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Abstract

We argue that it is neither necessary nor sufficient for a mathematical proof to have epistemic
value that it be “correct”, in the sense of formalizable in a formal proof system. We then
present a view on the relationship between mathematics and logic that clarifies the role of
formal correctness in mathematics. Finally, we discuss the significance of these arguments for
recent discussions about automated theorem provers and applications of AI to mathematics.

1. Introduction

That a mathematical proof be correct is neither sufficient nor necessary for it to have epis-

temic value. By “correct”, here, for the sake of the argument, we mean that the proof can

be formalized, i.e., translated into a formal proof system. (Below, we will call this sense of

correctness “formal correctness” and distinguish it from “mathematical correctness”.) By

having “epistemic value”, we mean being well-suited to play the various epistemic roles that

proof does, and should, play in mathematical practice.1 In other words, epistemic value is

Email addresses: james.owen.weatherall@uci.edu (James Owen Weatherall), wolfson@uci.edu
(Jesse Wolfson)

1Some readers will think that by “epistemic value” we are primarily interested in justification, and that
our arguments are aimed at showing that something proof-like (a “simil-proof” in the terminology of De
Toffoli (2021), which is to say, apparent proofs lacking obvious errors that may nonetheless later be shown
to be fallacious) can provide justification, even if it is not formally correct (c.f. De Toffoli, 202?). But as we
hope will be clear in what follows, we intentionally do not center our discussion around justification, and we
take the epistemic value of proofs to be more general.
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what makes proofs “work”, as proofs, for the purposes that mathematicians seek to attain.

We will say more below about what these roles are, and about how we see the relationship

between formal and informal proofs.

There are two related strands of literature that form the context for the present argu-

ments. One is the philosophical literature on the Standard View of mathematical proof

and rigor (Azzouni, 2004; Avigad, 2006, 2008, 2021, 2022; Weir, 2016; Hamami, 2018, 2022;

Tatton-Brown, 2023), which holds that ordinary “informal” proofs, as generated by work-

ing mathematicians and published in high quality mathematics journals, should be seen as

describing, or encoding, or “indicating” (Azzouni, 2004), or “sketching” (Mac Lane, 1986,

p. 377) a formal proof that could, at least in principle, be generated from the informal

proof (though whether this process is “routine” (Mac Lane, 1986) or an additional “creative

act” (Avigad, 2021; Larvor, 2022) varies among proponents of the view). The other strand

of literature – or at least, conversation – has appeared mostly in talks and online forums,2

with some cross-over to mathematics journals (e.g Fraser et al., 2024; Venkatesh, 2024),

concerning the speculative possibility of AI systems that could generate correct proofs of

theorems beyond the ken of human mathematicians, much like AI systems have exceeded

human abilities in games like Go and Chess.

Our thesis may give readers pause. Of course mathematical proofs should be correct!

And if a proof cannot be formalized, surely that is a signal that something odd or surprising

is going on. We grant this—as, we think, would most contributors to the literature on the

Standard View. But even so, there is a long history of debate over the status of the Standard

View, arguably originating in debates between figures such as Hilbert, Brouwer, and Poincaré

in the early 20th century, with recent entries in the philosophical literature from Rav (1999),

2We have in mind examples like posts on Kevin Buzzard’s blog Xena, Michael Harris’s blog Mathematics
without Apologies, frequent and influential comments by Terence Tao on Mastodon, various guest blog posts
from prominent mathematicians (e.g. Gowers, 2022; Tao, 2024b; Scholze, 2020), and widely viewed online
talks by, for instance, Buzzard (2022, 2023) and Tao (2024a, 2025), among others. See also the interview
Tao gave to Scientific American on the future of AI in mathematics (Drösser, 2024).
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Detlefsen (2008), Cellucci (2008), Larvor (2012), and Tanswell (2015) criticizing aspects of

the Standard View.3 (We will discuss some of these other arguments in more detail below.)

These arguments tend to have one of two forms: either they emphasize that formal proofs

are purely syntactic, whereas informal ones seem to have some further content related to

knowledge of the subject matter, so that they are not merely abbreviations of formal proofs;

or else they emphasize that there are significant mismatches between what appears to be

required for a successful formal proof and what is needed for an informal one.

The present paper should be seen as part of the same tradition. But we wish to put

our emphasis in a different place—and to offer what we believe is a deeper critique of the

Standard View, grounded in a form of anti-logicism that we think is prevalent in many

areas of mathematics, but which is not often expressed or defended in the literature on

the Standard View.4 On our view, while it seems to be generally true that mathematically

correct informal proofs can be made formally correct, this fact is incidental and secondary

to the epistemic value of informal proof. Proofs are formally correct, when they are, not

because correctness is the normative ideal governing mathematicians’ activities, nor because

correctness underwrites the epistemic value of those activities. Instead, informal proofs are

formally correct because logicians have developed a rich and successful mathematical theory

of mathematical practice intended to capture various aspects of mathematical argument.

Formal correctness tracks mathematical correctness because formal correctness was designed

to do precisely that.

In other words, the formal systems in which formal correctness is established have been

invented and tuned with the goal of making existing informal proof methods formalizable.

Formalizability speaks to the success of this activity in mathematical logic—but it is irrel-

3A rich and parallel discourse in the mathematics community runs through Polya (1954), Lakatos (1976),
Thurston (1994), Hersh (1997b), Manin (1998), Arnold (2006) and Harris (2019, 2022).

4That said, we do not claim the view is original in philosophy of mathematics—see, for instance, Maddy
(2022), or related ideas in Burgess (1992).
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evant to the question of what makes the informal proofs epistemically valuable. Insofar as

failures of correctness signal problems with proofs, it is not because formal correctness is the

goal of the proof; rather, it is that failures of formal correctness indicate salient differences in

the reasoning between the (formally) incorrect proof and other examples of successful math-

ematical reasoning. Conversely, the correctness of a proof is not what gives it epistemic

value, even qua proof.

Although our motivations for criticizing the Standard View are similar to those of previ-

ous authors, we feel the issue has become increasingly urgent. In recent years, we have seen

rapid advances in the areas of computer-assisted theorem proving and proof verification.

Those working in these areas often invoke the ideology of the Standard View to explain and

justify their goals: if it is correctness that is the ultimate goal, then automated systems

that can ensure correctness are the ideal proof generators. This sort of reasoning has led to

some striking soothsaying: in the future, one should expect AI mathematicians to outpace

human mathematicians at proving theorems, in much the same way that AI game players

have outpaced their human competitors in Go, chess, Jeopardy, and other games (Bory,

2019). Many groups have already devoted substantial resources to realizing this vision of

future mathematics; and some very prominent mathematicians have become boosters for

AI-driven mathematics (e.g. Gowers (2022); Tao (2024b)).

We do not want to gainsay the future value of AI for mathematics. We, too, are impressed

by the rate of progress in recent years, and we suspect that computer assistance will change

many aspects of mathematical life—just as Mathematica and Matlab changed the lives of

undergraduate calculus students and many applied mathematicians a generation ago. But

we maintain that if one accepts our principal theses, then the mere generation of correct

proofs is not, in itself, a contribution to mathematics.5 Something more is needed. The

5To be sure, many advocates of the Standard View can and will agree with this observation. It is
nonetheless important to repeat, especially in the context of understanding what AI mathematics can
contribute.

4



broader mathematical community needs to be clear about what these sorts of activities can

and cannot contribute, and what risks are posed to more traditional mathematical activities

by reorienting towards machine-driven methods. While we will not attempt to give an

exhaustive list of what additional criteria are jointly sufficient for proofs to have epistemic

value, we will point below to several conditions that we think are necessary.

The remainder of the paper will proceed as follows. We will begin by reviewing the

Standard View and some previous criticisms of it to better situate what we are trying to do

here. In the following section, we will elaborate on what we mean by the “epistemic value”

of a proof, and use that machinery to argue that correctness cannot be sufficient for a proof

to have epistemic value. We will then turn to the other half of our claim, and argue that

correctness is not necessary. Here we will offer several examples of cases in which incorrect

attempts at proofs (or incorrect simil-proofs) turned out to be of exceptional epistemic value.

Then, in section 6 we will return to the view sketched above of how logic should be seen as

related to mathematics, and we will offer an account of why one might have thought formal

correctness was necessary. We will conclude by reflecting on how our arguments bear on the

question that motivated us, concerning what sort of contributions AI systems can make to

the mathematical enterprise.

2. The Standard View: For and Against

The Standard View of mathematical proof is a claim about the relationship between mathe-

matical proof as encountered in the wilds of mathematical practice and formal proofs.6 One

of the Standard View’s most prominent defenders describes it as follows:

When someone in the mathematical community makes a mathematical claim, it
is generally possible to express that claim formally, in the sense that logically

6The present review is intended only to give a sense of the literature and motivate the arguments that
follow. For an extended introduction and exhaustive literature review, see Tanswell (2024); see also Burgess
and De Toffoli (2022).
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adept and sufficiently motivated mathematicians can come to agreement that the
formal claim expresses the relevant theorem. One justifies an informal claim by
proving it, and if the proof is correct, with enough work it can be turned into a
formal derivation. Conversely, a formal derivation suffices to justify the informal
claim. So an informal mathematical statement is a theorem if and only if its
formal counterpart has a formal derivation. Whether or not a mathematician
reading a proof would characterize the state of affairs in these terms, a judgement
as to correctness is tantamount to a judgment as to the existence of a formal
derivation, and whatever psychological processes the mathematician brings to
bear, they are reliable insofar as they track the correspondence. (Avigad, 2021,
p. 7379)

In other words, a proof plays a justificatory role in establishing a theorem only if the proof

can be translated into a formal derivation; and insofar as a proof is “correct”, it can be so

translated.7

The Standard View as we have just described it is hardly new. Some authors identify its

source in Frege, though it is not clear if he truly held a version of the Standard View because

he maintained every inference has some “non-formal” component. But there are good rea-

sons to think that both Hilbert and members of his school subscribed to the Standard View.

Cellucci (2008), for instance, calls the view the Hilbert-Gentzen Thesis (c.f. Hilbert, 1928;

Gentzen, 1964), and states it as follows: “Every real proof can be represented by a formal

proof.” Hamami (2022) highlights articulations of the view by Mac Lane (1986) and Bour-

baki (1970), though he also argues that it is broadly adopted by 20th century mathematics,

post Hilbert. It is also endorsed by some contemporary mathematicians. And as we have

noted, versions of the Standard View appear to be behind some mathematicians’ calls for a

significant investment in automated proof checking or proof generation (e.g. Hales (2008);

Grayson (2017); Scholze (2020); Buzzard (2024)).

Careful modern philosophical articulations of the Standard View come in several flavors.8

7Per personal communication, Avigad himself would prefer a weaker term than “translated”, though we
think that “translated” is a reasonable way to summarize “with enough work can be turned into”. His view
is that actually generating a formal proof may involve filling gaps, correcting errors, or other work that may
extend beyond “translation”.

8There are also variations in whether the Standard View concerns proof, per se, or merely rigor as a
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On some versions of the view, an informal proof contains the information needed to construct

the formal one. For instance, Hamami (2022, p. 409) argues that “Mathematical proof is

the primary form of justification of mathematical knowledge. But in order to count as a

proper mathematical proof, and thereby to function properly as a justification for a piece of

mathematical knowledge, a mathematical proof must be rigorous.” He goes on to describe

(and defend) what he calls the Standard View: “According to this view, a mathematical

proof P is rigorous if and only if P can be routinely translated into a formal proof (p. 410).”

Other versions are more abstract. Azzouni (2004), for instance, defends what he calls the

“derivation-indicator view of ordinary mathematical proof” (p. 85), which is the view that

the role of proof in practice is to convince other mathematicians of the existence of a certain

kind of “derivation”, or formal proof—and not, necessarily, to directly encode that proof.

This is a version of the standard view that elaborates the reasons – pragmatics, efficiency,

expedience – that mathematicians give informal proofs, even though it is ultimately formal

proofs that matter. For Azzouni, the Standard View has important explanatory virtues: in

particular, it explains why there is intersubjective agreement among mathematicians about

which proofs are correct. It is because these proofs are the ones that successfully indicate

the existence of a formal proof.

For our purposes, the differences between these versions of the Standard View will not

matter. We see “(formally) correct”, “rigorous”, “proper”, and other similar terms as success

terms indicating that a proof has achieved a key epistemic aim, and therefore has epistemic

value in the sense described above, i.e., that it is able to play the epistemic role in mathe-

matical practice that proof is expected to play. And so we take the Standard View to be the

claim that the epistemic value of an informal proof follows from the in-principle existence of

a correct formal proof that bears some relationship (“formalization”) to it. Our arguments

are intended to respond to this broad family of views.

properties of proofs.
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Before proceeding, we will address what might seem like a gap, or perhaps a change

of subject, between the Standard View and the main claims we wish to defend here. One

might understand the Standard View to be a view about informal proofs qua proofs, i.e.,

as sources of justification for mathematical statements.9 It may be that informal proofs,

or the activity of producing proofs, also function in other ways or for other purposes, such

as by contributing to mathematical understanding, in ways that are compatible with the

Standard View. Indeed, Avigad (2021) even argues that the sorts of virtues mathematicians

looks for in informal proofs, the “higher-level epistemic features of mathematical reasoning”

(7396) may actually contribute to our ability to identify when an informal proof indicates a

formal counterpart, while also playing other salutory roles. As he puts it, “Coming to terms

with the nature of mathematical justification is not at odds with understanding a wider

range of mathematical values, but an integral part of the greater enterprise” (7396). From

this perspective, the position we sketched above, and the arguments we give below about

epistemic value, could be seen as compatible with the Standard View.10

It may be that a version of the Standard View can be constructed that is entirely com-

patible with our arguments. Perhaps that version of the view is the one Avigad or others

would endorse. But even if that is so, we think it is important to emphasize that whatever

formal correctness accomplishes, it is not what makes the practice of constructing and shar-

ing proofs an integral part of mathematical activity. In other words, it is not what makes

informal proofs “work” (Avigad, 2021, 7394, emphasis ours). Our arguments in what follows

are meant to show that formal correctness and epistemic value can come apart in ways that

show that epistemic value must come from something else. This is especially important

in the context of the other strand of literature we noted above, which seeks to foreground

automated proof generation for future mathematics.

9We are grateful to Harvey Lederman and Silvia De Toffoli for pressing us on this point.
10See also Burgess and De Toffoli (2022), who argue that many of the disputes between advocates and

critics of the Standard View are merely terminological.
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Criticisms of the Standard View can also be found throughout the mathematical litera-

ture, at least implicitly. These remarks most often appear in works where mathematicians

reflect on their own methods and discipline, such as the now-classic remarks from Fields

medalist William Thurston (1994), best known for his work on low dimensional topology

and geometry, on “Proof and Progress in Mathematics”; and in work by Reuben Hersh

(1993, 1997a,b). But the philosophical literature opposing the standard view is most often

traced back to Rav (1999).11 Rav presents a thought experiment wherein we entertain a

mathematical oracle that could rule on the truth or falsity of any mathematical proposition.

He suggests this would realize a Hilbertian formalist’s vision of mathematical utopia—and

that it would simultaneously spell doom for mathematics.

He goes on to argue that, “the essence of mathematics resides in inventing methods,

tools, strategies and concepts for solving problems which happen to be on the current in-

ternal research agenda or suggested by some external application. But conceptual and

methodological innovations are inextricably bound to the search for and the discovery of

proofs, thereby establishing links between theories, systematising knowledge, and spurring

further developments” (6). In other words, proof is an essential part of mathematics be-

cause the activity of trying to produce, refine, and improve proofs is often the context for

mathematical innovation and deeper understanding. But the formal correctness of proof

is only incidental to this role in mathematical practice, for two reasons. First, it is very

rarely within a fully formal setting that mathematicians develop significant new ideas—and

of course, automated theorem provers are not the kinds of things that can have new ideas

at all. Secondly, he argues, formal proofs are some distance removed from proofs in the

sense that Rav thinks proofs fruitfully contribute to mathematics, because formalizing a

proof involves breaking the link to the intended semantics of the informal mathematical

11Much like the present article, Rav (1999) itself sits downstream from a much longer running discourse
in mathematics and philosophy of mathematics. In addition to the texts already cited, see Poincaré (1905–
1906), Polya (1954), and Lakatos (1976).
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arguments. Once we move to a formal setting, we are no longer talking about groups, or

manifolds, or locales; instead, we are manipulating symbols according to certain rules. For

these reasons, he concludes, the Standard View misidentifies both why proofs are important

and what features of proofs most contribute to that importance.

In the 25 years since Rav’s essay appeared, others have also mounted attacks on the

Standard View. Detlefsen (2008), for instance, emphasizes that “Mathematical proofs are

not commonly formalized, either at the time they’re presented or afterwards. Neither are

they generally presented in a way that makes their formalizations either apparent or routine”

(p. 17), suggesting that formalization is not a central concern for the mathematicians

generating proofs, and that it is not essential to, or even especially closely related to, rigor.

Several authors focus on other properties of proofs that seem at least as important. For

instance, Easwaran (2009) highlights “transferability” as a key criterion, i.e. “that a proof

must be such that a relevant expert will become convinced of the truth of the conclusion of

the proof just by consideration of each of the steps in the proof” (343).12

Tanswell (2015) presents a different argument, which is that in general an informal proof

can be formalized in many different ways, and often in different systems, suggesting that it

is a mistake to hold – as some, such as Azzouni (2004), apparently do – that an informal

proof is just a way of indicating that a (particular) formal proof exists.13 Instead, the one-to-

many relationship of informal proofs to formalizations suggests that formal proofs represent

different ways of elaborating or commenting on the structure of an informal proof, and not

vice versa. Or consider Larvor (2022), who, responding specifically to Avigad (2021), argues

that formalists often conflate two different visions of what an informal proof is: either an

informal proof is itself a syntactic object (and thus just a poor version of a formal proof),

12Transferability is closely related to, but a bit different from, “shareability” as De Toffoli (2021) discusses
it. There the issue is a more general one about the intelligibility of proofs.

13Avigad (2021, p. 7387) does not see a problem for the Standard View here—to the contrary, he thinks
the fact that informal proofs that admit one formalization generally admit many helps explain how informal
proofs can reliably convince us that any formal proof exists.
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or it has some semantic content. If it is the former, then it looks like the Standard View

is trivial; if it is the latter, there is a significant gap between what informal proofs actually

accomplish and what a formal proof can hope to recover.

3. Formal Correctness is not Sufficient

We now turn to the principal arguments of this paper. We will offer two arguments that

correctness is not sufficient for a mathematical proof to have epistemic value.14 The first

argument concerns additional necessary conditions on the assertions proved; the second

concerns additional necessary conditions on the proofs themselves.

We begin with the most obvious: the fact that a proof is correct does nothing to guarantee

that the proposition established by the proof is interesting. By interesting we mean what

working mathematicians mean when they describe a result as interesting, namely, that they

learn something from it that is relevant to their goals. We claim that a theorem must be

interesting to mathematicians working in some area or other for it to have epistemic value.

How could a theorem fail to be interesting? One way is for the assertion to be trivial, in the

sense that no one learns anything new from the result. Another way in which a proof could

fail to be interesting is that the assertion proved concerns structures or properties that are

not well-integrated with the rest of mathematics, so that even true theorems about them do

not have any bearing on mathematical practice. The proposition proved is not relevant to

mathematicians’ goals. And so on.

One might be reminded, here, of the famous proof that there are no uninteresting (nat-

ural) numbers. For suppose there were an uninteresting number. Take the set of all such

numbers. By the Well-Ordering Theorem, there exists a well-ordering on that set and thus a

unique least element. But surely that number is interesting! One might argue likewise about

14These arguments are similar to those of Rav (1999) and others, though below we will draw connections
to other mathematicians’ commentary on how they see their contributions, which we think enrich the
arguments.
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uninteresting but correct proofs: proofs are themselves rich mathematical objects, and any

given proof will have features that distinguish it from others. One might even argue that

by establishing a proposition, a proof must have some epistemic value. The core of this

response is to maintain that “interest” in our sense is not necessary for epistemic value.

Surely epistemic value is in the eye of the beholder, and a proof that may not be of interest

to mathematicians trained to work on certain things and beholden to current fashions may

nonetheless have some epistemic value in other contexts—perhaps, even, by virtue of the

role it plays in computer assisted proof generation.

But this response misses the joke, and the point. Epistemic value, here, concerns the

positive epistemic contribution that proofs play in realizing the goals of actual mathematical

practice. And whatever one might take the goals of mathematics to be, surely generating

sequences of sentences allowed by some proof system or other should not be counted among

them. Mathematicians do both more and less than this. The results of rote proof generation

will not, in general, contribute to the epistemic activity of mathematicians.

What are mathematicians doing, beyond simply generating correct proofs? A key goal

of working mathematicians is to investigate and ultimately understand mathematical struc-

tures. Very often, the most important work in this direction has nothing to do with proof,

so much as with identifying definitions that both clearly and adequately capture mathe-

maticians’ ideas, and also lead to fruitful new work elaborating on what follows from those

definitions in ways that provide insight into the structures mathematicians aim to describe.

One might reasonably worry – again – that we are changing the subject. The standard

view is about proofs, whereas we are now discussing definitions, proof techniques, and so

on. But this is precisely to the point. When mathematicians speak of “proof”, there is an

ambiguity between the practice of generating proofs, which involves articulating definitions,

making conjectures, developing techniques, and so on; and there are the artifacts that they

produce at the end. Our claim is that the epistemic value of proof should be located in the
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rich range of activities that working mathematicians engage in to produce their artifacts,

not in the artifacts themselves. Simply generating artifacts is not enough. Indeed, we would

go further: it is the practice of creating, refining, and checking the artifacts that should

give advocates of the Standard View confidence that a proof can be formalized, and give

other mathematicians confidence that a proof is (mathematically) correct. The marks on

the page, absent the surrounding activity leading to their generation, do not signal anything

at all about formalizability (or anything else).

One aspect of this perspective is nicely captured by the Russian algebraic geometer Yuri

Manin, who writes,

Mathematicians have developed a very precise common language for saying what-
ever they want to say. This precision is embodied first of all in the definitions
of the objects they work with, stated usually in the framework of a more or
less axiomatic set (or category) theory, and in the skillful use of metalanguage
(which our natural languages provide) to qualify the statements. All the other
vehicles of mathematical rigor are secondary, even that of rigorous proof. In
fact, barring direct mistakes, the most crucial difficulty with checking a proof
lies usually in the insufficiency of definitions (or lack thereof). In plain words,
we are more deeply troubled when we wonder what the author wants to say than
when we do not quite see whether what he or she is saying is correct. The flaws
in the argument in a strictly defined environment are quite detectable. Good
mathematics might well be written down at a stage when proofs are incomplete
or missing, but informed guesses can already form a fascinating system: out-
standing instances are A. Weil’s conjectures and Langlands’s program, but there
are many examples on a lesser scale. (Manin, 1998, p. 166)

Definitions are where mathematicians identify what they find interesting.15 Without the

right definitions, proofs are unlikely to be of epistemic value.

Of course, what follows from good definitions is also important, and that is established

by proofs. We do not mean to say that proofs do not matter. But we would argue that what

makes proofs epistemically valuable is that they show not only that some assertion or other is

15At least some leading early formalizers were also vividly aware of this, e.g. Huntington (1937, pp.
493-494).
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true, but also why it is true, by showing how it follows, using accepted techniques, from prior

results that one already understands and accepts.16 Now, one can argue that some proofs are

more explanatory than others, or that some theorems of interest may not admit of proofs that

are clear and digestible to humans, and yet merely knowing if they are true is of value because

of the role they play in proving yet other claims. But none of this contravenes the fact that

all else being equal, simple, perspicuous, and comprensible proofs are of special value; and

proofs that establish a theorem without being understandable to any human mathematician

do not contribute to the activity mathematicians are engaged in. A necessary condition for

a proof to have epistemic value is that it contributes to mathematicians’ understanding of

the structures they seek to study—specifically, mathematical structures that are believed to

be well-integrated with the rest of mathematics, and ultimately, with the natural and social

worlds.

Taken together, these arguments are meant to establish that formal correctness (or

rigour) is not sufficient because formally correct proofs do not necessarily establish interest-

ing propositions in ways that contribute to mathematicians’ understanding of their subject

matter. Again, these arguments are not intended to be novel: to the contrary, our goal here

is to isolate the core of ideas that are ubiquitous among mathematicians, and frequently

expressed by leading figures. Take, for instance, Thurston:

[W]hat [mathematicians] are doing is finding ways for people to understand and
think about mathematics.

The rapid advance of computers has helped dramatize this point, because com-
puters and people are very different. For instance, when Appel and Haken com-
pleted a proof of the 4-color map theorem using a massive automatic computa-
tion, it evoked much controversy. I interpret the controversy as having little to
do with doubt people had as to the veracity of the theorem or the correctness of
the proof. Rather, it reflected a continuing desire for human understanding of a
proof, in addition to knowledge that the theorem is true.

16This is not quite to say that proofs are mathematical explanations—or to take any particular view of what
mathematical explanation amounts to (see Mancosu et al., 2023, §2). Our point is more mundane: proofs
involve drawing connections between different bits of mathematics in a way that is generally illuminating.
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On a more everyday level, it is common for people first starting to grapple with
computers to make large-scale computations of things they might have done on
a smaller scale by hand. They might print out a table of the first 10,000 primes,
only to find that their printout isn’t something they really wanted after all. They
discover by this kind of experience that what they really want is usually not some
collection of “answers”—what they want is understanding. (Thurston, 1994, p.
162)

Thurston goes on to argue that an “...emphasis on theorem-credits has a negative effect on

mathematical progress” (Thurston, 1994, p. 172) because it obscures both the importance of

understanding as an output of mathematical practice and the importance of understanding

acquired from others in producing proofs in the first place.

As with the quote from Manin, this passage from Thurston is just one well-known ex-

ample of a prominent mathematician expressing this sort of view. But we need not multiply

examples to make the point, since we find that it is widely recognized even among advocates

for the Standard View. Take Avigad (2022, §§3-5), for instance, who develops an account of

mathematical understanding and mathematical depth, and acknowledges both that mathe-

maticians place great value on understanding and also that formal proofs, or at least, some

prominent computer generated proofs, apparently do poorly on delivering understanding.

(He also acknowledges the importance of good definitions.) But he goes on to argue that per-

haps there is a different kind of understanding that at least some computer-assisted proofs

can provide, even if it is not quite the kind of understanding mathematicians have typically

sought out. We are happy to grant that this can happen. But it is not an argument that

formal correctness is sufficient for a proof to have epistemic value. At best, it establishes

that there may be multiple ways in which proofs can have epistemic value.

4. Formal Correctness is not Necessary

We now turn to showing that formal correctness is not necessary for a mathematical proof

to have epistemic value. This direction is more subtle, and we find fewer precursors in
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the literature. Consider that on a common strategy to establish that one property is not

necessary for another, one wishes to exhibit, or at least show the existence of, something

that instantiates the second property but not the first. In the present case, that would

mean presenting a proof that has epistemic value but which is not formalizable. Of course,

this is possible. As even the defenders of the Standard View freely admit, real, published

mathematical proofs often contain errors, and as such they are not formalizable as-is. And

yet they may nonetheless have considerable epistemic value: the errors may be trivial, so

that when corrected, the proof is formalizable; or the proof may present a successful proof

strategy even though it does not accomplish its goals as implemented; or the erroneous

proof may have a gap, identifying which advances the field in some way; or the proof may

introduce new techniques that turn out to be fruitful elsewhere.

One might justly complain about this argument, however. First, proofs with simple errors

fail to be formalizable in a trivial way (and, indeed, Avigad (2021) argues that standard

mathematical methods are effective in part because they are robust against small errors,

so that erroneous proofs are effectively formalizable). Meanwhile, to cite “proofs” that

have more serious errors, but which contribute to mathematical knowledge in other ways,

is arguably question-begging. “Proof”, here, should be understood as a success term. An

argument with significant errors, ones that are not easily corrected, is not a proof in the

relevant sense, even if it is typeset as a proof and published in a mathematical journal. At

best one can show that there are (fallacious) arguments, or proof-attempts, or simil-proofs

that have epistemic value. (We will do exactly this below.) And of course, it is unsurprising

that fallacious arguments cannot be formalized as formal proofs in a consistent system. So

what one would presumably need to do to make the argument go through would be to find

an example of a proof that is widely accepted by the mathematical community as error-free,

convincing, and otherwise laudable, but which is nonetheless not formalizable.

We will not attempt to give an example of this sort. We do not think it is possible. Even
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if one offered a compelling candidate, we are skeptical that a convincing argument could be

given that such a proof is not “formalizable”. The reason is the essentially modal character

of the demand: the question is whether there is some formal system or other such that the

proof could be formalized as a (valid) proof in that system. This requirement is largely

unconstrained. Moreover, given the nature of mathematical practice, and the standards for

systematicity and rigor that mathematicians demand, one would expect that the arguments

of any widely accepted proof could be made sufficiently explicit in some formal system or

other—and if it turned out that existing formal systems were not up to the job, it would be

an interesting project in mathematical logic to try to identify a new proof system in which

the proof could be formalized.

One might think that conceding this point is to concede that correctness is necessary

after all. But we wish to point to three senses in which it is not. Two of these are subtle,

and we address them in the next section. But the first is simple: if we drop the strongly

modal version of the requirement, then formalizability is clearly not necessary, by the very

same reasoning. In other words: there is no formal system such that a given proof must be

formalizable in that system for it to be epistemically valuable or otherwise mathematically

acceptable. This claim is hardly new. At least on one reading (von Neumann, 1930/1983),

Hilbert’s program in foundations of mathematics was to show that any correct proof could

be formalized in first-order arithmetic (or, more generously, some fixed set theory)—which,

in turn, he hoped, could itself be shown to be consistent within that same system. But

of course, this goal foundered on the shoals of Gödel’s incompleteness theorems, because

any system in which Peano arithmetic (say) could be shown to be consistent would have

to be strictly stronger than Peano arithmetic. Thus, when Gentzen (1964) later showed

that Peano arithmetic is consistent, his proof assumes transfinite induction up to ϵ0. And if

one wished to show that Gentzen’s system is consistent, one would need a stronger system

still. And yet, the most committed advocates of formal correctness as a guiding norm in
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mathematics would surely want to concede that these sorts of arguments in the foundations

of mathematics are epistemically valuable.17

One can see a different dynamic at play in the classic debate over intuitionism in the

foundations of mathematics, though it leads to the same basic moral. For early intuitionists

like Brouwer or Weyl, a proof could be epistemically valuable only if it was constructive,

i.e., if existence proofs proceed by showing how to construct an instance of the things whose

existence is claimed. This idea has led to several proposed systems of intuitionist logic,

including the Brouwer-Heyting-Kolmogorov interpretation of constructive logic and Martin-

Löf’s intuitionistic type theory. Various authors have argued that mathematics must be

formalizable in some such system in order to be epistemically valuable in the fullest sense,

on the grounds that non-constructive proofs are unreliable. But such approaches have never

gained widespread acceptance within mathematics, because intuitionistic approaches tend

to be weaker than the methods of standard, informal mathematics. They limit what math-

ematicians can do. And when pressed, working mathematicians prefer to follow fruitful

mathematical developments where they lead, rather than to constrain themselves to partic-

ular formal systems.

Towards the end of his life, reflecting on the debates in the foundations of mathematics

on which he had cut his teeth from the perspective of someone who had shifted towards

more applied questions, von Neumann summarized his attitude towards the earlier debates

that we have been discussing as follows.

In my own experience, on two other occasions in the early twentieth century,
there were very serious substantive discussions as to what the fundamental prin-
ciples of mathematics are; as to whether a large chapter of mathematics is really
logically binding or not. And in the nineteen-tens and -twenties a critique of

17To be sure: we are not claiming that aiming to prove consistency results is deeply connected to the
Standard View. Consistency results in mathematical logic should be seen as mathematical theorems like
any other. Our point is that you cannot fix a single formal system and insist that epistemic value is identified
with formalizability in that system.
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these questions made it apparent, that it was not at all clear exactly what one
means by absolute rigor, and specifically, whether one should limit oneself to use
only those parts of mathematics which nobody questioned. Thus, remarkably
enough, in a large fraction of mathematics there actually existed differences of
opinion! Some mathematicians said that one need not question any part of what
is in fact being used. There was also a body of opinion, that one should not use
more than what the most exacting critics had approved. However, there was a
further, large body of mathematicians, who felt that while there was some point
in questioning certain areas of mathematics, it was all right to use them. This
group was quite ready to accept something like this: Those portions of mathe-
matics which had been questioned and which had been clearly useful, specifically
for the internal use of the fraternity—in other words, when very beautiful theories
could be obtained in those areas—that those were after all at least as sound as,
and probably somewhat sounder than, the constructions of theoretical physics.
And after all, theoretical physics was all right; so why shouldn’t such an area,
which had possibly even served theoretical physics even though it did not live
up to 100 per cent of the mathematical idea of rigor, why shouldn’t this be a
legitimate area in mathematics; and why shouldn’t it be pursued? This may
sound off, as well as a bad debasement of standards, but it was believed in by
a large group of people for whom I have some sympathy, for I’m one of them.
(von Neumann, 1961, pp. 480-1)

When confronted with a choice between adhering to some fixed standard of rigor – of cor-

rectness – and valorous mathematical theories – beautiful ones, or deep ones, or fruitful ones

– a significant portion of mathematicians will always prefer the latter. We contend they are

right to do so—and for precisely this reason, formalizability in any particular system cannot

possibly be deemed necessary for epistemic value in mathematics.

5. Fruitful Errors

In the previous section, we made the argument that formalizability in any particular system

cannot be necessary for mathematics. We concluded with a passage from von Neumann

pointing out that in cases where fruitful mathematics was found to run afoul of some formal

system or other, mathematicians tended to reject the formal system and keep the fruitful

mathematics. But perhaps this argument targets a too-strong version of the Standard View,

and formalizability should be understood more broadly. In this section, we wish to reflect
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further on a suggestion we find in the passage from von Neumann – taking, perhaps, some

liberties of elaboration – to the effect that what ultimately grounds the epistemic value of

some area of mathematics, or even some particular proof, is how that piece of mathematics

fits into a broader network of mathematical and scientific activities.

We have used the term “fruitful” several times here. What we have in mind is that

fruitful mathematics is mathematics that leads to yet more of the same sort of activity, to

new ideas and applications in physics or other mathematical sciences, or even just to yet more

mathematics.18 Mathematics that is not rigorous but which leads to successful applications

can very likely be made rigorous, though doing so can itself be a challenging (and rich)

task;19 but mathematics that is formally correct but not guided by fruitful application is

not at all certain to ever find fruitful application—for reasons we have already argued for

above.

This observation leads us to the second sense in which correctness is not necessary for

mathematics, alluded to above: as a purely descriptive matter, within ordinary mathematical

practice, correctness does not need to be established in order to secure the broad acceptance

of a new result. Clearly, as Detlefsen (2008) emphasizes in this connection, it is not necessary

to first formalize a new mathematical result before publishing it in even the most prestigious

mathematics journals. This, of course, is the observation that has driven much of the debate

over the Standard View; and which has led Avigad (2021) to argue that the norms and

strategies of informal proof can be seen as guides towards formalization without actually

securing formalizability. But in fact, something deeper is true. Cases of mathematical

disagreement are almost never resolved by formalizing a difficult and controversial argument.

When a major conjecture is settled using new techniques, for instance, and the mathematical

18Fruitfulness, here, is closely connected to what Maddy (2011) calls “depth” (see also Ernst et al., 2015).
19Calculus provides a prime historical example, having only been made rigorous to modern sensibilities two

centuries after its introduction; another example is the Dirac delta function. The path-integral formalism
of quantum field theory will very likely follow a similar trajectory.
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community does not immediately accept it, one does not find mathematicians on each side

of the dispute rushing to produce formalizations or counter formalizations of the disputed

proof. New techniques are not certified in this way.

What mathematicians do care about is ensuring that the new piece of mathematics

is sound, in the sense that it preserves truth about whatever the target structure under

consideration is. They want to be sure that counterexamples to the new result cannot be

constructed using standard methods, that they will not inadvertently introduce contradic-

tions by assuming the result holds, and that future applications of the theory will be reliable.

In principle, formalization could perhaps help with this. But it is not the most straightfor-

ward, perspicuous, or common way of doing it. This is because translating informal proofs

into formal ones is not, in general, easy; it does not generally get to the heart of the subject

matter; and failures to formalize in some particular system are not necessarily probative,

for reasons already discussed. And so correctness is not necessary in the colloquial sense,

since it is not required or needed to convince mathematicians of the reliability of a disputed

result.

Finally, we turn to a third argument. We have already conceded that “proof” is a success

term, and that plausibly a proof that cannot be formalized, in any system at all, should not

be deemed a proof. We have also argued that there are still senses in which formalizability

is not necessary. But what if we forget about proofs, per se, and consider instead the

more general category of strong proof candidates – roughly, simil-proofs – including serious

attempts at proof that may even appear in the published literature, but which turn out

to be incorrect. There are many examples, we claim, of proof candidates that ultimately

turned out to be incorrect—but which had epistemic value, as witnessed by their impact

on subsequent mathematics. We will describe two such examples here. Our claim is that

these non-proofs had as much, or more, epistemic value as many important proofs. In fact,

we will argue, although they were erroneous, they also helped mathematicians more clearly
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grasp the shape of novel and previously unsuspected phenomena of fundamental importance

to later mathematics.

In 1895, Poincaré released the first installment of his monumental paper Analysis Situs.

His stated goal in this paper was to launch a new field of mathematics, now known as

“algebraic topology”. To say that he succeeded is to do scant justice: algebraic topology

grew throughout the twentieth century and into the present to be one of the major fields of

mathematical research, with influences and cross-pollination across mathematics, and across

the sciences more generally. Today it finds significant applications in condensed matter

physics, quantum chemistry, and contemporary data science, just to name a few. Analysis

Situs is also riddled with errors, which led Poincaré to produce five additional “supplements”.

Even these did not suffice to fully settle the issues, neither to today’s sensibilities nor to

those of his contemporaries.

It is hard to square the success and impact of these papers with the formalist view

of mathematics. Standard formalist responses have alternated between treating them as

anathema and ignoring them altogether.20 Our goal here is not to rehash this discussion,

which others have engaged with before (Poincaré, 2010; Sarkaria, 1999, e.g.). Rather, we

want to focus on the fecundity of Poincaré’s mistakes, most notably his false assertion

that every homology 3-sphere is homeomorphic to a 3-sphere, which led to his discovery

of his dodecahedral space and the formulation of the “Poincaré conjecture”.21 This has

been one of the most fertile mathematical conjectures of the past century and a half, lead-

ing to Smale’s work on h-cobordism (and the proof of the conjecture in dimension ≥ 5)

(Smale, 1962), Freedman’s work on the disc-embedding theorem and the classification of

simply connected (topological) 4-manifolds (Freedman, 1982), and Thurston’s geometriza-

20For instance, “For Bourbaki, Poincaré was the devil incarnate” (Mandelbrot, 2004, p. 280). The quote
is also attributed to Stone (Mac Hale, 1993, p. 145).

21For a careful discussion, see the translator’s introduction to Stillwell’s translation of Analysis Situs
(Poincaré, 2010).
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tion conjecture (Thurston, 1982)/Perelman’s theorem classifying the (piece-wise) uniform

geometries on closed 3-manifolds (Perelman, 2002, 2003b,a). For those keeping score at

home, these results alone comprise three Fields Medals awarded, one Fields medal declined

and one ($1,000,000) Millenium Prize declined (the only one which could have been awarded

to date). Notably, Poincaré’s errors are only the first in a series of major errors which have

given rise to large swaths of contemporary algebraic topology and algebraic geometry, in-

cluding:

1. Pontrjagin’s famous incorrect computation of the stable homotopy groups of spheres in

Pontrjagin (1938), leading to the “Pontrjagin-Thom” construction (Pontrjagin, 1947,

1955; Thom, 1954), Thom’s work on cobordism theory (Thom, 1954), and the formu-

lation in (Kervaire, 1960) of the “Kervaire invariant one” problem (solved by Hill et al.

(2016), except for one open case whose solution has recently been announced in Lin

et al. (2024)).

2. Lefschetz’s work on the topology of algebraic varieties, which led Hodge to initiate

what we now call “Hodge theory”22 and the “Hodge Conjecture” (an open Millenium

Prize problem). A classic quip, repeated by Griffiths in his biography of Lefschetz

(Griffiths, 1992, p. 289), asserts that “Lefschetz never stated a false theorem nor

gave a correct proof.” Notably, one of the core theorems in question is a refinement

of Poincaré duality, the site of a different major error in Analysis Situs and the one

discussed by McLarty (2024).

And this is to name only two of the most consequential and far-reaching errors!

For another example, consider Frege’s monumental effort to formalize mathematics (Frege,

22Hodge theory itself was also initially beset by errors. As Atiyah wrote in in Hodge’s 1976 biographical
entry for the Royal Society, “In retrospect it is clear that the technical difficulties in the existence theorem
did not really require any significant new ideas, but merely a careful extension of classical methods. The
real novelty, which was Hodge’s major contribution, was in the conception of harmonic integrals and their
relevance to algebraic geometry. This triumph of concept over technique is reminiscent of a similar episode
in the work of Hodge’s great predecessor Bernhard Riemann.”
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1893, 1903), which is frequently credited as the origin of the current formalization frame-

works. On the eve of publication of the final volume of his effort to derive all of mathematics

from logic applied to a few self-evident axioms, Frege received a letter from Russell showing

that the naive set theory underpinning Frege’s project contained unavoidable contradictions.

In an appendix written as the book was going to press, Frege described the experience as

follows:

Hardly anything more unfortunate can befall a scientific writer than to have
one of the foundations of his edifice shaken after the work is finished. This was
the position I was placed in by a letter of Mr. Bertrand Russell, just when the
printing of this volume was nearing its completion.23

From one view, Russell’s paradox mortally wounded Frege’s project, with the final nail in

the coffin delivered several decades later by Gödel’s incompleteness theorems. However, as

a historical matter, one could hardly hope for a more influential or productive mistake. The

drama of Frege’s “failure” provided a significant impetus and status-boost to research in

axiomatic set theory and mathematical foundations, leading to several decades of work and

attracting leading mathematicians including Zermelo, Hilbert, Ackerman, von Neumann,

Gödel, Bernays, and Tarski, just to name a few. Even more, the error itself was and is a

major discovery: every sufficiently expressive24 finite formal system admits self-referentiality

as an inescapable feature, and this radically limits the behavior of such systems. As a

mathematical idea, this continues to bear fruit, from Gödel’s second incompleteness theorems

showing that no finite formal system is capable of satisfying Hilbert’s criteria for an axiomatic

framework for mathematics, to Turing’s method for showing undecidability in theoretical

computation, and then the many problems of mathematical and scientific interest for which

no general algorithmic solution can exist.25

23Appendix of Frege (1903), in (Beaney, 1997, p. 279), translation by Michael Beaney.
24“sufficiently expressive”=“sufficient to express integer arithmetic”.
25At least in the Hilbert-Church-Turing paradigm of algorithm.
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We need not multiply examples further—though we insist that cases like these are not

wildly unusual, except in their overall importance to the development of mathematics. These

already suffice to establish the point that contributions to mathematics, including would-be

proofs, need not be formalizable or even correct to have epistemic value. Now, one might

object that whatever value these examples of mathematical output might have, it is not

the value that proofs have—or at least, not the value that proofs have as proofs, which is

specifically the value of justifying a mathematical proposition, because they are not truly

proofs. But, for reasons we have already given, we are skeptical that what makes proofs

valuable to mathematicians is really that they justify belief in propositions, or at least, they

do not do so by virtue of being formalizable. Instead, we have argued, the value of proof

comes primarily from how they permit mathematicians to more clearly reason about and

understand mathematical concepts. Of course they do contribute to mathematicians’ beliefs

about what propositions are true and false, but we suggest they do so through the role

they play in a more general practice. And this is what makes these examples so important,

because they seem to show how incorrect arguments can also contribute, in just the same

way, to that more general practice of exploring mathematical terrain and coming to better

understand mathematical concepts. If one understands proof as functioning in this way,

then these errors are fruitful for coming to learn what is true in just the same way, and

sometimes to a greater degree, than correct arguments.

Now, as we have acknowledged above, one might also object that what we have said is

compatible with the Standard View, insofar as advocates for the Standard View may feel

that proofs play many roles, and formalizability is essential only for one of those roles—one

that such advocates could even concede is relatively minor compared to other roles played

by proof. Fair enough. But even so, we think the Standard View is misguided, because it

reverses the relationship between formalizability and mathematical correctness or rigor, for

reasons we discuss in the next section.
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6. The Relationship Between Logic and Mathematics

Our discussion to this point has concerned “formal correctness”, that is, correctness as de-

termined by (valid) formalizability in some formal system. We have argued that formal

correctness is neither necessary nor sufficient for epistemic value in mathematics. This

raises the question of whether formal correctness bears any relationship to the epistemic

value of mathematical proof at all. We suggest that the answer is “yes”, but the situation is

subtle. Our answer goes via a different notion of correctness, which might be called “math-

ematical correctness” (or “informal correctness”). “Mathematical correctness”, here, is the

standard of correctness for mathematical proof accepted by the mathematical community,

on reflection. Somewhat more precisely, we take a lead from Peircean pragmatism and de-

fine mathematical correctness as “correctness at the end of inquiry”, i.e., after indefinite

scrutiny and in light of all subsequent mathematical developments.26 Thus, results in early

19th century analysis may be viewed as mathematically incorrect even though they were

accepted by the community at the time. On the other hand, we do not want to suggest that

the sociological whims of future mathematicians can retroactively dictate what makes good

mathematics. One way to think about this worry is to say (somewhat speculatively) that

Cauchy, Dirichlet, and their cohort would have accepted later arguments that aspects of

their work were not mathematically correct, and in that sense the standards do not change.

Advocates for the Standard View would maintain that formal correctness is equivalent

to mathematical correctness, or at least, necessary and sufficient for mathematical correct-

ness. Indeed, there is a long tradition in philosophy of logic and mathematics, originating,

arguably, with Leibniz’s characteristica universalis, of conceiving of logic as providing a

normative metaphysical and perhaps epistemic foundation for mathematics—or, in its most

26For those worried about the apparent requirement of infinite time here, we suggest hearing this “weakly”;
we are not aware of an instance where a span of more than a century of active research was required to detect
an error in a central, widely credited result. That said, one might worry about whether interest would shift
over time, so that in-fact incorrect results are never identified as such because the community moves on to
other issues. For present purposes, we do not worry about this sort of case.
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totalizing form, all human knowledge. This picture is one on which the rules for manipu-

lating formal syntax are taken to be fundamental laws of reason, and various logical axioms

are necessary truths that are prior to other forms of knowledge. From this perspective, logic

is fundamental. Mathematics, meanwhile, is to be reduced to, or at least its truth is to be

grounded in, logic. Arithmetic is true insofar as it can be reduced to a logical system; per-

haps even our knowledge of arithmetic ultimately comes from its relationship to the secure

truths of logic.

We endorse a different view of the relationship between logic and mathematics—one we

think has a folk status in the literature, but which is also directly endorsed by some authors,

such as Maddy (2022).27 On our view, mathematical logic is best seen as a mathematical

theory, or family of mathematical theories, of mathematical practice. It bears a relation-

ship to ordinary mathematics analogous to the relationship that a mathematical theory in

science bears to some real-world phenomenon. It captures some aspects of mathematics

in precise mathematical terms. It allows us to prove theorems about what mathematics

(so modeled) can and cannot accomplish, and it allows us to reason about the relationship

between sentences, truth conditions, and structures that may instantiate what sentences

assert. Among other things, it provides a mathematical framework for thinking about how

mathematicians reason, and it offers a precise account of mathematical correctness—namely,

formal correctness.

From this point of view, mathematical logic is a valuable tool for thinking about math-

ematics. But to take formal correctness as the standard against which mathematical cor-

rectness is evaluated, or worse as equivalent to mathematical correctness or as the feature

that makes proofs epistemically valuable as proofs, is to put the cart before the horse. It

is analogous to saying that the reason the earth follows its orbit around the sun is that

27The view is also anticipated by Burgess (1992), though somewhat less explicitly, and we suspect versions
of it can be seen in other work as well.
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our best theory of gravitation says it ought to.28 Or perhaps better, to say that a proof is

mathematically incorrect because it is not formalizable would be like saying that Mercury

has erred in some way because its perihelion advances a few dozen arcseconds each century

relative to its Newtonian orbit.

We do not claim that the originators of mathematical logic thought of their work in the

way we have just described. (Perhaps some did.29 We are not sure. Others certainly did

not.) Instead, we think of this view as a rational reconstruction, one that makes the best

sense of the accomplishments of mathematical logic while also keeping track of its correct

normative role in mathematical practice.

So why hold the view? The first reason is that mathematical logic clearly is a mathe-

matical theory of mathematical practice. Classical first-order logic captures many aspects

of mathematical reasoning. First-order model theory does describe a relationship between

logical syntax and argumentation. Second-order logic captures common reasoning in fields

like point-set topology that typically use higher-order quantification. Intuitionistic logic cap-

tures the reasoning of mathematicians who reject certain proof methods allowed in first-order

classical logic. And so on. All of these are mathematical theories. So they are mathematical

theories of (aspects of) mathematical practice. We infer from this that formal correctness,

relative to a given system, is a precise way of capturing mathematical correctness within

that system.

So far so good. But the important question is whether mathematical logic, and by

28Of course, it may well be that the central equations or laws of gravitational theory assert relationships
that truly obtain in the world, and that those relationships are the reason that the earth follows its orbit
around the sun. The point is that our theories attempt to describe the regularities that obtain in the world,
rather than that the regularities in the world are somehow obligated to conform with our theories.

29For example, Gentzen (1964, p. 74) indicated that his goal was to develop “a formalism that reflects as
accurately as possible the actual logical reasoning involved in mathematical proofs”. Some philosophers read
this “as meaning that all valid mathematical inferences should be instances of the logical rules of natural
deduction, or closely related to them” (Tatton-Brown, 2023, p. 480), but we find that strained. The plain
meaning of the text is that mathematical inference comes first, and the formalism of natural deduction was
developed in its image.
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extension formal correctness, is also more than this. In other words, one might argue that

although mathematical logic is a mathematical theory of mathematical practice, it has a

saliently different relationship to its subject matter than other mathematical theories of

some natural phenomenon. We accept it does have some important differences, such as that

it is self-referential. Insofar as mathematical logic is itself a part of mathematical practice,

we can apply it to itself. But this is not a salient difference, because self-referentiality does

not imply that mathematical logic has a normative status with regard to its subject matter,

whereby failures of descriptive accuracy imply that the subject matter is erroneous.

One possible basis for a normative status of this kind would be if mathematical logic

were well-conceived as an ideal form of mathematical reasoning, something like a perfection,

precisification, or elaboration of ordinary mathematical practice. In that case, one might

argue that mathematical logic is mathematical reasoning with certain failure modes removed,

or that if a proof cannot be formalized, it fails some higher, more pure or ideal standard.

But we reject this. Yes, mathematical logic describes a certain kind of ideal of reasoning – or

multiple ideals, associated with different logics – but that is because it is a highly idealized

theory of mathematical reasoning. By this, we mean that various bits of mathematical

logic describe more or less simplified versions of mathematical reasoning, with domains of

application in which they are more or less descriptively accurate, and other domains where

they break down.

In fact, we have already seen this. First-order logic has a number of nice properties

that capture deductive reasoning, it has a clear semantics, and one can prove fundamental

theorems – of soundness and completeness – that link syntax and semantics. But standard

methods in some areas of mathematics involve, and arguably require, second-order quantifi-

cation.30 This signals a breakdown of first-order logic as an adequate model for mathematical

30For a full-throated defense of the importance of second-order logic for the foundations of mathematics,
see Shapiro (1991). One might worry that second-order logic, or second-order quantification, is not really
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practice. Of course, it does not mean that these methods cannot be formalized—one just

needs to move to second-order logic. But second-order logic, while apparently expressive

enough to capture classical mathematics, does not have the same nice semantic or proof the-

oretic properties as first-order logic. It is famously a consequence of Gödel’s incompleteness

theorems that under standard semantics, there is no (finitary) proof system that satisfies

all three of soundness, completeness, and effective proof checking. One can adopt alterna-

tive semantics (most notably, Henkin semantics), relative to which the standard deductive

systems for first-order logic become sound, complete, and effectively checkable, but Henkin

semantics reinterprets second-order quantification in a way that effectively reduces its ex-

pressive power, limiting its ability to faithfully model mathematical practice in the wild. So

while second-order logic improves on first-order logic in some regards, it breaks down under

other circumstances. Neither seems to perfectly capture mathematical practice, though both

are helpful in certain domains.

Something similar can be said for mathematical arguments that move between proofs

within a theory to proofs at the semantic or metamathematical level. As Rav (1999) points

out, there are many examples in mathematics – he highlights group theory in particular –

where a first-order theory is available, and for some purposes, textbook theorems can be

seen as informal arguments that would admit formalization in a sound first-order deductive

system. But often, powerful theorems of group theory require one to manipulate groups using

the full resources of set theory, that is, to step outside of the first-order theory of groups

and prove things externally about structures that satisfy those axioms. Or consider that for

standard results in synthetic differential geometry, one needs to move to an intuitionistic

logic and drop the law of the excluded middle. In that case, there are good reasons to think

what is needed in most cases where first-order logic fails, and that working mathematicians rarely explicitly
quantify over sentences. Fair enough—but this is a dispute about what is the best alternative in cases where
first-order logic breaks down. Another candidate, at least in some cases, is to build the relevant structures
in set theory, though doing so hardly captures all aspects of the relevant mathematical practice.
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the results are mathematically correct, because the geometric theory is dual to an algebraic

theory that does not require any changes in logic. But a flat-footed attempt to recover those

results as formally correct leads to contradictions.

Of course, none of these arguments imply that formal correctness, relative to some proof

system, is not a valuable tool for assessing mathematical correctness. In many cases, showing

that a proof is not formally correct, or could not be formally correct, relative to some system

is probative in assessing whether it is mathematically correct, since the failure of formal

correctness can reveal unnoticed errors. But we should think of this as a case of reasoning

about some subject matter by using a simplified model that we expect to represent salient

features for the case at hand. It is analogous to an engineer who uses mathematical models

of material strain in the course of designing a bridge. The models are not the reason the

bridge will stand or fall, and they can even be wrong under some circumstances. But they

are likely a useful guide nonetheless, and will point to the places where the bridge design

may be flawed.

We conclude this section with a final argument, which is somewhat speculative but which

seems to us to accurately reflect both the sociology of mathematics and the relationship

between logic and mathematics. Perhaps it is a Rorschach test of sorts. Suppose that there

were a result that could not be formalized in any known logical system, but which nonetheless

the mathematical community came to accept as mathematically correct. This may seem

implausible—though we would argue the reason it seems implausible is that mathematical

logic is a mature discipline, and there are many systems available already. But suppose it

happens. What should we make of that situation? Advocates of the Standard View would

presumably say that the mathematical community has gone off the rails, they have accepted

an incorrect result, where incorrectness is determined by failures of formalizability. (If they

do not say this, it is hard to see in what sense the informal proof has indicated, much less

encoded, a formal proof.) But that is not what we would expect mathematicians or logicians
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to actually do. Instead, we think such a situation would spark a lot of excitement among

logicians, and important new work trying to find a new formal system in which the result

could be formalized. One would try to understand how the result works and why it might

be taken to be correct. In other words, if existing mathematical theories of mathematical

practice failed in some domain, the correct and likely response would be to develop new

mathematical theories of that domain.

7. The Automation of Mathematics Revisited

As we said in the introduction, one motivation for our arguments is to reflect on what auto-

mated theorem provers can contribute to mathematics—and to push back against the idea

that automating mathematics is certain, or even likely, to significantly advance mathematics.

We now return to this motivating theme.

As we noted in the introduction, if one thinks that formal correctness is the guiding

virtue of mathematical practice, if one believes it is sufficient, for epistemic value, then it

would follow that a computational system that could reliably generate correct proofs would

generate epistemic value. This would be all the more true if the computational system could

reliably generate proofs faster than humans could generate them; or if it could generate

proofs of theorems that humans have not been able to, or even in principle could not, prove.

If, on the other hand, correctness is neither necessary nor sufficient for a proof to have

epistemic value, it is much less clear what reliably generating correct proofs can accomplish.

It would seem that mathematicians need more than this. Where does that leave us?

The first thing to say is that there is a sharp distinction to draw between computational

proof generation and proof assistance. Using computers to help prove theorems that have

been stated by mathematicians, which assert things that mathematicians have antecedent

interest in establishing, is surely valuable. Proof assistants can check potentially problematic

lines of reasoning and provide some insight into their status; in principle, they can also fill
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gaps and play other kinds of supporting roles. None of this is problematic, as long as

the crucial role that human mathematicians play in posing questions and extracting new

understanding from answering them remains in focus. For that to be the case, the inputs

– the conjectures stated, the definitions used, etc. – must come from mathematicians who

are seeking to extend the body of existing mathematical knowledge, with full integration

with the rest of that body of knowledge; and the outputs, namely, proofs of theorems, must

be such that they can be read and understood by human mathematicians. Even more,

these outputs must provide the kind of insight into the structures under consideration, and

the reasons theorems are true, that other, non-assisted work does. In other words, proof

assistants can surely play a collaborative role in producing new mathematical research, as

long as the overall character of the resulting inquiry is not adversely affected.

More troubling, though, is the prospect that generative AI, such as high-end large lan-

guage models, could simulate the sorts of inputs and output just described. That is, a system

trained on mathematical definitions could surely state definitions that are similar in form

to ones mathematicians would state; and they could pose conjectures with the right sort of

form; and then automated theorem provers could generate proofs of them. One could even

imagine (and there are ongoing efforts to build) AI systems that could take the output of a

formal proof assistant / generator and rewrite it in the style of a working mathematician.

In some ways this would be similar to generating prose in the style of various authors, or

generating working computer code. One could even imagine that such a system could learn

to accurately predict what sorts of definitions, conjectures, and theorems would be judged

to be interesting by other mathematicians.

We say this is “troubling” because it could generate the sort of input and output that we

described above as essential for preserving the role of human mathematicians (or something

indistinguishable from it), without humans having any role to play. In such cases, one

might think that there is no loss in full automation, since the automated system would
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be generating “interesting” results in a form that is comprehensible to humans. But we

think that even in this case, something crucial would be missing—though saying just what

it is is more subtle. We note two kinds of problem (and DeDeo (2024) explores other,

similar concerns). The first is that the sort of scenario we are imagining, if truly devoid of

human feedback, would involve a kind of problematic extrapolation. Currently, mathematics

evolves dynamically in response to new ideas, techniques, applications, and results. That

is, what mathematicians today would call interesting is not what mathematicians fifty or a

hundred years ago would call interesting—and if the field is healthy, fifty years from now,

mathematicians’ interests will have evolved further still. LLMs, however, work by predicting

next words based on frequencies in an existing body of text (including, perhaps, updates).

This can simulate many aspects of human discourse. But making probabilistic judgments

concerning what some fixed group of mathematicians would judge as interesting does not

reflect the dynamics that has historically guided mathematics. It seems to us something is

lost.

Of course, one could also imagine a situation in which humans provide ongoing feedback

to the AI mathematicians about what is interesting now, in light of changing background

conditions. It might even be that mathematicians, responding to results generated by AI,

would come to find new topics interesting, leading to new work by the AI, leading to new

results, still—in each case, interesting within the evolving context. But we would argue that

even in this case, something would be missing. This leads to the second problem, which is

that the reasons the theorems are conjectured and proved would be the wrong reasons, and

therefore they would not play the right role in the social activity of mathematics to count

as contributions to that activity. The picture, here, is one of human discovery of structures

and relationships, leading to new ideas about how to investigate those structures and what

significance they have for other things of prior interest, leading to yet more ideas about

those structures and new ones. The new ideas proceed from ever-deeper understanding
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of the old ones. This is an essentially creative activity, and a social one that stems from

engagement with other mathematicians’ work. The process by which it occurs is ultimately

what contributes most to our understanding of the mathematical subject matter, and, by

extension, to those parts of the world that we seek to describe with it.

One can entertain more speculative possibilities, which perhaps could play more con-

structive roles. For instance, consider a customized AI system, trained on both the body

of mathematical knowledge and a particular mathematicians’ style, previous work, ways of

thinking, and preferred questions. That system, engaged in a dynamic conversation, could

play the role of a close collaborator or graduate student, proposing ideas, translating others’

work, and drawing connections that the mathematician can then respond to. Or consider

a situation where an AI system develops a body of new theorems, but then also generates

pedagogical materials – textbooks, video lectures, question and answer sessions, and the like

– to teach the new work to humans, much as a human mathematician would.31 It is easy to

see how in this sort of scenario, an AI assistant could be helpful, just as a good teacher or

student could be helpful. Many mathematicians engage with others’ work, at least at some

points in their career, through proxies of just the sort that an AI system could presumably

simulate.

Again, though, we do not dispute that AI or other automated systems can be useful to

mathematicians. Of course they can be. Our point is that no degree of simulation of the

processes of mathematics via generation of the text and symbols that mathematicians pro-

duce to communicate with one another about mathematical ideas can play the cognitive role

that reasoning about mathematics can play. This is true even if the simulated material is

indistinguishable from the sorts of text that mathematicians themselves would produce. At

very best, what one can hope for would be text that generates, in the mind of a mathemati-

cian who reads it, new interpretive and creative processes analogous to those that reading

31Thank you to Tim Gowers for pushing us on this sort of possibility.

35



work by another mathematician would produce—thereby stimulating new ideas. But before

one declares that this is enough, note that again the contribution to mathematics is what

the mathematician produces when attempting to engage with the AI generated text, and

not the text itself, which is essentially sterile.
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Poincaré, H., 2010. Papers on Topology: Analysis Situs and Its Five Supplements, trans. by John Stillwell.

AMS and London Mathematical Society.

Polya, G., 1954. Mathematics and Plausible Reasoning. Princeton University Press, Princeton.

Pontrjagin, L., 1938. A classification of continuous transformations of a complex into a sphere. ii. C. R.

(Dokl.) Acad. Sci. URSS , 361–363.

Pontrjagin, L., 1947. Characteristic cycles on differentiable manifolds. Mat. Sbornik N.S. , 233–284.

Pontrjagin, L., 1955. Smooth manifolds and their applications in homotopy theory. Trudy Mat. Inst. Steklov

45.

Rav, Y., 1999. Why do we prove theorems? Philosophia Mathematica 7, 5–41.

Sarkaria, K., 1999. The topological work of henri poincaré, in: James, I. (Ed.), History of Topology. North-
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