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This work explores the connection between logical independence and the algebraic structure of
quantum mechanics. Building on results by Brukner et al., it introduces the notion of onto-epistemic
ignorance: situations in which the truth of a proposition is not deducible due to an objective
breakdown in the phenomenal chain that transmits information from a system A to a system B,
rather than to any subjective lack of knowledge. It is shown that, under such conditions, the
probabilities accessible to a real observer are necessarily conditioned by decidability and obey a
non-commutative algebra, formally equivalent to the fundamental postulates of quantum mechanics.

I. INTRODUCTION

Classical Probability Theory (CPT) and Quantum
Mechanics (QM) are two profoundly different algebraic
frameworks that nevertheless yield similar outputs: real
values in the interval [0, 1], representing the frequency or
probability of a given physical phenomenon.

These two frameworks are incompatible, as definitively
demonstrated by Bell [1–6]. In particular, QM violates
certain inequalities that are provable theorems within
CPT. In 1981, Bell summarised his results in the cele-
brated article on Bertlmann’s socks[2], presenting a par-
ticularly simple version of these inequalities, known as
the Wigner–d’Espagnat inequality (WE):

p(A ∧B) + p(¬B ∧ C) ≥ p(A ∧ C) (1)

The probability of both A and B, plus the proba-
bility of both ¬B and C, is greater than or equal to
the probability of both A and C. This inequality fol-
lows directly from a corresponding theorem in set the-
ory, to which CPT is tightly connected via Kolmogorov’s
formalisation[7]:

{A ∩B} ∪ {Bc ∩ C} ⊇ {A ∩ C} (2)

That is, the set of elements that are both A and B,
together with those that are both ¬B and C, contains
all elements that are both A and C.

The proof is elementary: if x ∈ A ∩ C, then either
x ∈ B (and thus x ∈ A ∩ B), or x ∈ Bc (and thus
x ∈ Bc ∩ C).

On the other hand, in a Stern–Gerlach-type experi-
ment, the quantum mechanical prediction is:

p(Nα, Sβ) =
1

2
sin2

(
β − α

2

)
(3)

Here, p(Nα, Sβ) denotes the probability that an elec-
tron is detected in the “North” channel under a magnetic
field oriented at angle α, and in the “South” channel un-
der a field at angle β.
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The Wigner–d’Espagnat inequality would, in this case,
imply:

p(N0, S45) + p(N45, S90) ≥ p(N0, S90) (4)

But evaluating these quantities using equation 3 yields:

{
p(N0, S45) + p(N45, S90) ≈ 0.15

p(N0, S90) ≈ 0.25
(5)

QM violates CPT—and more than that, it contradicts
predictions derived from a set-theoretic logic grounded
in the law of the excluded middle. Does QM violate this
principle?
The centuries-old debate surrounding the interpreta-

tion of the superposition principle—and more generally
of QM—can largely be traced back to this point: within
the set A ∩ C, there appears to exist an element that is
neither an element of B nor an element of ¬B. This ten-
sion emerges in popular expressions such as “The cat is
neither alive nor dead,” or “The electron is neither here
nor there.”
Such conceptual difficulties are also reflected in expres-

sions like “quantum logic,” [8, 9] which seems to refer to
an alternative logic that, in some sense, contradicts clas-
sical logic. Does QM violate logic? Is QM illogical?
The study of the relationship between logic and QM

has been explored from many perspectives[10–17]; here,
we resume this inquiry by drawing in particular on a
series of works by Brukner et al.[18–20], concerning the
relation between logical indeterminacy and quantum ran-
domness.
By “logical indeterminacy,” we refer to the impossibil-

ity of determining the truth or falsity of a proposition
q, given a set of premises p1, p2, . . . , pn. In elementary
terms, from the premises “Socrates is a man” and “All
men are mortal,” one can logically deduce “Socrates is
mortal”; in contrast, the proposition “Socrates is Athe-
nian” is independent of those premises and thus unprov-
able with respect to them.
Brukner’s work highlights an intriguing fact: the for-

malism of QM can be used to encode semantic relations
among propositions. Specifically, given a set of premises,



2

one obtains a state vector in an appropriate Hilbert
space; a proposition whose truth value is not inferable
from the premises corresponds to a quantum measure-
ment with multiple and stochastic outcomes. The inde-
pendence of a proposition with respect to a given set of
axioms becomes experimentally testable by constructing
appropriate quantum experiments.

These results suggest the possibility that quantum ran-
domness may be a logical necessity rather than an onto-
logical fact.

The aim of this work is to show that the relation be-
tween logical indeterminacy and quantum physics can
be extended further. The presence of logical indetermi-
nacy—in a specific form that will be defined as onto-
epistemic—entails the necessity of a probabilistic frame-
work that is formally equivalent to QM and thus, like
QM, violates Bell-type inequalities. The problem of
propositional independence requires that science adopt a
probabilistic structure and, in certain contexts, to break
with the theorems of classical probability theory.

II. THE MEASUREMENT PROCESS

In his celebrated Foundations[21], von Neumann de-
votes the final chapter to the Measuring Process.1 In this
chapter, measurement is defined as a process of subjective
perception, irreducible to mechanics because it leads us
into the intellectual inner life of the individual.

Measurement is the process by which a physical state
(for example, ”the cat is on the table”) is transformed
into a mental state (”I know the cat is on the table) and
finally into a proposition expressed in natural language
(”The cat is on the table”). That is, measurement is
the process that enables what may be called a Tarskian
notion of truth, in which syntax and semantics converge:
The statement ”snow is white” is true if and only if snow
is white.

The correspondence between reality and the assertion
of states of reality is mediated by what von Neumann
calls principle of psycho-physical parallelism. This
principle ensures that it must be possible so to describe
the extra-physical process of subjective perception as if it
were in the reality of the physical world; i.e., to assign to
its parts equivalent physical processes in the objective en-
vironment, in ordinary space, thereby guaranteeing the
very possibility of scientific knowledge—that is, again,
of transforming reality into mental states, beliefs, the-
ories, and so forth. Von Neumann avoids turning the
measurement problem into a theory of mind by noting
that the psycho-physical parallelism can be cut at an
arbitrary point. Consider the following scenario: in an
experiment2, a screen lights up at a given spot—that is,

1 The italicised passages below are exact quotations from the 2008
edition.

2 Von Neumann describes a slightly different but analogous case.

a phosphor on the screen emits photons (or electromag-
netic radiation, or something else); these photons reach
the retina, which converts the incoming signals into elec-
trochemical impulses that travel along the optic nerve
and eventually reach deep regions of the brain, trigger-
ing a complex neurological reaction that, through largely
unknown mechanisms, produces what we have called a
mental state: ”I know that spot on the screen is illumi-
nated”. Now, von Neumann observes that what is me-
chanically relevant is merely that the transmission oc-
curs—that information propagates—even if we entirely
ignore the workings of consciousness, even if we cut the
phenomenal chain at the level of the retina, or earlier,
thereby avoiding the need to incorporate into the theo-
retical system components so complex as to be formally
unmanageable.

In the pages that follow, von Neumann proceeds to dis-
cuss in technical terms how the state vector propagates
beyond the event we näıvely regard as the outcome of the
experiment (”that phosphor lit up”), eventually encom-
passing the surrounding environment and transforming
into what properly constitutes a measurement—that is,
the subjective perception corresponding to the establish-
ment of the mental state ”I know that phosphor lit up”.

These profound observations by von Neumann suggest
three considerations. The first is that, although they
were developed in the specific context of quantum me-
chanics, they in fact apply to any scientific theory. The
scientific method, after all, rests on the comparison of two
mental states: “I predicted that...” and “I measured...”.
And again, even ignoring how such states are produced, it
would still always be necessary to assess how the relevant
information has propagated so as to reach the space-time
neighbourhood of the observer.

Even in classical mechanics, a proposition such as ”On
that day, at that time, Jupiter will be in that position” is,
strictly speaking, scientifically irrelevant, as it describes
an ontological state—a Kantian noumenon[22]—that
cannot be measured unless accompanied by a psycho-
physical transmission, a phenomenal chain, which allows
a scientist on Earth to assert: ”Yes, Jupiter is now in
that position; the theory is confirmed.”

The second consideration is that von Neumann’s cut
allows the problem of psycho-physical parallelism to be
reduced to a mechanical question, entirely disregarding
the role of consciousness and, in a certain sense, even
of measurement itself. That is, given any two physical
systems A and B, the question arises of how one responds
to the state of the other; that is, A can respond to some
property of B only if there exists a phenomenal chain
that conveys information about the state of B to A.

Finally, the third observation—which is the central
point of this work—is the following: psycho-physical par-
allelism has historically been assumed as a given, and it
ensures that the ontological states of classical mechanics
are measurable. For this to hold, it is necessary that the
phenomenal chain transmit information continuously and
completely. But what would happen if this transmission
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were incomplete or discontinuous? What effects would
this fact have on the theories and on the measurements
performed by a sentient agent?

Epistemic ignorance is classically understood as a con-
dition associated with a conscious agent, concerning the
set of truths that the agent does or does not know, and it
is remediable by acquiring additional information. How-
ever, there exists a second level of epistemic ignorance:
we define onto-epistemic ignorance as the condition
in which, in a system A, a proposition p concerning a sys-
tem B is unprovable not because of the agent’s epistemic
limitations, but because of the absence of phenomenolog-
ical chains capable of transferring information from B to
A.

Consider an oscillating system A, for example, a
body with a two-valued property—Up and Down—that
changes over time. Near this body, place a second body
B, which responds to changes in A by itself adopting the
states Up and Down.

What is observed, from a Kantian perspective, is more
properly that A oscillates and emits phenomena associ-
ated with this oscillation (e.g., a magnetic field), and that
B does not react to changes in A directly, but rather to
the local variation in the phenomenological chain.

Now, suppose this phenomenological chain could be
shielded—in other words, if no information about A’s
state reaches B. In that case, B would no longer react to
A. Onto-epistemic ignorance would then concern not
merely the knowledge state of an agent, but the objective
behaviour of physical systems.

A sentient agent—a scientist—enters the picture when
one asks what kind of scientific theory, and in particular
what kind of theory of measurement, such an agent might
construct when subjected to onto-epistemic ignorance.

As long as the scientist remains outside the shielding
of the phenomena, they do not have— even in princi-
ple—any information that would allow them to deter-
mine the state of A. The proposition “A is Down” is in-
accessible. In this situation, the agent can only produce
probabilistic predictions—even in the complete absence
of deterministic chaos, even if the object under study
were a simple, non-chaotic deterministic mechanism.

3

Conversely, the scientist can “perform a measure-
ment”—that is, enter the unshielded region, bring the
body B, respond to the image formed on their retina by

3 The philosophy of quantum mechanics naturally also introduces
the possibility that probability arises from an objective absence
of the properties themselves, and that such properties become
ontological features of the system only as a result of the mea-
surement process (and of a non-local interaction). The aim of
the present work, however, is precisely to show that this radi-
cal and problematic ontological position is not necessary. This
framework is compatible with such a scenario; however, it does
not require assuming that properties are not encoded in the ob-
ject itself.

the position of B, which now in turn responds to the phe-
nomena of A, and thereby establish the objective state
of A. Finally, the scientist applies the scientific method
by comparing their predictions to the results of the mea-
surements.
Finally, it should be noted that the shield used in

the previous thought experiments is merely a rhetori-
cal device. Onto-epistemic ignorance arises, in general,
whenever the phenomenal chain is incomplete or discon-
tinuous, regardless of whether any physical shielding is
present.
Before proceeding, a terminological clarification is in

order. In particular, it is necessary to identify two terms
that will designate, respectively, propositions whose
truth value is determinable (because phenomenally ac-
cessible) and those that, by contrast, are inaccessible due
to onto-epistemic limitations.
The terms decidable and undecidable would, from an

intuitive standpoint, be a natural choice. However, their
technical meaning in formal logic renders them unsuit-
able for operational use in the present context.4 Their
use would introduce significant conceptual ambiguities.
Likewise, terms associated with Bell, such as speakable
and beable, are now burdened with theoretical and his-
torical connotations that would create analogous ambi-
guities.
Other authors have employed expressions such as man-

ifestly true/false, determinate/indeterminate, or determi-
nateness/indeterminateness. Yet each of these options
presents semantic difficulties: some imply a theory of
mind, others suggest an ontological background that is
not adopted here.
In what follows, the terms observable and unobservable

will be used. Employed as adjectives, they should not
unduly conflict with the noun observable (indeed, they
are intended precisely as its adjectival extension), and
they appear to capture the definition of onto-epistemic
ignorance with reasonable clarity and naturalness.
We shall therefore say that a proposition is observ-

able when its truth value is determinable by a local ob-
server—that is, one not subject to onto-epistemic igno-
rance; conversely, a proposition will be said to be unob-
servable when, although it concerns an objective system,
it cannot be evaluated, within a given neighbourhood,
due to a discontinuity in the phenomenal chain.

III. ONTO-EPISTEMIC PROBABILITY

In the previous section, two physically and conceptu-
ally distinct zones emerged:

� Beyond the shielding, the proposition p = “A is
Down” is unobservable. We will denote this zone
by U .

4 Several reviewers were very explicit on this point.
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� Within the shielding, p can be inferred; the phe-
nomenal chain allows B to respond to A, and the
scientist to obtain the objective value of p. We will
denote this zone by O.

The key point is that, in U , it is by construction im-
possible to measure A. The only way to measure A is to
shift to the O perspective, where the proposition p̄= “p
is observable” holds true.

In other words, there is no way—by construction—to
empirically verify the proposition p alone, but only the
compound proposition “p and p is observable.” This
fact has an important consequence for probability the-
ory, since the actual frequencies that can be measured in
a laboratory are always—by construction—probabilities
of p, given that p is observable.

We will denote by |p| the classical probability of p,
and by [p] the probability induced by onto-epistemic ig-
norance. We shall call this relative probability, to em-
phasise that it depends not only on the truth value of p,
but also on whether that truth value is observable or not
within a given neighbourhood.

Classical probability is defined in terms of set-theoretic
measures that represent an absolute condition of truth
or falsity. In contrast, for a real observer, the actual fre-
quency values collected in the laboratory are necessarily
subject to stronger constraints: the real measured fre-
quencies are always conditional probabilities.

Classical probability is governed by the joint probabil-
ity theorem, from which, in particular, one obtains:

|p ∧ q| = |p||q|p = |q||p|q (6)

where |q|p and |p|q are the algebraic symbols associated
with the probability of q, given p and the probability of p,
given q, respectively.

The probability induced by onto-epistemic ignorance
can therefore be defined classically as:

[p] =
|p ∧ p̄|
|p̄|

(7)

From which, using equation 6, we obtain:

[p] = |p|p̄ (8)

The most evident consequence of 8 is that 6 becomes
empirically inapplicable. However, even in a relative sce-
nario, it is still possible to define, in a semi-classical man-
ner, the concept of [p]q, that is, the relative probability of
p, given q.

Let T , F , and U denote the conditions of ”true and
observable”, ”false and observable”, and ”unobservable”,
respectively. A pair of such symbols (e.g., TT , TF , ...)
will represent the joint state of p and q. The relative
probability of p can then be defined, in terms of these
joint states, as:

[p] =
∥TT∥+ ∥TF∥+ ∥TU∥

∥TT∥+ ∥TF∥+ ∥TU∥+ ∥FT∥+ ∥FF∥+ ∥FU∥

And [q]p can be defined as the relative probability of q
in the states where p is true and observable, that is:

[q]p =
∥TT∥

∥TT∥+ ∥TF∥
(9)

From which it follows directly that:

[p][q]p ̸= [q][p]q (10)

In other words, a scientist subject to onto-epistemic
ignorance observes a form of non-commutativity that ap-
parently violates equation 6, and therefore a theorem of
classical probability.
To make this deviation more tangible, consider the fol-

lowing example. Consider two entities, X and Y (balls,
coins, etc.), each of which can exhibit two properties:
colour (white W, black B) and orientation (up, down).
A shield filters out all information regarding objects in
the ”up” orientation. As a result, from the perspective
of the observer, X and Y may appear as white or black,
and either visible or invisible.
To represent visibility, we will use uppercase letters for

visible objects (W , B) and lowercase letters for invisible
ones (w, b). Each entity can therefore be, relative to an
observer, in one of four states: W , B, w, b. The system
(X,Y ) will thus have a total of 16 possible combinations.
For simplicity, we assume that any combination in-

volving an invisible state has zero probability, except for
the case in which X is visible and Y is invisible and
white, i.e., (X = W,Y = w). The system then reduces
to five relevant configurations: WW , Ww, WB, BW ,
BB, with respective probabilities: |WW |, |Ww|, |WB|,
|BW |, |BB|.
Now consider the propositions p = ”X is white” and

q = ”Y is white”. In classical probability, we have:

|p| = |WW |+ |Ww|+ |WB|
|q| = |WW |+ |Ww|+ |BW | (11)

And the conditional probabilities are:

|p|q = |WW |+|Ww|
|WW |+|Ww|+|BW |

|q|p = |WW |+|Ww|
|WW |+|Ww|+|WB|

(12)

From which it follows that:

|p||q|p = |q||p|q = |WW |+ |Ww| (13)

However, in a phenomenal context, an observer can
only measure visible states. The only invisible state al-
lowed is Ww, in which Y is invisible; thus, this configu-
ration does not contribute to the empirically observable
frequencies for Y .
The empirical frequencies observed will therefore be:{

[p] = |WW |+ |Ww|+ |WB|
[q] = |WW |+|BW |

|WW |+|WB|+|BW |+|BB|
(14)
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And, for the corresponding relative conditional probabil-
ities: {

[p]q = |WW |
|WW |+|BW |

[q]p = |WW |
|WW |+|WB|

(15)

Letting |Ww| = ϵ and |WW | = Π, we obtain:
|p||q|p = |q||p|q = Π+ ϵ

[p][q]p = |p|
|p|−ϵ ·Π

[q][p]q = Π
1−ϵ

(16)

In general, therefore, [p][q]p ̸= [q][p]q; and in the ab-
sence of invisibility (ϵ = 0), i.e., in the absence of onto-
epistemic ignorance, the three products coincide once
again:

[p][q]p = [q][p]q = |p||q|p = Π (17)

IV. RELATIVE PROBABILITY AND
QUANTUM MECHANICS

In this section, we will show that the relative prob-
ability [p] induces a complex, non-commutative algebra
of projection operators—namely, the algebra defined by
the fundamental postulates of quantum mechanics. By
this we refer to the structural postulates of QM that de-
fine the algebraic framework: Hilbert spaces, state vec-
tors, Hermitian operators, and the Born rule—excluding
the more properly dynamical postulate, the Schrödinger
equation, which is understood here as the quantum for-
mulation, within the algebra defined by the preceding
postulates, of the Hamiltonian formalism.

For simplicity, the demonstration will concern only
observables with two possible values (0–1, true–false,
yes–no, etc.); that is, the subset of QM known as quan-
tum logic.

The demonstration will proceed in three steps:

1. First, CTP and QM will be brought closer by re-
formulating CTP within a pseudo-quantum alge-
bra, composed of vector spaces, state vectors, and
linear operators.

2. The resulting algebra will then be used as a step-
ping stone to provide an analogous operator-based
representation of relative probability.

3. Finally, the identity between this algebra and QM
will be established.

A. Geometric Representation of Classical
Probability Theory

Equation 6, by introducing a new algebraic symbol,
highlights a typical semantic issue in classical probabil-
ity theory. The probability of “p∧ q” is not an algebraic

function of the probabilities of p and q, but depends, in
general, on the semantic relationship between the propo-
sitions. Conversely, given the probabilities |p∧q|, |p∧¬q|,
|¬p ∧ q|, and |¬p ∧ ¬q|, it is possible to reconstruct the
probabilities of p and q. In particular:

|p| = |p ∧ q|+ |p ∧ ¬q| (18)

In other words, the semantic relationships between p
and q are captured by the quadruple:

{|p ∧ q|, |p ∧ ¬q|, |¬p ∧ q|, |¬p ∧ ¬q|} (19)

A powerful geometric representation of these objects
can be obtained by considering the vectors:

|s⟩ =
(
±
√
|p ∧ q|, ±

√
|p ∧ ¬q|, ±

√
|¬p ∧ q|, ±

√
|¬p ∧ ¬q|

)
These vectors are subject to a form of the law of the

excluded middle5:

⟨s|s⟩ = 1 (20)

To the propositions p and q, one can now associate
diagonal projectors that extract only the components of
|s⟩ in which p (respectively q) is true:

P =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



Q =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


We then apply the Born rule:

|p| = ⟨s|P |s⟩ (21)

This geometrization process has the advantage of re-
moving additional symbolic constructs such as |p|q and of
recasting probability algebra into a substantially Boolean
form. Specifically, we have:


¬P = I − P

P ∧Q = PQ = QP

P ∨Q = P +Q− PQ

(22)

Repeating this reasoning for N propositions p, q, r, . . .,
we obtain that:

5 Since we are working over R, there are no complex conjugates,
so ⟨s| can simply be considered equivalent to |s⟩.
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� The semantic relationships among n propositions
are captured by a state vector |s⟩, i.e., a direction,
a one-dimensional subspace in R2n .6

� A generic proposition p, formed by combinations
of the involved propositions, is associated with a
suitable diagonal projector P .

� The probability |p| is given by the Born rule
⟨s|P |s⟩.

With this quick procedure, classical probability the-
ory is given a pseudo-quantum geometric form in which
Hilbert spaces are replaced by real vector spaces, and
general Hermitian projectors are replaced by real diago-
nal projectors, or at least projectors that are all simulta-
neously diagonalizable via an appropriate change of basis.

B. Geometric Representation of Relative
Probability

The geometrisation of CTP is founded on the proba-
bility values of the conjunctions |p∧ q|, |p∧¬q|, |¬p∧ q|,
|¬p ∧ ¬q|. We rewrite these expressions using symbols
with serifs, T and F , to denote absolute truth and fal-
sity:

{|T T |, |T F|, |FT |, |FF|} (23)

The system can then be extended by introducing the
symbols T , F , U : ”true and observable”, ”false and ob-
servable”, ”unobservable”. One thus constructs the alge-
bra of joint states:

{|TT |, |TF |, |TU |, |FT |, |FF |, |FU |, |UT |, |UF |, |UU |}

In this space, each proposition p now contributes an R3

space (T , F , U), rather than an R2 space (T , F). Within
this space, one can define the projector associated with
the probability that p is observable:

P̄ = diag(1, 1, 1, 1, 1, 1, 0, 0, 0) (24)

And the projector associated with the probability that
p is true and observable:

P̂ = diag(1, 1, 1, 0, 0, 0, 0, 0, 0) (25)

Thus, from 7:

[p] =
⟨s|P̂ |s⟩
⟨s|P̄ |s⟩

(26)

Equation 26 is problematic in that it is non-linear; that
is, there exists no operator P such that:

[p] = ⟨s|P |s⟩ (27)

6 If the n propositions are not independent, the space may be of
lower dimension, but we do not dwell on such details here.

This extension of the geometry therefore allows one to
compute values such as [p], but it loses the distinctive ex-
pressive properties—namely, the ability to reduce prob-
abilistic calculation to a Boolean-like form as in 22, in
which operators can be directly multiplied and summed.
In particular, the law of the excluded middle does not
hold here in its most basic form:

¬P ̸= I − P (28)

To resolve this algebraically in a satisfactory manner,
it is necessary to linearise the conditional probabilities;
that is, to employ a space with the expressive capacity
of R3, but with only two orthogonal directions—ensuring
the law of the excluded middle—to which one can directly
associate [p] and [¬p], along with exactly one additional
degree of freedom. A space of this type exists: it is C2.

C. Relative Probability and Quantum Mechanics

The state of a single proposition p can be represented
as a direction in a space R3, whose three axes corre-
spond to the conditions “p is true and observable,” “p
is false and observable,” and “p is unobservable.” In-
termediate directions represent possible combinations of
probabilities. Figure 1 shows its representation in polar
coordinates.

FIG. 1.

|s⟩ =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 (29)

The rotation that brings |s⟩ onto the TF plane is:

R = R†
φ Rθ Rφ (30)

where:
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Rφ =

sin(φ) − cos(φ) 0

cos(φ) sin(φ) 0

0 0 1


Rθ =

1 0 0

0 sin(θ) − cos(θ)

0 cos(θ) sin(θ)


(31)

And, by construction:

R|s⟩ =

cos(φ)
sin(φ)

0

 (32)

It is therefore possible to directly extract the relative
probability associated with p using the projector:

P ∗ =

1 0 0
0 0 0
0 0 0

 (33)

In the original basis, this operator takes the form:

P = R†P ∗R = R†
φR

†
θRφP

∗R†
φRθRϕ (34)

The problem with this operator is that the Rθ compo-
nents associated with unobservability are enclosed within
a sandwich of components associated with observable
probability Rφ; in other words, it is not possible to make
P independent of φ.

However, a radical simplification can be obtained
through a process of complexification, which maps the
directions of R3 onto directions (up to a global phase)
in C2. Consider the following map, similar to (but not
identical to) the Bloch sphere:

|s⟩ =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 −→
(

cos(φ)
eiθ sin(φ)

)
= |s′⟩

|s′⟩ preserves the entire information content of |s⟩ in a
form that allows direct extraction of [p] through a trivial
projector:

P =

(
1 0
0 0

)
(35)

It is therefore possible to apply the Born rule and
Boolean negation:

{
[p] = ⟨s|P |s⟩
¬P = I − P

(36)

A single proposition p is thus represented by a quantum
bit. Naturally, each possible point on the sphere in R3

corresponds to a different epistemic condition—that is,
to different T , F , U probabilities—and therefore each
observable defined on the qubit is associated with the
preparation of the truth/falsehood measurement in an
appropriate epistemic context.
In particular, an arbitrary projector in C2 corresponds

to testing a derived proposition p′, whose semantic con-
tent is defined by the chosen epistemic context—that is,
by selecting a specific chain of phenomena through which
the observer interrogates the system. From a logical per-
spective, p′ is a contextual proposition expressing “truth
of p under measurement context U ,” where U is a unitary
transformation of the canonical TFU frame.
The extension to n propositions in C2n is entirely natu-

ral, observing that classical probability is subject to local
tomography; this allows a reconstruction of the global
state purely from the statistics of combined proposi-
tions—a direct analogue of tomographic locality in quan-
tum mechanics [23, 24].
In conclusion, it is possible to assign a geometric struc-

ture to relative probability such that:

� The semantic relations among n propositions, in-
cluding unobservable ones, are captured by a state
vector |S⟩—that is, a direction, a one-dimensional
subspace—in C2n .7

� A generic proposition p, formed by combinations
of the involved propositions, is associated with an
appropriate projector P .

� The probability [p] is given by the Born rule:
⟨s|P |s⟩.

Or, more directly stated:

The foundational principles of quantum me-
chanics define the algebra of semantic rela-
tions among propositions—even unobservable
ones.

V. CONCLUSIONS

The path followed in this work has shown how the
presence of unobservability—in a physically grounded
form—necessitates a non-classical probabilistic structure
formally equivalent to that of quantum mechanics.
Brukner’s work demonstrates that the need for a sci-

entific theory capable of handling random outcomes may
stem from a strictly logical issue—the independence of

7 In the case where the n propositions are not independent, the
space may have lower dimension, but such details are not pursued
here.
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propositions—rather than from any unusual ontological
assumption.

Moreover, these works suggest that QM offers an opti-
mal framework for the treatment of unprovable propo-
sitions. This paper attempts to take a further step,
showing that onto-epistemic ignorance necessarily entails
a mathematical structure akin to that of QM—that is,
not only does the independence of propositions lead to
a probabilistic framework, but the specific form of onto-
epistemic ignorance requires a formalism that, like QM,
violates certain theorems of classical probability theory.

Within this interpretative scenario, Bell’s inequalities
and the Wigner-d’Espagnat inequality are not, strictly
speaking, violated—that is, QM does not violate logic.
However, any empirical test of such inequalities in-
evitably tests a subtly stronger version of them:

{Ā ∩ B̄} ∪ {Bc ∩ C̄} ⊇ {Ā ∩ C̄} (37)

That is, the set of elements for which, relative to a
concrete observer, properties A and B are both true and
observable, together with the set for which ¬B and C are
both true and observable, contains the set for which A
and C are both true and observable.

And in this strengthened form, the proposition 37 is
false, since the set {Ā∩C̄} may contain an element whose
membership in B is unobservable.

The conclusions reached here reinforce the sugges-
tion—already present in Brukner—that quantum me-

chanics may be understood more as a framework dictated
by logical necessity than by any particular ontology. In
other words, that the epistemological problems associ-
ated with Schrödinger’s cat should not be addressed by
focusing on the ontology of what lies inside the box, but
rather on the box itself—as an idealised shield capable
of disconnecting causal or phenomenal relations between
its interior and exterior, thereby breaking the psycho-
physical parallelism. This fact alone has significant con-
sequences for the science conducted by the experimenter,
in any situation in which they attempt to predict what
will happen on the other side of the shield.
A thorough discussion of these deeper philosophical

and interpretative aspects is inherently complex and di-
visive and is therefore left for future investigation.
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