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Abstract 

Achilles and the tortoise compete in a race where the beginning (the start) is at point O 

and end (the finish) is at point P. At all times the tortoise can run at a speed that is a 

fraction  of Achilles' speed at most (with  being a positive real number lower than 1, 

0 <  < 1), and both start the race at t = 0 at O. If the trajectory joining O with P is a 

straight line, Achilles will obviously win every time. It is easy to prove that there is a 

trajectory joining O and P along which the tortoise has a strategy to win every time, 

reaching the finish before Achilles. 

 

1. Introduction.  

The term "paradox" is sometimes used in a narrow sense, as a contradiction or 

inconsistency. However, there is also a broader and more interesting sense. This is very 

clearly characterised by Kleiner and Movshovitz-Hadar (1994) when they explain: "We 

will use the term "paradox" in a broad sense to mean an inconsistency, a 

counterexample to widely held notions, a misconception, a true statement that seems to 

be false, or a false statement that seems to be true". The paradox on curves of infinite 

length presented in this paper (when the fastest runner (Achilles) makes the least 

progress) should be understood in this broad sense. In particular, it will be seen that 

there are circumstances where this paradox  is true even though it always appears to be 

clearly false. An elementary, mathematical (kinematic) description of space invader 

evolution leads to the surprising outcome that, in a race along locally rectifiable curves 

of infinite length, the slower runner (the tortoise) can be bound to beat the faster runner. 

In such cases, the faster runner advances faster (by definition) yet, paradoxically, makes 

less progress. 

2. A preliminary step. Emerging from Infinity. 



With sufficient generality for present purposes, hereafter f(t) denotes any function of t 

whose domain of definition is some open interval along real straight line R (in 

particular, this may be all of R) which is continuous and differentiable therein.  

A function, x = f(t), describes the world line of a point particle moving in one spatial 

dimension. If function f(t) exists before t = t and has a vertical asymptote at t = t, 

f(t) therefore describes the world line of a particle that "escapes to infinity" at that 

instant. For example, x = f(t) = t/(1  t) (with interval ( , 1) as the domain of 

definition) describes the world line of a particle that "goes to infinity" at t = t = 1: 

           
 

    
       . To be more precise, it can be said that it escapes to infinity +   

at t = 1 (a particle can also escape to infinity    at t = 1). There are "realistic" 

examples of escaping to infinity, i.e. examples of this type of evolution in the 

framework of Newtonian gravitational theory of point mass particles. Diacu (2001) 

mentions several of these, which are all mathematically complex outcomes published in 

mathematics journals (e.g. Gerver 1991 or Xia 1992) rather than physics journals. 

Clearly (Earman 1986), the time reversal of an escape-to-infinity process describes a 

process in which a particle appears from spatial infinity. If function f(t) exists after t = 

t and has a vertical asymptote at t = t, it therefore describes the world line of a 

particle that "emerges from infinity" at that instant. Such unexpectedly emerging 

particles have sometimes been referred to as "space invaders". For example, a simple 

space invader world line is the following: x = f(t) = (t  1)/t (with interval (0, + ) as 

the domain of definition). Since here             
     

 
      , the world line of a 

particle emerging from infinity at t = t = 0  is described. To be more precise, it can be 

said that it emerges from infinity   at t = 0 (a particle can also emerge from infinity 

+  at t = 0). Note that a particle emerging from infinity at t = 0  does not exist (it is 

not in space) at t = 0, but rather in some non-empty interval (0, + a).  

It is interesting to note that if two particles emerge from infinity at t = t moving at 

different velocities in the same direction (at least initially, so both emerge from infinity 

+  or both emerge from infinity  ), but in such a way that one is always faster than 

the other, it follows that for all instants after t = t but sufficiently close to t, the faster 

particle lags behind the slower particle: the latter is in the lead. For present purposes, 

rigorous proof will be sufficient in the case where the slow particle velocity vslow is 



always a fraction  (0 <  < 1) of the fast particle velocity vfast. Hence, vfast = x'fast = 

f'(t) and vslow = x'slow = f'(t). Therefore, xfast = f(t) + A and xslow = f(t) + B, where 

A and B are arbitrary constants. The following chain of equivalences applies: 

  xfast  <  xslow    f(t) + A < f(t) + B    f(t) < (B  A)/(1  ). 

Now assume that both particles emerge from infinity   at t = t (the infinity +   

case is completely analogous). Since A, B  and  are constants ( < 1) and 

                     (this is what is meant by both particles emerging from infinity  

  at t = t), for all instants after t = t but sufficiently close to t, f(t) < (B  A)/(1  

) is satisfied and, consequently, xfast  <  xslow. The faster particle lags behind the slower 

particle: it trails the slower particle. Indeed, in some cases, the fast particle will always 

trail the slow particle. For example, if xfast =  2/t  and xslow =  1/t, therefore A = B = 

t = 0, f(t) =  2/t  and  = 1/2. Consequently, f(t) < (B  A)/(1  ) is trivially 

satisfied for every t > 0, i.e. xfast  <  xslow will be permanent. 

3. The infinite in the finite. 

The analysis above has shown that if two particles emerge from infinity at a certain 

instant, with one moving faster than the other in the same direction, there are points in 

space where the slow particle will arrive before the fast particle. In order to turn this 

into an interesting paradox, infinity needs to be "zoomed in" (placed in a finite context) 

by making use of curves of infinite length. Consider a hyperbolic spiral HS (Figure 1), 

its origin O and any point P ( O) on it. The arc length between O and P is infinite (the 

curve gives a number increasing to infinity of turns as it approaches O). Nevertheless, it  

is locally rectifiable everywhere except at O (any closed fragment of the curve that does 

not contain O has finite length). We parameterize the curve with the parameter s so that 

s(P) = 0 and s(O) = + . There is therefore a natural metric associated with s, ds. The 

arc length ds(Pi, Pj) between any two points Pi and Pj  (Pi, Pj  HS, Pi, Pj  O)  in Figure 1 

is finite, yet ds(P, O) = . Moreover, point O on the hyperbolic spiral HS plays a role 

that is analogous to one of the points of infinity on    (usually denoted as  ). This 

means that ds(P, O) =  for every P  O, analogous to how, intuitively speaking, the 

usual Euclidean distance d between the point at infinity   of the extended real straight 

line    and a point X  R is also . However, this analogy is only partial because there 



is a clear way in which point O has been "zoomed in" on HS from infinity by being 

placed in a finite context. In effect, HS exists on a plane equipped with the usual 

Euclidean metric in two dimensions, d
2
. Therefore, in the sense of natural metric d2, O 

is at a finite distance from the other points on curve HS despite being at an infinite 

distance from all of them in the sense of metric ds induced by the arc length. By 

approaching infinity in this way, the use of a non-rectifiable curve (curve of infinite 

length) enables the paradox ("when the fastest runner makes the least progress") to be 

revealed in all its glory. 

 

 

4. The argument 

Rather than discuss particles emerging from infinity, the focus will now be on runners 

who, in a finite environment, follow non-rectifiable trajectories (travel around non-

rectifiable curves). To singularise the context, the runners will be the swift Achilles and 

the slow Tortoise, the immortal characters in one of Zeno's classic paradoxes. It shall be 

seen below that, on a non-rectifiable curve (exemplified by HS in Figure 1), the tortoise 

can always win a race against Achilles.  

Turning now to the problem analysis, it can be assumed without loss of generality that 

Achilles completes the race in unit time. His law of motion when starting from O at t = 

Figure 1 

P 



0 is sA(t) = F(t), at velocity vA(t) = F'(t). The argument hereafter bears many similarities 

to the argument in Section 2 above, but will, however, be formulated in more 

conceptual and geometric, and less algebraic, terms. F(t) must be a strictly decreasing 

continuous function of t in interval 0 < t < 1 (given the parameterisation performed) 

with F(1) = 0 (Achilles reaches P, s = 0, at t = 1) and limt0+F(t) = + (Achilles leaves 

O, s = +, at t = 0). An example might be F(t) = (1  t)/t, but our reasoning will be 

general. Figure 2 shows the Achilles world line in the one-dimensional space defined by 

parameter s.  



In order for the tortoise to execute its winning strategy every time, it takes note of 

Achilles' locations sA(t) at all instants during the race and decides to follow the law of 

motion sT(t) = G(t) = F(t)  K = sA(t)  K, where K is an arbitrary positive number 

and 0 <  < 1. To appreciate the consequences of this, first consider a fictitious runner's 

movement, W, who moves according to the law of motion  sW(t) = W(t) = F(t) = 

sA(t), and whose world line is shown in Figure 3 ("intermediate world line"). As can 

be seen, they reach the finish line at the same time as Achilles even though their speed, 

vW(t) = W'(t) = F'(t) = vA(t), is slower at all times.  
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What is of interest, the tortoise world line, is now obtained from sW(t) by moving the 

latter K units vertically downwards, as shown in Figure 4. Thus, in effect, sT(t) = G(t) = 

F(t)  K = sA(t)  K.  
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Figure 3 



 The situation will now be described more formally. Obviously vT(t) = G'(t) = F'(t) = 

vA(t). As with F(t), G(t) is defined on (0, 1], is continuous and strictly decreasing in 

this interval. It therefore has one root at most. Since K > 0, it has exactly one root. 

Indeed, number b where G(b) = 0 is the solution of the equation 0 = F(b)  K, that is, 

F(b) = K/ > 0. We also know this b exists and is well-defined because F(t) (which is 

defined on (0, 1]) is continuous and strictly decreasing, limt0+F(t) = +, and F(1) = 0, 

from which it follows that it is invertible and its range of values is the interval [0, +). 

Moreover, it is 0 < b < 1 because F(b) = K/  0 = F(1).  
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Figure 4 



Therefore, the law of motion sT(t) = G(t) = F(t)  K = sA(t)  K that the tortoise 

follows (with K > 0) provides the tortoise with a winning strategy. It reaches finish P at 

instant t = b < 1. Achilles, on the other hand, will finish at t = 1, as we know. 

Conclusion: the tortoise will always win. 

The argument in context 

Zeno's paradoxes have had extensive influence in philosophy, particularly in the 

philosophy of mathematics and philosophy of space and time physics. Huggett (2024) 

and Dowden provide a brief overview of Pythagoreanism, atomism, continuum, 

constructivism, infinitesimals, non-standard analysis and supertasks to this effect. Here I 

have sought to do something different. Rather than intervene in the controversies 

surrounding the meaning of Zeno's arguments, I intend to frame them in a different 

context from the usual. To this end, a paradox (veridical, in Quine’s sense 1976) is 

presented which may help to enrich and broaden the current debate on space, time and 

motion. Two very simple examples in this respect are worth mentioning here: 

1) In Zeno's original version, Achilles grants the tortoise a finite (spatial) advantage 

before starting the race. In my version of hyperbolic spiral HS, no such thing is possible 

for purely logical reasons. There is no point on HS that is at a finite distance from origin 

O when the distance is measured along the actual HS. 

2) It is clear that if Achilles grants the tortoise a time advantage (allowing it to start the 

race w time units before t = 0, for example at t =  w with w > 0), its law of motion will 

obviously enable it to beat him, arriving at the finish line at instant t = b  w < b < 1. 

Simply move world line sT(t) in Figure 4 w time units to the left in order to see this. A 

more interesting case is when it is the tortoise that grants Achilles a time advantage by 

starting w time units after instant t = 0 (which is the instant at which Achilles starts). 

Barring this delay, causing the tortoise to start later, it is assumed that it moves 

according to the same continuous series of velocities as before. In order to see what will 

happen now, simply move world line sT(t) in Figure 4 w time units to the right. When w 

= (1  b)/2 , the new tortoise world line s*T(t) in Figure 5 is obtained.  



 

Indeed, since s*T(t) = sT(t  (1b)/2) = sA(t  (1b)/2)  K = F(t  (1b)/2)  K, the 

tortoise will now reach the finish line (s*T(t) = 0) when F(t  (1b)/2)  K = 0, i.e. 

when F(t  (1b)/2) = /K. As we already know that F(b) = K/, it must follow that t  

(1b)/2 = b, i.e. t = (1 + b)/2. This is the instant at which the tortoise will reach the 

finish line, as shown in Figure 5. It will do so before Achilles: 

I) despite having started the race later  

and  
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II) even though the magnitudes of velocities v*T(t) = F'(t (1b)/2) enjoyed by the 

tortoise from instant t = (1b)/2 > 0, when it started the race, will always be a fraction  

smaller (0 <  < 1) than the magnitudes of velocities vA(t) = F'(t) enjoyed by Achilles 

from instant t = 0, when he started the race. 
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