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ABSTRACT. I describe in this paper a solution to the Sleeping Beauty problem. I begin with the
consensual emerald case and discuss then Bostrom's Incubator gedanken. I address then the Sleeping
Beauty problem. I  argue that  the root  cause of  the  flaw in the argument for  1/3  is  an erroneous
assimilation with a repeated experiment. I show that the same type of analysis also applies to Elga's
version of the argument for 1/3. Lastly, I show that the core of the Sleeping Beauty problem is related
to the problem of world reduction.

1. The emerald case

Consider, to begin with, the following experiment:

Experiment 3: an urn contains p red balls and q green balls. You draw a ball at random from the urn.
You try  to  evaluate  the  probability  of  drawing a  red  or  a  green  ball.  Let  P(R)  and  P(G) denote
respectively the probability of drawing a red or a green ball. According to reasoning (I), you conclude
then that P(R) = p / (p + q) and P(G) = q / (p + q).

Let us turn now to the situation corresponding to the emerald case, described by John Leslie (1996,
p. 20):

The emerald case: ‘At some point in time, three humans would each be given an emerald. Several
centuries afterwards, when a completely different set of humans was alive, five thousands humans
would  again  each  be  given an emerald  in  the  experiment.  You have  no knowledge,  however,  of
whether your century is the earlier century in which just three people were to be in this situation, or
the later  century in which five thousand were to be in it’.  What  is  then your credence that  your
emerald originates from the set of three humans?

Let us identify now the first set of three emeralds with red balls and the second set of five thousands
emeralds with green balls. The situation is now equivalent to an urn that contains three red balls and
five thousands  green  balls.  At  this  stage,  it  should  be  clear  that  the  Emerald  case  is  structurally
analogous to experiment 1, with p = 3 and q = 5000. We get then accordingly: P(R) = 3 / (3 + 5000) =
3/5003 and P(G) = 5000 / (3 + 5000) = 5000/5003. The resulting probability that your emerald comes
out from the set of three humans equals 3/5003; and the probability that it originates from the set of
five thousand humans equals 5000/5003. 

I take it that the above reasoning should be consensual. However at this step, agreement stops. It is
worth proceeding now a bit further by reviewing some other experiments and situations.

2. The Incubator
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Let us consider now the following experiment:

Experiment 4: The content of an urn depends on the flipping of a fair coin. If Heads, the urn contains
one red ball; if Tails, it contains one red ball and one green ball. You try to evaluate the probability of
drawing a red or a green ball. A fist line of reasoning (I) goes as follows. Consider, to begin with, the
probability of drawing a red ball. If the coin has landed Heads then the probability of drawing a red
ball is 1. Now if the coin has landed Tails then this latter probability equals 1/2. The probability of
Heads  and  Tails  being  1/2,  we get  accordingly:  P(R)  =  1  x  1/2  +  1/2  x  1/2  =  3/4.  It  is  worth
mentioning in passing that in the Tails case, the situation is in all respects analogous to experiment 1
with  an  urn  that  contains  one  red  ball  and  one  green  ball,  except  that  the  probability  of  the
corresponding situation is 1/2. Let us turn now to the probability of drawing a green ball. If the coin
has landed Heads then this latter probability equals 0. By contrast, if the coin has landed Tails then
the probability of drawing a green ball is 1/2.  Hence P(G) = 0 x 1/2 + 1/2 x 1/2 = 1/4.  It is worth
noting that the Tails case is analogous to experiment 1 with an urn that contains one red ball and one
green ball, except that the probability of the corresponding situation is 1/2. To sum up, according to
reasoning (I): P(R) = 3/4 and P(G) = 1/4.

However,  an  alternative  reasoning  (II)  goes  as  follows.  Let  us  term  iterated experiment  4,
experiment 4 repeated n times. If experiment 4 is repeated n times, say 1000 times, then there will be
in total 1000 red balls (1 x 1000 x 1/2 + 1 x 1000 x 1/2) and 500 green balls (0 x 1000 x 1/2 + 1 x
1000 x 1/2). According to reasoning (II) this experiment is equivalent, in the long run, to a type 1
experiment  with an urn that  contains 1500 balls  from whose 1000 red balls  and 500 green balls.
Hence P(R) = 1000/1500 = 2/3 and P(G) = 500/1500 = 1/3.

I shall argue that reasoning (II) in experiment 2 is fallacious. Reasoning (II) rests on the fact that
experiment 2 can be repeated and the corresponding situation is then analogous to a type 1 experiment
with 1500 balls from whose 1000 red and 500 green balls. In what follows, my concern will be with
showing that iterated experiment 2 is not structurally analogous to experiment 1.

For the sake of clarity, let us draw first a distinction between red-Heads (red balls created after the
coin has landed Heads), red-Tails (red balls created in the Tails case) and green-Tails (green balls
created after the coin has landed Tails) balls. In this context, it should be clear that there only exists
red-Heads, red-Tails and green-Tails balls in experiment 2.

The intuition underlying reasoning (II) in experiment 2 is that one is entitled to add red and green
balls  to  compute  frequencies.  However,  I  shall  argue  that  this  intuition  is  misleading.  With  our
terminology, it means that one feels intuitively entitled to add red-Heads, red-Tails and green-Tails
balls to compute frequencies. Let us begin with red-Heads balls.  In the current context,  red-Heads
balls can be considered properly as single objects. You are then entitled to envisage drawing isolately
red-Heads balls and these latter can acceptably be seen as single objects. By contrast, it appears that
red-Tails balls are quite indissociable from green-Tails balls. For you cannot draw a red-Tails ball
without drawing the associated green-Tails ball. And conversely, you cannot pick a green-Tails ball
without picking the associated red-Tails ball. From this viewpoint, it is mistaken to consider red-Tails
and green-Tails balls as separate objects. The correct intuition is that the association of a red-Tails
and a green-Tails ball  constitute one single object, in the same sense as red-Heads balls constitute
single objects. And red-Tails and green-Tails balls are best seen intuitively as constituents and mere
parts of one single object. In other words, red-Heads balls and, on the other hand, red-Tails and green-
Tails balls, cannot be considered as objects of the same type for frequency probability purposes. And
this situation justifies the fact that one is not entitled to add red-Heads, red-Tails and green-Tails balls
to compute probability frequencies. For in both cases, you add objects of intrinsically different types,
i.e.  you add  one single  object  with  the mere  part  of  another  single  object.  The correct  intuition,
however, is that red-Heads balls can be seen as single objects, while on the other hand, red-Tails and
green-Tails balls must be considered properly as mere parts of single objects which are on a par with
red-Heads objects. Now the analogy with experiment 1 proves to be ungrounded, since in this latter
case, red and green balls can legitimately be put on a par and considered as objects of the same type.
Now this invalidates the analogy of iterated experiment 2 with experiment 1. It follows that reasoning
(II) in experiment 2 is incorrect. This leaves us with reasoning (I). As we have seen, the whole idea of
reasoning as if experiment 2 were repeated is related to the frequentist interpretation of probabilities
(Hájek 2002). The upshot,  however, is  that this  latter  interpretation of probabilities should not  be
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adopted  unrestricted.  In  particular,  frequencies  should  not  be  computed  by  adding  objects  of
intrinsically different types.

At this step, it is worth considering the situation corresponding to the Incubator (Bostrom 2002, p.
64):1

The Incubator: ‘Stage (a) In an otherwise empty world, a machine called ‘the incubator’ kicks into
action. It starts by tossing a fair coin. If the coin falls [heads] then it creates one room and a man with
a black beard inside it. If the coin falls [tails] then it creates two rooms, one with a black-bearded man
and one with a white-bearded man. As the rooms are completely dark, nobody knows his beard color.
Everybody who's been created is informed about all of the above. You find yourself inside one of the
rooms.’ Question: What should be your credence that you have a black or a white beard? 2

Now it appears that the line of reasoning related to experiment 2 can be applied straightforwardly to
the  Incubator. It suffices to identify a black-bearded man with a red ball and a white-bearded man
with a green ball. The resulting situation is a machine that creates one red ball on Heads and one red
ball and one green ball on Tails. This has the effect or rendering the situation corresponding to the
Incubator fully analogous to experiment  4. Now given that reasoning (I) applies to experiment  4, it
follows that reasoning (I) also applies to the Incubator. 

3. The Sleeping Beauty problem: a solution

Let us envisage now the following experiment:

Experiment 5: an urn contains one red ball and one green ball. If Heads then due to a filtering effect,
you cannot see nor feel green balls and you can only see and feel one red ball. If Tails then there is no
filter effect and you can see and feel one red ball and one green ball. Your task is to evaluate the
probability of drawing a red or a green ball.

At this stage, it appears that experiment 5 is in all respects similar to experiment 4, except for what
concerns the Heads case. In this latter case, in experiment  4 there is only one red ball in the urn,
which is devoid of green balls. By contrast, in experiment 5, there is one red ball and one green ball in
the urn, but you cannot see nor feel the green ball, due a to selection effect (Leslie 1989, Bostrom
2002). But the outcome is that this precludes your from drawing the green ball in the Heads case, thus
rendering  the  situation  equivalent—from  a  probability  standpoint—to  experiment  4.  As  a
consequence, reasoning (I) also applies to experiment 5.

At this step, it is worth considering the Sleeping Beauty problem (Elga 2000, p. 143):

The Sleeping Beauty problem: ‘Some researchers are going to put you to sleep. During the two days
that your sleep will last, they will briefly wake you up either once or twice, depending on the toss of a
fair coin (Heads: once; Tails: twice). After each waking, they will put you back to sleep with a drug
that makes you forget that waking’. Once awakened, what should Sleeping Beauty's credence be that
(i) it is a Monday waking; and (ii) the coin has landed Heads?3 

‘First answer: 1/2, of course! Initially you were certain that the coin was fair, and so initially your
credence in the coin's landing Heads was 1/2. Upon being awakened, you receive no new information
(...). So your credence in the coin's landing Heads ought to remain 1/2. Second answer: 1/3, of course!
1 The Heads and Tails cases are reverted here, with regard to Bostom's original description. The extensive
version of the incubator also includes a later stage: ‘Stage (b): a little later, the lights are switched on, and you
discover that you have a black beard. Question: What should your credence in Tails be now?’.
2 Bostrom's original question: ‘What should be your credence that the coin fell tails?’.
3 Adapted from Elga (2000). Elga's original text: ‘When you are first [my emphasis] awakened, to what
degree ought you believe that the outcome of the coin toss is Heads?’. Considering here  any waking (Heads-
waking on Monday, Tails-waking on Monday or Tails-waking on Tuesday) is more general and equally allowed
by the formulation of the problem, since all wakings are indistinguishable.
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Imagine the experiment repeated many times. Then in the long run, about 1/3 of the wakings would be
Heads-wakings (...). So on any particular waking, you should have credence 1/3 that that waking is
Heads-waking, and hence have credence 1/3 in the coin's landing Heads on that trial’.

I shall  argue here that the situation corresponding to the Sleeping Beauty problem is  structurally
analogous  to  experiment  5.  In  the  Sleeping  Beauty  experiment,  the  time  variable  includes  two
temporal locations: Monday and Tuesday. Moreover, it appears that Beauty faces a selection effect in
the case where the coin lands Heads, for in this latter case, Beauty is not awakened on Tuesday. By
contrast, Beauty faces no selection effect in the Tails case, since she is awakened on both Monday
and Tuesday. In short, in the Heads case, Sleeping Beauty perceives the first time location (Monday)
but is unable to perceive the second temporal location (Tuesday). However, in the Tails case, she is
able to perceive both time locations (Monday and Tuesday). Let us identify now Monday with a red
ball and Tuesday with a green ball. Now a Monday-waking can be assimilated with drawing a red ball
and a Tuesday-waking can be identified to drawing a green ball. Furthermore, being not awaken on
Tuesday in the Heads case can be assimilated with being incapable of seeing nor feeling the green ball
due to  a  filtering  effect.  At  this  stage,  it  should  be  clear  that  the  situation  corresponding to  the
Sleeping Beauty problem parallels the urn analogy from experiment  5. It follows that reasoning (I)
also applies to the situation corresponding to the Sleeping Beauty problem.

At this stage, we are in a position to diagnose precisely the flaw in the argument for 1/3 in the
Sleeping Beauty problem. For this purpose, it is worth stating more accurately this latter argument. It
begins informally with the transposition of reasoning (II) in experiment 5. The argument for 1/3 rests
crucially on the fact that if the Sleeping Beauty experiment is repeated, it can be assimilated to a type
1 experiment. The corresponding line of reasoning runs as follows: if the Sleeping Beauty experiment
is repeated n times, say 1000 times, then there will be in total 1000 (1 x 1000 x 1/2 + 1 x 1000 x 1/2)
Monday-wakings and 500 (0 x 1000 x 1/2 + 1 x 1000 x 1/2) Tuesday-wakings. This experiment is
equivalent in the long run, the argument goes, to a type 1 experiment with an urn that contains 1500
balls from whose 1000 red and 500 green balls. The respective probabilities of a Monday-waking and
of  a  Tuesday-waking  are  computed  accordingly:  P(Monday-waking)  =  1000/1500  =  2/3  and  P
(Tuesday-waking) = 500/1500 = 1/3.

At this point, it is worth mentioning some additional steps which are specific to the argument for 1/3
and which are targeted at computing P(Heads) and P(Tails). Given that the total number of Heads-
wakings on Monday and of Tails-waking on Monday amounts respectively to 1 x 1000 x 1/2 = 500, it
follows that the probability of a Heads-waking on Monday and of a Tails-waking on Monday equals
500/1500 = 1/3. Now given that the probability of Heads equals the probability of a Heads-waking on
Monday, it follows that P(Heads) = P(Heads-waking on Monday) = 1/3. In parallel, the probability of
Tails equals the probability of a Tails-waking on Monday plus the probability of a Tails-waking on
Tuesday. Hence, P(Tails) = P(Tails-waking on Monday) + P(Tuesday-waking) = 1/3 + 1/3 = 2/3.

Now the flaw in the thirder's line of reasoning can be accurately diagnosed. The erroneous step is
the  analogy  step,  namely the  consideration  that  if  the  experiment  is  repeated  n times,  it  will  be
equivalent  to a type 1 experiment.  And the diagnosis  of the fallacy in the argument  for  1/3 now
parallels the flaw in reasoning (II) in experiments 2 and 5. What is at the origin of the problem is the
misleading intuition that each waking is intuitively considered as one single event. And the apparent
plausibility of the argument for 1/3 emerges from the fact that one feels pre-theoretically entitled to
add Monday wakings and Tuesday wakings to compute frequencies. However, as underlined above,
one must draw first a distinction between Monday-Heads, Monday-Tails and Tuesday-Tails wakings.
It follows then that Monday-Heads wakings and, on the other hand, Monday-Tails and Tuesday-Tails
wakings cannot be considered properly as objects as the same type. For Monday-Tails wakings are
indissociable from Tuesday-Tails wakings. And this finally prohibits adding (i) Monday-Heads and
Monday-Tails wakings and (ii) Monday-Heads and Tuesday-Tails wakings to compute frequencies.
This renders reasoning (II) fallacious and finally does justice to reasoning (I).

4. Elga's variation of the Argument for 1/3
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Although Elga's initial motivation of the argument for 1/3 bears on a repeated experiment,4 he further
presents his own version of the argument in a somewhat more sophisticated way, which doesn't make
use of the repeated experiment. Nevertheless, I shall argue that the preceding line of reasoning applies
all the same to Elga's variation of the argument for 1/3. Let us scrutinize then Elga's two-stage version
of the argument.  Elga argues first,  in virtue of a very restricted principle of indifference,  that  the
probability of a Tails-waking on Monday equals the probability of a Tails-waking on Tuesday. Lewis
(2001) agrees with that and the present account also accepts this conclusion, given that Monday-Tails
and  Tuesday-Tails  wakings  can  be  considered  properly  as  objects  of  the  same  type.  To  put  it
equivalently in terms of centered worlds (Quine, Propositional objects 1969, Lewis 1983): a Monday-
Tails centered world can legitimately be considered as analogous to a Tuesday-Tails centered world,
thus providing an adequate  model for applying a restricted principle of indifference.

Elga proceeds  then  to  demonstrate,  second,  that  the  probability  of  a  Heads-waking on Monday
equals the probability of a Tails-waking on Monday. He argues as follows:5

Now: if (upon awakening) you were to learn that it is Monday, that would amount to your learning that
you are in either H1 or T1. Your credence that you are in H1 would then be your credence that a fair coin,
soon to be tossed, will land Heads. It is irrelevant that you will be awakened on the following day if and
only if the coin lands Tails—in this circumstance, your credence that the coin will land Heads ought to be
1/2. But your credence that the coin will land Heads (after learning that it is Monday) ought to be the
same as the conditional credence P(H1|H1 or T1). So P(H1|H1 or T1) = 1/2, and hence P(H1) = P(T1).

This can be stated step-by-step as follows:

(E1) P(Monday-Heads | Monday-Heads or Monday-Tails) = P(Heads)
(E2) P(Heads) = 1/2
(E3) P(Monday-Heads | Monday-Heads or Monday-Tails) = 1/2 from (E10),(E11)
(E4) ∴ P(Monday-Heads) = P(Monday-Tails) from (E12)

It follows that the probability of a Heads-waking on Monday equals the probability of a Tails-waking
on Monday.  Combining then the two preceding stages,  Elga observes that  P(Monday-Heads)  = P
(Monday-Tails) = P(Tuesday-Tails). Given that these probabilities sum to 1, he further concludes that
P(Monday-Heads) = 1/3.

Now the above analysis can be applied straightforwardly to Elga's second stage of the argument.6 In
effect, from the present standpoint, Heads-waking on Monday and Tails-waking on Monday cannot be
considered legitimately as objects of the same type. For a Tails-waking on Monday is indissociable
from a Tails-waking on Tuesday, whereas a Tails-waking on Monday lacks such specific feature. To
put it into the framework of centered worlds: a Monday-Heads centered world cannot be considered
properly as analogous to a Monday-Tails centered world. For the Monday-Tails centered world has a
distinctive feature from the Monday-Heads centered world, namely the fact that the Monday-Tails
centered world is indissociable from the Tuesday-Tails centered world. And this precludes us from
regarding the Monday-Heads and the Monday-Tails centered worlds as analogous, thus blocking the
application of the principal principle to the relevant situation.

5. The problem of world reduction

4 Cf. Elga 2000, p. 143: ‘Imagine the experiment repeated many times. Then in the long run, about 1/3 of
the wakings would be Heads-wakings (...)’.
5 Cf.  Elga  2000,  p.  145.  In  Elga's  notation,  H1 =  Heads-waking on  Monday,  T1 =  Tails-waking on
Monday, T2 = Tails-waking on Tuesday. Elga considers here a variation of the experiment where the coin is
tossed after Beauty's wakening on Monday. But the same applies equivalently if the coin is tossed before.
6 I don't address here the fact that step (E11) assumes what is at issue in the Sleeping Beauty problem,
namely the computation of P(Heads). But this would be a red herring, I think. In effect, I take it that the core of
the Sleeping Beauty problem could be reduced to the correct evaluation of the probability of a Heads-waking on
Monday, of a  Tails-waking on Monday and of a Tails-waking on Tuesday. And from this viewpoint, Elga's
argument is accurately motivated.
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What precedes casts light on the central topic which is at issue here. The problem is related to the
reduction of one world to another, a problem notably hinted at by Quine (1969)7 and Goodman (1978,
p. 99-102).  As we have seen,  the flaw in the argument for 1/3 resides in the fact  that  objects of
different  types (to say it otherwise,  of different  worlds)  are added in order to compute probability
frequencies. To put it equivalently, the fallacy arises from the fact that the principal principle cannot
be applied properly to dissimilar centered worlds. However, this is only the negative aspect of the
issue, which appears to be two-faceted. For the positive aspect of the issue consists of settling how to
render  two  prima  facie  dissimilar  centered  worlds  compatible,  in  order  to  properly  compute
probability  frequencies.  To  solve  this  reduction  problem, we need  to  clarify  the  issue of  how to
transfer the objects of a given centered world into another, while preserving their internal structure.

Let  us  proceed  to  put  this  problem of  world  reduction in  a  more accurate  form. In the  present
context, two different instances of the issue emerge: (i) how can the objects of the Heads-world be
transferred into the Tails-world, without loss of content? (ii) how can the objects of the Tails-world be
transferred properly into the Heads-world? To simplify this issue, it is worth recalling the framework
of n-universes described in Franceschi (2001, 2002). N-universes are simplified universes which are
suited to probabilistic and logical reasoning, since they reduce a given complex world to its essential
components (time constant/variable, space constant/variable, color constant/variable, single/multiple
objects, etc.), while ruling out its unimportant features. Consider then the objects of the Incubator.
Recall that the Heads-world of the Incubator contains one red ball (a R1 object), while on the other
hand,  the  Tails-world  contains  one composite  object  made up of two indissociable  parts  (a  R1G1

object) which consist of a red ball and a green ball. Let us plug this into the framework of n-universes.
It is worth drawing a distinction between n-universes made up of single objects such as balls, and n-
universes made up of composite objects, such as two-parts balls. For present purposes, what we need
is a slight extension of the Heads-world and the Tails-world which are capable of accepting several
objects  of  the  same  type.  Let  us  call  respectively  ΩHeads-world*  and  ΩTails-world*  the
corresponding n-universes. The ΩHeads-world* contains multiple objects, has a time constant and a
space constant (to simplify matters, the urn can be assigned to a given space location), and a color
variable; in addition, the ΩHeads-world* only contains red (R1) or green (G1) balls. In this sense, the
ΩHeads-world* is  much similar  to our familiar  world.  Moreover,  the ΩHeads-world* is  suited to
probability purposes, since it is an adequate model for an urn with balls of different colors, at a given
time.

Figure 1. The Incubator in the ΩHeads-world* Figure 2. The Incubator in the ΩTails-world*

On the other hand, the ΩTails-world* also contains multiple objects, has a time constant, a space
constant, and a color variable. But to the difference of the ΩHeads-world*, the ΩTails-world* only
contains two-parts balls, made up of two indissociable (red or green) balls. Since these objects are
two-composite ones, the different objects of the ΩTails-world* can be denoted by R2, G2, and R1G1.8

Prima facie, the objects of the ΩTails-world* are no less different than the objects of the ΩHeads-
world*. But this intuition is mistaken, as a more in depth analysis will reveal. For we should bear in
mind that a R1G1 object of the ΩTails-world* is made up of two indissociable parts. And the point is
that there is no way to separate the red ball from the green one. No force in the ΩTails-world* is
capable of dissociating the two balls. Thus, you cannot pick a red (resp. green) ball without picking
the associated green (resp.  red)  ball.  Such dispositional  property  is  very different  from the usual
properties of our familiar world and from the ΩHeads-world*, where two balls of different colors are

7 Cf. Quine (1969,  Ontological Relativity,  p. 55):  ‘A usual occasion for ontological talk is reduction,
where it is shown how the universe of some theory can by a reinterpretation be dispensed with in favor of some
other universe, perhaps a proper part of the first’.
8 For present purposes, there is no need to differentiate R1G1 from G1R1 objects.
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fully separated. Familiar though it seems at first  glance, the ΩTails-world* is in reality a universe
with an inherently exotic feature.

To address the above reduction issues, we need some transformation rules. We have two types of
objects in the ΩHeads-world* (R1, G1) and three types of objects in the ΩTails-world* (R2, G2, R1G1).
Let us address then (i) the first instance of the above reduction problem: how can the objects of the
ΩHeads-world* be transferred properly into the ΩTails-world*? So, what do become in particular the
red balls once transferred into the ΩTails-world*, where there only exists two-composite objects?
Given the above, the most natural answer is that one red ball of the ΩHeads-world* becomes one
composite object made up of two indissociable red balls, once plugged into the ΩTails-world*. The
same goes for green balls: one green ball of the ΩHeads-world* becomes one composite object made
up of two indissociable green balls, once plugged into the ΩTails-world*. This does justice to the
intuition that when one ball enters the ΩTails-world*, it is then split into two indissociable parts.

Let us turn  now (ii) to the second instance of our transference problem: how can the objects of the
ΩTails-world* be transferred properly into the ΩHeads-world*? Recall that the ΩTails-world* only
contains objects of the R2, G2, and R1G1 type. In accordance with the preceding rule, one composite
object made up of two indissociable red (resp. green) balls, becomes one red (resp. green) ball, once
plugged into the ΩHeads-world*. But what becomes a R1G1 object once plugged into the ΩHeads-
world*, where there only exists  red and green balls? At this  step,  it  is useful  to make use of the
formalism of chemical  equations,  which is  well  suited to this  type of  situation.  With the help  of
stoichiometric coefficients, we get: R1 + G1  ≡ 2 R1G1: two composite object of the ΩHeads-world*
made up of one red and one green indissociable balls become one red ball and one green ball, once
plugged into the ΩTails-world*. At this step, the transformation rules that govern the transference of
objects from and to the ΩHeads-world*and the ΩTails-world* can be stated as follows:

R1 ≡ R2 (and also G1 ≡ G2)
R1 + G1 ≡ 2 R1G1 

With the adequate machinery at hand, we are now in a position to handle the first instance of our
world reduction problem: what is the equivalent of the Incubator in the ΩTails-world*, i.e. what is the
equivalent of the objects of the Heads-world plus the objects of the Tails-world, once transferred into
the ΩTails-world*? Now making use of the R1 ≡ R2 rule, we can deduce that the red ball of the Heads
world is transformed into one composite objects made up of two red balls, once plugged into the
ΩTails-world*. In total, the ΩTails-world* now contains one R2 and one R1G1 object: 

Figure 3. The Incubator in the ΩHeads-world*
after transference (void)

Figure 4. The Incubator in the ΩTails-world* after
transference

Let us tackle now the converse issue of the Incubator's equivalent in the ΩHeads-world*. What is
then the equivalent of the objects of the Heads-world plus the objects of the Tails-world, once these
latter are transferred into the ΩHeads-world*? We now use the R1 + G1 ≡ 2 R1G1 rule as a guidance.
Let us duplicate first the objects of both worlds: 

Figure 5. The Incubator in the ΩHeads-world* x 2 Figure 6. The Incubator in the ΩTails-world* x 2
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And we finally get, after replacement of the two R1G1 balls by one R1 and one G1 ball:

Figure 7. The Incubator in the ΩHeads-world*
after transference 

Figure 8. The Incubator in the ΩTails-world* after
transference (void) 

Adapted though it is to the Incubator case, our procedure lacks however a general formulation, in
order to tackle our issue of world reduction. But we are now in a position to sketch the solution of this
reduction problem in a more general form. Recall then the Incubator and its main transformation rule:
R1 ≡ R2. This yields a reduction coefficient of 2/1 from the ΩHeads-world* to the ΩTails-world* and
of 1/2 from the ΩTails-world* to the ΩHeads-world*. Now plugging the object of the ΩTails-world*
into the ΩHeads-world*, we get in total: 1 R1 + 1x1/2 R1 + 1x1/2 G1 =  1 R1 + ½ R1 + ½ G1 =  1 ½ R1

+  ½ G1 (i.e. one red ball and a half plus one half green ball). Now reasoning alternatively on the
ΩTails-world*x2 and the ΩHeads-world*x2, in order to make halves disappear, we get in total: 2 R1 +
2x1/2 R1 + 2x1/2 G1 =  2 R1 + 1 R1 + 1 G1 =  3 R1 + 1 G1 (i.e. three red balls and one green ball. Fig.
7).

Finally, the lesson of the Sleeping Beauty Problem is the following: our current and familiar objects
or concepts such as balls, wakings, etc. should not be considered as the sole relevant classes of objects
for  probability  purposes.  We  should  bear  in  mind  that  according  to  an  unformalized  axiom of
probability theory, a given situation is standardly modeled with the help of urns, dices, balls, etc. But
the  rules  that  allow  for  these  simplifications  lack  an  explicit  formulation.  However  in  certain
situations, in order to reason properly, it is also necessary to take into account somewhat unfamiliar
objects whose constituents are pairs of indissociable balls or of mutually inseparable wakings, etc.
This lesson was anticipated by Nelson Goodman, who pointed out in Ways of Worldmaking that some
objects  which  are  prima  facie  completely  different  from  our  familiar  objects  also  deserve
consideration:  ‘we do not  welcome molecules  or  concreta  as  elements  of our everyday world,  or
combine tomatoes and triangles and typewriters and tyrants and tornadoes into a single kind’.9 As we
have seen, we cannot add unrestrictedly objects of the Heads-world with objects of the Tails-world.
For some objects of the Heads-world are mere parts of objects in the Tails-world. And reciprocally,
some mere constituents  of  objects  of  the Tails-world are  genuine  and independent  objects  in  the
Heads-world.  Now the  status  of  our  paradigm probabilistic  object,  namely a ball,  appears  world-
relative,  since  it  can  be  a  whole  in  the  Heads-world  and  a  part  in  the  Tails-world.  Once  this
goodmanian step  accomplished,  we should  be  less  vulnerable  to  certain  subtle  cognitive  traps  in
probabilistic reasoning.10
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