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Abstract

In Yang-Mills gauge theory on a Euclidean Cauchy surface the group of physical gauge
symmetries carrying direct empirical significance is often believed to be GDES = GI/G∞

0 , where
GI is the group of boundary-preserving gauge symmetries and G∞

0 is its subgroup of trans-
formations that are generated by the constraints of the theory. These groups are identified
respectively as the gauge transformations that become constant asymptotically and those that
become the identity asymptotically. In the Abelian case G = U(1) the quotient is then identi-
fied as the group of global gauge symmetries, i.e. U(1) itself. However, known derivations of
this claim are imprecise, both mathematically and conceptually. We derive the physical gauge
group rigorously for both Abelian and non-Abelian gauge theory. Our main new point is that
the requirement to restrict to GI does not follow from finiteness of energy only, but also from
the requirement that the Lagrangian of Yang-Mills theory be defined on a tangent bundle to
configuration space. Moreover, by carefully considering the rates of asymptotic behavior of
the various types of gauge transformations through conformal methods, we explain why the
physical quotient consists precisely of a copy of the global gauge group for every homotopy
class. Lastly, we consider Yang-Mills-Higgs theory in our framework and show that asymp-
totic boundary conditions and the physical gauge group differ in the unbroken and broken
phases.1

1 Introduction

The physical status of gauge symmetries is a central topic in contemporary physics, both in
Yang-Mills theory and general relativity. The term “gauge” is sometimes used as a synonym for
“unphysical” or “empirically insignificant,” but gauge transformations can acquire a physical
meaning in the presence of boundaries [2–10]. A well-known empirical example is the Joseph-
son current flowing between two superconductors whose boundaries are brought close to-
gether [11]. This current depends only on the relative difference between the global U(1) phases
of the superconductors’ Ginzburg-Landau order parameters, suggesting that global gauge sym-
metries are physical. Similarly, some gauge symmetries are physical on asymptotic boundaries.

1This article grew out of the master thesis of the corresponding author, supervised by the other author and by
Sebastian de Haro [1].
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For instance, the asymptotic symmetry group of gravity in asymptotically flat spacetimes is
the well-known BMS group [12–14] and asymptotic symmetries of Yang-Mills fields on both
the null and spatial conformal boundaries of Minkowski spacetime are studied in the context
of celestial holography, see e.g. [10, 15–19]. The general idea is that the asymptotic symmetry
group consists of all “allowed symmetries” quotiented by all “trivial symmetries” [16]. Here
“allowed” means those symmetries that respect the boundary conditions of the system and
“trivial” means those symmetries that have no physical effect on the system. In this article we
will identify the trivial symmetries of a gauge theory as those transformations that are gener-
ated by the Hamiltonian constraints of the theory.

Our aim is to rigorously derive the quotient of boundary-preserving gauge symmetries by
trivial gauge symmetries for the specific case of Yang-Mills and Yang-Mills-Higgs theory on a
Cauchy surface Σ isomorphic to R3. Our motivation to do so comes from the desire to under-
stand the physical content of the Higgs mechanism [20–23], which is thought to happen at a
particular instant in time during the electroweak phase transition. For this reason we intro-
duce a 3+1 split Σ×R of spacetime and discuss instantaneous spatial asymptotic symmetries, for
which the time t is held fixed and the radial coordinate r on Σ is taken to infinity. This means
that we do not consider the asymptotic symmetry group of full spatial infinity of Minkowski
spacetime,2 but only one “instant.” It is sometimes said that asymptotic analyses are more of an
art than a science [16, p. 34], but for the specific case of Yang-Mills theory on a Euclidean Cauchy
surface we will present a fairly algorithmic and unambiguous method for deriving the physical
gauge group from the assumption of finite energy. It is probable that this method can be ex-
tended at least to Yang-Mills theory on Cauchy surfaces in other spacetimes than Minkowski,
and perhaps also to the gravitational field itself.

The case of Maxwell theory, possibly with a Higgs field, on Euclidean space has been studied
extensively in the foundations of physics community, see e.g. [6,7,24–33]. The terminology used
there to describe physical and trivial gauge symmetries respectively is that of direct empirical sig-
nificance (DES) and redundant gauge transformations [28]. We will stick to this terminology. Re-
dundant gauge transformations are contrasted with formal gauge transformations, which make
up the full infinite-dimensional gauge group G without any regard for their physical status. For
pure electromagnetism on Σ with spatial asymptotic boundary conditions, the group of gauge
symmetries carrying DES has been identified as the asymptotic symmetry group

GDES = GI/G∞
0 ,

where GI denotes the subgroup of the formal gauge group G whose elements leave asymptotic
boundary conditions invariant3 (the “allowed” symmetries), and G∞

0 is the subgroup of re-
dundant gauge transformations that are generated by the primary first-class constraints of the
theory (the “trivial” symmetries). Here the ∞-superscript stands for the trivial action of these
transformations at infinity4 and the subscript 0 denotes the identity component of G∞. The
identification of redundant gauge symmetries as the ones generated by the primary5 first-class6

constraints is based on the Dirac-Bergmann theory of constraints [34, 35], in which one takes

2Spatial infinity understood as the timelike boundary at which spacelike geodesics end connects the infinite past
with the infinite future, and is therefore itself infinitely extended in time and not instantaneous.

3Hence the notation I, which will be used throughout to denote classes of maps that leave the asymptotic boundary
conditions invariant, i.e. which are constant at infinity (except in the broken phase of the Yang-Mills-Higgs theory,
where boundary-preserving transformations must actually vanish at infinity, see Section 5).

4Throughout this article we use the subscript ∞ to denote certain conditions at asymptotic infinity (usually the
vanishing of classes of maps), which is not to be confused with the superscript denoting smoothness. Only for G∞

0 have
we used ∞ as a superscript since there we already have the subscript 0 and there is no danger of confusion.

5Primary constraints are constraints that are obtained without using the equations of motion.
6First-class constraints are constraints whose Poisson bracket with any other constraint vanishes.
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Poisson brackets of the primary first-class constraints with the fields of the theory to generate
gauge transformations. For details see e.g. [36–41].

For electromagnetism (with structure group U(1)) on three-dimensional space Σ, the group
GI of boundary-preserving gauge transformations is identified as consisting of those transfor-
mations g : Σ → U(1) that become asymptotically constant [28, 30]. Furthermore, the subgroup
G∞
0 is identified as the one generated by the Gauss law constraint, consisting of all transforma-

tions g : Σ→ U(1) that asymptotically approach the identity [28,42]. The quotient is then said to
be isomorphic to U(1) itself, i.e. the group of global (or rigid) gauge symmetries [27, 28, 30, 43].

However, the derivations supporting these results are at the least shaky and sometimes sim-
ply incorrect. The common lore is that one must impose asymptotic fall-off boundary conditions
on gauge fields, e.g.

Ai → 0+O(r−2), i = 1, 2, 3,

to ensure finiteness of energy and/or action [44]. It is then said that the gauge group must
preserve these conditions [27] and must therefore be restricted to GI. But this argument is prob-
lematic, since energy and action only depend on gauge-invariant quantities (the field strength
tensor). Thus there is no need to require gauge fields to become zero asymptotically: we need
only require that they become pure gauge, a point that was already noted by Atiyah [45, Section
I.4]. But any gauge transformation preserves this condition, so it would seem naively that one
can always allow the full gauge group G, instead of restricting to GI.7 If true, this would greatly
enlarge the group GDES, well beyond the group of global (rigid) gauge transformations.

One aim of this article is to explain why we must in fact still restrict to the subgroup GI,
although this does not follow only from finiteness of energy but also from the requirement
that the Lagrangian be defined on the tangent bundle to configuration space. For finite-dimensional
systems this latter requirement is the foundation for proving the equivalence of the Euler-
Lagrange equations and stationarity of action in variational principles, see e.g. [46, Chapter
8] or [47, Chapter 19]. But gauge field theories are infinite-dimensional systems with infinite-
dimensional symmetry groups, resulting in the added difficulty that the Lagrangian is degen-
erate (exhibits constraints) [36, 48]. In that case, not all vectors in the tangent bundle to con-
figuration space admit solutions to the Euler-Lagrange equations of which they are the initial
datum [48, Section 6.4]. Still, the constraints are found in the first place through the Legendre
transform L : TQ → T∗Q from the tangent bundle to the cotangent bundle of the configuration
space Q. The constraint surface C is the image L(TQ) of the tangent bundle under the Legen-
dre transform [36, 48]. Thus, even in gauge field theories, one always starts with a Lagrangian
defined on the tangent bundle to configuration space.8

Besides the problem of correctly identifying GI, there is further obscurity in the literature
when GDES is identified with the group of global (rigid) gauge symmetries. This pertains to the
appropriate rate at which transformations g ∈ GI must become constant asymptotically, and the
rate at which elements g ∈ G∞

0 must become the identity. It is only when these rates are exactly
equal that we can conclude that the quotient of these two subgroups of G is isomorphic to U(1)
(in the Abelian case). However, in the usual approach it is not obvious that these rates are the
same. To see this, note that, in 3-dimensional space, the electric field must vanish asymptotically
with order at least O(r−3/2−ϵ) to guarantee that it is square-integrable,9 where ϵ > 0 is any

7There is another way to formulate this critique: the very statement Ai → 0 is made in a specific gauge. What we
call “zero” is therefore gauge-dependent. Thus, the fact that this asymptotic boundary condition is not preserved by
most gauge transformations is not surprising - it is a consequence of our working in a gauge.

8In a covariant phase space framework one may work with the first jet bundle rather than the tangent bundle. We
leave a reformulation of our results into the language of jet bundles for future research.

9Square-integrability is required because the energy carried by the electric field is the integral of the square of its
norm, and this energy is required to be finite.
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(small) number. As we will explain later, this same rate is needed for the gauge field itself. It
is then concluded that gauge transformations g : Σ → G must become constant asymptotically
to preserve this boundary condition. But at what rate? In the Abelian case, we would need the
gauge parameter λ : Σ → R to be such that its derivative ∂iλ falls off with order O(r−3/2−ϵ),
if it is to be boundary-preserving. But what does this imply for λ itself? It is not obvious that
we can simply conclude that λ → const + O(r−1/2−ϵ), i.e. that λ falls off towards a constant
with one power of r fewer. Indeed, there are examples of functions which themselves vanish
in a certain limit but whose derivative behaves very badly. Besides, as noted in [27, 28], our
choice of asymptotic behavior of the fields has a large effect on what transformations GI contains
precisely, seemingly making the derivation of the physical gauge group quite arbitary.

Similar issues arise when considering the order of asymptotic behavior for transformations
g ∈ G∞

0 . In fact, in the argument by Balachandran [42], which formed the basis for Teh’s deriva-
tion [28], the requirement that g→ 1 asymptotically is based on the need for a certain boundary
term to vanish in the calculation of a specific Poisson bracket. But this boundary term con-
tains the electric field, and so its vanishing could also be guaranteed simply by requiring rapid
enough asymptotic fall-off of the electric field, such that gauge transformations do not need to
go to the identity to make sure this Poisson bracket exists. We will run into this issue again
in Section 4.1 and resolve it in Section 4.3. At any rate (pun intended), it is clear that quite
a lot of fine-tuning of asymptotic behavior is needed to ensure that, in the end, the quotient
GDES = GI/G∞

0 corresponds precisely to the group of global gauge transformations. This arbi-
trariness is highly unsatisfactory.

These ambiguities contrast sharply with other characterizations of the special status of global
gauge symmetries, from which it is obvious that it is precisely the global gauge group that
stands apart from other gauge transformations. We mention three such characterizations.

Firstly, in the formalization of gauge theories using fiber bundles, connections live on a
principal G-bundle P → Σ. Gauge transformations correspond to bundle automorphisms P →
P. But in the Abelian case,10 there is clearly a special class of gauge transformations, namely
the ones that are given by the global action G : P → P, which forms part of the very definition
of a principal bundle. A connection on P is a choice of horizontal subspace at every point
p ∈ P. Since the global action of G on P is, by definition, perfectly vertical, it is not felt by the
connections.

Secondly, in the symplectic formulation of gauge theories, the global gauge group appears
precisely as the obstruction to the possibility of a smooth symplectic reduction [2,3,8,9]. To see
this, recall that any Hamiltonian group action on a symplectic manifold can be used to define a
momentum map (Definition 4.1) such that, if the group acts freely11 and properly12 on the zero
set of this momentum map, one can take a symplectic quotient [46–48]. However, since global
gauge transformations can be viewed as the constant maps g : Σ→ G, they do not act freely. In
the Abelian case, a connection A transforms as

A→ A+ g−1dg,

so if g is constant then dg is zero, and any connection will be a fixed point of the global gauge
group action. This prevents the possibility of a smooth symplectic reduction.13 The symplectic

10In the non-Abelian case the action f : P → P defined by f(p) = ph1, for some h1 ∈ G, does not necessarily define a
bundle automorphism. Equivariance might fail since f(ph2) = ph2h1 is not necessarily the same as f(p)h2 = ph1h2 if
h1, h2 do not commute. Yet the central elements of G do define a bundle automorphism this way.

11The action of a group H on a set X is called free if h · x = x for some x ∈ X implies that g is the identity.
12The action of a topological group H (such as a Lie group) acting by homeomorphisms on a topological space X

(such as a manifold) is called proper if the map H× X → X× X is proper. A map between topological spaces is called
proper if the inverse image of a compact set is itself compact.

13To resolve this we could consider the group G∗ of pointed gauge transformations, i.e. those transformations that are
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quotient will instead be a stratified space [9]. In the non-Abelian case, constant gauge transfor-
mations g do act by conjugation A 7→ g−1Ag, (non-Abelian gauge bosons are charged under
the force they themselves transmit), but then the central global gauge transformations still do
not act freely.

Thirdly, but relatedly, Gomes and Riello have used horizontal symplectic geometry to iden-
tify the global gauge group as carrying a different empirical status from other gauge transfor-
mations [5–9, 31]. In electromagnetism this is achieved by means of the dressing

h[A] =

∫
Σ

dy3

4π

∂iAi

|x − y|
,

which singles out the gauge-invariant component of the gauge field A on 3-dimensional space
Σ. This dressing corresponds to a projection onto the Coulomb gauge and is insensible precisely
to the global gauge transformations, as these do not change A. Clearly this is related to the
previous point: the common idea is that (central) global gauge transformations do not change
the gauge field, whereas these do change the global phase of matter fields.14

Thus, we arrive at the central goal of this article: unifying the various approaches to de-
riving precisely the global gauge group as the one carrying DES, by carefully considering the
configuration space of Yang-Mills fields and their spatial asymptotic boundary conditions. Our
approach is as follows. We first construct the configuration space of gauge fields in Section 2,
without working in a particular gauge. In Section 3 we then use this construction to define
boundary conditions that are necessary to ensure finiteness of energy, and we examine their
consequence for the structure of the configuration space of gauge fields. Subsequently, we find
the redundant gauge symmetries, i.e. those generated by the Gauss law constraint, in Section
4, finally giving us the quotient of transformations with DES. Lastly, we study what happens
when a Higgs field is added in Section 5, in which case we find different boundary conditions
for the unbroken and broken phases.

2 The configuration space of gauge fields

In this Section we explain what the configuration space of Yang-Mills theories, on whose tan-
gent bundle the Yang-Mills Lagrangian is defined, looks like. We do this without working in
a particular gauge, which is of paramount importance for conceptual clarity. After all, if we
impose boundary conditions such as Ai → 0 while already working in a specific gauge, then
it is not surprising that gauge transformations violate this boundary condition. However, it is
then unclear whether this violation is really problematic or just an artifact of our choice to work
in a gauge, and we should avoid this ambiguity.

The results of this Section are a necessary prerequisite for understanding the main point of
Section 3: that the need to restrict the allowed gauge transformations to GI, i.e. the subgroup
of transformations that leave the boundary conditions invariant, comes not directly from the
boundary conditions themselves, but rather from the requirement that the domain of the La-
grangian be a tangent bundle.

Throughout this article we assume a 3+1 split of flat spacetime into Σ × R, where Σ ∼= R3,
and work in the temporal gauge, thus setting A0 = 0. This means that we do not consider

the identity at some arbitary fixed point x0 ∈ Σ. Then the only global transformation is the trivial one and the action of
G∗ is free, so that the symplectic reduction is a smooth space. This approach is pursued in [49]. We could also consider
so-called irreducible connections, i.e. connections for which the holonomy group acts irreducibly. The gauge group does
act freely on the space of irreducible connections [50].

14For this reason they are used in so-called ’t Hooft beam splitter [51] constructions, see e.g. [52].
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gauge transformations in the temporal component of the gauge field, but only in its spatial
components. We do this because we are ultimately interested in understanding the breaking
of spatial gauge transformations in the Higgs mechanism. For details on the relation between
such a 3+1 split and covariant formulations of Yang-Mills theory, we refer the reader to Section
8.3 of [48] and to [53, 54].

We consider a principal G-bundle P → Σ, where the structure group G is some compact
matrix Lie group such as U(1) or SU(N), with Lie algebra Lie(G) = g. The structure group
should not be confused with the gauge group G = Aut(P) of all gauge transformations. A
gauge field in Yang-Mills theory is a connection on this bundle P, i.e. a choice of horizontal
distribution in the tangent bundle TP. Equivalently a gauge field can be viewed as a Lie algebra-
valued 1-form on P, i.e. an element A ∈ Ω1(P, g), that is both G-equivariant and reproduces
the Lie algebra generators of the fundamental vector fields15 [55]. G-equivariance means that
r∗h ◦ A = Adh−1 ◦ A for all h ∈ G, where Ad : G → GL(g) denotes the adjoint representation16

and r∗h : g → g the pullback of the right multiplication rh : G → G by h ∈ G. Such a connection
1-form A can be pulled down to Σ if we have a gauge, i.e. a section s : Σ→ P, in which case it is
acted upon by the gauge group G in the usual way:

s∗g̃A = g̃−1s∗Ag̃+ g̃−1dg̃, g̃ ∈ C∞(Σ,G).

Here s∗ : Ω1(P, g) → Ω1(Σ, g) denotes the pullback through the gauge s, and we have used
the isomorphism G = Aut(P) ∼= C∞(Σ,G), which sends g 7→ g̃, induced by s.17 Henceforth
we drop the tilde on g, meaning that we freely switch between the gauge-invariant definition
G = Aut(P) and the gauge-dependent definition G = C∞(Σ,G).

If we write Conn(P) for the space of all connection 1-forms on P, then the space of “coordi-
nates” and “velocities” of Yang-Mills theory naively consists of the tangent bundle TConn(P) to
Conn(P). However, as we will see in Section 3, asymptotic boundary conditions are required on
the tangent vectors (electric fields) in this tangent bundle, thereby complicating the construc-
tion. Now, (asymptotic) boundary conditions are usually imposed on fields on space Σ and
not on the bundle P, so we need to bring down our fields to Σ. We could do this by work-
ing in a gauge as above, but we have just explained that it is vital to work gauge-invariantly.
Fortunately, it is also possible to work gauge-invariantly on Σ, using the following.

A k-form ω ∈ Ωk(P, g) is called horizontal if it vanishes whenever at least one vector it eats
is vertical, i.e. if for all p ∈ P we have ωp(X1, ..., Xk) = 0 whenever Xi ∈ VpP = ker(π∗) for
some 1 ≤ i ≤ k. Here VpP = ker(π∗) denotes the space of vertical vectors at the point p, which
should be thought of as the vectors that lie along the fibers (which are isomorphic to G) of P.
Furthermore, we say a k-form ω is of type Ad if r∗h ◦ω = Adh−1 ◦ω for any h ∈ G. We denote
the set of horizontal k-forms of type Ad byΩk

hor(P, g)
Ad. We have the following result [55].

Proposition 2.1. Let P → Σ be a principal G-bundle. If A,A ′ ∈ Ω1(P, g) are two connection
1-forms then A − A ′ ∈ Ω1

hor(P, g)
Ad and for any ω ∈ Ω1

hor(P, g)
Ad we have that A + ω is a

connection 1-form. For the curvature we have F(A) ∈ Ω2
hor(P, g)

Ad.

In other words: differences of connections as well as curvatures are horizontal forms of type
Ad. This is extremely useful because of the following well-known theorem [55].

15That is: A(Xξ) = ξ for all ξ ∈ g, where Xξ denotes the fundamental vector field in X(P) generated by ξ through the
right action of G on P.

16Defined by Adh(X) = hXh
−1, where h ∈ G,X ∈ g.

17The isomorphism between the two groups is as follows. If we have aG-valued map g : Σ→ G, then we can produce
a bundle automorphism f : P → P using the section s : Σ→ P. We simply define f(p) = p · s(π(p)).
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Theorem 2.2. Let π : P → Σ be a principal G-bundle. Then Ωk
hor(P, g)

Ad and Ωk(Σ,Ad(P)) are
canonically isomorphic as vector spaces through the pullback18 π∗.

Here Ad(P) denotes the adjoint bundle.19 Thus, if we choose a basis connection Aref, we
can view the space of connection 1-forms Conn(P) as the vector space Ω1(Σ,Ad(P)). In other
words: we can view differences of connections as well as curvatures as forms on Σ instead
of on P in a gauge-invariant manner, as long as we remember that it is in reference to the basis
connectionAref. For an Abelian structure group the adjoint bundle Ad(P) is even trivial, i.e. just
Ad(P) = Σ× g, so that the space of connections becomes simplyΩ1(Σ, g).

Now, we know what the tangent space to a vector space looks like: it is isomorphic to the
original vector space, even in infinite dimensions. This allows us to obtain the tangent bundle to
the space of connections. We find TConn(P) = TΩ1(Σ,Ad(P)) ∼= Ω1(Σ,Ad(P))×Ω1(Σ,Ad(P)).
In electromagnetism g = iR, so that TConn(P) simply equalsΩ1(Σ)×Ω1(Σ).

3 Asymptotic boundary conditions and the gauge group

Thus far we have not considered any boundary conditions on the connection 1-forms or the
tangent vectors in, nor on the curvatures, even though this is essential for ensuring finiteness of
the Lagrangian, Hamiltonian and action. The Lagrangian is an integral over Σ ∼= R3, so terms
that appear in the integrand must fall off asymptotically with order at least O(r−3−ϵ) to make
this integral well-defined. Let us now see what these terms are and what imposing boundary
conditions implies for the group of gauge transformations G.

3.1 Boundary conditions on gauge fields

Our goal is to identify a subspace Q ⊂ Ω1(Σ,Ad(P)) of the space of all gauge fields which
is such that the curvatures of its elements as well as the elements of its tangent bundle TQ
satisfy the asymptotic boundary conditions. These boundary conditions are dictated by the
Lagrangian of Yang-Mills theory on Σ, which is a map L : TQ → R. Elements of TQ consist of
pairs (A,αA) ∈ Q × TAQ of gauge fields and tangent vectors. We think of αA as the electric
field, but it is entirely independent of A as long as we do not impose the equations of motion,
which is one reason why we have chosen not to use the symbol E (the other reason is that we
will use E to denote the conjugate momentum to A in Section 4) . The tangent vectors αA are
the “velocities” at the “coordinate” A. The Lagrangian of Yang-Mills theory in temporal gauge
is then [56]

L(A,αA) =
1

2
∥αA∥2 −

1

2
∥F(A)∥2 . (1)

Here F(A) denotes the curvature 2-form of the connection 1-formA, which is the magnetic field,
and ∥·∥ is the usual norm on forms:

∥ω∥2 =

∫
Σ

Tr(ω∧ ∗ω),

18Recall that for a fiber bundle E → N any map f : M → N induces a pullback bundle f∗E → M. In this case the
pullback (of the adjoint bundle) is the trivial vector bundle P × g.

19The adjoint bundle is the associated real vector bundle Ad(P) = P ×Ad g constructed through the adjoint rep-
resentation Ad : G → GL(g). Here the product P ×ρ g signifies that we quotient P × g by the equivalence relation
(p, X) ∼ (ph,Adh−1 (X)) for h ∈ G.
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where ∗ denotes the Hodge star operator. It is important to note for our conformal analysis in
Section 3.2 that the hodge star operator “contains” the metric. We can derive expression (1) for
the Lagrangian from the usual covariant action on spacetimeM = Σ× R:

S(Ã) = −
1

2

∫
M

Tr F(Ã)∧ ∗F(Ã) = −
1

2

∫
R

∫
Σ

Tr F(Ã)∧ ∗F(Ã).

Here we have written Ã to stress that this is a gauge field on spacetime M instead of space Σ.
Denoting coordinates on Σ by xi and the coordinate on R by t = x0, it is not difficult to show
that the action in coordinates becomes the usual [55]

S(Ã) = −
1

4

∫
R
dt

∫
Σ

dx3 Tr(FµνF
µν) = −

1

4

∫
R
dt

∫
Σ

dx3 Tr
(
2F0iF

0i + FijF
ij
)
,

where µ = 0, 1, 2, 3, i = 1, 2, 3 and Fµν = ∂µAν − ∂νAµ + [Aµ, Aν] is the antisymmetric field
strength tensor (which clearly satisfies F00 = 0). The term Tr(F0iF0i) is (minus) the energy of
the electric field (the “kinetic” energy), and the term Tr(FijFij) equals twice the energy of the
magnetic field (the “potential” energy).

If we now impose temporal gauge A0 = 0 we obtain F0i = ∂0Ai = Ȧi. We can then rewrite
the action as20

S(Ã) = 1

4

∫
R
dt

∫
Σ

dx3 Tr
(
−2ȦiȦ

i − FijF
ij
)
=

∫
R
dt L(Ai, Ȧi).

But Fij is just the curvature of the connectionAi on three-dimensional space Σ, so in coordinate-
free notation we find, with slight abuse of notation:

S(Ã) = 1

2

∫
R
dt

∫
Σ

Tr
(
Ȧ∧ ∗Ȧ− F(A)∧ ∗F(A)

)
=
1

2

∫
R
dt

(∥∥Ȧ∥∥2 − ∥F(A)∥2
)
,

where it is understood that A ∈ Q ⊂ Ω1(Σ,Ad(P)) signifies the spatial part of Aµ. Technically
there is no sense in which the spatial gauge field A has a time-derivative Ȧ. What is really
meant by this expression is that Ȧ should be viewed as a tangent vector at the pointA, obtained
as a derivative along a curve R → Q. Thus we replace Ȧ → αA ∈ TAQ and we obtain the
Lagrangian in Eq. (1).

Now, we want the Lagrangian to be well-defined as an integral over Σ, and so we require
both ∥αA∥ and ∥F(A)∥ to be separately finite, anticipating also that the energy is the sum of
these. As these norms are just integrals over 3-dimensional space, square-integrability requires
that αA and F(A) fall-off sufficiently quickly towards spatial asymptotic infinity. Denoting by
gΣ the metric and writing

ω∧ ∗ω = gΣ(ω,ω)dVolgΣ
, ω ∈ Ωk(Σ,Ad(P)),

we need to require that, as r→ ∞:

(i) gΣ(αA, αA) → 0+O
(
r−3−ϵ

)
;

(ii) gΣ (F(A), F(A)) → 0+O
(
r−3−ϵ

)
,

where ϵ > 0 is a small number. Since in coordinates we have gΣ(αA, αA) = gijΣ (αA)i(αA)j
and gΣ(F(A), F(A)) = gikΣ g

jl
ΣF(A)klF(A)ij (using Einstein summation convention), we find the

20We use (−,+,+,+) signature for the metric, which explains the minus sign in −ȦiȦ
i.
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following boundary conditions in Cartesian coordinates:

(i) (αA)i → 0+O
(
r−3/2−ϵ

)
;

(ii) F(A)ij → 0+O
(
r−3/2−ϵ

)
.

In spherical coordinates, however, the inverse of the metric gΣ = dr2 + r2dΩ2 gives a fac-
tor r−2 for each of the angular coordinates (and a factor r−4 for the double angular coordinate
Fθϕ), leading to the boundary conditions:

(i) (αA)r → 0+O
(
r−3/2−ϵ

)
, (αA)θ, (αA)ϕ → 0+O

(
r−1/2−ϵ

)
;

(ii) F(A)rθ, F(A)rϕ → 0+O
(
r−1/2−ϵ

)
, F(A)θϕ = O

(
r1/2−ϵ

)
.

All in all we see that the gauge field A must become flat at asymptotic infinity sufficiently
quickly and the tangent vector “electric field” αA must vanish at infinity. We note that there is
apparently no requirement for the gauge field itself to vanish at infinity, since it does not appear
in the Lagrangian directly. It only needs to become flat [45]. This raises the question: do the
above boundary conditions produce a proper tangent bundle TQ? That is: if we take Q to con-
sist of those connections that become flat asymptotically at the right rate, will its tangent space
TAQ at a point A ∈ Q then consist precisely of those αA that approach zero asymptotically at
that same rate? The answer is no. To see this, we consider the space of flat connections at in-
finity and examine its tangent space. It should consist of the zero vector only, since we require
αA to vanish at infinity. In other words: the tangent space at infinity should be 0-dimensional,
which in turn implies that the space of flat connections at infinity should be 0-dimensional, i.e.
a discrete space. For simplicity we take it to consist of a single point, i.e. some fixed asymptotic
boundary choice of flat connection at infinity. Gauge transformations must leave this fixed, flat
connection at infinity invariant and should therefore become constant at infinity.

3.2 Conformal analysis

Let us be more precise about this. As explained in Sections 8.4 and 8.5 of [48], the conformal in-
variance of Yang-Mills theory allows one to make use of a conformal embedding of Minkowski
spacetime (M,η) into a Lorentzian manifold (M̂, η̂) with compact Cauchy surfaces. Such an em-
bedding is a map f : (M,η) → (M̂, η̂) which sendsM to the interior of M̂ and which is such that
f∗η̂ = K2η for some positive function K, the conformal factor. We can take M̂ to be R × S3 with
the metric η̂ = −dτ2 + gS3 . Using standard angular coordinates (α,β, γ) for S3 and spherical
coordinates (r, θ, ϕ) for R3, we have

gS3 = dα2 + sin2(α)
(
dβ2 + sin2(β)dγ2

)
,

and the embedding f : R×R3 → R×S3 is explicitly given by τ ◦ f = arctan(t+ r)+ arctan(t− r),
α ◦ f = arctan(t+ r)− arctan(t− r), β ◦ f = θ and γ ◦ f = ϕ [48, p. 384]. This gives the conformal
factor

K2 =
4

((t+ r)2 + 1)((t− r)2 + 1)
,

which at fixed t clearly satisfies K→ 0+O(r−2).
One can attach the sphere of directions at spatial infinity [2] such that M̂ has the structure

of a manifold with boundary ∂M̂ on which K vanishes [48, Proposition 8.5.2]. The Cauchy

9



surface Σ ∼= R3 is then mapped into the interior of a compact space Σ̂ with boundary ∂Σ̂ ∼= S2

(the celestial sphere of directions at infinity), so we can view asymptotic infinity of Σ as S2.
For simplicity we consider Σ at time t = 0, so that the conformal embedding Σ → Σ̂ reduces
to R = 2 arctan(r), θ = θ,ϕ = ϕ, where 0 ≤ R ≤ π denotes the radial coordinate on Σ̂ and
θ,ϕ the angular coordinates on both Σ and Σ̂. It is readily verified21 that the metric gΣ̂ =

dR2 + sin2(R)dΩ2 is pulled back to 4(1 + r2)−2
(
dr2 + r2dΩ2

)
, i.e. the Euclidean metric on Σ

with conformal factor K = 2(1+ r2)−1. The asymptotic boundary then corresponds to R = π.
Since gauge fields are objects that are defined without reference to the metric, they do not

transform with any conformal factor when considered on Σ̂ [57]. Electric fields do, if they are
defined using the metric, transform as E → K−1E (guaranteeing that there can be a nonzero
electric flux at infinity), though this point is a bit subtle and we will come back to it in Section
4. However, component functions of forms may transform with conformal factors. This is most
easily seen in spherical coordinates. Indeed, let α ∈ Ω1(Σ,Ad(P)) and write α = αrdr+αθdθ+
αϕdϕ. Suppose that α = f∗α̂ for some α̂ ∈ Ω1(Σ̂,Ad(P̂)). Then what asymptotic behavior
on α is implied by the fact that α̂ extends smoothly to the conformal boundary ∂Σ̂? Writing
α̂ = α̂Rdr + α̂θdθ + α̂ϕdϕ, it is clear that we will simply have α̂θ = αθ and α̂ϕ = α̂ϕ, since
the conformal embedding f|Σ : Σ → Σ̂ does not change the angular coordinates. For the radial
coordinate, however, we have dR = d(2arctan(r)) = 2dr/(1 + r2), so that f∗α̂R = Kαr. This
means that, through the conformal embedding, the radial coordinate function of a 1-form is
asymptotically suppressed by r−2.

Since the angular coordinates are left invariant, however, the assumption that α̂ smoothly
extends to the boundary ∂Σ̂ implies for the pulled back angular components thatαθ, αϕ = O(1).
But this is not enough for square integrability on Σ since, as we saw before, that requires at least
αθ, αϕ = O(r−1/2−ϵ). Thus, we need to impose the additional requirement that α̂|∂Σ̂ = 0. Since
α̂ is smooth even on the boundary ∂Σ̂, we can perform a Taylor expansion at a point on the
boundary in the coordinate ρ = π− R ≥ 0 around ρ = 0. Expanding

α̂θ = a0 + a1ρ+ a2ρ
2 + ...,

α̂ϕ = b0 + b1ρ+ b2ρ
2 + ...,

we see that the requirement α̂|∂Σ̂ = 0 implies a0 = b0 = 0, so that to lowest order α̂θ and α̂ϕ

are linear in ρ. But for large r:

ρ = π− R = π− 2 arctan(r) = π− 2

(
π

2
−
1

r
+

1

3r3
+O(r−5)

)
=
2

r
+O(r−3).

Since α̂θ, α̂ϕ ∼ ρ close to the boundary ∂Σ̂, this implies that f∗α̂θ, f
∗α̂ϕ → 0 + O(r−1). In

summary, the requirement that a 1-form α on Σ equals the pullback of some 1-form α̂ on Σ̂ that
vanishes on the boundary, gives the conditions αr → 0 + O(r−2) and αθ, αϕ → 0 + O(r−1),
which are strong enough to guarantee square-integrability.

In a similar fashion we can analyze what asymptotic behavior is implied for a 2-form F ∈
Ω2(Σ,Ad(P)) if we assume it to come from some F̂ ∈ Ω2(Σ̂,Ad(P̂)) that smoothly extends to
the boundary ∂Σ̂. Since Fii components vanish by antisymmetricity, it suffices to check Frθ, Frϕ
and Fθϕ. As the radial component is the only one whose exterior derivative transforms with
a conformal factor (i.e. dR = Kdr), we find that f∗F̂rθ = KFrθ, and the same for Frϕ. The
component Fθϕ is left invariant. Thus, if a 2-form F is assumed to equal a pullback f∗F̂, then we
automatically find that Frθ, Frϕ → 0 + O(r−2) and Fθϕ = O(1). Comparing to Section 3.1 we

21Using the relation sin2(2 arctan(r)) =
(

2r
1+r2

)2
= 4r2

(1+r2)2
.
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find that this is easily enough to guarantee that F is square-integrable. Thus, if one assumes a 1-
form A on Σ to equal the pullback of a 1-form Â on Σ̂, then the curvature F(Â) is a well-defined
2-form on Σ̂ and therefore one automatically finds that F(A) is square-integrable.

3.3 Boundary-preserving gauge transformations

Applying the conformal analysis above to a Yang-Mills fieldA ∈ Qwith velocity tangent vector
αA ∈ TAQ and curvature F(A), we find that we need to assume that α̂Â ∈ TÂQ̂ vanishes on
the conformal boundary ∂Σ̂, whereas we do not need to assume any behavior on F(Â) other
than smoothness on Σ̂. But since tangent vectors in TÂQ̂ are required to vanish on ∂Σ̂, we
find, by the isomorphism Q̂ ∼= TÂQ̂, that the gauge fields Â must themselves vanish on ∂Σ̂.
Another way to view this point is as follows. It can straightforwardly be seen that the space
of connections Ω1(∂Σ̂,Ad(P̂∂Σ̂)) is large enough to have a tangent space which is not zero-
dimensional. Indeed, if we choose some connection Â∞ on ∂Σ̂, then any gauge transformation
at infinity, i.e. an element of Aut(P̂∂Σ̂), yields a new connection on ∂Σ̂. Thus, the space of
connections at infinity contains at least an orbit under the action of the gauge group at infinity.
The tangent space to this orbit is C∞(∂Σ̂, g), i.e. the g-valued maps on S2. But this tangent space
is clearly not 0-dimensional.

Thus we see that we must restrict the configuration space of Yang-Mills fields Q to those
connections that, through the conformal embedding, equal some fixed choice of connection, de-
noted Â∞, on the asymptotic boundary ∂Σ̂. Then the space of connections at infinity will be
0-dimensional (consisting only of this one fixed connection) and its tangent space too. How-
ever, such a choice of a fixed connection at infinity obviously breaks gauge invariance, but in a
trivial sense: any gauge transformation that is not constant22 at infinity will change Â∞. In the
Abelian case, the group of gauge transformations that do preserve Â∞ consists precisely of all
transformations that are constant at infinity. In the non-Abelian case one has to take into ac-
count the fact that even constant transformations may change Â∞ by means of a conjugation.
The orbit of a connection under the conjugation action of the group of constant gauge trans-
formations is itself a smooth manifold (whose dimension depends on G), with tangent vectors
which are nonzero unless the boundary connection is invariant under Ad(G). Intuitively, this
corresponds to the fact that non-Abelian gauge fields carry currents even in the absence of mat-
ter fields. Avoiding such currents at infinity with infinite energy forces us to pick a boundary
connection which is invariant under Ad(G), e.g. zero. Then the asymptotically constant gauge
group will leave this boundary choice invariant. This choice of picking the zero connection at
infinity so that the full asymptotically constant gauge group is allowed, rather than allowing
for any flat connection but only the central asymptotically constant transformations, harmo-
nizes with Doplicher-Haag-Roberts superselection theory in algebraic quantum field theory, in
which the global gauge group G gives rise to observable superselection sectors and can in turn
be reconstructed from such a superselection structure [58–63].

In this way, we again arrive at the familiar fact that the group of boundary-preserving “al-
lowed” gauge transformations GI consists of those that become constant at infinity at the ap-
propriate rate. We need not worry anymore about what this rate is precisely,23 since it does not
play a role when working on the compact space Σ̂, where there is only one simple condition
on the transformations in GI, namely that they are constant on ∂Σ̂. It is also clear why gauge

22One may worry that the identification of Aut(P̂|∂Σ̂) with maps ∂Σ̂→ G fails because trivializability of P → Σ does
not imply trivializability over the conformal boundary. However, the extension of P̂ → f(Σ) = int(Σ̂) to the boundary
∂Σ̂ is a matter of choice, and we simply choose it to be trivializable.

23But note that, by choosing to formalize asymptotic infinite in the way done here, we picked O(r−2) as the preferred
fall-off rate.
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fields A, when viewed on Σ̂, automatically approach the fixed flat connection Â∞ ∈ Ω1(∂Σ̂, g)
at the same rate that tangent vectors αA approach zero. This follows from the requirement that
the space of “electric fields” is precisely the tangent space to Q. Since TAQ ∼= Q, any choice of
asymptotic behavior for elements in TAQ automatically translates this behavior onto Q itself.

4 Redundant gauge symmetries and constraints

Having reproduced the result that the subgroup of boundary-preserving gauge transformations
GI consists of those transformations that become constant at infinity - interpreted properly as
the boundary of the compact space Σ̂ - it is time we turn to the question of the redundancy or
“triviality” of these gauge transformations. That is: which elements of GI are generated by the
Gauss law constraint, which is the primary first-class constraint of Yang-Mills theory,24 and can
therefore be interpreted to be unphysical, i.e. to not have DES?

In constrained Hamiltonian analysis, gauge orbits are null directions25 of the symplectic form
pulled back to the constraint surface C [36]. These null directions give a clear definition of
“gauge” in the redundant sense: they are not felt by the symplectic form, which is the central
object in the classical structure of the theory. It was Dirac’s great insight that these gauge orbits
are generated by the primary first-class constraints [34]. In symplectic geometry, this idea is
made precise by means of the momentum map, which formalizes infinitesimally generated
symmetries. Indeed, in Yang-Mills theory the constraint surface equals the inverse image of
zero under the momentum map for the group of redundant, trivial gauge symmetries [48].
Thus, in order to discover precisely which transformations in GI are redundant, we pursue the
following strategy: we calculate for which infinitesimal gauge transformations the momentum
map is given by the Gauss law constraint. This approach can be seen as a precise version of the
argument from [42] and is also pursued for finite boundaries in [9], and we will follow it now
to highlight how local and global gauge symmetries obtain a different physical status: only the
former have the Gauss law constraint as their momentum map and should therefore be viewed
as redundant.

However, we will then explain the weakness of such an approach in the setting of asymp-
totic boundaries: we run into the same issues about the appropriate rates of asymptotic behavior
as those highlighted in the introduction. Thus we will be forced to revert back to the compact
space Σ̂ related to Σ through a conformal embedding. We will then see that the redundant gauge
transformations are the ones that equal the identity on the conformal boundary ∂Σ̂, though un-
derstanding the behavior of the electric field on ∂Σ̂ is a bit tricky. Subsequently we generalize
this result by explaining the notion of an infinitesimal localizable symmetry, which in the math-
ematical literature are the symmetries that yield Noether’s second theorem and the resulting
constraints, and are therefore redundant. Only global gauge symmetries are not localizable, so
these should be viewed as carrying a different empirical status than local gauge symmetries.
They are symmetries that do not lead to constraints, similar to e.g. rotational symmetry for a
point particle moving in Euclidean space.26

24Besides the Π0 = 0 constraint that tells us that the time-component A0 of the gauge field is a Lagrange multiplier,
but which is excluded in our analysis because we are working in temporal gauge A0 = 0 from the beginning.

25A symplectic form is required to be non-degenerate only on the full phase space and not on the constraint surface.
26The Lagrangian for such a particle is L(q, v) = 1

2
gq(v, v) − V(q), where gq : TqR3 × TqR3 → R is a metric.

The symmetries of the system are the isometries that leave the potential V invariant. If the potential is rotationally
symmetric, then rotations are symmetries. But the Legendre transform L : TR3 → T∗R3 is given by vq → gq(v, ·),
which is clearly a diffeomorphism. This means that there are no constraints.
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4.1 The momentum map for the gauge group

Let QA∞ ⊂ Ω1(Σ,Ad(P)) denote the space of connections on P → Σ satisfying the boundary
conditions we arrived at in the previous Section, i.e. approaching a fixed flat27 connection A∞
invariant under Ad(G) at infinity at the right rate. Let us, for simplicity, assume P has now
been trivialized, i.e. that we work in a specific gauge. Then Ad(P) = P ×Ad g ∼= Σ × g, so
that QA∞ ⊂ Ω1(Σ, g). To study the momentum map for Yang-Mills theory, we need to know
what the phase space looks like. In Section 2 we already found the domain of the Lagrangian,
namely the tangent bundle to configuration space TQ ∼= QA∞×Q∞ (the subscript forQ∞ serves
to remind us that these 1-forms vanish asymptotically). The phase space is a dense subspace28

P := QA∞ × Ω2∞(Σ, g) ⊂ T∗QA∞ of the cotangent bundle [46]. It consists of pairs (A,E) with
A ∈ QA∞ and E ∈ Ω2∞(Σ, g) ⊂ T∗AQA∞ . Here Ω2∞(Σ, g) denotes the space of 2-forms that
approach zero asymptotically at the appropriate rate to be square-integrable. These 2-forms
can indeed be viewed as elements of the cotangent space T∗AQA∞ , which consists of covectors
TAQA∞ → R, through their action on an element αA ∈ TAQA∞ ∼= Q∞ ⊂ Ω1(Σ, g) by means of
the conjugate pairing [56]

E(αA) = ⟨αA, E⟩ =
∫
Σ

Tr (αA ∧ E) . (2)

The constraint for Yang-Mills theory is the Gauss law [64]

DAE := dE+ [A∧ E] = 0 .

The action of the boundary-preserving gauge group GI lifts to phase space in the obvious way:

∀g ∈ GI : g · (A,E) = (g−1Ag+ g−1dg, g−1Eg) .

The Lie algebra Lie(GI) is isomorphic toC∞
I (Σ, g), i.e. the space of smooth gauge transformation

parameters that leave the boundary conditions invariant by becoming constant towards infinity
at the right rate (we recall that this rate is determined by the conformal factor from the previous
Section). We equip P ⊂ T∗QA∞ with the canonical symplectic form ω =

∫
Σ

Tr dA ∧ dE, where
the d symbol is used to stress that this is the derivative operator on the infinite-dimensional
phase space of fields and not the d on 3-space Σ. Henceforth we will occasionally use double-
slashed symbols to stress that these objects are defined on infinite-dimensional phase space P .

We should like to check that, with this symplectic form, the Gauss law constraint generates
gauge transformations, i.e. check for which gauge parameters ξ ∈ Lie(GI) the momentum map
equals the Gauss law. Let us recall the definition of the momentum map [47].

Definition 4.1. Let (P,ω) be a symplectic manifold and H a Lie group that acts on P by sym-
plectomorphisms.29 Let h denote the Lie algebra of H with dual h∗, and write ⟨·, ·⟩ : h∗ × h → R
for the pairing of the algebra and its dual. Then a momentum map for the H-action on P is an
equivariant30 map µ : P → h∗ such that, for all ξ ∈ h, we have:

d⟨µ, ξ⟩ = ιXξ
ω = ω(Xξ, ·) .

27Though, as we have seen, on Σ̂ this flatness need not be explicitly demanded!
28The full cotangent bundle would include distribution-like functionals that are not smooth and which we want

to exclude. One could of course also consider restricting QA∞ further and allow for the full cotangent bundle T∗Q.
For instance, one could considering taking Q to consist of only Schwarz functions, so that T∗Q consists of tempered
distributions. The power of our argument in this article is that such alterations would not change the main result that
the asymptotic symmetry group is the global gauge group.

29I.e. the action of H preserves the symplectic formω.
30With respect to the H-action on P and the coadjoint action on h∗.
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Here, Xξ denotes the fundamental vector field31 generated by ξ, and ⟨µ, ξ⟩ is understood as a
function ⟨µ, ξ⟩ : P → R, defined as follows: ⟨µ, ξ⟩(x) = ⟨µ(x), ξ⟩.

The idea behind this definition is that the fundamental vector field Xξ infinitesimally gener-
ates the H-action with parameter ξ, while the values ⟨µ, ξ⟩ of the momentum map for specific ξ
provide constants of motion. The required relation d⟨µ, ξ⟩ = ω(Xξ, ·) can then be viewed in the
light of Noether’s theorem: it relates the conservation of the constants of motion to the symme-
try of the theory.32 For gauge symmetries it is a version of the generation of gauge symmetries
by taking Poisson brackets of fields with the smeared Gauss law.

We will now check that the Gauss law constraint is indeed the momentum map for the
gauge group. We find that, by partial integration, the smeared Gauss constraint splits into a
“bulk” term corresponding to the infinitesimally generated gauge symmetries and a boundary
term (the electric flux). The boundary term must vanish, leading to a condition on the gauge
transformation parameters. We will present our derivation on the Cauchy surface Σ ∼= R3, in-
terpreting ∂Σ as an asymptotic boundary, but the exact same derivation would work on the
compact space Σ̂ with actual boundary ∂Σ̂, as long as one takes care of the appropriate confor-
mal factors that appear in the integrals. We will comment more on the conformal behavior of
the electric field and the electric flux in Section 4.2.

The momentum map µ : P → Ω3
I (Σ, g) ⊂ Lie(GI)∗, where the I denotes appropriate asymp-

totic fall-off behavior, for the action of the gauge group GI on P ⊂ T∗QA∞ is supposed to be
the Gauss law33 constraint µ(A,E) = DAE [48,64]. Here we identify η ∈ Ω3

I (Σ, g) as an element
in the dual C∞

I (Σ, g)∗, through the pairing ⟨η, ξ⟩ =
∫
Σ

Tr (ξ∧ η), similar to the pairing defined
earlier. Thus, for any ξ ∈ C∞

I (Σ, g) (and using Stokes’ theorem/partial integration), we have:

⟨µ, ξ⟩(A,E) =
∫
Σ

Tr DAE∧ ξ =

∫
Σ

Tr (dE+ [A,E])∧ ξ =

∫
Σ

Tr (dE∧ ξ− [E,A]∧ ξ)

= −

∫
Σ

Tr E∧ dξ+

∫
∂Σ

Tr E∧ ξ−

∫
Σ

Tr E∧ [A, ξ] = −

∫
Σ

Tr E∧DAξ+

∫
∂Σ

Tr E∧ ξ ,

(3)

where we have used the ad-invariance of the trace, i.e. Tr ([E,A]∧ ξ) = Tr (E∧ [A, ξ]). Note that
for consistency we have used the ∧ symbol even on ξ ∈ C∞

I (Σ, g), even though it is a 0-form.
But, if µ(A,E) = DAE really is to define the momentum map for the action of GI, then by

definition it must satisfy the property

d⟨µ, ξ⟩ = ιXξ
ω := ω(Xξ, ·), ξ ∈ C∞

I (Σ, g), (4)

where Xξ ∈ X(P) denotes the fundamental vector field on P generated by the Lie algebra
element ξ. We will now check what assumption on the asymptotic behavior of the gauge trans-
formation parameter is required for the above condition to hold.

To this end we first calculate the right- and left-hand sides of Eq. (4) separately and then
compare them. We begin with the right-hand side, i.e. ω(Xξ, ·). By definition, for any function
F ∈ C∞(P), we have:

Xξ(F)(A,E) =
d

dt

∣∣∣∣
t=0

F
(
etξ · (A,E)

)
=
d

dt

∣∣∣∣
t=0

F
(
e−tξAetξ + e−tξd(etξ), e−tξEetξ

)
.

31In this definition we use the double-slashed notation because this agrees with our subsequent calculations, but of
course this definition of the momentum map is also valid for finite-dimensional symplectic manifolds.

32For technical details see [46–48], for a conceptual exposition see [65].
33If we consider Maxwell theory, then the momentum map µ applied to an element ξ ∈ C∞

I (Σ, g) is just the familiar
Gauss law ∇ · E smeared with ξ. This can be seen by switching to the physicists’ convention ξ = iλ and writing
DAE = ∇ · E, yielding i

∫
Σ
d3x λ(x)∇ · E(x).
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For the functions F = A and E, this simply gives:

Xξ(A) =
d

dt

∣∣∣∣
t=0

(
e−tξAetξ + e−tξd(etξ)

)
= −ξA+Aξ+ dξ = [A, ξ] + dξ = DAξ ,

Xξ(E) =
d

dt

∣∣∣∣
t=0

(
e−tξEetξ

)
= −ξE+ Eξ = [E, ξ] .

Thus if we put Xξ in the first slot of the symplectic form ω =
∫
Σ

Tr dA∧ dE, i.e. the right-hand
side of Eq. (4), we get:

ω(A,E)(Xξ, ·) =
∫
Σ

Tr (dA(Xξ)∧ dE− dE(Xξ)∧ dA) =
∫
Σ

Tr (Xξ(A)∧ dE− Xξ(E)∧ dA)

=

∫
Σ

Tr (([A, ξ] + dξ)∧ dE− [E, ξ]∧ dA) =
∫
Σ

Tr (DAξ∧ dE− [E, ξ]∧ dA) .
(5)

The left hand-side of Eq. (4) gives:

d⟨µ, ξ⟩ = d
∫
Σ

Tr DAE∧ ξ =

∫
Σ

Tr (d(DAE)∧ ξ−DAE∧ dξ) .

However, we cannot immediately see how this agrees with the expression in Eq. (5), because
Eq. (5) contains a term linear in DAξ, while the above result has a term that is linear in ξ. Thus
we need to do the partial integration in Eq. (3), which gives:

d⟨µ, ξ⟩ = −

∫
Σ

Tr (dE∧DAξ− E∧ d(DAξ)) + d
∫
∂Σ

Tr E∧ ξ . (6)

The second term in the first integral can be rewritten as:

E∧ d(DAξ) = E∧ d(dξ+ [A, ξ]) = E∧ d[A, ξ] = E∧ [dA, ξ] = E∧ dAξ− E∧ ξdA

= −Eξ∧ dA+ ξE∧ dA− ξE∧ dA+ E∧ dAξ = −[E, ξ]∧ dA+ [E∧ dA, ξ] .

Thus, the first integral in Eq. (6) equals:∫
Σ

Tr (DAξ∧ dE+ E∧ d(DAξ)) =

∫
Σ

Tr (DAξ∧ dE− [E, ξ]∧ dA+ [E∧ dA, ξ]) .

But the trace of the full commutator term gives zero,34 so we obtain precisely the final expression
in Eq. (5)! This implies that from requiring that the Gauss constraint µ(A,E) = DAE is the
momentum map for the action of the gauge group, it follows that the boundary term in Eq. (6)
must be zero. Since that boundary term is an integral of E ∧ ξ, the condition that needs to be
imposed on ξ to ensure that this term vanishes depends on the asymptotic fall-off behavior of
E. Heuristically speaking, if we take E→ 0+O(r−2), then ξ just needs to go to zero without any
particular fall-off rate (since the integral is over a 2-sphere with radius sent to infinity, which
grows as r2). If instead we demand E→ 0+O(r−3/2−ϵ), then we must have ξ→ 0+O(r−1/2)
to guarantee that there is no boundary term. However, if we require only slightly stronger
asymptotic fall-off conditions on the electric field, e.g. E→ 0+O(r−2−ϵ), then apparently there
no longer is any need for asymptotic requirements on ξ. Thus this approach does not provide a
completely unambiguous and satisfactory answer to the question of precisely what asymptotic
behavior of gauge transformations is required to be able to call them redundant. Moreover,
even if we do conclude that we must have e.g. ξ → 0 + O(r−1/2), it is not yet clear that the
quotient GI/G∞

0 will be precisely the group of global gauge transformations, even though this
global group can be pristinely deduced from other approaches, as was explained in Section 1.
We will definitively resolve this issue in Section 4.3.

34Or, since the trace is ad-invariant, we could also immediately have rewritten Tr E ∧ [dA, ξ] = −Tr [E, ξ] ∧ dA.
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4.2 Electric flux through infinity

Before we do this, however, let us reconsider the case in which we require asymptotic fall-off
behavior of order O(r−2) on both the gauge and electric fields. As we saw in Section 3.2, this
specific behavior can be formalized by means of a conformal compactification of Minkowski
spacetime with conformal factor K ∼ r−2. But how does the electric field E transform under
this conformal compactification? At the beginning of this Section, we defined electric fields
in the Hamiltonian picture as 2-forms in Ω2∞(Σ, g) ⊂ T∗QA∞ which act on tangent vectors
αA ∈ TAQA∞ through the canonical pairing in Eq. (2). Since 2-forms are not defined with
reference to the metric, electric fields E do not transform with any conformal factor under the
conformal embedding Σ → Σ̂ [2]. Thus it seems that, similar to the “electric fields” αA, the
asymptotic fall-off requirement E → 0 + O(r−2) simply translates to the requirement that Ê
vanishes on ∂Σ̂. But this raises a paradox: the integral

∫
Σ

Tr (DAE) equals the electric flux,
which can be nonzero since by Gauss’s theorem this integral is just a limit of an integral over
a sphere of radius r with r → ∞. This integral grows with r2, canceling the fall-off behavior
O(r−2). On the other hand, if Ê is zero on ∂Σ̂, then the flux∫

Σ̂

Tr
(
DÂÊ

)
=

∫
∂Σ̂

Tr
(
Ê
)

vanishes. But the two calculations of the electric flux are supposed to agree.
The problem with this line of thinking lies in the precise definition of fall-off behavior for

forms. The notation O(r−2) only makes sense for functions, which can be obtained from forms
by feeding them vector fields. But if E is a 2-form, then it needs to be fed two vector fields
to produce a function, so in coordinates it has two indices. This does not coincide with our
intuition of the electric field as a vector field E with three components Ei, each of which must
fall off asymptotically with order at least r−3/2−ϵ to ensure that ∥E∥2 is integrable. Instead,
it is more sensible to use the hodge star involution to write E = ∗E , where E ∈ Ω1(Σ, g) is a
1-form, and to require Ei → 0 + O(r−2). The Gauss law then becomes DA ∗ E = 0 [2]. The
1-form E exhibits the exact same conformal behavior as αA, meaning that Ê must vanish on ∂Σ̂
to ensure the square-integrability of its pullback to Σ. The 2-form E = ∗E , however, is defined
through the hodge star in terms of the metric, and therefore it does pick up35 a conformal factor:
Ê = K−1E [2]. This ensures that Ê can be any smooth function on Σ̂ (not necessarily vanishing
on the boundary), so that there can indeed be a nonzero electric flux through infinity.

With this complication clarified, there is a useful conclusion to be drawn from the derivation
in Section 4.1. By partial integration the momentum map naturally falls into two parts, i.e. two
integrals, viz.

∫
Σ

Tr E ∧ DAξ and the boundary term
∫
∂Σ

Tr E ∧ ξ. The first corresponds pre-
cisely to the symmetries that are infinitesimally generated by the fundamental vector fields Xξ,
whereas the second does not [66] - it equals the smeared electric flux through infinity [9]. Sym-
metries generated by the fundamental vector fields Xξ therefore satisfy the requirement that ξ
vanishes asymptotically, i.e. that ξ̂|∂Σ̂ = 0. This means that only gauge transformations van-
ishing at infinity, i.e. local transformations, are associated to the Gauss law constraint through
Noether’s second theorem [48, Proposition 7.2.6]. Global gauge transformations, which do act
non-trivially at infinity, are not included and only appear in Noether’s first theorem [67].

35To see this, consider the simpler example of the function 1 which is identically 1 on Σ. This function does not pick
up any conformal factor. But dVol = ∗1 does, since in coordinates it is the square root of the determinant of the metric.
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4.3 Infinitesimal localizable symmetries

In the conformal picture, the boundary-preserving gauge transformations are constant on ∂Σ̂
and the unphysical transformations vanish on ∂Σ̂. The physical gauge group therefore equals a
copy of G on the boundary, viewed as the global gauge group of constant transformations. But
a weakness of this conclusion is that it seems to depend on the choice of asymptotic boundary
conditions for the fields. If we really want the weakest possible conditions that still ensure a
finite Lagrangian, i.e. fall-off with order O(r−3/2−ϵ) on αA (and therefore A itself) and on E =
∗E, then the conformal analysis is inapplicable because the conformal factor K ∼ r−2 suppresses
the radial components of the 1-forms too strongly. This issue can be remedied, however, by
noting that gauge parameters ξ which preserve O(r−3/2−ϵ) fall-off, i.e. which are such that
∂iξ → 0 + O(r−3/2−ϵ), must satisfy ξ → const + O(r−1/2−ϵ) (although the converse does not
hold, think e.g. of sin(r)/r). Indeed, taking ξ to be real-valued for simplicity (but with obvious
generalization to cases other than G = U(1)), by the fundamental theorem of calculus:∣∣∣ lim

s→∞ ξ(s, θ, ϕ) − ξ(r, θ, ϕ)
∣∣∣ = ∣∣∣∣∫∞

r

∂sξ(s, θ, ϕ)ds

∣∣∣∣ ≤ ∫∞
r

Cs−3/2−ϵds ≤ 2Cr−1/2−ϵ.

From this it follows that lims→∞ ξ(s, θ, ϕ) =: cθ,ϕ exists and that |ξ(r, θ, ϕ)−cθ,ϕ| = O(r−1/2−ϵ).
A priori it could be the case that the constant cθ,ϕ is different in each angular direction, but it is
straightforward to show that this cannot be so. At fixed rwe can connect any two points x, y by
a curve γ of length at most πr. This factor of r is cancelled by the 1/r that appears in the angular
components of the gradient ∇ξ expressed in spherical coordinates. Integrating over γ we find
that |ξ(x) − ξ(y)| ≤ πC̃r−1/2−ϵ. This shows that cθ,ϕ = cθ ′,ϕ ′ . Thus we find that any gauge
parameter ξwhose derivative dξ is square-integrable satisfies ξ→ const+O(r−1/2−ϵ). But the
unphysical gauge transformations generated by the Gauss constraint are precisely the subset of
these gauge parameters for which the constant at infinity equals zero. Thus the quotient of these
two algebras of gauge transformations is just g = Lie(G), which when exponentiated gives the
global gauge group.

If, on the other hand, we choose stronger conditions, e.g. E → 0 + O(r−3) or that E is a
Schwarz function, then the boundary term in Eq. (3) automatically vanishes, regardless of the
asymptotic behavior of the gauge parameter ξ, obviating the need for the condition ξ|∂Σ̂ = 0.
The goal of the remainder of this Section is to explain why global gauge symmetries nonetheless
never play a role in Noether’s second theorem, i.e. why they do not give rise to constraints,
and should therefore not be considered to be redundant even if the boundary term in Eq. (3)
vanishes due to stricter boundary conditions.

In the mathematical physics literature the symmetries that give rise to constraints through
Noether’s second theorem are the so-called infinitesimal localizable symmetries. These form an
ideal (under the Lie bracket) G ⊂ Lie(GI) of the Lie algebra of the full boundary-preserving
symmetry group, and the constraint surface is the zero locus of the momentum map for the
infinitesimal localizable symmetries (see Section 7.5 of [48] or [3, 9]), i.e.

C = µ−1
G (0).

For this reason the infinitesimal localizable symmetries should be identified as the redundant,
“trivial” ones. When exponentiated, they generate the minimal symmetry group that must be
called gauge in the sense of “unphysical” in order to guarantee an appropriate form of deter-
minism. These infinitesimal localizable symmetries are introduced in Definition 7.2.5 of [48],
but we will not reproduce that definition here, since it is based on the formalism of jet bundles.
However, when adapted to our case at hand, it reads as follows [3]:
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Definition 4.2. An infinitesimal symmetry ξ ∈ Lie(GI) = C∞
I (Σ, g) is called localizable if it

vanishes on the (asymptotic) boundary of Σ and if for any pair of open sets U,V ⊂ Σ with
disjoint closures, there exists a ξ ′ ∈ Lie(GI) such that

ξ(x) = ξ ′(x), x ∈ U;
ξ ′(x) = 0, x ∈ V.

In other words: an infinitesimal symmetry is localizable if it is zero at asymptotic infinity
and for any two disjoint open regions we can always find another infinitesimal symmetry that
is equal to the original one on the one region, but zero on the other. That is: we can always
localize the infinitesimal symmetry to some open region of space.

Clearly, global gauge transformations are not localizable since they do not vanish at asymp-
totic infinity, or more precisely, at the boundary ∂Σ̂ of the compactified space Σ̂ from Section
3. The question, then, is whether all other infinitesimal symmetries in Lie(GI) are localizable. If
this is so, then the quotient GI

0/G∞
0 equals precisely the global gauge group G, where GI

0 is the
identity component of GI and G∞

0 denotes the group generated by all eξ with ξ ∈ G.
Let us therefore check that all gauge symmetries except the global ones are localizable. This

is done most easily by working on Σ̂. There Lie(GI) consists of all maps ξ̂ : Σ̂ → g that are
constant on ∂Σ̂. We note that Lie(GI)/g, with g viewed as the constant maps in C∞

I (Σ, g), is
isomorphic to the algebra G∞ of all maps ξ̂ : Σ̂ → g that vanish on ∂Σ̂. We need to show that
G∞ = G, i.e. that the algebra of infinitesimal localizable symmetry consists precisely of the
gauge parameters that vanish on ∂Σ̂.

There are two situations to consider: if U,V are the open subsets from the above definition,
such that ξ̂ ∈ Lie(GI) must be localized on U relative to V , then either U could lie in the interior
of Σ̂ or contain (part of) the boundary ∂Σ̂. In the first case it is obvious that ξ̂ can be localized:
we just use a g-valued bump function f̂ that is the identity on U and becomes zero very quickly
outside of U, in particular on V . It is then clear that f̂ · ξ̂ will be the required element of Lie(GI)
that agrees with ξ̂ on U and is zero on V . In the case in which U contains part of the boundary
it is not immediately clear whether f̂ · ξ̂ ∈ Lie(GI). But since ξ̂ is zero on ∂Σ̂, so is the product
f̂ · ξ̂. This means f̂ · ξ̂ ∈ G∞ ⊂ Lie(GI). We conclude that the algebra of infinitesimal localizable
symmetries G is indeed G∞. Thus we find that, in Yang-Mills theory, localizability effectively
reduces to just the condition of vanishing at infinity.36 Of course, this is not a surprising result,
since gauge symmetries are meant to be localizable. But we clearly see that if a field theory
contains only global (rigid) symmetries, then no infinitesimal transformation is ever localizable,
in which case G would be zero and there would be no constraints.

We finally arrive at the result we were aiming to derive all along. The subalgebra G∞ gen-
erates (through the exponential map) the subgroup G∞

0 ⊂ GI of gauge transformations that be-
come the identity at asymptotic infinity at the appropriate rate (which equals the rate at which
elements of GI approach a constant) and lie in the identity component of GI (i.e. can be obtained
by exponentiating Lie algebra elements). The quotient of physical gauge transformations

GDES = GI/G∞
0

then looks like a copy of the global gauge group G, corresponding to all possible constants at
infinity, for every homotopy class of gauge transformations, i.e. for every connected component
of the gauge group GI. In three dimensions these homotopy classes are determined by the
fundamental group π3(G), since gauge transformations on Σ that are constant at asymptotic

36Note that this result is quite independent of the precise form of Q and GI. No matter what asymptotic conditions
on the fields are required, we always find that the redundant gauge transformations are all elements of GI which vanish
at infinity.
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infinity can be viewed as maps S3 → G, where asymptotic infinity corresponds to one point on
S3, e.g. the North pole. For G = U(1) this homotopy group is trivial,37 but for G = SU(2) we
have π3(SU(2)) ∼= π3(S

3) ∼= Z.

5 Adding the Higgs field

Over the past two decades there has been a substantial conceptual debate about the Higgs mech-
anism [27, 68–72]. Much of this debate centers around the physical status of gauge symmetries
in relation to gauge symmetry breaking. As has been pointed out in [27,30,44,73], a key point is
that the unbroken and broken phases of the Higgs model exhibit differing asymptotic boundary
conditions. However, the derivation of this point has not been performed rigorously. We can
now do this in the framework developed in the previous Sections.

To include a Higgs field, we must enlarge the configuration space QA∞ of Yang-Mills fields
to QA∞ × Q̃, where Q̃ is the space of Higgs fields, which are sections of an associated vector
bundle P ×ρ V → Σ through a representation ρ : G → GL(V), where V is the Higgs vector
space.38 If we equip V with an inner product ⟨·, ·⟩, then we can define a norm on the sections in
Γ(P ×ρ V) in a similar way as for the gauge fields: by integrating the absolute value of such a
section over Σ.

The tangent space TφQ̃ at a point φ ∈ Γ(P ×ρ V) is itself just isomorphic to Q̃. However, we
need to restrict both Q̃ and TQ̃with appropriate asymptotic boundary conditions. These follow
from the Yang-Mills-Higgs Lagrangian,39 which is given by

LYMH(A,αA, φ,ψφ) =
1

2
∥αA∥2 −

1

2
∥F(A)∥2 + 1

2
∥ψφ∥2 −

1

2
∥DAφ∥2 −

∫
Σ

V(φ)dVol,

forA ∈ Q,αA ∈ TAQ,φ ∈ Q̃, ψφ ∈ TφQ̃. Here V(φ) is the well-known Higgs potential,DAφ is
the covariant derivative of the Higgs field and ψφ ∈ TφQ̃ is thought of as the velocity ofφ ∈ Q̃.

In order to guarantee finiteness of action and energy, we require that each individual term
in the above Lagrangian is finite. We already know that this requires αA → 0 and F(A) → 0,
but now we also need ψφ → 0 and DAφ → 0, as well as a condition related to V(φ). This last
condition is ambiguous. If the Higgs potential has the familiar shape

V(φ) = −µ ∥φ∥2 + λ ∥φ∥4 ,

then clearly the zero-point of V(φ) lies at φ = 0 if µ > 0 (besides some other manifold of
roots at which φ ̸= 0). Thus, we expect the boundary condition φ → 0. However, we may
instead want to think of the minimum of V(φ) as the true vacuum, therefore requiring φ→ min
instead. These two possibilities respectively correspond to the so-called unbroken and broken
phases of the Higgs model. Let us now study what the group GI of boundary-preserving gauge
symmetries looks like in both cases.40

The unbroken phase. In the unbroken phase, we assume that φ = 0 is the vacuum for the
Higgs field, i.e. that this state carries zero energy. We can either think of this state as lying
in the symmetric middle of the “Mexican hat potential,” or as the potential itself being such
that it only has a minimum at φ = 0, e.g. by taking µ < 0. Since φ = 0 corresponds to zero

37In one dimension we do have interesting topology for electromagnetism since π1(S1) ∼= Z.
38It is C for G = U(1), and C2 for both G = SU(2) and G = U(1)× SU(2) [55].
39For the well-posedness of the Yang-Mills-Higgs initial value problem see [74].
40We note that our ideas agree with [30], but fill in the missing argument, namely the Lagrangian must be defined

on the tangent bundle to configuration space. Without this added argument one cannot deduce that the physical gauge
group is different in the two cases.
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energy, we require the asymptotic boundary condition φ → 0, besides the common boundary
conditions ψφ → 0 and DAφ → 0 which are always needed. Note that this indeed gives the
configuration space at infinity the right structure: the space of Higgs fields at infinity is zero-
dimensional, since it consists only of φ = 0. The tangent space at infinity then also consists
only of zero, which is what we want since we require ψφ → 0. Now, the conditions ψφ → 0
and DAφ → 0 are always preserved by any gauge transformation g : Σ → G. This is obvious
for the condition DAφ→ 0, since the covariant derivative transforms covariantly via the linear
Higgs representation ρ : G→ GL(V). Similarly the conditionψφ → 0 is preserved sinceψφ also
transforms covariantly.41 This means that the conditions ψφ → 0 and DAφ → 0 are automat-
ically preserved, as 0 is mapped linearly to 0. The same goes for the condition φ → 0, since φ
evidently transforms linearly under ρ(g) with g ∈ GI. For pure Yang-Mills theory the group GI

consists of transformations that become constant asymptotically, and since the unbroken Higgs
field boundary conditions do not impose any extra requirements on gauge transformations we
find the same boundary-preserving gauge group for Yang-Mills-Higgs theory.

The broken phase. In the broken phase things are different. The asymptotic conditions are
now ψφ → 0,DAφ → 0 and φ → min. That is, the Higgs field must become a covariantly
constant minimum of the potential V(φ), and its velocity must become zero. At first sight, this
seems to still allow GI to contain all asymptotically constant transformations. After all, a gauge
transformation maps a minimum of V(φ) to another minimum. However, this is wrong, for
the same reason as for pure Yang-Mills theory. Allowing for gauge transformations which act
at infinity gives rise to a nontrivial configuration space Q̃∞ at infinity. After all, if we let φ∞
denote some covariantly constant minimum at infinity, then Q̃∞ will consist at least of an orbit
of φ∞ under the action of GI at infinity, i.e. of the constant gauge transformations at infinity.
But this means that the tangent space Tφ∞Q̃∞ is far from being 0-dimensional. In fact, it has
the dimension of G, since it is the tangent space to an orbit of the action of the constant gauge
transformations, which orbit is isomorphic to g. But we cannot allow Tφ∞Q̃∞ to contain nonzero
vectors, since we required that the tangent vectors ψφ ∈ TφQ̃ vanish at infinity! Like for pure
Yang-Mills theory, the requirement that the Lagrangian be defined on the tangent bundle to
configuration space forces us to put boundary conditions on the Higgs field itself, even though
only the tangent vectors and curvatures appear in the Lagrangian.

Thus we are forced to require a stricter asymptotic boundary condition on the Higgs field:
we need that φ → φ∞, where φ∞ now denotes some fixed, covariantly constant minimum at
infinity. This ensures that the configuration space at infinity is zero-dimensional, consisting
only of φ∞. The tangent bundle at infinity is therefore also zero-dimensional, consisting only
of ψφ∞ = 0, as required for finiteness of energy. But clearly this stricter asymptotic boundary
condition breaks gauge invariance, in the sense that it is not preserved by gauge transformations
which act non-trivially at infinity. Only gauge transformations that are the identity at infinity
preserve φ∞ ̸= 0, so we find that the groups of boundary-preserving and redundant gauge
symmetries are equal up to connected components, i.e. GI = G∞, where G∞ denotes the group
of gauge transformations that are constant at infinity (but only its identity component G∞

0 is
generated by the Gauss law constraint).

In this way we conclude that the physical gauge group GI/G∞
0 equals (several copies of) the

global gauge group in the unbroken phase and is discrete (trivial in the Abelian case) in the
broken phase. This conclusion results from the difference of what we call the “vacuum” in the
two cases: either φ = 0 or a minimum of the potential V(φ). Gauge symmetry breaking in the
Higgs mechanism must therefore be understood as an alteration in the vacuum itself, leading
to different asymptotic boundary conditions that ensure what it means to have finite energy.

41To see this, recall that, in covariant notation, we have Dµφ → ρ(g) · Dµφ, so in particular D0φ → ρ(g) · D0φ. In
the 3+1 formalism we work in the temporal gauge A0 = 0 and replace D0φ = ∂0φ − eA0φ = ∂0φ by ψφ.
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6 Conclusion

In this paper we have given a rigorous derivation of the identification of (several copies of) the
group of global gauge symmetries with the quotient of asymptotic symmetries

GDES = GI/G∞
0

in Yang-Mills theory on a three-dimensional Euclidean Cauchy surface. Here GI denotes the
group of allowed or boundary-preserving transformations and G∞

0 the group of transforma-
tions that are trivial in the sense that they yield the Gauss law constraint through Noether’s
second theorem, and must therefore be viewed as redundant. Global gauge symmetries thus
correspond to the asymptotic symmetry group with DES. There were two main points to this
derivation, corresponding to obtaining GI and G∞

0 respectively.
Firstly, we found that instantaneous spatial asymptotic boundary conditions on Yang-Mills

fields that ensure finiteness of energy only directly lead to requirements on tangent vectors
αA ∈ TAQ and on the curvatures F(A) of the connections A ∈ Q. However, as we want the
domain of the Lagrangian to be the tangent bundle TQ to the configuration space Q of Yang-
Mills fields, we need to also impose some asymptotic fall-off behavior on the gauge fieldsA ∈ Q
themselves. We have shown that it is not enough to require that gauge fields become flat at
infinity, since this would still allow for non-zero tangent vectors αA at infinity, which would
spoil the finiteness of energy and action. Intuitively, this means gauge transformations acting at
infinity create infinite energy, even if the energy depends only on gauge-invariant quantities. To
counter this, we need to require that A approaches a fixed flat connection at infinity. In the non-
Abelian case we must also choose fixed flat connection to be invariant under the adjoint action
of the structure group G. The gauge transformations that leave this fixed connection at infinity
invariant are then precisely the elements of G that are constant at infinity. Properly interpreted,
this means that we consider the equivalent problem on a conformal compactification Σ̂ of Σ,
and require that gauge transformations be constant on ∂Σ̂. This yields the group of boundary-
preserving gauge symmetries GI.

Secondly, we explained that redundant gauge transformations in the Hamiltonian formu-
lation of Yang-Mills theory must be understood as the infinitesimal localizable symmetries G.
These give rise to the Gauss law constraint and must therefore be interpreted as unphysical if
(an appropriate form of) determinism is to survive. All infinitesimal symmetries in Lie(GI) are
localizable, except for the global ones. Thus G∞

0 indeed consists precisely of all gauge transfor-
mations that are the identity at infinity and lie in the identity component of GI. Again, properly
interpreted this means we move to Σ̂ from Σ and require elements of G to be zero on ∂Σ̂, so that
elements of G∞

0 are the identity on ∂Σ̂. The quotient GDES then consists of a copy of the global
gauge group G for every homotopy class in π3(G).

Subsequently, we applied these ideas to Yang-Mills-Higgs theory, where we derived that GI

equals the group of asymptotically constant gauge transformations only in the unbroken phase.
In the broken phase one can only permit asymptotically trivial transformations, for otherwise
the action of the gauge group at infinity would create non-zero velocities of the Higgs field,
carrying infinite energy.

In a subsequent article [75] we consider the implications of this last result for our interpre-
tation of gauge symmetry breaking. There we argue that the Higgs mechanism must be under-
stood as an instance of global gauge symmetry breaking, as has been proposed in the Abelian
case for quantum electrodynamics [1,27,76–78]. In future research it would also be of interest to
extend our results to spacetimes with a nonzero cosmological constant and to better understand
the relation of our work to asymptotic symmetries of Yang-Mills fields on the full boundary of
spacetime (e.g. in celestial holography) [10], as well as to edge modes [8, 79, 80] and (quantum)
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reference frames [81–83], and boundaries which are not asymptotic [4–7,9]. Additionally, it may
be conceptually cleaner to reformulate our derivation in the language of jet bundles. Finally, the
implications for quantum field theory should be investigated [84].
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