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In recent years, there has been heightened interest in (at least) two threads
regarding geometrical aspects of spacetime theories. On the one hand, physi-
cists have explored a richer space of relativistic spacetime structures than that
of general relativity, in which the conditions both of torsion-freeness and of
metric compatibility are relaxed—this has led to the study of so-called ‘metric-
affine theories’ of gravitation, on which see e.g. Hehl et al. (1995) for a masterly
review. On the other hand, physicists have been increasingly interested in se-
curing a rigorous and fully general understanding of the non-relativistic limit of
general relativity—this has to novel version of Newtonian physics, potentially
with spacetime torsion (‘Type II’ Newton–Cartan theory—see Hansen et al.
(2022) for a systematic overview).

Only recently have physicists begun to bring these two threads into contact
with one another. Read and Teh (2018) and Schwartz (2023) showed that the
non-relativistic limit of ‘teleparallel gravity’ (a geometrical alternative to general
relativity with spacetime torsion rather than spacetime curvature, and as such a
special case of a metric-affine theory of gravitation) yields a novel non-relativistic
spacetime theory, which (with suitable ‘gauge fixing’) yields standard, potential-
based Newtonian gravitation theory; Wolf et al. (2024) then generalised this
work by showing that the entire ‘geometric trinity’ of gravitational theories (on
which see Beltrán Jiménez et al. (2019) for a review; the third node of this
trinity is ‘symmetric teleparallel gravity’, which is a theory with non-metricity
but no curvature or torsion)—all of which again are special cases of metric-affine
theories of gravity—has a non-relativistic limit, yielding a novel, non-relativistic
geometric trinity of gravitational theories. The common structure of this non-
relativistic trinity was then identified by March et al. (2024).
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Up to the article under review here (Schwartz 2024), however, no general
study of non-relativistic spacetime structures (with connections manifesting
both torsion and non-metricity) has been developed; Schwartz rectifies the sit-
uation and presents the general result, which is that the connection coefficients
of a fully general non-relativistic connection take the form
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where τµ and hµν are the temporal and spatial metrics (respectively) as usual

for a Galilean structure, Tµ
νλ is the torsion tensor, Q̂µν := ∇µτν and Q µν

ρ :=
∇ρh

µν are the non-metricities, Ω is the Newton–Coriolis 2-form with respect to
a unit timelike vector vµ, and P ρ

λ := δρλ − vµτν is the spatial projector along
vµ.

Before we proceed further, two caveat emptors which are not stressed explic-
itly by Schwartz. First: it is somewhat misleading to describe any connection as
being specifically (i) ‘relativistic’, (ii) ‘non-relativistic’, or even (more on which
below) (iii) ‘ultra-relativistic’. This is because any connection can be decom-
posed into a combination of (a) a ‘Levi-Civita-like’ term, (b) torsion terms, (c)
non-metricity terms, and (d) terms associated with the non-uniqueness of the
compatible connection—for any of (i)–(iii)! This point is stressed by Vigneron
et al. (2025), but bears emphasising in order to forestall any misconception
that there is anything distinctively ‘non-relativistic’ about any connection. Sec-
ond: as stressed by Schwartz (2024, p. 7), but also by Vigneron et al. (2025)
and Wolf et al. (2024), for non-relativistic (and indeed ultra-relativistic—again,
more on this below) connections with both torsion and non-metricity, these two
geometric properties are not independent of one another.

In any case, after presenting this general result, Schwartz then moves on,
in §4 of his article, to consider general non-relativistic connections from the
principal fibre bundle point of view, demonstrating how the objects of a Galilean
structure with connection can be defined from tetrads and connections on a
principal bundle with the (orthochronous) homogeneous Galilean group as its
structure group (Schwartz denotes this G(M), which is the general linear frame
bundle F (M) with appropriate reduction of the structure group). Interestingly,
the connection with which one works here is not a connection form, because it
takes values in the wrong Lie algebra (one is dealing with a gl(n + 1)-valued
one-form on G(M))—we return to this below.

As already mentioned above, this article is a significant contribution to the
literature, delivering a substantially more general perspective on possible non-
relativistic geometries than was hitherto available. The results of Schwartz
(2024) provide the foundations for explorations of possible non-relativistic space-
time structures (in the context of the non-relativistic ‘trinity’) which have al-
ready been undertaken by Wolf et al. (2024). But the work also invites quite
naturally a number of further explorations, on which we now comment:
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1. Construct a generalised metric-affine theory of Newton–Cartan gravity.

2. Appraise the extent to which metric-affine Newton–Cartan gravity (or
sectors thereof—see below) can be understood in the framework of Cartan
geometry (on which see e.g. March et al. (2025)).1

3. Explore the gauge freedom inherent in different sectors of metric-affine
Newton–Cartan gravity.

4. Explore the extent to which these constructions carry over to the case of
ultra-relativistic gravity.

Let’s take these in turn.
Ad (1): Hehl et al. (1995, §5) consider general Lagrangians for field the-

ories which are functions of relativistic (i.e., Lorentzian) structures and asso-
ciated general connections and their torsions and non-metricities. This raises
the question of whether it would be possible to construct and study analogous
Lagrangians in the non-relativistic case—analogous in the sense that they be
functions of Galilean structures and general connections, again with associated
torsions and non-metricities. In general, we see no roadblocks to being able to
do this—and, indeed, the analysis of e.g. Noether currents undertaken by Hehl
et al. (1995, §5) should (one hopes) carry over to that context. That said, there
will be subtleties: for standard textbook Newton–Cartan theory (what Hansen
et al. (2019a) call ‘Type I’ Newton–Cartan theory), it is known that no action
principle exists; this carries over to the entire non-relativistic geometric trinity
of gravity (see Wolf et al. (2024)). Hence, an analysis of variational principles
will not apply to all theories constructed using the general non-relativistic con-
nections presented by Schwartz. On the other hand, it is also known that there
are sectors of torsionful, non-metric Newton–Cartan gravitation—dubbed ‘Type
II’ Newton–Cartan theory by Hansen et al. (2019b)—for which action princi-
ples do exist; therefore, one would expect to be able to recover (at least) these
theories from a variational approach to metric-affine Newton–Cartan gravity.

In light of this, one might wonder about alternative strategies for pursu-
ing (1)—in particular, for understanding the relationship between the non-
relativistic geometric trinity of gravity and sectors of metric-affine Newton–
Cartan gravity. For example, it is well-known that the general theory corre-
sponding to the case of torsionful metric connections (with curvature)—often
called torsional Newton–Cartan gravity—can be obtained through a process of
‘gauging’ the Bargmann algebra (on which, see, e.g., Andringa et al. (2011)).
One then recovers the flat torsionful (respectively non-flat, torsion-free) sec-
tors of that theory, and corresponding two nodes of the geometric trinity, by
restricting to the cases where the curvatures (respectively torsions) associated
with translations (respectively rotations) vanish. This provides a way of isolat-
ing the subgroups of the Bargmann group corresponding to the torsionful and

1Somewhat relatedly, it might be nice to consider the extent to which the fibre bundle
perspective of non-relativistic spacetime structures offered by Schwartz (2024, §4) is amenable
to geometrical reformulation à la Gomes (2024). But here is not the place to explore that
possibility.
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curvature-based nodes of the non-relativistic geometric trinity. In principle, this
same strategy is available for general theories of metric-affine Newton–Cartan
gravity. That said, the Bargmann algebra is not strictly a subalgebra of the Lie
algebra of the general linear group—unlike in the relativistic case—rather, it is
a central extension of such a Lie algebra. This is crucial for recovering the grav-
itational potential in torsional Newton–Cartan gravity as a torsion associated
by the generator of mass translations—i.e., mass-torsion. So, while we don’t
see any conceptual roadblock to (1) per se, evidently there will be subtleties
involved in the strategy chosen for realising (1), and there is further work to
be done understanding e.g. the scope for a centrally-extended version of the Lie
algebra for metric-affine Newton–Cartan gravity analogous to the Bargmann
algebra for the metric sector of the theory.

Ad (2): As already discussed above, when Schwartz offers a fibre bundle
perspective on general non-relativistic connections, he does so by way of a con-
nection on G(M) valued in a larger Lie algebra. This reminds one of the geome-
try of Cartan connections (see Sharpe (2000) for mathematical background, and
March et al. (2025) for discussion in the context of geometric alternatives to gen-
eral relativity)—and recall that the connections between metric-affine theories of
gravity and Cartan geometry have already been noted in the relativistic context
by François and Ravera (2025). As such, it would be worthwhile exploring the
extent Cartan geometry can be brought into contact with these non-relativistic
metric-affine theories. Note though that again there will be roadblocks here:
in Schwartz’ case, one Lie group is not a normal subgroup of the other, which
seems to preclude reading in terms of standard Cartan geometry.

Ad (3): It is well-known (see, e.g., March et al. (2024) and Schwartz (2023))
that both the torsionful and non-metric nodes of the non-relativistic geomet-
ric trinity exhibit gauge freedom in relation to Newton–Cartan theory, in that
there are multiple distinct (non-isomorphic) models of these theories which cor-
respond to the same model of Newton–Cartan theory. (This is, of course, also
true of the relativistic geometric trinity in relation to GR—but the situation is
less straightforward in the non-relativistic case, because agreement on the met-
rics is not sufficient to recover the same model of the torsion-free metric sector
of the theory as in the relativistic case.) It would be of interest to systemati-
cally characterise the extent to which various different sectors of metric affine
Newton–Cartan theory exhibit this kind of gauge freedom (whether in relation
to Newton–Cartan theory or one another).

Ad (4): This article also raises the question as to whether it would be pos-
sible to construct a result analogous to Schwartz’ Theorem 4—i.e., a general
theory of ultra-relativistic structures. (Recall that ultra-relativistic, or Carrol-
lian, structures, are what arises when one takes the c → 0 limit of relativistic
spacetime structures—see March and Read (2025) for a primer.) This question
was, indeed, already asked and answered by Vigneron et al. (2025). Naturally,
many of the questions raised above would then carry over to the the context of
ultra-relativistic gravity.
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