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Abstract

In Factual Difference-Making, Holger Andreas and Mario Günther propose a
theory of model-relative actual causation which performs remarkably well on
a number of known problematic cases. They take this to show that we should
abandon our counterfactual way of thinking about causation in favour of their
factual alternative. I cast doubt on this argument by offering two similar theories.
First, I show that the theory of Factual Difference-Making is equivalent to a
partly counterfactual theory. Second, I give a fully counterfactual theory that
makes the same judgments in the scenarios discussed by Andreas and Günther.

1



1.

In Factual Difference-Making, Holger Andreas and Mario Günther propose a theory of
model-relative actual causation whose causal judgments satisfy the causal intuitions
of many philosophers remarkably well. Unlike most existing theories, Andreas and
Günther claim that their theory does not rely on counterfactual reasoning. Instead, it is
based on the notion of factual difference-making, reminiscent of sufficiency conditions
in the regularity approach to causation.

It is certainly a significant achievement of Factual Difference-Making that it gives
intuitively plausible judgments for a large amount of varying scenarios. But the authors
take this achievement to show that we should adopt a paradigm shift in the way in
which we think of causation. As they state in the conclusion: “perhaps we shouldn’t
think of causes as counterfactual difference-makers. [. . .] Perhaps we should think of
causes as factual difference-makers” (Andreas & Günther, forthcoming, p. 46).

In this commentary, I cast doubt on this conclusion by introducing a counterfactual
theory of causation that is equivalent to Factual Difference-Making.

This equivalent counterfactual theory still uses conditions that are somewhat
incongruous with the counterfactual approach. However, I also provide a closely
related theory which is “fully counterfactual” and makes the same judgments in all
cases discussed by Andreas and Günther.

Section 2 introduces notation and defines the two counterfactual theories. Section
3 discusses an example. Section 4 concludes. The appendix A provides proofs.

2.

I will adopt the notation and terminology from Andreas and Günther (forthcoming),
with a few additions and clarifications. See their article for more elaborate definitions.

A causal model ⟨𝑀,𝑉⟩ consists of a set of structural equations𝑀 and a valuation
𝑉. For an equation 𝐴 = 𝜑 ∈ 𝑀, 𝐴 is a propositional variable and 𝜑 a propositional
formula of other variables. The set of equations𝑀 is acyclic.1 A valuation 𝑉 is a set
of literals stating which variables are true and false. For each 𝐴 ∈ 𝑉 or ¬𝐴 ∈ 𝑉, 𝐴
is a variable of𝑀. A variable 𝐴 of𝑀 is called exogenous when there is no equation
𝐴 = 𝜑 ∈ 𝑀.

We say ⟨𝑀,𝑉⟩ |= 𝜑 if and only if the variable assignment of 𝑉 to𝑀 is consistent
and satisfies 𝜑 as a matter of classical logic. (See Andreas and Günther, forthcoming

1 𝑀 is acyclic when there is no sequence of variables𝐴1, . . . ,𝐴𝑛 = 𝐴1 such that the for each equation
𝐴𝑖+𝑖 = 𝜑 ∈ 𝑀, the variable 𝐴𝑖 appears in 𝜑.
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for a preciser definition.) When we have neither ⟨𝑀,𝑉⟩ |= 𝜑 nor ⟨𝑀,𝑉⟩ |= ¬𝜑, we say
that ⟨𝑀,𝑉⟩ is unsettled on 𝜑. For a set of literals 𝐼 such that for every 𝑋 ∈ 𝐼, ¬𝑋 ∉ 𝑉,
the factual intervention on 𝐼 is defined by

⟨𝑀,𝑉⟩[𝐼] = ⟨𝑀𝐼 ,𝑉 ∪ 𝐼⟩, where

𝑀𝐼 = {(𝐴 = 𝜑) ∈ 𝑀 | 𝐴 ∉ 𝐼 ∧ ¬𝐴 ∉ 𝐼}.

The preceding definitions match those in Andreas and Günther (forthcoming).
In addition, I will introduce the notion of a propagating intervention common in
counterfactual theories.

Definition 1. Let ⟨𝑀,𝑉⟩ be a consistent causal model. For any set of literals 𝐼 for
variables of 𝑀, the propagating intervention on 𝐼, denoted ⟨𝑀,𝑉⟩J𝐼K, is the model
obtained by intervening on the literals in 𝐼 and propagating the changes to their
descendants. More formally, let 𝑍 ⊆ 𝑉 \ 𝐼 be the set of literals of nondescendants of 𝐼
excluding 𝐼. We define

⟨𝑀,𝑉⟩J𝐼K = ⟨𝑀𝐼 ,𝑉𝐼⟩, where

𝑀𝐼 = {(𝐴 = 𝜑) ∈ 𝑀 | 𝐴 ∉ 𝐼 ∧ ¬𝐴 ∉ 𝐼},

𝑉𝐼 = {𝜓 | ⟨𝑀𝐼 ,𝑍 ∪ 𝐼⟩ |= 𝜓 and (𝜓 = 𝐴 ∨ 𝜓 = ¬𝐴, for 𝐴 a variable of𝑀)}.

I will say that 𝑉 is a full valuation for a model ⟨𝑀,𝑉⟩ if 𝑉 contains a literal for
every variable in𝑀.

The definition of causation by Andreas and Günther (Factual Difference-Making)
is repeated in the appendix as definition 5. The following theory defines when an
event 𝐶 causes an event 𝐸 in a partly counterfactual sense, denoted≫3. This theory is
equivalent to Factual Difference-Making (proposition A.4).

Definition 2 (𝐶 ≫3 𝐸). Let ⟨𝑀,𝑉⟩ be a consistent causal model. ⟨𝑀,𝑉⟩ |= 𝐶 ≫3 𝐸

if and only if there is full valuation 𝑉′ and𝑀′ ⊆ 𝑀 such that

(0) 𝑀′ does not contain a structural equation for 𝐶.

(1) ¬𝐶,¬𝐸 ∈ 𝑉′ and ⟨𝑀′,𝑉′⟩ is consistent,

(2) there is no 𝑉′′ such that 𝑉′ ∩ 𝑉 ⊂ 𝑉′′ ∩ 𝑉 and ¬𝐶,¬𝐸 ∈ 𝑉′′ and ⟨𝑀′,𝑉′′⟩ is
consistent.

(3) ⟨𝑀′,∅⟩[𝑉′ ∩ 𝑉] [𝐶] |= 𝐸,

(4) the structural equation of each descendant of 𝐶 is in𝑀′, and
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(5) for any literal𝐶′ ∈ 𝑉′\𝑉 whose variable is neither a descendant nor an ancestor
of 𝐶, ¬𝐶′ is more deviant than 𝐶′.

I will refer to condition (𝑛) of≫3 as≫3(𝑛).
There are two ways in which the above theory might be said not to be a theory in

the counterfactual tradition. First, condition≫3(1) requires that there is a consistent
model with ¬𝐶,¬𝐸 ∈ 𝑉′, whereas typical theories use the notion of a propagating
intervention. However, since𝑀′ of condition (1) does not contain an equation for 𝐶,
condition (1) is equivalent to the following interventionist condition:

(1’) ⟨𝑀′,𝑉⟩J¬𝐶 ∪ 𝐼K |= ¬𝐸 for some intervention set 𝐼 of exogenous variables.

Using (1’) would require a reformulation of conditions (2) and (3). I use (1) instead to
stay close to the theory of Factual Difference-Making.

Second, condition≫3(3) is similar to condition 3 of Factual Difference-Making
(definition 5) and uses a model that is not fully specified, i.e., ⟨𝑀′,∅⟩. Thought
experiments in which variables have no value – rather than a true or false value – are
unheard of in counterfactual theories and typical of the approach of Factual Difference-
Making. We could, in theory, avoid this by iterating over consistent models with full
valuations. That is,≫3(3) is equivalent to the following:

(3’) For all full valuations𝑊 such that 𝐶 ∈ 𝑊, and ⟨𝑀′,𝑊⟩[𝑉′ ∩ 𝑉] is consistent,
we have ⟨𝑀′,𝑊⟩[𝑉′ ∩ 𝑉] |= 𝐸.

However, this is just a rephrasing, and still not entirely consonant with the coun-
terfactual approach. Alternatively, we can replace condition (3) of≫3 with a condition
that uses the notion of a propagating intervention. This yields the following theory
that is similar to Factual Difference-Making, though not quite equivalent.

Definition 3 (𝐶 ≫4 𝐸). Let ⟨𝑀,𝑉⟩ be a consistent causal model. ⟨𝑀,𝑉⟩ |= 𝐶 ≫4 𝐸

if and only if there is full valuation 𝑉′ and𝑀′ ⊆ 𝑀 such that

(0,1,2,4,5) As in definition 2.

(3) ⟨𝑀′,𝑉′⟩[𝑉′ ∩ 𝑉]J𝐶K |= 𝐸,

The above definition gives a theory of actual causation that is fully counterfactual
(and I think this is an improvement). It implies Factual Difference-Making, that is, if𝐴
causes 𝐵 in the sense of≫4, then𝐴 causes 𝐵 in the sense of Factual Difference-Making
(proposition A.3). Since condition≫4(3) is weaker, there are cases in which 𝐴 causes
𝐵 according to it but not according to Factual Difference-Making (proposition A.5).
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However, ≫4 and Factual Difference-Making make the same judgments about
causes and non-causes in all cases discussed by Andreas and Günther (forthcoming),
that is, early preemption, late preemption, the boulder scenario, bogus prevention,
and omissions. The achievements of Factual-Difference-Making thus carry over to
this counterfactual theory.

All cases I could find in which≫4 and Factual-Difference-Making disagree involve
complex equations with at least three input variables and a combination of AND and
OR (see proposition A.5). (My intuitions as to which theory is correct are unclear
for such cases.) This leads me to suspect that≫4 and Factual-Difference-Making are
equivalent when we restrict our attention to causal models that only contain “simple”
equations that do not combine AND an OR, and have negations applied only directly
to variables (and not to expressions of multiple variables). However, I was unable to
prove this.

3.

As an example, consider a model of late preemption. Billy and Suzy throw rocks at a
bottle. Suzy’s rock hits the bottle first, shattering it. If Suzy’s rock had not hit the bottle,
then Billy’s rock would have hit it and shattered it. The variables 𝐵 and 𝑆 denote Billy
and Suzy respectively throwing their rock. The variable 𝐻𝑆 and 𝐻𝐵 denote Suzy’s
and Billy’s rock hitting the bottle. The variable 𝐸 denotes the shattering of the bottle.
The model ⟨𝑀,𝑉⟩ is as follows.

B

S HS

HB

E

𝑀 :

𝐻𝐵 = 𝐵 ∧ ¬𝐻𝑆

𝐻𝑆 = 𝑆

𝐸 = 𝐻𝐵 ∨𝐻𝑆

𝑉 :

𝐵,¬𝐻𝐵, 𝑆,

𝐻𝑆,𝐸

To see that Suzy’s throw (𝑆) is a cause of the bottle shattering (𝐸), consider the
following counterfactual model ⟨𝑀′,𝑉′⟩.

B

S HS

HB

E

𝑀′ :

𝐻𝐵 = 𝐵 ∧ ¬𝐻𝑆

𝐻𝑆 = 𝑆

𝐸 = 𝐻𝐵 ∨𝐻𝑆

𝑉′ :

¬𝐵,¬𝐻𝐵,

¬𝑆,¬𝐻𝑆,

¬𝐸

This model clearly satisfies condition≫3(0) and≫3(4). It satisfies condition≫3(1)
and≫3(2), since the only consistent model with fewer changes of actual variables is
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the model that that has 𝐵, which would satisfy 𝐸. Condition≫3(3) requires that we
remove the equation for𝐻𝐵 in the above model, set 𝑆 to true,𝐻𝐵 to false, and unsettle
all other variables. The resulting model satisfies 𝐸, so we have ⟨𝑀,𝑉⟩ |= 𝑆 ≫3 𝐸. For
≫4(3) we similarly remove the equation for𝐻𝐵 and do a propagating interventionwith
𝐼 = {𝑆}. This gives the model ⟨𝑀′,𝑉′⟩[{¬𝐻𝐵}]J𝐶K depicted below, which satisfies 𝐸.
Hence, we also have ⟨𝑀,𝑉⟩ |= 𝑆 ≫4 𝐸.

B

S HS

HB

E
𝐻𝑆 = 𝑆

𝐸 = 𝐻𝐵 ∨𝐻𝑆

¬𝐵,¬𝐻𝐵,

𝑆,𝐻𝑆,𝐸

To see that Billy’s throw (𝐵) is not a cause of the bottle shattering (𝐸) according to
both counterfactual theories, consider that the model ⟨𝑀′,𝑉′⟩ above is also the only
consistent model satisfying ¬𝐵 and ¬𝐸. After removing the equation for𝐻𝐵, setting
𝐵 to true changes nothing (on both a factual and propagating intervention), so 𝐵 does
not cause 𝐸 according to both theories.

4.

Andreas and Günther argue that we need a paradigm shift in our thinking of actual
causation towards considering causes as factual difference-makers. I hope to have
undermined their main argument for this position by showing that the successes of
Factual Difference-Making can be enjoyed by counterfactual theories. In closing, I
offer two additional reasons to be sceptical that the authors’ proposed shift in thinking
is required.

First, how we should think of actual causation depends at least in part on the
metaphysics of actual causation, a matter not settled by Factual Difference-Making.
That is, it is desirable that the way in which we think of causes coincides with what
causes actually are. A theory of model-relative causation can be said to be metaphys-
ically accurate only if the metaphysical interpretation of the model is correct. It is
clear from other writings (e.g., Andreas and Günther, 2024) that the authors favour a
regularity-theoretic interpretation of causal models. But one can just as well use the
theory of Factual Difference-Making while interpreting the model’s equations in a
counterfactual sense.

Moreover, the specifics of the theory of Factual Difference-Making itself (disreg-
arding model interpretation) do not seem to matter metaphysically, that is, they do
not point to or require a particular metaphysical interpretation. We can interpret the
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model-relative conditions of Factual Difference-Making in the sense favoured by the
authors, but as I’ve shown, we can equally give the theory’s conditions a counterfactual
formulation. (And perhaps, we need not interpret the theory’s conditions at all.)

Hence, the success of FactualDifference-Making does not speak in favour or against
any metaphysical theory of causation. This means that an important consideration
when deciding how we should think of causation has not been addressed by the
authors (nor by my commentary).

Second, another desideratum of the way in which we think of causes is that doing
so is sufficiently easy. As humans, we are used to counterfactual reasoning and can
practice it with little effort. If we take the author’s proposal seriously, we should
develop a new sort of reasoning faculty. When faced with a causal scenario (Billy
and Suzy throw a rock at a bottle) we should imagine first that the relevant events
neither occur nor not occur. We should then ask ourselves whether the proposed
effect (the bottle shatters) is sure to occur if the proposed cause occurs (Billy throws),
holding fixed certain events. This way of thinking – imagining events that are neither
occurring nor absent – is surely very difficult, and it would be better if we can avoid
that outcome.
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A.

The proofs will regularly make use of the following notion of a submodel.

Definition 4. A causal model ⟨𝑀,𝑉⟩ is called a submodel of a causal model ⟨𝑀′,𝑉′⟩
if and only if𝑀 ⊆ 𝑀′ and 𝑉 ⊆ 𝑉′. Then the latter is called a supermodel of the former.

A useful property of submodels, regularly used below, is that consequences of
the submodel are consequences of the supermodel. That is, given that ⟨𝑀,𝑉⟩ is a
submodel of ⟨𝑀′,𝑉′⟩ and both are consistent, ⟨𝑀,𝑉⟩ |= 𝜑 implies ⟨𝑀′,𝑉′⟩ |= 𝜑.

Below I repeat the definition of causation as factual difference-making from An-
dreas and Günther (forthcoming).

Definition 5 (𝐶 ≫1 𝐸). Let ⟨𝑀,𝑉⟩ be a causal model. ⟨𝑀,𝑉⟩ |= 𝐶 ≫1 𝐸 if and only
if there is 𝑉′ ⊆ 𝑉 and𝑀′ ⊆ 𝑀 such that

(1) ⟨𝑀′,𝑉′⟩ is unsettled on 𝐶 and 𝐸,

(2) there is no 𝑉′′ ⊂ 𝑉 such that 𝑉′ ⊂ 𝑉′′ and ⟨𝑀′,𝑉′′⟩ is unsettled on 𝐶 and 𝐸,

(3) ⟨𝑀′,∅⟩[𝑉′] [𝐶] |= 𝐸,

(4) the structural equation of each descendant of 𝐶 is in𝑀′, and

(5) for any literal𝐶′ ∈ 𝑉 \𝑉′whose variable is neither a descendant nor an ancestor
of 𝐶, 𝐶′ is more deviant than ¬𝐶′.

This definition can be simplified by only consideringmodels that have the equation
for 𝐶 removed. (This will make the subsequent proofs easier.)

Definition 6 (𝐶 ≫2 𝐸). Let ⟨𝑀,𝑉⟩ be a causal model. Then ⟨𝑀,𝑉⟩ |= 𝐶 ≫2 𝐸 if
and only if there is 𝑉′ ⊆ 𝑉 and𝑀′ ⊆ 𝑀 such that

(0) 𝑀′ does not contain a structural equation for 𝐶.

(1)–(5) As in definition 5.

Proposition A.1. Let ⟨𝑀,𝑉⟩ be a causal model. Then 𝐶 ≫1 𝐸 if and only if 𝐶 ≫2 𝐸.

Proof. If ⟨𝑀,𝑉⟩ |= 𝐶 ≫2 𝐸, then it is trivial that ⟨𝑀,𝑉⟩ |= 𝐶 ≫1 𝐸. So suppose that
⟨𝑀,𝑉⟩ |= 𝐶 ≫1 𝐸.

Let𝑀′, 𝑉′ be such that≫1(1)-(5) of definition 5 are satisfied. Let𝑀′′ be the model
obtained by removing the equation for 𝐶 from𝑀′. 𝑉′ is unsettled on 𝐶 and 𝐸 with
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respect to𝑀′′ since it is unsettled with respect to𝑀′ (which contains up to one extra
equation). So let 𝑉′′ = 𝑉′ ∪𝑊 be a valuation for𝑀′′ that isminimally unsettled on 𝐶

and 𝐸. We have 𝑉 \ 𝑉′′ ⊆ 𝑉 \ 𝑉′, so condition≫2(5) of definition 6 is satisfied with
respect to 𝑉′′. We now have that𝑀′′ and 𝑉′′ satisfy conditions≫2(0),≫2(1),≫2(2),
≫2(4), and≫2(5). It remains to be shown that condition≫2(3) is satisfied.

We have 𝑉′ ⊆ 𝑉′′ and both ⟨𝑀′′,∅⟩[𝑉′′] [𝐶] and ⟨𝑀′,∅⟩[𝑉′] [𝐶] have the equa-
tion for 𝐶 removed. Hence, ⟨𝑀′′,∅⟩[𝑉′′] [𝐶] is a supermodel of ⟨𝑀′,∅⟩[𝑉′] [𝐶]. The
latter model satisfies 𝐸, and so the former must as well.

Proposition A.2. Let ⟨𝑀,𝑉⟩ be a causal model such that ⟨𝑀,𝑉⟩ |= 𝐶 ∧ 𝐸. If we have
⟨𝑀,𝑉⟩ |= 𝐶 ≫2 𝐸, then we have ⟨𝑀,𝑉⟩ |= 𝐶 ≫3 𝐸 and ⟨𝑀,𝑉⟩ |= 𝐶 ≫4 𝐸.

Proof. Suppose ⟨𝑀,𝑉⟩ |= 𝐶 ≫2 𝐸. Let𝑀′,𝑉′
1 such that≫2(0)-(5) of definition 6 are

satisfied. By condition ≫2(3), we have ⟨𝑀′,∅⟩[𝑉′
1] [𝐶] |= 𝐸. This is a submodel of

⟨𝑀′,𝑉′
1⟩[𝐶], so the latter model satisfies 𝐸 or is inconsistent. It can’t be inconsistent,

since it is a submodel of ⟨𝑀,𝑉⟩, which is consistent. Since𝑀′ does not contain an
equation for 𝐶, this model equals ⟨𝑀′,𝑉′

1 ∪ {𝐶}⟩, so we have ⟨𝑀′,𝑉′
1 ∪ {𝐶}⟩ |= 𝐸.

Suppose that ⟨𝑀′,𝑉′
1 ∪ {¬𝐶}⟩ |= 𝐸. Then combined with the above we have

⟨𝑀′,𝑉′
1⟩ |= 𝐸, contradicting ≫2(1). Hence, ⟨𝑀′,𝑉′

1 ∪ {¬𝐶}⟩ is unsettled on 𝐸 or
satisfies ¬𝐸. Hence, there is a full valuation 𝑉′

2 = 𝑉′
1 ∪𝑊 such that ¬𝐶,¬𝐸 ∈ 𝑊 and

such that 𝑉′
2 ∩ 𝑉 is maximal in the sense of≫3(2). Hence,𝑀′ and 𝑉′

2 satisfy≫3(1),
≫4(1),≫3(2), and≫4(2) (definition 2 and 3).

Suppose𝑊 ∩𝑉 is non-empty. The model ⟨𝑀′,𝑉′
1 ∪ (𝑊 ∩𝑉)⟩ is a submodel of both

⟨𝑀′,𝑉⟩ (which satisfies 𝐶 and 𝐸) and a submodel of ⟨𝑀′,𝑉′
1 ∪𝑊⟩ (which satisfies ¬𝐶

and ¬𝐸). So ⟨𝑀′,𝑉′
1 ∪ (𝑊 ∩𝑉)⟩ is unsettled on 𝐶 and 𝐸, contradicting≫2(2). Hence,

we have𝑊 ∩ 𝑉 = ∅.
Hence, we have 𝑉′

2 ∩ 𝑉 = 𝑉′
1. Condition≫3(3) follows directly from≫2(3).

Let 𝑍 consist of the exogenous literals (including 𝐶) of ⟨𝑀′,𝑉′
2⟩[𝑉 ∩𝑉′

2]J𝐶K. Then
the models ⟨𝑀′,𝑉′

2⟩[𝑉 ∩ 𝑉′
2]J𝐶K and ⟨𝑀′,𝑍⟩[𝑉 ∩ 𝑉′

2] are “equal”, i.e., they contain
the same equations and satisfy the same literals.2 Moreover, we have 𝑉′

1 = 𝑉 ∩ 𝑉′
2, so

the model ⟨𝑀′,∅⟩[𝑉′
1] [𝐶] is a submodel of ⟨𝑀

′,𝑍⟩[𝑉 ∩ 𝑉′
2]. Since the former model

satisfies 𝐸, the latter model satisfies 𝐸. Condition≫4(3) follows.
If 𝐶′ ∈ 𝑉′

2 \ 𝑉, then ¬𝐶′ ∉ 𝑉′
1 and 𝐶′ ∉ 𝑉, so ¬𝐶′ ∈ 𝑉 \ 𝑉′

1. So by≫2(5), ¬𝐶′ is
more deviant than 𝐶′. Hence, 𝑉′

2 satisfies≫3(5) and≫4(5).
Since𝑀′ satisfies≫2(0) and≫2(4), it satisfies≫3(0),≫4(0),≫3(4), and≫4(4).

2 This is because a causal model’s true literals are fully determined by a valuation of all exogenous
variables.
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Proposition A.3. Let ⟨𝑀,𝑉⟩ be a causal model such that ⟨𝑀,𝑉⟩ |= 𝐶 ∧ 𝐸. If we have
⟨𝑀,𝑉⟩ |= 𝐶 ≫3 𝐸, then we have ⟨𝑀,𝑉⟩ |= 𝐶 ≫2 𝐸.

Proof. Let𝑀′,𝑉′
3 such that conditions≫3(0)-(5) of definition 2 are satisfied.

Let 𝑉′
1 = 𝑉 ∩ 𝑉′

3. The model ⟨𝑀
′,𝑉′

1⟩ is a submodel of both ⟨𝑀′,𝑉⟩ and ⟨𝑀′,𝑉′
3⟩.

The former satisfies 𝐶 and 𝐸 while the latter satisfies ¬𝐶 and ¬𝐸. Hence, ⟨𝑀′,𝑉′
1⟩ is

unsettled on 𝐶 and 𝐸. Therefore,𝑀′ and 𝑉′
1 satisfy condition≫2(1).

Let 𝑋 ∈ 𝑉 \ 𝑉′
1 and let 𝑍 be any partial valuation such that𝑊 = 𝑉′

1 ∪ 𝑍 ∪ {𝑋} is
a full and consistent valuation of𝑀′. Then ⟨𝑀,𝑊⟩ cannot satisfy both ¬𝐶 and ¬𝐸,
since then𝑊 would violate≫3(2). Moreover, ⟨𝑀,𝑊⟩ cannot satisfy both 𝐶 and ¬𝐸,
since then ⟨𝑀,∅⟩[𝑉′

1] [𝐶] would be a submodel of ⟨𝑀,𝑊⟩, but the former satisfies 𝐸
by≫3(3). Hence, every complete valuation containing 𝑉′

1 ∪ {𝑋} satisfies 𝐸. It follows
that 𝑉′

1 is minimally unsettled, satisfying≫2(2).
From≫3(3) it follows immediately that≫2(3).
Let 𝐶′ ∈ 𝑉 \ 𝑉′

1 be a literal that is neither a descendant nor ancestor of 𝐶. Then
𝐶′ ∈ 𝑉 and 𝐶′ ∉ 𝑉′

3 ∩ 𝑉, so ¬𝐶′ ∈ 𝑉′
3 \ 𝑉. By ≫3(5), 𝐶′ is more deviant than ¬𝐶′.

Hence, 𝑉′
1 satisfies≫2(5).

By≫3(0) and≫3(4),𝑀′ satisfies≫2(0) and≫2(4).

By proposition A.1, A.2, and A.3 we have equivalence of≫3 and≫1.

Proposition A.4. Let ⟨𝑀,𝑉⟩ be a causal model such that ⟨𝑀,𝑉⟩ |= 𝐶 ∧ 𝐸. Then we
have ⟨𝑀,𝑉⟩ |= 𝐶 ≫3 𝐸 if and only if ⟨𝑀,𝑉⟩ |= 𝐶 ≫1 𝐸.

PropositionA.5. There exists a causalmodel ⟨𝑀,𝑉⟩ such that we have ⟨𝑀,𝑉⟩ |= 𝐶∧𝐸,
⟨𝑀,𝑉⟩ |= 𝐶 ≫4 𝐸, but ⟨𝑀,𝑉⟩ ̸|= 𝐶 ≫1 𝐸.

Proof. Let 𝑀 = {𝐸 = 𝐶𝐴𝐵 ∨ 𝐶¬𝐴¬𝐵 ∨ ¬𝐶 (𝐴 ∨ 𝐵)} and let 𝑉 = {𝐴,𝐵,𝐶,𝐸}. The
only consistent counterfactual model with ¬𝐶 and ¬𝐸 is 𝑉′ = {¬𝐴,¬𝐵,¬𝐶,¬𝐸}. The
model following a propagating intervention on 𝐶 satisfies 𝐸, so we have ⟨𝑀,𝑉⟩ |=
𝐶 ≫4 𝐸.

The two minimally unsettled models on 𝐶 and 𝐸 are 𝑉′
1 = {𝐴} and 𝑉′

2 = {𝐵}.
There are consistent valuations {𝐶,𝐴,¬𝐵,¬𝐸} and {𝐶,¬𝐴,𝐵,¬𝐸}. Hence, adding 𝐶
does not satisfy 𝐸 in either case. We have ⟨𝑀,𝑉⟩ ̸|= 𝐶 ≫1 𝐸.
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