interpret the phrase ‘she will see’), and (iv) whose 
gambles are subject to certain rationality axioms---must apportion her degrees of belief (as 
shown by her betting behaviour) in accordance with the Born-rule as applied to the initial state 
that she knows (as assumed in (ii)).  

To sum up this Section. I began with an objection to the Everettian. It said that they 
could not answer the quantitative problem of probability, since they seemed obliged to endorse 
the naïve counting measure: which dooms them to disagreeing with the empirically successful 
Born-rule probabilities. But the Everettian can and should appeal to decoherence so as to reject 
the naïve counting measure. And furthermore, Everettians have proved remarkable 
representation theorems, analogous to those in classical decision theory. But while the classical 
theorems allow a wide variety of subjective probability distributions, the Everettian theorems 
dictate that if a rational Everettian knows the relevant quantum state, her degrees of belief about 
measurement outcomes must be the orthodox Born-rule probabilities. So the Everettians can say 
that their framework not only accommodates, but even implies, the Born-rule probabilities. 
Remarkable indeed!  
 
 
 
 
Chapter 4: Notes and Further Reading  
As for Chapters 2 and 3, there is a dauntingly large literature. And as in those Chapters, I 
recommend:  
(i) the internet encyclopedias and archives, and the accessible books, listed in items (1) to (3) of 
the Notes for Chapter 1; all of which cover the problems of interpreting quantum theory, and in 
particular the Everettian interpretation. 
(ii) reading the original masterpieces, some of which are indeed very readable.  
 
I will divide my more specific suggestions in four groups, following the sequence of topics in the 
Chapter : (1) The measurement problem, and the interpretations of quantum theory mentioned 
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in this Chapter’s Section 5; (2) other interpretations (again, I will emphasise how they propose to 
solve the measurement problem); (3) the Everettian interpretation, in general terms (cf. Sections 
5 and 6); (4) the treatments of decoherence (cf. Sections 7 to 10) and of probability (cf. Sections 
11 and 12).    
 
 
(1): For quantum theory and its interpretation, in general terms, I suggest four groups, labelled 
(A) to (D): of which the last is about historical aspects. 
  
(1.A): For the various interpretations of quantum theory prompted by the measurement 
problem, pride of place must go to the two essays, by Bell and by Schroedinger, that I lent on in 
the Chapter’s exposition. Namely: 

(i) J. S. Bell, ‘Six Possible Worlds of Quantum Mechanics’; which I used in Section 5’s 
taxonomy of interpretations. This is most easily found in the journal, Foundations of Physics, for 
1992. It is also reprinted in Bell’s collection of articles, Speakable and Unspeakable in Quantum 
Mechanics (Cambridge University Press 1987; revised edition 2004). Bell’s collection also 
includes his most famous papers, about quantum non-locality (Bell’s inequalities): a topic which 
this Chapter has set aside. This book is available at: 
https://www.cambridge.org/core/books/speakable-and-unspeakable-in-quantum-
mechanics/E0D032E7E7EDEF4E4AD09F458F2D9DB7 

(ii) E. Schroedinger, ‘The Present Situation in Quantum Mechanics’, published in 1935 in 
German, but conveniently translated into English by J. Trimmer, in Proceedings of the American 
Philosophical Society, volume 124 (1980), pp. 323-338. This is available via J-Stor at: 
https://www.jstor.org/stable/986572 

(ii) is also reprinted in J. Wheeler and W. Zurek (eds.), Quantum Theory and 
Measurement, (Princeton University Press 1983). This anthology of 49 papers reprints many 
important papers.  For example, it includes the two most famous of Bell’s non-locality papers. It 
includes Bohm’s 1952 papers re-discovering de Broglie’s pilot-wave theory. It also includes 
seminal papers by Bohr (especially in his debate with Einstein) and by Wigner; and---most 
relevant to us---it includes Everett’s seminal paper from 1957: details in (2) below. This 
anthology is available at: 
https://www.degruyter.com/document/doi/10.1515/9781400854554/html 

Another splendid overview of interpretations, aimed at philosophers, is: 
(iii) D. Lewis, ‘How many lives has Schroedinger’s cat?’, Australasian Journal of 

Philosophy volume 82 (2004), p. 3-22; available at: https://doi.org/10.1080/713659799  
 
 
(1.B) There are many fine books that explain quantum theory and the options for its 
interpretation, for newcomers, especially philosophers. Most of these taxonomize the 
interpretations in much the same way as my Section 5 (following Bell). Two, whose level makes 
them natural successors to this Chapter’s exposition, are: 

(i) Peter Lewis, Quantum Ontology (Oxford University Press, 2016); which is available 
at: 
https://global.oup.com/academic/product/quantum-ontology-
9780190469818?q=Peter%20Lewis%2C%20Quantum%20Mechanics&lang=en&cc=gb 

(ii) By an expert about Everett, but which equally treats other interpretations:  
J. Barrett, Conceptual Foundations of Quantum Mechanics (Oxford University Press, 2019); 
which is available at: 
https://global.oup.com/academic/product/the-conceptual-foundations-of-quantum-mechanics-
9780198844693?q=Conceptual%20Foundations%20of%20Quantum%20Mechanics&lang=en&
cc=gb 

https://global.oup.com/academic/product/the-conceptual-foundations-of-quantum-mechanics-9780198844693?q=Conceptual%20Foundations%20of%20Quantum%20Mechanics&lang=en&cc=gb
https://global.oup.com/academic/product/the-conceptual-foundations-of-quantum-mechanics-9780198844693?q=Conceptual%20Foundations%20of%20Quantum%20Mechanics&lang=en&cc=gb
https://global.oup.com/academic/product/the-conceptual-foundations-of-quantum-mechanics-9780198844693?q=Conceptual%20Foundations%20of%20Quantum%20Mechanics&lang=en&cc=gb
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(1.C) There are countless more advanced books that address the measurement problem, but 
presuppose some knowledge of quantum mechanics and facility with mathematics. Here are 
three books that expound approaches mentioned in my Section 5. They are by eminent leading 
researchers.  

The first two are famous expositions of the pilot-wave theory. The third is P. Pearle’s 
recent exposition of the programme (usually called ‘the dynamical reduction programme’) that 
seeks to solve the measurement problem by modifying the Schroedinger equation: a programme 
to which Pearle is a pre-eminent contributor. Regrettably, my Section 5 gave even less details 
about this programme than about the pilot-wave theory, simply because it is hard to state briefly 
how it obtains the right kind of wave-function collapse. But the programme is flourishing; and 
has been worked on by many eminent physicists, such as Diosi, Ghirardi, Gisin and Penrose, as 
well as by Pearle. 

(i): D. Bohm and B. Hiley, The Undivided Universe, (Routledge 1993); available at: 
https://www.taylorfrancis.com/books/mono/10.4324/9780203980385/undivided-universe-
david-bohm-basil-hiley  

(ii) P. Holland, The Quantum Theory of Motion, (Cambridge University Press, 1993); 
and available since 2010 at: 
https://www.cambridge.org/core/books/quantum-theory-of-
motion/EF981BAE6222AE87171908E8DB74AF98   

(iii): P. Pearle, Introduction to Dynamical Wave Function Collapse (Oxford University 
Press 2024); it is available at: 
https://global.oup.com/academic/product/introduction-to-dynamical-wave-function-collapse-
9780198901372?q=Philip%20Pearle&lang=en&cc=gb 
 

 
(1.D) The history of the interpretations of quantum theory is of course fascinating. I pick just 
five important items. 

(i) Einstein and Bohr had a famous debate from the mid-1920s onwards. For an 
introduction, see Bohr’s essay in the extraordinary anthology of essays in honour of Einstein, 
Albert Einstein: Philosopher-Scientist, volume 7 in the series Library of Living Philosophers, 
edited by P.A. Schilpp, Open Court 1949. Bohr’s essay is also reprinted in J. Wheeler and W. 
Zurek (eds.), Quantum Theory and Measurement, mentioned above. 

(ii) The Solvay conference in 1927 was epoch-making. Its Proceedings were re-published, 
with a magisterial editorial introduction, in: G. Bacciagaluppi and A. Valentini (eds.), Quantum 
Theory at the Crossroads, (Cambridge University Press, 2009). It is available at:  
https://www.cambridge.org/core/books/quantum-theory-at-the-
crossroads/0F8A6712D61351E330A4D52C7EC8CC2C 

(iii) A superb survey of the role of philosophical ideas in the historical development of 
physics, which I already recommended in Chapter 2, and which also covers the quantum theory, 
is: J. Cushing, Philosophical Concepts in Physics (Cambridge University Press, 1998; online 
2012).  Available at: https://www.cambridge.org/core/books/philosophical-concepts-in-
physics/F285F13FE71F225BD8BE01F754F8C2E5 

(iv) A definitive biography of Bell is: A. Whitaker, John Stewart Bell and Twentieth 
Century Physics (Oxford University Press, 2020). It is available at:  
https://global.oup.com/academic/product/john-stewart-bell-and-twentieth-century-physics-
9780198861263?q=A.%20Whitaker%2C%20Bell&lang=en&cc=gb 
 (v) A recent anthology of commissioned articles about the history is: The Oxford 
Handbook of the History of Quantum Interpretations, (Oxford University Press, 2022), edited 
by O. Freire, G. Bacciagaluppi, O. Darrigol et al. It is available at: 

https://www.cambridge.org/core/books/philosophical-concepts-in-physics/F285F13FE71F225BD8BE01F754F8C2E5
https://www.cambridge.org/core/books/philosophical-concepts-in-physics/F285F13FE71F225BD8BE01F754F8C2E5
https://global.oup.com/academic/product/john-stewart-bell-and-twentieth-century-physics-9780198861263?q=A.%20Whitaker%2C%20Bell&lang=en&cc=gb
https://global.oup.com/academic/product/john-stewart-bell-and-twentieth-century-physics-9780198861263?q=A.%20Whitaker%2C%20Bell&lang=en&cc=gb


 115 

https://global.oup.com/academic/product/the-oxford-handbook-of-the-history-of-quantum-
interpretations-
9780198844495?q=Oxford%20Handbook%20of%20Interpretations%20of%20Quantum%20Th
eory&lang=en&cc=gb 
 
 
(2) There are also several important interpretations (including distinctive approaches to the 
measurement problem) that this Chapter did not mention at all: they are not what my Section 5 
called ‘the usual suspects’. I will give four examples, under three labels (A) to (C). Then I will end 
by stressing that physicists recognize the measurement problem as an outstanding problem. 
  
(2.A) My first example is very philosophical. It is the pragmatist interpretation developed by R. 
Healey, in a series of papers, and in his recent book. Here the label ‘pragmatism’ is, unlike Bell’s 
usage reported in Section 5, a deliberate echo of the American philosophical movement launched 
by Peirce, James and Dewey. And being thus philosophical, Healey’s interpretation is a cousin of 
Bohr’s complementarity, rather than Section 5’s ‘practical instrumentalism’. 

Thus Healey’s interpretation is one of a handful that reject one or more presuppositions 
of the way my Sections 4 and 5 (and most discussions) set up the measurement problem. 
Namely, presuppositions of a philosophically realist stripe; in particular, that the quantum state 
purports to describe physical reality in the straightforward manner of the logics and semantics 
expounded in Chapter 3 Section 2f. Being myself a philosophical realist, and an enthusiast about 
those logics and semantics, I disagree with Healey. (As I do with the rest of this handful of 
interpretations, for example one called ‘quantum Bayesianism’.) But I applaud the imagination 
and precision with which he has developed the view. So without going into details, I recommend 
(i) his book and (ii) a laudatory-but-dissenting review of it by a realist, David Wallace: who is also 
a leading Everettian (cf. (4) below).  

(i) The book is: R. Healey, The Quantum Revolution in Philosophy, (Oxford University 
Press, 2019); it is available at:  
https://global.oup.com/academic/product/the-quantum-revolution-in-philosophy-
9780198844679?q=Healey%2C%20The%20quantum%20revolution%20in%20philosophy&lang
=en&cc=gb# 

(ii) Wallace’s review is in the journal Analysis, volume 80 (2020), pp. 381-388. It is 
available at: https://academic.oup.com/analysis/article-
abstract/80/2/381/5819198?redirectedFrom=PDF&casa_token=IZglh61Zp5AAAAAA:NY5E
SD4WQUbapRH5wqa7xgiyRGthpKzblkaSI-nVmdtunq-
prgtrp0Ds5bvapoFDk3grTroMmBYbGA 

 
(2.B) My second example is the modal interpretation. Or rather: ‘modal interpretations’, since it 
comes in many versions.  

Their common idea is: (i) to say, just like the pilot-wave theory does, that the 
Schoedinger equation is always correct; and (ii) to assign to a quantum system definite values of 
quantities, additional to the eigenvalues of its state’s eigen-quantities---but not just by postulating 
ab initio a preferred quantity that is to always have a definite value, in the manner of the pilot-
wave theory’s postulation of particle position. So there are various precise proposals about which 
additional quantity is to be definite, and which of its possible values the system is to actually 
possess (and how these change over time). In these proposals, a common idea is that which 
quantity is definite, and which value it has, should depend (as a matter of interpretative postulate, 
not causally) on the quantum state. And in some versions of the modal interpretation, this 
dependence is not just on the state of the system itself; but also on the state of a larger system of 
which it is a component. 

https://global.oup.com/academic/product/the-oxford-handbook-of-the-history-of-quantum-interpretations-9780198844495?q=Oxford%20Handbook%20of%20Interpretations%20of%20Quantum%20Theory&lang=en&cc=gb
https://global.oup.com/academic/product/the-oxford-handbook-of-the-history-of-quantum-interpretations-9780198844495?q=Oxford%20Handbook%20of%20Interpretations%20of%20Quantum%20Theory&lang=en&cc=gb
https://global.oup.com/academic/product/the-oxford-handbook-of-the-history-of-quantum-interpretations-9780198844495?q=Oxford%20Handbook%20of%20Interpretations%20of%20Quantum%20Theory&lang=en&cc=gb
https://global.oup.com/academic/product/the-oxford-handbook-of-the-history-of-quantum-interpretations-9780198844495?q=Oxford%20Handbook%20of%20Interpretations%20of%20Quantum%20Theory&lang=en&cc=gb
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 Of course, this is not the place for details. But here are: two expert and craftsman-like 
monographs and an anthology of important essays, all from the 1990s; and research articles that 
are, so far as I know, the most recent expert proposal. 

(i) J.Bub, Interpreting the Quantum World (Cambridge University Press, 1997). 
(ii) D. Dieks and P. Vermaas (eds.), The Modal Interpretation of Quantum Mechanics 

(Kluwer Academic 1998). 
(iii) P. Vermaas, A Philosopher’s Understanding of Quantum Mechanics, 

(CambridgeUniversity Press, 2000) available at: 
https://www.cambridge.org/core/books/philosophers-understanding-of-quantum-
mechanics/179FE190C668C06A217C160DAB8FD2BC. 
 (iv) J. Barandes and D. Kagan, The Minimal Modal Interpretation of Quantum Theory; 
arxiv: https://arxiv.org/abs/1405.6755 ; there is a summary at: 
https://arxiv.org/abs/1405.6754; and there is a successor article at: 
https://arxiv.org/abs/1807.07136, and at Foundations of Physics, volume 50 (2020), pp. 1189-
1218.  
 
(2.C) My third and fourth examples are technical, and hardly discussed in the philosophical 
literature about quantum theory. They are due to two physicists, N. Landsman and A. Kent 
respectively. I choose them because they have the great merits of (i) invoking powerful ideas 
(and associated technicalities) from other parts of physics to break out of the ‘usual suspects’ 
taxonomy; and (ii) being ripe for further development. Thus I think philosophers should take 
more notice of them . . .  

Again, this is not the place for details. Suffice it to say that, broadly speaking, they both 
contrive to retain the two claims (labelled (1) and (2) in Section 5) whose combination gave the 
measurement problem: the claims that the Schroedinger equation is always correct, and that 
quantum systems only have as definite values of quantities, the eigenvalues. And they achieve 
this “with only one world”, i.e. not by having an Everettian splitting, with the consequent 
assignment of eigenvalues only relative to a world. So they both propose a striking one-world 
reconciliation of Section 5’s two claims, (1) and (2). 

The differences between the two proposals lie in the ideas invoked to secure the 
reconciliation. Landsman invokes ideas about perturbation theory, and spontaneous symmetry 
breaking. Kent invokes the idea of a final boundary condition. (Kent also aims for an explicit 
compatibility with relativity theory---a desideratum for any solution to the measurement problem 
that, for brevity, I have set aside.)  

The main references are, respectively: 
N. Landsman, The Foundations of Quantum Theory, Springer 2017, Chapter 11 

(building on ideas in Chapters 7, 8 and 10). The entire book is an exact and complete survey of 
the field, packed with information. It is available as Open Access at: 
https://link.springer.com/book/10.1007/978-3-319-51777-3    

A. Kent, ‘Solution to the Lorentzian quantum reality problem’, Physical Review A, 
volume 90, 012107 (2014). Available at arxiv: 1311.0249.  

Kent has several other articles developing this solution. Further details are in my 
exposition and assessment (especially as regards quantum non-locality)---which is aimed mostly 
at philosophers: 

J. Butterfield, ‘Peaceful Coexistence: Examining Kent's Relativistic Solution to the 
Quantum Measurement Problem’, in Reality and Measurement in Algebraic Quantum Theory 
(Proceedings of the 2015 Nagoya Winter Workshop), ed. M. Ozawa et al. (Springer Proceedings 
Mathematics and Statistics, 261: 2018); pp. 277-314. Available at: https://doi.org/10.1007/978-
981-13-2487-1_11 http://arxiv.org/abs/1710.07844; http://philsci-archive.pitt.edu/14040 
 

https://www.cambridge.org/core/books/philosophers-understanding-of-quantum-mechanics/179FE190C668C06A217C160DAB8FD2BC
https://www.cambridge.org/core/books/philosophers-understanding-of-quantum-mechanics/179FE190C668C06A217C160DAB8FD2BC
https://arxiv.org/abs/1405.6755
https://arxiv.org/abs/1405.6754
https://arxiv.org/abs/1807.07136
https://doi.org/10.1007/978-981-13-2487-1_11
https://doi.org/10.1007/978-981-13-2487-1_11
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Finally, under (2): I stress that quantum theory’s interpretative problems, especially the 
measurement problem, are accepted by physicists as outstanding problems. This is illustrated by 
two accessible essays by A. Leggett and S. Weinberg, both very distinguished winners of the 
Nobel Prize for Physics. Both essays stress the limitation of decoherence noted at the end of my 
Section 7: in short, that it does not secure a definite outcome at the end of measurements. Both 
essays are also sympathetic, overall, to the search for a “cousin” of the Schroedinger equation 
that secures a definite outcome; i.e. to what Bell called the unromantic version of the strategy 
that the Schroedinger equation ‘is not right’ (Section 5). (Nor are these two essays “one-off”: 
both authors wrote about their misgivings in several articles.)  

A. Leggett, ‘Probing quantum mechanics towards the everyday world: where do we 
stand?’, Physica Scripta, volume T102 (2002), p. 69-73. 

S. Weinberg, ‘The Trouble with Quantum Mechanics’ The New York Review of Books 
19 January 2017, pp. 51-53. It is available at: 
https://goldphysics.unm.edu/phys521/features/WeinbergTroubleWithQMe.pdf 
 
 
 
(3): For the Everettian interpretation, I postpone the topics of decoherence and probability until 
(4) below. Here I confine myself to two topics. First:  the basic sources; and second, the idea that 
the definition of a ‘world’ (or of ‘branch’ or ‘splitting’) should be given in mentalistic terms, i.e. 
should be allowed to invoke concepts alien to physics such as ‘appearance’ and ‘experience’. The 
Chapter’s discussion gave this idea, often called the ‘many minds’ version of the Everettian 
interpretation, short shrift. (I only mentioned it obliquely towards the end of Section 6 as part of 
my criticism that, in the early Everettian literature, the idea of splitting was too programmatic.) 
Indeed, I am not sympathetic; but of course, there are good advocacies of it. 
 
(3.A) As to the basic sources, pride of place must go to Everett’s original paper: 

H. Everett, ‘Relative-state formulation of quantum mechanics’, Reviews of Modern 
Physics, volume 29 (1957), pp. 454-462. It is reprinted in various places, including the large 
anthology mentioned in (1) above: J. Wheeler and W. Zurek (eds.), Quantum Theory and 
Measurement, (Princeton University Press 1983). 

As I mentioned at the start of Section 6, not only are there different versions of the 
Everettian interpretation, but also there is controversy about how Everett himself understood it. 
My discussion did not go into these issues, but focussed on what I believe to be the broad 
version that has been dominant since the 1990s; (which invokes decoherence, macroscopic 
objects being patterns etc.). For details about Everett’s own views, one should consult:  

(i) H. Everett, The Everett Interpretation of Quantum Mechanics: Collected Works 
1955-1980 with Commentary, edited by J Barrett and P. Byrne, Princeton University Press 2012. 
It is available at: https://www.jstor.org/stable/j.ctt7t2jf 

(ii) The biography of Everett by P. Byrne: The Many Worlds of Hugh Everett III 
(Oxford University Press, 2012), which is available at: 
https://global.oup.com/academic/product/the-many-worlds-of-hugh-everett-iii-
9780199659241?q=Byrne%20The%20Worlds%20of%20Hugh%20Everett%20III&lang=en&cc
=gb 
 Another basic source is the popular book by D. Deutsch, a leading Everettian who 
pioneered the decision theory approach to deducing the Born-rule probabilities (my Section 12, 
and (4) below). It is: 

D. Deutsch, The Fabric of Reality, Penguin Books 1997.  
 

https://global.oup.com/academic/product/the-many-worlds-of-hugh-everett-iii-9780199659241?q=Byrne%20The%20Worlds%20of%20Hugh%20Everett%20III&lang=en&cc=gb
https://global.oup.com/academic/product/the-many-worlds-of-hugh-everett-iii-9780199659241?q=Byrne%20The%20Worlds%20of%20Hugh%20Everett%20III&lang=en&cc=gb
https://global.oup.com/academic/product/the-many-worlds-of-hugh-everett-iii-9780199659241?q=Byrne%20The%20Worlds%20of%20Hugh%20Everett%20III&lang=en&cc=gb


 118 

(3.B)  As to the ‘many minds’ version of the Everettian interpretation, the first articulation of it 
(so far as I know) was by H.D. Zeh; (a physicist who made profound contributions to the 
physics of decoherence, cf. (4) below). This was in his paper: 
 H.D. Zeh, ‘On the interpretation of measurement in quantum theory’, Foundations of 
Physics, volume 1 (1970), pp. 69-76. 
 A book-length advocacy of the interpretation is: M. Lockwood, Mind, Brain and the 
Quantum (Oxford, Blackwell, 1989).  

Some of my own views about this interpretation are in a journal’s “symposium” about 
Lockwood’s work. (The paper includes (a) recommending work by M. Donald, and (b) linking 
the discussion to the topic of probability, as in (4.B) below.) It is at:  

 J. Butterfield, ‘Whither the Minds?’, British Journal for the Philosophy of Science, 
volume 47 (1996), pp. 200-221.  
 
 
(4): I turn to references about, first, decoherence (Sections 7 to 10), and then probability 
(Sections 11 and 12) in the Everettian interpretation. 
 I said in Section 6 that since about 1990, the Everettian literature has appealed to 
decoherence. Here I should add that in fact the physics of decoherence was much clarified 
already in the 1970s and 1980s (cf. (4.A) below). But it was only after 1990, especially in papers 
by S. Saunders, that there was a clear philosophical statement that what decoherence theorists 
usually called ‘branches’ (also: ‘histories’) were a perfect fit for the Everettian’s proposed worlds. 
Two of Saunders’ papers on this topic are: 

(i) S. Saunders, ‘Decoherence, relative states, and evolutionary adaptation', Foundations of 
Physics, volume 23 (1993), pp. 1553-1585. 
 (ii) S. Saunders, ‘Time, quantum mechanics, and decoherence', Synthese, volume 102 (1995), 
pp. 235-266.  

As to the literature after 1995, pride of place (for both decoherence and probability) goes 
to a monograph and anthology from about fifteen years ago. They sum up very well Everettian 
developments about decoherence and probability, from about 1995 to 2010: developments that 
were spear-headed by D. Deutsch, S. Saunders, and D. Wallace. The two books cover both 
advocacy (both books) and assessment (the anthology). They are:  

 D. Wallace, The Emergent Multiverse: Quantum Theory According to the Everett 
Interpretation, Oxford University Press 2012. 

 S. Saunders, J. Barrett, A. Kent and D. Wallace (Eds), Many Worlds? Everett, Quantum 
Theory and Reality, Oxford University Press 2010. 

The anthology includes at least a dozen important papers. Among them, there are some 
of advocacy (e.g. by D. Deutsch, H. Greaves and W. Myrvold, D. Papineau, S. Saunders, D. 
Wallace) and some of assessment (e.g. by D. Albert, A. Kent, A. Valentini). There are also two 
technical papers, which I list in (4.A) below. Since these two books, both advocacy and 
assessment have continued vigorously in the research article literature, including many papers by 
these authors. I give some references below.   

For further references, I will follow the order of the Chapter, discussing (A) decoherence 
and then (B) probability. For each topic, I first cite technical details, stressing positive results; 
and then philosophical assessment, stressing misgivings.    
 
 
(4.A) For the technical physics of decoherence, two outstanding books are:  

(i) E. Joos, H.D. Zeh, C. Kiefer et al., Decoherence and the Appearance of a Classical 
World in Quantum Theory, Springer 2003 (second edition); available at: 
https://link.springer.com/book/10.1007/978-3-662-05328-7 
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(ii) M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition, Springer 
2007; available at: https://link.springer.com/book/10.1007/978-3-540-35775-9 

Another two expository technical papers, which are readable by philosophers (and which 
also address the subtleties about the system-environment split that I raised at the ends of 
Sections 7 and 8), are in the Many Worlds? anthology which I cited above, i.e. in S. Saunders J. 
Barrett, A. Kent and D. Wallace (Eds). They are:   

(iii) J. Hartle, Quasiclassical realms; a revised version is available at: 
https://arxiv.org/abs/0806.3776  

(iv) J. Halliwell, Macroscopic Superpositions, Decoherent Histories, and the 
Emergence of Hydrodynamic Behaviour; available at: https://arxiv.org/abs/0903.1802 
 
The main theme of philosophical discussion of decoherence in the Everettian context has been 
the idea that macroscopic objects are patterns.  Apart from Wallace’s monograph, The Emergent 
Multiverse, and Saunders’ and Wallace’s Introduction and Chapter 1 in the Many Worlds? 
anthology (both cited above), I also recommend: (i) Wallace’s first article advocating the idea; 
and (ii) the most recent (so far as I know) critical assessment, by R. Mulder. They are as follows: 

(i) D. Wallace, ‘Everett and Structure’, Studies in the History and Philosophy of Modern 
Physics, volume 34 (2003), pp. 86–105; available at:  
https://www.sciencedirect.com/science/article/pii/S1355219802000850?casa_token=wpZJQ5c
kKMwAAAAA:2V62sb_C84WpayehAZYpKAlvcXJBoQehozFfEZfx8nJ2OnYMzaxQsG4XZ
QRlgjtalNsEldUIKQ 
 (ii) R. Mulder, ‘The classical stance: Dennett’s criterion in Wallacian quantum mechanics’, 
Studies in the History and Philosophy of Science, volume 107 (2024), pp. 11-24; available at: 
https://www.sciencedirect.com/science/article/pii/S0039368124001055. 
 
Another philosophical theme about decoherence in the Everettian context is whether the worlds 
arising from decoherence can accommodate contingency about which macroscopic objects exist. 
This theme was Section 8’s closing issue, i.e. misgiving, about the sketch definition of ‘world’. 
We will return to this theme in Chapter 6.3’s discussion of A. Wilson’s proposal to understand 
the philosophical multiverse of Chapter 3 in terms of the Everettian multiverse; (i.e. in 
philosophical jargon: to reduce the former to the latter). A recent critical assessment of the 
proposal is:     

(iii) J. Harding, ‘Everettian Quantum Mechanics and the Metaphysics of Modality’, The 
British Journal for the Philosophy of Science, volume 72, number 4, December 2021. 
 
 
(4.B) About Everettian probability, I will give references for three topics: (a) the decision-theory 
approach which, as I reported in Section 12, is now dominant; (b) a recent approach by S. 
Saunders; and (c) controversies about interpreting tiny probabilities or amplitudes 
 
(a): The ground-breaking article that first proposed to derive Born-rule probabilities using 
axioms from decision theory (Section 12) is:  

(i) D. Deutsch, ‘Quantum Theory of Probability and Decisions’, Proceedings of the 
Royal Society 1999; and available at: 
https://royalsocietypublishing.org/doi/10.1098/rspa.1999.0443 and: 
https://arxiv.org/abs/quant-ph/9906015. 

The idea was much developed by D. Wallace in a series of papers; including Chapter 8 in 
the Many Worlds? anthology (2010) which I cited above, and his own 2012 book, The Emergent 
Multiverse. Many further theorems and justifications, and assessments of these, have been given 
since then.  

https://www.sciencedirect.com/science/article/pii/S0039368124001055
https://royalsocietypublishing.org/doi/10.1098/rspa.1999.0443
https://arxiv.org/abs/quant-ph/9906015
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One issue that the Chapter did not broach is how an Everettian can make sense of 
quantum theory getting confirmed by experimental statistics, in view of the obvious worry that in 
many worlds in the multiverse, experiments will yield statistics far from the Born-rule 
probabilities. A ground-breaking article addressing this is: 

(ii) H. Greaves and W. Myrvold, ‘Everett and evidence’; Chapter 9 in the 2010 anthology, 
i.e. (ii) above, edited by S. Saunders, J. Barrett, A. Kent, and D. Wallace. 

 
(b): Recently, S. Saunders has developed a very different approach to deriving the Born-rule in 
Everettian quantum theory. This approach does not appeal to decoherence or decision theory. 
But it connects closely to Section 11’s topic of probability in classical statistical mechanics, to  
Section 12’s first topic of branch-counting, and to frequentism in the philosophy of probability. 
Two of his papers about this approach are:   

(iii) S. Saunders, ‘Finite frequentism explains quantum probability’, British Journal for the 
Philosophy of Science 2024; available at: https://doi.org/10.1086/731544 ; and available at 
https://arxiv.org/abs/2404.12954v3 

(iv) S. Saunders, ‘Physical probability and locality in no-collapse quantum theory’, 
forthcoming in Journal of Physics: Proceedings of the DICE 2024 conference; available at 
https://arxiv.org/abs/2505.06983 

 
(c): The Chapter neglected controversies about the interpretation of amplitudes (and so 
probabilities) that are small, maybe minuscule. Typically, a wave-function assigns many possible 
configurations a small amplitude; (these “parts” of the wave-function are called ‘tails’, like the left 
and right tails of a bell-shaped probability distribution). But interpretation usually focusses on the 
wave-function’s “peaks”. This is especially true of this Chapter’s Everettian, who took 
macroscopic objects to be the peaks of the wave-function (or the cluster of classical 
configurations under such a peak. This prompts an objection to the Everettian’s idea (Section 12 
and the references just cited) of deducing the probabilistic interpretation of the squares of 
amplitudes, from the betting behaviour of an Everettian experimenter who bets on macroscopic 
outcomes (relative to worlds, of course) of quantum measurements. Namely: how can the 
Everettian justify ignoring the tails of the wave-function? Surely not by their having a small 
probability, since the Everettian ignores them en route to their argument justifying the 
probability interpretation. So how?  

In his book, Wallace addresses this objection (2012, pp. 253-254). But not to everyone’s 
satisfaction. In particular, Dawid and Thebault dissented in a 2015 article: 

(i) R. Dawid and K. Thebault, ‘Many worlds: decoherent or incoherent?’ Synthese 
volume192 (2015), pp. 1539-1580; and available at: https://philsci-archive.pitt.edu/9542/. 

Since then, the debate has continued, and in some respects changed. The latest article, 
which also reviews the literature, is: 

(ii) R. Dawid and K. Thebault, ‘Decoherence and probability’, available at: 
https://philsci-archive.pitt.edu/23991/ and at: https://arxiv.org/abs/2410.01317 
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Chapter 5: All the worlds from the 
 primordial bubbles 

 
 

This Chapter discusses our third multiverse. It was proposed by some cosmologists from the 
early 1980s onwards, on the basis of their theories about the Big Bang origin of the cosmos. Like 
the Everettian multiverse in the last Chapter, it is agreed even by its proponents to be very 
speculative, and hard to confirm. This common feature is unsurprising. As we discussed in 
Chapter 1, there might well be, within a branch of physics, theoretical (or more generally: 
conceptual) reasons for a proposal that is hard to confirm---and whose assessment thus calls on 
conceptual, even philosophical, arguments. 

But there is also a dissimilarity from the Everettian multiverse. For that multiverse arose 
as a solution to a problem about the general structure of our supremely successful quantum 
theory. Recall that although we concentrated for simplicity on elementary quantum theory, e.g. 
the quantum replacement of classical point-particles, all our more advanced quantum theories, 
including our well-established quantum field theories of electrons, quarks etc. equally face the 
measurement problem (Chapter 4.3, 4.4). And the reasons in favour of the Everettian solution to 
that problem apply equally to them; (as do, broadly speaking, the reasons against the Everettian 
solution). 

On the other hand, the cosmological multiverse arises by combining two speculations 
that are very specific. One is a mechanism called ‘inflation’, which is speculated to have operated 
for a tiny fraction of a second in the very early history of the universe, i.e. very soon after the Big 
Bang. The idea is that for this tiny fraction of a second, the cosmos expanded vastly; and besides, 
at an accelerating rate. Cosmologists’ original rationale, in the early 1980s, for proposing inflation 
was not that it solved a problem about the general structure of a physical theory, quantum or 
otherwise. Rather, it answered pressing ‘Why?’ questions. It promised to explain some facts that 
were otherwise puzzling, even mysterious. These questions were about the value of a physical 
quantity “having to be just-so”, i.e. having to take a value that was constrained to many decimal 
places, if our cosmological theory was to adequately describe empirical observations. This just-
so-ness is usually called ‘fine-tuning’. (I shall focus on two such questions, called the ‘flatness 
problem’ and the ‘horizon problem’.) 

These ‘Why?’ questions, i.e. ‘Why is the value fine-tuned?’, prompt more general 
philosophical questions: ‘What counts as an explanation?’; and ‘How could science confirm a 
multiverse proposal?’ These will be this Chapter’s main philosophical questions, which we 
pursue from Section 5 onwards. 

The other speculation, the second ingredient of the cosmological multiverse, is string 
theory; (which also began to be developed in the early 1980s). It is a quantum theory that unifies 
general relativity’s successful account of gravitation with quantum field theory’s successful 
account of nature’s other fundamental forces. Section 4 will give a few more details about it. But 
the main point for us is that it combines with inflation so as to give a multiverse. For this, the 
key contribution from string theory is that: (i) it has many vacuum states (also called ‘ground 
states’, or for short, ‘vacua’); (ii) these states differ from each other in the values of what we 
usually call ‘constants of nature’; and (iii) each vacuum state has an associated set of states that 
share with the vacuum state its values for these constants. (String theorists realized this only in 
about 2000: they originally hoped that the theory would have a unique vacuum state.) 

Obviously, a full understanding of (i) (ii) and (iii) requires the demanding technicalities of 
string theory. But---fortunately, for a philosophical book---we can get by with a sketch. Sections 
3 and 4 will give more details. But for the moment, the following three points will suffice.  
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(i): Beware: ‘vacuum’ does not mean ‘nothing’. Nor does it mean ‘no physical system’, i..e 
the sheer absence of the physical system that the theory is intended to describe. Instead, it means 
‘state of lowest energy’. Hence the synonym ‘ground state’, with states of higher energy being 
called ‘excited’ or ‘above the ground state’. By and large, physical systems tend to lose energy and 
thereby to evolve over time towards their vacuum states. Many physical systems have a unique 
vacuum state: but by no means all do---a glass has many vacuum states.  

(ii): ‘Constant of nature’ means a value of a physical quantity that, so far as we have 
measured it, does not vary across the entire observable universe. (So this is unlike Chapter 4’s 
examples of a system’s values of position, momentum etc., which obviously vary.) Here are three 
examples: the amount of electric charge on an electron, the ratio of the strengths of 
electromagnetic and gravitational forces, and the speed of light. And there are many others: such 
as the masses of elementary particles such as electrons and quarks, the strengths of the forces 
between them. And as we shall see, the quantities whose fine-tuning gives the flatness and 
horizon problems are also examples. But string theory is, so to speak, liberal or unopinionated: in 
the sense that its different vacuum states have different values for these “constants”.   

(iii): For each vacuum state, its associated set of states is a set of higher energy, excited, 
states that share the vacuum state’s values for these “constants”. (But I shall often drop the 
double “scare” quotes that are meant to signal that the value can vary across the string theory’s 
state-space; and so I will just write the word ‘constant’. Another common jargon avoiding the 
connotations of ‘constant’ is to say ‘parameter’ or ‘cosmological parameter’.) We can think of 
this set as a “tower” of states, standing above the vacuum.    

So to sum up (i) to (iii):--- The striking fact about the many vacua of string theory, and 
their associated towers of excited states, is that the values of the constants listed in (ii) vary from 
one vacuum and its tower, to another. 

One natural (perhaps the most natural) first response to this fact is that string theory 
should simply restrict itself to the tower of states whose values match the values which we 
actually measure. That is: it should explore the theoretical features, and experimental 
consequences, of states in that tower: one of which would then be (according to string theory) 
the actual state of the cosmos. Thus one might say: it is no demerit of string theory that it could 
describe various non-actual values of the constants---but also no merit. After all, the same is true 
of our other theories. For example, classical electromagnetic theory could describe 
electromagnetism with various non-actual values of the charge on an electron. 

But it turns out that combining string theory with inflation, i.e. the very early, very brief 
but also very rapid expansion of the cosmos, yields a mechanism that makes for a multiverse. 
Roughly speaking, the expansion makes a quantum state in one tower evolve over time so as to 
have a component in (an amplitude for) other towers. Besides, this happens in a runaway 
fashion, called ‘eternal inflation’; so that states in very many towers, and so very many 
combinations of possible values of the “constants”, are equally allowed.   

It is evident in the light of Chapter 4 that here, we face questions about the interpretation 
of the quantum state. Thus suppose one takes a non-zero (or at least large enough) amplitude in 
the quantum state to correspond to something real. (Note that this does not to commit one to 
being an Everettian in any of the senses discussed in Chapter 4. For they all maintain that the 
Schroedinger equation is, in Bell’s phrase, ‘always right’; whereas this supposition is entirely 
compatible with believing that wave-function collapse is a real dynamical process.) And suppose 
also that one accepts the cosmologist’s quantum state, with amplitudes for states in many towers, 
as correct. Then one must conclude that each of many combinations of values of the 
“constants” are real.  

This is the cosmological multiverse: whose different universes are described by states in 
different towers, differing in their constants of nature. These universes are often called ‘bubbles’ 
(or ‘domains’): hence this Chapter’s title. 
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So much by way of introducing inflation and string theory, and how they combine to 
give a cosmological multiverse. From a philosophical perspective, it is remarkable how they both 
raise the philosophical theme of explanation. For I said above that inflation was originally 
motivated by ‘Why?’ questions about fine-tuning. And we have just seen that string theory is a 
framework with constants of nature---including the quantities whose fine-tuning gives the 
flatness and horizon problems---varying across the multiverse. This confluence obviously 
prompts an ambitious project: to somehow explain the values of all these constants---i.e. the 
values that we in this universe actually measure---by invoking some appropriate features of how 
the values vary across the multiverse. Hence this Chapter’s taking explanation and confirmation 
as its main philosophical topics. 
 
 
With this background in place, I can now explain the plan of the Chapter. There will be four 
stages. The first stage (just Section 1) clarifies the relation between the Everettian and 
cosmological multiverses. This will develop the discussion above, about the cosmological 
multiverse involving not just inflation but also string theory and its many vacuum states. But 
again, we will be able to proceed with hardly a mention of the advanced physics involved.  

Then in the second stage, I introduce modern cosmology and its multiverse. Section 2 
will summarize what cosmology had established by about 1980. Section 3 will do two jobs.  First, 
I report the puzzling facts about fine-tuning that remained unexplained (i.e. the flatness and 
horizon problems), and how inflation could explain them. Second, I sketch how inflation led to a 
multiverse, though without details of string theory. Then Section 4 supplies some details about 
string theory.   

The third and fourth stages (Sections 5 onwards) are philosophical: they address 
explanation and confirmation.  

In the third stage (Sections 5 to 7), Section 5 first reviews some of the philosophical 
literature about explanation. Then it formulates two overall strategies we could adopt in order to 
explain the values we actually measure. (The distinction between the strategies will not depend 
on details of the physics.) The first strategy is the obvious one: to argue that the value we 
measure is in some precise sense generic, or typical, of the values across the multiverse; and is 
thereby to be expected. But there is a second, less obvious, strategy. It invokes what are called 
‘selection effects’, or (a better-known jargon) ‘the anthropic principle’, to argue that the value we 
measure is likely to be observed---even if it is not generic or typical across the whole multiverse, 
simply because most “regions” of the multiverse have no observers. I will label these two 
strategies, ‘strategy (Gen)’ and ‘strategy (Obs)’: with the labels standing for ‘generic’ and 
‘observation’ respectively.             

The rest of the third stage (the next two Sections) develop the strategy (Gen): that is, 
explaining a fact by showing that it is generic or typical. Section 6 describes the strategy’s 
successes and its positive features. Section 7 describes its difficulties, including in cosmology.  

 The fourth stage (Sections 8 and 9) is about the strategy (Obs): explaining a fact by 
showing it is probable (or probable enough) that it be observed---even if, observation apart, it is 
improbable (or not probable enough). Section 8 explains the strategy with examples from outside 
cosmology, indeed from outside physics. It also introduces the jargon of ‘selection effects’. 
Section 9 discusses the strategy within cosmology. It introduces the jargon ‘the anthropic 
principle’. And as an example, it summarises the anthropic explanation of the value of a 
“constant” (also called ‘parameter’) which I have not mentioned so far: namely, the cosmological 
constant.  

Finally, Section 10 concludes. Here, I recommend a framework for confirming a theory 
of the multiverse that incorporates ideas from both the strategies: the idea of being generic, and 
the idea of being probable (or probable enough) to be observed.  
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Chapter 5.1: Comparing the Everettian and cosmological multiverses 
The mere phrase ‘the cosmological multiverse’ suggests there should be connections with the 
Everettian multiverse proposal. For as we saw, the Everettian proposes a quantum state of the 
cosmos, written with the capital Greek letter ‘Psi’, i.e. written as Y. (Recall Chapter 4.6’s decision 
to use this phrase, not the more usual ‘quantum state of the universe’.) So the job of this Section 
is to describe these connections. I shall of course have to set aside many details of advanced 
physics, especially string theory: but this omission will, I think, be justified by its not affecting 
our philosophical questions about explanation and confirmation. We can spell out the 
connection sin four comments, (1) to (4). 
 
  
(1): When one first meets the phrase ‘the cosmological multiverse’, and bears in mind that 
modern cosmologists of course accept quantum theory, one naturally expects that: (i) some 
cosmologists will endorse the Everett interpretation; and even (ii) the cosmological multiverse 
will turn out to be an elaboration of the Everettian one.  

The first of these expectations, (i), is indeed true. Among cosmologists interested in 
interpretative questions about quantum theory---and of course the cosmological multiverse raises 
such questions---the Everettian interpretation is popular.  

But on the other hand, the second expectation (ii) is true only in a liberal, i.e. logically 
weak, sense of ‘elaboration’. Yes, a cosmologist may well accept that there is a quantum state of 
the cosmos, and may also argue that it describes the cosmological multiverse they advocate. But 
the universes (or worlds) in this multiverse are very different from the Everettian universes (or 
worlds) defined by the well-established, continual, ubiquitous and rapid process of decoherence 
applying to macrosystems, that we discussed in Chapter 4.7. For (as I said in this Chapter’s 
Preamble) the cosmologists’ many universes are produced by a specific mechanism, ‘inflation’, 
that is speculated to have operated for a tiny fraction of a second very soon after the Big Bang. 
Agreed: in many such universes, there will indeed be (later, long after the universe starts) 
macrosystems such as dust-particles, or even pointers and cats: macroscopic objects which can 
decohere. And for these, the Everettian can then claim that the last Chapter’s account, with its 
Y, applies. 

So the upshot is that if we accept the cosmological multiverse based on the idea of 
inflation, then the quantum state of the cosmos---in the sense we envisaged in the last Chapter, 
i.e. Y with components, i.e. summands, describing various decoherent worlds: cf. Chapter 4.8---
is at best a description of a single universe within the cosmological multiverse.  

Besides, I say ‘at best’ not just because inflation occurs vastly earlier than any 
macroscopic objects exist. Also, as I said in the Preamble: the cosmological multiverse is based 
on string theory (combined with inflation). So the cosmologist’s ‘quantum state of the cosmos’ 
will be a state in string theory, not a state in a well-confirmed quantum theory. In particular, it is 
not a state in our well-confirmed theory of electrons, quarks etc., which is nowadays called ‘the 
standard model’. This distinction matters because there is a “large gap” between string theory 
states and those in established quantum field theories. Indeed, this is a notorious fact about 
string theory. Namely, it is very hard to get out of string theory any empirical predictions; or 
even the recovery of specific theoretical postulates of confirmed quantum field theories. So the 
upshot announced in the last paragraph assumes in effect that this large gap has been bridged. It 
assumes that we can get by deduction (or by some approximation to deduction) from the official 
“stringy” state of the cosmos to the states of our confirmed quantum field theories.      

So the cosmologist we envisaged two paragraphs above---who accepts that there is a 
quantum state of the cosmos, and says it describes the cosmological multiverse they advocate---
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will mean by ‘quantum state of the cosmos’ something yet more dizzying than the last Chapter’s 
(the Everettian’s) Y: for two reasons.  

First, it means a string theory state, and one needs to bridge the gap to quantum field 
theory.  Second, as announced in the Preamble: it means a state that encompasses various 
alternative values of (what we call!) the constants of nature. Here, my ‘encompasses’ is 
deliberately vague. For the way that the theory (this state) describes eternal inflation’s runaway 
process of the different universes (with their different constants of nature) coming to exist, is 
complicated and controversial; (not least because of the challenge of the first reason).  

But for our purposes, it will suffice to boldly ignore the gap between string theory and 
quantum field theory, and to construe ‘encompasses’ as ‘has amplitudes for’. That is: it will 
suffice to take our cosmologist’s ‘quantum state of the cosmos’ to be a sum of “Everettian-
Chapter-4 states”, i.e. a sum (superposition) of ‘quantum states of the cosmos’, using this last 
phrase in the sense of the last Chapter’s Everettian. So we take it to be a sum of different 
Everettian-Chapter-4 states Yi, where the suffix ‘i’ (i = 1, 2, …) is a label on the summands, i.e. 
the different universes---which in general disagree with each other about the values of (what we 
call) constants of nature. 
 
 
(2): Here, I should give a clarification. For the sake of a clearer exposition, I have in the last six 
paragraphs taken decoherence as a process that occurs to macrosystems due to their interaction 
with an environment, e.g. dust-particles immersed in air: just as I did in Chapter 4. As just 
explained, this gives a crisp contrast between Chapter 4’s ideas and this Chapter’s new idea, the 
mechanism of inflation. But cosmologists also apply the idea of decoherence, in various detailed 
ways, to the cosmos as a whole---including at very early times.   

One way this is done is to take all the material in the cosmos to be the system (i.e. the 
analogue of the dust-particle), and spacetime to be its environment (i.e. the analogue of the air). 
Here, ‘material’ will include not just matter e.g. atoms, electrons, quarks, but also radiation e.g. 
electromagnetic radiation. And in order to give content to the idea of this material interacting 
with spacetime, one needs states of spacetime that respond to the states of matter, so that one 
describes spacetime with general relativity, according to which spacetime is indeed responsive in 
this way. (But as mentioned in Chapter 4.8, the system-environment split is sometimes made in a 
less “obvious” way, e.g. taking long-wavelength modes to be the system, which is then 
decohered by short-wavelength modes.)  

In this kind of way, even without macrosystems such as dust-particles, decoherence can 
occur. So cosmologists will talk of all the cosmos’ material degrees of freedom being in an 
improper mixture (cf. the end of Chapter 4.7) of states that are definite for some appropriate 
quantities. So in short: the contrast between Chapter 4’s Everettian multiverse and the 
cosmological multiverse is not as crisp as I first suggested. That is, the contrast is not as crisp as: 
decoherence for macrosystems, without variation in constants of nature vs. string theory and 
inflation, with varying constants.  

Nevertheless, in the rest of this Chapter, we can safely take this contrast to be valid. That 
is: we can think of the cosmologist’s ‘quantum state of the cosmos’ as a sum of different 
Everettian-Chapter-4 states Yi: and these states in general disagree about the values of constants 
of nature such as the charge of the electron. This picture of the relation between the two 
multiverse proposals will set us in good stead for our philosophical questions about explanation 
and confirmation.    

Of course, these are not just speculative, but also imprecise and dizzying, ideas. Just as I 
remarked (in Chapter 4.6) that no Everettian has the faintest idea how to write down in detail the 
Everettian quantum state of the cosmos Y, no quantum cosmologist can now write down in 
detail their quantum state of the cosmos. For as this Chapter will report: we do not know---and 
we may never know---the underlying physics of inflation. So a sketch-definition of ‘universe’ for 
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the cosmological multiverse, on analogy with the Everettian’s sketch definition of ‘world’ 
(Chapter 4.8) is far beyond current knowledge. 
 
 
(3): But agreed: you can’t keep a good idea down. I should also report that some quantum 
cosmologists, sympathetic to the Everett interpretation, have proposed mathematical formulas 
for the quantum state of the cosmos at very early times. Of course, the details vary from one 
author or research programme to another. Thus some of these formulas are independent of 
whether there was a very brief period of inflation; while some incorporate such a period. Some 
are string-theoretic, some are not. Some are independent of decoherence at very early times, e.g. 
of the material degrees of freedom; while some incorporate it. One such formula, proposed by 
Hartle and Hawking in 1983 (and independently of all three topics above: inflation, string theory 
and decoherence), is called ‘the no-boundary proposal’, or ‘no boundary condition’. It has been 
much studied and developed since then: and indeed, it has been related to inflation, string theory 
and decoherence.  

This reflects the more general fact that most quantum cosmologists recognize the 
relevance of interpretative questions, and related methods and ideas like decoherence, to their 
scientific work. This relevance is shown by the point above: that cosmologists’ models often 
incorporate decoherence at very early times, long before there were macrosystems like dust-
particles.  

But for this book’s theme of the multiverse, the most vivid example of this relevance will 
be the point I made in the Preamble (and will develop in Section 3 below): that if (i) one takes a 
non-zero (or at least large enough) amplitude in the quantum state to correspond to something 
real, and (ii) one accepts the cosmologist’s quantum state, with amplitudes for states in many 
towers with differing constants, as correct: then one must conclude that each of many 
combinations of values of the constants are real.  

As noted in the Preamble, (i) does not require being Everettian. In particular, it does not 
require the Schroedinger equation being, in Bell’s phrase, ‘always right’. And nor does combining 
(i) with (ii). For there might be a model of wave-function collapse (a revision of the Schroedinger 
equation of the kind discussed in Chapter 4.5) which describes the formation of a bubble in the 
expanding inflationary cosmos; and which can also describe the formation of many bubbles---all, 
thanks to (i), equally real---and thus, a multiverse. But Everettian or not, the relevance of 
interpretative questions to the cosmological multiverse is vivid. One might well say that taking all 
the universes (‘bubbles’) in the cosmological multiverse to be equally real involves assuming 
some solution, on a cosmic scale, of the quantum measurement problem. 
 
 
(4): Nor is this vivid example the only place where modern theoretical cosmology meets the 
measurement problem on a cosmic scale. Even without going back in time as far as the putative 
period of inflation, and without postulating a multiverse: modern cosmology describes early 
states of the universe, e.g. a minute, or a year, or ten thousand years after the Big Bang, in terms 
of quantum theory---and so the measurement problem arises.  

Indeed, it arises in connection with something so basic and vivid to us as the existence of 
stars, planets and galaxies. For as I will explain in the next two Sections, there is a weak 
electromagnetic signal throughout space, called the ‘cosmic microwave background’ (CMB) 
radiation, that dates from about 380,000 years after the Big Bang---and which we can directly 
observe. We observe this CMB radiation to be very smooth and uniform: it looks the same in all 
directions. But it has tiny ‘wrinkles’: which are really variations in the quantum amplitudes for 
various densities of mass in regions of space. This means that a peak among these wrinkles is a 
“seed” of a clump of matter becoming gradually localized, under the gravitational attraction of its 
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component parts, in one region of space rather than another. Such a clump, once localized, can 
grow, pulling yet more matter in by its gravity, and eventually produce, for example, a galaxy.  

But note that here, the word ‘seed’ is a metaphor, that hides the problematic issue of the 
collapse of the wave-function. For whereas a real seed is an actually existing object that grows 
into an actually existing plant, this peak of quantum amplitude is only a higher (square root of a) 
probability for the event of clumping to happen here, rather than there. (Unfortunately, the 
metaphor is entrenched in textbooks as well as popular expositions. Only the better textbooks 
admit that this transition, from peaks and troughs of quantum amplitude to a classical, slightly 
uneven, distribution of mass-density across space, is problematic---since it is a cosmic version of 
the “collapse of the wave-function”, which all agree is problematic.) 
 
 
So much by way of sketching connections between the Everettian and cosmological multiverses. 
Or to put it more generally and precisely: so much for the connections between (i) the 
interpretation of quantum theory, especially its measurement problem, and (ii) quantum-to-
classical transitions in the very early cosmos (‘primordial bubbles’) and in the not-so-early 
cosmos (‘wrinkles’ in the CMB).  

Obviously, these connections are important, indeed fundamental. But this Chapter will 
not go in to further details about them, for two reasons: one negative and one positive. The 
negative reason is that most cosmologists, even quantum cosmologists, believe that these 
cosmological aspects of the measurement problem (or more neutrally: of the interpretation of 
quantum states), are not yet precisely enough formulated to be addressed as a problem within 
physics. In short: we do not know enough, and the time is not yet ripe. The positive reason is 
that (as we shall see) even if we restrict ourselves to a “classical outlook”, there is so much to 
explore, in both the physics and the philosophy of modern cosmology. At least: there is certainly 
enough for this Chapter. 
 
 
 
Chapter 5.2: A golden age of cosmology  
We live in a golden age of cosmology. It began in the twentieth century, especially in its second 
half. I will describe it in three stages: covering the first half of the twentieth century in (1), and 
the subsequent history in (2) and (3).  
 
 
(1): Already in the first half of the century, there were four momentous developments in 
cosmology: two observational and two theoretical.  

First, we discovered that the nebulae, that appeared in telescopes like cloudy smudges 
rather than point-like stars, were really other galaxies of vast numbers of stars, like our own 
Milky Way. So the cosmos turned out to be vastly larger than had been envisaged. Second, we 
discovered that the cosmos is expanding. More precisely: any two galaxies are receding from 
each other, i.e. the distance between them is increasing. (The speed of recession is approximately 
proportional to the distance between them.) But this is not an expansion of matter into a pre-
existing empty space, like an explosion of a firework or a bomb. Rather, the space itself is 
expanding.  Agreed, that is impossible to visualize. We are bound to think of an ambient or 
embedding space relative to which the expansion occurs; and it was a struggle for physicists to 
accept this idea.  

In this acceptance, the third development was crucial: namely, Einstein’s discovery of 
general relativity, and its application to the whole cosmos. As mentioned in Chapter 2, general 
relativity is a relativistic theory of gravitation. According to it, gravitational influence propagates 
across space at the speed of light; not instantaneously, as in Newton’s theory. And like Einstein’s 
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earlier theory of special relativity, it unifies space and time into a single entity, spacetime: which, 
being four-dimensional, is again unvisualizable. (Physicists’ acceptance of these unvisualizable 
ideas, of expanding space or of spacetime, was helped by the rise of pure mathematics, reviewed 
at the end of Chapter 2: the increasing formalization of mathematics included liberating 
geometry from visual intuition.) 

Einstein himself, immediately after formulating general relativity, applied the theory to 
the cosmos as a whole. In terms of our jargon of systems and their state-spaces (cf. Chapter 3.3): 
he took the cosmos as his system, and he described it as a spacetime, extending not just 
arbitrarily far in all directions in space, but also throughout the past and future. (This is 
reminiscent of our description of the cosmos, “our world”, in Chapter 1.1.) So he aimed to find 
a solution to the equations of general relativity that described the whole of spacetime: not of 
course in its myriad details, but in the broadest possible terms. In particular, matter was treated 
as smoothed out uniformly across space, although of course it is in fact concentrated in great 
clumps. (For the galaxies are clumps; and within them, the stars are clumps.) By the mid-1920s, 
solutions of general relativity describing an expanding cosmos (whose matter is smoothed out 
uniformly across space) had been found, and in the following years they were investigated and 
elaborated. In some of these solutions, the expansion began from a very hot, very dense state: 
which came to be called ‘the primeval fireball’.  

The fourth development was the rise of astrophysics: i.e. the physics of stars. Quantum 
theory, discovered in the 1920s, was applied to describe in detail, not just how stars shine by 
burning helium, but also much else: the different types of stars, how other chemical elements are 
formed in stars (called ‘nucleosynthesis’, since the stars synthesize i.e. make the nuclei of, 
elements), how and why some stars explode and others implode.  

By the late 1940s, the third and fourth developments had been combined. For the ideas 
and results of astrophysics were applied to describe nucleosynthesis in the conjectured primeval 
fireball. This led to detailed predictions about the cosmic abundances of light elements like 
hydrogen, helium and lithium; and to the prediction of a pervasive but very faint electromagnetic 
radiation with a characteristic wavelength, that was a remnant of the fireball. 
 
 
(2): Thus matters stood in about 1960. It was the following years that really ushered in the 
golden age. Again, they were several momentous developments, both observational and 
theoretical. I shall pick out three, that were all well underway by 1980. Developments after 1980, 
including the proposed multiverse, will be treated in the next Section.   

Foremost among observations was the discovery (by accident, in 1964) of the predicted 
remnant radiation. It is called the ‘cosmic microwave background’ (‘CMB’) radiation. It was 
immediately recognized as confirming general relativity’s expanding cosmological solutions. In 
just a few years, almost all cosmologists accepted that the cosmos originated in a primeval 
fireball about fourteen billion years ago. (The fireball was soon renamed ‘the Big Bang’: a name 
that had originally been suggested by sceptics, as a derisory label.) Besides, in the following 
decades, the CMB has proven to be an extraordinarily rich source of information about the early 
cosmos.  

The second main observational development between 1960 and 1980 was the invention 
and deployment of several new sorts of telescope that enabled astronomers and cosmologists to 
study types of electromagnetic radiation other than visible light. For radio waves (with 
wavelengths much longer than visible light), there was ground-based radio astronomy, which had 
been pioneered in the 1940s. For microwave and infra-red radiation (i.e. wavelengths a bit longer 
than visible light) and X-rays (shorter than visible light), one needed to get above the Earth’s 
atmosphere. For these wavelengths, dozens of satellite missions have yielded a profusion of data, 
both for astrophysics and cosmology: for example, data about the CMB and the cosmic 
abundances of elements. 
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The third development was theoretical. After 1960, there was a renaissance in the study 
of general relativity, both as regards its mathematics and its applications. Here, one highpoint 
was a cluster of theorems saying that among the solutions of general relativity (i.e. the spacetimes 
that are possible according to the theory), singularities are generic, i.e. typical. The idea of a 
singularity is a breakdown in the smooth structure of spacetime; and the theorems showed that 
such a breakdown must occur under certain conditions. These conditions included when a star 
whose mass is above a certain limit, having burnt all its fuel, implodes under its own weight. This 
is called the ‘gravitational collapse’ of the star; and it leads to a black hole, in which the 
singularity lies. But more relevant to us: among these conditions were conditions that were 
understood to prevail in the early cosmos. This gave a new perspective on the simple expanding 
cosmological solutions of general relativity that had been recognized, already in the 1920s, as 
having an initial singularity: i.e. the original “point where the fireball began” (though not a point 
in spacetime itself). Namely: this initial singularity came to be regarded, not as an artefact due to 
the solution’s admittedly very idealized treatment (especially its smoothing out the matter), but as 
a robust feature of the solution that might well be physically real. 

The result of these three developments was that by the mid-1970s, cosmologists had 
agreed on a model of the history of the cosmos, with an initial singularity about fourteen billion 
years ago, followed by a hot primeval fireball that cooled and expanded. It was called ‘the 
standard model’. (This is not to be confused with its namesake, the standard model in high-
energy physics. That describes the physics of electrons, photons, neutrinos, quarks i.e. the 
constituents of protons and neutrons, and also of unstable particles. It also was formulated in the 
mid-1970s.) 

In the last fifty years, this standard model of cosmology has stood up amazingly well; (as 
has its namesake in high-energy physics). Agreed: in addition to elaborating ideas and methods 
that were already formulated in the 1970s, two major new ideas have had to be added so as to 
accommodate observations. One such idea is that much, indeed the majority, of the mass of the 
cosmos is of an as-yet unknown form; this is called ‘dark matter’. Another is that although one 
would expect the expansion of the cosmos to slow down i.e. to decelerate (since the stars and 
galaxies, having mass, pull on each other gravitationally), the expansion is in fact accelerating. 
This is called ‘dark energy’. 

(Incidentally, these two ideas have prompted the standard model to be re-named as the 
‘L-CDM model’. Here, ‘CDM’ means ‘cold dark matter’; and L, i.e. the Greek capital Lambda, 
represents dark energy. It is the cosmological constant, to which we will return in Sections 7 and 
9.)  

But for the most part, these two ideas, dark matter and dark energy, need not concern us, 
for two reasons. First: their bearing on our topic, the multiverse, is slight. Most proposals about 
the nature of dark matter and dark energy do not give reasons for, or against, a multiverse. In 
effect, they are compatible with inflation’s producing a multiverse, but do not especially support 
it.  

Second: there is good theoretical reason to think that whatever the detailed physics of 
dark matter and dark energy turn out to be, it will not overturn the main outlines of what the 
standard model claims to have established.  

This is well illustrated by two of the standard model’s “grand narratives” of the history of 
the cosmos: the thermal history of the cosmos (i.e. its density, temperature, pressure etc. at 
successive stages); and the history of the synthesis of elements, both in the primeval fireball and 
later in the stars. Indeed: it is a striking testimony to how well confirmed this standard model 
now is, that for both these narratives, the detailed story given in a technical exposition written 
today matches closely the detailed story in expositions written some fifty years ago.  

So I will end this review of our fortunate golden age in cosmology by taking as an 
example, the thermal history of the cosmos. This will set the scene for the next Section’s 
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description of the puzzling features that prompted cosmologists to postulate an even earlier, very 
brief period, of accelerating expansion: inflation.  
 
 
(3): I will give just three “snapshots” of what the temperature, density and relative size of the  
universe was, at the following times: (1) a millionth of a second after the Big Bang, (2) a 
hundredth of a second after it, and (3) ten million million seconds, i.e. about 380,000 years, after 
it.  Note that we are now about a hundred thousand million million seconds, i.e. about fourteen 
billion years, after the Big Bang.  

Before I give the numbers, let me adopt the exponent (or index) notation, using a 
superscript to indicate the number of noughts. So one hundred is 102; and a million is 106. 
Similarly, we use negative exponents to represent reciprocals, i.e. 1 divided by a larger number. 
So one hundredth is 10-2; and a millionth is 10-6.  

This notation prompts another important point. It will be helpful (though I admit, it is 
difficult) to think logarithmically, not arithmetically: to think, for example, that since the present 
time is about 1017 seconds after the Big Bang, the time t = 10-17 seconds before the Big Bang is as 
much before t = 1 second, as we are after it.  

Though this sounds blatantly wrong, the rationale for it is that a great deal of physics is a 
matter of scales. That is: if you change the situation you wish to describe by a factor of about 10, 
you may well need a very different description: and this is even more likely if you change by a 
factor of about 100. This trend holds whether the quantity whose value you change is time, or 
distance, or energy or temperature. So when cosmologists puzzle over what was the state of the 
universe, at say t = 10-6 seconds, or how physical processes changed as a result of the cooling 
between, say, t = 10-6 and t = 10-2 seconds, we should not accuse them of straining at gnats, i.e. of 
foolishly concentrating on events that are so transient that they cannot be very important for the 
physics. For, agreed: the universe was changing unbelievably rapidly (arithmetically speaking!); 
but the relevant processes change---and so our description must change---in crucial ways, 
depending logarithmically on the earlier time. 

So here are the three snapshots. 
(1): t = 10-6 seconds after the Big Bang:--- The temperature was about 1013  degrees Centigrade. 
This is when protons and neutrons, i.e. the constituents of atomic nuclei, form: for at 
yet higher temperatures, they “melt” into their own yet-smaller constituents, quarks. The size 
of the observable universe relative to its size today was 10-12, and the mass density was about 1017 
grams per cubic centimetre.   
(2): t = 10-2 seconds after the Big Bang:--- The temperature was about 1011 degrees Centigrade. 
Atomic nuclei form: i.e. at higher temperatures, they “melt” into their constituent protons and 
neutrons. The size of the observable universe relative to its size today is 10-11, and the mass 
density was about 109 grams per cubic centimetre.  
(3): t = 1013 seconds (i.e. about 380,000 years) after the Big Bang:--- This is when atoms formed: 
by free electrons combining with nuclei, so as to form electrically neutral atoms of the familiar 
kind. The universe thereby became for the first time transparent to electromagnetic radiation. So 
for cosmology, this is a crucially important time. For it means that our direct observations of 
electromagnetic radiation cannot go back any earlier than this time. (But amazingly, we do 
observe this time: the CMB, the remnant radiation from the Big Bang, dates from exactly this 
time.) It is known as the ‘recombination time’: though all agree that ‘combination’ would be a 
much better name, since the electrons and nuclei were not stably combined at any earlier time. 
The temperature was about 3000 degrees Centigrade. (By way of comparison, the temperature at 
the surface of the Sun is about 6000 degrees.) The size of the observable universe relative to its 
size today was 10-3, and the mass density was 10-21 grams per cubic centimetre. 
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 I said that these claims about the universe’s thermal history were now established. But I 
agree that when presented with these stupendous figures---so high for temperature and density, 
so tiny for time and size---one of course asks: ‘Is all this really established as fact?’  

I think the answer is Yes. Of course, the evidence is technical and varied---and I cannot 
go in to details. But I note that physicists’ description of even my earliest snapshot, i.e. the 
description of protons and neutrons “melting” into quarks by the standard model of high energy 
physics, has been confirmed by terrestrial experiments. Indeed, I could have chosen an earlier 
snapshot. For it is common nowadays to take the boundary between known and speculative 
physics to be at about 10-11 seconds after the Big Bang. But agreed: there is a spectrum of caution 
and confidence (as we discussed in Chapter 1.4), and one could reasonably be more cautious, 
even taking e.g. one second as the start of what one calls ‘established’.  
 
 
 
Chapter 5.3: Inflation … eternally 
So much by way of celebrating our golden age of cosmology, and its standard model as 
formulated in the mid-1970s and developed since then by e.g. the admission of dark matter. In 
this Section, I first describe, in (1), two puzzling features of the model, which were recognized by 
1980, and which prompted the idea of inflation. I introduce inflation in (2), and its conjectured 
mechanism in (3). In (4), I describe how this mechanism yields a multiverse.  
 
 
(1): The two puzzling features are called the ‘flatness problem’, and the ‘horizon problem’. (I set 
aside a third puzzling feature, called ‘the monopole problem’: not just for brevity, but also 
because inflation’s treatment of it is similar.) For both of them, the problem is not one of 
empirical adequacy. That is: the problem is not that the standard model from the mid-1970s gets 
some observational prediction wrong. The problem is that according to the model, an empirically 
measured number amounts to a coincidence so enormous that, as the saying goes: ‘it cries out 
for explanation’.  

So first, the flatness problem. The expanding solutions of general relativity fall into three 
classes: 

(i): those in which the matter is on average dense enough that gravitation 
eventually overcomes the expansion so that there is a contraction and ultimately a “Big 
Crunch”; this is called a ‘closed universe’;  

(ii): those in which the average density is low enough that expansion goes on 
forever at some non-zero rate (with of course lower densities making for a higher final 
rate): this is called an ‘open universe’; and 

(iii): those “between” (i) and (ii) in that the average density (a) is low enough that 
gravitation cannot overcome the expansion, but also (b) is high enough that the final rate 
of expansion is zero. This is called a ‘flat universe’, since the instantaneous geometry of 
space, across the whole universe, gets ever closer to being Euclidean---so ‘eventually-flat 
universe’ would be a more accurate name. 

The density in (iii) is special. Not only is it the boundary between the regimes (i) and (ii). Also, 
once a solution has that density it will have it forever. It is called the ‘critical density’.  

These ideas are often put in terms of the ratio between the universe’s actual density (of 
course, as usual: taking the matter as smoothed out over all space) and the critical density. So this 
number is a pure number. For it is defined by dividing one density by another; and so it has no 
units. It is written as the Greek letter ‘Omega’, i.e. W.  

So here is the enormous coincidence. In fact, we have measured W to be now close to 1; 
and indeed to have been close to 1 at all times later than about one second after the Big Bang. 
(This means that ever since that time, the universe has been almost flat: its spatial geometry has 
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been almost Euclidean.) But in these solutions of general relativity, any difference of W from 1 in 
the early universe is very rapidly amplified. For example: if at one second after the Big Bang,  W 
= 1.08, then already at ten seconds  W = 2; and thereafter W keeps increasing exponentially. 
And on the other hand: if at one second after the Big Bang,  W = 0.92, then already 
at ten seconds  W = 0.5; and thereafter W keeps decreasing exponentially. In short: in these 
solutions, W = 1 represents an equilibrium---but a very unstable equilibrium. In particular, 
for W to be about 1 today requires that it be stunningly close to this privileged 
value soon after the Big Bang. For example, at one second after the Big Bang it has to differ 
from 1 by at most 10-16. This is about the ratio between the width of a human hair (viz. a tenth of 
a millimeter) and the average distance between Earth and Mars (viz. 225 million kilometres). 

Indeed, this is an enormous coincidence, crying out for explanation. 
Second, the horizon problem. It has a similar structure. Namely: although the standard 

model of the late 1970s is empirically adequate, it requires a feature of the CMB to be “just so” 
to an extreme degree. Indeed: to a degree so extreme that it is implausible to treat it as a brute 
fact, without explanation.  

The problem arises from the fact that the CMB, dating from 380,000 years after the Big 
Bang, is very uniform across the sky. Its wavelength, amplitude etc. is almost the same in 
whatever direction you point your telescope: its wrinkles are minuscule. More precisely: their 
proportional size is 10-5. That is like having, on the surface of a pool of water one meter deep, a 
wave which is only a hundredth of a millimetre high.  

One naturally asks why it should be so uniform. And this question becomes all the more 
urgent in the context of the standard model of the late 1970s. For it says that for two directions 
in the sky with a sufficient angle between them---about one degree or more (the visual width of 
the moon, or more)---the two emission-events of the CMB that lie along those directions (about 
13 billion years ago) have no common causal past. This means: no yet-earlier event could affect 
both of the two emission-events, by influences travelling to each of them at most as fast as light. 
That is, there is no event that could influence them both via causal, i.e. no-faster-than-light, 
processes. Hence the phrase ‘no common causal past’. Relativity theory has some other helpful 
jargon for this. Given any event, the set of events to its past that could affect it by an influence 
travelling at most as fast as light, is called the event’s past light-cone. So the point is: the standard 
model says that the two past light-cones of the two CMB emission-events do not overlap.  

This makes our question urgent. For this means there could not have been any kind of 
interaction between events in the past of the first emission-event and events in the past of the 
second emission-event. But since the emission events are so strongly correlated---their 
quantitative properties differ by at most the tiny factor 10-5---one would naturally expect some 
such interaction. For think of how we explain various systems with uniform properties 
throughout their extent; (such states are called ‘homogeneous’). For example: a cup of tea with 
milk throughout it, or an iron bar with its temperature equal along its length. We explain these by 
a past process of interaction. Namely, the system started in a non-uniform (heterogeneous) state: 
then the milk spread through the tea, the heat spread along the bar. (A process that ends in such 
an equilibrium state is called ‘equilibration’.) But here, the standard model forbids such a process 
of achieving uniformity by an earlier interaction. For it says that no causal process of any kind 
could affect the two signals of CMB coming to us from these two directions in the sky. 

In short: the standard model tells us to accept these signals’ strong correlation as a brute 
fact, which is encoded in the state of the universe’s matter and radiation at times earlier than the 
recombination time.  That is hard to accept.  

Besides, it is all the harder to accept when one calculates that the angle between 
directions sufficient to imply (according to the standard model) no common causal past, is very 
small. It is only about one degree—the visual width of the moon. For this angle being so small 
means that, according to the standard model, there are a stupendous number of patches of the 
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sky whose CMB radiations are strongly correlated with each other (to within the tiny factor 10-5), 
even though there was no interactions in their pasts. That is surely incredible.     

So the flatness and horizon problems have a common structure. They each take a certain 
feature (W, and the smoothness of the CMB, respectively) to be just so. That is: the feature has a 
value specified to many decimal places (also called: ‘many significant figures’), without the 
standard model giving any account of why the feature is so exactly specified.  This “just-so-ness” 
is called ‘fine-tuning’. (Later in this Chapter, this phrase will get a more specific meaning in the 
context of selection effects.) 
 
 
(2): Enter the idea of inflation. It turns out that if we change the standard model by “inserting” 
into it a very brief and very early epoch of rapid, indeed accelerating, expansion, then we can 
solve both problems.  

The basic idea of both solutions is quite simple. It turns out that whatever the value of W 
at the onset of the inflationary epoch, W will be driven close to 1 by the end of the epoch, and 
will remain close to 1 for a very long time thereafter---including until now. And recalling that W 
being one is a matter of a flat Euclidean spatial geometry, we can see the simple idea behind this 
calculation: an expansion of a highly curved surface makes a local patch flatter. Think of blowing 
up a balloon; or how the fact that the earth is large makes our local patch of it seem flat.  

The situation is similar for the horizon problem. A suitable inflationary epoch changes 
the spacetime geometry in just the right way. Namely, it implies that the past light-cones of all 
emission events of the CMB---even for points on opposite sides of the sky---do in fact overlap. 
So with inflation, the cosmos’ very early spacetime geometry allows for a suitable process of 
equilibration that made the CMB’s properties so uniform. 

The details of these solutions also work out well, in the sense that when one calculates 
how much inflation, and when, is needed so as to solve these two problems, one gets 
approximately the same results, despite the two problems being so different. Namely, the 
solutions are quantitatively correct, if we postulate: 

(a) the inflationary epoch ends at about 10-34 seconds (which corresponds to a 
temperature of 1028 degrees Centigrade);  

(b) the inflationary expansion is exponential, and started at, for example, 5 x 10-35 

seconds with a characteristic expansion time (i.e. the time in which the radius of the 
universe is multiplied by about 3) of 10-36 seconds. 

Taking (a) and (b) implies that in the course of the inflationary epoch, the size of universe 
expanded by a factor of about 1022.  

Agreed, these are dizzying figures; and the epoch is proposed to occur at times and 
energies very far beyond those we have confirmed in experiments or observed. So we are 
undoubtedly in the realm of extreme speculation; and accordingly, caution is in order. It would 
certainly be reasonable to give low credence to the idea of inflation; and therefore, to the details 
in the rest of this Section and the next. (But if so, the philosophical discussion of explanation 
from Section 5.5 onwards would still stand.)  
 
 
(3): Having solved the flatness and horizon problems, i.e. avoided two fine-tunings by 
conjecturing a process of expansion, one naturally asks: ‘What caused this expansion: what is its 
mechanism?’ For one might suspect that unless we can cite a plausible cause, we should conclude 
that it is just a coincidence that the same quantitative details about the expansion solve both 
problems. In answer to this question, the advocate of inflation has, as the saying goes: good news 
and bad news. 

The good news is that a mechanism has been formulated. Indeed: there are many 
proposed mechanisms which, needless to say, remain conjectural. Most of them involve 
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postulating a new physical field (called ‘the inflaton field’, and written j) which evolves i.e. 
changes over time according to a postulated potential energy function, written V(j). And 
fortunately, from such a field and potential one can deduce some characteristic features of the 
CMB: namely, characteristic probabilities for the amplitudes and frequencies of the slight 
wrinkles (unevennesses) in the CMB. These features have been observed by a sequence of 
increasingly refined instruments, mostly on satellites: (the famous acronyms/names are ‘COBE’, 
‘WMAP’ and ‘Planck’). So nowadays, these confirmed predictions are regarded as more 
important evidence that there was a brief epoch of expansion, than the epoch’s solving the 
flatness and horizon problems. 
 But there is also bad news. The data we now have, and maybe all the data we will ever 
have, leave wide open which of the many possible mechanisms---which sort of field j, and 
which potential V(j)---actually occurred. There are two aspects to this .The data leaves open the 
formal mathematics, e.g. what is the function V(j). And it leaves open what the physical nature 
of j is: it is widely believed not to be one of the known fields. 
 So far in this Section, we have reviewed two problems that were solved by the idea of an 
inflationary epoch, and broached the question of what mechanism led to that epoch. Now we are 
ready for the punch-line: that is, the punch-line for someone interested in the multiverse.  
 
 
(4): In explaining this punchline, I will expand on the summary I gave in this Chapter’s Preamble 
and Section 1, but postpone details about string theory till the next Section. 
 It turns out that many models of the inflaton field and its potential involve a branching 
structure in which, during the epoch, countless spacetime regions branch off and then expand to 
yield other universes. Here, ‘branch off and then expand’ means that the region stops its 
accelerating expansion, and expands only slowly, like our observable universe does. (Note that I 
said ‘many models’; so again, caution is in order.) As a result, the whole structure gives a 
multiverse, whose component slowly-expanding universes cannot now directly observe (nor 
otherwise interact with) each other, since they are causally connected only through their common 
origin during the inflationary epoch. (Incidentally, a pair of neighbouring points on the inflating 
background space also separate from each other so rapidly as to lose causal contact: so such pairs 
also “soon cannot see each other”.)  

Besides, in a universe that branches off---called a ‘bubble’ or ‘domain’ or ‘pocket 
universe’---yet another universe can branch off; and also from that one, there can be a branching 
… and so on. In short: bubbles (domains) spawn more bubbles, endlessly. This idea of open-
ended, maybe infinite, branching towards the future is called ‘eternal inflation’. 

Of course, all this is a quantum process. So the quantum state of the cosmos (in the 
cosmologist’ sense, explained in Section 1) contains components corresponding to (amplitudes 
for) the different bubbles. And one is committed to the bubbles being real, if one accepts that to 
a non-zero (or at least large enough) component/amplitude there corresponds something real. 
(This acceptance was (i) in Section 1: and as I said there, it does not imply an Everettian view, 
since it is compatible with dynamical models of wave-function collapse.)   

There are two main types of model that yield eternal inflation, labelled ‘false-vacuum’ and 
‘slow-roll’. In both types of model, the inflationary expansion coming to an end, i.e. the 
beginning of a slow expansion, is a matter of the inflaton field evolving, i.e. changing over time, 
to its state of lowest energy. And as discussed in the Preamble and Section 1: such states are 
called ‘vacuum states’, or for short, ‘vacua’; or ‘ground states’. (So again: ‘vacuum’ does not mean 
‘nothing’ or ‘no physical system’.)  

By and large, physical systems tend to lose energy and to evolve to their vacuum states. 
So also here. Thus eternal inflation is a matter of the prevention of the inflaton field’s tendency 
to get into its vacuum state (which state would render the expansion slow). The system being 
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prevented in this way is usually called its ‘being frustrated’. Thus a region where this frustration 
does not occur, is where the new bubble branches off. And since the region where there is 
frustration continues to expand exponentially, there is very soon a vastly larger region in tiny 
patches of which new branching will occur. Hence: eternal inflation.   

 
 
 
Chapter 5.4: Glimpsing the landscape of string theory  
So much by way of introducing the idea of eternal inflation. In this Section, I turn to string 
theory, building on the Preamble and Section 1: but again, necessarily omitting a lot of advanced 
physics. I will confine myself to just three topics. First: in (1), I will state the initial idea of string 
theory. Then in (2) I will develop the idea that it has many vacuum states (each with an 
associated “tower” of excited states) that differ about the constants of nature. Then in (3), the 
dauntingly large number of vacuum states will prompt us to face philosophical questions about 
explanation and confirmation---which will dominate the rest of the Chapter. 
 
 
(1): String theory is a speculative attempt, that began in the mid-1980s, to unify general 
relativity’s successful account of gravitation with quantum field theory’s successful account of 
nature’s other fundamental forces. (These are: the electromagnetic forces between charged 
particles, and two other forces between sub-atomic particles such as electrons, neutrinos and 
quarks, which are called the ‘weak’ and ‘strong’ forces.) The sense in which string theory aims to 
unify these forces is like the unification of electric and magnetic forces that Maxwell achieved 
(Chapter 4.1). Roughly speaking, the four apparently diverse forces are to be revealed as aspects 
of a single force.  

We can glimpse why this is hard to achieve by looking at string theory’s initial key idea. 
Namely, it “does for a string, what elementary quantum theory did for a point-particle”. (Hence 
its name.) Thus recall from Chapter 4.2 that elementary quantum theory replaced the state of a 
classical point-particle—in effect, its single actual position---by an entire function on all possible 
such positions, mapping each position to a “square root” of a probability (an amplitude) to be 
found there, if measured. Now, a point-particle is extensionless, and can be thought of as zero-
dimensional; while an infinitely thin line, a mathematical curve, is one-dimensional. So just as we 
can think of classical point-particles as idealizations of tiny spheres, we can think of an infinitely 
thin line as an idealization of a thin filament---a string, though without the spiral threads. Such a 
string has, of course, no single position. Each of its constituent points has a position, and the 
configuration of the string as a whole is the infinite set of those configurations: which we might 
call a ‘placement’ of the string. So the quantum replacement of the state of this classical string is 
a function on all possible placements, mapping each placement to an amplitude … No wonder 
that advanced physics is needed.  
 
 
(2): But for this book’s purposes, all we need is the upshot: that string theory predicts the system, 
i.e. the set of all the quantum strings, has very many different possible vacuum states. (This was 
realized in about 2000: until then, string theorists had hoped there was only one vacuum state.)  

Note that here, the jargon can be confusing. For a state that is not the overall lowest-
energy state (the state with energy lower than all others), but is only a local minimum with an 
energy lower than all its near neighbours in the state space, is often called a ‘false vacuum’. (As I 
mentioned at the end of the last Section: this jargon is used in cosmology, as the name of one 
main types of eternal inflation.) But it is ‘false’ only in the sense that the minimum is local. So 
this jargon is rather like calling a valley in a mountain range a ‘false valley’, just because it is 
higher above sea-level than the lowest valley in the entire mountain range. But this analogy with 
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valleys and peaks has also prompted a more helpful jargon. In string theory, the whole state 
space, i.e. the set of states of the quantum strings (varying in energy, with some lower and some 
higher), is called ‘the landscape’.  

(Incidentally: biology makes an analogous use of ‘landscape’. In the theory of natural 
selection, the attributes of an organism, or of a population of organisms, make it more or less fit: 
where fitness is, roughly, a matter of having more offspring who live long enough to reproduce. 
Over time, natural selection, “the survival of the fittest”, increases the proportion of fitter 
organisms. So over time, the population (descendants of the original organisms) gets a higher 
fitness “score”. So the population “climbs to a peak in the fitness landscape”. So high fitness is 
analogous to high energy: the biology-physics difference is that in biology fitness increases over 
the generations, while in physics an individual system tends to a lower energy---to a valley, not a 
peak. From the philosophical perspective of Chapter 3, the interesting point here is of course 
that this is another vivid illustration of our science being up to its neck in modality: almost all 
positions in the fitness landscape are not inhabited by a real organism or population---it is a 
realm of possibilities.)  

Returning to physics: each of string theory’s vacuum states has a tower of associated 
higher energy states. The idea goes back to Chapter 4.3’s comment that in quantum field theory, 
particles are really energetic excitations of fields. There, the tower was called Fock space. It is a 
sum of infinitely many subspaces. Namely: first, the space containing the given zero-particle i.e. 
lowest-energy state; then, the space of one-particle states; then, the space of two-particle states, 
then the space of three-particle states, and so on. But the idea of particles as excitations is more 
general than this simple sum-of-subspaces structure of Fock space, and it carries over to string 
theory. 

In string theory, all the various higher states got by exciting a given vacuum state will 
share with it the values of physical parameters, like the electric charge on an electron, the ratio of 
strengths between the electromagnetic and gravitational forces, or the speed of light. (We tend to 
call the charge on an electron a ‘physical parameter’, not a ‘physical quantity’, since we think of 
the value of a quantity, e.g. the position or energy of a system, varying across the states within a 
single tower, while the value of a parameter is the same for all states in a tower.) 

But for different vacua, these values will vary. This is so even for parameters that we take 
to be constants of nature: i.e. constant in value across the observable universe, like the examples 
just listed. (This uniformity, this “geographical” unity of the observable universe, is itself very 
remarkable. A priori, there could well be regions of the universe in which the charge on the 
electrons, or the relative strengths of the forces, or the speed of light-signals, is different from 
what we measure hereabouts.)  
 
 
(3): This variation prompts an ambitious but alluring project. For we now have a framework so 
broad that it encompasses scenarios (formally: towers of states above certain vacuum states) that 
differ from each other in the values of parameters that we usually call ‘constants of nature’---
though this framework means we are now envisaging that they vary across a wider landscape. So 
this suggests: let us invoke this framework to answer the obvious big ‘Why?’ question about such 
a parameter, namely: ‘Why does it have the value that it does?’ That is: let us try to find features 
in the framework that in some sense favour, and thereby explain, the value. 

But this project runs up against a major problem: a problem that suggests the project will 
stumble, unless one appeals to some philosophically contentious ideas. For it turns out that  
there is a dauntingly large number of vacuum states. And this problem confronts not only string 
theory taken alone, irrespective of cosmology and inflation. It also confronts inflationary 
cosmology.  

Thus a recent estimate of the number of string theory vacua is 10500. This is enormously 
larger than all the numbers in more established branches of physics. For example, the number of 



 137 

elementary particles in our universe, i.e. setting aside the cosmological multiverse, is estimated to 
be about 10100. So the number of string theory vacua is larger by a factor---not of 400, but of---
10400.  Similarly, in the cosmological multiverse: estimates of the number of bubble universes give 
vast numbers. 

Obviously, to explore this set of states, this landscape---i.e. to understand it in 
quantitative detail, classifying valleys and peaks---is forever beyond human, or even superhuman, 
ability. 

In the face of this impossibility, the project envisaged above, of explaining the values of 
the parameters, seems to stumble. For as I said in this Chapter’s Preamble, the obvious overall 
strategy for getting such an explanation would be to argue that the value we measure is in some 
precise sense generic, or typical, of the values across the multiverse; and is thereby to be 
expected.  One aims to explain the actual value we see by showing that is typical, and to be 
expected. But how can we do that, without understanding the set of states (the landscape, the 
towers above the vacua) in quantitative detail?  

The rest of this Chapter will discuss suggestions for how to do this---albeit contentious 
ones. Section 5 sets the scene by discussing explanation in general, and formulating: first, the 
obvious strategy above, which I will label ‘strategy (Gen)’ (for ‘generic’); and another, ‘strategy 
(Obs)’ (for ‘observation’) which invokes selection effects. Subsequent Sections will treat these 
strategies, in order.  

 
 
 
 
Chapter 5.5: Angst about explanation:  
Let us for a moment take a step back from the details of physics, and ask: how does one explain 
any fact? How does one answer any ‘Why?’ question?  

There is a large philosophical literature about explanation, with rival accounts of what an 
explanation is, and what role explanations fulfil in the enterprise of science. But for our 
purposes, these accounts’ agreements matter more than their disagreements; so this Section will 
for the most part summarize the agreements. But unfortunately, these agreements will not settle 
the questions raised at the end of the last Section. So those questions will have to wait for the 
next two Sections. 

The accounts agree that in everyday life what counts as a correct or appropriate answer 
to a ‘Why?’ question obviously depends strongly on what the enquirer (and no doubt, also the 
respondent) knows, what their interests are, etc. These accounts also agree that such contextual 
and pragmatic features also apply to scientific explanation.  

They also agree that in both everyday life and science, there is a spectrum of 
requirements one can impose on the answer, along the lines of: whether it must be believed by 
the respondent, or must be true, or even must be known to be true. Again, it is a contextual and 
pragmatic matter which requirement lying on this spectrum we should impose on a would-be 
explanation, in order for it to count as a genuine explanation.  

These accounts of explanation also agree on some helpful jargon, from Latin. The fact to 
be explained (or the proposition expressing the fact) is called the ‘explanandum’, and what does 
the explaining (or the proposition expressing what does it) is called the ‘explanans’.    

More substantively, and relevant to us: they also agree that what facts count as needing 
explanation is a contingent, and often historically determined, matter: no less in science than in 
everyday life.  

This is not just the obvious points that explanation must come to an end somewhere, 
and that where the respondent’s chain of explanations terminates depends on their state of 
knowledge, which is a contingent and historically determined matter. (And as every five-year-old 
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who persistently asks ‘Why?’ learns: where the chain of explanations terminates can depend on 
the parent’s inventiveness, or patience.)  

There is also the more interesting point that acceptance of a scientific theory (or more 
loosely: of a research tradition or framework) can influence, even determine, which sorts of fact 
are taken to need explanation, and which do not. This point merits two examples. 

A standard example of this from the history of physics is Kepler’s endeavour (in his 
Mysterium Cosmographicum of 1596) to explain the relative sizes of the planets’ orbits, and the 
number of known planets (viz. 6), by interpolating the five Platonic solids between the orbits. 
(The known planets were: Mercury, Venus, Earth, Mars, Jupiter and Saturn.) Thus Kepler 
believed that such a major structural feature of our solar system should have a systematic 
explanation. But nowadays, we accept, not just that there are more planets---Uranus was 
discovered in 1781, and Neptune in 1846---but that the sizes of the orbits are “merely” accidents 
of the history of the solar system. They no doubt have a very complicated causal explanation---if 
only we could know it. The explanation would involve the various radii (i.e. distances from the 
sun) at which the planets were first formed, how they interacted gravitationally etc. But these are 
(at least for the most part) matters of sheer happenstance, about how the solar system happens 
to have evolved. We do not expect the number of planets, or their orbits’ sizes, to have any 
general or systematic explanation. (Needless to say, this is not to disparage Kepler’s endeavour. 
Given his overall world-view, that there are six planets orbiting the Sun is a main, even pre-
eminent, fact about the solar system about which it is very natural to ask ‘why six?’.)  

Nor is it only particular facts that can come to be seen as not needing a general or 
systematic explanation. Very general patterns of behaviour can also fall out of the purview of 
explanation. (I say ‘patterns of behaviour’ to set aside controversy about laws of nature (cf. 
Chapter 3.6); but as we will see, the pattern might well be called a ‘law’ of a given theory.) A 
standard example of this is the idea of “natural motion”.  

In the long history, since the ancient Greeks’ geometry and astronomy, of the precise 
quantitative description of motion, ‘natural motion’ is an inevitably vague term. But the rough 
idea is: motion that needs no explanation, since the body is “moving without interference”. Thus 
in Aristotelian cosmology, the natural motion for the element earth (one of four: the others 
being air, fire and water) was downward---towards the Earth. But by the mid-seventeenth 
century, the mechanical philosophers (cf. Chapter 2.2) maintained that natural motion was 
motion in a straight line at constant speed---it was other motion that was “forced”. For example, 
a body’s accelerating towards the Earth was due to the Earth’s gravitational force; and a block’s 
slowing as it slid down an inclined plane was due to friction with the plane. This came to be 
called ‘the principle of inertia’. It was given its first clear formulation by Descartes; and later, it 
was Newton’s First Law of Motion---that a body subject to no force at all moves in a straight 
line at constant (maybe zero) speed.  

Thus for both the mechanical philosophers and Newton, the motion of a projectile in a 
straight line and at constant speed (neglecting gravity and air resistance) needs, in a sense, no 
explanation. Agreed: one can ask what causes set this projectile moving, i.e. what launched it. 
And agreed: the motion, once underway, is an instance of the principle of inertia; and so it can 
be deduced from the principle. But the motion, once underway, needs no explanation in the 
sense that no causes need to be cited. It is enough that the motion instantiates, and can be 
deduced from, the principle of inertia. (Here, my ‘it is enough’ deliberately echoes Hume’s and 
Newton’s lowering our sights about the rationalist understanding of nature, discussed in Chapter 
2.5 and 2.6).  

So much by way of examples. The final issue on which these philosophical accounts of 
explanation also agree is the core idea of explanation: namely, that a successful explanation 
shows that the explanandum was to be expected.  

Here, I choose the words ‘successful’ ‘shows’ and ‘to be expected’ deliberately. Thus the 
first two words signal how my formulation of the agreement between these accounts deliberately 
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steers clear of some controversies that---irrelevantly for this book’s purposes--- dominate the 
philosophical literature; as follows.  

I say ‘successful’, in order to signal flexibility about pragmatic factors such as the 
enquirer’s interests, and about whether the explanans must be true, or even known to be true.  

I say ‘shows’, in order to signal flexibility about whether: (i) there must be an outright 
deduction of the (proposition expressing the) explanandum from the propositions comprising 
the explanans (which would be a strong sense of ‘show’); or (ii) it is sufficient to render the 
explanandum probable (usually in the sense of having a high enough probability, conditional on 
the explanans). 

(Of course, there are other controversies I have not touched on. For example: must an 
explanation of an individual event or fact (as against a general proposition) cite the causes of the 
event or fact? And: is explanation fundamentally contrastive, i.e. about answering ‘Why A rather 
than B?’ not just ‘Why A?’) 

On the other hand, my third deliberately chosen phrase, ‘to be expected’, signals a return 
to the questions at the end of the last Section. I deliberately choose a phrase that is ambiguous; 
and ambiguous in a way crucial to our concern with multiverse proposals’ endeavour to explain 
the values of parameters such as constants of nature. For the phrase can be understood as 
referring to either one of two different strategies for explaining some fact; in particular, 
explaining some apparent fine-tuning of a parameter’s value. These strategies are: 

(Gen): showing that the fact: either is deducible (from the explanans); or is 
generic or typical, i.e. roughly speaking, one of the alternatives that have high enough 
probability; or  

(Obs): showing that although the fact is not deducible, and is not even generic or 
typical: it is likely (or has high enough probability) to be observed. (As I mentioned in 
this Chapter’s Preamble: this strategy invokes ‘selection effects’, or (a better-known 
jargon) ‘the anthropic principle’.) 

The next two Sections explore strategy (Gen). The subsequent Sections explore strategy (Obs).  
 
 
 
Chapter 5.6: Expected because generic 
In this Section, I discuss strategy (Gen) in general terms, without considering the multiverse---
though with examples from physics. I will first, in (1), cast inflation’s answer to the flatness and 
horizon problems---problems of fine-tuning, in a single universe---as an example of strategy 
(Gen). Then in (2), I mention some other examples. This will prompt a more general statement 
of what fine-tuning amounts to. Then in (3), I will give a bit more detail about three ways in 
which one can make precise the idea that the value of a parameter is to be expected, because it is 
generic. I put them under the labels: ‘topology’, ‘effective field theory’, and ‘probability’. This 
Section will emphasize the first two of these. But probability will be a large topic for us, also in 
connection with strategy (Obs): so although I will introduce it here, the details will be postponed 
to subsequent Sections.    

So the overall shape of this Section will be to start with fine-tuning as a problem, and to 
end with three approaches to answering the problem by saying that the parameter’s value is in 
fact generic. Thus the tone of this Section’s assessment of strategy (Gen) will be positive. With 
the examples and approaches considered here, the strategy has successes. But in the next Section, 
the difficulties that the strategy faces will move to centre-stage. 

 
 

(1): First, let us recall the flatness and horizon problems from Section 3. In both, a certain 
feature (W, and the smoothness of the CMB, respectively) had to be just so. That is: the feature 
has a value specified to many decimal places, without our cosmological model (i.e. the model that 
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was standard in the 1970s) giving any account of why the value is so tightly constrained---in 
short, fine-tuning. As we saw, inflation solved these problems by changing the theoretical 
context so substantially that the required values could arise through an (admittedly, conjectural) 
dynamical process, from generic initial states. For a suitable inflationary epoch drives W to 
become close to 1 by the end of the epoch; and thereafter, the standard cosmological model’s 
(non-inflationary) dynamics makes W remain close to 1 for a very long time, including until now. 
Similarly, a suitable inflationary epoch makes the past light-cones of all emission events of the 
CMB---even for points on opposite sides of the sky---overlap. 
 We can now construe this discussion in terms of the last Section’s ideas about a 
successful explanation showing that the explanandum is to be expected, either by deduction, or 
by getting a high enough probability, from the explanans. And since it is generic initial states (i.e. 
states before the inflationary epoch) that lead to W being close to 1, and to the past light-cones 
overlapping, the explanation is insensitive to what exactly is the initial state. Such an explanation 
(or deduction, or calculation of high probability) is often called ‘robust’ or ‘stable’ or ‘resilient’. In 
short: here, the phrase ‘to be expected’, in ‘showing the explanandum is to be expected’, has the 
straightforward sense (Gen) at the end of the last Section. 

These examples of inflation solving the flatness and horizon problems also illustrate 
other ideas from the last Section, such as the ideas that:  

(i) explanations inevitably come to an end somewhere; and  
(ii) the theoretical context moulds one’s judgments about what is generic or 

probable (or probable enough to count as being explained), and what is 
not. 

For after all, one can ask: (i) what explains (and-or what caused) the pre-inflation state, no matter 
how generic or probable one accepts it to be; and (ii) what justifies one’s judgment about what is 
a generic or probable enough pre-inflation state. (I will shortly return to this topic of making 
precise the idea of a state of the whole cosmos being generic or probable.)  

But although one can raise these questions, inflation’s account of why W is close to 1, 
namely as a robust feature of a dynamical mechanism, is generally agreed to be a successful 
explanation---even though the dynamics is very conjectural. In short, it is a successful example of 
strategy (Gen).  

 
 

(2): Besides, there are several other examples in physics where a fine-tuned value gets explained 
as generic by a suitable change in the theoretical context. One such case was the explanation in 
the early 1970s of some fine-tuning in sub-atomic physics by postulating a new kind of particle 
(viz. a charmed quark): which was later empirically confirmed.    

Indeed, such examples fall in to a wider category: of explaining a value (not necessarily 
fine-tuned) of a parameter, by a suitable change in the theoretical context---but not necessarily by 
showing the value to be generic or typical, e.g. by having high or at least moderate probability.  

A famous case of this wider category---with the merit that it is simple enough to 
describe---is Maxwell’s explanation of the speed of light. When Maxwell formulated his unified 
theory of electricity and magnetism (mentioned in Chapter 4.1) he found that some solutions to 
his equations described waves of the electric and magnetic fields that his theory postulated. That 
is: the theory described oscillating patterns of (values of) these fields (vectors located at points in 
our familiar 3-dimensional physical space). These patterns propagated across space at a speed 
that is a simple function of two fundamental constants (called ‘permittivity’ and ‘permeability’), 
that are mentioned in the theories of electricity and magnetism, and whose values were known. 
When Maxwell calculated this simple function from the two known constants, the answer turned 
out to be the speed that had already been measured as the speed of light (viz. 300,000 kilometres 
per second). Maxwell then inferred that light is waves of the electric and magnetic fields.  
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This is often, and rightly, celebrated as a reduction of one field of physics, the theory of 
light i.e optics, to another, the theory of electromagnetism (as we now call it). (Here, ‘reduction’ 
is meant in the sense of Chapter 3.1: viz. deriving the doctrine of one theory from that of 
another by augmenting the latter with suitable definitions.) But once light is indeed identified as 
being such waves, Maxwell’s calculation can also be taken as an explanation of the speed of light. 
In effect the explanation is: ‘these waves of the electric and magnetic fields must travel at this 
simple function of the permittivity and permeability constants; and given the actual values of 
those constants, the speed must therefore be 300,000 kilometres per second---as is observed.’ 

So much by way of examples of successfully explaining the value of a parameter. I turn 
now to formulating a bit more generally what fine-tuning really amounts to: what is the 
problematic ‘just-so-ness’ of a parameter’s value. The idea will be that the parameter should not 
be a function of other parameters, that depends very sensitively on those other parameters’ 
values.  

To take perhaps the simplest example: the value of a parameter should not be an 
arithmetical difference of two other physically significant numbers that are nearly equal, but are 
both vastly larger in magnitude than the parameter itself.  

Thus imagine a theoretical framework in which the chosen parameter, which I call p, is a 
millionth: p = 10-6. And imagine this is “because” (i.e. because, according to the given 
framework) p is the difference of two other numbers, q and r, that themselves have some 
physically significant interpretations, and that are nearly equal but are both vastly larger than p. 
For examples, they might have values 106 +10-6 and 106. That is: q = 106 +10-6 and r = 106 and p 
= q – r = 10-6.  

So the imagined framework makes the value of the parameter p fine-tuned. It is 
extremely sensitive to the exact values of these other numbers q and r: in my example, sensitive 
to their thirteenth digit. Had q and r been slightly different (in terms of proportions of their 
actual values, e.g. in their last digit), then p’s value would have been vastly different 
(proportionately) from its actual value. In short: the framework, with its equation p = q – r, gives 
us an unsatisfactorily fragile derivation of p’s value, not a robust explanation of it.  

(Of course, since the value of a parameter usually depends on a human choice of units, 
these numbers 10-6 etc. should be dimensionless.  That is, they should be pure numbers without 
a physical unit involved. For example, they could be a ratio of two masses, or of two densities, or 
of two electric charges, or of strengths of two forces.)  

This example illustrated the idea of sensitivity with an arithmetical difference being tiny, 
and so liable to be vastly (proportionately) changed by a change in the numbers whose difference 
is being taken.  But as I said, fine-tuning need not be a matter of an arithmetical difference. The 
function involved, whose values depend very sensitively on its arguments, could be a function 
very different (in particular, more complicated) than addition. All such cases of fine-tuning 
prompt strategy (Gen): the value of a parameter should be shown to be generic or typical, in 
some precise sense that is defined by an appropriate theoretical framework. (Of course, this 
framework is often not the one in which the parameter’s value is first observed or known. Recall 
for example how W was measured to be close to 1, before the framework of inflation was 
suggested.)  

But can we make precise this idea of being generic, in a more general way? That is: can 
we do so without invoking case-studies, with their case-specific functions like arithmetical 
difference, and case-specific theoretical frameworks that show the value to be generic? (‘Being 
generic’ is sometimes called ‘genericity’: a word so ugly that I avoid it.)  

 
 

(3): In my opinion, mathematics and physics provides three overall approaches to doing so. I 
suggest the labels: topology, effective field theory and probability. I will discuss the first two, 
which are comparatively specific to mathematics and physics. Then I will briefly discuss 
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probability: which of course extends far beyond mathematics and physics, and which will also 
occupy us in subsequent Sections. 
 
 
Topology is a major branch of pure mathematics that focusses on the idea of a continuous 
transformation: which means, roughly speaking, a transformation that preserves the nearness 
relations holding between the objects being transformed. Here, being near need not be a matter 
of a numerical distance. It can be a qualitative relation, and it can come in degrees. Thus 
topology has jargon like ‘closeness’, ‘neighbourhood’ etc.; and a set of objects endowed with 
such nearness relations is called a ‘topological space’.  Thus for a transformation T that shifts 
objects a and b respectively to T(a) and T(b) (in the same or a different topological space), we say 
that T is continuous if: whenever a and b are near, so are T(a) and T(b). On the other hand, T is 
discontinuous if there are objects a and b that “get pulled apart” by T, i.e. are such that T(a) and 
T(b) are not near.  

In this way, a discontinuous transformation can express the idea of ‘sensitive dependence 
on the inputs’ (here: a and b), even without invoking number-valued functions. Or more 
precisely: it expresses one version of this idea, without invoking number-valued functions. 
Applying ideas like these, mathematicians have made precise the idea that an object a in a certain 
set of objects {a,b,…} is generic, in the sense that it is like (in appropriate respects) the other 
objects in the space that are near it.  

Mathematicians have even defined topological spaces whose objects, i.e. elements a, b, 
… of the set, are possible physical systems, each taken as subject to certain forces. (Since 
specifying a system and the forces on it prompts the traditional format of a physics problem, viz. 
‘For a given initial condition, how will this system change over time?’, such spaces are often 
called ‘spaces of problems’.) In such cases, the elements of the space i.e. the physical systems are 
usually described by a mathematical function such as a potential energy function which encodes 
the forces on the system. So nearness of the elements of the space is a matter of the systems 
having potential energy functions that are “nearly the same”, according to some criterion for the 
approximate equality of functions.  

I will not go in to these ideas in more detail. But I cannot resist noting that: (i) the jargon 
of the subject includes the alluring phrases, ‘catastrophe theory’ and ‘structural stability’; (ii) since 
the elements of such a space are possible physical systems, very few of which are actual, we again 
see that physics is up to its neck in modality (cf. Chapter 3.3).  
 
 
I call the second approach to making precise the idea of being generic, or typical, the effective 
field theory approach. It is like the topological approach, in two ways. It eschews probabilities; 
(which will be the third approach). And it describes a set of complicated entities with such 
mathematical precision, both about each entity and about their mutual relations, that the set 
deserves the name ‘mathematical space’. (As discussed in Chapters 3.3 and 4.2, mathematicians 
call a set that is endowed with various structures, especially structures inspired by geometric or 
visual intuition, a ‘space’, even though its elements have nothing to do with points or regions of 
physical space.)   

But there is also a contrast with the topological approach. There, the entities were 
physical systems, each taken as subject to certain forces; (as noted: often called ‘problems’). But 
in the effective field theory approach, the entities, the elements in the mathematical space, are 
physical theories, where each theory is identified by, roughly speaking, the set of parameters that 
occur in its specification of the forces on the systems the theory describes. A bit more precisely: 
the forces are encoded in a special function: the Lagrangian. Or in some formulations, they are 
encoded in a function that is a mathematical “cousin” of the Lagrangian, viz. the Hamiltonian. 
Both the Lagrangian and the Hamiltonian functions have as arguments states in the system’s 
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state-space; so they are functions on state-space; and their value is a certain difference, or a 
certain sum, of different kinds of energies of the state.  

(Of course, only a few Lagrangians (Hamiltonians) will be instantiated by an actual 
physical system. So most of the elements in this space of theories are not actualized. So as in my 
comment (ii) at the end of the topological approach: we are up to our necks in modality.)  

The Lagrangian (or Hamiltonian) contains parameters, especially those whose value 
specifies how strong a force is (called ‘coupling constants’). The list of these parameters’ values 
specifies the theory. That is, it specifies the element in the postulated space of theories.  

The point of postulating this space of theories---and the link to expressing our topic of 
being generic---lies in the key idea that the parameters (including, despite their name: the 
coupling constants) are not really constant. For at high energies, they take different values than at 
low energies.  

So as you mentally traverse a curve in the space of theories, from higher energies to 
successively lower energies, you can consider the functional dependence of a parameter’s values, 
on various other parameters.  In the mathematics, traversing such a curve is a matter, in effect, of 
summarizing the influence of the physical phenomena at higher energies (the physics described 
by points, i.e. theories, on the curve which we have already traversed) on the lower-energy 
physical phenomena that are described by the point i.e. theory you are currently at---i.e. the 
theory you are currently considering. A bit more precisely: ‘influence’ here means ‘mathematical 
implications’ not ‘causal effects’; and ‘summarizing the influence’ is a matter of averaging the 
numerical values implied by the higher-energy phenomena. Or in yet more technical jargon: it is 
a matter of integrating out higher-energy modes of the system.  

 Traversing such a curve is called ‘following the renormalization group flow’. For the way 
that a parameter’s value changes as we consider lower energies is described by a mathematical 
structure called ‘the renormalization group’. And the approach is called ‘effective field theory’ 
because in physics, ‘effective’ means, not ‘efficacious’ i.e. ‘having a big or strong or intended 
effect’, but: ‘approximate in a useful way’. So in physics, an ‘effective theory’ is a theory which is 
believed, and often known, to not be completely correct; but which is correct to a sufficient 
approximation that it is useful.  

So the overall idea here is that although we do not know, and may never know, the 
correct theory of physics at the higher energies that our experiments cannot probe, we can hope 
to formulate an effective theory of physics at the lower energies that our experiments can probe. 
(The reason for saying ‘effective field theory’ not just ‘effective theory’, is that these ideas were 
developed (in the period 1965-1975), mainly in the context of quantum field theory, and its topic 
of renormalization. In these developments, Ken Wilson (1936-2013) was a leading light.)   

Besides, traversing a curve from high to low energies, in the above way, amounts to 
deducing which low-energy theory (low-energy point on the curve) is implied by the high-energy 
theory (point) at which the curve began. More precisely, the clause ‘is implied by….” means: is 
implied by (i) the high-energy theory, taken together with (ii) the chosen way of summarizing the 
influence of higher-energy phenomena---the way that the curve defines.  

So the question arises: do the curves along which one mentally proceeds, from two 
different (though close) points i.e. theories at some high energy, towards lower energies, diverge 
or converge?   

If they diverge, that means that small differences in one or other of the parameters of the 
high-energy theory from which one started will imply large differences in one or more 
parameters of the low-energy theory which one arrives at. That is: divergence means the low-
energy physics, i.e. the physics we can now observe, is extremely sensitive to the values of at least 
one parameter describing high-energy physics, i.e. the physics we cannot now, and might never, 
probe with our experiments. So divergence is bad news. For it means fine-tuning of one or more 
parameters of the low-energy theory; and we might never be able to probe the high-energy 
physics on which the parameter depends.  
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On the other hand, convergence of the curves would mean that the values of parameters 
describing low-energy physics are robust to variations in high-energy physics. They stay 
approximately the same, when we envisage different high-energy theories, even substantially 
different ones. This is good news, in that we can hope to argue, even without knowing the 
correct high-energy theory, that the value of a parameter at low energies should be 
(approximately) thus-and-so. In short: we can hope to argue that what we see is generic. For 
whatever the unknown high-energy physics, we would see approximately this value. 
 
 
Finally, I turn to the third approach to making precise the idea of being generic, or typical. Of 
the three, it is by far the oldest: one might even call it ‘venerable’. The idea is to appeal to 
probability. There should be a probability distribution over the possible values of the parameter, 
and the actual value should not have too low a probability.  

This connects of course with statistical inference: in both everyday life and science, far 
beyond physics. There, it is standard practice to say that if a probability distribution for some 
variable is hypothesized, then an observation that the value of the variable lies ‘in the tail of the 
distribution’---often called: ‘has a low likelihood’, i.e. a low probability, conditional on the 
hypothesis that the distribution is correct---disconfirms the hypothesis that the distribution is the 
correct one. That is: it disconfirms the hypothesis that the distribution truly governs the variable.  

This scheme for understanding typicality seems to me, and most interested parties---be 
they scientists or philosophers---sensible, perhaps even mandatory, as part of scientific method. 
Agreed: questions remain about:  

(a) how far under the tail of the distribution---how much of an outlier---an observation 
can be without it disconfirming the hypothesis, i.e. without it being deemed to be atypical;  

(b) how in general we should understand ‘confirm’ and ‘disconfirm’, e.g. whether in 
Bayesian terms or in traditional (Neyman-Pearson) terms; and relatedly:  

(c) whether the probability distribution is subjective or objective; and more generally: 
(d) what probability really means (Chapter 4.11, 4.12); and, after Hume’s critique of his 

predecessors (Chapter 2.4, 2.5), what is the philosophical justification for induction.  
But these questions are obviously not specific to physics, let alone our more specific 

topic of the cosmological multiverse. So I will not pursue them in general terms. But this is not 
to suggest that they are easy, or irrelevant to our topic. We will see them crop up several times in 
what follows. 

 
 
 
Chapter 5.7: Difficulties about being generic 
The previous Section described strategy (Gen), i.e. explaining a parameter by showing it to be 
generic; and some of its successes. In this Section, I report some of the difficulties it faces. I will 
begin in (1) with some examples, and then move in (2) and (3) to general issues; (3) will be 
focussed on cosmology. These difficulties will prompt us, in the following Sections, to consider 
the other strategy, (Obs). 
 
(1): First, we should note that in recent decades in physics, strategy (Gen)’s “track-record” has 
been mixed. The previous Section noted some successes: especially inflation’s explaining W and 
the homogeneity of the CMB; and the charmed quark. But by no means every apparently fine-
tuned parameter has been explained along the lines of strategy (Gen). I will report two such 
recalcitrant examples. Both examples fall under what the last Section called the ‘effective field 
theory approach’. So they are examples of dismaying fine-tuning. Small differences in one or 
more parameters of a high-energy theory imply large differences in one or more parameters of 
the low-energy theory whose predictions we can observe. As in the previous Section, one 
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example is from cosmology, the other is from high-energy physics.  As we will see in later 
Sections, both examples have prompted some physicists, in particular cosmologists, to shift to 
strategy (Obs).  

The first example is the cosmological constant. Introduced by Einstein as a possible 
emendation of his field equations for general relativity, and written as L, (i.e. the capital Greek 
letter, lambda), this constant represents a repulsive force between two masses. So in a 
cosmological context, L amounts to a cause or tendency for the universe to expand; so it 
opposes the gravitational force that tends to make matter clump together. And the eventual 
destiny of a universe that, like ours, is in fact expanding---whether to expand forever, or to come 
to a stop and re-contract---will be determined by the balance between L and gravitation. The 
current evidence is that the universe’s expansion is accelerating: this means that we measure L to 
be positive.  

However, we have no good explanation, following strategy (Gen), of the value of L: or 
even of its approximate value. Worse, theoretical estimates of the value of L (using the 
framework of quantum field theory) are wildly wrong. For unless we assume a lot of fine-tuning, 
the estimates are wrong by very many factors of ten. In some estimates, the error is a factor of 
10120; (that is, 120 factors of ten, called ‘120 orders of magnitude’.) This discrepancy is called ‘the 
cosmological constant problem’. It is of course agreed to be a major problem for physics. 
Regardless of one’s philosophical views about explanation, and in particular about strategy 
(Gen): it suggests a very basic conflict between quantum theory and general relativity. (But as 
mentioned, we will see that strategy (Obs) fares better in dealing with it.) 

The second example is the mass of the Higgs boson. (This particle, first postulated in the 
mid 1960s, was discovered in 2012 at the particle accelerator at CERN, Geneva.) This is another 
dismaying example of fine-tuning. Thus recall the scenario in the middle of the last Section: a 
parameter p is defined as a tiny arithmetical difference of two other numbers q and r, each of 
which is vastly larger than p and also has an appropriate physical interpretation. This scenario 
implies that the value of p is very sensitive to (changes enormously with) changes in q and r. My 
toy example was: q = 106 +10-6 and r = 106; so that p = q – r = 10-6.  

The mass of the Higgs boson is just such a parameter p. The exact value of the exponent 
depends on which higher value of energy one envisages the (unknown) higher-energy theory 
being valid; in other words, on how far beyond energies which we can observe one expects new 
physics to “kick in”. The higher this value of energy, the larger is the exponent. For example, if 
one sets it very high, at the Planck energy---an energy at which the need to reconcile quantum 
field theory with general relativity becomes acute---then the exponent is 34. That is: the Higgs 
mass is a difference of two numbers that, written in decimal notation, match in their first thirty-
four digits, and then differ in the thirty-fifth digit. Indeed, dismaying. 

Again, strategy (Gen) stumbles here. For the most popular version of strategy (Gen) for 
this case is to appeal to an idea that extends the standard model of high-energy physics that (as 
mentioned in Section 2) was consolidated in the mid 1970s. And this version of strategy (Gen) 
turns out to have a fine-tuning problem of its own. 

The idea being appealed to here is called ‘supersymmetry’. We do not need details about 
it, but can just note the following. Supersymmetry comes in various versions. The “good news” 
is that some versions imply that the observed mass of the Higgs boson is generic in strategy 
(Gen)’s sense: the observed mass lies in a range where it is expected to lie. But the trouble is that 
in order to have this implication, these versions also imply that that there are other particles with 
a mass similar to the Higgs: particles that have not been observed. These particles, predicted by 
supersymmetry, are supersymmetric partners of known particles, and are called ‘superpartners’. 
But as I say, no such particles have been observed: not even with masses far from that of the 
Higgs.  
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We can put the problem a bit more precisely. The only way that supersymmetry can 
avoid the embarrassing implication that there are superpartners with a mass similar to the Higgs, 
is to postulate higher masses for the superpartners: so high that our particle accelerators---more 
generally, our experiments---cannot detect them. But to postulate this requires . . . fine-tuning 
the masses of the superpartners.  

(A note about jargon: in physics, especially high-energy physics, ‘naturalness’ is used to 
mean, in effect, the opposite of ‘fine-tuning’. So in this jargon: the hope was that supersymmetry 
would show the Higgs mass to be natural. But the problem is that if all masses are natural, then 
the masses of the superpartners should be similar to that of the Higgs.)  

 
 
  

(2): So much by way of reporting examples where strategy (Gen) stumbles. I now move to a 
general statement of the difficulties strategy (Gen) faces.  

As I see matters, it is clearest to distinguish:  
(a): a group of difficulties each of which is not specific to cosmology, but arises 

from the variety, and often, the context-dependence or subjectivity, of the considerations 
that determine whether something counts as generic, and-or as not needing explanation, 
so that it can provide, or at least contribute to, an explanans: these are difficulties that we 
have already seen at various places in our discussion;  

(b): difficulties that are specific to cosmology, i.e. that arise from the fact that the 
system we are concerned with is the entire cosmos: these are difficulties we have touched 
on, but not focussed on.   

I will treat (a) here; and (b) in (3) below, which will lead in to the next Section.  
 As to (a), here are three main ways in which we have seen variety, or context-dependence 
or subjectivity, about what counts as generic, and-or as not needing explanation. I present them 
in the order in which they came up in the previous two Sections.  

First: In both Sections, we discussed how judgments about what is generic or not 
needing explanation are often moulded by the context of enquiry, and by pragmatic or even 
subjective factors. For example, recall Kepler’s effort to explain why there were six (known) 
planets in terms of Platonic solids (cf. the start of Section 5 above); and the judgment that an 
initial state (‘initial condition’ in the jargon of physics) is generic at least in the sense that it 
provides an explanans for a later state (cf. (i) and (ii) at the start of Section 6 above). 

Second: In what I called the topological and the effective field theory approaches to 
making ‘generic’ precise, there is again variety and context-dependence of judgments. This may 
seem surprising, since these approaches’ definitions of notions like a topology or a 
renormalization group and its flow (on a space of physical systems, or problems, or theories) are, 
after all, mathematical.  

But of course, being mathematical does not imply being unique. In general, a set can 
have many different topologies defined on it; and similarly, for defining renormalization flows on 
a set of Lagrangians (or Hamiltonians). Agreed: of the many mathematically consistent 
definitions, only some will be natural or significant, from the point of view of physics. But in 
general, the notion of ‘physically natural or significant’ is too vague and-or ambiguous to pick 
out a unique definition. So there will be a choice to be made, depending on context or aims.  

Third: On the probabilistic approach to making ‘generic’ precise, there are similar 
difficulties. For a set can have many different probability distributions (in a more mathematical 
jargon: probability measures) defined on it. So the obvious question arises: what justifies the one 
being used? And even after accepting for whatever reason one distribution as correct, or at least 
as correct for one’s purposes: there are the questions that I listed as (a) and (b) at the end of the 
previous Section (Section 6). Namely: how far under the tail of the distribution---how much of 
an outlier---must an observation, for example of the value of a variable, be in order to count as 
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not generic, as atypical? (And so to count as disconfirming the hypothesis that the distribution is 
correct.) And even after accepting an answer to this, there is the more general question of what 
framework of statistical inference (Bayesian? Neyman-Pearson?) we should adopt. That is: how 
should we infer from observations to hypotheses about what is the correct probability 
distribution? 

 
 

(3): So much for my group (a) of difficulties. I turn to my second group, (b): difficulties that arise 
from the fact that the system we are concerned with is the entire cosmos. So we return to focus 
on the main question we first formulated at the end of Section 4 above. Namely: Suppose we are 
given a cosmological multiverse of many bubble universes (domains), across which the value of a 
fundamental physical parameter (normally called a ‘constant of nature’!), such as the 
cosmological constant or the electric charge on an electron, varies. Then the question is: How 
can we implement our explanatory strategy (Gen), so as to explain the value as “to be expected”? 

As I see matters, there are two main points to make about this question.  
The first is the obvious point that in this cosmological setting, the difficulties in group (a) 

are aggravated. For the cosmological multiverse, the theoretical context is so speculative that 
rigorous definitions are hardly to be had. So the difficulties are not just about having to appeal to 
context, pragmatic factors etc., so as to single out your preferred precise definition of being 
generic. Also, the daunting complexity of the relevant state-space (recall the 10500 vacua at the 
end of Section 4 above) makes it hard to give rigorous definitions of topologies, or 
renormalization flows, or probability measures. 

We can express this point as a further comment on the problem which we first admitted 
back at the beginning of Chapter 4’s discussion of the Everettian multiverse (Chapter 4.6). 
Namely: no Everettian knows how to write down the state of the cosmos---the symbol Y, with 
its honorific use of a capital letter, is a promissory note. We also admitted in this Chapter’s 
Section 1 that eternal inflation aggravated this problem in several ways; although in order to keep 
the discussion as simple as possible, I proposed that we take the envisaged quantum state of the 
cosmological multiverse to be a sum or superposition, over the countless bubbles (domains), of 
each of their Everettian states Y in the sense of Chapter 4 (especially Chapter 4.8’s sketch 
definition of ‘world’). That is: the multiverse’s state is a sum of states Yi , where the label ‘i’ on 
the summands labels the different universes. And recall from the end of this Chapter’s Section 4, 
that there might be dauntingly many states in the sum, dauntingly many values of the label ‘I’: in 
the context of string theory, 10500 !  

So much by way of gathering previous discussions’ threads about our not knowing how 
to write down the state of the cosmos. The present point is the further comment that not only 
are we unable to write down the state. Also, we cannot rigorously define such notions as the 
state being generic, or the appropriate probability distribution on states.  

The second main point is about probability, and more specifically about confirmation: a 
topic which will be developed in the following Sections. Suppose that despite the difficulties 
above, we could define various probability distributions on the states of the multiverse, and 
make sense of the idea that one of them is correct. Still, we would face the question: ‘How can 
we gather evidence about which one is correct?’  

The problem is obvious. We presumably cannot get empirical data about bubble 
universes other than the one we are in: for the spatiotemporal connection between “our bubble 
universe” and any others is through the inflationary epoch, which for us is long gone. (And even 
apart from inaccessibility: its extreme conditions, for example of temperature, put it so far 
beyond established physics that we could hardly expect to get interpretable data from it.) But 
without such data, it is very unclear how we could gather evidence about which probability 
distribution is correct. After all: our understanding of the phrase ‘correct probability’ derives 
from cases where there is a set of actual systems or events (tosses of a coin or coins, rolls of a die 
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or dice, etc.) that are, or are believed to be, suitably similar. We then estimate probabilities by 
counting the proportions, the relative frequencies, with which certain features (heads or tails, 
scores on a die) occur. Agreed, there is debate about how best to make these estimates from 
observed frequencies: a debate addressed by theories of statistical inference---recall questions (a) 
to (d), at the end of Section 6. But all parties agree that there are deep connections between 
probabilities and frequencies. So if we do not know any frequencies, how can we guess 
probabilities?  

 
 
 

Chapter 5.8: Biased sampling: Eddington’s net 
In the last two Sections, I discussed the successes, and then the difficulties, of what (at the end 
of Section 5) I labelled ‘strategy (Gen)’ for explaining a fact: namely by deducing it, or showing it 
is generic, given some appropriate framework or explanans. In that discussion, the sort of fact to 
be explained has been, since the end of Section 4, facts about the value of a cosmological 
parameter, or a constant of nature---though we now envisage that such “constants of nature” 
may vary from one bubble universe to another.  

So now I turn to what I labelled ‘strategy (Obs)’: explaining a fact, that one admits may 
well not be deducible or generic, by showing that it is likely (or at least has high enough 
probability) to be observed. In this Section, I discuss this strategy, and how it differs from 
strategy (Gen), in everyday terms, regardless of cosmology---to which the next Section will 
return.   

The distinction between these two strategies lies in the fact that what is most probable to 
occur is not necessarily what is most probable to be observed. That is, we need to distinguish: (a) 
having high, or high enough, probability (or frequency) in a total population of cases; and (b) 
having high, or high enough, probability (or frequency) in the sub-population that we observe.  
The distinction between (a) and (b) arises from something familiar from very elementary 
applications of probability theory: biased sampling.  

For example: when you take a sample from a set, say ten adults from a population of 
10,000, in order to estimate the average height, your sample might be biased, in the sense that 
the frequency of the attributes of interest (here, being such-and-such metres tall) within the 
sample is different from its frequency in the total population of 10,000. Agreed: some difference 
in frequencies is to be expected. Almost always, the sample frequency does not exactly equal the 
population frequency (or population probability)---this is called ‘stochastic variation’. And what 
counts as a large enough difference to earn the label ‘bias’ is a matter of how big a difference 
counts as significant for one’s purposes---and so is partly a matter of judgment. For example, the 
sample might be biased, with large heights more frequent (as a proportion) than in the total 
population, simply because you chose the ten people from your local basketball club. And 
whether your consequent over-estimate of the population’s average height is large enough to 
matter will depend on your purposes. For example, a five-centimetre over-estimate would matter 
if you planned to sell shirts to the population, but not if you planned to sell them lottery tickets. 

So far, so obvious. But our interest lies in cases where the sample is biased, not as a 
matter of coincidence (as might well occur in the example of the basketball club), but as a 
systematic effect of the method of observation, or data-gathering. This is called a ‘selection 
effect’; (or: ‘effect of observational selection’).  

A famous example occurred in the 1936 US Presidential election. The incumbent 
Democratic President, Roosevelt, beat his Republican challenger, Landon, by a large margin. But 
one magazine had predicted that Landon would win, on the grounds that it posted 
questionnaires to ten million subscribers---of whom about two million responded, mostly 
favouring Landon. But this was a selection effect. The subscribers were disproportionately 
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Republican, compared with the nation at large; and the subscribers with the interest to send back 
a response were even more disproportionately Republican.  

There is also a famous and vivid metaphor for selection effects, invented by the British 
physicist Arthur Eddington (1882-1944). In his book, The Philosophy of Physical Science (1938), he 
wrote:  

 
‘Let us suppose that an ichthyologist is exploring the life of the ocean. He casts a net into the 
water and brings up a fishy assortment. Surveying his catch, he proceeds in the usual manner of a 
scientist to systematise what it reveals. He arrives at two generalisations: (1) No sea creature is 
less than two inches long. (2) All sea creatures have gills. These are both true of his catch, and he 
assumes tentatively that they will remain true however often he repeats it.’ 
 
To sum up: Fishermen whose net has a mesh of, say, two inches, and who therefore observe that 
all the fish in their catch are longer than two inches, should not infer that all the fish in the lake 
are also longer than two inches. (Incidentally, Eddington intended his metaphor to teach a 
different and more contentious moral than just ‘Beware selection effects’. Namely, a moral about 
the relation between physics and philosophy---which we will return to in the Notes at the end of 
this Chapter and in Chapter 6.) 
 So far, we have thought of selection effects as a bug: as a hindrance to making good 
estimates of the probability or frequency of an attribute in the total population from which we 
take our sample. That is right: they are a hindrance, especially if we do not know the details of 
how our sample is biased. If we do know those details, we can try to “build in” the details to the 
procedure by which we make an estimate, so as to compensate for the bias.  

How to do this is a topic in the statistical theory of estimation. The rough idea is of 
course to conditionalize one’s probabilities on a description of the sampling process. Similarly, if 
we know only some details, or have only probabilistic information about how the sampling is or 
might be biased: we “build in” what we know about the process. In short, this is familiar ground 
in the practice of statistical inference: specifically, in the theory of estimation. There may be 
practical difficulties about learning the details of the sampling process, and debate within 
statistical theory about how best to “build in” those details to the procedure for making an 
estimate. But there is no general or philosophical problem about the fact that we need to allow 
for these details.      

But there is also another way to think of a selection effect. Namely, as explaining the 
frequency of an attribute that we observe (the height of a human, or their political views, or the 
length of a fish), despite that frequency being different from those for the total population. It is 
of course this perspective that is encapsulated by the strategy (Obs). 
 Again, I think there is no general or philosophical problem about this strategy, although 
there may well be difficulties about the details of the sampling process. As above, these could 
include, first, practical difficulties about learning the details. For example, does the fishermen’s 
two-inch mesh really prevent any fish longer than two inches, if such there be, from getting 
caught? And there could be theoretical difficulties about how the calculation of an estimate 
should allow for such details. For example, how should my estimate of average height allow for 
my having sampled heights from a basketball club? Being told to conditionalize on the 
proposition ‘All the people in my sample play basketball’ gives very little guidance, if I do not 
know any details about how much playing basketball favours the tall. 
 I do not mean to downplay these difficulties, whether in physics or in other sciences. In 
all sciences, the observational process is indeed liable to be biased, i.e. the value of the variable 
we wish to observe may be correlated with the process of observation; and it can be a hard and 
complicated matter to recognize this, and to understand it in enough detail so as to compensate 
for the bias. Just think of the care that goes in to calibrating scientific instruments. But the point 
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is that this is familiar ground in the practice of science and statistics: there is no a general or 
philosophical problem hereabouts. 
 Or rather: there is no such problem, outside cosmology. But when we consider 
cosmology, there may be such problems---as I discuss in the next Section.  
 
 
 
Chapter 5.9: Selection effects in cosmology: the anthropic principle and the cosmological 
constant  
So we return to the main question that we first formulated at the end of Section 4. Namely: 
Given a cosmological multiverse of many bubble universes (domains), across which the value of 
a fundamental physical parameter, such as the cosmological constant or the electric charge on an 
electron, varies: How can we explain the value that we measure? And relatedly, since one 
confirms a scientific theory by its predicting---and one hopes: explaining---results of 
measurements and observations: how, if at all, can we confirm (or disconfirm) a theory 
postulating such a multiverse? I begin in (1) with general remarks; and then in (2) turn to 
specifics.  
 
 
(1): In general terms, our trouble about addressing these two questions is that it is not enough to 
say that a cosmological theory will assign differing probabilities to various values of such a 
parameter, of which each bubble universe exhibits one value; and that this enables us to assess 
the theory by ordinary statistical inference---along the lines that if the observed value is too much 
of an outlier, i.e. in the tail of the probability distribution, then we should conclude that the 
theory is disconfirmed.  

Indeed, it is not enough for two reasons. We spelt out the first reason at the end of 
Section 7. Namely: we measure and observe only our own bubble universe, our own “cosmic 
parish”. So for a parameter that describes an entire such universe, like a “constant of nature”, we 
only get one number---we cannot count frequencies. That is a miserably meagre basis on which 
to judge which probability distribution is correct. Indeed, it is too meagre even for estimating the 
average value of the attribute in question: imagine trying to estimate the average height of a 
population of 10,000 by measuring the height of just one person. And for the cosmological 
multiverse, we expect the number of bubble universes to be vastly larger than 10,000.   

The second reason is, of course, selection effects: which prompt our explanatory strategy 
(Obs), viz. that we explain a value of a parameter by its being probable (or at least has probable 
enough) to be observed. For in the context of measuring fundamental parameters in a 
multiverse, biased sampling threatens to be a significant problem. The problem is not just that, as 
in the first reason, each bubble universe exhibiting only one value means the sample size is so 
small as to be useless, thanks to stochastic variation. Also, established theories in both physics 
and chemistry show that many of the parameters at issue, such as the cosmological constant and 
the charge on the electron, are indeed correlated with what the last Section called the ‘process of 
observation’.  That is, they are correlated with facts that underpin humans’ being able to measure 
the parameter: such as the fact that life on earth depends on a suitable abundance of carbon and 
oxygen, or that stars exist, and have planets orbiting them, for times long enough for the 
complex carbon chemistry of life to evolve on a planet.   

With this mention of how the process of observation involves humans (or their complex 
carbon chemistry), we thus arrive at last at the well-known phrase: ‘the anthropic principle’. For 
some fifty years, it has been the topic of heated debate in both cosmology and philosophy. (The 
phrase was suggested in 1973 by Brandon Carter (1942 - ) a theoretical astrophysicist. People 
also talk of ‘anthropic reasoning’.) 
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(2): The general idea of these correlations is that modern astronomy and cosmology (as reported 
in Section 2) has shown our universe to be very unified: not just in what I called the 
‘geographical’ sense that a parameter, such as the charge on the electron, takes the same value 
throughout our universe (Section 4); but also in the sense that what happens to its smaller parts, 
such as a star or galaxy, depends on truly global, i.e. universe-wide, features.  

A good example is the parameter I mentioned first in this Chapter: the density parameter 
W, which is the ratio of the universe’s density to the critical density that would make the final 
rate of expansion zero.  (Cf. Sections 2 and 3. But here we are concerned, not with the 
speculative inflationary phase perhaps explaining W’s fine-tuning, but with W’s value much later 
on, and so within established cosmology: say after the recombination time 380,000 years after the 
Big Bang.)  If the early universe were very dense, i.e. W was much greater than 1, the universe 
would have re-collapsed in far less than thirteen billion years, so that life would not  have had 
time to evolve on planets; while if W was much less than 1, no stars, and therefore no planets, 
would have formed.  

Another example, which I will return to later in this Section, is the cosmological constant 
L (introduced at the start of Section 7). Since it represents a universal expansion, it having a 
much larger value than it actually does is like W being much less than 1. Namely: a much larger 
value would have made the universe’s expansion too fast for stars to form.  

A third example is the other parameter I mentioned, the charge on the electron: more 
precisely, the ratio of the strengths of electromagnetic to gravitational forces (which is greater, 
the greater the charge on the electron). If this had been much smaller than it is, gravitation would 
have been comparatively stronger, and the universe would have re-collapsed in far less than 
thirteen billion years, so that life would not have had time to evolve on planets. 

These correlations are often “tight”, in the sense that they are not probabilistic. They are 
not a matter of the probability of one proposition, the parameter’s value, being altered by 
conditionalizing on another proposition, such as the proposition that there is abundant carbon 
and oxygen. They are a matter of one value, or range of values, being mathematically dependent 
on, i.e. a function of, another value or range of values. So these mathematical dependences can 
be, and often are, summed up in what Chapter 3.7 called a ‘counterfactual conditional’, along the 
lines: ‘If the parameter had taken a different (or different enough) value than its actual one, then 
there would be no observations---at least, no observations by humans (understood as having 
such-and-such carbon chemistry).’ Witness the examples above. 

Besides, the correlations are in several cases ‘tight’ in a distinct numerical sense. Namely, 
only a very narrow range of values of the parameter, such as a few percentage points around its 
actual value, is compatible with a fact like there being abundant carbon and oxygen. Hence this is 
also called ‘fine-tuning’.  

Agreed, this is not stupendous fine-tuning to many decimal places, such as we saw in the 
flatness and horizon problems (Section 3) and in the problem of the Higgs mass (Section 7). 
(The fine-tuning of W in the flatness problem was 10-16, i.e. a hundred-million-millionth of one 
per cent.) But each of these stupendous fine-tunings occurred within a single theoretical 
framework; while here, many such frameworks are in play. For the physical and chemical facts 
and processes that link global features like cosmic expansion, or the comparative strengths of 
fundamental forces, to local features like the existence of heavier elements such as carbon, or the 
existence of life on rocky planets orbiting stars, are very diverse. They range from 
nucleosynthesis in the early universe, and in stars, through planet-formation and the chemistry of 
water, to the evolution of life. So it is indeed very striking that our established theories of these 
diverse facts and processes, when conjoined together, provide a “patchwork description” of the 
facts and processes that---despite its diverse ingredients---implies these numerical quantitative 
links, constrained to within a few percentage points. 
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But this is not to suggest that it is straightforward to spell out these implications: that it is 
straightforward to quantify the correlation. As I said at the end of the last Section, in connection 
with calibrating scientific instruments: even within a single scientific theory, compensating for 
the fact that the observational process is biased can be a hard and complicated matter. All the 
more so, when there are several theories or frameworks in play, and when the parameter in 
question is correlated, via various different mechanisms, with various different aspects of our 
making observations.  

For example, there are many different necessary conditions, each scientifically 
describable, of our observing the charge on the electron. The observer is alive; and life requires--
-one may well argue---complex carbon chemistry. Carbon requires stellar nucleosynthesis. And 
the complex chemistry of life requires---one may argue---that a planet orbit a star at a suitable 
distance (neither too hot nor too cold, like Goldilocks’ porridge), and for a long enough time, so 
that life can evolve. All these correlations, and the mechanisms underpinning them, and these 
mechanisms’ mutual relations, are very hard to disentangle. And this is so, even if we somehow 
settle on some exact definition of ‘observation’ or ‘life’. Besides, this is so even for a single 
parameter such the charge on the electron, let alone all the physical parameters of interest.  

But despite the complexities just mentioned, some examples are comparatively 
straightforward to calculate. So I end this Section with a bit more detail about one such example. 
Namely, Weinberg’s renowned explanation of the value of the cosmological constant as an 
observation selection effect. Recall from the start of Section 7 that the cosmological constant L 
represents a repulsive force between two masses. So in a cosmological context, L amounts to a 
tendency for the universe to expand; so it opposes the gravitational force that tends to make 
matter clump together. 

Weinberg recognized that the requirement that life evolves in an expanding universe of 
the type considered in the standard model of cosmology is correlated with the value of the 
cosmological constant, through a single, and comparatively simple, mechanism. Thus he wrote: 
 

… in a continually expanding universe, the cosmological constant (unlike charges, masses  
etc.) can affect the evolution of life in only one way. Without undue anthropocentrism, it 
seems safe to assume that in order for any sort of life to arise in an initially homogeneous 
and isotropic universe, it is necessary for sufficiently large gravitationally bound systems to 
form first . . . However, once a sufficiently large gravitationally bound system has formed, 
a cosmological constant would have no further effect on its dynamics, or on the eventual 
evolution of life.  

 
So the idea is that the evolution of life constrains the cosmological constant in a simple way, 
because we can think of (a positive value of) the constant as a long-range repulsive (‘anti-gravity’) 
force. Thus one assumes that (i) life can only exist on planets, and (ii) life takes a long time, say 
billions of years, to evolve. Since (i) requires that matter has the chance to clump together under 
gravity so as to form planets, the initial expansion cannot be too powerful. That is: (i) implies 
that there is an upper bound on the cosmological constant (i.e. a number that it must be less 
than). On the other hand, (ii) means that the universe must last long enough for life to evolve. So 
gravity cannot be so powerful (the initial expansion cannot be so weak, L cannot be so small or 
negative) that gravity overcomes the initial expansion in a Big Crunch that happens so early that 
life does not have time enough to evolve. Thus (ii) implies that there is also a lower bound on 
the cosmological constant. 

Indeed, the calculation along these lines in 1997, by Weinberg and co-authors, amounted 
to showing that the observed value of L (tentative in 1997, but confirmed a year later) fell 
“safely” between this lower and upper bound. So it is natural to see this calculation as explaining 
the observed value of L as an observation selection effect.  
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Chapter 5.10: Confirming a theory of the multiverse   
The last Section’s report of the fine-tuned correlations, between cosmological parameters and 
facts about observers, focussed on the one universe we are in. But now let us consider these 
correlations in the context of the cosmological multiverse.  

I shall first state---without repeating all the difficulties presented in Sections 7 to 9---the 
basic predicament that besets observers in a single bubble universe, trying to confirm a 
cosmological theory. Then I shall sketch a scheme for overcoming this predicament: a scheme 
which I find clarifying. In (1), I report the scheme’s general ideas; in (2), I report how it 
incorporates ideas from both the strategies (Gen) and (Obs). But I admit of course that the 
scheme is fiendishly difficult to apply, i.e. calculate with, except in simple toy-models of such 
theories.      

The basic predicament is that when we observe our universe, we are like Eddington’s 
fishermen. Our observations of a physical parameter (e.g. the cosmological constant) are like 
measurements of the length of fish in the catch. And so we should not infer that in unobserved 
bubble universes---in domains other than ours---the parameter takes, or is likely to take, a value 
close to what we observe. For our established theories describe how the parameter’s value is 
correlated with whether the domain has observers in it. So if in some other bubble, those 
theories are true, or approximately true, and there is no observer there, the value would be 
different. And if in this other bubble, those theories are badly wrong, i.e. not even approximately 
true, then anyway---all bets are off about the parameter’s value. 
 
 
(1): The scheme I favour was first proposed by Srednicki and Hartle (about fifteen years ago). It 
has of course been developed since then: with proposals by such authors as Aguirre, Azhar, 
Hertog and Tegmark, and by Hartle and Srednicki themselves. But for simplicity and brevity, I 
will sketch a very simplified version: (for references, see the Notes at the end of this Chapter).  

The scheme aims to incorporate appropriately the ideas from both strategies, (Gen) and 
(Obs): the idea of being generic, and the idea of being probable (or probable enough) to be 
observed. And it does this in a Bayesian way.  

In a bit more detail, this means: the scheme prescribes probabilities for data D (say, the 
value of a cosmological parameter such as W or L) to be observed, conditional on the 
cosmological theory T, and other propositions, for example propositions encoding selection 
effects. (Probabilities like these, i.e. probabilities of data or evidence conditional on a theory or 
hypothesis, are often called ‘likelihoods’.) One then uses Bayes’ theorem to calculate the 
probability of the conjunction of T with the other propositions, conditional on the data D.  

Here, we need not go into any detail about Bayes’ theorem. For us it is sufficient that the 
theorem provides a way to calculate from the conditional probability P(A/B) of a proposition A 
conditional on a probability of B, the “opposite” conditional probability, P(B/A). (The 
calculation uses the values of other probabilities, additional to P(A/B).) The basic idea for how 
to use the theorem so as to make inferences (called ‘Bayesianism’ or ‘Bayesian statistical 
inference’) is then: we take B to be some hypothesis or theory we wish to assess (confirm or 
disconfirm), while A is some proposition reporting evidence such as an experimental result.  

Thus we imagine that the hypothesis B prescribes a value of P(A/B): the probability, 
assuming B is true, of the evidence A. P(A/B) might be high; or it might be low, with A “lying 
under the tails” of the probability distribution P( /B) prescribed by B. Then the “magic” of 
Bayes’ theorem is that we can then calculate P(B/A). And then the Bayesian statistician tells us 
that if we in fact learn the evidence or result A---and so set our credence (subjective probability) 
in A equal to 1---we should adjust our credence in the hypothesis B, from our initial P(B), to be 
equal to P(B/A). (So P(B/A) is often called the ‘posterior probability’ of B.) 
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Also, the Bayesian says that A confirms B provided that this prescription makes our 
credence go up, i.e. provided that P(B/A) is larger than P(B). This Bayesian account of how 
evidence confirms or disconfirms hypotheses has many merits. In many cases, it gives the 
intuitively right verdicts about confirmation. In particular, observing some evidence A that “lies 
under the tails” of the probability distribution P( /B) prescribed by B will, generally speaking, 
disconfirm B. 

Returning to cosmology: the idea of Srednicki and Hartle’s scheme will thus be that after 
receiving the data D (about say, the value of W or L) we should apply Bayes’ theorem to the 
probability of D conditional on the conjunction of the theory T and propositions about selection 
effects etc, so as to set our credence in the conjunction equal to the posterior probability. 
 
 
(2): To convey how ideas from both my strategies, (Gen) and (Obs), get incorporated in the 
scheme, I will begin by summarizing the problems one faces in extracting predictions from 
cosmological theories of the kinds currently envisaged (including inflation). This will lead in to 
details about Srednicki and Hartle’s proposal, which they call a ‘framework’.  

I summarize the problems under three headings. These headings will echo the difficulties 
I presented in Sections 7 to 9, about such matters as: (i) the definition of a probability function 
on a very large space of possibilities, (ii) how to specify the “fact about life or observation” on 
which we need to conditionalize so as to accommodate selection effects, etc. (My three headings 
are also a simplification, or amalgamation, of an analysis by Aguirre. He lists seven problems, or 
headings, rather than my three; again, the Notes for this Chapter give references.)  

I call the headings ‘Measure’, ‘Conditionalization’, and ‘Typicality’. They are as follows. 
(1): Measure. As discussed in Sections 6 and 7: What are the elements of the set (called in 

probability theory: ‘the sample space’) on which the probability distribution (called: ‘measure’) is 
to be defined? Should they be domains, i.e. bubble universes, even though these vary greatly in 
volume? Or should the elements be spacetime regions of equal volume? Or some other option? 
And once a sample space is defined: which measure on it should we adopt? 

(2) Conditionalization. As discussed in Sections 8 and 9: we need to allow for selection 
effects. But how exactly should we characterize our observational situation? How detailed should 
the proposition describing it, on which we will conditionalize, be?  

(3): Typicality. As discussed in Sections 6 and 7, there are various problems about how to 
make precise the idea of a fact (in particular, our explanandum) being generic, or typical. In 
particular: How much “under the tails” of a probability measure can our observation turn out to 
be, without our then inferring that the theory is disconfirmed? 

This trio of headings leads directly to Srednicki and Hartle’s proposed Bayesian scheme 
for discussing the confirmation of cosmological theories. Srednicki and Hartle define a 
‘framework’ as a conjunction of:---  

i): A cosmological theory T (though often cosmologists will say ‘model’). This is taken as 
solving the Measure problem (1) above. So we write a probability P(  /T); where the argument-
place i.e. the gap will be filled by a proposition about the value of a physical parameter, e.g. the 
cosmological constant; 

ii): A ‘selection proposition’ that describes our observational situation: which is called a 
‘conditionalization scheme’, and labelled as C. So we conditionalize on C as well as on T, and we 
consider: P(  /T, C): where we expect the argument-place to be filled by a proposition D about 
“our seeing” some specific data; 

iii): A probability distribution, denoted by the Greek letter x (pronounced ‘xi’), and called 
the ‘xerographic distribution’ by Srednicki and Hartle. This is defined on those domains, i.e. 
bubble universes, that have a non-zero measure according to P( /T, C). x encodes typicality 
assumptions: as Srednicki and Hartle discuss, it need not be a flat distribution . 
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So the idea is that i) to iii) jointly implement our envisaged solutions to the problems 
listed under (1) to (3) above. The upshot is that we are to consider: P(  /T, C, x). Srednicki and 
Hartle call P(D / T, C, x ) the ‘first-person’ likelihood of seeing data D. It is a probability “to be 
observed”, rather than a probability “to be”, thanks to its conditioning on C and on x: i.e. its 
encoding our observational situation and also the typicality assumption we are making. 

Srednicki and Hartle then propose a Bayesian framework to compute degrees of 
confirmation of the framework, i.e. the conjunction of T, C, and x. That is, they use Bayes’ 
theorem to calculate: P(T, C, x/ D). They (and other authors, such as Azhar) go on to give 
examples of the framework in action. They show, for various ‘toy’ cosmological models/theories 
T (e.g. with finitely many bubble universes, so as to assume the Measure problem has been 
solved), how various conditionalization schemes C, and typicality assumptions  x, fare in the light 
of various data D.  

To sum up: I suggest that this Srednicki-Hartle scheme of frameworks is a clear and 
convincing scheme for handling both selection effects and assumptions of about being generic 
(typicality). It gives both of them an appropriate role in the endeavour of confirming a theory 
postulating a cosmological multiverse. 

 
 
 
 

Chapter 5: Notes and Further Reading  
As for Chapters 2, 3 and 4, there is a dauntingly large literature. And as in those Chapters, I 
recommend:  
(i) The internet encyclopedias and archives, and the accessible books, listed in items (1) to (2) of 
the Notes for Chapter 1; all of which cover the cosmological multiverse.  
(ii) The seminal works, some of which are indeed very readable.  
 
I will first, in (1), give more details about some items under these headings, (i) and (ii). Within 
(1), I will begin with more accessible, even popular, items, and then turn to academic (though 
still readable) books. Then in (2), I will list some research articles, in an order corresponding to 
the Chapter’s sequence of Sections.  
 
 
(1): First, as regards internet encyclopedias: I recommend three entries in the Stanford 
Encyclopedia of Philosophy. They are about: fine-tuning (by S. Friederich), the philosophy of 
cosmology (by C. Smeenk and G. Ellis), and cosmology and theology (by H. Halvorson and H. 
Kragh). They are at: 
https://plato.stanford.edu/entries/fine-tuning/ 
https://plato.stanford.edu/entries/cosmology/#Mult 
https://plato.stanford.edu/entries/cosmology-theology/#5.2 
 
 
As regards seminal works, I firstly recommend three books. They are all very accessible; the first 
two are by physicists, the third is by a philosopher. 

First: J. Barrow and F. Tipler, The Anthropic Cosmological Principle (Oxford University 
Press, 1986). This is undeniably the locus classicus for the topics of this Chapter. Though it came 
out very soon after inflation was proposed, it does cover inflation. I especially recommend 
Chapters 4 to 8, of which Chapters 6 and 7 are focussed on inflation and quantum theoretic 
aspects. 

https://plato.stanford.edu/entries/cosmology-theology/#5.2
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Second: B. Carr (ed.), Universe or Multiverse? (Cambridge University Press 2007). This 
book collects articles arising from four conferences (from 2001 to 2005), all focussed on the 
topics of this Chapter. Almost all the articles do not require knowledge of advanced physics (not 
even within cosmology). Most of the authors are prominent researchers in cosmology. Some of 
them advocate the cosmological multiverse, and endorse anthropic explanations of parameters 
such as the cosmological constant (e.g. Linde, Rees, Susskind, Tegmark and Weinberg); while 
some criticize both these tenets (e.g. Ellis and Smolin). So this collection is an invaluable 
resource; and in my list of research articles, (2) below, I will cite (for more specific reasons) the 
articles by Aguirre, Vilenkin and Weinberg. 

Third: S. Friederich, Multiverse Theories: a philosophical perspective (Cambridge 
University Press, 2021) is an excellent recent philosophical assessment of the cosmological 
multiverse. The material mostly closely related to this Chapter is about how we could confirm a 
multiverse theory (Friederich’s Chapters 7 to 9). But his Chapter 10 also briefly (though  
sceptically) discusses our other two multiverse proposals, i.e. the logical and quantum multiverses 
of our Chapters 3 and 4. The book is available at Cambridge University Press Core, at: 
https://www.cambridge.org/core/books/multiverse-
theories/68CE18BE78DE31550C67855107A57942 

     
 
There are also many excellent popular books about all the topics, or some of the topics, of this 
Chapter. Here are four popular books about all the topics, ordered by how sharply they focus on 
them, i.e. this Chapter’s concerns, to the exclusion of other themes.  

First, there is Max Tegmark’s The Mathematical Universe (2014). It gives a detailed, 
though popular, advocacy of the cosmological multiverse. As mentioned in (2) of the Notes for 
Chapter 1, I stand by my criticisms of this book: both in the review which I cited there, and in 
the long item (1) in the Notes for Chapter 3, which criticized Tegmark’s Pythagoreanism. But no 
matter: these criticisms do not undermine his advocacy of the cosmological multiverse. 

Second, there are two books by M. Rees: Before the Beginning: our universe and others 
(Simon and Schuster, 1997); and Just Six Numbers: the Deep Forces that Shape the Universe, 
(Weidenfeld and Nicholson 1999). Both books also give a lot of detail about astrophysics and 
cosmology, apart from the multiverse: for example, about the early universe, the cosmic 
background radiation, stars, galaxies and black holes---thus filling out my Section 2’s review of 
the current golden age cosmology. 

Finally, there is J. Barrow, The Book of Universes (Bodley Head, 2011). As the title hints, 
this gives a lot of detail about the “other” universes (spacetimes) that are admitted as possible 
solutions by general relativity (i.e. by Einstein’s theory of gravity) but are not part of the standard 
Big-Bang cosmological model. But its Chapters 9 and 10 discuss inflation and the multiverse. 

 
 

Here are four other popular science books, each giving a detailed account of one topic of this 
Chapter. I list them in the chronological order in which their topic took centre-stage in 
cosmology; which mostly corresponds to the topics’ order in this Chapter’s Sections. 
 First, there is S. Singh, The Big Bang: the origin of the universe (Fourth Estate, 2004). 
This focusses on how the standard Big-Bang cosmological model was confirmed by about 1980, 
largely as a result of the discovery of the CMB; (cf. Section 2). 

Second: A. Guth, The Inflationary Universe: the quest for a new theory of cosmic 
origins, (Penguin, 1998). This masterpiece of popular science is by one of the inventors of 
inflationary cosmology (and so also an advocate of the multiverse); (cf. Section 3). 

Third: Brian Greene, The Elegant Universe: superstrings, hidden dimensions and the 
quest for the ultimate theory (Random House 1999). This is an excellent exposition of string 
theory, though without emphasis on the “landscape” of many vacuum states; (cf. Section 4). 
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Fourth: T. Hertog, On the Origin of Time (Penguin 2023), focusses on quantum 
cosmology, including times even earlier than the putative inflationary epoch; and therefore on    
the no boundary proposal for the initial state of the cosmos, mentioned in Section 1. 
 
 
This last topic, the initial state of the cosmos, prompts me to issue a warning.  

Recall (from this Chapter’s preamble, and Section 1) that in physics, ‘vacuum’ does not 
mean ‘nothing’, or ‘no physical system’. It means ‘state of lowest energy’ (hence the synonym 
‘ground state’). There is a widespread tendency in popular physics books, even by physicists, to 
forget this; and thereby to suggest that by postulating a vacuum state as the initial state of the 
cosmos, we can explain the creation of the cosmos---out of nothing! In this widespread but 
pernicious mistake, the phrase ‘vacuum fluctuation’ gets abused similarly to ‘vacuum’ state. 

So far as I know, the most egregious example of this mistake is the book by L. Krauss, 
The Universe from Nothing (Free Press, 2011)---which I therefore do not recommend.  

But I do recommend two antidotes to this sort of error. First: the devastating review of 
Krauss by D. Albert, in the New York Times (25 March 2012), and available at: 
https://www.nytimes.com/2012/03/25/books/review/a-universe-from-nothing-by-lawrence-
m-krauss.html 
Second: J. Weatherall, Void: the strange physics of nothing (Yale University Press, 2016), is a 
magisterial, but very readable, account of physics’ changing conception of vacuum (void, empty 
space) from the time of Descartes and Newton, through the rise of classical field theories such as 
electromagnetism and of quantum field theories, till today---including the landscape of countless 
string vacua, and thus the cosmological multiverse.    
 
 
I turn to recommending a few academic books. They are: (1.A) cosmology textbooks; (1.B) 
philosophy of cosmology books; (1.C) histories of twentieth-century cosmology. 
 
(1.A): Here are three cosmology textbooks, in roughly ascending order of difficulty. 
 M. Longair, Our Evolving Universe (Cambridge University Press, 1996). Its final 
Chapter, ‘The Origin of the Universe’, is a very readable “immediate successor” to this Chapter.  

M. Rowan-Robinson, Cosmology (Oxford University Press, 2004: fourth edition). Its 
Epilogue, ‘Twenty controversies in cosmology’, covers inflation. It is available at: 
https://academic.oup.com/book/52969?login=false 

A. Liddle, An Introduction to Modern Cosmology (Wiley, 2015; third edition). This is 
slightly more theoretical than Rowan-Robinson’s book: and it also covers inflation. 

An expository article for the celebratory ‘Einstein’s legacy’ issue of Science magazine in 
2005, by A. Guth (an inventor of inflationary cosmology) and D. Kaiser, is: Inflationary 
cosmology: exploring the uv from the smallest to the largest scales; which is available at: 
https://arxiv.org/abs/astro-ph/0502328; and at 
https://www.science.org/doi/10.1126/science.1107483 

 
 

(1.B): Here are four books on the philosophy of cosmology. The first is a collection of invited 
articles. The second is a magisterial monograph covering many topics in the philosophy, or 
foundations, of general relativity as well as inflationary cosmology (its Chapter 5). The third is 
Friederich’s recent monograph devoted to the multiverse; which I already recommended as 
‘seminal’ above, especially for its discussion how we could confirm a multiverse theory (i.e. the 
topic of my Section 5 onwards, especially Section 10). The fourth is a collection of invited 
articles discussing in detail fine-tuning of the conditions for complex chemistry and life, as well 
as for planet formation etc. (i.e. the topic of my Section 9). 

https://www.nytimes.com/2012/03/25/books/review/a-universe-from-nothing-by-lawrence-m-krauss.html
https://www.nytimes.com/2012/03/25/books/review/a-universe-from-nothing-by-lawrence-m-krauss.html
https://academic.oup.com/book/52969?login=false
https://arxiv.org/abs/astro-ph/0502328
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K. Chamcham, J. Silk, J. Barrow and S. Saunders (eds.), The Philosophy of Cosmology 
Cambridge University Press, 2017). This has many good articles. I will cite those by Smeenk, 
Hartle and Hertog in my list of research articles, below. The book is available at: 
https://www.cambridge.org/core/books/philosophy-of-
cosmology/2E9F97DDF98A672256D35B46C3F574B4 

J. Earman, Bangs, Crunches, Whimpers and Shrieks: singularities and acausalities in 
relativistic spacetimes, (Oxford University Press, 1995). The book is at Oxford Scholarship 
Online at: https://academic.oup.com/book/49463?login=false. It is also available, with almost 
all Earman’s other work in philosophy of physics, at: https://sites.pitt.edu/~jearman/ 

S. Friederich, Multiverse Theories: a philosophical perspective (Cambridge University 
Press, 2021). The book is available at Cambridge University Press Core, at: 
https://www.cambridge.org/core/books/multiverse-
theories/68CE18BE78DE31550C67855107A57942 
 D. Sloan, R. Batista, M. Hicks, and R. Davies (eds), Fine-Tuning in the Physical 
Universe, (Cambridge University Press, 2020). Available at: 
https://www.cambridge.org/core/books/finetuning-in-the-physical-
universe/DAAE3182CBC72F012EFF589E67178F1C 
 
 
(1.C): Here are three histories of twentieth-century cosmology. The first book narrates the 
establishment of the standard Big-Bang model of cosmology. (The stress is on its defeat of main 
rival, the steady-state theory---which my Section 2 did not mention.) The second book is more 
technical: it also covers the entire twentieth century and covers astrophysics as much as 
cosmology. Its Chapter 16 focusses on this Chapter’s topics. The third book is a recent 
collection of articles. 

H. Kragh, Cosmology and Controversy: the historical development of two theories of 
the universe (Princeton University Press, 1996). 

M. Longair, The Cosmic Century: a history of astrophysics and cosmology (Cambridge 
University Press, 2006). 

H. Kragh and M. Longair (eds.), The Oxford Handbook of the History of Modern 
Cosmology (Oxford University Press 2019), available at: https://academic.oup.com/edited-
volume/34295. 

   
 

 
(2): I now list some research articles, grouped by letters A, B, C etc. Their order mostly 
corresponds to this Chapter’s sequence of Sections. The first three groups, (2.A) to (2.C), relate 
to the Preamble and Section 1. Groups (2.D) and (2.E) are about the difficulties of confirmation-
--in philosophical jargon: the under-determination of theory by data---for cosmology in general, 
and for inflationary cosmology in particular. So these correspond to Sections 2, 3 and 5 to 7. 
Groups (2.F) and (2.G) are about observation selection effects, in general and in cosmology; and 
correspond to Sections 7 to 9. Finally, (2.H) gives more details about the Srednicki-Hartle 
proposal of frameworks for confirming multiverse theories (Section 10).   
 
 
(2.A): The relation of the Everettian and cosmological multiverses was a topic in this Chapter’s 
Preamble and Section 1. Again, there is a large literature.  

As a place to begin, I recommend the articles by Carter (the inventor of the phrase 
‘anthropic principle’) and Mukhanov in the collection edited by Carr, Universe or Multiverse?, 
listed at the start of (1) above. (Both authors advocate an Everettian approach.) 

https://academic.oup.com/book/49463?login=false
https://www.cambridge.org/core/books/multiverse-theories/68CE18BE78DE31550C67855107A57942
https://www.cambridge.org/core/books/multiverse-theories/68CE18BE78DE31550C67855107A57942
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An example of a research article about this relation---in fact, advocating that the two 
multiverses are the same---is: R. Bousso and L. Susskind, Multiverse interpretation of quantum 
mechanics, Physical Review D 85 (2012); available at: arxiv: 1105.3796 
 
 
(2.B): In Section 1 (and more briefly in the Preamble and Section 3), I mentioned how 
cosmology confronts the quantum measurement problem on a cosmic scale. In particular, there 
was the idea that a peak in (the amplitude of) the wrinkles in the CMB is a seed for later 
gravitational clumping, and thereby for the later existence of galaxies and stars. I warned that 
‘seed’ is a metaphor, since the transition is from a quantum amplitude to a classical event of 
aggregation---a ‘collapse of the wave-function’. 

Recall also my warning, just before (1.A) above, of a widespread mistaken tendency to 
slur over this transition, especially with the buzz-words of ‘vacuum state’, and ‘vacuum 
fluctuation’.  

In the light of this, I recommend some research tying the dynamical reduction 
programme---i.e. the effort to suitably modify the Schroedinger equation: cf. the citation of 
Pearle in (iii) of the Notes to Chapter 4---to cosmology. In this endeavour, work by Sudarsky and 
co-authors has been prominent. So here are three such articles. 

A. Perez, H. Sahlmann and D. Sudarsky, On the quantum origin of cosmic structure, 
Classical and Quantum Gravity (2006), and arxiv: general relativity-qc/0508100. 

J. Berjon, E. Okon and D. Sudarsky, Critical review of prevailing explanations for the 
emergence of classicality in cosmology, Physical Review D, (2021); arxiv: 2009.09999 

R. Lechuga and D. Sudarsky, Eternal inflation and collapse theories, Journal of 
Cosmology and Astroparticle Physics (2024); arxiv: 2308.01383. 
 
 
(2.C) My Section 1 also mentioned quantum cosmology’s efforts to formulate an initial quantum 
state of the cosmos, including Hartle and Hawking’s no boundary proposal of 1983. This is a 
central topic of the popular book On the Origin of Time by T. Hertog, cited just before (1:A) 
above. In a large literature, a very fine recent research article is: 

J. Halliwell, J Hartle and T. Hertog, What is the no-boundary wave function of the 
universe?, Physical Review D (2019); arxiv: 1812.01760. 
 
 
(2.D) The stupendous achievements of modern cosmology, reviewed in Section 2, naturally 
prompt the question: ‘Can all these details about the physics in places and times so very distance 
from us-now really be established?’ The worry, in philosophical jargon, is the   
under-determination of theory by data; and prima facie, it seems this must be a big problem for 
cosmology.  

About this, I will here cite three survey articles (two by me). (2.E) cites more specialized 
articles, especially about the problems of confirming inflation. 

J. Butterfield, On Under-determination in Cosmology, Studies in the History and 
Philosophy of Modern Physics, 46 (2014), pp 57-69; At: arxiv.org/abs/1406.4747 
https://philsci-archive.pitt.edu/9866/; doi:10.1016/j.shpsb.2013.06.003. 

F. Azhar and J. Butterfield, Scientific Realism and Primordial Cosmology’; available at 
arxiv.org/abs/1606.04071; https://philsci-archive.pitt.edu/12192/  
     C. Smeenk, Philosophical aspects of cosmology, in Kragh and Longair (eds.), The 
Oxford Handbook of the History of Modern Cosmology (Oxford University Press 2019), cite 
din (1.C) above. The article is available at: 
https://doi.org/10.1093/oxfordhb/9780198817666.013.13  

 

arxiv.org/abs/1406.4747
https://philsci-archive.pitt.edu/9866/
http://doi.org/10.1016/j.shpsb.2013.06.003
arxiv.org/abs/1606.04071
https://philsci-archive.pitt.edu/12192/
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(2.E): Some articles about the specific difficulties of confirming inflation (and doubts about its 
providing explanations), in chronological order:  

J. Earman, Bangs, Crunches, Whimpers and Shrieks: singularities and acausalities in 
relativistic spacetimes, (Oxford University Press, 1995); Chapter 5. Cited in (1.B) above. 

C. Smeenk, Predictability crisis in early universe cosmology, Studies in History and 
Philosophy of Modern Physics 46 (2014), pp. 122-133. 

C. McCoy, Does Inflation Solve the Hot Big Bang Model’s Fine-Tuning 
Problems?, Studies in History and Philosophy of Modern Physics 51 (2015), pp. 23–36. doi: 
10.1016/j.shpsb.2015.06.002. 

C. Smeenk, Testing inflation, in K. Chamcham et al (eds.), cited in (1.B) above. The 
article is available at https://www.cambridge.org/core/books/philosophy-of-
cosmology/testing-inflation/4095B5F8D7991E344D203CCBE0B369C8 

A. Koberinski and C. Smeenk, Establishing a theory of inflationary cosmology, British 
Journal for the Philosophy of Science 2024; https://doi.org/10.1086/733886 

F. Azhar and N. Linnemann, Rethinking the anthropic principle, in Philosophy of 
Science 2025; doi:10.1017/psa.2024.41 ;and available at: https://philsci-archive.pitt.edu/23934/ 

 
 

Finally, here are two articles which also cover the problems of confirming theories of dark 
matter and of dark energy (mentioned in Section 2). 

M. Longair and C. Smeenk, Inflation, dark matter and dark energy, in H. Kragh and M. 
Longair (eds.), cited in (1.B) above. The article is at 
https://doi.org/10.1093/oxfordhb/9780198817666.013.11  

P. Ferreira, W. Wolf and J. Read, The Spectre of Underdetermination in Modern 
Cosmology; available at: https://arxiv.org/abs/2501.06095; and at: https://philsci-
archive.pitt.edu/24537/ 
 
 
(2.F): About observation selection effects in general, here are two items. The first is about 
supersymmetry: whose confirmational difficulties were a topic in Section 7. It is a Bayesian 
analysis; and so far as I know, the most recent one.  

R. Dawid and J. Wells, A Bayesian Model of Credence in Low Energy Supersymmetry 
(2024), available at: https://philsci-archive.pitt.edu/24172/ 
 
The second item is a fun historical point. It returns us to Eddington’s famous metaphor of the 
net, in his 1938 book, The Philosophy of Physical Science. As I quoted it in Section 8: 

‘Let us suppose that an ichthyologist is exploring the life of the ocean. He casts a net into 
the water and brings up a fishy assortment. Surveying his catch, he proceeds in the usual manner 
of a scientist to systematise what it reveals. He arrives at two generalisations: (1) No sea creature 
is less than two inches long. (2) All sea creatures have gills. These are both true of his catch, and 
he assumes tentatively that they will remain true however often he repeats it.’ 

Although that passage is famous, philosophers should also take notice of---and take 
encouragement from!---what Eddington goes on to say just afterwards---which is almost never 
quoted. For Eddington takes the net to stand, not just for our means of observation in the 
specific science “ichthyology” (so that naively, we might infer that all fishes are longer than two 
inches), but also for our scientific method as a whole. Thus Eddington’s moral is not just the 
obvious one I stressed in Section 8, viz. ‘conditionalize your credence on your means of 
observation’; but also that we should allow for types of knowledge inaccessible to the scientific 
method. This open-mindedness is bound to be welcome to a philosopher . . .  Thus Eddington 
writes: 

https://www.cambridge.org/core/books/philosophy-of-cosmology/testing-inflation/4095B5F8D7991E344D203CCBE0B369C8
https://www.cambridge.org/core/books/philosophy-of-cosmology/testing-inflation/4095B5F8D7991E344D203CCBE0B369C8
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‘In applying this analogy, the catch stands for the body of knowledge which constitutes 
physical science, and the net for the sensory and intellectual equipment which we use in 
obtaining it. The casting of the net corresponds to observation; for knowledge which has not 
been or could not be obtained by observation is not admitted into physical science. An onlooker 
may object that the first generalisation is wrong. ‘There are plenty of sea-creatures under two 
inches long, only your net is not adapted to catch them.’ The icthyologist dismisses this objection 
contemptuously. ‘Anything uncatchable by my net is ipso facto outside the scope of icthyological 
knowledge. In short, ‘what my net can’t catch isn’t fish.’ Or — to translate the analogy — ‘If you 
are not simply guessing, you are claiming a knowledge of the physical universe discovered in 
some other way than by the methods of physical science, and admittedly unverifiable by such 
methods. You are a metaphysician. Bah!’’ 
 
 
(2.G): About observation selection effects in cosmology (Section 9), I begin with two survey 
articles. The first is philosophical and sceptical about inferring from fine-tuning to a multiverse; 
the second is scientific (focussed on fine-tuning of conditions for stars, planets and life) and 
more optimistic about such inferences.   

N. Landsman, The fine-tuning argument, in N. Landsman and E. van Wolde (eds.), The 
Challenge of Chance, Springer 2016; available at: 
https://library.oapen.org/bitstream/handle/20.500.12657/27974/1/1002025.pdf#page=115  
and downloadable from the publications page of Landsman’s site, 
https://www.math.ru.nl/~landsman/eprints.html 

M. Livio and M. Rees, Fine-tuning, complexity, and life in the multiverse; in D. Sloan et 
al (eds.) Fine-Tuning in the Physical Universe, cited in (1.B) above. This article is also available at 
arxiv: 1801.06944.  

 
I turn to the cosmological constant L, and anthropic explanations of it (as in the second half of 
Section 9). A superb historico-philosophical overview of the cosmological constant is: 

J. Earman, Lambda: the constant that refuses to die, Archive for History of the Exact 
Sciences 2001; it is available, with almost all Earman’s other outstanding work in philosophy of 
physics, at: https://sites.pitt.edu/~jearman/ 
 Weinberg’s (and his co-authors’) anthropic explanation of the value of L is discussed in 
two articles in the collection, B. Carr (ed.), Universe or Multiverse? (Cambridge University Press 
2007), which I recommended at the start of (1) above.  

The first article is by S. Weinberg himself: ‘Living in the multiverse’, which is also 
available at https://arxiv.org/abs/hep-th/0511037. (My quotation from Weinberg in Section 9 is 
from his 1987 paper in Physical Review Letters.) 

The second article (more detailed than Weinberg’s) is: A. Vilenkin, Anthropic 
predictions: the case of the cosmological constant. It is also available at 
https://arxiv.org/abs/astro-ph/0407586 
 
(2.H): Here are some details about Srednicki and Hartle’s proposals for how to confirm 
multiverse theories. I outlined this in Section 10. My three headings, ‘Measure’, 
‘Conditionalization’ and ‘Typicality’, for the problems that such confirmation faces were an 
amalgamation of the seven problems listed by A. Aguirre in his excellent analysis: ‘Making 
predictions in a multiverse: conundrums, dangers, coincidences’, in the collection, B. Carr (ed.), 
Universe or Multiverse? which I recommended at the start of (1) above. 

Srednicki and Hartle’s first two papers are: 
J. Hartle and M. Srednicki, Are we typical? Physical Review D 75: 123523 (2007). 

arXiv:0704.2630 [hep-th]. 

https://arxiv.org/abs/hep-th/0511037
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M. Srednicki and J. Hartle, Science in a very large universe. Physical Review D 81: 
123524 (2010). arXiv:0906.0042 [hep-th]. 

Later work along the same lines, with T. Hertog, includes:  
J. Hartle and T. Hertog, The observer strikes back (2015); in K. Chamcham et al (eds.), 

The Philosophy of Cosmology, cited in (1.B) above; and at: arXiv:1503.07205 [gr-qc].   
J. Hartle and T. Hertog, One bubble to rule them all. Physical Review D 95, 123502, 

(2017); arXiv: 1604.03580 [hep-th]. 
Hartle and Hertog also connect an anthropic explanation of the cosmological constant L 

(cf. Weinberg et al. in (2.G)) with the no-boundary proposal discussed in (2.C); in their paper: 
Anthropic bounds on L  from the no-boundary quantum state. Physical Review D 88: 123516. 
arXiv:1309.0493 [astroph.CO]. 
 
Finally, here is a (positive) philosophical assessment of Srednicki and Hartle’s proposals.  

F. Azhar, Three Aspects of Typicality in Multiverse Cosmology, in EPSA 2015 
(European Philosophy of Science Association 2015 Conference Proceedings), eds. J.-W. 
Romeijn, G. Schurz and M. Massimi, Springer 2016; available at  
https://arxiv.org/abs/1609.02586 
 
  

https://arxiv.org/abs/1609.02586
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Chapter 6: Multiverses compared---and 
combined? 

 
 
In the last three Chapters, we have surveyed three proposed multiverses: from logic and 
philosophy, from quantum physics, and from cosmology. Each dizzies the mind. Each has 
powerful arguments in its favour: in the latter two cases, arguments that are in part empirical. But 
each is very controversial, since there are rival accounts of the phenomena it treats. (For the first 
multiverse, these are logico-linguistic phenomena like our commitment to modal language. For 
the second and third multiverse, they are physical phenomena.) And each multiverse proposal, 
for all its allure, throws up major problems as well as solving some: conceptual, indeed 
philosophical, problems. I have emphasized several such problems, and we have seen how these 
problems connect the different conceptions of a multiverse. I especially emphasized three 
problems, prompted by the three multiverses in succession: What is a possibility?  What is 
objective probability? And what is an explanation? These are difficult open problems in 
philosophy. 
 So I will not conclude the book by firmly endorsing, or firmly rejecting, even one of 
these multiverse proposals. This demurral is unsurprising given my previous admonitions that 
each of us must decide for ourselves what we can, or cannot, honestly believe, and how 
ambitious or modest is our intellectual temperament (cf. Chapters 1.3 and 1.4). But there are 
three loose ends that I should tie up.  

First, I briefly announced in Chapter 1.2 what I myself believe about the three proposals. 
Now that we have seen the detail of Chapters 3 to 5, I should say a bit more about my position 
(Section 1).  

Second, I said in Chapter 1.6 that all three proposals can make a good case that the 
different universes are isolated, i.e. unable to communicate with one another. So again: now that 
we have seen the detail of Chapters 3 to 5, I should say a bit more about this; and about the 
more general topic of getting empirical evidence for a multiverse. I do this in Section 2.  

Thirdly, I briefly announced that the Everettian interpretation of quantum theory 
prompts a proposal for what a possible world actually is. Namely: it is a branch of the Everettian 
multiverse, and so represented by a summand in the Everettian quantum state of the cosmos. (I 
mentioned this both in Chapter 3.10 (about Lewis’ modal realism), and in Chapter 4 at the end 
of Section 8 (A sketch definition of ‘world’) and in Note (4.A).) So in Section 3, I will discuss this 
proposal in more detail. 

Finally, I will end with two salutary quotations (Section 4). 
 
 
 
Chapter 6.1: What I believe 
I briefly announced in Chapter 1.2 what I myself believe about the three multiverse proposals. I 
said that I believe in the philosophical multiverse, but not the Everettian one, and I am 
undecided about the cosmological multiverse. As I put it: my verdicts are: ‘Yes, No and Maybe’. 
Now I give some more details: again, with the qualification ‘for what it is worth’, since each of us 
must decide for ourselves what we can, or cannot, honestly believe (cf. Chapters 1.3 and 1.4). I 
will again proceed in order, treating the philosophical multiverse in (1), and then the physical 
multiverses in (2) to (4). 
 
 
(1): I believe in the philosophical multiverse. For recall from Chapter 3.3 that both in everyday 
thought and talk, and in technical science, we are up to our necks in modality. This commitment 
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was further illustrated by my discussions of state spaces in physics, both classical (Chapter 3.3 
and 3.8) and quantum (Chapter 4.2 and 4.3). And recall the benefits of explicitly accepting a 
realm of possibilities (of which the maximally specific possibilities are the possible worlds). Thus 
Chapter 3.4 to 3.8 paraded these benefits, for understanding not only everyday thought and talk, 
but also technical science. (Besides, ‘understanding’ might here be construed ambitiously, as 
providing a conceptual analysis in the sort of sense discussed in Chapter 3.1 and 3.2.) 

But the benefits of this philosopher’s paradise (Lewis’ phrase, echoing Hilbert’s homage to 
Cantor, cf. Chapter 3.4) do not require Lewis’ own conception of it, i.e. his modal realist version 
of the philosophical multiverse (Chapter 3, Preamble and Section 3.10). Nor did Lewis believe 
the paradise required his modal realism. Rather, he advocated it as being, on balance, the best 
conception. Recall the problems and disadvantages of other conceptions that I reviewed in 
Chapter 3’s long Section 9: in particular, Section 9.C, and its objections (i) to (iii) against the 
widespread view that the actual world is “concrete”, while all the others are “abstract”. 
On the other hand, I admitted that despite the strength of Lewis’ arguments, I simply do not---
cannot---believe his modal realist account. So as in Chapter 3 and the Preamble above: I leave 
the nature of possibilities, in particular possible worlds (and as I said: similar notions like 
proposition) as an open, and very difficult, problem in philosophy. 
 
 
(2): I turn to the two multiverse proposals from physics. The first, and obvious, point to make is 
that they have in common a contrast with the philosophical multiverse: a contrast that will be a 
recurrent theme in all the Sections of this Chapter. For since these proposals are prompted by 
physical theories that have been formulated to describe, explain and predict empirical 
phenomena, they have, in contrast to the philosophical multiverse, both an apparent advantage 
and an apparent disadvantage---as follows.  

First: they apparently could be supported by the specific empirical data that confirms the 
underlying physical theory; (more especially, data that confirm those of its claims which prompt, 
or are conceptually closest to, the multiverse proposal). Agreed: the philosophical multiverse is 
supported (on some or other account of it) by the great raft of all our commitments, everyday 
and technical, to possibilities, so as to understand such topics as semantics, counterfactuals and 
determinism (and the others listed in Chapter 3.5 to 3.8). But it is not supported by any data 
(even about what we say with modal language) with the kind of specificity enjoyed by a physical 
theory’s evidence.  

Second: on the other hand, any physical theory is a human construction, moulded by the 
scientific community’s conceptual framework and the available evidence at a certain stage in 
enquiry. Therefore any physical theory is fallible, and all too likely to be superseded later on. The 
evidence that favoured the theory may later on be better accounted for---described and 
explained---by a successor theory. So here lies, apparently, an advantage of the philosophical 
multiverse. For whatever the vicissitudes of physical theorizing, or more generally empirical 
enquiry, turn out to be: we can be sure that they will not overturn our great raft of commitments 
to possibilities (on some or other account).   

(Of course: the vicissitudes of empirical enquiry might prompt us to give up specific modally 
involved claims, such as determinism, or notions like that of laws of nature. But that does 
nothing to dispose of the realm of possibilities that Chapter 3 argued to be indispensable for 
formulating those claims and notions. Besides, we saw that this realm is indispensable for 
formulating claims and notions that are more everyday, and less technical (such as reference and 
counterfactuals, Chapters 3.5 to 3.7): and so surely less prone to be overturned by empirical 
enquiry.)   

Of course, we have seen this contrast before. We first saw it in general terms, in Chapter 1’s 
Preamble and Section 1. Besides, Chapter 5 considered the idea of empirically confirming, not 
just the inflationary epoch, but also the ensuing multiverse proposal (Chapter 5.10). And on the 
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other side, my emphasizing that the inflationary epoch is still a speculation signalled that after all, 
the theory of inflation might in the future be superseded---and its multiverse thereby fall by the 
wayside. Nevertheless, it is worth stating this contrast explicitly here. For not only will it be a 
theme throughout this Chapter. Also, although it was not developed in Chapter 4, it will play a 
specific role in Section 3’s discussion of Everett.  

So much by way of stating this contrast between the philosophical multiverse and the two 
multiverse proposals from physics. Let me now spell out a little how it applies to these two 
multiverse proposals. The results will be ambivalent and tentative; and they will lead to my 
stating that I cannot believe the Everettian one, but might be persuaded about the cosmological 
multiverse. Again, I will treat first the Everettian, then the cosmological, multiverse. 

 
  

(3): Chapter 4 emphasized that Everettians have yet to establish their interpretation of quantum 
theory. But it did not discuss how they could try to find evidence in its favour. I think it is clear 
that the broad strategy must have two components.  

First, they need to show that even macroscopic systems, if strictly isolated, obey the 
Schroedinger equation, not some cousin equation as advocated by the dynamical reduction 
programme (Chapter 4.5). This is in essence a challenge of experiment, not of theory. And it is a 
very daunting challenge since even a few atoms in a vacuum chamber around the system, or even 
the photons i.e. quantum particles of light in the CMB (cosmic background radiation: cf. Chapter 
5.2), are enough of an environment to decohere a macroscopic system. And this will mean that 
the system’s state (an improper mixture) prescribes probabilities for all possible measurements 
that match, or are very hard to discern from, the state predicted by a cousin equation advocated 
by the dynamical reduction programme (Chapter 4.).  

Second, Everettians need to refute the other no-collapse interpretations of quantum theory, 
which are also “one-world” theories, i.e. without a multiverse (as is the dynamical reduction 
programme). Chapter 4.5 described the best known example, the pilot-wave theory; and item (2) 
of the Notes to Chapter 4 described others, such as the modal interpretation. This is likely to be 
a challenge of theory, at least as much as experiment: namely to show defects, perhaps with an 
experimental signature, of those other interpretations. 

So much by way of the first half of the above contrast: a physical multiverse’s (here, the 
Everettian’s) apparent advantage in being able to garner empirical support. I turn to the second 
half of the contrast: the apparent disadvantage that the physical theory in question (here, 
quantum theory) might be superseded, and its multiverse thereby fall by the wayside.  

For quantum theory, we are in this regard in a very ambivalent position. The theory is 
stupendously well confirmed: it describes countless phenomena with stunning accuracy (i.e. to 
many decimal places), many of them phenomena that we can prove to be inexplicable by classical 
physics. But of course, this does not mean that it will never be superseded. And there (at least) 
two broad grounds for believing that it will be.  

The first is very familiar from Chapter 4. Quantum theory’s glorious successes are in the last 
analysis a matter of its predicted probabilities matching statistics gathered in experiments---which 
says nothing about the definiteness of outcomes in a single run of the experiment. In other 
words: the theory faces the grave embarrassment of the measurement problem. Though opinions 
about how to best solve it vary, many expect that only some very basic changes in the theory can 
do so---and there is no reason to expect such changes to suggest some analogue of the 
Everettian multiverse.  

The second ground for expecting quantum theory to be superseded has not (hitherto) been a 
topic of this book; though it is a staple of the physics, and popular physics, literature. I mean the 
deep tensions between the concepts and detailed formalism of quantum theory and the concepts 
and formalism of general relativity (Einstein’s theory of gravitation). For decades, these tensions 
have prompted efforts to formulate a new theory reconciling quantum theory and general 
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relativity, dubbed ‘quantum gravity’. These efforts have led to many deep insights, and all sorts 
of proposed frameworks, and even theories; but none has won acceptance. And with one 
exception, these frameworks and theories do not suggest some analogue of the Everettian 
multiverse. (The exception is of course string theory: which I discussed in Chapter 5, and will 
again here treat as an aspect of the cosmological multiverse.)  

For me, the upshot of this discussion is that, as it happens, I cannot believe in the Everettian 
multiverse. For firstly: assuming that quantum theory (i.e. the Schroedinger equation, with no 
collapse of the wave function) is exactly true, I am nevertheless sufficiently sympathetic to 
solutions to the measurement problem other than Everett’s; (cf. items (1) and (2) of the Notes to 
Chapter 4). And secondly: assuming that quantum theory will be superseded one day, e.g. so as 
to reconcile it with gravitation, the successor theory may well not suggest some analogue of the 
Everettian multiverse . . . But again: I say ‘as it happens’ so as to signal that this is my fallible 
verdict. Each of us must make our own judgment about the evidence, both conceptual and 
empirical.  
 
 
(4): I turn to the cosmological multiverse. Again, I will lead up to my overall position by 
considering both the apparent advantage of a physical multiverse (here, the cosmological 
multiverse) that it can garner empirical support; and its apparent disadvantage that the 
cosmological theory (here, inflation and string theory) might be superseded, and its multiverse 
thereby fall by the wayside. 
 Indeed, Chapter 5 discussed how cosmologists could try to find evidence for their 
theory, while recognizing that it is fiendishly difficult (Chapter 5.10). This represented a contrast 
with Chapter 4. But it is an unsurprising contrast, since the Everettian view is usually called---and 
I called it—an interpretation of quantum theory. After all, it has no postulates or mechanisms 
additional to those of orthodox quantum theory; (a parsimony that Everettians often advocate as 
an advantage of their view). On the other hand, inflationary cosmology is called a theory, albeit a 
speculative one, rather than an interpretation, precisely because it has postulates and mechanisms 
additional to those in the Big-Bang theory of the 1970s. (It is called a theory: (a) despite our 
having no agreed choice for what is the inflaton field, or for its properties, e.g. the potential 
function; and (b) independently of whether one invokes string theory to give a mechanism of the 
inflationary expansion.) 
 Broadly speaking, this contrast makes me more persuaded on the cosmological 
multiverse than the Everettian one. Hence my joke in Chapter 1.2 that for the cosmological 
multiverse, I say---with the film producer Sam Goldwyn---‘a definite Maybe’. 
 Agreed, there are good reasons not to be so sanguine: some of which are reasons not to 
discriminate in one’s credence between the Everettian and cosmological multiverses. Here are 
four. (1): Although postulates and mechanisms may earn inflationary theory the honorific label 
of being ‘scientific’, rather than ‘interpretative’ or ‘philosophical’, that by no means implies that 
there is any evidence in its favour. (2): Indeed, there is so far no evidence in favour of a specific 
model of inflation as against others. (3): Besides, inflationary theory might be superseded by a 
successor theory that “does away with” its multiverse; similarly to how, as I said above, quantum 
theory might be superseded, doing away with the Everettian multiverse. (Indeed, as one would 
guess: respectable rivals to inflationary cosmology without any multiverse have already been 
developed.) (4): We saw in Chapter 5.1 and 5.4 (and items (2.A) to (2.C) of Chapter 5’s Notes) 
the subtlety of the relations between the Everettian and cosmological multiverses, thanks not 
least to string theory’s central role in the latter.  Such subtleties undermine this Section’s contrast 
with the Everettian multiverse, i.e. my comparatively negative verdict about it, above.  

So you of course ask me: why do I maintain this contrast? Here I must confess. I think 
the reason lies, not in some objective superiority of the quantity or quality of the arguments and 
evidence, conceptual or empirical, for the cosmological multiverse compared with the Everettian 
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one, but in two more instinctive points. The first is about intellectual history, the second about 
causal connections. So the first is less technical, and less internal to the discussions in this book. 
Indeed the second will return us to the subtleties of the relations between the Everettian and 
cosmological multiverses  

First: over the more than five hundred years since Copernicus, we have learned various 
lessons that humanity is not central, or more generally special, in the universe. First, the Earth 
was displaced from the centre. Then the solar system was discovered to lie in a “suburb” of the 
Milky Way: which turns out to be a disc, one hundred thousand light-years across, of about one 
hundred billion stars. Then the nebulae (so-called since their images in telescopes were cloudy) 
were discovered to be yet other galaxies (with on average a hundred million stars). And there are 
so many: nowadays, the number of galaxies in the observable universe is estimated to be between 
two hundred billion and two trillion. In the light of these successive belittlements, it can seem a 
small step to accept that beyond the observable universe, there are other similar “vast expanses”.  

Second: there is a contrast between the Everettian multiverse, as described in Chapter 4, 
and the cosmological multiverse---about causal connections. The former involves countless 
realities each of which is vast and intricate, yet inhabiting the very same spacetime as the 
apparent reality we know, being so to speak overlaid on it and not interacting with it. That seems  
very hard to believe; or even to get one’s mind around as a proposition, with a view to assessing 
its truth. On the other hand, the cosmological multiverse involves countless realities, each now 
vast and intricate, that do have causal relations to us, albeit very distant and convoluted relations. 
For they and the observable universe which we now see were “spawned together” in an 
unimaginably small and hot regime. This means that causal relations can in principle be traced 
by, so to speak, following a cosmic itinerary: starting from “our end”, one first traces back to the 
inflationary epoch, and then goes forwards into (one or another) bubble universe. That 
branching web of causally connected regions seems easier to believe in than the Everettians’ 
myriad co-present realities.  

But I admit: these are both only instinctive points. Besides, the second as I stated it uses 
Chapter 4’s account of the Everettian multiverse, in particular its sketch definition of ‘world’ 
(Chapter 4.8): which assumed implicitly a common background spacetime “shared” by the 
different worlds or branches. But we saw in Chapter 5 that there are ways to combine the 
Everettian and cosmological multiverse, especially by invoking the landscape of string theory 
(Chapter 5.1, 5.4 and items (2.A) to (2.C) of Chapter 5’s Notes). Such combinations may well 
undermine my second instinctive point above, about a contrast of causal connections.   

 
 
So much by way of stating---for what it is worth---my own verdicts on the three multiverse 
proposals. But this last topic, causal connections, leads us back to my comment in Chapter 1.6, 
that all three proposals can make a good case that their different universes are isolated, i.e. 
causally disconnected. With the detail of Chapters 3 to 5 in hand, we can say a bit more about 
this. I now do this in Section 2. 
 
     
 
Chapter 6.2: Why don’t we see the other universes? 
The verb ‘see’ is of course metaphorical. Our topic is not just vision, but other observable traces 
(effects or signs) of the other universes; which is of course part of the more general topic of 
getting empirical evidence for their existence, i.e. for a multiverse.  

In this Section, I will emphasize the Everettian and philosophical multiverses. I discuss 
them respectively, in (1) and (2) below. My reason for this emphasis is that for the cosmological 
proposal, the topic of causal connections leads to details of advanced physics that are beyond 
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this book’s scope; while on the other hand, for the Everettian and philosophical multiverses, a 
non-technical discussion is possible. 

So first, I will deal very briefly with the cosmological multiverse. For it, the causal 
connections between different universes were mentioned at the end of the last Section. Namely: 
one can in principle---very much in principle!---trace back in time within one universe to the 
inflationary epoch, and then forwards in time to another. Such a causal link is extremely tenuous. 
But what matters about such links is of course, not the second half of my description, the 
“forwards in time to another universe”, but the idea that physical events within the different 
universes’ common past, i.e. within the inflationary epoch, might leave some kind of observable 
trace in some (our?) universe that is a sign of the existence of the others. Indeed, there are 
proposals for how this could be. But they lie outside our scope; (they involve such notions as 
primordial gravitational waves, and subtle imprints in the structure of the cosmic background 
radiation (CMB)). I only note that such traces would of course greatly aid the effort to confirm 
specific multiverse theories: an effort which we discussed in Chapter 5.10 in terms of statistical 
inferences from measurements of cosmological parameters.  
 
 
(1): For the Everettian multiverse, the question ‘Why don’t we see the other universes?’ can be 
answered with some details at the expository level we adopted in Chapter 4. The relevant ideas 
are in Chapter 4.7, about decoherence, and in Chapter 4.8, about using decoherence to define the 
Everettian’s universes (worlds, branches).  

The first point we need from Chapter 4.7 is that the difference between a superposition 
(superposed quantum state) and a mixture (mixed state) is encoded in numerical differences 
between the probability distributions that the two states prescribe. These differences are called 
‘interference terms’. Here, the word ‘interference’ doesn’t connote disturbance, but comes from 
the physics of waves. For when two peaks of two waves e.g. water waves meet to form a yet 
higher peak, we say the waves interfere constructively; similarly, when two troughs meet to make 
a yet deeper trough; and when a peak meets a trough so that they form a level surface, we say the 
waves interfere destructively.  

What Chapter 4.7 did not say---it was in a hurry to expound decoherence---is that there 
is a paradigm experimental set-up that exhibits these ideas; and this set-up helps answer the 
question about not seeing other universes.  

Indeed, there is both a classical and a quantum set-up, both called ‘the double-slit 
experiment’. The classical version may well be familiar from school physics. The quantum 
version is famous: it began as a thought-experiment, or teaching device, to illustrate that 
quantum wave-function indeed behaves like a wave, but it has also been realized in the 
laboratory. 

The classical version is a shallow pool of water, across which lies a barrier with two small 
slits. On one side of the barrier a wave-machine generates a “train” of waves moving towards the 
barrier, each wave parallel to the barrier. As a result, on the other “downstream” side of the 
barrier, from each slit there flows a train of circular waves. These two trains spread out, meeting 
each other---and interfering. If we put a screen parallel to the barrier on this downstream side, at 
a suitable distance, we can see the interference pattern, of doubly high peaks and doubly low 
troughs.  

The quantum version again has a barrier with two slits, on one side of which an “electron 
gun” fires a train of electrons, each with the same definite (or nearly definite) momentum, 
straight ahead towards the barrier. (Although the apparatus of course exists in three-dimensional 
space, we can arrange to make a better analogy with the two-dimensional classical pool of water, 
with the slits being indeed not holes, but narrow slits extending in the third dimension.)  

The definite momentum means that the wave function of each electron is like a train of 
waves all parallel to the barrier. As a result, on the downstream side of the barrier, there emerges 
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from each slit a circularly symmetric wave-function, i.e. a train of semi-circular waves. The two 
trains interfere, and we can see the interference pattern on a suitably placed screen. Indeed, even 
if we arrange for the electron gun to emit electrons intermittently so that at any one time there is 
at most one electron in the set-up, there is an interference pattern. 

(Each individual electron makes a dot, a scintillation, on the screen, which is like a TV 
screen; so the pattern builds up gradually, showing bands (lying along the third dimension) that 
each consist of many closely-spaced dots, alternating with bands without any dots. Of course, the 
transition from the spatially extended wave-function to the localized dot is the notorious collapse 
of the wave-function, which is at the heart of Chapter 4’s measurement problem.) 

This interference pattern indicates that the state of each electron as it passes through the 
barrier, is a superposition---namely, of passing through each slit---so that the wave-function 
shortly afterwards is the sum of the two circularly symmetric wave-functions each centred at a 
slit.  

For if each electron definitely passed through just one slit, one would expect the screen 
to show, not an interference pattern with its many alternating bands, but just two “humps” 
(clusters of dots): one with its peak i.e. most-closely spaced dots directly behind one of the slits, 
and the other with its peak directly behind the other slit. Such a two-hump pattern corresponds, 
not to a superposition, but to a mixture of going through one slit and going through the other. 
(And if it is a 50-50 i.e. equi-weighted mixture, we expect an experiment with many runs i.e. the 
gun firing many electrons one after another, to produce two humps with approximately equal 
numbers of dots.) 

So much by way of expounding the double-slit experiment. I can now say how it helps 
answer the question about not seeing other universes, i.e. our not detecting other Everettian 
worlds or branches. We only need to recall Chapter 4.7’s main theme, viz. decoherence. Recall 
that as a result of the rapid and ubiquitous process of decoherence, the states of macroscopic 
objects are (very close to) mixtures of states that are definite for quantities like position that we 
intuitively want to be definite so as to solve the measurement problem. Applying this to the 
double-slit experiment: decoherence effects (for example, collisions with air molecules 
downstream of the barrier, which would amount to a probe system monitoring through which 
slit the electron passes) would produce a mixture, i.e. the two hump pattern. Putting it the other 
way around: the double-slit’s interference pattern is realized in the laboratory by making sure, by 
clever engineering, that decoherence does not smear the pattern into two humps. For example, 
the chamber needs to be a nearly perfect vacuum, with almost no air molecules.  

But we also saw that Everettians define their universes (worlds, branches) in terms of the 
definite-valued states that are the components of the mixture obtained from decoherence (cf. 
Chapter 4.8). The upshot is that for all the countless macroscopic objects and set-ups that are 
not cleverly engineered within a quantum physics laboratory to be shielded from decoherence, 
the interference terms characteristic of a quantum superposition are strongly suppressed, so that 
within a single universe (world, branch) there is no observable evidence of other universes. 
Putting it, again, the other way around: one can think of the double-slit’s interference pattern as 
revealing, to the perspective of the “mini-universe” that is defined by being definitely at one slit, 
the existence the other “mini-universe” defined by being definitely at the other slit.  

 
 

(2): I turn to the philosophical multiverse. For this proposal, this Section’s question ‘Why don’t 
we see the other universes?’ seems at first confused. For one’s first thought is: whatever we 
eventually conclude about the exact nature of possible worlds in Chapter 3’s sense---about which 
Chapter 3 ended in anxious agnosticism---they will surely not be the sort of entity that can be 
seen i.e. observed, one from another. More generally, they will surely not be the sort of entity 
that has causal relations from one to another; or from one part (event, state of affairs) within one 
world to another part of another world. 
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 Broadly speaking, this misgiving---one might even say: accusation---is surely right. But it 
is nevertheless worth pressing the question. There are two aspects to this. First, the question 
prompts one to ask what is causation and how does it relate to possibility. Second, for Chapter 
3’s great advocate of possible worlds, David Lewis, the question is germane; and he had a full 
and interesting reply to it. I will address these two aspects in turn. 
 I will treat the first aspect more briefly. For to say more would need a thorough 
discussion of what is causation. But we can surely agree that causation is a relation between 
localized matters of fact. Here, my phrase ‘localized matter of fact’ is intended to be neutral 
between various more specific conceptions that philosophers have advocated as being the relata 
of causation. (These conceptions are often given everyday words, like ‘event’ or ‘state of affairs’, 
as labels; but used thus, the everyday word becomes a technical term of art.) And once we accept 
that the relata of causation, causes and effects, are localized matters of fact, then two reasons to 
deny that there can be causation from one possible world to another present themselves as 
plausible. I will prefer the second reason.  

First, one might invoke the distinction between “concrete” and “abstract”, and then 
maintain that: (i) actual matters of fact (events, states of affairs) are concrete, while non-actual 
ones are abstract (in line with Chapter 3.9:C’s suggestion that a possible world is a sentence, or a 
set of sentences, or something similar); and (ii) that causation requires its relata to be concrete. 
From these tenets it obviously follows that there is causation only within the actual world. But I 
think this line of thought stumbles. For first: if there is indeed no causation at non-actual worlds, 
how are we to understand our many (surely true) statements about possible causes and effects, 
such as ‘this short-circuit could have caused a fire’? This line of thought apparently vetoes 
understanding such statements using possible worlds. Second, and more fundamentally: the 
distinction between concrete and abstract is not in good order---as I urged, following Lewis, in 
Chapter 3.9:C (first objection) and Chapter 3.10 (a). 

Second: one might say that causation requires its relata to be spatiotemporally related to 
one another, i.e. to be at some spatial distance and temporal interval (both possibly zero) from 
one another. Notice that this requirement is vastly weaker than requiring these relata, a cause and 
an effect, to be contiguous (adjacent) in space and time, as demanded by the principle of contact 
action (cf. Chapter 2.2). In particular, this requirement makes no prohibition against action-at-a-
distance as in Newton’s theory of gravity (Chapter 2.3). It also admits, as one surely should, 
causation in non-actual worlds (more precisely: in those worlds that have a space and a time): 
unlike the last paragraph’s line of thought. Besides, it secures the desired answer to our question, 
i.e. the verdict that there is no causation between possible worlds, provided no two parts of two 
different worlds are spatiotemporally related to each other … which for the philosophical 
multiverse, though not of course for the Everettian or cosmological one, seems plausible. 

So much by way of general discussion of causation and how it relates to possibility. I turn 
to what I called the second aspect: how Chapter 3’s great advocate of possible worlds, David 
Lewis, answered this Section’s question, i.e. argued that there is no causation between possible 
worlds. His answer is interesting, for three reasons: of which, the first two relate to the last two 
paragraphs.  

First: after he meticulously formulates several disambiguations of the concrete/abstract 
distinction (a distinction which, as we have discussed, he diagnoses as multiply ambiguous), he 
admits that on most disambiguations, worlds are indeed, according to him, concrete. So 
(following the first line of thought above) this conclusion would seem to exacerbate the threat of 
causation between worlds.  

Second: Lewis argues, quite independently of the topic of causation, for the proviso at 
the end of the general discussion above: that no two parts of two different worlds are 
spatiotemporally related to each other. (His argument, in short, is that overall the best definition 
or conceptual analysis of what it is for two objects to be in the same possible world is precisely 
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that they are spatiotemporally related.) So that meshes well with my sympathy to the second line 
of thought above, that causation requires its relata to be spatiotemporally related to one another. 

Third: Lewis has, independently of all his views about possible worlds, a theory of 
causation. And this provides fuel for a proof that according to this theory, there is no causation 
between worlds. I will not go into details about this proof. For us, it suffices to say that his 
theory analyses causation in terms of counterfactual conditionals about the cause and effect, 
along the lines of ‘If the cause had not occurred, the effect would not have occurred’. Here, he 
understands the counterfactual conditional in terms of similarity between worlds, i.e. along the 
lines of the logical theories invented by Stalnaker and Lewis himself (and expounded in Chapter 
3.7). But in any case, his proof that there cannot be causation between possible worlds would go 
through, i.e. remain valid, if one instead adopted various other semantics for counterfactual 
conditionals. 

Furthermore, it is interesting for this Chapter’s purposes, viz. comparing the different 
multiverse proposals, that the above three reasons come together---as Lewis realizes very well. 
For he ends his discussion of my second and third reason with a passage in which he explicitly 
says that---while he has proven that there is no causation (nor any spatiotemporal relations) 
between objects (or localized matters of facts: events, states of affairs) in different possible 
worlds in his logical, i.e. Chapter 3’s sense---he is very open to causation between what an 
Everettian or cosmologist might call two different worlds (in our jargon: different universes), 
each a part of what for Lewis is a single possible world. Agreed, he does not cite Everett or the 
ideas of inflation; rather he mentions science fiction. But the intent is clear.  

Besides, he says all this vividly, indeed wittily, in his main book about possible worlds. So 
let me end by quoting the passage . After this Section’s back-and-forth of reasons for and against 
various claims, a tiring ping pong of dialectic, it is a relief to read: 

 
But if you would like to see a world where Napoleon conquered all, don’t give up hope. Maybe 
ours is one of those big worlds with many world-like parts, spatiotemporally related in some 
peculiar way. Then you might get your wish, near enough, by means of a special telescope or a 
special spaceship that operates entirely within our single world. You won’t see the world-like part 
where Napoleon himself is, of course; you’re there already, and he didn’t conquer all. But I 
presume you’d be content with a world-like part where the conqueror was an excellent 
counterpart of Napoleon. I would be the last to denounce decent science fiction as 
philosophically unsound. No; tales of viewing or visiting ‘other worlds’ are perfectly consistent. 
They come true at countless possible worlds. It’s just that the ‘other worlds’ that are viewed or 
visited never can be what I call ‘other worlds’. (On the Plurality of Worlds, end of Section 1.6). 
 
 
 
Chapter 6.3: One reality to rule them all? 
Recall that Chapter 3 left unresolved the hard question what exactly a possible world is. But as I 
mentioned there (Chapter 3.10) and reported in Chapter 4.8 (and in Chapter 4’s Note (4.A)): the 
Everettian interpretation prompts a proposed answer. Namely: a possible world is a branch of 
the Everettian multiverse---and so is represented by a summand in the Everettian quantum state 
of the cosmos. In this Section, I briefly discuss this proposal. (I will confine myself to Chapter 
4’s account the Everettian multiverse, setting aside the subtleties arising from cosmology which 
we saw in Chapter 5.1 and 5.4.)  
 My discussion is brief, not least because a recent book by A. Wilson develops and 
defends the proposal: (details in this Chapter’s Notes). First, in (1) I will state the proposal. Then 
in (2) I will discuss how it overturns the view, usual among philosophers, of the relations 
between logic and physics; and make a specific objection. 
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(1): The proposal begins by adopting Chapter 4’s Everettian multiverse. This involves not just 
the “one-liner” idea (Chapter 4.6) that to each possible outcome of a quantum measurement, 
there corresponds a branch (or world or universe---and maybe many such); but also the appeal to 
decoherence to more precisely define the branches (Chapter 4.7 to 4.9); and also the appeal to 
indexicality and decision theory (Chapter 4.11 and 4.12) to make sense of probability, and in 
particular to justify the Born-rule probability assignment. (In this Section, it will be clearer to talk 
of Everettian branches, rather than worlds (or universes): for then I can reserve ‘world’ for use in 
the phrase ‘possible world’, and thus signal the connotations of Chapter 3’s concern with 
modality.) 

So there is what Chapter 4 called ‘the quantum state of the cosmos’ (usually called in the 
literature ‘the universal quantum state’). It has its countless decoherent branches.  Countless of 
those are (not merely correspond to---for the Everettian) macroscopic realms of the sort we 
imagine or mention in our modal thought and language. Suppose for example that we make a 
counterfactual supposition, either in everyday thought and talk or in technical science. To take 
Chapter 3.9’s example: we suppose that Butterfield is in Rome in August 2024, by saying ‘If 
Butterfield were in Rome in August 2024, then . . .’. Or we suppose that kangaroos have no tails, 
or that planet Earth does not exist.  

Now the proposal is plain as day. Namely: these branches or realms are the possible 
worlds that give, along the lines of Chapter 3, the semantics, the truth-conditions, of our modal 
thought and talk. For example, let us consider counterfactual conditionals, and adopt the Lewis-
Stalnaker semantics for them (Chapter 3.7). And let us consider ‘If Butterfield were in Rome in 
August 2024, then he would be on holiday’, as said by me or you (in the actual branch containing 
us both). The proposal is that this is true (at the actual branch) if the branches that are most 
similar to the actual one while making true that Butterfield is in Rome in August 2024, also make 
true that he is on holiday there and then. 

 (Of course, the Everettian branches of the sort we imagine or mention in our modal 
thought and language are just a subset of all the branches; probably a small subset in some 
precise sense of ‘small’. That is: there are countless other decoherent branches that correspond, 
not to anything we imagine, but to much weirder possibilities for which we have no appropriate 
words and concepts.) 

And similarly for other aspects or topics in our modal thought and talk. Thus the 
proposal is that: (i) we should transcribe logical and semantic accounts of various phenomena, 
conceptual and linguistic (including in technical science), from the sort of framework expounded 
in Chapter 3 to that of Chapter 4, replacing ‘possible world’ by ‘Everettian branch’; and (ii) by 
doing this, we get an account of the phenomena that is, not just tenable, but superior to others---
that is, superior provided we accept the truth of the Everettian interpretation of quantum theory. 

Evidently, this proposal is bold. It brings in to contact, and comparison, with each other 
two detailed frameworks (and their literatures) which were developed to answer very different 
questions from each other. Besides, it claims that this comparison succeeds, in the sense that the 
two sides mesh. More precisely: there are on the logical side (cf. Chapter 3) accounts that, once 
transcribed, fit the Everettian interpretation of quantum theory well.  

I will not go into great detail. But for this book’s topics, I should report that as it turns 
out, several of these accounts which, once transcribed, fit Everett well are Lewisian accounts. 
So—such is Lewis’ influence---they are familiar to modal logicians and philosophers of modality. 
Here are two examples.  

(1): Lewis’ account of ‘actual’ as indexical (in the sense of Chapter 4.11, used to explain 
Everettian probability) fits well, once transcribed. Thus Lewis says that ‘actual’ is indexical, 
referring to the world of the speaker/thinker: in just the same way that ‘now’ refers to the time 
of the speaker’s/thinker’s words or thought, and ‘here’ refers to the place of the 
speaker’s/thinker’s words or thought. Once transcribed, this becomes: ‘actual’ refers to the 
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branch of the speaker/thinker---which fits well the Everettian’s treatment (Chapter 4.11) of an 
agent’s uncertainty about the outcome of an imminent quantum measurement. 

(2): Lewis’ account of determinism and indeterminism fits well, once transcribed. Recall 
from the last part of Chapter 3.8 that the broad idea of determinism is determination (i.e. 
supervenience) of the sequence of the system’s future states, by the system’s present state taken 
together with the sequence of all its past states. (A stronger formulation says: determination by 
the present state alone. But here, little will turn on this variation of the broad idea.) Recall also 
that Lewis accepts the idea of a law of nature (Chapter 3.6), and therefore the idea of the 
conjunction of the laws of nature at a given possible world, say w: what we might call ‘the theory 
of w’. (Here we recall Chapter 1.4’s spectrum of confidence through to caution about 
contentious concepts; so Lewis is confident.) With these ideas in hand, one then has two 
possible formulations of the claim that the theory of a given possible world w is a deterministic 
theory; (and correlatively, that it is an indeterministic theory). Lewis argues in favour of the first. 

First, one can say: the theory of w is deterministic if and only if among all the possible 
worlds that share with w their laws of nature (i.e. their ‘theory of the world’): if two such worlds 
utterly match each other at each time up to a given time, then they also match at each and every 
later time. Note that this formulation allows for many such matching pairs of worlds. For it 
requires only that for worlds with the same theory of the world as w, their utterly matching on an 
initial segment of history up to a given time implies their also utterly matching at all later times. 
Correlatively: indeterminism is a matter of there being at least one pair of worlds that utterly 
match up to a time, but do not match at some later time (maybe many later times). Lewis 
proposes a jargon for indeterminism in this sense. He calls it ‘divergence of worlds’. 

On the other hand, there is another possible formulation, which is clearest to state for 
the idea of indeterminism. Namely, that a single world (among those with the same theory of the 
world as w) at some time splits, in the sense of itself having two or more sequences of later 
states. So in the simple case of a single splitting in two, one can picture such a world, with time 
going up the page, as a ‘Y’. There is a single “thread” until a time, and thereafter two threads. 
Thus Lewis’ proposed jargon for this meaning of indeterminism is ‘splitting of worlds’. 

In Chapter 4’s discussion of Everettian branching, I did not distinguish these two 
meanings: there was plenty else to discuss  . . . But it is clear that however exactly the Everettian 
defines branches (called ‘worlds’ in Chapter 4.8), the distinction of meanings carries over: which 
prompts the question whether an Everettian should be a “diverger” or a “splitter”. I will not go 
into this. Suffice it to say that there are good reasons to be a “diverger”. And furthermore, some 
of those reasons are what I have called the transcriptions of Lewis’ reasons to be a diverger 
within his possible worlds framework. 

So to summarize the proposal: it compares two multiverses that are apparently very 
different, having been developed to answer very different questions. And it makes a detailed case 
that the bold identification of possible worlds with Everettian branches is correct. The evidence 
for this is the fact that several correspondences of ideas that are implied or suggested by this 
identification, e.g. correspondences about indexicality and about indeterminism, work out very 
well.  
 
 
(2): So much by way of summary: I turn to assessing the proposal. I will entirely set aside 
misgivings about the Everettian interpretation of quantum theory. These were discussed in 
Chapter 4, and do not need to be repeated. And I will focus on the proposal’s main idea, the 
identification of possible worlds with Everettian branches, not on details such as my examples of 
indexicality and indeterminism. I will start with generalities, and then end with a specific 
objection. 
 The first thing to say is that this is an utterly naturalistic account of modality. The entire 
realm of modality----all the possibilities imagined in our counterfactual suppositions, and the 
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countless others that we never imagine---is to be incorporated into the physical cosmos as 
nowadays described by quantum theory. There could hardly be a more radical, indeed breath-
taking, “take-over bid” of the subject-matter of logic and semantics, the traditional preserve of 
logicians and philosophers, by another discipline. Not by physics itself of course, but by another 
band of philosophers, viz. the philosophical interpreters of quantum theory. 
 It is worth setting this take-over bid in the wider context of the usual view of the 
connections between this book’s three proposed multiverses. On this view, the logical and 
semantical investigations that prompt Chapter 3’s ‘philosophers’ paradise’ of possible worlds are-
--if not wholly a priori, then at least---independent of the contingent discoveries of physics, or 
other empirical sciences. So whatever our answer to Chapter 3’s anxious question about the 
nature of possible worlds eventually turns out to be: the framework of possible worlds, the 
‘philosophers’ paradise’, provides a vast reality, an empire, in which physics and other sciences 
take their place as, so to speak, a province. They investigate an aspect of reality: namely, the 
contingent details of how the actual cosmos works. But they are not “the whole story”. And 
while physics may discover a multiverse, whether Everettian or cosmological or both: that 
physical multiverse is all within the one actual possible world (i.e. cosmos), in the sense of 
Chapter 3’s framework. 

This usual view is undoubtedly the one that would be endorsed by the vast majority of 
logicians and philosophers After all, it accords with the traditional, indeed centuries-old, idea that 
logic and philosophy investigate features of reality that are very general, independent of the 
details of observation and experiment, and maybe even a priori; whereas the sciences investigate 
specific and presumably contingent features, via detailed observation and experiment. 

 Obviously, this proposal’s take-over bid completely denies this view. And speaking for 
myself, I confess that for that reason, I resist it. That is: even if I assume the Everettian 
interpretation of quantum theory, I still believe sufficiently in the autonomy, generality and 
maybe even a priori status of logic, and in particular of logical investigations of modality, to not 
incorporate all the possible worlds as “mere” branches in the quantum cosmos. I would rather 
suffer anxiety from my not knowing how to answer Chapter 3’s question about the nature of 
possible worlds, than have quantum physics take over logic.  

Of course, this confession accords with the Humeanism I admitted in various passages 
of Chapters 1 to 3 (especially Chapter 2.5, 2.6 and 3.6): both my acceptance that the results of 
science, in particular the laws of nature, are contingent; and more generally a low-key or modest 
estimate of the kind of understanding that human enquiry can secure. 

It is also worth noticing a consequence for this proposal of the two facts (discussed in 
Section 1 above) that: (i) the Everettian interpretation has not been established, and might one 
day be agreed to be wrong, with another interpretation being endorsed, and (ii) quantum theory  
(as a physical theory, however interpreted) may one day be superseded. These facts imply that 
this proposal’s official semantics for our modal talk, e.g. counterfactual conditionals, is a hostage 
to fortune. If (i) the Everettian interpretation is one day discarded, or (ii) quantum theory is 
superseded by a successor theory with no multiverse that could supply the truth-conditions of 
our modal talk, then the proposal’s advocate will have to concede that their semantics has been 
refuted by the progress of physics---and that a new semantics must be formulated. (For they 
could hardly say that their semantics remains right, i.e. that we have for all these centuries been 
talking modally about the strictly fictional multiverse of a twentieth-century physical theory that 
has just been refuted.) 

This consequence, that semantics could be refuted by physics, is worth noticing since it 
makes vivid how opposed the proposal is to the usual view of the relations between philosophy 
and physics. But agreed: I do not intend this consequence as an objection. Indeed, the proposal’s 
advocate is likely to be so steeped in naturalism as to take this consequence in their stride. 

Finally, here is a specific objection to the proposal. The idea is that the proposal conflicts 
with the contingency, not just of the laws of quantum theory (in particular the Schroedinger 
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equation), but also of two features much more specific and particular than the theory’s laws: 
namely, what is the physical state of the quantum cosmos, and what are the forces operating 
within it. (These forces are encoded in a term in the Schroedinger equation, the Hamiltonian.) Of 
course a Humean like me will want to take the laws of quantum theory as contingent (Chapters 
2.5 and 3.6). But it is not only Humeans like me who endorse the contingency of the other two 
features, viz. what is the state and what forces are operating. For non-Humeans, including those 
who say that the laws of nature are necessary, can and almost always do agree that both the state 
of a system, and the forces acting on it (causing changes, determining its future evolution), are 
contingent: they could have been otherwise.    

Thus the objection is plain as day. The proposal implies that “a lot more” is necessary  
than is usual believed to be necessary. Not only does it imply that the laws of quantum theory are 
necessary. Non-Humeans about laws, who accept quantum theory (as they should!), might well 
accept that. But the proposal also implies that the quantum state of the cosmos (usually called: 
the universal quantum state) could not have been other than it is. For according to the proposal, 
the state defines, via its set of decoherent branches, what is possible. And here, ‘what is possible’ 
means---not what is nomologically possible in the restricted-modality sense explained at the end 
of Chapter 3.6---but what is possible tout court. Such necessity is hard to believe. Similarly, the 
proposal implies that the forces operating within the quantum cosmos (encoded in the 
Hamiltonian that, as I stressed in Chapters 4 and 5, nobody knows how to write down!) could 
not have been other than they are. That is also hard to believe. 

There is also an ancillary problem. This necessity of the quantum state, and of the 
operative forces, also threatens to cause trouble for the second issue raised at the end of Chapter 
4.8. I mean the Everettian’s need to allow that the factorization of the cosmos’ state-space, into 
the factor (component) state-spaces for the various macrosystems, depends on what the overall 
state is. In Chapter 4.8, we saw that this allowance promised to give the Everettian the 
wherewithal to secure the fact that there surely could have been different macrosystems than 
there in fact are. This fact seems a “non-negotiable” fact of our modal thought and talk. After all, 
we say things like ‘I might have had more children’. But if the quantum state of the cosmos is 
necessary---given “once and for all” in the most absolute sense, since it defines the entire realm 
of possibilities---then the above strategy for securing the fact that there could have been 
different macrosystems stumbles badly. 

   
Let me sum up this Section. I have stated and assessed a proposal to reduce (in Chapter 3.1’s 
sense) the philosophical multiverse to the Everettian one; (I restricted myself to Chapter 4’s non-
cosmological Everettian). I admired the boldness of this proposal. But I cannot believe it. My 
reasons were not just my belief in the autonomy and generality of logic compared with physics. 
Also more specifically: being a Humean, I see the results of science, even results so glorious as 
those of quantum theory, as both contingent and fallible---so that this proposal gives us an 
embarrass de richesse of necessities.  
 
 
 
 
Chapter 6.4: Envoi 
One theme has been so prominent throughout this book as to merit a closing quotation. I mean 
the theme that I derived from Bacon, Locke and especially Hume: that we should not be 
beguiled by words, and we should be modest about the kind of understanding of nature that 
human enquiry---even the glories of modern physics, with their breathtaking quantitative 
precision---can secure. (See the discussions in Chapters 1.5 and 2.5, 2.6; and item (1) in Chapter 
2’s Notes.) 
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 In that masterpiece, An Enquiry concerning Human Understanding, Hume writes near  
the end of Part I of Section IV (which is entitled ‘Sceptical doubts concerning the operations of 
the understanding’): 
 
Hence we may discover the reason, why no philosopher, who is rational and modest, has ever 
pretended to assign the ultimate cause of any natural operation, or to show distinctly the action 
of that power, which produces any single effect in the universe. It is confessed, that the utmost 
effort of human reason is, to reduce the principles, productive of natural phenomena, to a 
greater simplicity, and to resolve the many particular effects into a few general causes, by means 
of reasonings from analogy, experience, and observation. But as to the causes of these general 
causes, we should in vain attempt their discovery; nor shall we ever be able to satisfy ourselves, 
by any particular explication of them. These ultimate springs and principles are totally shut up 
from human curiosity and enquiry. Elasticity, gravity, cohesion of parts, communication of 
motion by impulse; these are probably the ultimate causes and principles which we shall ever 
discover in nature; and we may esteem ourselves sufficiently happy, if, by accurate enquiry and 
reasoning, we can trace up the particular phenomena to, or near to, these general principles. The 
most perfect philosophy of the natural kind only staves off our ignorance a little longer: As 
perhaps the most perfect philosophy of the moral or metaphysical kind serves only to discover 
larger portions of it. Thus the observation of human blindness and weakness is the result of all 
philosophy, and meets us, at every turn, in spite of our endeavours to elude or avoid it. 
 
Wise words. But they imply that deciding what to believe about the various multiverse proposals 
is hard . . .  

So after this book’s relentless, indeed humourless, dialectical weighing-up of the 
arguments for and against, it is amusing to see that---if you can forgive the ambiguity of the 
word ‘world’, meaning either ‘planet’ or ‘cosmos’---Alexander the (so-called) Great was similarly 
daunted.  Thus Plutarch, in Section 4 of his ‘On the Tranquillity of Mind’, writes: 

 
Alexander wept when he heard from Anaxarchus that there were an infinite number of worlds; 
and his friends asking him if any accident had befallen him, he returns this answer: ‘Do you not 
think it a matter of lamentation that when is such a vast multitude of them, we have not yet 
conquered one?’  
 
Indeed, conquering the multiverse is hard. 
 
 
 
 
 
Chapter 6: Notes and further reading 
I shall give a few suggestions for each of Sections 2 to 4 of this Chapter. (Section 1, on what I 
myself believe, referred a good deal to Sections in previous Chapters; so it needs no further 
suggestions.) As perhaps befits a final Chapter, some of these suggestions will return us to 
references given in the Notes to previous Chapters. 
 
 
(1): For Section 2, about why we cannot “see” or have causal contact with other universes, I 
have two suggestions: both of them recommended in previous Chapters.  

First, the double-slit experiment is used by John Bell in the opening pages of his 
pedagogic exposition of the interpretations of quantum theory, to explain the measurement 
problem: specifically, the collapse of the wave-function to produce the dots (scintillations) 
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forming the interference pattern on the screen. That is: J. S. Bell, ‘Six Possible Worlds of 
Quantum Mechanics’. As I said in the Notes to Chapter 4: this is most easily found in the 
journal, Foundations of Physics, for 1992. It is also reprinted in Bell’s collection, Speakable and 
Unspeakable in Quantum Mechanics (Cambridge University Press 1987; revised edition 2004): 
which is available at: 
https://www.cambridge.org/core/books/speakable-and-unspeakable-in-quantum-
mechanics/E0D032E7E7EDEF4E4AD09F458F2D9DB7 
 Second, Lewis’ masterpiece book-length defence of his modal realism, On the Plurality 
of Worlds (Backwell, 1986), has two Sections that bear directly on the question why we cannot 
“see” or have causal contact with other universes.  

The first is Section 1.6, entitled ‘Isolation’. (My Section 2 quoted its closing passage.) Its 
first two-thirds argues that any two objects (across all the worlds) are spatiotemporally related iff 
they are in the same world (in Lewis’ jargon: iff they are worldmates). And the last third of 
Section 1.6 argues that there can be no causation a la Lewis between worlds. 

The second relevant Section is Lewis’ Section 1.7, entitled ‘Concreteness’. This shows in 
detail that the concrete/abstract distinction is not nearly as clear as many philosophers presume, 
since it is multiply ambiguous. This is a topic that bears not only on the understanding of 
causation; but also (as we have seen in Chapter 3.9C, and (1) of the Notes to Chapter 3) on (i) 
the nature of possible worlds and (ii) M. Tegmark’s advocacy of a “Pythagoreanist” mathematical 
multiverse. 

 
 
(2): For Section 3, about the proposal to identify the philosopher’s possible worlds with 
Everettian branches, the main source is A. Wilson’s book-length advocacy of this proposal: 

A. Wilson, The Nature of Contingency (Oxford University Press 2020); available at: 
https://global.oup.com/academic/product/the-nature-of-contingency-
9780198846215?q=The%20Nature%20of%20Contingency&lang=en&cc=gb 

The book was preceded by several articles. Here are three. In the first two, Wilson argues 
in favour of interpreting the indeterminism of branching in terms of diverging branches/worlds 
rather than splitting branches/worlds. (Cf topic (2) in Section 3’s exposition of Wilson’s 
proposal.) In the third, he argues that his proposal accommodates, and indeed supports, the 
decision-theoretic approach to Everettian probability that I expounded in Chapter 4.11 and 4.12.  

A. Wilson, ‘Macroscopic ontology in Everettian quantum mechanics’, The Philosophical 
Quarterly volume 61 (2011), pp. 363-382.  

A. Wilson, ‘Everettian quantum mechanics without branching time’, Synthese volume 
188 (2012), pp. 67–84; DOI 10.1007/s11229-011-0048-9 
 A. Wilson, ‘Objective probability in Everettian quantum mechanics’, British Journal of 
Philosophy of  Science volume 64 (2013), pp. 709–737. 
 As to the literature’s responses to the proposal, I recommend: 

(i) the reviews of the book in several philosophy journals, such as Mind (Oxford 
University Press), and Notre Dame Philosophical Reviews, which is open access and online only 
at: https://ndpr.nd.edu/about/  

(ii) a critical assessment, and suggested improvement, of the proposal by: J. Harding, 
‘Everettian Quantum Mechanics and the Metaphysics of Modality’, The British Journal for the 
Philosophy of Science, volume 72, number 4, December 2021. 
 
 
 
(3): For Section 4, and thus for the close of the book: it seems appropriate to celebrate the 
synergy between physics and philosophy---what used to be called ‘Natural Philosophy’ (as 
mentioned in Chapter 2.1). I will do this by first recalling what I said in Chapter 5 about what 

https://global.oup.com/academic/product/the-nature-of-contingency-9780198846215?q=The%20Nature%20of%20Contingency&lang=en&cc=gb
https://global.oup.com/academic/product/the-nature-of-contingency-9780198846215?q=The%20Nature%20of%20Contingency&lang=en&cc=gb
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Eddington really intended with his famous metaphor of the fishing net: namely, to underline the 
synergy, the mutual relevance, of physics (or more generally, science) and philosophy. Then I will 
close by recommending two articles by Carlo Rovelli. 
 
In the Notes to Chapter 5 (item (2.F)), I quoted the whole passage containing Eddington’s 
famous metaphor of the fishing net (in his 1938 book, The Philosophy of Physical Science). The 
net is usually taken to stand just for our means of observation in the specific science at hand. In 
the fishing example, this means the biology of fish, which Eddington calls ‘ichthyology’; so that 
using a net with a two-inch mesh, we might naively infer that all fishes are longer than two 
inches.  

But as I explained: if one reads a little beyond the frequently-quoted metaphor, one 
realizes Eddington takes the net to stand, not just for our means of observation, but also for our 
scientific method as a whole. Thus Eddington’s moral is not just the obvious one I stressed in 
Chapter 5 Section 8, viz. ‘conditionalize your credence on your means of observation’; but also 
that we should allow for types of knowledge inaccessible to the scientific method. This open-
mindedness is bound to be welcome to a philosopher. We should take notice of---and take 
encouragement from---it. 

So here again is a portion of the later part of the passage, a portion that makes clear 
Eddington’s intent. He writes:  
‘An onlooker [i.e. a philosopher savvy about such matters as observation selection effects] may 
object to [the icthyologist’s] generalisation [that all fish are longer than two inches]. ‘There are 
plenty of sea-creatures under two inches long, only your net is not adapted to catch them.’ The 
icthyologist dismisses this objection contemptuously. ‘Anything uncatchable by my net is ipso 
facto outside the scope of icthyological knowledge. In short, ‘what my net can’t catch isn’t fish.’ 
Or — to translate the analogy — ‘If you are not simply guessing, you are claiming a knowledge 
of the physical universe discovered in some other way than by the methods of physical science, 
and admittedly unverifiable by such methods. You are a metaphysician. Bah!’ 
 
Finally, here are two articles by Carlo Rovelli, a theoretical physicist with a great gift for 
philosophy, and for work at the interface between physics and philosophy. They are not about 
the multiverse: indeed, I think Rovelli would be sceptical of all three of this book’s proposals. 
But each of them is a manifesto for synergy between physics and philosophy, and so very much 
in the spirit of this book; and an eloquent passage in the second merits being quoted.  

The first declares this in its title: which also gives a salutary message to us philosophers 
to not be introspective, but to be open to what physics can offer us. It is from 2018:--- 

C. Rovelli, ‘Physics Needs Philosophy. Philosophy Needs Physics’, Foundations of 
Physics volume 48 (2018) pp. 481–491; https://doi.org/10.1007/s10701-018-0167-y; and on 
arxiv at: 1805.10602. 
 The second article is from 1997. It is: ‘Halfway through the woods’, in The Cosmos of 
Science: Essays of Exploration, (Pittsburgh University Press) edited by J. Earman and J.Norton. 

The title alludes to the opening lines of Dante’s Divine Comedy. Rovelli’s idea is that like 
Dante, modern physics is in the middle of a journey, and the path ahead is very unclear. For the 
quantum and relativity revolutions are by no means settled---there is much still to do. He draws 
an analogy with the one hundred and fifty years from Copernicus’ heliocentrism to Newton’s 
mechanics and theory of gravity (cf. Chapter 2.3). In this analogy, the quantum and relativity 
revolutions are like natural philosophy after Copernicus; and like natural philosophers between 
Copernicus and Newton---figures like Galileo and Descartes---we ourselves are halfway through 
the woods, searching for a synthesis of the insights from quantum theory and relativity. And---
happily for us philosophers---he sees this predicament as an opportunity for philosophers. He 
writes:  
 

https://doi.org/10.1007/s10701-018-0167-y
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General relativity and quantum mechanics are discoveries as extraordinary as the Copernican 
discovery. I believe they are, like Kepler's ellipses and Descartes's principle of inertia, fragments 
of a future science. I think that it is time to take them seriously, to try to understand what we 
have actually learned about the world by discovering relativity and quantum theory, and to find 
the fruitful questions. Maybe the Newtonian age has been an accident and we will never again 
reach a synthesis. If so, a major project of natural philosophy has failed. But if a new synthesis is 
to be reached, I believe that philosophical thinking will be once more one of its ingredients. . . . 
As a physicist involved in this effort, I wish the philosophers who are interested in the scientific 
description of the world would not confine themselves to commenting and polishing the present 
fragmentary physical theories, but would take the risk of trying to look ahead. 
   

And after from this call to arms, he also gives us an uplifting conclusion: 
 
We are not close to the end of physics, nor to the final theory of everything. We are very much 
in the dark. We left the sunny grasses of Cartesian-Newtonian physics and are traveling through 
the woods, armed with everything we have learned and with our weak intuition, always wishing 
we were smarter. It would be a discouraging state of confusion, and we would feel lost, if it 
weren't that the trip is wonderful and the landscape so breathtaking. 
 
     
 
 


