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Abstract

Teleparallel Gravity (TPG) is an alternative, but empirically equivalent,
spacetime theory to General Relativity. Rather than as a manifestation of
spacetime curvature, TPG conceptualises gravitational degrees of freedom as
a manifestation of spacetime torsion. In its modern formulation (as presented
e.g. in the book-length study by Aldrovandi and Pereira (2013)), TPG also
and expressly purports to be both a gauge theory of translations (G), as well
as locally Lorentz-invariant (L). However, the reasoning which these authors
invoke in order to implement (L) and (G) is often involved; indeed its mathe-
matical coherence seems on occasion to be questionable. As such, clarification
of the reasoning upon which TPG proponents rely in constructing the theory
is sorely needed. The present paper will address this need. More broadly, we
aim at achieving three interrelated tasks: (i) to shed light on TPG’s aspira-
tions of maintaining (G) and (L) at the same time, (ii) to illuminate TPG’s
conceptual and interpretative structure, and (iii) to offer a succinct method-
ological assessment of TPG as a theory per se.
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1. Introduction

According to received wisdom—which nowadays permeates even popular
culture—Einstein taught us that gravity is a manifestation of the curvature of
spacetime geometry. Taken to encapsulate the gist of General Relativity (GR),
Wheeler’s slogan that “spacetime tells matter how to move; matter tells spacetime
how to curve” (Misner et al. 1973, p. 5) has been properly canonised.

Intriguingly, though, an idea dating back to Einstein (1928) himself (see, e.g.,
Sauer (2006)) squarely challenges this orthodoxy. A geometric alternative to GR,
equally consistent with observations, Teleparallel Gravity (TPG) represents gravity
not as a manifestation of spacetime curvature, but of a different geometric struc-
ture: spacetime torsion.1 Following Møller (1961), broader awareness of TPG soon
grew within the (gravitational) physics community. Since the work of Lyre and
Eynck (2003) and, more recently, Knox (2011), TPG has also started to captivate
philosophers.2

Vis-à-vis an observationally viable competitor to GR, physicists and philoso-
phers of science will immediately wonder (cf. Stanford (2023)): how to evaluate
TPG’s merits as a physical theory, over and above its empirical adequacy? The
present paper will proffer a systematic answer: we’ll methodologically assess the
reasoning that TPGists deploy in TPG’s construction, as well as the resulting the-
ory itself. As a spin-off, our analysis will clarify several conceptual-interpretative
questions that TPG raises (and that have spawned ample misunderstanding). In
particular:

• What are TPG’s fundamental physical variables and their interpretation?

• To what spacetime setting is TPG committed?

• Does TPG geometrise gravity, or should we rather regard it as a force theory?

Throughout, we’ll focus on TPG’s modern-day version, expounded most ex-
plicitly and comprehensively by Aldrovandi and Pereira (2013). With its main
champions being predominantly based in Brazil, we’ll henceforth dub it “TPG’s
Brazilian version” (or just “TPG” simpliciter). Its distinctive objective—largely
glossed over in extant philosophical analyses—is to implement two desiderata (to
be fleshed out below):

(G): TPG should be a “gauge theory of translations”.

(L): TPG should be “locally Lorentz transformation invariant”.
1Recall that curvature, familiar from Riemannian geometry, is the property whereby parallel

transporting a vector around a closed loop doesn’t preserve the direction in which that vector
points. Torsion arises in extensions of Riemannian geometry developed in the early 1920s by Weyl
and Cartan (see, e.g., Scholz (2012)), and was independently re-invented by Einstein in the late
1920s (see Sauer (2006)). It denotes the property whereby the operations of transporting two
vectors at a point along the directions picked out by the other don’t commute. Consequently,
parallelograms don’t close (see, e.g., Jiménez et al. (2019) for further discussion).

2See inter alia Dürr and Read (2024), March et al. (2025, 2023), Mulder and Read (2024),
Read (2023), Read and Teh (2018), Weatherall (2025), Weatherall and Meskhidze (2024), Wolf
and Read (2023), and Wolf et al. (2024a).
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The key task before us will be to carefully reconstruct TPG’s Brazilian version, and
to examine whether TPG successfully achieves this goal. We’ll find that to claim
that it does so is dubious. In particular, the heuristics that Aldrovandi and Pereira
(2013) employ arguably at least in places run afoul of mathematical incoherence.
For a version of TPG that respects both (L) and (G), one must move to a different
theoretical context, e.g. that of Poincaré gauge theory, and concomitantly to a
different geometrical framework, such as that of Cartan geometries.3

The plan of the paper is as follows. In §2, we’ll zoom in on TPG’s two cen-
tral desiderata, (L) and (G). §3 will reconstruct the reasoning deployed by inter
alios Aldrovandi and Pereira (2013) in building a theory which supposedly makes
good on them. The greater transparency about TPG’s construction and conceptual
architecture will facilitate reflections on their coherence. In §4, we’ll address the
other above-mentioned conceptual-interpretative questions regarding TPG. §5 will
conclude with an overall methodological assessment of TPG.

2. Desiderata for and historical context of TPG

Let’s put a little more flesh on the bones of the two desiderata that Brazilian
TPG purports to satisfy—first from a more systematic perspective (§2.1), and then
from a more historical perspective (§2.2).

2.1. Brazilian TPG as a Lorentz-invariant gauge theory. (G) demands that
TPG incorporate key elements of gauge theories (of the classical Yang-Mills type).
In particular, TPGists tout it as a gauge theory for the translation group T4. The
implementation of the gauge principle is supposed to achieve a kind of conceptual
unification: one would thus be able to describe gravity within the same conceptual
framework, harnessing the same principles, as for the other forces of the Standard
Model (see, e.g., Aldrovandi and Pereira (2013, ch. 3); cf. Krššák et al. (2019, p. 5),
and Hehl (2017, §§1–2)).4

(L) demands that TPG respect full invariance under local (point-dependent)
Lorentz transformations (LLTs). A precursor to TPG’s Brazilian version original
form (discovered by Einstein (1928), systematically unpacked by Møller (1961), and
gauge-theoretically re-derived by Hayashi (1977), see below) was “purely tetradic”
(i.e. formulated solely in terms of (co)tetrad fields with the coefficients eaν). The
components of this theory’s torsionful (“Weitzenböck”) spacetime connection are
given by

Wµ
λν = eaν∂λe

µ
a. (1)

The Weitzenböck connection Wµ
νλ is evidently not invariant under LLTs of

the (co)tetrad fields (with (Λa
b(x)) ∈ SO(1,3), and the inverse (Λ b

a (x))),{
eaµ
e µ
a

−→
{

Λa
b e

b
µ

Λ b
a e µ

b

. (2)

3Only within such a framework can one make sense of both local Lorentz invariance and
local translation invariance—see Huguet et al. (2021a,b) and Le Delliou et al. (2020a,b), and for
discussion in the philosophical literature March et al. (2025) and Weatherall (2025).

4For sceptical remarks on TPG’s abilities to do this which are adjacent to our own concerns,
see March et al. (2025), Wallace (2015), and Weatherall (2025).
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It is, however, invariant under global (i.e., rigid or point-independent) Lorentz trans-
formations of the tetrad fields. As such, the theory appears to violate what one
might dub the “principle of equivalence of frames”: the assertion that, as far as their
suitability for describing physical reality is concerned, all frames (i.e. tetrads) are
on a par (more on this below). This feature might strike one as problematic. To
salvage local Lorentz invariance (L), Brazilian TPG introduces—in addition to the
set of (co)tetrads as auxiliary quantities—a spin connection. One then defines the
components of the torsionful spacetime connection in terms of both.

2.2. From Einstein’s sickbed to Brazil. To understand the origins of these two
desiderata, it’s best to regard TPG’s Brazilian version as the confluence of two lines
of research (cf. Aldrovandi and Pereira (2013, ch. 4.1)). The first we’ll label “GR’s
geometric modification”. This approach explores an extension of Riemannian geom-
etry, and implements it into GR (at the level of the action or at the level of the field
equations). At bottom, one generalises the framework of Riemannian geometry to
so-called Riemann–Cartan geometry to allow for torsion. GR’s geometric modifica-
tion then draws on mathematical identities that relate the Riemannian quantities
and those of the torsionful geometry (while setting the curvature to zero). The
latter are plugged into the original GR expressions to obtain their equivalents in
terms of a flat, torsionful connection.

The roots of this approach date back to Einstein’s (1928) quest for a unified
classical field theory (and more mathematical work by Weitzenböck (1923)). Ein-
stein effectively discovered a reformulation of GR in terms of a torsionful but flat
connection. Intent on exploiting the additional degrees of freedom to accommodate
electromagnetism, Einstein evinces no awareness of the fact that his Lagrangian den-
sity is dynamically equivalent to the Einstein–Hilbert one for GR. To the best of our
knowledge, Møller (1961, p. 27) was the first to explicitly articulate this geometric
reformulation of GR (by dint of tetrads). Møller also highlights a blemish of this
reformulation that determines the key task of latter-day TPG: its “surplus degrees
of freedom” (op.cit., p. 28). In modern terminology, insofar as one views the torsion-
ful connection as physically meaningful, LLT covariance is broken; GR’s torsionful
reformulation posits in principle unobservable structure by requiring a preferred
class of (globally Lorentz transformation-related) reference frames (tetrads). Each
class singles out a different connection: generically, two LLT-related tetrads induce
distinct connections.

Some of the earlier work on TPG (e.g., Andrade and Pereira (1999); but also
more recently, Krššák et al. (2019) or Hohmann (2023)) portray TPG as a geomet-
ric modification of GR: in virtue of mathematical identities, GR’s mathematical
structures can be reformulated in terms of a flat, torsionful connection (dispensing
with a formal commitment to GR’s non-flat Levi-Civita connection).

The other origin of TPG’s Brazilian version stems from gravitational gauge the-
ories for the translation group T4. Its clearest beginnings lie in the work of Hayashi
and Nakano (1967). Cho (1976) explicitly constructs the gravitational analogue of
classical Yang–Mills theory for translations in terms of fibre bundles. The natural
Lagrangian density at which Cho arrives, quadratic in the field strength, turns out
to be dynamically equivalent to the Einstein–Hilbert action’s density. Again, insofar
as one regards the field strength as a physically meaningful quantity, LLT covari-
ance is broken: Cho’s translational gauge theory of gravity then posits empirically
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elusive degrees of freedom: an equivalence class of globally Lorentz transformation-
related tetrads (see, e.g., Hayashi (1977, p. 442) for an explicit statement, also
pointing out that the same isn’t true of the (LLT-invariant) Levi-Civita connec-
tion). Alongside expositions of TPG as a geometric modification of GR, we also
find this gauge-theoretic approach in the early literature on Brazilian TPG (e.g.,
Andrade and Pereira (1997, 1999) and Andrade (2000)).

Both approaches focussed on GR’s gravitational sector: they primarily dealt
with GR’s vacuum part. To the extent that the non-vacuum case was considered,
either (typically for the geometric approach) the general relativistic matter-gravity
coupling (with covariant derivatives with respect to the Levi-Civita connection)
seems to have been simply retained, or (typically for the gauge-theoretic approach)
the minimal coupling prescription was modified by replacing the Levi-Civita con-
nection by the gauge-covariant derivative. In the latter case, strict empirical equiva-
lence with GR was lost.5 Both approaches were brought together most perspicuously
by Hayashi and Shirafuji (1979) (building on Hayashi (1977)). They clarified the
mathematical equivalence of the gauge-theoretic and the geometric derivation.

At the heart of TPG’s Brazilian version, we discern two motives that drive
its further development (with the results of Hayashi and Shirafuji as the point
of departure). The first is a desire for a geometrically distinct, but empirically
equivalent alternative to GR (Arcos and Pereira (2004, 2005); see also Andrade
(2000, p. 1)): Brazilian TPGists are bent on preserving GR’s empirical content,
but recast it via a flat, torsionful geometry. As indicated, this effectively translates
into only altering the vacuum/purely gravitational part of GR, and leaving the
matter coupling to the Levi-Cevita connection intact.

Given this premise, one inherits the problem of redundancy, alerted to by
Møller (1961): prima facie, local Lorentz covariance is violated—and, even more
rebarbatively, in an in-principle undetectable way. This elicits the second princi-
pal motive behind TPG: taking up the baton from Hayashi and Shirafuji’s (1979)
gauge-theoretic derivation of the gravitational action (or, equivalently, GR’s geo-
metric modification), TPGists seek to restore LLT covariance—in other words, to
implement (L).

Arguably, the need to implement (L) is perceived as especially strong because
in the (implicitly) adopted geometric framework for both the gauge-theoretic and
the GR-modificatory approach frames/tetrads have only a subsidiary status: akin
to potentials, they merely serve as expedient props for expressing the entities of
physical-geometric substance. All (LLT-related) tetrads are on a par, in accordance
with the principle of equivalence of frames, mentioned above. In the presupposed
Riemann–Cartan geometries (see, e.g., Eguchi et al. (1980) and Hehl and Obukhov
(2007)), that is, objective content attaches only to LLT-invariant structures; in
particular, metric structure, torsion and curvature, are LLT-invariant.6

By LLT-covariantising the theory obtained through the gauge-theoretic and
geometric-modificatory route, TPG’s Brazilian version aspires to “fully settle”
TPG’s “basic foundations” (Aldrovandi and Pereira 2013, p. 40, our emphasis).
The key conceptual innovation to that end was the introduction of what is later

5In fact, Obukhov and Pereira (2004) argue that even consistency is in jeopardy for that case.
6As such, it would be at least unnatural for a theory to break LLT-invariance—albeit not

perhaps strictly metaphysically verboten.
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referred to as the “inertial connection”.7 Regrettably, this crucial move has been
largely overlooked in most philosophical analyses of TPG (e.g., Knox (2011, p. 271))
—and has led to fallacious criticism (e.g., op.cit., §2.2; or Garecki (2010)). In short:
TPG’s Brazilian version is, in essence, the attempt to “upgrade” a gauge theory
of gravity for the translation group that reproduces GR’s empirical content to a
theory that is furthermore LLT-invariant, thanks to this inertial connection.

If successful, that alone would render TGP attractive for gauge theory afi-
cionados. The two main gauge theories of gravity—one for the Poincaré group, and
the other for the larger affine group, with both respecting (L)—are the Einstein-
Cartan(-Kibble-Sciama) theory (see, e.g., Hehl et al. (1976) and Trautman (2006))
and the metric-affine gauge theory of gravity, propounded by Hehl (2023) and Hehl
et al. (1995). The former reduces to GR in its standard form in the absence of
spinning matter; in the presence of spinning matter, it deviates slightly from GR
(see, e.g., Hehl (2017, sect.10), Hehl et al. (1976)). Hence, strictly speaking, the
Einstein–Cartan theory isn’t an empirically indistinguishable geometric alternative
to GR, as TPGists hanker after; rather, it qualifies as a minor correction of GR
for whenever spin can’t be neglected. Mathematically, the metric-affine theory is
significantly more complicated, detracting from its appeal.

3. Reconstructing TPG

Ordering and clarifying the arguments and conceptual manoeuvres found in
the pertinent literature (and in particular Aldrovandi and Pereira (2013), but also
Pereira and Obukhov (2019)), this section will provide a careful and (hopefully)
more pellucid reconstruction of Brazilian TPG. First, we’ll scrutinise the theory’s
kinematics: those parts dealing with gravity in the absence of matter sources (§3.1).
We’ll then flesh out Brazilian TPG’s dynamics: how matter is supposed to couple
to gravity as its source (§3.2). For the reader’s convenience, by way of a summary,
§3.3 will compile the main steps.

3.1. Kinematic part. The conceptual architecture of TPG’s kinematics—its
purely gravitational sector—is erected in two principal stages. The first draws
on gauge-theoretic machinery, in an effort to implement (G); the second consists in
implementing (L).

3.1.1. Gauge-theoretic elements. Motivated by the considerations sketched in §2,
Brazilian TPG starts off with gauge-theoretic elements. The idea is to adopt as the
launching pad structures of what one might expect a gravitational gauge theory of
the translation group T4 to look like.

In this spirit, suppose that the principal bundle structure of the theory be given
locally by P ∼= M ×AM. Here, AM denotes the affine generalisation of Minkowski
space.8 In local coordinates (xµ, χa), Brazilian TPGists (in particular Pereira and

7To the best of our knowledge, it isn’t mentioned in the literature prior to Aldrovandi et al.
(2009, §§5–6).

8In our presentation of these gauge-theoretic elements, we generally follow Pereira and Obukhov
(2019, §1.2), while using some of the notation from Wallace (2015).
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Obukhov (2019)) claim then that the connection 1-form on this bundle is given by

ωa = Ba
µdx

µ + dχa. (3)

Now, given some local section σ : M → P , we obtain the connection form on the
spacetime manifold M via the pull-back of the connection 1-form:

ha := σ∗ωa = (Ba
µ + ∂µχ

a)dxµ. (4)

Here some issues already arise (identified by Huguet et al. (2021a,b) and Le Delliou
et al. (2020b)). TPGists want to identify ha with a co-frame (co-tetrad). However,
coframes are usually understood to be the pullbacks (along some local section σ) of
the canonical 1-form θ on the frame bundle. This, however, isn’t what is going on
in the above construction.9 Indeed, one can already sense how these points might
push one to a Cartan-geometric framework, in which the canonical 1-form θ is
folded into the connection (see again March et al. (2025) and Weatherall (2025) for
philosophical discussion of this move, the former including extensive mathematical
discussion of Cartan geometries which we won’t repeat here).

For the sake of charity (and fidelity to TPGists’ reasoning), let’s set aside these
concerns, legitimate as they might be, and press on with an analysis of (3) and (4).
Qua mathematical function that assigns to any point on M a quadruple of real
numbers, χa = χa. This difference in notation is intended to signal a difference in
interpretation: as figuring in the connection 1-form on P , χa denotes coordinates
of points on the affine Minkowski space, AM, which constitutes the fibres. By
contradistinction, χa—albeit of the same functional-mathematical form—denotes
spacetime coordinates; they label spacetime points. That is, mathematically, de-
scriptions in terms of χa contain representational surplus structure—as far as the
conceptual resources devised hitherto are concerned. Unless one introduces addi-
tional assumptions that would underwrite such distinctions, (Ba

µ + ∂µχ
a)dxµ and

Ba
µdx

µ should however encode the same physical content; the piece ∂µχ
adxµ, as

an artefact of the introduction of a physically unwarranted origin in the transition
from AM to (co)tangent space, lacks physical significance.

Following the analogy with electromagnetism, let’s pro tempore declare ha our
provisional gravitational potential. (Eventually, we’ll settle on a different candidate:
a modification of ha.) What field strength—the physical quantity representing the
gravitational field (as opposed to the auxiliary, unphysical status of the potential)—
should we then take this potential to generate? The analogy with electromagnetism
suggests a prima facie natural candidate: the potential’s exterior derivative,

T a[h] := dha ≡ ∂[µh
a
ν]dx

µ ∧ dxν ≡ ∂[µB
a
ν]dx

µ ∧ dxν . (5)

At first blush, three features commend this preliminary choice of the gravita-
tional field strength:

1. It’s obtained in exact analogy with the electromagnetic field-strength: FEM =

9Pereira and Obukhov (2019) propose considering a principal translation bundle. As Le Delliou
et al. (2020a, p.4) counter, “(i)n the translation-only gauge formalism summarized by Pereira and
Obukhov (2019), the canonical form is identified with the translation connection ωT , a one-form
defined on the bundle of translations-only P (M,T4, π). This identification is not mathematically
allowed.”
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dA ≡ ∂[µAν]dx
µ ∧ dxν , where A = Aµdx

µ denotes the electromagnetic 4-
potential.

2. In line with our preceding comments on the physical redundancy of an origin
in the transition from AM to tangent space, the preliminary field-strength
doesn’t depend on an origin: ha and ha + dθa = (∂µ(x

a + θa) +Ba
µ)dx

µ have
the same exterior derivative (with an θa an arbitrary differentiable function,
corresponding to an alternative choice of origin).

3. Consequently, T a remains invariant under local gauge transformations. The
latter are changes of section,

σ(x) = (xµ(x), χa(x)) → (xµ(x), χa(x) + ϵa(x)), (6)

viz. position-dependent translations on tangent space

χa → χa + ϵa(x). (7)

It might be tempting to proceed by defining the purely gravitational La-
grangian density by further exploiting the analogy with electromagnetism (after
suitably introducing a Hodge dual, see e.g. Aldrovandi and Pereira (2013, ch. 8),
and more on which below). But this step would be premature given the ambi-
tions of Brazilian TPG: its advocates demand that the LLT invariance postu-
late (L) be respected. Evidently, equation (5) flouts this. For a Lorentz matrix
(Λa

b(x)) ∈ SO(1,3), we have:

T a [Λh] = Λa
bT

b [h] + dΛa
b ∧ hb, (8)

with dΛa
b ∧ hb, provisional field strength thus acquires a non-covariant term. It

mars the provisional field strength’s LLT-covariance.
Only once we have remedied this in a modification of our tentative gravitational

field strength, (5), are we ready for the next step.

3.1.2. Implementing LLT invariance. We’ll now unpack how TPGists such as Al-
drovandi and Pereira (2013) and Pereira and Obukhov (2019) seek to implement the
desideratum of LLT-invariance, (L). With the potential ha formally constituting a
co-tetrad (or so the claim goes—despite the voiced worries about the relationship,
or lack thereof, between ha and the canonical 1-form θ on the frame bundle), it
accrues (or so TPGists seem to think, recall §2.2) objective-geometric content only
up to LLTs. One may therefore plausibly require that LLTs not reflect genuine
differences in the theory to be constructed.

In the present context, LLT-invariance is understood (see e.g. Krššák et al.
(2019, p. 11), Aldrovandi and Pereira (2013, p. 46)) to demand covariance of ha

under LLTs acting on internal indices. We take this to imply that under{
χa 7→ χa := Λa

bχ
b,

Ba
µ 7→ Λa

bB
b
µ

(9)

the field ha (or some suitably modified version thereof) should be invariant. At
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first blush, this desideratum seems natural to impose. Unfortunately, however, it
isn’t tenable so long as one retains Ba

µ’s transformation behaviour necessitated
by ωa as a gauge connection: the transformations given above aren’t consistent
with ha’s invariance under translations (nor with dha’s gauge-invariance). One
cannot consistently allow arbitrary concatenations (or direct products10) of both
translations, χa → χa+ϵa, as gauge transformations (resulting in Ba

µ → Ba
µ−∂µϵ

a),
and LLTs as per (9): translations and Lorentz transformations don’t commute; their
concatenation would depend on their order.

Vis-à-vis this dilemma, we decide to jettison (G): the desideratum that TPG
be a gauge theory of translations. Our choice chimes with the explicit admission of
e.g. Krššák et al. (2019) that the primary goal of the modern variant of TPG is to
achieve LLT-invariance. We’ll return later (§5) to the ramifications of abandoning
translation invariance.

3.1.3. LLT-invariance without local translation invariance. To accomplish (L),
TPGists introduce the additional structure of an “affine spin-connection 1-form”
ω̇a

b ≡ ω̇a
bµdx

µ (see, e.g., Eguchi et al. (1980, §2)). This will allow us to declare
co-tangent vectors at different points equivalent (“parallel”). TPGists define this
spin connection implicitly via:

1. Relative to the co-frame (co-tetrad) ha (from (4)), its components are sup-
posed to vanish:

ω̇a
bµ

∣∣
h
≡ 0. (10)

2. In virtue of a spin connection’s transformation behaviour, relative to a
frame/tetrad h′a = Λa

bh
b that is related to ha via a local Lorentz transfor-

mation effected by the Lorentz matrix (Λa
b(x)) ∈ SO(1, 3) (with the inverse

(Λ b
a )), its components become:

ω̇a
bµ

∣∣
h′ = Λa

c∂µΛ
c
b . (11)

Note that it follows directly from the first condition, together with the first Maurer–
Cartan equation and its exterior derivative (i.e. the first Bianchi identity) that ω̇a

b

has vanishing curvature,

Ṙa
b := dω̇a

b + ω̇a
c ∧ ω̇c

b ≡ 0. (12)

(Recall that the Maurer-Cartan Equations are preserved under LLTs.) By contrast,
the spin connection’s torsion,

Θ̇a := dha + ω̇a
b ∧ hb, (13)

doesn’t vanish: it coincides (LLT-invariantly) with dha, and thus with our tentative
gravitational field strength (5).11

10Of course, they may be combined in a way that does yield a well-defined group action, namely
via their semi -direct product. This yields the Poincaré group (see e.g. Weinberg (1995, ch. 2)).
For now, suffice it to observe that it requires a different formal setup than the one presented here
(and in the standard TPG literature).

11This follows from evaluating the first Maurer–Cartan Equation in the frame ha. The result—
Θ̇a ≡ dha—is, of course, independent of the choice of frame; choosing ha as the frame for evalu-
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Associated with this spin-connection is a(n LLT-)covariant derivative (Al-
drovandi and Pereira 2013, §1.2):

Ḋµ := ∂µ +
i

2
ω̇ab

µSab, (14)

where ω̇ab
µ := ηbcω̇a

cµ (with (ηab) := diag(1,−1,−1,−1) = const.), and Sab is a rep-
resentation of the Lorentz group, appropriate to the object on which the covariant
derivative acts (for example, for a scalar field, we have Sab = 0).

3.1.4. LLT-covariantising the field strength. With the covariant derivative in place,
let’s return to TPGists’ aim of implementing (L). The task is to find a suitable
modification of the tentative gravitational field strength (5), in line with (9).

Two alternative routes suggest themselves. One might first try to redefine the
field-strength as the covariant exterior derivative of the preliminary gravitational
potential (4):

T̃ a := Ḋha ≡ 2(∂[µB
a
ν] + ω̇a

b[µh
b
ν])dx

µ ∧ dxν

≡ 2(Ḋ[µB
a
ν] + ω̇a

b[µ∂ν]χ
b)dxµ ∧ dxν .

(15)

Unfortunately, T̃ a fails to respect (9), as evidenced by the second term in the
last line of (15). Put otherwise, T̃ a differs from the field strength adopted in the
TPG literature—and is prevented from conforming to the desideratum of LLT-
invariance—by the term ω̇a

b[µ∂ν]χ
bdxµ ∧ dxν .

Following the TPG literature (e.g. Aldrovandi and Pereira (2013, §4.5) or Al-
drovandi and Pereira (2015, §3.2)), let’s therefore first covariantise the potential
(4), and then redefine the field-strength in an LLT-covariant way, via the covariant
exterior derivative of this LLT-covariantised alternative potential.

That is, instead of ha, one introduces the new potential ḣa, with the partial
derivative in (4) replaced by the covariant one associated with the spin connection:

ḣa := (Ḋµχ
a +Ba

µ)dx
µ ≡ ha + ω̇a

bµχ
bdxµ. (16)

The field strength is now defined as this new potential’s covariant exterior deriva-
tive:

Ṫ a := Ḋḣa ≡ 2Ḋ[µB
a
ν]dx

µ ∧ dxν . (17)

The last identity follows from our earlier observation that the spin-connection ω̇a
b

has vanishing curvature. Consequently, its associated covariant derivatives com-
mute.

In virtue of the LLT-covariance secured by the covariant derivative, this en-
sures that under ḣa → Λa

bḣ
b (or (8) directly), the new field-strength transforms

covariantly, Ṫ a → Λa
bṪ

b. While we have thus achieved LLT-covariance, we reit-
erate the drawback hinted at already in §3.1.2: we were forced to sacrifice gauge
invariance (invariance under translations).

ating the torsion is analogous to evaluating gauge-invariant quantities (say, the energy density of
an electromagnetic or general-relativistic gravitational wave) by a convenient gauge fixing (e.g.,
Hobson et al. (2006, ch. 18)).
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One can glean this directly from the new gravitational potential ḣa. In con-
tradistinction to the original choice, ha, under translations χa → χa + ϵa(x),
ḣa = (Ḋµχ

a + Ba
µ)dx

µ doesn’t remain invariant, due to its construction via Ḋ
(rather than a partial derivative): ḣa → ḣa + ω̇a

bµϵ
bdxµ. The TPG literature (e.g.

Aldrovandi and Pereira (2013, p. 46)) tries to address this loss of gauge-invariance
by postulating that under translations, χa → χa + ϵa(x), the B-parts of ḣa trans-
form according to Ba

µ → Ba
µ − Ḋµϵ

a (rather than Ba
µ → Ba

µ − ∂µϵ
a)—so as to

compensate for Ḋµχ
a → Ḋµχ

a + Ḋµϵ
a in the transformation of ḣa. Unfortunately,

this move is obscure at best, and spurious at worst. Recall that Ba
µ’s origins lie

in the gauge connection ω (as per (4)). As such, it’s just ad hoc to change its
transformation behaviour!

But this ad hocness runs deeper. It borders on incoherence: because of those
origins, the additional, newly-postulated transformation behaviour requires a math-
ematical object that retains its identity when its components transform covariantly
under LLTs as well as in the prescribed manner under translations. What object fits
this profile? At best, this is unspecified: conceptually, the object remains entirely
unclear. Plausibly, we need an object whose components transform suitably un-
der combinations of LLTs and translations, that is, under Poincaré transformations
(which are semi-direct products of LLTs and translations). But the formal appa-
ratus of which the standard TPG literature avails itself doesn’t allow that. So, at
worst, we run into an inconsistency. It seems, again, that the mathematics pushes
us here to what was naturally invited right at the start: a move to (e.g.) Cartan
geometries, and Cartan connections—see Huguet et al. (2021a,b), Le Delliou et al.
(2020a,b), March et al. (2025), and Weatherall (2025).

TPG’s advocates bear the burden of proof to rebut this objection: it’s incum-
bent on them to demonstrate the existence of a suitable mathematical object. For
now, we’ll proceed as before by dropping the assumption of translation invariance.
With Ṫ a, we obtain a well-defined (albeit, as just explained, translation-variant)
2-form,

Ṫ := Ṫ a∂a. (18)

By construction, it’s invariant under LLTs. In fact, by (without loss of generality)
evaluating it in a frame in which ω̇a

bµ = 0 vanishes (viz. a frame that is a global
Lorentz boost of ha), we see that it coincides with the spin connection’s torsion
(13).

3.1.5. Purely gravitational action. On the basis of the gravitational potential, ḣa

and its induced field strength, Ṫ , our next task is to construct a plausible analogue
of the Lagrangian density of the source-free electromagnetic field (or classical Yang-
Mills theories more generally), which is proportional to FEM ∧ ⋆FEM. For that, we
need a Hodge star operator, ⋆.

The standard formal desiderata on a Hodge dual operator are reviewed by
Aldrovandi and Pereira (2013, ch. 8). Crucially, a Hodge dual requires a volume
element (besides the inner product on tangent space, which we naturally have with
the tangent space Minkowski metric η).

Instead of with the (alleged) tetrad ha obtained in §3.1.1, we’ll here have to
work with our new gauge potential ḣa. It too induces a metric in a standard way,
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via
g := ηabḣ

a ⊗ ḣb ≡ ηabḣ
a
µḣ

a
νdx

µ ⊗ dxν . (19)

Because of its LLT-invariance, this is precisely the same metric as would be induced
by ha (from (4)). Without loss of generality, we can evaluate the expression of g
in terms of ḣa by going to a special frame in which ω̇a

bµ = 0 (viz. a frame that is a
global Lorentz boost of ha, as per (4). Consequently, g ≡ ηabh

a ⊗ hb. Accordingly,
the associated volume element is given by√

| det(g)| ≡ |ḣ| := | det(ḣa
µ)| ≡ | det(ha

µ)|. (20)

With this volume element in place, the definition Hodge star ⋆ḣ as presented in
the TPG literature—see Aldrovandi and Pereira (2013, ch. 8)—carries through. To
highlight its (implicit) dependence on ḣa, we added the subscript.

In complete analogy with standard gauge theories, the vacuum or “purely gravi-
tational” action (i.e. sans matter–gravity coupling) is then finally stipulated to be:12

S0[ḣ] :=
1

16π

∫
Ṫ [ḣ] ∧ ⋆ḣṪ [ḣ]

=
1

16π

∫
ηab(Ṫ

a ∧ ⋆ḣṪ
b)

≡ 1

16π

∫
d4x|ḣ|

(
1

4
Ṫ ρ

µνṪ
µν

ρ +
1

2
Ṫ ρ

µνṪ
νµ

ρ − Ṫ ρ
µρṪ

νµ
ν

)
.

(21)

For transparency, we made explicit the dependence of Ṫ and the Hodge star on ḣa

in the first line. The third line in (21) (which follows from the second through ex-
plicit computation, see e.g. Aldrovandi and Pereira (2013, §9.1)) figures spacetime-
indexed terms obtained from Ṫ . With the components of ḣa, we here define

Ṫ λ
µν := ḣ λ

a Ṫ a
µν , (22)

and raise and lower indices in the standard way, as well as contract, via gµν ≡
ηabḣ

a
µḣ

b
ν and its dual gµν .

Variation of the purely gravitational action (21) with respect to ḣa yields the
vacuum field equations. Before turning to the full field equations—for both the
vacuum and the non-vacuum case—let’s consider how in TPG matter and gravity
are supposed to interact.

3.2. Adding matter: TPG’s action for matter-gravity interactions. What
is TPG’s action for the matter sector as the source for gravity? And how should we
combine the purely gravitational action (21) and the action parts for matter to form
TPG’s full action (whose variation yields the complete—matter-cum-gravity—field
equations)? As we’ll elaborate below, the prescription for TPG’s matter-gravity in-
teraction is simply the familiar general-relativistic one; it’s merely expressed through

12A subtlety concerns the fact that the trace operator, involved in defining the purely gravita-
tional TPG Lagrangian, requires a metric. Like in electromagnetism, the most natural choice (the
so-called Cartan–Killing bilinear form) can’t be used. Again like in electromagnetism, it’s natural
to use the Minkowskian tangent space metric η := ηabdχ

a ⊗ dχb, with the constant-component
matrix (ηab) := diag(1,−1,−1,−1) instead (Aldrovandi and Pereira 2013, p. 89).
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suitable combinations of TPG’s basic terms (viz., the spin connection, the gravita-
tional potentials, and associated field strength).

First recall the situation in GR. There, the matter/gravity coupling prescrip-
tion is furnished by the so-called minimal substitution rule in the matter action.13

It stipulates the replacement of partial derivatives in the special-relativistic by co-
variant ones action to obtain the general-relativistic (and hence generally covariant)
one:

∂µ → ∇µ := ∂µ −
i

2
Ωa

bµS
b

a . (23)

Here Ωa
bµ denotes the Levi-Civita connection’s spin-connection and Sab := ηbcS

c
a

the representation of the object on which the derivative is supposed to act.14

Now to the situation in TPG. The coupling prescription is obtained in two
steps. The first is to draw on the well-known fact that, within Riemann–Cartan ge-
ometry, an arbitrary compatible Lorentz connection with the coefficients Aa

bµ (and
the associated covariant derivative D) decomposes into the metrically-induced Levi-
Civita connection’s spin-connection Ωa

bµ and the Lorentz connection’s contortion
K = K(A) (see e.g. Aldrovandi and Pereira (2013, p. 10)):

Aa
bµ ≡ Ωa

bµ +Ka
bµ, (24)

with the contortion
Ka

bµ :=
1

2
(T a

µ b + T a
b µ − T a

µ b). (25)

It in turn is a(n LLT-invariant) function of the Lorentz connection’s torsion with
the coefficients (relative to a set of tetrads Xa)

T a
µν := 2(D[µX

a
ν]) ≡ 2(∂[µX

a
ν] +Aa

b[µX
b
ν]). (26)

Spacetime and algebraic indices are inter-converted, as usual, in (25) via the com-
ponents of Xa or its dual. Indices are raised/lowered with the components of the
spacetime or the tangent space metric (their respective duals).

The Lorentz connection to which we’ll apply the above decomposition is, of
course, the spin connection ω̇, introduced in §3.1.3:

ω̇a
bµ ≡ Ωa

bµ + K̇a
bµ, (27)

where the contortion K̇a
bµ = 1

2
(Ṫ a

µ b + Ṫ a
b µ − Ṫ a

µ b) turns out to be given in terms of
the (suitably indexed) components of our gravitational field strength (17).

We are now ready for the second step, which yields TPG’s coupling prescrip-
13It’s known not always to be unambiguous. As elaborated above, by verbatim importing GR’s

coupling, TPG inherits these cases of occasional ambiguity. For the state-of-the-art on minimal
coupling and associated ambiguities (and, indeed, how one can understand minimal coupling such
that these ambiguities are overcome), see March (2025).

14Recall that for an arbitrary set of tetrads Xb := X µ
b ∂µ and their dual co-tetrad Xb := Xb

µdx
µ,

it’s defined as Ωa
bµ := Xa

λ∇µX
λ

b ≡ Xa
λ(∂µX

λ
b + Γλ

µνX
ν

b ), where ∇ denotes the standard
covariant derivative in GR, induced by the metric’s Levi-Civita connection with the coefficients
Γλ

µν . One can write Ωa
bµ entirely in terms of the Xb: one has Ωab

µ = Xν[a(Xν
b]
,µ − Xµ

b]
,ν +

Xσ|b]Xµ
cXνc,σ). It’s straightforward to verify that the spin connection transforms like a Lorentz

connection under LLTs (that is, under Xa → Λa
bXb and Xa → Λ b

a Xb): Ωa
bµ → Λa

cΩ
c
dµΛ

d
b +

Λa
c∂µΛ

c
b .
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tion. We keep the general-relativistic coupling fully intact but merely rewrite the
Levi-Civita spin connection via the identity (27):

Ωa
bµ ≡ ω̇a

bµ − K̇a
bµ. (28)

One thus obtains the teleparallel action for matter via the substitution in the special-
relativistic matter action:

∂µ → ∇µ = ∂µ −
i

2
(ω̇a

bµ − K̇a
bµ))S

b
a . (29)

The resulting teleparallel matter part of the action is then, just like in GR,
added to the purely gravitational part. In fact, since the preceding operation
amounted to merely rewriting the general-relativistic coupling procedure, TPG’s
coupling prescription is in a completely natural sense—that of a mathematical
identity—literally the same as in GR.15

3.3. Recapitulation. So much for the construction of Brazilian TPG. To close
this section, let’s quickly recapitulate the main conceptual moves which were made
en route to this theory:

1. Seek to build a torsionful theory of spacetime which is (i) empirically equiv-
alent to GR and (ii) invariant under both local translations (thereby making
good on relevant desiderata from the gauge paradigm) and LLTs.

2. By virtue of not using the appropriate mathematical framework (e.g. Cartan
geometry), note that one cannot make good on (ii); as such, our preference
would be to abandon local translation invariance.

3. Note prima facie problems with building a locally Lorentz invariant theory
using the potentials ha and field strengths T a.

4. In light of these problems, build a theory—albeit in a somewhat ad hoc
manner—with appropriately covariantised potentials ḣa and field strengths
Ṫ a and an EM-like Lagrangian.

5. Reverse-engineer the matter sector of GR in order to ensure empirical equiv-
alence with that theory.

One can see both TPG’s flirtations with mathematical incoherence in (2), and its
ad hocness in (3) and (4). With these points in mind, let’s now embark on a more
thoroughgoing appraisal of the theory.

4. Illuminating TPG’s interpretative structure

Complementing our reconstruction (and rectification) of TPG’s formalism, this
section will present and substantiate its interpretation: what is TPG about? What
are its basic physical quantities, and spacetime structure? As a corollary, we’ll
clarify whether to view TPG as identical with, or distinct from, GR.16

15For further discussion of this coupling prescription, see Mulder and Read (2024).
16This question is also discussed by March et al. (2025, 2023), Weatherall and Meskhidze (2024),

and Wolf et al. (2024b).
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TPG, we submit, should be interpreted as a theory about the metric g and a
metrically compatible connection Γ̇ (or, equivalently, its associated spin-connection
ω̇), inducing the covariant derivative Ḋ. TPG, we’ll argue, is a gravitational theory
about spacetime, represented by the metric-affine manifold ⟨M, g, Γ̇⟩.

Both the metric and the connection represent gravitational degrees of freedom.
Like in GR, the former encodes chronogeometric manifestations of gravity. Con-
ceptually independent from the metric, the affine structure, induced by Γ̇, plays
a double role. One is to define the sense of parallel transport (and, accordingly,
a covariant derivative) of which one avails oneself in order to formulate TPG (as
we’ll spell out below). Its second role is to yield TPG’s gravitational field strength
Ṫ—which corresponds to Γ̇’s torsion. In this sense, TPG also geometrises gravity
(i.e., models it as a manifestation of TPG’s geometry). In contrast to GR’s or-
thodox interpretation (see, e.g., Duerr (2020)), though, TPG doesn’t reduce the
effects of a gravitational force to inertial phenomena.17 Contrary to the received
opinion amongst TPGists, TPG isn’t a force theory of gravity either. In fact, as
we’ll expand on below, it turns out to be questionable whether it possesses inertial
structure at all (at least in its ordinary sense).

It would be facile to simply stipulate the foregoing interpretative labels as a
priori verbal decrees. We need reasons that motivate an interpretation: it must
help us shed light on the theory’s organic structure. A fully-fledged account of
semantics lies outside of the present paper’s ambit. Instead, in line with a focus
on a theory’s pragmatics (see Curiel (2019, 2023) for further details), our working
hypothesis will be to treat an interpretation of a physical quantity as reasonable,
provided that we can discern a perspicuous role it plays in the theory’s overarching
structure. Rather than an idle postulate or an inscrutably opaque epithet, a formal
term’s physical interpretation elucidates its function within the theory. It redounds
to our understanding of how the theory’s elements hang together (cf. Elgin (2000,
2006)). The interpretation sketched above delivers this. To that end, we’ll inspect
TPG’s fundamental structure from three different angles—the field equations, the
action, and the equations of motion—and show that TPG’s proposed interpretation
satisfies our adequacy criterion.

TPG’s field equations—obtained from varying the action with respect to the
gravitational potential ḣa

µ, and identical to the Einstein equations but written in
terms of TPG variables—take the following form (Krššák et al. 2019, p. 17):18

Ḋσ

(
ḣṠ ρσ

a

)
= κḣΣ̇ ρ

a + κḣΘ ρ
a , (30)

17Interestingly, TPG’s does unify gravity and inertia in a way that Einstein praises GR for (see
Lehmkuhl (2014) and Lehmkuhl (2009)). The difference is that whereas, on Einstein’s view, GR
unifies both but dispenses with the gravitational force as an independent entity, TPG can be seen
as achieving the unification by dispensing with inertia as an independent entity.

18Two (slightly different) variants of an alternate—but mathematically equivalent—form of the
field equations are given by Krššák et al. (2019, p. 17). Both forms involve, however, pseudo-
tensors, non-geometric objects (in a precise technical sense) defy a natural interpretation (see
e.g., Duerr (2021, §3.3)). We therefore don’t consider these forms of the field equations as suitable
for identifying physical quantities with perspicuous roles.
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where

Ṡ ϱσ
a :=

1

2

(
Ṫ ϱσ
a + Ṫ ϱσ

a − Ṫ ϱσ
a

)
− ḣ σ

a Ṫ θϱ
θ + ḣ ϱ

a Ṫ θσ
θ ,

Σ̇ ρ
a :=

1

κ
ḣ λ
a Ṡ νρ

c Ṫ c
νλ − ḣ ρ

a

ḣ
L̇,

and
Θ ρ

a := −1

h

δLs

δḣa
ρ

is the standard (general-relativistic) energy-stress tensor for matter, where Ls is the
Lagrangian of a general source field (L = L̇+ Ls).

The field equations’ structure naturally reflects our proposed interpretation: it
parallels the “fairly generic template” (Pitts 2015, p. 9) for field-theoretic dynamics,
instantiated by, for instance, the inhomogeneous Maxwell equations, or the Gauss
law for Newtonian Gravity. That is, the LHS figures a differential operator (viz.,
a covariant divergence19), acting on a linear combination of TPG’s field strength.
The RHS represents the source terms for the dynamics: energy-momentum due to
matter and gravity. Here, the energy-stress tensor of ordinary matter (defined in the
standard way, i.e. as the variation of the matter Lagrangian with respect to the met-
ric) is unsurprising. Upon a little reflection, including gravitational energy-stress is
likewise plausible. Roughly, assuming that energy-stress in whatever form creates
a gravitational field, we may expect also gravitational energy itself to contribute to
it (cf. Hobson et al. (2006, p. 471) for GR).20

A compelling motivation for interpreting Ṫ as a field strength can be gleaned
directly from TPG’s Lagrangian for its action (21). Recall that it was explicitly
constructed in analogy with Yang–Mills theories, where the Lagrangian is quadratic
in the field strength. We may thus conclude that Ṫ indeed plays the role of a field
strength in a clearly discernible (if only analogical) sense.

Talk of TPG’s gravitational field strength, however, ought to be divorced from
the notion of a gravitational force, exerted by a gravitational field. By the former
we mean a physical entity that deflects test particles from inertial trajectories; a
field signifies a spatiotemporally extended physical entity—something on top of
spacetime, which depends on the latter, but not vice versa. TPG posits neither
(pace, e.g., Aldrovandi and Pereira (2013, p. 65) and Pereira (2014, §4.2)).

19Note that this covariant divergence operator encodes geometric structure, given by the con-
nection Γ̇. This is no different from other field theories, with their laws implicitly or explicitly
being committed to geometric structure (typically: Euclidean or Minkowksian, cf. Pooley (2013)).

20For the sake of the argument, we’ll grant that Σ̇ ϱ
a may be interpreted as gravitational energy-

momentum. Prima facie this seems plausible. First, it’s composed of squares of the field strength,
as one would expect. Secondly, and more precisely, it’s closely related to the natural candidate for
gravitational energy, obtained from Noether’s theorem: the canonical energy-stress associated with
the gravitational field. Σ̇ ϱ

a differs from the latter merely by having the problematic part removed
that would turn it into a pseudotensor. Thirdly, from a particle physics perspective gravity—
as a long-range force—is associated with a massless field (in the technical, field-theoretic sense).
One would therefore expect the gravitational energy-momentum tensor’s trace to vanish—as is
indeed the case (Krššák et al. 2019, p. 17). Notwithstanding such initial plausibility, a more
detailed analysis is necessary that takes into consideration desiderata such as conservation laws,
reasonable results for gravitational waves in vacuum, static or stationary spacetimes, or energy
conditions.
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To see why, let’s re-examine the principal reason that TPGists tend to adduce
in favour of TPG’s force-theoretic interpretation. It’s based on a consideration of
the equation of motion for test particles. With the 4-velocity u, the equations of
motion for test-particles are given by (see Aldrovandi and Pereira (2013, p. 64), also
for slightly alternate forms):

uµḊµuν = Ṫ λ
νµu

µuλ. (31)

From this, Aldrovandi et al. (2009, p. 7) educe “a separation between inertia and
gravitation [...]. As a consequence, the right-hand side of the equation of motion [...]
represents the purely gravitational force [...]. The inertial effects coming from the
frame non-inertiality are represented by the connection term of the left-hand side
[...].” The equation of motion in TPG is explicitly interpreted as “a force equation
describing the interaction of a spinless particle with the gravitational field. Accord-
ing to this description, the only effect of the gravitational field is to induce a torsion
in spacetime, which will then be the responsible for determining the trajectory of
the particle” (Andrade and Pereira 1999, p. 14). Torsion here is supposed to “(act)
as a force [...], quite analogous to the Lorentz force equations of electrodynamics”
(Aldrovandi and Pereira 2013, p. 66).

On two grounds, we reject this interpretation. First, the “separation between
inertia and gravity” is specious: both sides contain gravitational degrees of freedom.
Even though the LHS depends only on the symmetric part of Γ̇ (and not directly on
its anti-symmetric part, and hence torsion), one cannot pronounce the LHS “purely
inertial”, i.e. gravity-free.

To see why, let’s tease out the allegedly “purely inertial” contributions on the
LHS of the equation of motion in a given gravitational scenario (say, a Kerr space-
time) by ignoring gravity (i.e. by setting the alleged gravitational force—the tor-
sion—to zero). For vanishing torsion, it follows straightforwardly that consistency
with the field equations requires that the LHS reduce to the geodesic equation for
Minkowksi spacetime. This differs ex hypothesi from the LHS of the equation of
motion in the scenario we considered. Consequently, gravitational effects must be
present on the original LHS, too.

TPGists’ second reason for asserting a separation of gravity and inertia is
that “[i]n the presence of gravity, there is also a preferred class of frames: the class
whose anholonomy is related to gravitation only, not [to] inertial effects” (Aldrovandi
et al. 2009, p. 3). The argument seems to be that the spin-connection ω̇ (or,
equivalently, the spacetime connection Γ̇) vanishes in a privileged class of (global
Lorentz transformation-related) frame, a class that TPGists identify as inertial.
Recall now that relative to another Lorentz-boosted frame, by construction the
spin-connection takes a non-vanishing form (see (11)); it explicitly depends only on
the Lorentz transformation in question. From this, TPGists infer that ω̇ encodes
the accelerative effects of this Lorentz boost, and hence inertial effects (cf. also
Aldrovandi and Pereira (2013, ch. 2.4)). This argument is irredeemably flawed. For
every spin-connection ϖ in a Riemann–Cartan geometry, so-called normal frames
exist. In them the connection coefficients vanish: ϖ′a

bµ = 0 (e.g., Hehl (2017, p.
157)). Relative to a frame obtained from a Lorentz transformation of the normal
frame via Λ, the connection coefficients take the form ϖ′′a

bµ = Λa
c∂µΛ

c
b—exactly

like in TPG. But there is no reason to assume that ϖ is “purely inertial” in origin;
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our argument was of complete mathematical generality.
The upshot of the preceding critique is to dismiss the alleged separation of in-

ertia and gravity that TPGists impute to the equation of motion for test-particles.
On the received (Aristotelian–Galilean–Newtonian–Einsteinian) view, inertial struc-
ture and the notion of a force are defined correlatively (diSalle 2009; Petkov 2012):
the former denotes a physically privileged path structure, corresponding to natu-
ral states of motion, in which bodies persist whenever unaffected by interactions;
forces cause—and are appealed to in order to explain—deviations from inertial
states of motion. It seems doubtful that this scheme applies to TPG: as we saw
above, gravity enters both sides of the equation of motion for test-particles under
the influence of gravity. While Γ̇ defines a physically distinguished—even if not
easily operationalisable (Mulder and Read 2024, p. 126)—affine/path structure, we
can’t unambiguously identify it with inertial motion, from which gravity may cause
deflections. In TPG, the gravitational field strength Ṫ and TPG’s physically priv-
ileged affine structure are too intertwined to underwrite the customary distinction
between forces and inertial structure. It’s much more natural to say that in TPG, Γ̇
(in tandem with g) is endowed with gravitational significance en entier—not merely
its anti-symmetric part (i.e. its torsion Ṫ ).21

In this sense, TPG represents gravity by geometrising it (pace TPGists). Fol-
lowing Lehmkuhl (2009, ch. 9), we must however distinguish the sense of geometri-
sation, characteristic of TPG, from that traditionally attributed to GR. The latter
is essentially eliminative: such geometrisation reduces physical degrees of freedom
to manifestations of inertial structure. As just argued, TPG doesn’t implement
this kind of geometrisation. The geometrisation salient to TPG accounts for some
gravitational degrees of freedom in terms of geometric properties of an augmented
spacetime structure (augmented, that is, vis-à-vis a Riemannian geometry, whose
non-topological structure is exhaustively characterised by its metric). In TPG,
gravitational effects are conceived of as manifestations of the spacetime structure,
represented by the metric-affine manifold ⟨M, g, Γ̇⟩.

One might perhaps object: what about the Levi Civita connection Γ? Why
not include it (such that TPG is associated with the metric-biaffine spacetime
⟨M, g, Γ̇,Γ⟩)? After all, as we remarked in §3.2, TPG’s matter-gravity coupling ef-
fectively—even if only obliquely, through suitable combinations of Γ̇ and g—employs
the Levi-Civita connection. TPGists routinely parade the proof that test particles
satisfying TPG’s equations of motion satisfy the geodesic equation for the Levi-
Civita connection (e.g., Aldrovandi and Pereira (2013, §6.2.3)). Of course, at the
level of mathematics one can do this, since Γ is uniquely definable from g (cf. Wolf
et al. (2024b)); at the level of interpretation, however, we’ll dig our heels in, for
we descry no incoherence in insisting that fundamentally TPG is committed to the
spacetime structure represented by ⟨M, g, Γ̇⟩, whilst at the same time conceding
that matter-gravity coupling can be effectively described by additional geometric
structure.22

Having established TPG’s interpretation as a theory about the metric and a
torsionful connection, we can now also settle the issue of TPG’s theoretical equiv-

21Evidently, our arguments here go beyond those of Mulder and Read (2024), who have it that
TPG does have a standard of inertial motion in the sense that it is built around a connection Γ̇
with geodesics. This is true, but our current discussion shows that there is more to the story.

22Cf. Cheng and Read (2021), Passon (2006), and Wallace (2020).
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alence with GR: are GR and TPG different formulations of the same theory, or
should we regard them as empirically indistinguishable, but distinct? For our pur-
poses (cf. Dürr and Read (2024, §2.1)), we’ll adopt the view that theories count as
distinct, if they admit of distinct, coherent interpretations. In contrast to merely
notational (“synonymous”) variants of each other, distinct theories limn the world
in ontologically perspicuous, individually intelligible and coherent ways (see Butter-
field (2018), Coffey (2014), and Møller-Nielsen (2017) for details and independent
arguments).

From this stance towards theory individuation, GR and TPG’s distinctness
ensues (contra, e.g., Garecki (2010) and Knox (2011)—but in agreement with Mul-
der and Read (2024) and Wolf et al. (2024b)). The former is about a spacetime
represented by ⟨M, g,Γ⟩ with the curved, but torsion-free Levi-Civita connection
Γ. By contradistinction, TPG is about a spacetime represented by ⟨M, g, Γ̇⟩, with
the flat but torsionful connection Γ̇. TPG and GR are thus empirically equivalent,
genuine geometric rivals. As Järv and Kuusk (2023) rightly observe, this makes
TPG an interesting case for geometric conventionalists (Duerr and Ben-Menahem
2022; Dürr and Read 2024): TPG is a geometrically alternative theory, empirically
no less adequate than GR.

If it’s an alternative, ought we maybe to plump for it—perhaps even prefer
TPG over GR? So far, we refrained from judgement whether it’s a methodologically
good choice. We’ll next turn to that question.

5. Concluding assessments

Having clarified TPG’s conceptual foundations and interpretation, we’d finally
like to know what to make of it: how does TPG fare vis-à-vis customary criteria
for theory choice? This section will assess TPG’s methodological status. We’ll
commence with TPG’s liabilities before turning to its prospects.

For the sake of charity, we’ll assume that the mathematical queries raised in
our reconstruction can be addressed. That lingering doubts exist detracts, of course,
from TPG’s present appeal.

As our above analysis of TPG’s conceptual setup disclosed, consistency de-
mands that TPGists renounce either Local Lorentz Covariance, (L), or the claims
to a gauge theory, (G). This dilemma undermines TPG’s main innovation and sell-
ing point since the work of Hayashi (1977) (recall §2.2).

We argued for relinquishing (G) as the lesser evil.23 First, as reported, TPGists
themselves tend to prioritise (L). Secondly, the gauge-theoretic elements utilised in
TPG’s construction were already highly revisionary—if not verging on ad hoc—vis-
à-vis more standard gauge theories. Hence, if one decided to keep (G), the gains

23That said, sacrificing (L)—that is, breaking LLT-covariance—shouldn’t be regarded as anath-
ema; it wouldn’t be an egregious choice. First, it effectively amounts to singling out a class
of globally Lorentz transformation related frames. To accept their status as physical doesn’t
seem significantly worse than accepting absolute velocities in Newtonian physics. Albeit perhaps
philosophically not optimal (see, e.g., Pooley (2013)), we have learnt to live with them. Secondly,
treating TPG, like GR, as a low-energy effective theory that receives higher-order correction terms,
we may conclude that TPG is best seen as a limit of some f(T ) Gravity (or even something more
general). Within these theories, the loss of LLT-covariance is harmless: the dynamical symmetries
of such theories will generically be only global Lorentz transformations, not local ones (cf. Pooley
(2013, §4)).
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in coherence with the gauge paradigm would be small. Thirdly and finally, as we’ll
elaborate presently, in terms of ‘number’ of redundant (or underdetermined) degrees
of freedom, abandoning (L) amounts to a degeneracy of ∞6 options (Garecki 2010,
p. 12), corresponding to the six free functions characterising a local Lorentz matrix
(Λa

b) ∈ SO(1, 3). By contrast, abandoning (G) amounts to “merely” a degeneracy
of ∞4, corresponding to the four free functions characterising a translation. The
balance favours trading (G) for (L): we “save” ∞2 redundant degrees of freedom.

Given that choice, a main demerit of TPG comes to the fore: TPG postulates
surplus structure.24 That is, TPG presupposes more structure (viz. the choice
of an origin on tangent space) than its dynamical laws “see” and “make use of”.
Hence, TPG presupposes more structure than is in principle observable: different
choices of an origin are equally possible. Correlatively, we may say that TPG is in
principle underdetermined up to a choice of a tangent space origin, a choice which
is immaterial for the theory’s further assertions about the world (analogously to
absolute velocities in Newtonian mechanics).

Another line of critique targets TPG’s ad hocness. We already noted the
tinkering—departures from standard gauge-theoretic constructions—requisite for
TPG’s construction (at the purely gravitational level). That, in the end, we were
forced to jettison a central tenet of the gauge paradigm—gauge invariance of the
field strength—only exacerbates the sense of artificiality. Regrettably, it’s not con-
fined to the gravitational level. TPG’s (non-minimal) coupling prescription not
only contravenes what one would expect in a gauge theory of gravity. It wouldn’t
be unfair to characterise it as transplanted from GR (after suitably re-written in
TPG’s geometric terms); TPG’s coupling prescription is engineered to reproduce
GR’s empirical content. Arcos and Pereira (2005, p. 9), for instance, admit that
their “basic guideline will be to find a coupling prescription that results [in] equiv-
alen[ce] to the coupling prescription of general relativity”. TPGists “graft” (as
Lakatos (1989) would aptly put it) GR’s coupling prescription on TPG. In this
sense, TPG’s matter-gravity coupling counts as ad hoc: it doesn’t emanate from
the heuristic resources inherent to TPG but has to imported from GR. Note that
ad-hocness of this Lakatosian ilk—the charge of heuristic patchiness (for Lakatos
portending an unhealthy idea, e.g., op.cit., p.5; p. 112, fn. 2)—isn’t to be con-
flated with inconsistency; rather it articulates a methodologically suspect form of
contrivance.25

24We stress that such symmetry-related redundancy doesn’t necessarily constitute a fatal flaw
of a theory. It may perhaps be viewed as a strong motivation for looking for an alternative,
purged of the redundancy. With GR, such an unimpeachable alternative to TPG is on the table.
Nonetheless, we plead for permissive pluralism: a symmetry-free alternative may be desirable, but
not mandatory (see, e.g., Møller-Nielsen (2017) and Read and Møller-Nielsen (2020) for details).

25The comparison with Einstein-Cartan theory is instructive. Here the coupling prescription,
in line with what one would expect in a standard gauge theory, would be

∂µ → Dµ := ∂µ − i

2
Aab

µ Sab ≡ ∇µ +
i

2
Kab

µ Sab, (32)

where Aab
µ denotes the Einstein-Cartan spin-connection (the theory’s gauge connection), Sab a

suitable representation of the Lorentz group (appropriate to the object the derivative is supposed
to act upon), ∇µ the covariant derivative associated with the metric’s Levi-Civita connection,
and Kab

µ the contorsion of the Einstein-Cartan spin-connection. For vanishing spin, however, the
torsion and contorsion vanish; the coupling then reduces to the general-relativistic coupling.

Note that, albeit minimal with respect to the theory’s natural connection, the coupling in
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After these setbacks for TPG’s advocates, let’s turn to its plausible promises.
Four stand out as (even if at this stage somewhat tentative). They, to our minds,
justify further research:

1. Gravitational energy. In GR, the issue of how to define gravitational energy
(or whether the notion itself makes sense in GR) is notoriously controversial
(see, e.g., de Haro (2022), Duerr (2020), and Szabados (2009)). At first blush,
in TPG, the problem seems more tractable (Aldrovandi and Pereira 2013, ch.
10): as we saw, a bona fide tensor emerges naturally within the field equations
that is related to canonical energy-stress, associated with gravity. Whether
an interpretation as representing gravitational energy-stress is ultimately sat-
isfactory, though, remains to be seen, as we indicated. In particular, further
research is necessary to investigate whether TPG’s gravitational energy turns
out to be useful for calculations, explanations or interpretations (e.g., for un-
derstanding energy extraction processes in astrophysics, or shedding new light
on asymptotic flatness).

2. Potentially fruitful extensions. TPG suggests two generalisations that prima
facie deserve further pursuit. One concerns so-called f(T ) gravity. They are
the TPG analogues of GR’s generalisations to a general (rather than merely
a linear) function of the Ricci scalar, so-called f(R) gravity: the gravitational
action in f(T ) gravity is taken to be a general (rather than merely a linear)
function of the torsion (see, e.g., Bahamonde et al. (2023), Cai (2016), and
Paliathanasis (2016)). Such models have been mooted as alternatives to Dark
Energy and inflation. Like f(R) Gravity (over which f(T ) gravity has some
advantages), they are worthy of exploration as effective or toy models in their
own right. A second line of further inquiry concerns Kaluza–Klein theories,
attempts to unify electromagnetism and gravity by allowing extra dimensions.
For such extensions, TPG has been argued to trump GR (see, e.g., Aldrovandi
and Pereira (2013, ch. 16)).

3. Newtonian Teleparallel Gravity. Recent literature has studied the Newtonian
limit of TPG (e.g., Read and Teh (2018), Schwartz (2023), Schwartz and
Blanckenburg (2024), Vigneron et al. (2025), and Wolf et al. (2024a)): it
yields a geometrised version of Newtonian Gravity, of significant interest for
mathematical and conceptual reasons, as well as applications in condensed
matter physics or string theory.

4. Improved action principle. Certain natural technical advantages of the TPG
action have been claimed over the Einstein–Hilbert action (Hammad 2019;
Krššák and Pereira 2015). These may carry over to applications for black
hole horizons and gravitational thermodynamics (see Wolf and Read (2023)
for some discussion).

With a modicum of charity, we may conclude that TPG receives a mixed score
in terms of its merits and shortcomings. It would strike us as gung-ho to assert
TPG’s superiority over GR. Entirely reasonable, however, seems the more modest

Einstein–Cartan theory is non-minimal with respect to the Levi-Civita connection, thanks to the
mathematical identity in the last equation. This stands in contrast to TPG, where the natural
connection doesn’t couple minimally.
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claim about its in-principle viability and its status as an interesting, geometric
alternative to GR that—warts and all—deserves further research.
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