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Abstract

I discuss the distinction between extrinsic and intrinsic approaches to
reformulating a theory with symmetries, and offer an account of the spe-
cial value of intrinsic formalisms, drawing on a distinction between which
mathematical expressions are meaningful within an extrinsic formalism
and which are not.

1 Introduction

Caspar Jacobs (2022) has recently considered afresh the motivation vs. inter-
pretation debate about symmetries (originally due to Møller-Nielsen (2017)).
Very roughly, the interpretationalist says that it is legitimate ab initio to in-
terpret symmetry-related models (SRMs) of a theory as representing the same
physical state of affairs, even in the absence of a metaphysically perspicuous
characterisation of their common ontology, whereas the motivationalist denies
this.1 Jacobs takes up the question of what it means for a characterisation of the
common ontology of SRMs to be ‘metaphysically perspicuous.’ He argues that
this is captured by the demand for an intrinsic formalism, in the sense of Field
(2016).2 By contrast, extrinsic formalisms—in which the invariant content of
SRMs is captured using structures which do not directly represent objects in the
theory’s ontology, e.g. by using equivalence classes of symmetry-variant quanti-
ties,3 or more generally, by quotienting the theory’s space of models under the
symmetry group in question4—do not provide a similarly metaphysically per-
spicuous characterisation of a theory’s ontological commitments. Instead, they

∗Faculty of Philosophy, University of Oxford. eleanor.march@philosophy.ox.ac.uk
1. Though in light of recent work by Luc (2023), these positions are probably best under-

stood as two extremes of a more-nuanced spectrum of motivationalist vs. interpretationalist
views.

2. Note that some motivationalists may disagree here, i.e. on whether an intrinsic formalism
is necessary to give a metaphysically perspicuous characterisation of the common ontology of
SRMs. In particular, I would expect this to be the case for e.g. motivationalists who are fans
of the Kleinian approach to geometry.

3. Following Wallace (2019) and Jacobs (2021b), I take using equivalence classes to subsume
coordinate-based approaches.

4. Recall that given a space X on which a group G acts (from the left), one defines the
quotient space X/G as the space of orbits of G, i.e. the space of equivalence classes [x], x ∈ [x]
iff gx ∈ [x] for all g ∈ G, which (providing the group action of G on X is suitably well-behaved,
e.g. perhaps it is faithful) inherits the same kind of structure as the original space (i.e. if X is
a smooth manifold, or Hilbert space, or whatever, then so is X/G).
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only provide an effective decision procedure for determining whether the theory
is committed to some piece of structure or other.

Or this is the story Jacobs tells. My aim in this essay will be to tell a rather
different story about intrinsic formalisms, and why they are valuable. I have two
motivations for this, neither of which I take to be dispositive, but each of which,
to my mind at least, suggests the need for such a story. The first comes from
a recent episode in the philosophy of spacetime physics literature, concerning
how Maxwellian spacetime—which is supposed to be equipped with a standard
of rotation, but not a standard of absolute acceleration—should best be charac-
terized. Earman (1989) originally defined the rotation standard of Maxwellian
spacetime extrinsically, as an equivalence class [∇] of rotationally equivalent
flat derivative operators, and Dewar (2018) also adopted this definition when
writing down dynamics for the theory of Newtonian gravitation on Maxwellian
spacetime (Maxwell gravitation). A number of authors (Weatherall 2018; Wal-
lace 2020, 2019) then voiced concerns about the lack of an intrinsic formalism
for Maxwell gravitation, which resulted in the development of an intrinsic char-
acterization of the rotation standard (Weatherall 2018), and was then used to
express the dynamics of Maxwell gravitation (Chen 2023; March 2023).

In light of Jacobs’ discussion, one might expect the worries raised in this liter-
ature about Earman’s definition of the rotation standard to concern, primarily,
the lack of a ‘metaphysically perspicuous’ characterization of the ontology of
Maxwellian spacetime. And so it is striking that they do not. Instead, what
one finds are worries about the “mathematical impropriety” (Chen 2023, 23) of
expressing the dynamics of Maxwell gravitation in terms of an arbitrary repre-
sentative of this equivalence class; worries that the “minimalism” of Maxwellian
spacetime ought to apply to the language used to express its dynamics as well
as the structure in its models (22); worries about how to interpret interme-
diate terms in calculations on Maxwellian spacetime which do depend on the
choice of representative of this equivalence class—that “one would like to be
able to reason about quantities in Maxwellian spacetime without needing to
introduce further structure” (Weatherall 2018, 34); and worries that the “awk-
wardness” of characterizing Maxwellian spacetime in terms of equivalence classes
obscures the similarities between the dynamics of Maxwell gravitiation and those
of Newton-Cartan theory (Wallace 2020, 28). Of course, these authors also dis-
cuss something like Jacobs’ concern—e.g. Weatherall (2018), who suggests that
using equivalence classes “obscures the intrinsic geometry of Maxwellian space-
time” (p. 35) and “makes reference to structure that one does not attribute to
spacetime” (p. 34). But at the very least one might think, in light of this, that
there is something missing from Jacobs’ story about why intrinsic formalisms
are valuable.

The second motivation begins from a somewhat different place. At a first
pass, the concern is that it is not really clear that the Fieldian notion of intrin-
sicality is what is at issue in Jacobs’ argument that one cannot ‘read off’ the
ontology of a theory whose models are defined in terms of equivalence classes
of symmetry-variant quantities. Here is just one reason to be worried about
this. Jacobs (2022, 2) initially defines an intrinsic formalism as one in which the
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‘components’ of the theory’s models “directly correspond to its metaphysical
posits.” Later, he defines an intrinsic formalism as one “which is formulated
in terms of mathematical entities that ‘directly’ represent physical fields” (Ja-
cobs 2022, 5). But this is ambiguous, on two fronts.5 First, it is ambiguous
whether the criterion of ‘directly representing the theory’s metaphysical posits’
is supposed to apply just at the level of objects in a theory’s models, or also
at the level of the objects in the dynamical equations used to pick out that
class of models. Secondly, and relatedly, it is ambiguous what the objects, or
‘components’, of a theory’s models are supposed to be—in particular, whether
an equivalence class is supposed to count as a single ‘component’ or a collection
thereof. This second ambiguity matters because of the first. In particular, if
an equivalence class counts as a single component of a theory’s models, and the
criterion of ‘directly representing the theory’s metaphysical posits’ is supposed
to apply just at the level of objects in a theory’s models, then it does not ob-
viously follow that a theory whose models are defined in terms of equivalence
classes of symmetry-variant quantities counts as extrinsic, on Jacobs’ definition.
That is, why not say that the equivalence class itself ‘directly’ represents one of
the theory’s metaphysical posits?

At this point, one might ask: so what? For even granting that Jacobs’ defi-
nition is ambiguous in these ways, a charitable reconstruction of Jacobs would
have it that he either takes an equivalence class to be a collection of ‘compo-
nents’ of the models of a theory, or that the criterion of ‘directly representing
the theory’s metaphysical posits’ is supposed to apply also at the level of the
objects in the theory’s dynamical equations.6 I agree. But this raises a deeper
concern. To begin with, to suppose that anything significant—such as whether
a theory counts as intrinsic or extrinsic—should turn on whether an equivalence
class counts as a single ‘component’ of a theory’s models or a collection thereof
strikes me as a mistake. Indeed, Jacobs (rightly, to my mind) does not mention
this question. So suppose we bracket that, and say that what is important for
intrinsicality is that the criterion of ‘directly representing the theory’s meta-
physical posits’ applies at the level of the objects in the theory’s dynamical
equations.7 (This, I take it, would also be more in accordance with Field’s char-
acterization of intrinsicality as the requirement that all the terms in a theory
refer to physical quantities.) In that case, one might think that the problem

5. One might also worry that the distinction between what it is for a piece of mathematical
structure to represent a piece of physical structure ‘directly’ vs. ‘indirectly’ is not sufficiently
clear. I am sympathetic to this worry, but won’t discuss it here.

6. I am setting aside, here, worries about how and whether this should exclude, e.g. numer-
ical structure like the number 5, or mathematical operators like addition, etc.—which I take
to partly explain Jacobs’ decision to focus on objects in the models of a theory, rather than
its dynamics, cf. (Jacobs 2022, 14). I will return to this in §2.

7. To preface the arguments of the next section somewhat, I do not think this strategy
works particularly well either, and so will ultimately propose my own characterization of the
distinction Jacobs has in mind. My point here is just that if one wants to do Jacobs exegesis,
there is a mismatch between the kind of structures used to draw the intrinsic vs. extrinsic
distinction, on the most charitable reading of Jacobs, and the kind of structures at issue
in Jacobs’ discussion of why that distinction is salient for the motivation vs. interpretation
debate.
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with formulating a theory extrinsically would itself have something to do with
the dynamical equations of such theories—a point which is also suggested by
my discussion of the first motivation above. But the dynamical equations of ex-
trinsically formulated theories do not feature at all in Jacobs’ discussion. Again,
one is left with the sense that there is something more to be said.

Of course, these are just motivations for the story I am going to tell about
why intrinsic formalisms are valuable, not justifications for it, nor outright crit-
icisms of Jacobs’ position (though I will raise some such criticisms in §3). My
approach will be to draw out a contrast between the kinds of mathematical ex-
pressions that may be interpreted as physically meaningful in an intrinsic vs. an
extrinsic formalism: in an intrinsic, but not an extrinsic formalism, are facts
about whether some mathematical expression may be interpreted as physically
meaningful essentially trivial—decidable by inspection, as a simple matter of
the mathematical operations used to construct it themselves being well-defined.
This means that intrinsic formalisms are better suited for getting a handle on
what a theory says about the world, for two reasons. First, because to find out
which equations may be interpreted as saying something physically meaning-
ful within the theory, we need only take a cursory look at the form of those
equations. Second, because one can more easily ‘read off’ what those (physi-
cally meaningful) equations say about the world—what relationships between
physical quantities they express—without having to first identify which math-
ematical sub-expressions in those equations may be interpreted as representing
physical quantities. Along the way, I will make several points which may be of
independent philosophical interest, concerning the intrinsic vs. extrinsic distinc-
tion and its relationship to the reduction vs. internal sophistication vs. external
sophistication distinction, and the kind of mathematical expressions which may
be interpreted as physically meaningful within an extrinsic formalism.

In a little more detail, then, the structure of this article will be as fol-
lows. First, in §2, I introduce the distinction between intrinsic and extrinsic
formalisms (in §2.1), and explain how this fits together with the distinction be-
tween reduction, internal sophistication, and external sophistication (in §2.2).
In §3, I discuss Jacobs’ arguments that extrinsic formalisms are not metaphys-
ically perspicuous, and argue that most of them do not succeed. This takes
us to §4, where I propose my alternative story about the special value of in-
trinsic formalisms, drawing on the idea that extrinsic formalisms come with a
restriction on what mathematical expressions may be interpreted as physically
meaningful. This will allow me to say why it is that intrinsic formalisms are
more perspicuous than extrinsic formalisms. §5 concludes.
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2 Prelude: what is an intrinsic formalism, any-
way?

2.1 Intrinsic vs. extrinsic

I will begin by discussing the intrinsic vs. extrinsic distinction. As noted in §1,
Jacobs (2022, 2) defines an intrinsic formalism as one in which the ‘components’
of the theory’s models “directly correspond to its metaphysical posits,” or one
“which is formulated in terms of mathematical entities that ‘directly’ represent
physical fields” (5). But, again as noted in §1, this is ambiguous—both because
it is not clear what counts as a single ‘component’ of a theory’s models, and
because it is not clear whether the criterion of ‘directly representing the theory’s
metaphysical posits’ is supposed to apply just at the level of objects in a theory’s
models, or also at the level of the objects in the dynamical equations used to
pick out that class of models.

Prima facie, one might think that addressing these worries would involve
precisifying Jacobs’ definition of an intrinsic formalism along one of these lines.
I do not think this strategy is particularly attractive, for two reasons. First, sup-
pose that the criterion of ‘directly representing the theory’s metaphysical posits’
is supposed to apply just at the level of objects in a theory’s models. Then,
as mentioned in the introduction, whether or not e.g. Earman’s Maxwellian
spacetime—which, I take it, is supposed to be obviously extrinsic—counts as an
extrinsic formalism on Jacobs’ definition will depend on whether an equivalence
class counts as a single ‘component’ of a theory’s models or a collection thereof.
But this last issue strikes me as mainly a terminological one, and so it would
seem undesirable that something substantive, like the intrinsicality or otherwise
of a theory, should turn on it.

Alternatively, suppose that the criterion of ‘directly representing the theory’s
metaphysical posits’ is supposed to apply at the level of objects in the theory’s
dynamical equations. In that case, one might worry about how and whether this
is supposed to apply to numerical structure in the dynamical equations of a the-
ory, like the number 5, which does not directly represent any physical quantity
(though if one is a mathematical platonist, perhaps it does count as a ‘meta-
physical posit’ of the theory). Now Jacobs (2022, 14) is clear that, unlike Field,
he does not want the appeal to numerical structure like the number 5 to auto-
matically classify a theory as extrinsic. But it is not immediately obvious how
to spell this out in a general, non-question begging way, in terms of a restriction
on which kinds of objects in the dynamical equations of a theory must directly
represent the theory’s metaphysical posits. At a more fundamental level, one
might worry that even if Jacobs would be happy to countenance a commitment
to mathematical platonism to get his definition off the ground, this seems to be
something of a distraction. In particular, the various authors involved in the
discussions of intrinsic vs. extrinsic formulations of Maxwell gravitation seem to
have been able to carry out these discussions without needing to mention (much
less make a commitment on) the nominalism vs. platonism debate (and likewise
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for Jacobs, in much of his discussion of the problems he sees with the extrinsic
approach).

Let’s take a step back. What kind of theories does Jacobs have in mind, in his
discussion of the extrinsic approach? Jacobs (2022, pp. 7–8, fn. 11) gives a clear
statement of what these theories are like: they are the kind of theories which
are obtained by ‘equivocating between’ (in some sense) SRMs of some other
theory—either by taking a formal quotient of the space of models under the
symmetry group in question, or by ‘adding arrows’ between (non-isomorphic)
SRMs of a theory understood category-theoretically.8 The first case, in some
detail, proceeds as follows. Recall that in general, a theory T has kinematically
possible models (KPMs) of the form ⟨V1,V2, ..., Q1, Q2, ...⟩, where the Vi are
a collection of (structured) value spaces with domains Vi, and the Qi are a
collection of quantities (defined as functions from some Vi into some Vj). The
dynamically possible models (DPMs) of T are those KPMs which satisfy the
theory’s equations of motion. A dynamical symmetry of T is a bijection on the
KPMs induced by a collection of bijections χi : Vi → Vi which preserves the
space of DPMs.

Let T be a theory, as characterized above, and suppose that V = ⟨V, ϕ⟩ is the
domain (or codomain) for just one quantity Q (the generalization to the case of
multiple ϕi or Qi is straightforward), and consider a group of G of dynamical
symmetries Q→ χ∗Q, χ : V → V . Then

1. We can construct a new space of models ⟨V, ϕ, ..., [Q], ...⟩, Q ∈ [Q] iff
χ∗Q ∈ Q for all χ ∈ G. Pairs of SRMs ⟨V, ϕ, ..., Q, ...⟩, ⟨V, ϕ, ..., χ∗Q, ...⟩
now correspond to the same model ⟨V, ϕ, ..., [Q], ...⟩.

2. When χ∗ϕ ̸= ϕ for some χ ∈ G, we can also construct a new space of
models ⟨V, [ϕ], ..., Q, ...⟩, ϕ ∈ [ϕ] iff χ∗ϕ ∈ [ϕ] for all χ ∈ G. Pairs of SRMs
⟨V, ϕ, ..., Q, ...⟩, ⟨V, ϕ, ..., χ∗Q, ...⟩ now correspond to isomorphic pairs of
models ⟨V, [ϕ], ..., Q, ...⟩, ⟨V, [ϕ], ..., χ∗Q, ...⟩.

An example of 1 is the theory of electromagnetism on Minkowski spacetime,
with models ⟨M,ηab, [Aa], J

a⟩ where the Aa ∈ [Aa] are all related by closed
one-form shifts (i.e. Weatherall’s (2016) EM′

2). An example of 2 is Dewar’s
(2018) Maxwell gravitation, which has models ⟨M, ta, h

ab, [∇], T ab⟩ where [∇] is
an equivalence class of rotationally equivalent flat derivative operators.9

For the second case, one begins by associating T with a category T, whose
objects are the models of T , and whose arrows are isomorphisms of those mod-
els.10 Again, let G be a group of dynamical symmetries of T , and suppose that

8. Another option along these lines, which I lack the space to discuss here, would be using
‘stacky’ constructions—on which, see Teh (2024). A thorough treatment of stacks would take
us beyond the scope of this essay, so I will just note that one should feel free to add stacks as
a fourth option to my characterization of extrinsic formalisms below.

9. Recall that two flat derivative operators ∇,∇′ on a spacetime ⟨M, ta, hab⟩ are said to be
rotationally equivalent iff for all unit timelike vector fields ξa on M , ∇[aξb] = 0 iff ∇′[aξb] = 0.
10. Or possibly a subclass thereof—see e.g. March, Read, and Chen (2025) for discussion of

one such example, and Read (2025) for more general philosophical discussion—though I will
not consider that case here. For general background on the category-theoretic approach, see
e.g. Weatherall (2016).
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these dynamical symmetries do not act as isomorphisms on the models of T
(other than at the identity of G).11 Then, very roughly

3. One constructs a new category T whose objects are again the models of
T , but whose arrows are now pairs (ψ, χ) consisting of an isomorphism ψ
and an element ξ of G, which act on the models of T as that element ξ
followed by that isomorphism ψ.

This provides an alternative way of formalizing the idea that SRMs of T are to
be treated ‘as if’ they were isomorphic, for the purposes of understanding the
structure of the theory. An example of 3 is the theory which Weatherall (2016)
calls EM2, whose objects are models of electromagnetism on Minkowski space-
time ⟨M,ηab, Aa, J

a⟩, and whose arrows are pairs consisting of a diffeomorphism
plus a closed one-form shift.

At this point, my suggestion is that we might as well just go ahead and define
extrinsic formalisms as all and only those formalisms which are instances of the
above constructions 1–3, and intrinsic formalisms as all the rest. First, because
this precisely captures the class of theories which Jacobs takes to exemplify
the extrinsic approach. Second, because it fits very closely with Jacobs’ char-
acterization of the intrinsic approach as requiring that one “lay down a set of
relations, functions and operators which explicitly represent the world’s physical
structure” (Jacobs 2022, p. 13, emphasis mine)—i.e. essentially as implement-
ing a ban on implicit definition in terms of symmetry-variant structures. Third,
because it is a precise definition which avoids the aforementioned worries about
‘components’ of a theory’s models, structures in the models of a theory vs. its
dynamical equations, numerical structure, etc. (Anyone who is unhappy with
my continuing to use Field’s ‘intrinsic’ vs. ‘extrinsic’ terminology for this dis-
tinction should feel free to mentally replace the terms ‘intrinsic’ and ‘extrinsic’
with ‘intrinsic*’ and ‘extrinsic*’ going forward.)

My fourth reason for adopting this definition is that this way of articulating
the intrinsic vs. extrinsic distinction also captures something like the idea that
in an extrinsic formalism, not all the terms in the dynamical equations of the
theory need ‘directly represent the theory’s metaphysical posits’—but whilst
avoiding the worries about e.g. numerical structure raised above. This will take
somewhat more work to articulate. As a way in, I want to begin with the
following question: what kind of equations is it sensible to write down, when
working with an extrinsic formalism? In particular: is it legitimate for these
equations to make use of objects in the equivalence classes of symmetry-variant
structures (or in the case of 3, structures in the models of T which are variant
under the arrows of T)?

The answer which I want to suggest, and which I think captures the way in
which extrinsic formalisms have previously been thought of, is ‘yes’—so long as
satisfaction of these equations is independent of the choice of representative of

11. The situation is a little more subtle in the case where some (but not all) of the non-trivial
elements of G act as isomorphisms on the models of T—and will depend on the details of the
group G in question—so I set aside this case for the sake of exposition.
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the equivalence class. For example, when Earman defined Maxwellian spacetime
as a structure ⟨M, ta, h

ab, [∇]⟩, he wrote:

Although questions about the acceleration of a body are not in gen-
eral meaningful in this setting, it is, of course, meaningful to ask
about the state of rotation of a fluid or an extended body. (Earman
1989, p. 32)

And when Dewar (2018) wrote down dynamics for Maxwell gravitation on Ear-
man’s Maxwellian spacetime, he went to some trouble to show that satisfaction
of these equations was independent of the choice of ∇ ∈ [∇]. Or consider: it
is often claimed that the only possible field equations for the theory of scalar
electrodynamics with models ⟨M,ηab, [⟨Aa, ψ⟩]⟩ are ones which are U(1) gauge
invariant.12

So extrinsic formalisms don’t just equivocate between symmetry-variant
structures in defining the models of the theory; they also restrict the space of
mathematical expression involving these structures which can be ‘meaningfully’
written down to ones which are invariant under the relevant class of symme-
try transformations. Conversely, equations which are not so invariant—like the
acceleration of a fluid relative to some ∇ ∈ [∇] in Maxwellian spacetime—are
not to be regarded as ‘meaningful.’ One way to spell this out is in terms of a
supervaluationist semantics, in which the supervaluation is carried out over all
objects in the relevant equivalence classes (see e.g. Dewar (2019) and Jacobs
(2021a)), or in the case of the category-theoretic approach 3, over all objects
in the isomorphism equivalence classes of T (where ‘isomorphism’, here, means
isomorphism under the arrows in T).

The point I want to press here is that from the perspective of an extrinsic
formalism, one does not need to appeal to the idea that SRMs represent the
same physical state of affairs to justify the claim that equations which are not
independent of the choice of ϕ ∈ [ϕ] are physically meaningless. For suppose
we take seriously the project of characterising structures in the models of a
theory T extrinsically, e.g. via a preferred equivalence class of representations
[ϕ]. Then what it is for the models of T to have this kind of structure is just is to
say: facts about the models of T can be represented equally (but redundantly)
by any one of the ϕ ∈ [ϕ]. Since the models of T are supposed to represent
physical states of affairs, it follows that equations which are not independent
of the choice of ϕ ∈ [ϕ] cannot be interpreted as saying something physically
meaningful (since they cannot sensibly be thought of as about the models of
T ).13 Conversely, insofar as it does make sense to talk about physical facts
which are not so independent within the formalism of T , T simply fails to have
the kind of structure we have defined it to have.14 It is for this reason that

12. cf. also Mundy (1986).
13. Compare Lewis (1986): “A proposition [read: equation] is about a subject matter [...] if

and only if that proposition holds at both or neither of any two worlds [read: mathematical
structures] that match perfectly with respect to that subject matter.”
14. I take this to be in the spirit of Belot’s (2000) point that writing down equations which

require for their formulation structure which the theory does not posit is “arrant knavery”—
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equations which are not independent of the choice of ϕ ∈ [ϕ] are physically
meaningless.

That said, I do want to point out that just restricting to equations which
are independent of the choice of representative of the equivalence class can’t
quite be the full story about which equations are meaningful in an extrinsic
formalism, since it too easily falls prey to what one might think of as ‘spurious’
invariances. This is nicely illustrated with the example of Earman’s Maxwellian
spacetime. Since all the ∇ ∈ [∇] are flat, the equation Ra

bcd = 0 is invariant
between objects in the equivalence class, and will come out as being true. But
this is, intuitively speaking, the wrong result: Maxwellian spacetime lacks full
affine structure, and so it is simply not sensible to speak of it as flat or non-
flat (though one can make sense of a weaker notion of rotational flatness, see
March (2024)). Probably the right thing to do in this case is to note that
one can also represent the rotation standard with a non-flat connection (any
connection satisfying Rab

cd = 0 will do), so that the equation Ra
bcd = 0 is not

invariant between all the connections which can be used to represent the rotation
standard. But it is not straightforward how to spell this out in general, at least
without some intrinsic characterisation of the structure of interest already to
hand.15 In any case, I take the above arguments to show that being independent
of the choice of representative of the equivalence class is a plausible minimal
restriction on which equations are physically meaningful within an extrinsic
formalism—so going ahead, we can adopt this restriction along with the proviso
that it may need to be tightened up later.

2.2 Reduction vs. sophistication

I will now move on to discuss the distinction between reduction, internal so-
phistication, and external sophistication (see e.g. Dewar (2019) and Martens
and Read (2021) for clear expositions of these views), and how this relates to
the distinction between intrinsic and extrinsic formalisms. Reduction says that
faced with SRMs of a theory T , one should reformulate T so that SRMs all
map to the same model of the reduced theory. Importantly, this is the case
even if the SRMs in question are isomorphic. By contrast, internal and external
sophistication both say that if SRMs of T are isomorphic, one may interpret

i.e. certainly not sensible and maybe even incoherent; cf. also Wallace (2019) on coordinate-
based approaches and Myrvold (2019) on Earman’s SP2. I will discuss Earman’s principles
more in §3.
15. The other obvious thing to do here is to point out that the equation Ra

bcd = 0 coming
out as true is not quite as bad as it sounds, since in Maxwellian spacetime, the left hand side
of this equation lacks an interpretation in terms of parallel transport of timelike vectors along
arbitrary (spacelike or timelike) curves. On this kind of view, the equation Ra

bcd = 0 might
be true in Maxwellian spacetime, but it would not follow from this that Maxwellian spacetime
is ‘flat’ in the usual sense of the word (flatness would require in addition e.g. a standard of
parallel transport for timelike vectors along timelike curves). I think this kind of response can
also probably be made to work, but again, it is not completely obvious how to spell this out
in general.
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them as physically equivalent via appeal to anti-haecceitism.16 Where these
two approaches differ is on their treatment of non-isomorphic SRMs. Accord-
ing to internal sophistication, one must first reformulate T so that SRMs map
to isomorphic models of the sophisticated theory before one can appeal to anti-
haecceitism to say that these models represent the same physical state of affairs,
whereas according to external sophistication, one can ‘stipulate’ that SRMs are
to ‘count’ as isomorphic, without reformulating the theory. External sophistica-
tion is thus very naturally articulated from the theories-as-categories standpoint,
in which one can understand stipulating isomorphisms between non-isomorphic
models as meaning that one is to add arrows between non-isomorphic models
into one’s category of models (e.g. as described in point 3 of §2.1).17

For what it’s worth, I also think that external sophistication should be un-
derstood category-theoretically, if it is not either to be altogether mysterious
or to collapse into a variant of reduction or internal sophistication (though one
might also take this to mean that the distinction between external sophistication
and internal sophistication or reduction was never the relevant one to start off
with).18 For example, Dewar characterizes external sophistication as “declar-
ing, by fiat, that the symmetry transformations are now going to ‘count’ as
isomorphisms” (Dewar 2019, pp. 502–3). But as Jacobs (2022) notes, this way
of putting it is “somewhat puzzling” (Martens and Read (2021, p. 340) go fur-
ther, saying that “[to] stipulate that qualitatively distinct, i.e. non-isomorphic
models [...] are nevertheless isomorphic reads prima facie as nothing more than
a flat-out contradiction”). It is in this vein that Jacobs (2022, 2021b) offers
his own take on external sophistication, as meaning that the invariant content
of SRMs should be captured by taking equivalence classes of symmetry-variant
structures, i.e. via one of the constructions 1 or 2 mentioned in §2.1. But if
this is what external sophistication is really about, then it becomes clear that
it is really a form of reduction or internal sophistication, since it involves math-
ematically reformulating the models of the theory in such a way that SRMs
will end up being either identical or isomorphic. Conversely, if we take Jacobs
to mean that external sophistication should be understood as a commitment
to characterizing structures in the models of a theory via their isomorphisms,
but without reformulating the theory so that SRMs are in fact isomorphic, then
we are back to the worry about how to make sense of ‘declared isomorphisms’
between non-isomorphic models, i.e. back to square one.

Now, one might worry that this threatens to make external sophistication
redundant, given that it is somewhat trivial to internally sophisticate or reduce
a theory if one is satisfied with an extrinsic formalism (one simply takes appro-
priate equivalence classes). For my own part, I do not think that we should be

16. Or its analogue for quantities, anti-quidditism—though the difference does not really
matter, since anti-quidditism about (the determinate magnitudes of) some physical quantity
amounts to anti-haecceitism about points in the value space of that quantity.
17. cf. Dewar (2019, 2022)
18. This is how I am sometimes inclined to read Jacobs (2021b), when he instead distin-

guishes structure-first and symmetry-first approaches to capturing the invariant content of
SRMs.
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worried by this. The distinction between reduction vs. internal sophistication
vs. external sophistication is about formal properties of a mapping between
the KPMs of two (not necessarily distinct) theories. It is not about the ex-
tent to which it is non-trivial to arrive at such a theory. Whilst it is true that
authors such as Martens and Read (2021) suggest that in cases of successful
reduction or internal sophistication “there was no guarantee that [a reduced or
internally sophisticated formalism] was even possible”, I think we should take
this to be a slip. What is (apparently, or at least much more plausibly) true
is that there is no guarantee that an intrinsic reduced or internally sophisti-
cated theory is always possible (especially in cases of reduction for theories with
isomorphic SRMs)—but this just goes to show that the relevant distinction for
these authors was never the reduction vs. internal sophistication vs. external so-
phistication distinction to begin with. And as for the worry that this leaves no
interesting role for external sophistication, understood category-theoretically, I
think this is simply false—as witness the whole host of cases (Galilean gravita-
tion (Weatherall 2016), electromagnetism (Weatherall 2016; Nguyen, Teh, and
Wells 2020), Newton-Cartan theory (March 2024), teleparallel gravity (March,
Read, and Chen 2025; Weatherall and Meskhidze 2025), hidden symmetries
(Read 2025)) where philosophers of physics have discussed (and said, in my
view, interesting things about) precisely this strategy.

Having said this, it should be clear what I want to say about how the in-
trinsic vs. extrinsic formalisms distinction relates to the reduction vs. internal
sophistication vs. external sophistication distinction, which is that the two are
basically orthogonal. To be sure, one area of overlap remains, which is that ex-
ternally sophisticated theories will usually be extrinsic (except in special cases
where the arrows of one’s original category of models for a theory do not in-
clude all the isomorphisms of those models, see again e.g. March, Read, and
Chen (2025) and Read (2025)). But one can externally sophisticate an intrinsic
or extrinsic formalism; likewise, one can reduce a theory by moving to an intrin-
sic or extrinsic formalism, and one can also internally sophisticate by moving to
an intrinsic or extrinsic formalism.

To make this point absolutely clear, it is helpful to consider an example. Take
the theory of Newtonian point-particle mechanics with models ⟨M, ϕ,B, γ(i),R+,m(i)⟩,
where M = ⟨M, ta, h

ab,∇, ξa⟩, ϕ is a scalar field which represents the gravita-
tional potential, B is a (structured) domain of particles, the γ(i) : B ×R → M,
are a collection of (smooth, future-directed) timelike curves which represent
particle worldlines, and m(i) : B → R+ is an assignment of mass values to
each particle. Suppose that uniform mass scalings—transformations of the form
m(i) → ψ ◦ m(i), where ψ is a bijection on the domain R+ of R+ which pre-
serves the relation ≤ and the operation +19—are dynamical symmetries of this
theory. Table 1 outlines four possible approaches to reformulating the models
of the theory, in light of this symmetry.

The first row of table 1 is fairly straightforward. In the intrinsic reduc-

19. Note that uniform mass scalings won’t preserve the relation × on R+, i.e. they are not
automorphisms of the mass value space R+ = ⟨R+,≤,+,×⟩. In particular, this means that
models related by a uniform mass scaling are not isomorphic.
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Intrinsic Extrinsic

Reduction ⟨M, ϕ,B, γ(i),R+,m(i, j)⟩ ⟨M, ϕ,B, γ(i),R+, [m(i)]⟩

Internal sophistication ⟨M, ϕ,B, γ(i), Dm,≤, ◦,m(i)⟩ ⟨M, ϕ,B, γ(i), Dm, [f ],R+,m(i)⟩

Table 1: Different reformulations of Newtonian point-particle mechanics, organ-
ised by where they fall with respect to the intrinsic vs. extrinsic formalisms and
reduction vs. internal sophistication distinctions.

tion corner, we replace the assignment of mass values with an assignment of
mass ratios m(i, j) : B × B → R+ to each pair of particles, subject to the con-
straints m(i, i) = 1 and m(i, j)m(j, k) = m(i, k). In the extrinsic reduction
corner, we replace m(i) with an equivalence class of mass value assignments,
i.e. m(i) ∈ [m(i)] iff ψ ◦ m(i) ∈ [m(i)] for all uniform mass scalings ψ. Both
of these count as reduced theories: the m(i, j) are invariant under uniform
mass scalings, and by construction any pair of models ⟨M, ϕ,B, γ(i),R+,m(i)⟩,
⟨M, ϕ,B, γ(i),R+, ψ ◦ m(i)⟩ related by a uniform mass scaling map to the same
model ⟨M, ϕ,B, γ(i),R+, [m(i)]⟩.

In the second row of table 1, we have modified the definition of the mass
value space. In the intrinsic internal sophistication corner, we have replaced
R+, with an additive extensive structure ⟨Dm,≤, ◦⟩, where Dm is a domain of
cardinality 2ℵ0 , ≤ is a total order on Dm, and ◦ is an associative binary opera-
tion (representing addition of mass values), subject to certain axioms.20 Since
uniform mass scalings are automorphisms of ⟨Dm,≤, ◦⟩, models related by a
uniform mass scaling are now isomorphic. In the extrinsic internal sophistica-
tion corner, the mass value space ⟨Dm, [f ],R+⟩ is again an additive extensive
structure, but this time we have characterised it extrinsically rather than in-
trinsically. [f ] is an equivalence class of bijections f : Dm → R+ defined as
follows: f ∈ [f ] iff f ◦ ψ ∈ [f ] for any bijection ψ on R+ which preserves ≤ and
+. To see that this is indeed an instance of internal sophistication, consider
any bijection ψ : Dm → Dm which preserves [f ]. It follows immediately from
the definition of [f ] that these bijections are in one-to-one correspondence with
our original uniform mass scalings. Now, in general, ψ is not an automorphism
of ⟨M, ϕ,B, γ(i), Dm, [f ],R+,m(i)⟩, since ψ ◦ m(i) ̸= m(i) unless ψ = idDm ,
so this is not a reduced formalism. But it is an internally sophisticated for-
malism: ψ induces an isomorphism of ⟨M, ϕ,B, γ(i), Dm, [f ],R+,m(i)⟩, since it
is an automorphism of ⟨Dm, [f ],R+⟩. This makes my point: that the intrinsic
vs. extrinsic formalisms distinction is independent of the reduction vs. internal
sophistication distinction.

20. See e.g. Hölder (1901) and Krantz et al. (1971) for details of these axioms. In effect, this
amounts to ‘forgetting’ the multiplication operation × on R+.
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3 Metaphysical perspicuity

We can now return to Jacobs’ argument that only intrinsic formalisms are
metaphysically perspicuous. To reiterate, according to Jacobs, the ontological
commitments of intrinsic formalisms can simply be ‘read off’ from the formal-
ism, whereas extrinsic formalisms have only an ‘effective decision procedure’ for
whether the theory is committed to some piece of structure or other, by deter-
mining whether that structure can be invariantly defined from objects in the
equivalence classes.

The fact that the extrinsic approach has only an effective decision proce-
dure for determining a theory’s ontological commitments, Jacobs claims, means
that extrinsic formalisms are not metaphysically perspicuous. This is for three
reasons. First, extrinsic formalisms limit attempts at causal explanation, since
only symmetry-invariant structures can be dynamically efficacious. Second, it
is unclear what grounds (or explains, or justifies) the physical equivalence of
SRMs from the perspective of an extrinsic formalism. This is supposed to be
because the extrinsic approach reverses the natural order of explanation—the
theory is committed to a certain ontology because SRMs represent the same
physical state of affairs, rather than vice versa. Third, extrinsic formalisms ap-
peal to physically irrelevant (i.e. symmetry-variant) quantities to characterise
the structure of the theory’s value spaces. This does not seem to tell us what
these value spaces are really like, even if it fixes the correct structure (this is
the constructivist complaint).21

However, I think that the extrinsic approach has the resources to resist
these worries, at least when we take into account the fact that (a) the extrinsic
approach comes with a restriction on what equations are physically meaningful,
and (b) the extrinsic approach does not need to appeal to the idea that SRMs
represent the same physical state of affairs to justify this restriction (recall
§2). Indeed, I think this gives the extrinsic approach a very natural response to
Jacobs’ concern about what explains the physical equivalence of SRMs. That is,
SRMs represent the same physical state of affairs because the only claims which
would possibly allow one to distinguish between them (up to isomorphism) are
physically meaningless, since they depend on the choice of representative in the
equivalence classes. And the fact that the theory is committed to a certain
ontology because certain distinctions are physically meaningless, and others
physically meaningful, strikes me as the right result.22 In fact, it seems to me
precisely the kind of reasoning involved in Earman’s (1989) famous symmetry

21. Note that for this kind of reason, extrinsic formalisms are likely to be repugnant to fans
of Reichenbachian constructivism (see Linnemann and Read (2021) and Adlam, Linnemann,
and Read (2022)), though here the issue is not so much that the quantities are ‘physically
irrelevant,’ but rather a problem of not being able to help oneself to structure that one hasn’t
constructed yet.
22. Compare Leibniz’s famous ‘shift’ argument against the reality of absolute space: absolute

space is unreal because “[to] say that God can cause the whole universe to move forwards in
a right line, or in any other line, without making otherwise any alteration in it; is another
chimerical supposition. For two states indiscernible from each other, are the same state; and
consequently, ’tis a change without any change.” (Leibniz and Clarke 1998, p. 38)
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principles:

SP1: Every dynamical symmetry of T is a spacetime symmetry of T .

SP2: Every spacetime symmetry of T is a dynamical symmetry of T .

In effect, SP2 says that T should posit enough spacetime structure that it can
distinguish (in the sense that they are not isomorphic) between models which
are not related by a dynamical symmetry. Conversely, SP1 says that T should
not posit so much spacetime structure that it distinguishes (again, in the sense
that they are not isomorphic) between models which are related by a dynamical
symmetry. So providing we hold the dynamical symmetries of T fixed, Earman’s
principles suggest that it is entirely appropriate to let questions of what distinc-
tions are physically meaningful underwrite questions of a theory’s ontology in
this way.

Turning now to the causal explanations worry, I think this is misplaced.
Granted, the causal explanations which one can read off from an extrinsic for-
malism will often involve making reference to symmetry-variant quantities. But
so long as the explanations themselves are symmetry-invariant,23 it is not clear
why this should hamper attempts at causal explanation. For example, Jacobs
claims that the proponent of the extrinsic approach cannot without further ar-
gumentation explain the Aharanov–Bohm effect, in which a charged particle in
the vicinity of an impenetrable solenoid picks up a phase proportional to the
flux through that solenoid. This is supposed to be because the causal story
involved in the explanation of the Aharanov–Bohm effect must appeal to invari-
ant structures, such as the holonomies of the electromagnetic one-form. But
here is an explanation to which the extrinsicalist can perfectly well appeal: the
charged particle picks up a phase because up to U(1) gauge symmetry, the elec-
tromagentic one-form can be represented as having a value such-and-such in
the region surrounding the solenoid, and the phase difference picked up by the
particle follows from this plus the dynamics of the theory. To the worry that
such an explanation is not appropriately causal I say: whatever one’s favourite
account of causation is, either this explanation counts as appropriately causal
(as for e.g. counterfactual, interventionist, or productive accounts),24 or this is a

23. Note that we do also appear to give symmetry-variant explanations in physics, e.g. the
appeal to the rest frame of the rocket in the explanation of Bell’s rockets thought experiment,
though one might dispute whether this really counts as a symmetry-variant explanation, given
that the rest frame of the rocket can be defined invariantly from its worldline. However, this
will depend on whether or not one has an operational understanding of the coordinate systems
in question.
24. As an example, consider, e.g. a counterfactual account of causation. If the value of the

electromagnetic one-form hadn’t been such and such, up to U(1) gauge symmetry, in the region
surrounding the solenoid, then the phase picked up by the particle would have been different.
Thus the value of the electromagnetic one-form in the region surrounding the solenoid, up
to U(1) gauge symmetry, counts as a cause of the phase shift picked up by the particle. A
similar point goes for interventionist accounts. For anyone who is tempted to respond to this
that for any segment of the particle’s trajectory, one could choose a gauge in which it picks
up zero phase over that segment, this is by-the-by, as far as the explanation I am suggesting
is concerned—the point is that one cannot so choose a gauge throughout the entire region
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problem for causal explanations of the Aharanov–Bohm effect in general, rather
than the explanation which the extrinsic approach offers in particular (as for
e.g. conserved quantity or causal mechanisms approaches), see Earman (2024).

As far as Jacobs’ more general point goes—that extrinsic formalisms don’t
tell us what a theory’s value spaces are really like—the extrinsic approach has
an answer to this too. The answer is that those value spaces have just enough
structure to capture all the invariant degrees of freedom of the symmetry-variant
quantities that are used to define them, and no more. The proponent of the
intrinsic approach will press the question: but just what structures are those?
But here I think that the extrinsicalist can simply dig their heels in. Granted, the
extrinsicalist cannot say without further argumentation just what the invariant
structures in question are, but at least by their own standards, this seems like
a perfectly acceptable answer.

With that said, I do think that Jacobs’ insight about the fact that one cannot
‘read off’ the ontological commitments of extrinsic formalisms is basically on the
right track. However, as I have argued, it it not clear why this fact by itself
should act as a barrier to metaphysical perspicuity. So let us see what kind of
consequences would act as such a barrier.

4 Triviality and non-triviality

Throughout this article, I have pressed the idea that within an extrinsic for-
malism, mathematical expressions which are not independent of the choice of
representative of the equivalence classes of symmetry-variant structures should
not be thought of as saying or representing something physically meaningful.
I have also argued that from the perspective of an extrinsic formalism, this
restriction is well-motivated, and perhaps even compulsory.

But it is also non-trivial. To see this, consider the kinds of equations that
can be interpreted as physically meaningful in an intrinsic formalism. Since
intrinsic formalisms do not equivocate between symmetry-variant structures in
defining the models of the theory, any equation which is (i) constructed out
of objects in the models of the theory, and (ii) is mathematically well-defined,
expresses a statement which can be true or false of the models of the theory,
and so can be interpreted as saying something physically meaningful. In other
words, to check whether an equation is physically meaningful within an intrinsic
formalism, one only needs to take a cursory look at the form of that equation.

Contrast this with the process of checking whether an equation is physically
meaningful within an extrinsic formalism. In this case, not only does one need
to verify that the equation is mathematically well-defined—in general, one also
needs to verify that satisfaction of that equation is independent of the choice of
representative of the equivalence class. And this second step is generally highly
non-trivial (think e.g. of Dewar’s (2018) dynamics for Maxwell gravitation, or of

surrounding the solenoid. Rather, it seems to me that this worry is not really to do with
causal explanations per se, but local explanations, or separable explanations, or something
along those lines. I am grateful to an anonymous referee for pressing this point.
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the many pages of ink that physics undergraduates have spilled over the years
verifying U(1) gauge invariance of the Lagrangian of scalar electrodynamics).

A similar point applies at the level of interpreting those (physically mean-
ingful) equations, once we have them, i.e. saying what relationships between
physical quantities they express.25 In order to interpret such an equation, in
an extrinsic formalism, one first needs to identify which mathematical sub-
expressions of that equation have values which are independent of the choice
of representative of the equivalence class, and so may be interpreted as rep-
resenting physical quantities (I take it, this is precisely where Jacobs’ insight
that one cannot ‘read off’ the ontology of an extrinsic formalism comes in).
And again, this process is non-trivial. By contrast, in an intrinsic formalism,
one does not have to first parcel off which mathematical subexpressions in an
equation have values which are independent of the choice of representative of
an equivalence class in this way, and so can be interpreted as corresponding to
physical quantities—the interpretation of these equations can simply proceed
term by term.

But if this is right, we now have a handle on why it is that intrinsic for-
malisms are more perspicuous than intrinsic formalism. The issue is not just
that one cannot read off the theory’s ontology from the formalism—though that
may come into it too—but that one also cannot read off which mathematical
expressions that can be constructed in that formalism are candidates for being
interpreted as saying or representing something physically meaningful. This
means that intrinsic formalisms are better suited for getting a handle on what
a theory says the world is like. Of course, those mathematical expressions will
still need interpreting, but one does not need to do substantial mathematical
heavy lifting in order to decide which bits of uninterpreted mathematics are
candidates for being given a physical interpretation.

To illustrate this last point, I want to return to the example of Dewar’s
(2018) dynamics for Maxwell gravitation from §1. Dewar characterizes the
models of Maxwell gravitation as follows: they are tuples these are tuples
⟨M, ta, h

ab, [∇], T ab⟩, where ⟨M, ta, h
ab, [∇]⟩ is a Maxwellian spacetime, and T ab

the Newtonian mass-momentum tensor for whatever matter fields are present,
such that at all points p ∈ M where ρ := T abtatb ̸= 0, the following equations
hold at p:

ta∇nT
na = 0 (1a)

∇m(ρ−1∇nT
nm) = −4πρ (1b)

∇c(ρ−1∇nT
na)−∇a(ρ−1∇nT

nc) = 0, (1c)

where ∇ is an arbitrary member of [∇]. To illustrate my first point—that it
is non-trivial to see that the equations (1) are independent of the choice of
∇ ∈ [∇]—I will just note that this is the content of Dewar’s (2018) proposition
2, which takes about a page of work to show. For my second point—that it
is non-trivial to ‘read off’ the interpretation of these equations—note that the

25. I am grateful to an anonymous referee for suggesting this point.
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value of the quantity ∇nT
na is not independent of the choice of ∇ ∈ [∇]. So

one cannot simply ‘read off’ e.g. the interpretation of (1a) as saying that the
quantity ∇nT

na is spacelike—for ∇nT
na is not a candidate for representing any

physical quantity at all. By contrast, in the intrinsic dynamics given for Maxwell
gravitation by Chen (2023) and March (2023), (1a) is replaced by the continuity

equation for the mass density ρ, £ξρ − 1
2ρĥmn£ξh

mn = 0, where ξa is a unit
timelike vector field representing the net four-velocity of matter. Of course,
this is also the conclusion about the interpretation of (1a) which Dewar (2018,
258) reaches; the point is not that one cannot arrive at this interpretation, but
that because Dewar’s presentation of Maxwell gravitation is extrinsic, it requires
non-trivial mathematical work to massage (1a) into a form where one can see
this. A similar point goes for (1b) and (1c).

I also take it that this is very much in the spirit of the concerns raised
by Weatherall (2018), Chen (2023), and Wallace (2020) in their discussions of
the problems they see with Earman’s extrinsic characterization of Maxwellian
spacetime—especially Weatherall’s concern about how to interpret terms in cal-
culations on Maxwellian spacetime, and Wallace’s concern that characterizing
Maxwellian spacetime extrinsically obscures what its dynamics really look like.
Neither of these authors’ points, I take it, are that one cannot arrive at a clear
interpretation of Maxwell gravitation and calculations therewith, characterized
extrinsically, nor that one cannot say the same things about Maxwell gravitation
characterized extrinsically as one can when it is characterized intrinsically—the
point is that it requires non-trivial work to do so.

5 Close

In this article, my aim has been to get clear on the special value of intrinsic
formalisms, in the context of reformulating a theory with SRMs. I have argued
that this value comes from the fact that which mathematical expressions may
be interpreted as physically meaningful in an intrinsic formalism is trivial in
a way in which it is not for extrinsic formalisms. The special value of an in-
trinsic formalism is just that it allows us to ‘read off’ what these mathematical
expressions are.

Of course, being able to ‘read off’ a theory’s ontology is also valuable, if one
thinks that considerations of ontology have a privileged role to play in theory
interpretation. But my focus on being able to read off what mathematical ex-
pressions may be interpreted as physically meaningful means that my argument
about the value of intrinsic formalisms is able to stand apart from this issue.
Rather than just being the purview of a certain brand of philosopher of physics,
intrinsic formalisms should be of value to everyone.
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