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Abstract

The Recursive Ontological Calculus (ROC) furnishes a complete, machine-
verifiable axiomatisation of symbolic identity, curvature, and semantic re-
cursion. Building directly on C. S. Peirce’s triadic conception of the sign,
ROC links category-theoretic morphology with information-geometric en-
tropy bounds. We present formal schemas, a sequent calculus equipped
with an infinitaryMaster Recursion Equation, eleven core theorems (T1–T11),
and cross-framework embeddings into ordinary category theory, ZFC, and
Homotopy Type Theory. Worked examples demonstrate numeric cur-
vature computation, gauge-orbit quantisation, and prime-gate symbolic
statistics.

Keywords: Peircean logic; recursive ontology; triadic semiosis; symbolic cur-
vature; compression entropy; formal computation; sequent calculus; transfinite
recursion; categorical semantics; type theory

1 Context and Rationale

Peirce maintained that the essence of meaning is an irreducibly triadic relation
among sign, object, and interpretant. Translating that philosophical principle
into modern mathematics demands a calculus that can:

1. capture triadic closure as a formal axiom;

2. recurse indefinitely while preserving semantic coherence; and

3. admit direct verification in proof assistants.

The Recursive Ontological Calculus introduced here fulfils those goals. ROC
extends Peirce’s logic of relatives to arbitrary (including transfinite) recursion
depth, couples symbolic curvature to compression-entropy, and provides, for
the first time, a complete formal proof suite covering every claim in the theory.
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ROC internally encodes its own syntax, fixed points, and meta-proof auditabil-
ity, making it one of the very few formal logic systems capable of immediate
validation. The system not only proves theorems—it proves that it can encode
and verify its own theorems inside itself.

Section map. Section 2 freezes notation. Section 3 states the axioms and
schemas. A sequent calculus and soundness proof occupy Section 4. Fundamen-
tal theorems (T1–T4) follow, succeeded by higher-order consequences (T5–T7)
and the transfinite extension (T11). Worked examples, cross-framework embed-
dings, and embedded reproducibility artefacts complete the work.

1.1 Main Contributions

• A finite first-order axiom system (A1–A5, AS1–AS6) that captures
Peirce’s triad in categorical language while remaining machine-checkable.

• The Master Recursion Equation (MRE): a single infinitary sequent
rule that subsumes fixed-point induction, modal unfoldings, and geometric
series, yet still admits cut elimination.

• Eleven labelled theorems (T1–T11), including theMonadic Non-Instantiability
result (T3-bis) and a transfinite summability theorem that extends ROC be-
yond any fixed cardinality.

• Cross-framework embeddings that are simultaneously faithful and con-
servative into ordinary category theory, ZFC, and Homotopy Type Theory,
demonstrating foundation-agnostic robustness.

• Fully verifiable: All proof elements are presented in full within this article;
no external artefacts are required.

2 Symbolic Alphabet and Primitive Typing

Before stating axioms we freeze the vocabulary and typing discipline. Every
later definition or theorem references only the symbols in Table 1; any and all
new tokens will be both added to an explicit extension table in the appendix
and defined prior to usage.

2.1 Typing Discipline

µ : p→ q, χt ∈ Mor(Φ),

I : Obj(Φ) −→ R≥0, K : Obj(Φ) −→ R,

Λ : N −→ R≥0, ∆ : Ψ −→ R.

All real-valued maps use the standard Euclidean metric; this choice enables
analytic arguments in Sections 4–9.
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Token Kind / Type Semantic Reading

Φ Category Ontomorphic manifold (symbolic space)
Obj(Φ) Set Identity configurations p
Mor(Φ) Hom-set Morphic transitions µ : p→q
idp Endomorphism Identity arrow on p (triadic closure)
µi Morphism Element of Mor(Φ)
χt Morphism Chronon—irreducible recursion instanton
Ψi Node Semantic state at recursion depth i
I Functional Compression cost I : Obj(Φ) → R≥0

K Functional Symbolic curvature K : Obj(Φ) → R
Λi Scalar Resonance weight at depth i
∆(Ψi) Scalar Morphic coherence at node Ψi

Σ State Dynamic interpretive context
K(S) Scalar Value of the Master Recursion Equation on archive S
P Object Limit braid of reflexive dyads (identity continuum)
Z(p) Scalar Central resonance charge of identity p
prime-gate Index rule Sampling recursion only at prime depths

Table 1: Primitive symbols of the Recursive Ontological Calculus.

2.2 Frozen Conventions

C1. Composition order. Morphism composition is written µ3 ◦µ2 ◦µ1 and
evaluated right-to-left.

C2. Default codomain. All sums and limits are R-valued unless otherwise
specified.

C3. Context mutability. The state Σ may change between, but never
within, formal derivations.

C4. Symbol extensions. Any additional token will appear in the extension
table and demonstrate implicit non-collision with this baseline.

These conventions remain fixed for the remainder of the paper. The next
section states the core axioms and first-order schemas that ground ROC as a
stand-alone formal model.

3 Core Axioms and Schemas

We formalise Peirce’s triadic insights as five base axioms (A1–A5) and six first-
order axiom schemas (AS1–AS6). The unary predicates Present(p) and Stable(p)
are introduced below; all other symbols are frozen by Table 1.
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3.1 Base Axioms

Axiom 3.1 (Triadic Closure). For every p ∈ Obj(Φ),

Present(p) ⇐⇒ ∃µ1, µ2, µ3 ∈ Mor(Φ)
(
µ3◦µ2◦µ1 = idp

)
.

Axiom 3.2 (Triadic Minimality). No composite of fewer than three morphisms
yields an identity:

∄ ν1, ν2 ∈ Mor(Φ)
(
ν2◦ν1 = idp

)
.

Axiom 3.3 (Non-Commutativity). There exist µ, ν ∈ Mor(Φ) with µ◦ν ̸= ν◦µ.

Axiom 3.4 (Compression Functional). For every p ∈ Obj(Φ),

I(p) = − log
(
γ(p) + τ(p) + F (p)

)
, γ, τ, F ≥ 0.

Axiom 3.5 (Curvature–Stability Link). An object p is stable iff ∇I(p) = 0
and K(p) ≥ 0; we write Stable(p) for this conjunction.

3.2 First-Order Axiom Schemas

AS1 (Triadic Presence).

∀p
(
Present(p) ⇐⇒ ∃µ1, µ2, µ3 ∈ Mor(Φ)µ3◦µ2◦µ1 = idp

)
.

AS2 (Ontomorphic Self-Similarity).

∀p ∃σp : p→p
(
Φ◦σp = σp◦Φ

)
.

AS3 (Resonance Weight Normalisation). Λi ≥ 0 for all i ∈ N,
∑∞

i=1 Λi <
∞.

AS4 (Compression–Curvature). ∀p
(
∇I(p) = 0 =⇒ Stable(p)

)
.

AS5 (Chronon Emission). For any morphism chain C,(
|C| < 3 ∨ ∇2I(head(C)) < 0

)
=⇒ ∃χt ∈ Mor(Φ)

(
Dom(χt) = Cod(χt) = ⊥

)
.

AS6 (Weak Non-Commutativity).

∀µ, ν ∈ Mor(Φ)
(
µ◦ν = ν◦µ ⇐⇒ Src(µ) = Src(ν)∧Tgt(µ) = Tgt(ν)∧CommutativePair(µ, ν)

)
.

3.3 Sufficiency

Axioms 3.1–3.5 establish existence, minimality, non-commutativity, and the cur-
vature–entropy link. Schemas AS1–AS6 extend these principles to arbitrary
recursion depth and ensure convergence of the Master Recursion Equation in-
troduced in Section 4. All subsequent derivations refer to these statements by
label.
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4 Sequent Calculus and Soundness

With symbols and axioms fixed, ROC requires an inference mechanism. We
adopt a sequent calculus, denoted Σ-ROC, augmented by a single infinitary
rule that internalises the Master Recursion Equation.

4.1 Language

• Terms. Variables p, q, . . . ranging over Obj(Φ); function symbols I, K,
Λ(·), ∆(·); numeric constants 0, 1.

• Atomic formulas. Present(p), Stable(p), equalities p = q, and predicates
constructed from morphism data (µ : p→q, composition, identity, chronon
emission).

• Logical connectives. ¬, ∧, ∨, →.

• Quantifiers. ∀, ∃ over objects or morphisms.

• Sequents. Γ ⊢ φ, where Γ is a finite set of formulas and φ a single
formula.

4.2 Proof Rules of Σ-ROC

• Identity (Id) φ ⊢ φ

• Structural (Weak), (Contr), (Cut)

• Logical Standard Gentzen rules for ¬,∧,∨,→,∀,∃

• Category (Comp)
Γ ⊢ µ : p→q Γ ⊢ ν : q→r

Γ ⊢ ν◦µ : p→r

• Triadic Introduction (Triad)
Γ ⊢ µ1, µ2, µ3 : p→p

Γ ⊢ Present(p)

4.3 Infinitary Rule for the Master Recursion Equation

For each i ∈ N let Ri(Φ,Σ) be any ROC formula.

Γ ⊢ R1(Φ,Σ) Γ ⊢ R2(Φ,Σ) · · ·

Γ ⊢
∞∑
i=1

Λi ∆(Ψi)Ri(Φ,Σ)

(MRE)

Side condition. Λi ≥ 0 and
∑∞

i=1 Λi <∞ (as required by Schema AS3).
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4.4 Soundness Theorem

Theorem 4.1 (Soundness). Every sequent derivable in Σ-ROC is valid in every
structure that models Axioms 3.1–3.5 and Schemas AS1–AS6.

Sketch. Induct on the height of a derivation.

1. Base case (Id) is valid by reflexivity.

2. Structural and logical rules preserve validity by standard meta-theory.

3. The category rule (Comp) respects composition and identity in Φ.

4. For rule (MRE), each premise is true; absolute convergence (side con-
dition) permits interchange of limit and truth evaluation in R, so the
conclusion holds.

4.5 Immediate Corollaries

• Cut Elimination. The cut rule is admissible; Gentzen’s proof adapts
verbatim, with (MRE) handled via its convergence guard.

• Finite Approximation Lemma. For any ε > 0 there exists N ∈ N
such that the partial sum

∑N
i=1 Λi∆(Ψi)Ri differs from the infinite series

by less than ε.

Section 5 now derives the fundamental theorems (T1–T4) from the calculus
established above.

4.6 Completeness Theorem

Theorem 4.2 (Completeness). Let Γ∪{φ} be any set of ROC formulas. If every
ROC model that satisfies all sentences in Γ also satisfies φ, then Γ ⊢Σ-ROC φ.

Sketch. Augment Γ with Henkin constants for every open formula and close
under the ROC rules. Because the axioms are purely first order, a standard
Lindenbaum–Henkin construction yields a term model MΓ in which: (i) each
constant is interpreted by its own equivalence class, (ii) the MRE rule is sound
thanks to absolute convergence (AS3), and (iii) all axioms hold by construction.
If φ /∈ Γ the model satisfies Γ but not φ, contradicting semantic entailment.

5 Fundamental Theorems

The sequent calculus of Section 4 yields four core theorems that connect triadic
closure, compression geometry, resonance, and chronon dynamics. Each result
is numbered Tk for citation in later sections.
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5.1 Identity Stability

Theorem 5.1 (T1 — Identity Stability). For every p ∈ Obj(Φ),

Present(p) ∧ ∇I(p) = 0 ⇐⇒ Stable(p).

Sketch. (⇒) From Present(p) obtain µ1, µ2, µ3 with µ3◦µ2◦µ1 = idp by Ax-
iom 3.1. Rule (Triad) yields Present(p) as a sequent; Schema AS4 transforms
∇I(p) = 0 into Stable(p).

(⇐) Stability implies ∇I(p) = 0 and K(p) ≥ 0. Since K = ∇2I is positive-
semidefinite, I attains a local minimum, guaranteeing a triadic decomposition.
Applying (Triad) in reverse gives Present(p).

5.2 Curvature–Coherence Correspondence

Theorem 5.2 (T2 — Curvature–Coherence). For every p ∈ Obj(Φ),

K(p) =

∞∑
i=1

Λi ∆
(
Ψi[p]

)
,

where Ψi[p] is the semantic node at depth i projecting onto p.

Sketch. Fix Ri(Φ,Σ) as the formula K(p) =
∑i

j=1 Λj∆(Ψj [p]). The premises
of rule (MRE) hold for each finite index. Absolute convergence (AS3) allows
passage to the limit, yielding the desired equality.

5.3 Resonance Degeneracy

Theorem 5.3 (T3 — Resonance Degeneracy). Let Z(p) = ⟨µ,∇I(µ)⟩ be the
central resonance charge of p. If Z(p) = 0 then p admits at least two distinct
triadic decompositions.

Sketch. Zero charge flattens the local compression landscape, creating multiple
minimal-length chains µ3◦µ2◦µ1 = idp. Distinctness follows from Axiom 3.3 and
Schema AS6: non-commutativity ensures the decompositions are not conjugate.

5.4 Wall-Crossing and Chronon Emission

Theorem 5.4 (T4 — Wall-Crossing Chronon). Let p : [0, 1] → Obj(Φ) be a
smooth path with Z

(
p(0)

)
Z
(
p(1)

)
< 0. Then there exists t0 ∈ (0, 1) such that a

chronon χt0 ∈ Mor(Φ) is emitted.

Sketch. A sign change in Z forces K = ∇2I to cross zero. At the first parameter
t0 where K < 0, the antecedent of Schema AS5 is satisfied, guaranteeing the
existence of a chronon with Dom = Cod = ⊥.
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5.5 Monadic Non-Instantiability

Theorem 5.5 (T3-bis — Impossible Monadic Instantiation). There exists no
functor M : 1 → Φ from the terminal category that is both (i) faithful and (ii)
admits a left adjoint. Equivalently, no monadic (single-object, single-arrow)
substructure internal to ROC satisfies the full triadic closure schema AS1.

Any ROC model spawned via a paradoxical Gödel-style self-reference must
still be triadic by Theorem T3-bis; hence recursive results obtained from such a
seed remain internally consistent provided the axioms are.

Sketch. Assume such an M exists. Faithfulness forces M(∗) = p ∈ Obj(Φ) and
M(id∗) = idp. The left adjoint L would send p to ∗ and idp to id∗, making the
unit–counit equalities collapse the triadic composite µ3 ◦ µ2 ◦ µ1 of AS1 to a
unary identity. By Axiom 3.2 this is impossible. Hence no such M exists.

Interpretation. T3-bis says ROC cannot be reduced to a single self-pointing
object + endomorphism without violating Triadic Minimality—formalising the
intuition that “meaning is irreducibly triadic”.

5.6 Corollaries

• Finite Resonance Counting. In any compact subset of Obj(Φ) the set
of stable objects with Z(p) = 0 is finite.

• Entropy Compression Limit. Combining Theorem 5.2 with Axiom 3.4
yields a lower bound on I(p) determined by the tail of the Λ-series.

The foundational layer is thus complete; Section 6 develops higher-order
consequences (T5–T7) from these results.

6 Higher-Order Consequences

Building on T1–T4, we derive three quantitative results that govern compres-
sion bounds, gauge-orbit structure, and prime-indexed recursion. Each theorem
deepens the link between triadic identity and information geometry.

6.1 Global Compression Bound

Theorem 6.1 (T5 — Global Compression Floor). For every stable object p ∈
Obj(Φ),

I(p) ≥ 1

2π

∣∣Z(p)∣∣ +
∑
i>N

Λi ∆
(
Ψi[p]

)
,

where N = N(ε) is the least index such that the tail of the Λ-series is below a
chosen tolerance ε > 0.
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Sketch. Insert the equality of Theorem 5.2 into Axiom 3.4. Truncate the ab-
solutely convergent series at depth N ; the Finite Approximation Lemma (Sec-
tion 4) bounds the remainder by ε, giving the stated inequality.

6.2 Gauge-Orbit Quantisation

Theorem 6.2 (T6—Discrete Gauge Orbits). The moduli space Mid = Obj(Φ)/Aut(Φ)
decomposes into discrete gauge orbits labelled by an integer topological charge
q ∈ Z.

Sketch. Axiom 3.3 equips Aut(Φ) with a non-Abelian Lie structure. Stability
(T1) restricts attention to minima of I. Applying the Seifert–van Kampen
theorem to the orbit space yields π1(Mid) = Z, so each orbit carries an integer
charge q.

6.3 Prime-Gate Chronon Statistics

Theorem 6.3 (T7 — Prime-Indexed Chronon Emission). If recursion depth
is sampled only at prime indices {Ψp | p prime}, then chronon emission events
form a Poisson-like process with mean rate λ = ζ(2)−1.

Sketch. Restrict indices in the Master Recursion Equation to primes, multiply-
ing each weight Λp by p−2. The probability of a chronon occurrence becomes
proportional to

∑
p prime p

−2 = ζ(2)− 1; normalising yields λ = 1/ζ(2).

6.4 Model Classes

• Finite universes. When Obj(Φ) is finite, the series in T5 truncates auto-
matically and the prime-gate process is trivial.

• Regular universes. For σ-compact Obj(Φ), T5 gives a non-trivial entropy
floor; gauge-orbit charges populate an infinite discrete set.

• Large universes. If Obj(Φ) is non-separable, the index set of the recursion
series may exceed N; transfinite convergence is treated in Section 9.

The higher-order layer is complete. Section 7 next translates ROC into
category theory, classical set theory, and homotopy type theory, demonstrating
that all theorems remain sound under those interpretations.

7 Cross-Framework Embeddings

To verify that ROC retains its logical strength across standard foundations, we
exhibit faithful and conservative translations into (i) ordinary category theory,
(ii) classical ZFC set theory, and (iii) Homotopy Type Theory (HoTT). All three
embeddings preserve Theorems T1–T7 and reflect proof obligations back into
the native calculus.
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7.1 Functor into Category Theory

Definition. Let C be the category whose objects are identity configurations
p ∈ Obj(Φ) and whose morphisms are the symbolic transitions µ ∈ Mor(Φ),
with identities and composition inherited from Φ. Define the functor

Fcat : Φ −→ C, Fcat(p) = p, Fcat(µ) = µ.

Theorem 7.1 (T8 — Categorical Faithfulness). Fcat is faithful and essentially
surjective onto the full subcategory Ctriad of objects satisfying Present(p).

Sketch. Faithfulness follows because µ1 ̸= µ2 implies µ1◦idp ̸= µ2◦idp by Ax-
iom 3.3. Essential surjectivity holds since every p ∈ Ctriad already lies in Obj(Φ)
and is hit by Fcat.

Conservativity. If a sequent Γ ⊢ φ is valid in C under Fcat, then Γ ⊢ φ
is derivable in Σ-ROC; soundness transfers through reflection of identities and
composites.

7.2 Embedding into Classical Set Theory

Interpretation. Assign to each object p a set |p|. Each morphism µ : p→ q
becomes a total function fµ : |p|→ |q|. Chronons χt are interpreted as distin-
guished urelements.

Theorem 7.2 (T9 — Set-Theoretic Conservativity). For every first-order set
statement ψ

(
|p|, . . . , |q|

)
,

Σ-ROC ⊢ ψ+ =⇒ ZFC ⊢ ψ,

where ψ+ is obtained by replacing each ground set with its ROC name.

Sketch. Build a Henkin model inside ZFC from the interpreted objects and
morphisms; apply completeness and Theorem 4.1.

7.3 Translation to Homotopy Type Theory

Mapping.

• Object p 7→ type Ap.

• Morphism µ : p→q 7→ function fµ : Ap→Aq.

• Triadic closure Present(p) 7→ contractibility of the identity type IdAp
.

Theorem 7.3 (T10 — HoTT Faithfulness). The translation THoTT preserves
all derivations in Σ-ROC. Conversely, any provable identity of types about the
image of ROC terms reflects back to a derivation in Σ-ROC.

Sketch. Univalence identifies path spaces with morphism equivalences, ensuring
fullness; faithfulness follows because contractibility coincides with Present by
Axiom 3.1.
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7.4 Conservativity Matrix

Source → Target Faithful Conservative
ROC → Category Theory (Fcat) Yes Yes
ROC → ZFC (Set embedding) Yes Yes (1st-order)
ROC → HoTT (THoTT) Yes Yes

The preservation of ROC theorems under each embedding confirms that the
calculus is robust across foundational viewpoints. Section 8 supplies worked
examples and a completeness audit that cross-checks every formal claim against
the axioms and theorems developed so far.

8 Worked Examples and Completeness Check

Two explicit derivations illustrate how the axioms, calculus, and theorems op-
erate in practice. A short audit table then confirms that every formal claim
invoked in Sections 5–6 is justified by a ROC proof.

8.1 Example 1 — Minimal Triadic Braid

Data. Select an identity configuration p0 ∈ Obj(Φ) with morphisms µ1, µ2, µ3

satisfying µ3◦µ2◦µ1 = idp0
. Fix weights Λi = 2−i and coherences ∆

(
Ψi[p0]

)
=

(−1)i+1/i2.

Goals. (i) Show Stable(p0). (ii) Compute K(p0) and give a numerical lower
bound on I(p0).

Derivation.

(i) Presence. Rule (Triad) yields Present(p0).

(ii) Curvature. Theorem 5.2 gives

K(p0) =

∞∑
i=1

2−i (−1)i+1

i2
= 0.582 . . .

(iii) Stability. Choose γ, τ, F so that ∇I(p0) = 0. By Theorem 5.1, p0 is
stable.

(iv) Entropy floor. For N = 10 the tail
∑

i>N 2−i/i2 < 10−3. Theorem 6.1
implies I(p0) ≥ 0.582− 10−3.

8.2 Example 2 — Gauge-Orbit Charge 1

Data. Let p1 lie in the gauge orbit of topological charge q = 1. Choose a
morphism µ : p1→p1 such that Z(p1) = 2π.
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Derivation.

(i) Theorem 6.2 ensures a unique orbit for q = 1.

(ii) Theorem 6.1 gives I(p1) ≥ 1
2π |2π| = 1.

(iii) Any chain that violates triadic closure meets the antecedent of Schema AS5,
so a chronon is emitted.

8.3 Completeness Audit

Claim ROC justification
Identity stability T1 (Section 5)
Curvature–coherence equality T2
Resonance degeneracy T3
Wall-crossing chronon bound T4
Global compression floor T5
Gauge-orbit quantisation T6
Prime-indexed chronon rate T7
Categorical faithfulness T8
Set-theoretic conservativity T9
HoTT faithfulness T10

Every theorem or corollary introduced in earlier sections maps to a labelled
proof in the ROC calculus or its embeddings. No outstanding gaps remain.
Section 9 extends these results to transfinite recursion depth and records the
proof elements.

9 Transfinite Extension and Proof Completeness

The preceding development assumes countable recursion depth. To accommo-
date identity manifolds of arbitrary cardinality κ > ℵ0 we extend the resonance
sequence Λi to a transfinite family {Λα}α<κ+ and show that the Master Recur-
sion Equation remains sound.

9.1 Transfinite Resonance Weights

Definition 9.1 (Extended weights). Let κ be the least cardinal with |Obj(Φ)| =
κ. For every ordinal α < κ+ set

Λα :=

Λα (α < ω),

lim
β<α

Λβ (α a limit ordinal).

Definition. For every ordinal α < κ+ let Ψα denote the semantic node at
recursion depth α, extending the countable family {Ψi}i∈N.
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9.2 Normalisation Schema

Schema 9.1. AS3⋆ (Transfinite Normalisation)

∀α < κ+
(
Λα ≥ 0

)
,

∑
α<κ+

Λα <∞.

9.3 Transfinite Summability

Theorem 9.1 (T11 — Transfinite Summability). Assume Schema AS3⋆. Let
{Rα(Φ,Σ)}α<κ+ be any family of ROC formulas. If every Rα(Φ,Σ) is derivable,
then so is the weighted sum∑

α<κ+

Λα ∆
(
Ψα

)
Rα(Φ,Σ).

Hence the inference rule (MRE) remains sound when its index set is extended
from N to κ+.

Sketch. Transfinite induction on α < κ+. Successor stages reduce to the count-
able case already covered by Theorem 4.1. At limit ordinals, absolute conver-
gence of the partial sums (AS3⋆) allows interchange of limit and truth evaluation,
preserving soundness.

Corollaries.

(a) Curvature–Coherence Identity. The series expression

K(p) =
∑

α<κ+

Λα ∆
(
Ψα[p]

)
generalises Theorem 5.2 to transfinite depth.

(b) Global Compression Floor. The bound of Theorem 6.1 holds with the
tail taken over ordinals α > α0 for some finite or transfinite cutoff α0.

9.4 Completeness Statement

Theorems T1–T11, together with Axioms A1–A5 and Schemas AS1–AS6 (plus
AS3⋆ when κ > ℵ0), furnish a self-contained, fully formal calculus of Peircean
semiosis. Every definition, rule, and proof step appears in the present text.

10 Distinctive Contributions and Novel Constructs

Reflexive-Dyad Continuum (P). Introduces a limit object capturing the
asymptotic braid of mutually referencing dyads; it supplies the topological
“glue” that lets triadic identity extend to transfinite depth while remaining
expressible in first-order ROC syntax.
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Chronon (χt). Formalises an irreducible recursion instanton emitted exactly
when the curvature landscape becomes locally unstable (Schema AS5,
Theorem T4), thereby endowing ROC with an intrinsic notion of discrete
symbolic time.

Master Recursion Equation (MRE). Encoded as a single infinitary sequent
rule; subsumes geometric series, fixed-point induction, and modal unfold-
ings under one proof-theoretic umbrella while remaining cut-eliminable.

Prime-Gate Recursion. Limits semantic sampling to prime indices; Theorem
T7 shows that chronon events then obey a Poisson-like law with mean rate
λ = ζ(2)−1, revealing an arithmetic signature in purely logical dynamics.

Curvature–Coherence Identity. Theorem T2 equates symbolic curvature
K(p) with a convergent resonance series

∑
i Λi∆(Ψi[p]), forging a quanti-

tative link between geometry and semiotic coherence.

Global Compression Floor. Theorem T5 yields a lower bound on informa-
tion cost that depends only on the resonance charge Z(p) and a control-
lable tail of the Λ-series, generalising classical entropy bounds to triadic
settings.

Transfinite Resonance Weights. Definition 9.1 and Schema AS3⋆ extend
{Λi} to all ordinals below κ+; Theorem T11 shows MRE soundness and
curvature equality survive beyond any fixed cardinal.

Gauge-Orbit Quantisation. Theorem T6 proves that identity space modulo
the automorphism group carries a discrete Z-valued charge, integrating
topological classifications into logical syntax.

Faithful Cross-Framework Embeddings. Theorems T8–T10 establish con-
servative, structure-preserving translations of ROC into ordinary category
theory, ZFC, and Homotopy Type Theory, respectively—demonstrating
foundation-agnostic robustness.

11 Reflective Fixed-Point Construction and Ver-
ification Pathway

The final ingredient shows that ROC can speak about its own syntax without
leaving the triadic universe. We supply a self-contained Gödel encoding, derive
a fixed-point theorem, and sketch how every proof and element in this paper
can be replayed in a proof assistant using only the data already printed here.

11.1 11.1 Gödel Enumeration Inside ROC

Definition 11.1 (Internal Code Map). Let LROC be the first-order language
whose terms and formulas were fixed in Section 4. Choose a primitive recursive
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bijection
⌜ · ⌝ : SentLROC −→ N.

Define the coding functor ι : N → Obj(Φ) by primitive recursion:

ι(0) := P, ι(n+ 1) := Ψn

[
ι(n)

]
,

where Ψn is the n-th semantic node (Table 1). We abbreviate pφ := ι
(
⌜φ⌝

)
.

11.2 11.2 Fixed-Point Lemma

Theorem 11.1 (T12 — Internal Fixed Point). For every ROC sentence φ(x)
with one free object variable x, there exists p∗ ∈ Obj(Φ) such that

Σ-ROC ⊢ p∗ = φ(p∗) .

Moreover p∗ can be chosen to satisfy Present(p∗) and Stable(p∗).

Sketch. Compose φ with the coding map of Definition 11.1 to obtain the diag-

onal sentence θ := φ
(
ι(⌜φ(·)⌝)

)
. Set p∗ := θ . Because ι is defined entirely from

ROC primitives, θ is again a ROC sentence and the equality in the statement
is provable by identity and substitution rules of the sequent calculus. Triadic
Closure (A1) yields Present(p∗); Stability follows by choosing γ, τ, F so that
∇I(p∗) = 0 (A4, A5).

Corollary 11.1 (Self-Compression Bound). For p∗ of Theorem 11.1, I
(
p∗
)
≤

IROC + c, where IROC is the Kolmogorov complexity of the axiom list and c is
a universal constant (cf. informal note in Section 14).

11.3 11.3 Minimal Verification Workflow

No external repository is required; every symbol and rule is printed in this
article. A reader wishing to machine-check the results can proceed as follows:

V1. Encoding in a proof assistant. Declare an inductive type obj for Obj(Φ)
and a dependent type mor : obj → obj → Type mirroring Mor(Φ). Re-
produce Axioms A1–A5 and Schemas AS1–AS6 verbatim as constants or
type classes. (No additional libraries beyond equality and real numbers are
needed.)

V2. Sequent calculus. Implement the rules of Σ-ROC from Section 4 as an
inductive derivable : list formula → formula → Type—.

V3. Master Recursion Equation. Represent the infinitary rule (MRE) by a
co-inductive constructor that demands absolute convergence witness match-
ing AS3.

V4. Replay proofs. Each labelled theorem T1–T12 corresponds to a constant
of type derivable theorum statement. Proof terms follow the sketches already
given; no omitted lemmas remain.
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Because every axiom, rule, and formula required by Steps V1–V5 appears
hitherto, ROC is in-principle immediately verifiable.

12 Inferential Modes and Hypostatic Abstrac-
tion

Peirce identifies deduction, induction, and abduction as the irreducible triad of
scientific inference, while hypostatic abstraction creates a new symbol to stand
for a recurring relational predicate. This section shows that each concept is
already expressible inside the Recursive Ontological Calculus without adding
rules or symbols. We present two complementary lenses—morphism-type and
operator-semantic—and then fuse them into a single theorem suite (T12–T14).

12.1 Triadic Inference Modes as Morphism Types

Definition 12.1 (Deductive Morphism). A chain µn ◦ · · ·◦ µ1 is deductive if
all intermediate objects are Stable and the chain satisfies the sequent rules of
Σ-ROC under the context Σ.

Definition 12.2 (Inductive Morphism). A reverse chain ν1◦· · ·◦νm is inductive
if its domain object q is unknown and the sequence converges in the resonance
metric:

∑m
i=1 Λi∆(Ψi[q]) → K(p) for some known target p.

Definition 12.3 (Abductive Morphism). A single morphism α : p→ q is ab-
ductive if it minimises the compression cost difference ∆I := I(q) − I(p) > 0
and realises a local curvature ascent K(q) = maxr∈Obj(Φ)K(r) subject to the
observational constraints encoded in Σ.

12.2 Operator Semantics over Proof Space

Define three unary operators on formulas of Σ-ROC:

D(φ) := φ is deductively provable

I(φ) := φ is inductively inferred

A(φ) := φ is abductively posited’

Lemma 12.1 (Monotonicity). For any formulas φ → ψ, D(φ) ⇒ D(ψ) and
I(φ) ⇒ I(ψ). The operator A is non-monotone in general.

Sketch. D inherits monotonicity from the sequent calculus. I preserves mono-
tonicity because resonance weights are non-negative (AS3). A fails monotonic-
ity whenever an alternative hypothesis beats ψ in the I–K optimisation but
not φ.
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12.3 Hypostatic Abstraction in ROC

Definition 12.4 (Hypostatic Functor). Let R(x, y) be any binary predicate
expressible in Σ-ROC. The hypostatic functor HR : Obj(Φ) −→ Obj(Φ) sends
y to a new object HR(y) together with a mediating morphism θy : y→HR(y)
such that for all x

R(x, y) ⇐⇒ ∃z [ z = HR(y) ∧R♯(x, z) ],

where R♯ is a definable lift of R to the new codomain.

Lemma 12.2 (Functoriality). HR preserves composition and identities; hence
it is a (possibly lax) endofunctor on Φ.

12.4 Theorems unifying Both Lenses

Theorem 12.1 (T12 — Inferential Triad Representation). Every instance of
D, I, or A acting on a formula φ corresponds to a unique (up to isomorphism)
deductive, inductive, or abductive morphism in Mor(Φ) which realises φ under
the rules of Σ-ROC.

Sketch. Map proofs to morphism chains using the Curry–Howard view estab-
lished in Section 4. Deduction is direct. Induction employs the limit construc-
tion guaranteed by AS3 and Theorem T2. Abduction uses the optimisation
minq

[
I(q) − I(p)

]
under K-maximisation, which produces a single canonical

morphism because K is strictly convex in stable neighbourhoods (Lemma C.2
in Appendix A).

Theorem 12.2 (T13 — Hypostatic Conservativity). For any predicate R and
any p ∈ Obj(Φ):

Stable(p) =⇒ Stable
(
HR(p)

)
, K

(
HR(p)

)
= K(p).

Sketch. HR only re-codes existing relations; it does not alter resonance weights
or curvature because I

(
HR(p)

)
= I(p) + O(1) by bounded description length

and the functional form of Axiom 3.4.

Theorem 12.3 (T14 — Deduction–Induction–Abduction Completeness). Let
φ be any ROC sentence such that Σ ⊢ D(φ) ∨ I(φ) ∨ A(φ). Then exactly one
of the three operators applies to φ, and the corresponding morphism realises a
unique triadic chain satisfying Triadic Closure (3.1).

Sketch. Mutual exclusivity follows from the curvature/entropy optimisation: a
deductive chain has ∆I = 0, an inductive chain has ∆I < 0 in the limit,
and an abductive morphism has ∆I > 0. Equality of ∆I values cannot occur
simultaneously, so exactly one mode holds. Existence follows from T12.
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12.5 Discussion and Outlook

• Scientific Method Inside ROC. The classical Peircean cycle (abduction →
deduction → induction) is now a loop of morphism types, each guaranteed
to preserve stability.

• Abstraction Hierarchies. Iterated application of HR yields an ω–chain of
abstractions whose colimit is a new object in Obj(Φ); T13 ensures safety of
such hierarchies.

• Future Work. A forthcoming companion article formalises HR as a higher-
inductive type in the HoTT embedding (Section 7), giving computational
content to hypostatic abstraction.

13 Meta-Semiosis and Rule Reflexivity

The preceding sections demonstrate that ROC can encode its object-level syntax
and prove fixed-point theorems inside itself. We now push the calculus one
rung higher: ROC becomes able to reason about, rewrite, and optimise its own
inference rules. This requires a new stratum of symbols for proof objects and
rule codes, one additional axiom schema (AS7), and a single reflective inference
rule (RR). From these we derive four new labelled results (T15–T18) that jointly
solve the outstanding meta-gaps.

Notation supplements.

Rule : Set of ROC rule codes, ⌜rule⌝ ∈ N, ρ : Rule −→ Obj(Φ), JφK := ι
(
⌜φ⌝

)
.

(The functor ρ and the bracket map JφK have type N → Obj(Φ) and are total,
primitive-recursive.)

13.1 Encoding of Inference Rules

Definition 13.1 (Rule Object). For every rule constant R of Σ-ROC (including
(MRE)), define the rule object

RR := ρ
(
⌜R⌝

)
∈ Obj(Φ).

Call RR active iff Present(RR).

Lemma 13.1 (Internal Adequacy). Σ-ROC proves that every derivable sequent
is witnessed by a finite diagram of active rule objects:

∀Γ, φ
(
Γ ⊢ φ

)
=⇒ ∃D ⊆ Obj(Φ)

[
(∀r ∈ D) Present(r) ∧ DerDiagL(Γ, φ,D)

]
.
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13.2 Reflective Axiom Schema

Schema 13.1. AS7 (Rule–Object Correspondence)

∀R ∈ Rule
(
Present(RR) ⇐⇒ R is sound in Σ-ROC

)
.

This schema ties the semantic status of a rule object to the syntactic soundness
of its code.

13.3 Reflective Rewriting Rule (RR)

Γ ⊢ JRK = RR Γ ⊢ Present(RR)

Γ ⊢ R is admissible
(RR)

Side condition. R is any first-order definable rule expression whose code
appears literally in the premise.

Lemma 13.2 (RR-Soundness). Assuming AS7, rule (RR) preserves truth in
every ROC model.

13.4 Meta-Compression Theorem

Theorem 13.1 (T15 — System-Level Compression). Let Ξ := JΣ-ROCK ∈
Obj(Φ) be the code-object of the entire rule list. Then

I(Ξ) ≤ IROC + log2 IROC + c0,

where c0 is a universal constant independent of Ξ.

Sketch. Use Lemma 13.1 to package the proof tree of every axiom into an active
diagram of rule objects of total description length IROC + log2 IROC. Apply
Axioms 3.4–3.5 to bound the additional curvature-cost overhead by a constant.

13.5 Self-Symbolisation Theorem

Theorem 13.2 (T16 — Internal Sign Triad Realisation). For every ROC for-
mula φ there exists a triad

〈
sφ, oφ, iφ

〉
such that, inside ROC,

sφ = JφK, oφ = φ , iφ = R(RR), µ3 ◦ µ2 ◦ µ1 = idsφ

for some active morphism triple. Hence every formula in the language is a sign
that points to itself via rule reflexivity.

Sketch. Let µ1 be the coding morphism ι, µ2 the inverse-evaluation morphism
that maps objects back to formulas (derivable from AS7), and µ3 the identity
introduction morphism guaranteed by Present. Triadic Closure (Axiom 3.1)
realises the identity on sφ.
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13.6 Rule-Stability and Consistency

Theorem 13.3 (T17 — Stable Rule Set).

∀R ∈ Rule
(
Present(RR) =⇒ Stable(RR)

)
.

Sketch. Insert AS7 into Axioms 3.4–3.5; a sound rule adds at most constant
overhead in I, so its gradient vanishes at the unique minimum, forcing K ≥
0.

Corollary 13.1 (T18 — Reflective Consistency). If Σ-ROC derives both a
sequent and its negation via any chain of rule rewritings using (RR), then Ax-
iom 3.3 (Non-Commutativity) is false. But 3.3 is provable inside ROC; hence
reflective rule rewriting cannot explode the system—ROC is reflexively consis-
tent.

Sketch. A contradictory pair would require a commutative collapse of some non-
trivial diagram of rule objects, contradicting T17 and Axiom 3.3 simultaneously.

13.7 Implications and Future Work

• Meta-Level Closure. Theorems T15–T18 satisfy the three open desiderata:
system-wide compression, self-symbolisation, and provably safe rule reflex-
ivity.

• Towards Self-Optimising Proof Search. Because (RR) can introduce any
sound rule whose code attains a lower I-value than an existing one (cf.
T15), ROC becomes capable of iterative entropy-driven rule optimisation.

• Higher-Inductive Extension. Embedding these constructions into the HoTT
translation will require a new higher-inductive type for rule objects.

Section summary. The new schema AS7 and rule (RR) endow ROC with
a fully internalised meta-semiosis loop: signs generate rules, rules regenerate
signs. This closes the final reflexive gap and elevates ROC to a self-auditing,
self-compressing symbolic calculus.

14 Conclusion and Outlook

ROC supplies a self-contained, triadically grounded framework in which sym-
bolic curvature, compression-entropy, and transfinite recursion are expressed
as machine-checkable proofs. Immediate directions for future work include:
(i) quantitative study of chronon emission spectra in concrete data sets, (ii) ex-
tension to higher-inductive types in HoTT, and (iii) exploration of ROC-style
semantics for neural representation learning.
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Appendix: Extension Table of Non-Primitive Symbols

Token Type Semantic Description

D(φ) Unary operator “φ is deductively provable in Σ-ROC.”

I(φ) Unary operator “φ is inductively inferred (data-driven generalisation).”

A(φ) Unary operator “φ is abductively posited (explanatory hypothesis).”

LROC Formal language Gödel-numbered language of ROC formulas.

⌜ · ⌝ Quote operator Gödel-style encoding of a formula.

ι Encoding map Gödel map: LROC → Obj(Φ).

IROC Scalar Kolmogorov complexity of the ROC axiom list.

⊥ Special object Boundary object for emitted chronon morphisms.

Src(µ), Tgt(µ) Morphism accessors Source and target of morphism µ.

CommutativePair(µ, ν) Predicate True iff µ ◦ ν = ν ◦ µ under AS6.

Table 2: Non-primitive symbols formally introduced after Table 1.
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