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Abstract: Scientific models often contain assumptions known not to be true. Despite being false 

representations, models provide us with a key understanding of phenomena. What is more, the 

falsehoods that figure in models are in many cases central to them, and there is no available 

alternative to their use. If falsehoods play such an irreplaceable role in our understanding of 

phenomena, it would seem that truth is not a key concern of scientific modeling. In this paper, 

I assess the prospects and challenges of reconciling truth and understanding in scientific 

modeling. More specifically, I review a thesis recently emerging in the literature, what I shall 

call the Derivation Thesis (DT), according to which we use models to derive true information. 

First, I examine different versions of the thesis and develop what I take to be its most promising 

formulation (what I call the generalized DT). Second, I discuss a serious challenge to the 

generalized DT. I consider a thought experiment in which an unreliable astrological model 

gives true explanations by fluke. This scenario challenges the idea that models can provide 

genuine understanding by generating truths. In response, I argue that genuine scientific models 

also fulfill a specific normative role that epistemically lucky models lack (what I call the 

normative generalized DT). I test this hypothesis by analysing how the Ideal Gas Law advances 

scientific understanding of real gases.  
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1 Introduction 

 

A classic view has it that science aims at a true account of phenomena. Many accept that truth, 

spelled out e.g. as ‘truth-likeness’, ‘approximate truth’, ‘verisimilitude’, or ‘empirical 

adequacy’, is what science ultimately seeks to investigate.1 While truth is a traditional aim of 

science, both epistemologists and philosophers of science have recently emphasized the 

centrality of understanding in science (see e.g. Friedman, 1974; Schurz & Lambert, 1994; 

Kvanvig, 2003; de Regt, 2017; Elgin, 2017; Potochnik, 2017; Rice, 2021). For these authors, 

science aims at the specific cognitive achievement that goes by the name of ‘understanding’. 

We attempt to scientifically investigate nature not (or not only) to accumulate truths or increase 

the verisimilitude of our theories, but to understand complex phenomena. 

 

Reconciling the aims of truth and understanding in science has proved difficult. A crucial test 

of such reconciliation is presented by an integral part of contemporary science, i.e. scientific 

 
1 This is particularly the case for scientific realism (roughly characterized as the view that scientific representations 

of entities and processes must be—in a sense to be specified—true); see e.g. Psillos (1999). However, anti-realists 

do not necessarily reject (some notion of) truth as a component of science. Kuhn, for example, considers accuracy 

to be the “most nearly decisive” criterion in science; see Kuhn (1977, p. 357); van Fraassen’s constructive 

empiricism is not a complete departure from truth, since it requires that statements about observables be 

empirically adequate (see van Fraassen, 1980). Normative approaches to science, such as Longino’s, retain 

empirical accuracy as a scientific value (albeit a pluralistic or non-epistemic value); see respectively Longino 

(1991) and Longino (1995). 
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modeling. Scientific models used in physics, chemistry, biology, economics, geology, etc. 

often contain idealizations, or assumptions that are known not to be true (e.g. Cartwright, 1983; 

Godfrey-Smith, 2009; Rohwer and Rice, 2013; Weisberg, 2007a). As noted in the literature, 

despite being false representations, models provide us with a key understanding of the world 

(e.g. Rice, 2016, 2021; Elgin, 2017, Potochnik, 2017). What is more, the falsehoods that figure 

in models are in many cases essential to them, and there is no (in practice or in principle) 

available alternative to their use (e.g. Elgin, 2017; Potochnik, 2017; Rice, 2018). If falsehoods 

play such an irreplaceable role in our scientific understanding of phenomena, it would seem 

that truth is not a central concern of scientific modeling and, arguably, of science as a whole. 

 

In this paper, I evaluate the challenges and prospects of reconciling truth and understanding in 

scientific modeling. More specifically, I review and assess what I take to be a promising thesis 

that has emerged in the debate in recent years—what I call the Derivation Thesis (or DT). 

According to this thesis, we use models to derive true information. The latter (but not the 

former) represent the content of the understanding. To say that models provide understanding 

is to say that models enable (in ways that may be necessary or hardly replaceable) factive 

understanding, i.e. understanding containing true information. 

 

In its simplest form, DT requires the derivation of true information as the content of 

understanding. This version has been most clearly presented by Bokulich (2016) and Lawler 

(2021).2 As Bokulich puts it, a model is a “an adequate representation that can succeed in giving 

genuine physical insight into, and factive understanding of, a phenomenon of interest (Bokulich 

2016, p. 274). For Lawler (2021), “felicitous legitimate falsehoods facilitate understanding a 

phenomena by enabling us to extract information about it” (p. 6876). More specific versions 

of DT impose additional constraints on the type of information required for understanding. For 

example, Alexandrova 2008 argues that “models are used as suggestions for developing causal 

hypotheses that can then be tested by an experiment”; p. 396). Rice—one of the leading 

defenders of DT— writes that “the goal of system-specific modeling is to provide accurate 

information about the counterfactual relevance and irrelevance of various contextually salient 

features within the model’s target system” (2016, p. 88). In his 2018 paper, he suggests “that 

idealized modeling techniques that involve holistic distortion of real-world systems can 

provide true counterfactual information because many idealized model systems are known to 

approximate the patterns of behavior of real-world systems” (p. 2812). In 2021, he adds “the 

model is used to extract information about how the phenomenon counterfactually depends (or 

fails to depend) on various features of the system by investigating a merely possible system 

that shows how changing the actual features of the system result in changes in the phenomenon 

of interest” (p. 4108). In a similar vein, Pincock (2021) states that a model “(i) generates an 

explanatory generalization and (ii) each idealization in the derivation is partially true so that 

(iii) there is a wholly true derivation of that explanatory generalization that goes via these 

underlying truths” (p. 635). As I further show below, despite differences in their accounts, these 

authors agree that, while the idealized model is not itself part of the understanding, it is used to 

derive true information. DT—in its various forms—is an increasingly influential view in the 

literature. 

 

While I think that DT is a compelling thesis (especially for realist-leaning philosophers of 

science), I also believe that it is, in its simple and specific versions, insufficient to reconcile the 

tension between truth and understanding in scientific modeling. I will review this thesis in two 

 
2 Lawler (2021) calls her thesis ‘extraction view’. I use a different label, ‘Derivation Thesis’, to flag that this thesis 

has emerged in different forms elsewhere. Lawler deliberately leaves the type of true information to be derived 

unspecified. However, I argue below that this neutrality may be counterproductive. 
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steps. First, I develop a robust, generalized version of DT. While the simple DT is too 

permissive about the content of understanding, the specific versions are too narrow in their 

requirements. Drawing on contemporary accounts of understanding, I argue that the product of 

a model must be explanatorily connected true information about dependence relations. The 

discussion of what exactly should be derived from idealized models will clarify the 

requirements for understanding phenomena and offer a useful framework for further 

assessment.  

 

Second, I discuss a serious challenge to the generalized DT. Inspired by Bird (2007), I consider 

a thought experiment in which an unreliable astrological model gives true explanations by 

fluke. This scenario challenges the idea that models provide understanding merely by 

generating truths (of any kind). I contend that scientific models have a specific use that allows 

the derivation of genuine understanding—one that epistemically lucky models lack. Contra 

existing proposals, I argue that this use is best understood as normative in character. Scientific 

models should be used as norms for deriving explanations.  

 

On this reading, the word ‘model’ does not just stand for a “failure of exact correspondence” 

(Cartwright, 1983, p. 158), but also means ‘standard’ or ‘term of comparison’.3 I suggest that 

the normative function of scientific models lies in their systematic comparison with 

phenomena. That is, a modeler must establish an evaluative relation between the idealized 

model and target phenomena (usually captured by data-driven models). This comparison 

enables scientists to identify deviations and patterns that constitute the key information for 

deriving explanations. I test this hypothesis with respect to the multifarious ways in which the 

Ideal Gas Law, the Van der Waals Equation, and Maxwell’s Equal Area Rule advance scientific 

understanding of real gases. Overall, I argue for what I call the normative generalized DT: 

 

Normative generalized DT: a genuine scientific model (i) allows us to derive true 

explanatory information about dependence relations and (ii) does so by acting as (or 

being used as) a norm for the systematic comparison of phenomena. 

 

The structure of the paper is as follows. I begin by presenting the Derivation Thesis in its simple 

and specific versions as a promising approach to the reconciliation of truth and understanding 

(section 2.1). I then develop a generalized version of DT that is broad enough without being 

too permissive (section 2.2). In section 3, I challenge the generalized DT by questioning its 

sufficiency in providing genuine understanding of phenomena. In section 4, I first review 

various justification strategies for the information derived from models (4.1) and then develop 

my own normative take on models in relation to the central case study in the debate (the theory 

of gas; 4.2). In section 5, I explore the dynamic between the normativity of models and 

explanation. I conclude in section 6. 

 

2 Reconciling truth and understanding in scientific modeling: prospects and challenges 

 

2.1 The simple Derivation Thesis  

 

There have been several attempts to reconcile truth and understanding in science. Many require 

that for understanding a phenomenon scientifically, the propositions I hold about it satisfy some 

truth condition (see e.g. Grimm, 2006; Mizrahi, 2012; Lawler, 2021; Pincock, 2021). It seems 

 
3 See e.g. one of the definitions in the Oxford English Dictionary: “A thing eminently worthy of imitation; a perfect 

exemplar of some excellence. Also: a representative specimen of some quality.” On the history of the meaning of 

the word ‘model’ see Daston (2022). 
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intuitively the case that scientific understanding of a phenomenon contains true propositions 

about that phenomenon. For example, to properly understand human behavior, it seems 

necessary that the propositions I hold about it (drawn from neurology, psychology, sociology, 

etc.) are true. Conversely, if I find out that my understanding contains false propositions about 

a phenomenon, I should acknowledge that I have failed to understand that phenomenon. For 

example, if I use astrology to understand human behavior and I find out that astrology makes 

false claims, I should acknowledge that my understanding has been poor. The view that truth 

is a necessary condition for understanding is called factivism: understanding is factive, i.e. it 

contains true propositions about a phenomenon.  

 

In this paper, I assume that factivism about understanding is on the right track, at least when it 

comes to scientific understanding.4 But if that is the case, what role should we attribute to 

scientific modeling? Scientific models often contain idealizations that seem incompatible with 

factive understanding, yet they are an integral part of science. As noted by Lawler (2021), 

traditional attempts have usually hinged on undermining the role of falsehoods in 

understanding. In recent years, a new wave of reconciliation attempts, based on the recognition 

of the pivotal role of falsehoods, has emerged (see Alexandrova, 2008; Bokulich, 2016; Rice, 

2016, 2018, 2021; Lawler, 2021; Pincock, 2021).  

 

Despite their differences, all these attempts share a commitment to what I have called DT. As 

mentioned, DT comes in a simple and more specific versions. Let’s start by focusing on the 

simple DT. According to the simple DT, idealized models are not themselves part of the content 

of the understanding but allow true information to be derived. An idealized model can allow 

the derivation of true predictions, true descriptions, explanatory generalizations, information 

about dependence relations, counterfactuals, etc. In a formula: 

 

Simple DT: a genuine scientific model allows us to derive true information. 

 

Consider, for example, the following case. I understand something about the behavior of gases 

using the Ideal Gas Law (hereafter IGL; a classic example in the debate): 

 

PV = nRT 

 

where P, V, and T are pressure, volume, and absolute temperature respectively, n is the mole 

of gas, and R is the ideal gas constant. IGL targets the so-called ideal gas: a highly idealized 

gas composed of dimensionless molecules that do not interact with each other. IGL is false of 

real gases but allows the derivation of accurate information about their behavior. The view thus 

sharply separates (1) idealized models from (2) the true propositions derived from them. For 

example, the latter correspond to the true information about the relation between P and V that 

is embodied by certain real gases under specific conditions. This information is derived using 

IGL, but it is not identical with it.5 (1) and (2) play different roles: (1) plays the instrumental 

role of allowing true information to be derived; (2) represents the product of the models as 

tools, i.e. the epistemic ‘gain’ contained in our understanding. 

 

Some clarification on the meaning of ‘derivation’ is needed.6 One might argue that deriving 

true information from a model simply means isolating truths the model contains or directly 

 
4 For opposing non-factivist views that reject truth as a necessary condition for understanding see e.g. Elgin 

(2017), Potochnik (2018), and Doyle et al. (2019). 
5 On modeling and accuracy see also Hubert & Malfatti (2023). 
6 Thanks to an anonymous reviewer for pressing me on this point. 
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entails—for example, that the IGL, while false, nonetheless contains true counterfactual 

information, or that it entails truths when applied to real gases. But this minimal reading of 

‘derivation’ is misguided in the present context. DT supporters take the falsity of idealized 

models at face value. While other approaches are possible,7 I find this stance justified. First, if 

we could simply read off true information from idealized models, it would be unclear why 

idealized models require special treatment in the first place. After all, we can typically isolate 

true information within non-idealized models or theories. More importantly, it is doubtful that 

true information can be straightforwardly derived from idealized models. Consider IGL again: 

this idealized model is only true of a highly distorted ideal gas, and the kind of true information 

it provides is not trivially transferable to real gases (see e.g., Rice 2016, p. 90),8 nor is it obvious 

that real gases fall within the scope of IGL (so that we can directly infer true information from 

it). Rather, real gases can be interpreted as approximating (or as deviating from) IGL under 

specific conditions (see e.g., Lawler 2021, p. 6868; Cartwright 1983).9 As a result, ‘derivation’ 

must be understood more strongly in the context of DT: it involves clearly separating the 

idealized model from the true information about real phenomena that we derive from it.10 

 

This view has several merits. First, it divides labor successfully (at least from a factivist 

perspective). It assigns distinct roles to idealized models and true information, without 

conflating the means of understanding with its content. Second, the view is flexible enough to 

allow for a multiplicity of ways of counting as true information and of gathering information 

(on which the view remains silent). Third, the view is able to accommodate the intuition that 

idealizations can play a crucial, if not indispensable, role in enabling understanding. It may be 

the case, for example, that certain derivation methods are irreplaceable to access particularly 

valuable information. For example, it may be argued that the Hardy-Weinberg Equilibrium 

(based on the false assumption of an infinite population) plays an indispensable role in 

understanding population genetics (see Strevens, 2016; Potochnik, 2018; Spagnesi, 2023).  

 

I think the simple DT offers a promising approach to reconciling truth and understanding in 

scientific modeling. However, in its simple form, I doubt it is sufficiently spelled out for this 

purpose. One problem is that it is too permissive. For instance, it allows for models that 

generate isolated true propositions. A model that generates a singular correct prediction would 

be considered part of our scientific toolbox. However, this seems questionable—it is doubtful 

that a singular correct prediction contributes meaningfully to our understanding. While theories 

of understanding differ in significant, if not essential, ways, one recurring feature on which 

scholars agree is the connectedness (or coherence) of understanding. Unlike knowledge, 

understanding cannot be isolated. As Zagzebski puts it, “a person can know the individual 

 
7 For an interesting proposal see Kuorikoski and Ylikoski (2015). They argue that idealized models can 

inferentially yield true counterfactual information and thereby contribute to factive understanding, even if parts 

of the models are inaccurate. On this account, derivation (in a strong sense) is not prima facie required (pp. 3827–

3828). Much, however, hinges, on how ‘inferences’ are understood here—whether as internal to the model 

(contained or directly entailed) or rather external to it. Since the authors adopt an extended cognition approach to 

models (coupled with an inferentialist account of representation) that blurs this distinction, the issue is not easily 

settled.  
8 It is plausible to think that the idealized model distortions also distort the information we obtain from such 

models (e.g. the counterfactual information about target phenomena). As Rice argues, models are typically wholes 

for which there is no obvious decomposition into separate elements (see Rice, 2019). As a result, the separation 

between idealized and non-idealized parts of the model faces serious mereological concerns. 
9 It is thus important to distinguish between idealized models (such as IGL) and models of actual phenomena 

(actual gases). See also Rescorla (2018) and Siegel and Craver (2024) for a similar distinction. 
10 This is true of Alexandrova (2008), Rice (2016), Lawler (2021), and Pincock (2021). Bokulich (2016) can also 

be interpreted this way (see e.g. p. 275), although her commitment to explanatory fictions makes the contours of 

her view less obviously compatible with the stronger reading of ‘derivation’. 
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propositions that make up some body of knowledge without understanding them. 

Understanding involves seeing how the parts of that body of knowledge fit together” (2001, p. 

244; see also Elgin 2017 and Kvanvig 2003). As I elaborate further below, such connectedness 

of understanding has been helpfully spelled out in terms of grasping (a system of) explanatory 

dependence relations (see e.g. Greco 2014; Grimm 2014; Kuorikoski and Ylikoski 2015). 

Roughly, we genuinely understand a phenomenon when we grasp how the relevant facts fit 

together, allowing us to account not just for the fact that it has occurred, but for why it has 

occurred.11 

 

As we have seen, the simple DT does not necessarily meet this requirement for understanding. 

To be sure, it is legitimate to remain neutral on this issue and hold that, as long as models 

provide us with the right information, there is nothing more to say about DT.12 However, I 

believe that only by addressing this concern can DT be a convincing strategy to reconcile truth 

and understanding. After all, merely deriving truths is not the same as deriving factive (and 

connected) understanding—it is thus important to precisify DT. Some interpreters recognize 

this need and propose stricter conditions. For example, Alexandrova (2008) requires “causal 

hypotheses”; Pincock (2021) emphasizes “explanatory generalizations”; Rice (2016, 2018, 

2021) builds a framework based on the derivation of “counterfactual information”; and 

Potochnik (2018), though working within a non-factivist perspective, invokes information 

about “causal patterns”.  

 

While these accounts avoid the permissiveness of the simple DT, they tend to be too narrow in 

their requirements. There seems to be no compelling reason to accept one type of information 

over another—such as favoring causal generalizations while rejecting counterfactual 

information—yet what unifies these different kinds of information remains unclear. In the next 

paragraph, I provide a general account of DT, which I call generalized DT. This generalized 

version will serve as the basis for my critique. 

 

2.2 The generalized Derivation Thesis 

 

As we have seen in the previous section, connectedness appears central to traditional accounts 

of understanding. Some proposals highlight various types of information that seem to fit the 

general idea that understanding allows us to grasp the why of things (causal hypotheses, 

counterfactual information, explanatory generalizations, etc.). However, this remains 

somewhat patchy—how can we develop a more coherent framework from this idea? 

 

Influential accounts of the epistemology of understanding, such as Greco’s and Grimm’s, 

connects understanding to the identification of explanatory dependence relations. Both 

emphasize that genuine understanding amounts to knowing (a system of) dependence relations 

holding between items (see e.g. Greco, 2014; Grimm, 2014). To use Siscoe’s helpful 

formulation, they subscribe to a principle in the vicinity of Dependence: 

S understands why p if and only if there is a truth q on which p depends and S has a 

special cognitive relationship with the fact that a dependence relation holds between p 

and q. (Siscoe, 2022, p. 782) 

 
11 For a helpful discussion of different forms of understanding (understanding what, why, and how) see Hubert 

(2021). 
12 I take this to be Lawler’s strategy (2021, pp. 6877-6878). 
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A model that provides only isolated information (such as a single prediction) does not fit this 

principle. Understanding p requires knowing a truth q from which p depends, and to which S 

has epistemic access. No such q is provided by such a model. However, the truths to which 

IGL leads us are related in a specific way. IGL can be used to derive a general explanation 

from which several particular predictions depend. What changes is not the content of 

understanding, but the relation holding between the elements of that content. 

 

How should we spell out this relation? First, I take it to be a dependence relation holding 

between the elements of a real target (the phenomenon at stake). As such, it should not be 

confused with a purely conceptual relation holding between propositions. A model based on 

astrological assumptions might show a high degree of conceptual connectedness as a system 

of propositions, yet we would not say that it informs us of real phenomena. While it is often 

the case that idealized models present inferential systems of varying complexity from which 

one can derive truthful proportions, this requirement is neither necessary nor sufficient for a 

model to produce factive understanding. What matters, at least from a factivist point of view, 

is that the content of understanding contains dependence relations that are true of phenomena.  

 

Second, the type of relation holding between p and q should be explanatory. In the literature, 

explanatory relations are sometimes equated with dependence relations. ‘Dependence’ has a 

broad meaning that includes different kinds of relations: causation, grounding, composition, 

substance, essence, supervenience, etc. Following Siscoe (2022), however, it is doubtful that 

all dependence relations are explanatory. For example, a supervenience relation is not always 

explanatory, whereas a causal relation usually is. While a thorough analysis of explanatory 

relations should be left to another occasion, I suggest conceiving of explanatory relations as a 

specific subset of dependence relations.13 Two brief but important remarks are in order here. 

First, while understanding and explanation are conceptually distinct, it is plausible to think that 

explanation is a key component of understanding in science (Friedman, 1974; Lipton, 2004; 

Grimm, 2010; Khalifa, 2012; Kuorikoski & Ylikoski 2015; Siegel 2024).14 Second, and 

relatedly, the emphasis on explanation is consistent with factivism about understanding. Most 

accounts of explanation require a truth or accuracy condition for something to count as an 

explanation (see de Regt & Gijsbers, 2017; and Rice, 2016, 2021). Therefore, the factivist 

requirement for the content of understanding should apply to the explanations derived from 

idealized models. 

 

If this is correct, I conclude that a genuinely idealized model must not only allow us to derive 

true information but also ensure that this information is related in an explanatory way. In a 

formula:  

 

Generalized DT: a genuine scientific model allows us to derive true explanatory 

information about dependence relations. 

 

This adjustment prevents the excessive permissiveness of the simple DT, while remaining 

broad enough to encompass a vast range of types of information about phenomena. Causal and 

counterfactual information, token explanations and generalizations, as well as other types of 

 
13 I therefore only partially agree with Strevens’ (2008) simple view that there is no understanding without 

explanation, as it places exclusive emphasis on causal relevance. For a critique of Strevens’ narrow conception of 

explanation see Pincock (2021). 
14 Some think that understanding and explanation should be equated (see Kuorikoski & Ylikoski 2015; Grimm 

2010), others that explanation is only a condition of understanding (Siegel 2024). I remain neutral on this issue. 
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information about dependence relations, can all be included among the contents of 

understanding—generalized DT is thus a more robust version of DT. 

 

3 The astrological model scenario 

 

The generalized DT holds that scientific understanding contains true, explanatory information 

about dependence relations, and that idealized models have an instrumental role in obtaining 

such truths. At this juncture, one might think that the compatibility between understanding and 

truth in scientific modeling is vindicated. We use idealized models as tools to obtain true 

information. For example, IGL is not itself part of the content of factive understanding, but a 

tool that we use to obtain truthful information about the behavior of real gases (e.g. explanatory 

dependence relations between temperature, pressure, and volume in normal conditions). 

Despite its plausibility, I now wish to point out some shortcomings of the generalized DT.  

 

Consider the following thought experiment (inspired by Bird, 2007). Let’s imagine that: 

(1) A community has formed its beliefs about a certain domain (human behavior) using 

the astrological model AM—an idealized model based on astrology.  

(2) By fluke, AM gives true explanations about dependence relations in human 

behavior (correct explanations, say, about a sample of subjects). 

This thought experiment is relevant to the present discussion because it provides a 

counterexample to the generalized DT. AM is an idealized model that allows a community to 

obtain true explanatory information about the domain under study. For example, AM happens 

to produce a plausible scientific explanation (informed by neurological, psychological, 

sociological, etc. considerations), and such an explanation q explains the true proposition p. 

(To make this scenario more concrete, one may think that the community associates 

astrological information with real factors and obtains by chance explanations that happen to be 

true.) This scenario poses a difficult challenge. For the product of AM and that of a genuine 

idealized model are exactly of the same kind: they establish the right dependence relation 

between a true explanans and a true explanandum. However, this product is obtained by luck, 

and it is questionable whether it can be considered a genuine model.15  

 

Two shortcomings of AM can be highlighted here. First, from AM, the community cannot 

derive ‘knowledge’ in any proper sense of the term. It is generally accepted that knowledge is 

incompatible with epistemic luck (see Bird, 2007; Baumberger et al., 2017). To know 

something does not just require holding a true belief but also holding it in a justified and reliable 

manner. The plausible insight underpinning this conclusion is that if I accidently ‘know’ 

something, I do not know it. If I accidently know (perhaps via asking a random number 

generator) that 79 is gold’s atomic number, I do not really know that 79 is gold’s atomic 

number.  

 

What about our present focus, i.e. understanding? Can I accidentally understand something? 

Things are less uncontroversial here, and different cases may require different treatments.16 

Let’s stick with the specific case described in the thought experiment. The kind of luck involved 

in this experiment is known in the literature as ‘intervening luck’, i.e. luck intervening between 

our beliefs and the facts (see Pritchard, 2008; Baumberger et al., 2017). Our beliefs about 

human behavior generated through AM happen to match the facts. They happen to match the 

 
15 It is more difficult than one might think to identify what exactly makes astrology unscientific (see e.g. Hansson, 

2021). This is not, however, to say that there is a debate on whether astrology is a science in the contemporary 

sense of the term. 
16 For a helpful overview see Baumberger et al. (2017); see also my footnote below on ‘environmental luck’. 
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facts despite AM being a source of information that, more likely than not, would produce false 

explanations. I take this sense of luck to be incompatible with genuine factive understanding 

of a phenomenon.17 Following Grimm (2006), I submit that AM does not give us genuine 

understanding of the phenomenon. This can be further illustrated with the following example 

from Pritchard (2009; as presented by Baumberger et al. 2017): imagine that my house has 

burned down due to faulty wiring causing a short circuit. When I arrive at the scene, I ask a 

partygoer dressed as a fireman what happened. The partygoer, by sheer luck, guesses that faulty 

wiring was the cause of the fire. It does not seem the case that the partygoer has genuine 

understanding of the given explanation, nor does it seem that I acquire understanding by relying 

on the fake fireman’s true explanation.18 

 

In other words, even if the dependence relation derived from AM happens to be the correct 

one, it originates from a flawed source. The issue is not with the derived information (which 

happens to be correct) but with the unreliable manner in which it is derived. Specifically, the 

derivation is largely disconnected from the phenomenon it supposed to refer to. If this is 

correct, merely deriving true explanatory information about dependence relations from a model 

is insufficient for the model to produce genuine understanding. As a result, the generalized DT 

fails to deliver what it promises—or better, additional justification is needed to establish the 

legitimacy of such derivations. 

 

It should be noted that the analysis so far has addressed only the generalized DT. However, in 

generalizing this view, we may have overlooked key features of specific proposals that could 

have helped us respond to the AM challenge. Let’s take a brief look at two such proposals: a 

non-factivist one (Potochnik’s) and a factivist one (Rice’s). Potochnik’s view builds on 

Woodward’s (2003) manipulability account of causation and requires that idealized models 

generate information about causal pattern dependencies. She remains neutral on the 

metaphysics of causation underpinning this account (p. 34), although we can read 

‘manipulability patterns’ as informing us of objective causal dependence relations. In a factivist 

context, Rice (2016, 2018, 2021) develops a sophisticated account of how idealized models 

inform us about counterfactual dependence and independence among features of a system and 

a phenomenon. His account builds on how a phenomenon changes across modal space and how 

navigating this space via idealized models provides us with factive understanding (I further 

discuss Rice’s view in section 4.1). 

 

Do these specific accounts, which build on robust theories of dependence relations, help us 

solve the AM challenge? Not really. Despite the strengths and weaknesses of any given account 

of dependence relations, specifying the type of dependence does not eliminate the element of 

luck that can produce it. For example, AM might happen to generate accurate information about 

causal pattern dependencies or about counterfactuals between features of a system and a 

phenomenon. We could, for instance, infer such truths by exploiting a lucky correlation 

between manipulability patterns or counterfactual information and astrological data—without 

 
17 For a similar position, see e.g. Grimm (2006). Grimm argues against Kvanvig’s thesis that understanding is not 

a species of knowledge since it is compatible with luck (Kvanvig 2003; see also Hills 2015 and Baumberger 2011). 

Rohwer (2014) develops a compelling case that understanding is compatible with luck if we integrate multiple 

sources of information rather than relying on a single unreliable one. The case I discuss, however, is limited to the 

classic scenario of single-source information. 
18 For an analogous example see also Grimm (2006, p. 525). However, compare this case to one in which I ask a 

real fireman, despite being surrounded by partygoers dressed as firemen. This type of luck, known as 

‘environmental luck’, arises not from the relation between beliefs and the facts but from the surrounding 

conditions in which a piece of information is obtained. This might be a stronger case for understanding not being 

as species of knowledge. For a discussion see Baumberger et al. (2011). 
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genuinely grasping the relevant relations at stake. But this result is unsurprising: the details of 

the preferred account of dependence relations postulated in DT cannot dictate how we generate 

the information about these relations—no matter how sophisticated the account). More broadly, 

I submit that any product-based approach to evaluating model derivation can be undermined 

by formulating thought experiments similar to the one discussed.19 In our case, we can 

reformulate the experiment to yield not only true information but also any kind of explanatorily 

connected true information. 

 

If specifying the type of dependence relation is not a promising strategy for addressing the AM 

challenge, the discussion so far suggests an alternative: what seems to matter in avoiding these 

counterexamples is not what we derive from idealized models but how we derive it. Genuine 

understanding requires not just the right kind of dependence relation but proper justification—

or, as I will argue, a proper grounding in the relation between models and phenomena. While 

some previous accounts have touched on this idea, I aim to make it central. In the next section, 

I explore ways to justify the information derived from idealized models. 

 

4. The normativity of scientific models 

 

4.1 Justification strategies 

 

In the previous section, we saw that even sophisticated accounts of DT face a serious challenge. 

While they allow us to derive true explanatory information about dependence relations, they 

fall short of producing genuine understanding of phenomena. In other words, scenarios like the 

one described challenge the very instrumental value of idealized models. Even if idealized 

models provide the right content for understanding, they are arguably unfit as derivation tools. 

A tool that barely gets the job done is hardly a tool at all—certainly not a good one. Thus, 

idealized models complying with the generalized sophisticated DT view may still fail to be 

effective tools for deriving understanding. 

 

How can we address this challenge? Similarly to debates about knowledge, I suggest that what 

is lacking here is a justification for the information derived from idealized models. The merely 

enabling role of idealized models is insufficient to provide genuine understanding. This 

insufficiency arises not merely because their instrumentality is not always successful, but more 

fundamentally because the mere derivation of the right content for understanding undermines 

the acquisition of genuine understanding. As a result, the information derived by idealized 

models needs to be justified. We need to show that the derivation of information is a good one. 

This justification concerns how the content of understanding is derived. 

 

Even at this preliminary stage, it is clear that such a justification is not easy to achieve. In 

similar contexts, one can appeal to the 'correctness' of what enables the derivation of accurate 

information. For example, a true theory from which true consequences derived seems a strong 

basis for justification. However, as we will discuss later, this option is blocked by the very 

nature of idealized models: by definition, they contain falsehoods. A second and crucial 

difficulty is that, since we are attempting to justify the products of tools, we cannot rely on 

these very products, or further products, to achieve this justification. I take this to follow from 

what we have established at the end of the previous section: any product-based (or 

instrumental) justification of model derivation can be undermined by scenarios involving luck. 

Thus, appealing to the products of models to justify the information we derive from them risks 

 
19 On this point see also Bird (2007, p. 72). 
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either (i) circularity, or, if it involves appealing to further products, (ii) an infinite regress of 

justification. As we will see, even accounts that have raised the justification question fail to 

provide a convincing answer. Let me now briefly explore three possible options for justifying 

the information that we derive from idealized models.20 

 

(1) Internalism. A first option to justify the information that we derive from models is to appeal 

to some of their internal feature(s), e.g. their being interconnected or their appeal to some basic 

beliefs. However, this is not a promising strategy in this context for at least two reasons. First, 

because models vary greatly in their content and construction rules. The existence of a wide 

variety of propositional and non-propositional models makes it difficult to identify an invariant 

feature or set of features that may justify them.21 Additionally, an explanation of how true 

explanatory information is derived from a model that appeals only to internal features of the 

model would fail to account how a model relates to phenomena and the explanatory account 

thereof. To be sure, it is conceptually possible to derive an explanation of a phenomenon from 

a model without there being a direct relation between the model and the phenomenon (as AM 

shows). However, it is plausible to assume that a good way of deriving information about a 

phenomenon is by relating to it or being responsive to it (as many assume; see e.g. Rice 2016; 

Lawler 2021; Pincock 2021). The next two options explore variations on this approach. 

 

(2) Veritism. A standard way of justifying a method (in this case, a derivation method) is to 

appeal to the truth of its premises. If the method is based on true premises, it is also warranted 

that the claims we extract from it are true. The latter is clearly a non-starter in the present 

context since scientific models are characterized by containing falsehoods. However, Rice has 

developed an interesting proposal that broadly aligns with this strategy. According to him, it is 

not necessary for models to accurately represent phenomena, in part or in total, to produce 

valuable information; other links can suffice. The one he emphasizes is that the idealized 

models and the real target belong to the same ‘universality class’: as he puts it, “this entails that 

the model and the real-world system(s) will display similar patterns of macroscale behavior 

even if the model drastically distorts the entities, relationships, and processes of its target 

system(s)” (2016, p. 94). Belonging to the same universality class is thus the ‘true’ premise 

required to justify the derivation of information. 

 

Rice’s proposal is ingenious, but it struggles to address our justification question. Much, of 

course, depends on what one means by ‘universality class’. If interpreted metaphysically, as 

referring to something akin to a ‘universal’, this view would be difficult to defend, as it would 

introduce demanding ontological commitments. However, Rice defends a weaker and more 

flexible conception of universality classes. He defines them as sets of similar behaviors (see 

e.g. Rice 2018, p. 2000). But such a minimal definition poses problems as well. As Pincock 

(2021, p. 632) notes, the real target and the idealization may behave similarly for objectively 

different reasons. The only way to determine whether they belong to the same universality class 

is if the model generates true counterfactual information. If this is correct, this strategy does 

not offer a justification that is independent of the model output. Indeed, it is circularly based 

on the correctness of the output that it should justify. In a similar vein, Bokulich (2016, p. 274) 

argues that some fictions qualify as genuine because they are “credentialed”—i.e., they are 

accepted by the scientific community as productive of factive understanding. But this form of 

 
20 I focus here on accounts that are compatible with factivism. 
21 For example, as we have seen above, an astrological system of beliefs can show a great degree of 

interconnectedness, provide true explanations, and yet fail to be a scientific model. On the challenges of a unified 

account of models see Weisberg (2007b). 
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justification is, again, instrumental, i.e. based on the model’s output. As we have seen, such a 

justification cannot successfully justify the information derived from idealized models. 

 

(3) Non-representationalism. The difficulty with the previous strategy suggests that the 

problem of justifying models may stem from the representational function that is attributed to 

them. Philosophers such as Strevens and Pincock have defended non-representationalist 

justifications of idealized models. On Strevens’ influential account, idealizations are not meant 

to represent facts. Rather, they signal that some factor is (causally) irrelevant to the purpose of 

explanation. For example, that the molecules of a gas have no interaction is not the 

representation of a feature of the gas but rather flags that such interaction is causally irrelevant 

to the target of explanation (see Strevens, 2008).22 Pincock (2021) objects that Strevens’ 

solution is limited to a narrow conception of causation and explanation. He proposes the 

following solution: “each idealization in the derivation is partially true so that … there is a 

wholly true derivation of that explanatory generalization that goes via these underlying truths” 

(p. 635).23 In other words, an idealized model indicates a “commitment” to derive an 

explanation through true claims entailed by it. A true derivation may not be available at present 

(after all, it is only a commitment—we may not be able, for example, to derive a true 

explanation of genotypic frequency without assuming an infinite population) and may rely on 

various (not necessarily causal) explanatory strategies.  

 

I believe that non-representationalism is on the right track and that there is much to be learned 

from the approaches of Strevens and Pincock. Their views account for the relation between 

models and phenomena (contra internalism) while avoiding the pitfalls of veritism. However, 

I submit that neither Strevens’ nor Pincock’s accounts manage to justify the information 

derived from models. On closer inspection, both views center their justification strategy around 

the derivation of further truths—causally irrelevant facts or partial truths entailed by the model. 

The key idea seems to be that models can (at least potentially) be turned into a set of factivist 

claims. But this is to double down on the instrumental value of models. Models exist to signal 

such a (potential) reduction—they are ultimately dispensable as tools for obtaining the relevant 

information. However, as I have suggested, this strategy poses a problem for DT. What we aim 

to justify is precisely that models provide the right information, yet appealing to the derivation 

of further derived information leads to an infinite regress of justification. If this is correct, it 

remains unclear how this approach can provide genuine understanding rather than merely 

enabling the right content of understanding. 

 

4.2 Scientific models qua norms  

 

I think there is a better way to justify the information derived from idealized models. As we 

have seen, it remains unclear how such a justification can be obtained by appealing to the 

internal or representational features of models. A more promising route seems to lie in the non-

representational relation between models and phenomena. What still needs to be established is 

 
22 One may object that Strevens (2008) defends a representational account of models, given that, in his view, the 

latter inform us about difference-making features of a real-world target. However, my classification of Strevens’ 

view within the non-representationalist camp is intended to highlight the special role he assigns to idealizations. 

For instance, in his discussion of the Hardy-Weinberg Equilibrium (HWE), Strevens (2019) emphasizes that it is 

an idealized concept that holds only at the limit and merely signals the irrelevance of population size. What is 

representational, then, is not HWE itself but rather the non-idealized models through which scientists derive HWE. 

Strictly speaking, HWE serves a different function: it flags a truth about causal irrelevance. If it represents 

anything, it would represent an infinite population—precisely what Strevens seeks to avoid (2019, p. 1725). 
23 This solution is based on Yablo’s notion of ‘partial truth’: “p is partially true when for some r, p entails r, r is 

true and the subject matter of r is part of the subject matter of p” (Pincock, 2021, p. 635). 
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the specific non-representational justification of the information derived from models. I suggest 

that such a justification is normative in character. A model is to be used, as the word suggests, 

as a ‘norm’ or ‘standard’. A ‘norm’ or ‘standard’ does not tell what reality is—it does not 

directly describe or explain real features of the world. It rather gives us a term of comparison 

for inquiry.24 More specifically, I contend that a scientific model gives us a term of comparison 

for the explanation of phenomena. Explanations are derived by the systematic comparison of 

phenomena with the model.25 Let me clarify some key features of the normative use of models 

first. 

 

As some things are used as standards for other things, models are compared with the 

phenomena for which an explanatory account is sought.26 But what is ‘comparison’ in this 

context? I take comparison to be an evaluative relation established by the modeler between the 

idealized model and target phenomena (often described by data-driven models). The 

comparison can concern any property, feature or aspect of the phenomena under study and is 

usually performed by calculating the deviation between the model and actual measurements. 

For example, as I will expand below, we can compare IGL with data-driven models of actual 

gases with respect to the property of compressibility. This relation allows to identify deviations 

between the model and the target phenomena. Such deviations (and patterns thereof) are key 

to deriving explanatory information. 

 

Two remarks are important here. First, the acts of comparing the idealized model with the target 

phenomena must be as systematic and complete as possible. Given the inevitable limitations 

of experimentation, systematic comparison is best described as a ‘commitment’.27 Second, 

while the model will differ from the target phenomena, the magnitude of such deviations can 

vary. In some case the deviations will be minimal. In other cases, they will be substantive. 

What matters is that the explanations derived from the idealized model are based on these 

deviations. As we will see below, the deviations between IGL and data-driven models can be 

used to derive the true and explanatory information that some actual gases, under certain 

conditions, embody the dependence relation described by IGL; and second, that specific 

factors—such as molecular size and intermolecular forces—account for the divergence 

between IGL and real gases. 

 

I contend that the normativity of idealized models allows us to justify the true explanatory 

information derived from them. For by using a model as a norm, we do not just derive true 

information but do so in a way that it is responsive to phenomena. This responsiveness consists 

in the act of systematically comparing a model with phenomena.28 I take the act of systematic 

 
24 For a similar emphasis on ‘comparison’ (but within a different framework) see Frigg (2010, pp. 263-264). 
25 In elaborating this approach, I take my cue from several sources: first, Kant’s account of regulative ideas and 

their prescriptive function in inquiry is a historical precursor of this view (for an analysis see Spagnesi, 2023); 

second, my approach resonates with Woody’s functional approach to explanation (2015), which has a similar 

emphasis on explanation as an activity and on the normativity of models; third, and more generally, I understand 

my normative approach to be in tune with the recent ‘zetetic turn’ in epistemology, i.e. a turn from doxastic 

attitudes to the processes of inquiry that produce them. 
26 Think of Polykleitos’ Doryphoros as the ‘canon’ of the proportions of the human body in sculpture. Daston 

(2022) reconstructs the original meaning of rule as ‘model’ or ‘canon’. 
27 I borrow this term from Pincock (2021). 
28 As a result, the normative use of models cannot be undermined by a product-based objection. Of course, one 

can isolate understanding how as a product of reflection on the activity of systematic comparison from 

understanding how as the activity of comparison. However, I take the former to presuppose the latter since the 

activity makes possible the reflection on it. 
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comparison to be a reliable procedure—one that is incompatible with luck.29 For to say that a 

systematic comparison is accidental is a contradiction in terms. Of course, this is not to say that 

any comparison of models with phenomena will bring about the right explanations. Nor is it to 

deny that the right explanations may be accidentally derived even once a comparison has been 

performed. But it is to commit oneself to the systematic investigation of the relation between a 

model and phenomena—thus ruling out lucky derivations of true information (at least in ideal 

conditions).30 

 

One concern that needs to be addressed before developing this view further is that, for scientists 

to compare a model with its real target, they need to know what is true of the phenomenon. 

However, scientific modeling often takes place in contexts where such information is lacking—

or if it were available, there would be no reason to generate a model in the first place.31 On 

closer inspection, however, this concern is misguided. While it is true that models are, in many 

cases, our primary means of accessing relevant information (as the generalized DT asserts), 

this does not mean that all information about a phenomenon is derived solely from idealized or 

highly idealized models. Take the cases of IGL or the Hardy-Weinberg Equilibrium. We can 

compare IGL with empirical data, observed phenomena, and, more generally, non-idealized, 

data-driven models of real gases (i.e., gases measured in experimental conditions). Similarly, 

the Hardy-Weinberg Equilibrium can be compared with datasets on finite biological 

populations. Such comparisons allow us to extract additional relevant information, which, as 

we saw above, may be accessible only through the use of idealized models.32 

 

I have suggested the derivation of factive understanding is justified if it happens via the 

systematic comparison with phenomena. Consider our thought experiment. In using AM, no 

comparison of the model with phenomena is performed.33 What about IGL? In IGL, the 

derivation of explanations is obtained by the systematic comparison of the model with 

phenomena and the resulting identification of patterns—or so I contend. To back up my 

hypothesis, I need to delve into more details of the model. 

 

It is often said (rather vaguely) that, under certain conditions, some real gases follow IGL 

closely.34 But as we know, real gases are made up of (i) molecules that take up volume and (ii) 

molecules that interact with each other through forces. How exactly (and to what extent) can 

we say that ideal gases approximate the behavior of real gases? A good indicator to understand 

the relation between IGL and real gases is the compressibility or compressor factor (Z). Z is 

 
29 For a classic formulation of reliabilism see Goldman (1979). From the latter, however, I only take the minimal 

claim the justification is given by a process (i.e. an activity), not by a belief or set of beliefs. I remain neutral on 

the other aspects of the theory and on the best way to understand it (e.g. whether ‘virtue reliabilism’ fares better). 
30 Of course, no justification strategy is without objections. For example, it is questionable whether this solution 

is able to address evil demon scenarios (without further specification). My modest contention is that it addresses 

the problem raised in the thought experiment above with respect to scientific models that produce true information. 

I leave a more complete defense to another occasion. 
31 I thank an anonymous reviewer for pressing me on this point. 
32 On the relation between models and experiments see e.g. Morgan (2006). 
33 This is postulated in the scenario: we derive a true explanation from AM by luck—just as we guess a true 

account of Comanche history, or identify the true cause of a fire by asking a fake fireman. Of course, outside the 

scenario, we could systematically compare AM with phenomena, as we can do with any idealized model. In that 

case, AM would be used as a norm for comparison. And if such a comparison were to yield true explanations 

(which it plausibly doesn’t), AM would also count as a successful model. Thanks to an anomynous reviewer for 

raising this worry. 
34 This is especially true of monoatomic gases, such as helium and neon. However, also polyatomic gases, such 

as oxygen or carbon dioxide, follow the ideal gas to a certain extent under certain conditions (see discussion 

below). 
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the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same 

temperature and pressure:  

 

Z = PV / nRT 

 

For a gas with ideal behavior, Z=1. As shown in Figure 1 (left graph), the compression factor 

changes significantly for different gases at different pressures. 

 

 
Fig. 1 Two graphs of the compressibility factor (Z) versus pressure (P). The graph on the left shows Z 

vs. P for different gases at 272 K. The graph on the right shows Z vs. P for nitrogen at three different 

temperatures. Copyright: LibreTexts shared under CC BY-NC-SA 4.0 

This graph shows the compression factor Z for different pressures at 273 K for various gases 

(H2, N2, O2, C2H4, and CO2). Since for the ideal gas Z=1 over the whole range of pressures, it 

can be seen that only a few real gases (H2, O2, N2) approximate the behavior of the ideal gas 

and only over a limited pressure range (about <400). At low pressures, most gases have Z<1, 

while at higher pressures, Z>1. These deviations are caused by the larger molar volumes of real 

gases than those predicted by IGL. IGL assumes dimensionless molecules moving in empty 

space. Real gases take up more space simply because their molecules do have volume. The 

effect is more pronounced at higher pressures, where gases are more compressed and the 

available empty space decreases.  

 

To calculate the intermolecular forces for a given gas, one needs to look at the compression 

factor of a gas at different temperatures. Figure 1 (right graph) shows the compression factor 

of nitrogen (N2) at various temperatures. The compression factor of N2 at T=298 K and 873 K 

below 200 bar is relatively close to the expected ideal gas value (Z=1). However, Z values 

deviate from 1 at lower temperatures (173 K). At this temperature, Z is significantly <1. This 

deviation is due to the attractive forces acting between the molecules of real gases. If the 

pressure is constant, this results in a reduced volume, which explains Z<1. The effect is more 

pronounced at lower temperatures due to the relatively lower kinetic energy of the molecules. 

 

In order to assess both deviations (volume and intermolecular forces), the behavior of the ideal 

gas described by IGL acts as a term of comparison for the investigation of the phenomena—

specifically, the molar volume of the ideal gas is the denominator of the compression factor Z. 

The latter has the normative use of being the standard against which empirical results must be 

compared systematically, i.e. with respect to all possible phenomena of interest (this is 

represented by the continuity of the lines in the graphs above). The systematic comparison of 

empirical results to IGL, in turn, allows the identification of deviations. In this case, the 
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systematic comparison with phenomena (either real or potential) allows the identification of 

the following deviations (among others): 

(a) The deviation of Z of H2, O2, N2 from IGL is relatively small over a 

limited pressure range (0-400 bar). 

(b) The deviation of Z of N2 at T=298K and 873K from IGL is relatively 

small over a limited pressure range (0-200 bar); 

(c) The deviation of Z of H2, O2, N2 from IGL is relatively significant at 

high pressure (>400 bar); 

(d) The deviation of Z of C2H4 and CO2 from IGL is relatively significant 

over a large pressure range; 

(e) The deviation of Z of N2 at T=298K and 873K from IGL is relatively 

significant at high pressure (>200 bar); 

(f) The deviation of Z of N2 at T=173 from IGL is relatively significant over 

a large pressure range. 

 

Note that none of the claims above are ‘representational’. Each claim records a difference 

between IGL and the behavior of real gases. In the ‘close’ cases (points a and b), the derivation 

of representational claims about dependence relations is straightforward. Under certain 

conditions and for some gases, the deviation of the behavior of a gas from that of an ideal gas 

is so negligible that one can use IGL to derive accurate explanations. For example, one can say 

that, over the limited pressure range 0-400 bar, P and V are inversely proportional if n and T 

are held constant in the real gases H2, O2, N2. Under these conditions, this dependence relation 

is both accurate and explanatory. As such, it represents an apt content of factive understanding 

(and should therefore be distinguished from the idealized dependence relation between P and 

V in an ideal gas). 

 

In the ‘far’ cases (c through f), large deviations from IGL indicate the need for further 

explanations. In a well-known model such as IGL, further explanations are already available. 

We know that these deviations can be explained by the effects of the volume and interaction 

of the molecules of real gases. For example, we can say that, at pressure higher than 400 bar, 

the relation between P and T in the real gases H2, O2, N2 deviates from IGL. This is due to the 

relatively larger molar volumes of these gases at high pressure, which arise from intermolecular 

forces and the finite volumes of their molecules. The latter is an accurate and explanatory 

dependence relation (a causal explanation) that figures in the content of the understanding. 

Importantly, we can develop new models of gases that incorporate this information, leading to 

more accurate results or information about different dependence relations (see section 5). Less 

known cases require complex interpretation and various experimentation techniques to obtain 

comparable results. 

 

Note also that although models typically involve ‘close’ cases, this is not a necessary condition 

for models to produce explanations. If compared with the behavior of real cases, a model may 

simply give rise to deviations (of any magnitude) that call for explanations. There is no 

qualitative difference between what I have called ‘close’ and ‘far’ cases. In both cases, a 

comparison is made between the model and the real case(s) to identify deviations from which 

explanations can be derived (through interpretation). Finally, it should be emphasized that, 

while the systematic comparison of a model with phenomena may shed light on token 

deviations (some of which may be especially informative, such as critical points), it will 
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typically identify patterns of deviations.35 Such patterns will facilitate the elaboration of 

explanations with varying degrees of generality and specificity. 

 

This latter point is crucial for understanding how my proposal differs from traditional 

representationalist accounts. It is possible to argue that even according to representational 

accounts of idealized models, a comparison is made—presumably a systematic comparison 

with phenomena to assess accuracy. From this point of view, my normative account might not 

seem fundamentally different. However, in comparisons with norms, what matters is not the 

similarity relation between the model and the phenomenon, but rather the deviations between 

the two. These deviations are open to interpretation and serve as the source of information 

about the phenomenon. For this reason, the comparison is best described as an ongoing 

commitment. One might further object that, if this is the case, then anything could be used as 

a model (since no similarity between model and phenomenon is required). But I contend that 

this is actually a strength of the proposed account. As the variety of existing models shows, 

anything can potentially serve as a model—what matters is that it functions as a norm for 

deriving true explanatory information. This does not lead to excessive permissiveness, because 

while anything can be a model, only those that generate accurate and explanatory information 

through their normative role belong in our scientific toolbox. 

 

On the proposed account, we derive genuine understanding from idealized not only if the 

resulting information is true and explanatory, but also if such information is normatively 

obtained. I formulate my normative version of generalized DT more precisely as follows: 

 

Normative generalized DT: a genuine scientific model (i) allows us to derive true 

explanatory information about dependence relations; and (ii) it does so while acting as 

(or being used as) a norm for the systematic comparison of phenomena. 

 
In other words, a model contributes to understanding not only through the content it yields, but 

also through the way that content is derived. This justification ensures that our understanding 

is not accidental, but responsive to the phenomena themselves. It succeeds because it does not 

rest on the model’s output, but on the specific role the model plays vis-à-vis the phenomena. 

 

5 The dynamic between the normative function of models and explanations 

 

It may sound strange that scientific models play a normative role. After all, scientific models 

are part and parcel of scientific inquiry, which is a descriptive enterprise. Moreover, it seems 

that a model really does contribute to our understanding of phenomena. Nothing I have said so 

far contradicts these claims. There is little doubt that science is a descriptive endeavor and that 

models contributes to our understanding of phenomena. Such a contribution, however, is 

neither purely instrumental nor representational. On the proposed view, models are to be used 

as norms for the derivation of genuine understanding of phenomena. 

 

The normativity of models is to be understood as directly responsible for the accurate 

description of phenomena. This key aspect of scientific modeling can be best appreciated by 

highlighting the dynamic between modeling and explanation. As a norm, an idealized model is 

a reference point from which we can derive explanations—it is never fully realized or 

representationally successful. For example, there is simply no real gas of which IGL is true or 

accurate simpliciter, nor is there any actual population described by the Hardy-Weinberg 

 
35 For an emphasis on the role of patterns in modeling see Potochnik (2018). 
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Equilibrium. On the contrary, the comparison of the model with real cases results in the 

identification of deviations that are conducive to explanation: (1) when an idealized model 

provides relatively accurate results over a certain range, such results can always be made more 

precise with respect to different dimensions of investigation (i.e. different ranges, questions, or 

aims); (2) when real cases deviate significantly from the idealized model, more 

experimentation and interpretation are required. In both cases, the ‘space’ left between the 

model and the phenomena calls for new explanations. 

 

This dynamic can be illustrated by further exploring the theory of gases. There are multiple 

ways to model the behavior of gases to give more accurate results than those of IGL. For 

example, the van der Waals Equation (VWE) accurately accounts for the effects of the volume 

and the interaction of molecules: 

 

(P + an2/V2)(V–nb) = nRT 

 

Compared to IGL, the equation includes (i) a correction for the pressure value (an2/V2), which 

accounts for the decrease in pressure due to intermolecular attraction; and (ii) a correction for 

the volume (V–nb), which gives a more accurate measure of the empty space available for gas 

molecules; a and b are values specific to each gas and depend on temperature and volume. As 

it is often noted, the increase in accuracy determines a decrease in the generality of the equation. 

VWE is much more specific than IGL, although it still provides a framework for obtaining 

accurate results over ranges not covered by IGL (see e.g. Epstein 1937). VWE is thus a model 

that covers some of the explanatory ‘space’ left by IGL by producing more accurate predictions 

and explanations. 

 

While VWE provides more accurate results, it also gives rise to deviations when compared to 

phenomena. Real gases behave noticeably differently from the predictions of VWE below the 

critical temperature (in this case, the end point of the phase equilibrium where liquid and vapor 

coexist). As shown in Figure 2, for T<Tc, P and V are related non-monotonically. 

 

 
Fig. 2 The isotherms of a van der Waals system. Reprinted from Pathria & Beale 2011, Copyright 

(2011), with permission from Elsevier 

Over a certain range of molar volume v we find an ‘unphysical’ region (where (∂P/∂V)>0), 

which must be corrected by using Maxwell’s so-called Equal Area Rule (EAR). The latter 

allows the construction of an isotherm that signals the transition from the gaseous state with 

molar volume Vg to the liquid state with molar volume Vl at constant pressure P(T). Between 

Vl and Vg (coexistence curve), the system is in a partly liquid, partly gaseous state with an 

infinite compression factor (since ΔV≠0 but ΔP=0). This is a singular behavior that cannot be 

explained using VWE and requires EAR as an additional modeling technique. 
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The transition from IGL to VWE and the implementation of EAR illustrate the dynamic 

between modeling and explaining. Each model allows us to derive explanations but also leaves 

space for other models to take on additional explanatory functions. In such a way, the normative 

use of models is fully integrated with the descriptive purpose of science. Different models can 

also take on different explanatory functions with respect to the multifarious aims of science. 

While the example I have offered remains within the coordinates of a given explanatory 

framework, there is nothing to prevent models from pursuing orthogonal or hardly reconcilable 

explanatory frameworks. For this reason, I take my view to be compatible (at least in principle) 

not only with the internal dynamic of single theoretical framework, but also with a multiplicity 

of different frameworks, each of which pursues different dimensions, questions, or aims of 

science.36  

 

One may object that this dynamic merely reflects the uncontroversial point that any explanation 

derived from an idealized model is always partial: by answering some questions, it also raises 

others.37 While I acknowledge that this dynamic describes an undeniable feature of scientific 

inquiry, the proposed view clarifies the motivation behind it. Consider again a model like AM. 

Even though this model provides an accurate explanation of phenomena, it does not itself 

initiate further questions about them. If we investigate AM’s explanations, it is not because of 

AM but because we independently raise new questions about that phenomenon. 

Representational accounts of models also struggle to explain this dynamic. While any 

representational model inevitably leaves some aspects of a phenomenon unexplained, it is 

unclear why a representationally accurate model of a given dependence relation should invite 

further questions about it—we already have the correct account of the object of inquiry. 

 

This view, like non-representational accounts, highlights that for any model, there is always 

more to explore. However, because this signaling is based on identifying deviations, it 

motivates a particularly rich and varied research program. The deviations between the model 

and the investigated object outline a space of inquiry that is, in principle, never fully closed 

and can be explored from different perspectives and goals. For example, we might refine 

certain details of a dependence relation, question its grounds, or analyze it from different 

standpoints. By contrast, in the non-representationalist accounts discussed earlier, the ‘more to 

explore’ is exhausted once the model is (potentially) replaced by further truths derived from it. 

In short, the proposed view clarifies the non-obvious motivation behind an otherwise 

unquestionable fact about scientific inquiry, that models always raise further questions about 

phenomena. 

 

6 Conclusion 

 

In this paper, I have argued that a genuine scientific model (i) allows us to derive true 

explanatory information about dependence relations; and (ii) it does so while acting as (or being 

used as) a norm for the systematic comparison of phenomena. This is not to say that models in 

science always fulfil (i) and (ii). Some models may just be ‘black boxes’ for the derivation of 

information—they may produce the right kind of information, but we do not know how such 

information is derived. Not knowing how true information is derived is different from knowing 

that it is the product of sheer luck (as in the AM case). As a result, such models may have a 

legitimate place in our scientific toolbox. Conversely, there may be genuine models that are 

systematically compared to phenomena but do not produce explanations. These models are 

 
36 I leave the development of this point to another occasion. 
37 I am grateful to an anonymous reviewer for raising this objection. 
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simply not the successful ones. They may be poorly constructed (or superseded by better ones), 

or they may be waiting to be fine-tuned to deliver true explanations. Of course, to fully explore 

the complications and challenges of the proposed approach to modeling would require further 

conceptual development and analysis of case studies beyond the tried-and-true example of the 

theory of gas. My aim in this paper was to explore some of the challenges for the Derivation 

Thesis and to outline a possible way of reconciling truth and understanding in scientific 

modeling. 
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