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Abstract

Key elements of the recent dialectic surrounding the hole argument

in the philosophy of general relativity are clarified by close attendance

to the nature of scientific representation. I argue that a structuralist

account of representation renders the purported haecceitistic differences

between target systems irrelevant to the representational role of models

of general relativity. Framing the hole argument in this way helps resolve

the impasse in the literature between Weatherall and Pooley and Read.

1 Introduction

The hole argument poses an interpretational problem for general relativity (GR),

and experts in the field cannot agree on its resolution. Nonetheless, practising

physicists working with GR will likely have never heard of the supposed prob-

lem (other than, perhaps, Einstein’s original formulation), let alone encounter

in practice the problems of indeterminism and underdetermination that some

philosophers claim it entails. This contrast in attitudes requires explanation.

There have been three distinct waves of debate, as summarised in Section 3.

The primary goal of this paper is to dissolve a specific impasse in the dispute

within the most recent phase of debate between Weatherall (2018), who argues
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attendance to mathematical practice allows us to block the hole argument, and

Pooley and Read (2025) who argue that Weatherall’s position is not justified.

My resolution of this dispute draws on Van Fraassen (2008) account of sci-

entific representation. I argue that the hole argument itself is of no importance

for physics, but this does not mean that the recent flurry of literature has been

of no importance for the philosophy of physics. Contrary to Weatherall (2018),

mathematical practice alone is not sufficient to block the hole argument, and it

fails to preclude other uses of isomorphic models to represent merely haecceitis-

tic differences. Moreover, those who believe in spacetime points with haecceities

should use isomorphic models to represent them, and in this limited sense Pooley

and Read (2025) are correct. Nonetheless, an account of scientific representa-

tion, attentive to the ways in which models are used to represent their target

systems, reveals that the hole argument assumes a representational difference

that cannot make any difference to scientific practice. Surrogative reasoning

about a target system is possible in virtue of the representation relation, which,

I argue, should be understood as a kind of structural mapping, for which haec-

ceitistic differences are irrelevant. Hence, scientific practice is invariant with

respect to supposed haecceitistic differences between models.

The structure of the article thereafter is as follows. The following Section

2 presents a structuralist account of representation, drawing heavily on Van

Fraassen (2008), that emphasises the role of ‘use’ in representation. Section 3

then introduces the hole argument in historical, formal, and philosophical con-

text. Section 4 diagnoses the reasons for the impasse in the dialectic between

Weatherall (2018) and Pooley and Read (2025). Thinking carefully about rep-

resentation can help articulate the sense in which they are talking past each

other, and shows that their dispute is not one to be resolved, but dissolved.
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2 Scientific Representation

The aim of this section is to distinguish scientific representations from mere

representations. The three most immediate questions one can ask of any account

of scientific representation are:

1. In virtue of what do carriers (models, mathematical structures, etc.) rep-

resent their target systems?

2. How does the answer to (1) explain the ways in which carriers are used to

generate and test hypotheses about their target systems?

3. What, if anything, distinguishes scientific representations from represen-

tations more broadly?

These questions align well with part of the framework for scientific repre-

sentation developed in Frigg and Nguyen (2020). In particular, (2) and (3)

correspond to the following:

Surrogative Reasoning Condition (SRC): “[M]odels represent in a way that

allows scientists to form hypotheses about the models’ target systems: they can

generate claims about target systems by investigating the models that represent

them.”

Scientific Representational Demarcation Problem: “Do scientific representa-

tions differ from other kinds of epistemic representations [i.e., representations

that meet (SRC)], and, if so, wherein does the difference lie?”

(Frigg and Nguyen 2020, 3)

I argue for a structuralist answer to (1), and use this to answer (2) and (3).

The answer I present to (1) is that a necessary, but not sufficient, condition for

carriers to represent their target systems is that there is some variety of structure

preserving mapping (determined by the representational context) between the

mathematical structure and the target system. The (SRC) is then easy to
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meet, as structuralist representation allows for surrogate reasoning in virtue of

the structural mapping. The answer to (3) requires the most work; indeed, it

is not within the scope of the current paper to defend fully this claim for non-

mathematised sciences. Nonetheless, I contend that, at least for modern physics,

scientific representations are distinct from representations more broadly.

Depending on the intended application, the exact variety of mapping may

differ. If one wants to consider the topology of a human, then a homeomor-

phism to which represents them as a seven-holed doughnut will do; but, this

would clearly be inadequate for representing physiological traits. Structuralist

representation is not, as some are tempted to characterise it, a simple case of the

carrier and target being similar (i.e., resembling each other) in some unspecified

way. Similarity in an unrestricted sense is irrelevant for scientific representa-

tion. Yet, by talking about models representing systems without specifying how

they are used to do so, Leibniz equivalence intuitively pushes one towards this

kind of mistaken reasoning. While this view may fail to characterise representa-

tions more generally, I argue it does capture an indispensable aspect of scientific

representations.

Van Fraassen (2008) develops an account of scientific representation that

serves as a constructive starting point for the present paper:

‘Essential to an empiricist structuralism is the following core con-

strual of the slogan all we know is structure:

I. Science represents the empirical phenomena as embeddable in

certain abstract structures (theoretical models).

II. Those abstract structures are describable only up to structural

isomorphism.

In the empiricist version, the structuralist slogan is clearly and sub-

stantially qualified. ... [T]he slogan must be read as meaning, at
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best, that all we know through science is structure.’ (van Fraassen

2008, 238)

The final slogan given implies the claim that surrogative reasoning is possible

in virtue of the representation relation. Beyond general structuralism, the key

idea I want to borrow from van Fraassen is that for any carrier, the ‘structural

relationship to the phenomenon is of course not what makes it a representation,

but what makes it accurate: it is its role in use that bestows its representational

role.’ (van Fraassen 2008) One need not accept, as van Fraassen claims, a

variety of empiricism that epistemically privileges the human senses. One can

instead adopt a form of methodological empiricism (see Ladyman forthcoming).

Frigg and Nguyen arguably mischaracterise Van Fraassen when writing of him:

“the crucial ingredient is now the agent’s intention, and isomorphism has in

fact become either a representational style or normative criterion for accurate

representation” (Frigg and Nguyen 2020 ,64). Although van Fraassen takes the

ways they are used to be what bestows the representational role, and it would

be peculiar not to accept use as sufficient for intention, intending a carrier

to represent a target system is clearly not sufficient for use, in the context of

scientific practice.

In the context of modern physics, I prepose philosophers of science should

be guided by the following five theses regarding scientific representation:

Thesis 1: Scientific representation, like non-scientific representation, in-

cludes reference to physical systems via ostension, denotation, and stipu-

lation. Reference is the most minimal form of representation.

Thesis 2: Scientific representation includes structural representation, but

being a structural representation is not sufficient for being a scientific

representation.
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Some cases of structural, but non-scientific, representations can be thought

of as proto-scientific. To illustrate this point, consider the example of siteswap

notation for juggling, where throws are represented by non-negative integers

that denote the number of beats later the same object is thrown again. Basic

arithmetic operations can be applied to discern features of a given pattern,

hence surrogative reasoning is possible; but, this should not be classed as a

scientific representation of the system. The same system could be scientifically

represented using the language of differential equations, although this would

be of no use to the performer. Moreover, not all features of the target system

need to be represented: for instance, the colour of the props is irrelevant to the

successful representation of a juggling pattern, and the failure to represent this

does not imply a problematic indeterminacy in the models used.

Thesis 3: Many scientific representations are mathematical.

Modelling in some physical contexts, including the present context of GR, is

achieved via mathematical representation. Surrogative reasoning is possible in

virtue of these mathematical structures. There are, of course, some edge cases

as to what should be considered mathematical or scientific, such as the example

considered above.1

Thesis 4: Non-mathematical representations used in science (e.g., theo-

retical reference), rely on pre-existing structural models for their justifi-

cation.

For example, one can refer to the perihelion precession of Mercury with

confidence, but the justification for this comes from the mathematical models

1It would be a misguided overstatement to claim a sharp divide between mathematics
and natural language and align this with a divide between scientific representations and non-
scientific representations, as was arguably the case in Wallace (2024). Nonetheless, for present
purposes, I am concerned with a clear case of scientific representations which are mathematical
representations.
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of GR, which were successfully used to predict the outcomes of observations.

Scientific representations involve structural representations used for explanation

and prediction. They may involve non-representational surplus structure, and

often incorporate non-structural elements, such as stipulation, denotation and

ostension.

Thesis 5: What makes a model a scientific representation is its use in

scientific practice.

Making the way in which models are used part of the defining criteria for

scientific representation according to Thesis 5 requires also making the repre-

sentation relation itself explicit. If we do this, we will be able to see in later

sections why the metaphysical possibilities entailed by the hole argument ac-

cording to Pooley and Read are not a problem for scientific representation. A

general instance of including the representation relation between a model and

target system is captured in the following schema:

M M̃

S

f

R R̃

We thus have that, according to the view expressed in the schema above, if

a model M (scientifically) represents a target system S via a representation

relation R and f is a function corresponding to some symmetry of M such that

M̃ = f(M), then there exists an R̃ := R ◦ f−1 such that M̃ (scientifically)

represents S via R̃. Moreover, R := R̃ ◦ f .

A simple example can help illustrate why this claim is almost trivial. Con-

sider a Euclidean plane E2 equipped with the standard Euclidean metric. This

can then be used to represent via some R a basic system of particle dynamics
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M , with the state of a particle represented by a point p(t) ∈ E2, and its evo-

lution is represented by a curve γ(t) ⊂ E2. Next, define Ẽ2 as the result of an

isomorphism acting on E2, e.g., rigid rotation of E2, such that Ẽ2 = f(E2).

Evidently, there exists an R̃ := R ◦ f−1 such that Ẽ2 also represents M via

R̃. The fact that Ẽ2 could also be used to represent a distinct system via a

different representation relation is of no consequence. Indeed, the isomorphism

f is of no substance here, as one could freely use E2 to represent a variety of

physical systems by varying the representation relation alone. One is able to

use mathematically equivalent models to represent distinct physical systems,

and one is able to use mathematically inequivalent models to represent physical

systems that are qualitatively the same. However, in both these instances, for

it to matter, you need to be able to distinguish by another means, i.e., there

exists a procedure for knowing you are using or representing one and not the

other. The hole argument is not like this. That is, the purported metaphysical

differences between worlds cannot be tracked by a representation relation used

in practice.

3 A Brief History and Overview of the Hole Ar-

gument

I begin this section with a contemporary presentation of the hole argument,

before briefly covering some relevant history of how the analysis of hole argument

has developed.

Providing a neutral formulation of the hole argument is a challenge, as it’s

easy to slip into interpretational talk. The argument as presented here is rep-

resentative of the standard formulations in the literature and is sufficient for

the present analysis. Consider a Lorentzian manifold, (M, gab) Figure 1. Next
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Figure 1: The manifold M .

Figure 2: The ‘hole’ pre-diffeomorphism.

specify a diffeomorphism d : M → M which acts as the identity outside some

open set O ⊂ M with compact closure (the ‘hole’)Figure 2, but on O, d is not

the identity. Thus, d is not the identity map on M . From this, one can generate

an isometric Lorentzian manifold (M, g̃ab) where the underlying manifold M is

the same, but the metric is defined by the pushforward map determined by the

diffeomorphism acting on the original metric: g̃ab = d∗(gab). The problem is

as follows: (M, gab) and (M, g̃ab) are isometric, meaning they are equivalent as

Lorentzian manifolds, and agree on all invariant structure. But, each appears

to assigns different metrical properties to points within the open set O Figure 3.

The laws of GR do not, from any proper initial data hypersurface outside of

O, uniquely determine whether (M, gab) or (M, g̃ab) develops. Therefore, the

argument goes, the hole argument demonstrates a failure of determinism for

GR.

The hole argument as detailed above is purely formal, so it is difficult to

see why one should be concerned with the conclusion, as the notion of deter-

minism isn’t prima facie the familiar kind of determinism from contemporary

metaphysics. The argument is typically made less abstract in the following way,

9



Figure 3: The ‘hole’ post-diffeomorphism.

but this kind of thinking is what, I argue, gives rise to the problems present in

the literature. If one supposes (M, gab) and (M, g̃ab) can be used to represent

distinct physical possibilities, as a manifold substantivalist does, then the hole

argument is said to show that for any initial state of the universe at a time t,

there fails to be a single unique state for all future times. Again, this reasoning

isn’t without issue.

The hole argument was originally devised by Einstein in 1913, during his

struggle to formulate a generally covariant theory of gravitation. He wondered

if the reason he couldn’t find such a theory was because it wasn’t possible. The

hole argument was posed to support this, by aiming to show that any gener-

ally covariant theory of gravitation would violate determinism; hence, no such

theory was admissible. During 1915, Einstein realised this was mistaken, and

successfully discovered the generally covariant theory in GR. What went wrong

with the hole argument, he claimed, was that it failed to adhere to the prin-

ciple known as the ‘point coincidence argument,’ which states that only the

spacetime coincidences, the intersection of field events, are physically meaning-

ful, and these are preserved under diffeomorphism. Thus, there is no failure of

determinism.

Over the following century, the hole argument has been become detached

from its practical origins, and elevated to the status of a stable topic for grad-

uate seminars in philosophy. In Earman and Norton’s revival of the hole ar-

gument, the target was (manifold) substantivalism, a view which few, if any,
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defend outright. Manifold substantivalism is the view that the bare manifold

M represents spacetime, and that points of the manifold p represent spacetime

points independently of the metric. (Earman and Norton, 1987) They contend

that, unless one adopt the interpretative principle of Leibniz equivalence, the

substantivalist is committed to a kind of radical indeterminism. The idea is

that if (M, gab) and (M, g̃ab) are taken to be capable of representing distinct

physical possibilities, say W and W̃ , then as the area outside the hole M − O

is identical for both, the theory seems to fail to determine whether W or W̃

will be realised from M −O. Earman and Norton argued that this is resolved if

one accepts Leibniz equivalence: “If two distributions of fields are related by a

smooth transformation, then they represent the same physical systems” (Norton

2023).

It is unsurprising that this wasn’t accepted as the final word on the hole

argument; the principle they advocate is too imprecise to be of use, and the im-

plications of the argument were seen as significant, even by some who had never

seriously considered the viability of substantivalism. Indeed, in Weatherall’s

paper, he claims to be able to remain “essentially neutral on the metaphysics of

space and time” (Weatherall 2018, 330).Weatherall may well be overstating the

extent to which his analysis remains metaphysically neutral, but it is true that

the most recent wave of literature has largely diverted from the metaphysical

concerns of Earman and Norton (Fletcher 2020, Ladyman and Presnel 2020,

Roberts 2015, and Thebault and Gryb 2016).

One of the primary aims of the current paper is to stress that, as a conse-

quence of Thesis 5, one cannot justifiably talk about models either representing

or failing to represent the same physical system, in the way Earman and Norton

did, without talking about the ways in which they are used to do so. Applying

this reasoning to the hole argument will, I argue, entail methodological prin-
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ciples for doing scientific metaphysics, but without defending any particular

metaphysics of spacetime. Nonetheless, the conclusions of this paper do imply

that certain metaphysical positions are outside the scope of the philosophy of

science, at least where the discipline pays sufficient attention to representational

practice in science.

4 Weatherall vs Pooley and Read

This section examines the impasse between Weatherall, who attempts to block

the hole argument while remaining neutral on the metaphysics, and Pooley

and Read, who argue that Weatherall’s argument illegitimately precludes meta-

physical views. Weatherall’s approach is novel, in that attempts to block the

argument at the level of the underlying mathematics, prior to the mathematics

being problematically interpreted. He writes “I do not intend to argue that

there is a mathematical solution to an interpretational problem. Rather, I will

argue that the mathematical argument that allegedly generates the interpreta-

tional problem is misleading” (Weatherall 2018, 330-331). Once one identifies

this mistake, he claims, one is no longer forced to pick between the metaphysical

theses of Leibniz equivalence and substantivalism. This is the sense in which

he can claim to remain neutral regarding the metaphysical theses, as the hole

argument is supposedly blocked before they’re even invoked:

‘(1) our interpretations of physical theories should be guided by the

formalism of those theories; and (2) insofar as they are so guided, we

need to be sure we are using the formalism correctly, consistently,

and according to our best understanding of the mathematics. ...

Insofar as one wants to claim Lorentzian manifolds are physically

equivalent ... one has to use d to establish a standard of comparison

between points. And relative to this standard, the two Lorentzian
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manifolds agree on the metric at every point—there is no ambiguity,

and no indeterminism. ... the Hole Argument seems to be blocked.’

(Weatherall 2018, 339)

Weatherall is claiming that the supposed threat of indeterminism only arises

from an incorrect understanding of the mathematics; the standard of compar-

ison between points is given by the isometry, and according to this standard,

no interpretive problems result. I am broadly sympathetic to this strategy, but

without further justification a metaphysician who regularly treats mathemati-

cally equivalent models as metaphysically distinct is given no compelling reason

to stop doing so, regardless of their technical proficiency. Pooley and Read

identify several lines of argument in Weatherall’s paper, and present counterar-

guments to each. My presentation of Weatherall above amounts to what they

term ‘the argument from mathematical structuralism,’ and it is their response

to this that creates the dialectic which, I claim, an account of scientific rep-

resentation can be used to achieve a resolution. Pooley and Read counter as

follows:

‘Weatherall’s claim that the hole argument is blocked when models

are compared using [d∗] is also questionable, for the interpretation

of models that such a comparison might mandate does nothing, by

itself, to eliminate the relevant space of metaphysical possibilities.’

(Pooley and Read 2025, 24)

One can then ask what these metaphysical possibilities are, and whether

there exist alternative motivations for eliminating them. In particular, can the

putative difference between the two models in the hole argument scientifically

represent a metaphysical difference between worlds? Given that M and M̃ are

said to be empirically equivalent, the only possible kinds of differences between

the worlds they represent are non-qualitative. Haecceitism is the thesis that
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worlds can differ in non-qualitative ways. Worlds can be numerically distinct

while being qualitatively the same. Haecceities are non-qualitative properties

P that supposedly make each individual the one it is. Pa is a haecceity of

a only if ∀x (Px ↔ (x = a)), but the condition on the right hand side is

not sufficient. Haecceities are usually understood as sufficient for haecceitism.

Pooley and Read claim that Weatherall excluding these properties outright is

without justification:

By precluding diffeomorphic models representing different states of affairs,

Weatherall is illegitimately ruling out possible metaphysical views. Pooley and

Read substantiate this point:

‘A substantivalist who believes that possible spacetimes can differ

merely haecceitistically is after a way to represent the structure of

such a spacetime, which (let us suppose) really is no richer than

that of a Lorentzian manifold, and at the same time talk about

two possibilities that exemplify the very same structure but differ

over which individuals possess which particular properties. How

better to do this than to use isomorphic models of the appropriate

structural type that differ merely over which of the base elements

of their sets are assigned the structural properties common to both

models?’ (Pooley and Read 2025, 38)

Mathematical practice alone doesn’t prevent one using isomorphic mathe-

matical models to represent different metaphysical states of affairs. Weatherall

is right to argue that the problem needs to be evaluated with respect to practice,

but it is physical practice that should drive one’s metaphysics.
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5 Conclusion: Dissolving the Disputes

Returning to the hole argument, it follows that it is not intrinsic to p and p̃

what they represent. For either (M, gab) or (M̃, gab) to function as a model of a

spacetime, one needs to include a representation relation connecting the carrier

with the target system. Absent this, p and p̃ are just mathematical points

without representational content. Moreover, when considering an isomorphism

acting on a model, one must specify whether a corresponding transformation

acts on the representation relation or the latter is left unchanged. As described

above, there then exists a representation relation such that the original target

system is scientifically represented.

The dialectic between Weatherall and Pooley and Read reached an impasse,

as each presents a position which is defensible when understood in the relevant

context. As the contexts are distinct, however, their arguments fail to prop-

erly connect with each other. Progress can be made by thinking about how

we understand scientific representation. Pooley and Read are correct to claim

that one is free to stipulate representational differences, but these will fail to

align with Thesis 5, and consequently transcend what is relevant to scientific

practice. Models only represent their target systems insofar as they are used to

do so, which (often implicitly) involves specifying a representation relation. To

reiterate, the hole argument assumes a difference in what represents that can’t

make any difference to scientific practice, even though it might be of interest to

some metaphysicians.

Mathematical practice alone fails to preclude the possibility of the hole diffeo-

morphic models representing haecceitistic differences. Nonetheless, an account

of scientific representation attentive to practice, that satisfies Theses 1-5 above,

reveals that the argument turns on a distinction without a relevant represen-

tational difference. The purported metaphysical differences between the worlds
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represented by isomorphic models would be haecceitistic differences. Surroga-

tive reasoning is possible in virtue of structural reasoning, for which haecceitistic

differences are irrelevant. Making the representation relation explicit can help

to show why scientific representations are invariant with respect to supposed

haecceitistic differences between models.

When engaging in the metaphysics of physics, or naturalised metaphysics

more generally, careful attention to the way representations are used can help to

dissolve metaphysical worries that are beyond the scope of scientifically informed

metaphysical inquiry.
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