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Abstract: Network epistemology is a growing field which studies the relationship 

between social network structure and belief. The field draws on work from many 

disciplines, including computer science, economics, philosophy, physics, political 

science, psychology, and sociology. While the conclusions of the field suggest that 

the relationship between network structure and belief is quite complex, there are a 

few general lessons that can be drawn. This chapter discusses what is known, and 

where fruitful new interdisciplinary work could help expand our understanding.
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Introduction



Social epistemic pathologies like polarization, group-think, economic bubbles, and 

misinformation cause significant real-world harms beyond false beliefs. Studying 

these pathologies involves two main approaches: one examines individual-level 

causes, such as social psychological effects, and how social interaction alters 

beliefs. The other investigates larger structural causes, like communication 

patterns, to understand belief formation within the broader epistemic 

environment.

Network Epistemology is of this second type. It is the study of how social network 

structure influences belief acquisition, transmission, and abandonment. It covers 

both pathological and non-pathological societies and gives us a lens through 

which we can understand many of the social processes that spread beliefs.

Social networks vary significantly in structure (see for example, figure 1). Some are 

highly connected while others are sparse. Some feature massive inequality in 

social connections, while others are more uniform and homogeneous. Some 

feature clustering, where one’s friends are friends with one another, while others 

have very little clustering. Understanding how these differences affect the spread 

and acquisition of belief is the central question of network epistemology.



Figure 1: An illustration of four networks (a) the star, (b) the complete network, (c) the 

ring, and (d) a small world network. 

A broad conclusion of this research program is that there is not a simple 

relationship between network structure and belief. Rather, depending on the type 

of learning problem and other features of the community, radically different 

networks might cause or prevent epistemic pathologies. As we will see, even very 

simple questions, like “are more connections good or bad for the uptake of reliable 

beliefs?”, do not have unequivocal answers.

All is not lost, however. Once some particulars are specified, both models and 

experiments appear to provide robust conclusions about how social network 



structure affects beliefs. Of course, much remains unstudied. There is ample 

opportunity for novel theoretical and empirical work.

Network epistemology is an interdisciplinary field which studies the relationship 

between social networks and the beliefs of its members. In keeping with this wide 

interdisciplinarity is diversity in methods. 

Because of the complexity of the studied system, theoretical methods are 

common. Both mathematical and computational models are ubiquitous. Some 

models, especially from economics, are based on expected utility maximization, 

while others use “boundedly rational” agents. Agent-based models simulate 

communities with agents following simple rules and interacting via social 

networks. Scholars analyze the resulting social dynamics to identify patterns 

linking agents and their networks to aggregate behavior.

These models are critical because they allow us to investigate changes in large-

scale social structure which would be difficult or impossible to study via traditional 

experimental methods. While it might be possible to design a laboratory 

experiment that altered the social network among five or ten people, doing so for 

a thousand or ten thousand would be difficult. Doing so at the scale of online 



social media is simply impossible. Furthermore, these methods allow us to 

understand the relationship between individual behavior and social outcomes in 

ways not possible with experiments. One cannot ask subjects to cease being 

influenced by confirmation bias (for example) in order to understand the social 

effects of confirmation bias. With models this is possible.

While the starting point of the literature is often formal models, scholars connect 

these models with data. Lab experimentation is common, where human subjects 

are placed into an artificial setting that mimics a model (this mimicry can come in 

varying degrees of fidelity).

Models are tested by experiment in two ways. First, researchers compare the 

particular design assumptions of the model to experiments. For example, suppose 

an agent-based model features agents who average their opinion with the 

opinions of others around them. An experiment might be conducted to determine 

the degree to which “averaging” is a good model for how those subjects behave in 

analogous laboratory settings.

Second, experiments compare macroscopic predictions of a model to macroscopic 

outcomes of an experiment. For example, if a model predicts that one network 



structure leads to more accurate beliefs than another, the experiment might seek 

to confirm the superiority of the better network using human subjects. The 

macroscopic results might match even if the microscopic processes do not. 

Beyond laboratory experiments, a model may also be compared to observational 

data in less contrived settings. So, for example, a model might predict the rate of 

adoption of a new belief or technology. Data from sales or from Twitter might be 

used to validate the model.

In the sections that follow, I will present several classes of models that differ in 

terms of the underlying learning problem being modeled. Changing the learning 

problem focuses on a different aspect of social influence on belief. The first two 

sections consider models of evidence amalgamation, where there are different 

ways a community might pool information they already have. The third considers a 

model of how new information flows through a network. In all these models, 

information merely arrives. The fourth section considers models of information 

search, where people must actively seek out new information. Information 

exchange can sometimes be quite complicated, with people offering reasons or 

arguments for their beliefs. The fifth section describes models of this form. Many 

of the models of the first five sections treat the social network structure as fixed. In 



the penultimate section, we consider models where the social network’s structure 

is malleable. Of course, this is not a complete review of the literature, but rather an 

illustration of the breadth of problems, methods, and conclusions.

Information cascades

Models of information cascades in economics represent an early example of 

network epistemology (Bikhchandani, Hirshleifer, and Welch, 1992, Banerjee 1992). 

Consider a simple example: There is a bag filled with red or blue marbles. You and 

a collection of other people will each privately draw a small number of marbles. 

Every person will make an announcement about whether they think the bag 

contains more red marbles or more blue marbles in total. You will act in a 

predetermined order, and each person will hear the announcement of those who 

act before them. How will (or should) someone act in this setting? How should their 

announcement depend on those before them? And what will be the aggregate 

reliability of the group in announcing the correct answer?

While highly stylized, this model is meant to capture a social dynamic where the 

spread of belief is mediated by action. An investor might only learn about the 

beliefs of others through observing stock purchases. I might only learn my friend's 



food preferences by seeing her order food. Or a politician might only come to 

know what voters want by observing who they vote for.

Information cascades: Theory

Each agent has a prior probability estimate of marbles in the bag. They update 

both on the information they received and on the announcement of others using 

Bayes’ theorem (see BAYESIAN AND RATIONAL CHOICE APPROACHES TO 

MEASURING CONFIDENCE and A PREDICTIVE ARCHITECTURE FOR THE ATTITUDES 

in this handbook). Each agent will be rewarded if their personal answer is correct. 

When it comes to their turn, they choose an announcement which will maximize 

their expected utility relative to their beliefs.

The striking result is that in finite groups, it is possible for the group to converge to 

the wrong answer despite the fact that the information, in aggregate, was not 

misleading. Even an infinitely large group can converge on the wrong answer. 

Many find it surprising that groups of fully rational individuals, arranged in this 

way, do not optimally integrate the available information.



To illustrate, consider a simple example. Everyone will have the opportunity to 

draw three marbles. You are fourth in line, and you draw two blue and one red 

marble. You form the belief that there are more blue than red marbles. Before you 

announce, you are allowed to see the announcement of three other people, and all 

three announce “red.” 

You know that the first person must have seen more red than blue marbles. So 

they must have either seen 2-1 or 3-0 for red. That means that combined with your 

information, it’s either 3-3 or 4-2 for red in total. Already after seeing that first 

announcement, you would announce “red.”

The second person also announces red. You have less information about what they 

saw, because it’s possible that they got the same draw you did and reasoned in the 

same way you did about the first person. You can (maybe) eliminate the possibility 

that they got a draw of 3-0 for blue. So, this will slightly increase the chance that 

red is the correct answer in your mind.

The third person also announces red. Their announcement gives you very little 

information about their draw, since they would say “red” regardless. When it’s your 



turn, you announce red.  So does everyone else after you as well because they 

reason similarly to you.1

Information cascade models show how rational individuals could be party to 

economic bubbles, fads, and other groupthink-like behaviors. These models 

illustrate that individual-level cognitive biases are not necessary for social 

pathologies.

Information cascades: Experiments

The information cascade framework is also an experimental methodology. 

Individuals are placed into this setting and their behavior is observed. Subjects are 

paid according to whether their private statements match the secret underlying 

state.

1This does depend on the assumption of “bounded signals.”  If there is some 

chance that somebody can get a signal so strong that it overwhelms any amount 

of social information to the contrary, then groups will eventually converge on the 

correct answer (Smith & Sørensen, 2000).



At the group level, the predictions of the model are largely confirmed. Groups do 

not take full advantage of the information that was supplied to it (Anderson & Holt, 

1997, Hung & Plott, 2001, Kübler & Weizsäcker, 2005, Ziegelmeyer et al., 2010). 

Although very long cascades may behave differently than the theory predicts 

(Kübler & Weizsäcker, 2005, Goeree et al., 2007). 

At the individual level, results are mixed. Agents do not respond exactly as 

predicted by the Bayesian model. Sometimes this is beneficial to the group, when 

an individual ignores the social information and acts on their private information 

(Anderson & Holt, 1997, Hung & Plott 2001). This generates information that 

benefits those behind the person who deviates.2 In contrast, subjects do not 

realize that they should ignore the statements by people later in the cascades 

(Ziegelmeyer et al., 2010). This worsens the cascade effect.

Several experimental variations have been conducted. One might change the way 

subjects are rewarded: by paying them if the majority of their group guesses 

correctly or if their guess conforms with the guesses of others. Hung and Plott 

(2001) found that people behave differently depending on their incentives. Rather 

2 I won’t call this “irrational” because they may be acting altruistically, although 

experiments have not confirmed that they are.



than receiving private information for free, subjects might be asked to pay to 

receive their private information. Kübler and Weizsäcker (2004) find that people 

pay too frequently, showing that they overvalue private information relative to the 

Bayesian ideal. Ziegelmeyer and colleagues (2010) give subjects a “stronger” signal 

that should be sufficient to break the cascade but find that it does not always do 

so.

Summary of information cascades models

The information cascade models and experiments highlight a couple of important 

themes. First, social pathologies—in this case something like group-think or 

economic bubbles—might be produced by ideally rational agents. This illustrates 

that if we want to explain these phenomena, we should not necessarily rely on 

biases in individual belief formation.

Second, the model illustrates that in some cases, sharing of information might be 

harmful. Each agent learning what others are doing in front of them makes them 

individually better, but makes the group as a whole worse. This has the same basic 

structure as a public goods problem, where individual selfish behavior harms 

everyone.



Models of social influence

The information cascades model is a good model for interactions that take place 

over time (like the purchasing of stock in a company). Of course, much of belief 

change takes place in a less structured setting. I might tell you my opinion about 

how the Pittsburgh Steelers will perform in the coming NFL season today. You 

might learn others' opinions tomorrow. Maybe in a few days, you might tell me 

your opinion on the matter. These interactions feature more symmetric social 

influence, where information can go both ways.

A different model of belief sharing is needed. In this section, all the models and 

experiments will have a similar structure: agents form an initial belief about some 

question, either entirely based on their own reasoning or from some information 

they are provided. For example, everyone might form an opinion about the 

prospects of the Pittsburgh Steelers by independently evaluating their past 

performance.

No additional information will arrive from the outside, the remaining part of the 

process involves aggregating their beliefs. Agents are arranged in a social network 



that represent how declarations are shared. Each agent declares a belief to their 

neighbors, listens to the declaration of their neighbors, and potentially changes 

their belief. The process is repeated (perhaps indefinitely) until the beliefs of all the 

agents stabilize. 

Pooling models

Modeling symmetric social influence with full Bayesian individuals is possible, but 

extraordinarily difficult (Acemoglu & Ozdaglar, 2011, Sadler, 2014, Hązła et al., 

2021). Consider what would be involved. Agents must have subjective probability 

distributions over all possible distributions of information, and all possible 

declarations of every person in the network. If they are unaware of the network 

structure, they must have a distribution over that as well. 

Instead of trying to model all this uncertainty, many scholars have turned to 

“boundedly rational” models of belief change. Two simple models have been 

reinvented often.

In the first model, belief is a binary state (you either believe something or you do 

not) and each agent changes their belief to match the majority of their neighbors. 



This model has many names; I will call it the repeated majority model.3 The second 

model represents belief as a continuous variable (often in [0,1]). Each agent 

updates their beliefs by taking a linear average of the beliefs of their neighbors. 

This is called the linear pooling model.4

Both models entail that agents will “double count” information they receive. Since 

they respond to their neighbors in every round, this will lead to them to count 

opinions of others multiple times. More highly connected people will be over-

counted relative to the less connected.

Although the models are quite similar, they come to strikingly different 

conclusions about the long run. In the continuous model, all agents converge on a 

single consensus opinion under very weak assumptions about the social network 

and the averaging procedure (Demarzo, Vayanos, & Zwiebel, 2003, Golub & 

Jackson, 2010, Golub & Sadler 2016). The discrete belief model will often stabilize 

3 This model has been reinvented too many times to count. For a list of references 

see (Zollman 2010a).

4 Like the first, this model has been reinvented several times. The most prominent 

first inventors are (French 1956; DeGroot 1974; Lehrer and Wagner 1981).



with heterogeneous beliefs, especially when the number of social network 

connections is relatively low (Zollman, 2010a, Zehmakan, 2020). 

When groups are judged by the reliability of the majority, however, both models 

predict that regular networks will be closer to the truth. If all agents are equally 

reliable in their initial opinions, regular social networks are those with no 

inequality in social connections. The ring and complete graph (figure 1b and 1c) 

are regular, while many other networks, like the star and small world graph (figure 

1a and 1d), are not. When agents are not equally reliable, however, the distribution 

of network connections should correspond to the difference in reliability. The most 

reliable networks involve a correlation between individual reliability and the 

number of network connections (Demarzo, Vayanos, & Zwiebel, 2003, Golub & 

Jackson, 2010, Zollman, 2010a, 2011).

A well-studied variation on the linear pooling model requires agents to ignore 

opinions that are too divergent from their own. This model, called the bounded 

confidence model, represents a relatively minimal change to micro-process that 

leads to significant macroscopic changes. No longer is consensus guaranteed. The 

model produces certain types of polarization and echo chambers (Hegselmann & 

Krause, 2002, Hegselmann, 2023). 



Pooling models: experiments

Two experiments tested whether subjects arranged in social networks are well 

modeled by the repeated majority model (Grimm & Mengel, 2020; Chandrasekhar, 

Larreguy, & Xandri, 2020). Many subjects followed the repeated majority model 

rather than the full Bayesian one, especially when subjects were less informed 

about the structure of their social networks.5

Brandts, Giritligil, and Weber (2015) and Becker, Brackbill, and Centola (2017) 

tested a macroscopic prediction of the pooling model. Both experiments 

confirmed that the group estimates were biased toward the initial guesses of 

people with more connections. In contrast, while Corazzini and colleagues (2012) 

found that people do not appropriately discount repeated information, the 

macroscopic results from two different networks cannot be explained by the linear 

pooling model. 

5 Choi, Gale, and Kariv (2005) conducted a similar experiment, but with only three-

person directed graphs. They found behavior was largely (but not entirely) 

consistent with full Bayesian rationality. It is possible that people are capable of 

more sophistication when the size of the groups is relatively small.



Granovskiy and colleagues (2015) perform an experiment that mimics the pooling 

model but where there was no network structure: everyone interacts with 

everyone. They develop a model of their data which shares some, but not all, 

features with the bounded confidence model, where people ignore some opinions. 

Jönsson, Hahn, and Olsson (2015) perform a similar experiment with network 

structure. In one of their experiments, they found that the small world network 

(see figure 1d) outperformed the complete network in terms of both individual and 

collective error. This result contradicts the pooling model where the complete 

network (figure 1b) is predicted to be among the best.

Trust and ongoing information acquisition

The models discussed so far leave out two important parts of some real-world 

deliberations. First, information might arrive during the process of deliberation. 

While we are discussing the prospects of the Pittsburgh Steelers, for example, we 

might learn some news about the players. Second, we might also regard some 

people as less reliable sources of information than others. My neighbor is always 



pessimistic about the Steelers, so I might discount his opinion more than someone 

else.

There are three models which incorporate this possibility in very different ways. 

Interestingly, they come to broadly similar conclusions. Adding these two features 

are sufficient to produce polarization.

Axelrod (1997) was the first to model polarization.6 His agents live on a 

checkerboard. An agent’s beliefs are represented as a vector of numbers. Agents 

imitate the beliefs of others who are near them in the social network, but they are 

more likely to imitate agents who have similar beliefs across the whole vector. This 

simple process instantiates homophily—where agents tend to interact with others 

who are like them. Homophily in this form creates the conditions for a structured 

and polarized society. A related model comes to similar conclusions (Weatherall & 

O’Connor, 2020).

6 While a common term, “polarization” is actually the name for a large cluster of 

different concepts. Detailed discussion is beyond the scope of this paper, but 

interested readers should consult (Bramson et al., 2017).



The Laputa framework is one that allows for new information and dynamic trust 

(Olsson, 2011). Agents receive information both from each other and from the 

world. Agents have heterogeneous reliability, and they each have a conjecture 

about others’ reliability. They update these in a broadly Bayesian manner. The 

Laputa framework has been employed to analyze several themes including 

polarization (Olsson, 2013, 2020, Hahn, Hansen, & Olsson, 2020), trust and 

misinformation (Morreau & Olsson, 2022, Vallinder & Olsson, 2014), and network 

structure (Hahn, Hansen, & Olsson, 2020). Aspects of the model have been 

confirmed empirically (Collins et al., 2018).

Abstracting away from the micro-process, one might also model agents as “pulled” 

toward the truth. The bounded confidence model has been adapted in this way 

(Hegselmann & Krause, 2006). Like with the Laputa model, the bounded 

confidence model can capture lack of trust, although the micro-process is modeled 

quite differently. It can also explain polarization (Hegselmann & Krause, 2002, 

Hegselmann, 2023) and be used to study misinformation (Douven & Hegselmann, 

2021).

These three models are a study in contrasts. All three model similar things, but the 

micro details diverge. The Laputa model is Bayesian (albeit bounded) and has 



many parameters (Olsson, 2011). The bounded confidence model has only a small 

handful of parameters. It does not aim to model individual behavior exactly, but 

instead abstracts away from that to generate a more macro-scale model which can 

capture relevant phenomena (Hegselmann & Krause, 2006). The Axelrod model is 

like the bounded confidence model, but models several simultaneous beliefs.

Despite their structural differences, all three models predict polarization via a 

similar underlying dynamics: agents form separate communities that have a high 

degree of internal trust but with low trust in other communities. In the Laputa 

model this happens because agents are trying to learn one another’s reliability. In 

the bounded confidence model and the Axelrod model, this is imposed by 

assumption.

Summary of social influence models

Social influence models illustrate the dangers of highly unequal social connections. 

Groups that feature highly varied networks (like online social networks), will often 

fail to aggregate information in an optimal way. Rather, more “flat” social 

structures are superior.



When we add the arrival of new information with the ability to gauge the reliability 

of another, we also find a clear explanation for some types of polarization. That 

relatively simple models can lead to polarization provides some evidence that 

larger scale social dynamics may be more to blame for polarization than individual-

level psychological effects.

Contagious ideas

The pooling and voting models of the previous section are meant to capture 

deliberation about something where everyone has an opinion. Another type of 

“belief spread” occurs when new information is transmitted through a society 

where no one has thought about the matter before. In the morning, you may not 

yet have an idea of what a controversial politician said the night before. But, as you 

talk to friends, look at social media, or read the paper, you might come to know 

the ridiculous things he said.

This type of belief spread mimics the spread of a disease, and epidemiological 

models have been adapted to this task (for more discussion see BELIEF 

PROPAGATION ACROSS SOCIETY in this handbook). Adopting a new belief is like 

catching a disease.  Once you believe it, there may be a period of “infectiousness” 



where you tell other people what you now believe. Forgetting the belief, adopting 

a contradictory belief, or finding it no longer newsworthy, is the equivalent of 

recovering from a disease.

Contagions: theory

The classic epidemiological model, the SIR model, uses differential equations and 

ignores social network structure. It categorizes everyone into three “bins” as 

susceptible to a disease, currently infectious, or recovered. The size of each group 

changes deterministically: the infectious make susceptibles infectious and recover 

after a certain period.

This model is also common in the study of innovation diffusion.7 Since our focus is 

on network structure, we will set this model to the side to focus on network 

models.8 Many models have been developed with different diffusion micro-

7 Bass (1969) was the first to employ an epidemiological model to study innovation 

diffusion. 

8 See (Meade & Islam, 2006) for a survey of non-network-based models and their 

connection with data. The first to incorporate networks in epidemiology was 

(Hethcote, 1978). The first in innovation diffusion was (Abrahamson & Rosenkopf, 



processes (Young, 2009, Dunn & Gallego, 2010, Abrahamson & Rosenkopf, 1997, 

Kuandykov & Sokolov, 2010, Goldenberg & Efroni, 2001, H. Choi, Kim, & Lee, 2010, 

Delre et al., 2010, Delre, Jager, & Janssen, 2007, Hohnisch, Pittnauer, & Stauffer, 

2008, Bartal, Pliskin, & Tsur, 2020).

These models can be interpreted in two different ways. If the underlying belief is 

an innovation—i.e., a genuinely good piece of information—the ideal network will 

be one that maximizes the spread in minimal time. Alternatively, the belief might 

be misinformation, in which case the best network is one that contains or slows 

the spread.

This contrast illustrates a difficulty of regulating misinformation in online social 

networks. Without knowing if the information is good or bad, we simply cannot 

design anything like optimal social networks.

If our goal is to spread information as quickly as possible, the optimal network is 

clearly the complete network. More contact means more opportunity for 

information to be transmitted. If we want the best network with the fewest 

1997).



connections, the star network (figure 1a) can also be good because all nodes are 

close to one another.9

LaCroix, Geil, and O’Connor (2021) use a double-diffusion model to understand 

why false information spreads more widely than a correction. For example, why 

does a new scientific result spread further than a retraction or failed replication of 

that result? They model the initial sharing as an innovation diffusion model, but 

assume that the retraction is only taken up and shared by someone who has been 

initially “infected” by the false idea. This model elegantly shows why combating 

misinformation is so hard: corrections are less contagious than the initial 

misinformation.

The traditional diffusion model inherits the assumption from epidemiology that 

one can take up an idea after only a single contact. (Or to say it more precisely, the 

probability that one believes the idea is independent given the number of times 

one has been exposed.) However, uptake of ideas may not follow this pattern. 

Instead, someone may wait until they’ve heard an idea multiple times before 

9 Here I focused on the speed of the transmission of the idea. But there are also 

other things that one might consider, like how many people will eventually adopt 

the idea in an arbitrary random graph (Newman 2002, 2018). 



believing or transmitting it to others. Models of “complex contagions” allow for this 

possibility (Centola & Macy,2007). 

Complex contagions are encouraged by very different network structures. If 

someone only adopts a new belief if they hear it from two or more people, then 

the star is completely inefficient. No information will spread because only the 

center person could possibly be told the same fact from two different people. 

Instead, networks with high clustering are needed (Centola & Macy, 2007). In 

simple contagions, clustering slows down the spread of information. In complex 

contagions it facilitates spread.

Contagions: connections with data

Diffusion of new information is much more difficult to study in a laboratory setting. 

More common are natural experiments.

Substantial work has matched non-network models to data, especially in the 

context of diffusion of new products (Meade & Islam, 2006, Rogers, 2003). Some 

have attempted to explicitly match network diffusion models to data, most often 



data from online social networks (Hohnisch, Pittnauer, & Stauffer, 2008, Goel et al., 

2016, Takayasu et al., 2015, Myers, Zhu, & Leskovec, 2012). 

Work has been done testing some assumptions of those models against data 

(Lerman & Ghosh, 2010). In particular, many studies have focused specifically on 

whether ideas follow the “simple” or “complex” contagion model (Centola & Macy, 

2007, Centola 2018). There is some evidence that online social media functions 

more like a complex than a simple contagion (Romero, Meeder, & Kleinberg, 2011, 

Mønsted et al., 2017, Fink et al., 2016, 2015), although there is disagreement 

(Hodas & Lerman, 2014).

Summary of contagion models 

The study of contagion models illustrates how small changes in the micro-level 

process can generate big changes on the macro-level. For example, the shift from 

“simple” contagions—where a single exposure can make you believe something—

to “complex” contagions—where you must hear something several times before 

you believe it—can radically alter the relationship between network structure and 

the speed of belief spread. In simple contagions, clustering leads to slower spread, 

and in complex contagions, clustering leads to faster spread. 



Supplementing these models with a model of correcting misinformation also 

shows how complex interactive processes can be. This model provides some 

micro-structural explanation for the common observation that lies spread faster 

than the truth (LaCroix, Geil, & O’Connor, 2021).

Modeling search

Common to all the models discussed above is that information arrives 

independently of the beliefs of the agents themselves. Search problems create a 

complex relationship between beliefs, actions, and what information arrives in the 

future. They do this by creating some version of explore—exploit tradeoffs.

There are two main modeling paradigms that emphasize different aspects of the 

search process. The first is the bandit problem model. Named after slang for slot 

machines (a “one armed bandit”), bandit problems give agents a choice among a 

small number of options. Each option is characterized by a probability distribution 

over potential payoffs. Agents want to play the option with higher average payoff 

as much as possible (called “exploitation”). They don’t know, however, which option 

is optimal. So they must explore the various options to determine which is best.



The second paradigm, known as a landscape search problem, models a search 

problem involving many (often hundreds or thousands) of options arranged in a 

mathematical space. Each option provides a payoff for anyone who tries it. The 

agents must explore the space in some intelligent way in order to find the option 

with the highest payoff.

In both these models, we can devise a notion of problem difficulty. In bandit 

problems, if distributions have large variances or the payoffs of the two options 

are very close, it is difficult to identify the superior option. If the payoff difference 

is large and variance small, the problem will be quite easy.

In landscapes, the difficulty is determined by how “rugged” the landscape is. If the 

landscape is smooth (as in figure 2a),  any reasonable search procedure will find 

the optimal solution. If the landscape features many local maxima separated by 

valleys (as in figure 2b), then it might be quite difficult.



Figure 2: A heuristic illustration of two types of landscapes.  The x-axis represents the 

space of solutions as a one-dimensional space. The y-axis represents the quality of an 

option. (a) illustrates a relatively easy “smooth” landscape, where a hill climbing 

algorithm will easily find the global optimum. (b) illustrates a “rugged” landscape, 

where hill climbing algorithms risk getting stuck in local optima that are not globally 

optimal.

Modeling search: Theory

One central finding from both paradigms is that diversity of search is beneficial 

(Zollman, 2010b, Wu, 2023a, Wu & O’Connor, 2023, Hong & Page, 2004, Thoma, 

2015, Grim et al., 2019, Barkoczi & Galesic, 2016, Lazer & Friedman, 2007, 

Campbell, Izquierdo, & Goldstone, 2022, Pöyhönen, 2017). In both cases, 

distributing members of a group among many different options will help the 

group find the best solution. For bandit problems, diverse behavior limits the 



premature abandonment of one of the options. In landscape search, diversity 

ensures a larger amount of the terrain is explored. 

The value of diversity of behaviors in these models depends critically on the 

difficulty of the problem (Rosenstock, Bruner, & O’Connor, 2017, Grim et al., 2019). 

Diversity of behavior or opinion is not important in easy problems that feature a 

smooth landscape or bandits with radically different payoffs.10 Individuals facing 

easy problems are likely to solve them on their own, and so maintaining diversity 

has little epistemic benefit.

In difficult problems, diversity is beneficial. This diversity can be maintained at the 

individual and the collective levels. At the individual level, people can adopt 

strategies that encourage exploration. However, there is a complication. 

Exploration in these models is a type of public good: each individual takes on a 

cost by exploring potentially inferior options, while the group benefits from it. As a 

result, individuals alone may generate insufficient diversity for optimal exploration 

(Bolton & Harris, 1999, Kummerfeld & Zollman, 2016).

10 Here we are focused on diversity of opinion or behavior, not on demographic 

diversity. There is a complicated relationship between the two, which is beyond the 

scope of this chapter.



Social strategies for maintaining diversity are more counter intuitive. One can 

encourage experimentation by limiting group information through a sparser social 

network (Zollman, 2007, 2010b, Grim et al., 2013, Wu, 2023a), by giving individuals 

“unreasonably” strong initial opinions (Zollman, 2007), making them ignore certain 

subcommunities (Wu, 2023b, Fazelpour & Steel 2022), and making them subject to 

confirmation bias (Gabriel & O’Connor, 2024).

Many of these social mechanisms come with serious costs. In order to preserve 

diversity you must also slow down achieving consensus. Whether that cost is worth 

paying depends on particulars of the learning problem the group is confronting. In 

addition to slowing down learning, some of these social processes are particularly 

likely to lead to polarized communities, which might have its own negative effects 

(Wu & O’Connor, 2023).

Modeling search: Experiments

Many experiments have been conducted on how individuals choose in the context 

of explore-exploit decisions when acting alone (for examples, see Steyvers, Lee, & 

Wagenmakers, 2009, Lee et al., 2011, Zhang & Yu, 2013a, Daw et al., 2006, 



Speekenbrink & Konstantinidis, 2014, Zhang & Yu 2013b). Because they focus on 

individuals acting alone, they cannot be uncritically applied to social settings. They 

can, however, inform how models of this type are built. 

Wisdom and Goldstone (2007) look at social learning strategies in landscape 

search problems. They find that individual strategies for learning from others are 

extremely complex, including changes in imitation behavior over time and across 

social settings.

However, large scale predictions of these models are consistent with experiments. 

Several experiments have placed subjects in social networks and asked them to 

solve landscape search style problems. They find that limiting information can 

sometimes improve the performance of the group by encouraging more diverse 

behavior (Mason, Jones, & Goldstone, 2008; Mason & Watts, 2012, Derex & Boyd, 

2016, Charness, Cooper, & Grossman, 2020, Wisdom, Song, & Goldstone, 2004, 

Goldstone et al., 2013).

Summary of search models



Both landscape search problems and bandit problems provide a useful testbed for 

social learning when information must be actively acquired (rather than arriving to 

passive observers). The results from models and experiments have consistently 

found a benefit for behavioral or opinion diversity when problems are difficult. 

There are many potential mechanisms for maintaining this diversity, and research 

about their various costs and benefits is ongoing.

Argumentation models

Almost all the models discussed so far focus on a single belief. That belief might be 

about the optimal bandit, the best point in a landscape, a piece of gossip, or the 

state of the world. Of course, real social interaction often involves the 

communication of different interconnected beliefs. You might try to convince me 

to believe something by presenting me with an argument involving several other 

beliefs that I already hold. Or, I might come to agree with you about one 

proposition because I agree with you about several others. A few models have 

been developed to account for this (for a more comprehensive overview, see De 

Tarlé, et al., 2025).



Dung (1995) developed a simple model of argumentation, which represents an 

argument as a series of claims that “attack” other claims. Borg and colleagues 

(2017, 2018) apply this model to a kind of landscape search problem. In contrast to 

some of the landscape search problems discussed in the previous section, Borg 

and colleagues find that whether communication is helpful is mediated by how 

agents share information and whether they are willing to share arguments critical 

of their current “location” in the landscape. 

Mäs and Flache (2013) develop a less structured model of argumentation. For Mäs 

and Flache, agents have “reasons” that speak either for or against a target belief. 

They don’t model a fixed social network, but allow one to evolve over time. They 

endeavor to determine how homophily might be responsible for polarization. As 

with Axelrod’s model (see section 2.3), they find homophily is sufficient to produce 

polarization.11

Network formation

11 (Singer et al. 2019) develop a similar model, but there is no social network 

structure in their model.



In most of the models considered so far, the network structure is taken as 

exogenous and fixed. In real human societies, the network structure is dynamic 

and influenced by the choices of individuals. Models that look at network change 

and network formation account for this.

Economics has produced one modeling paradigm: each individual receives some 

payoff from the structure of the network. They create or destroy connections to 

others and are striving to achieve the highest possible payoff. An equilibrium is 

reached when no person can improve their situation by adding or deleting a 

connection (Jackson & Wolinsky, 1996, Jackson, 2008, Bala & Goyal, 2000, Goyal 

2007).

Suppose each agent has some piece of information that can be transferred along 

the social network, perhaps with error as it passes through intermediaries. The 

information is valuable, but maintaining connections has a cost. These benefits 

and costs are made precise via a utility function. In this model, the ideal network is 

either empty, complete, or the star because it balances benefits against costs for 

the agents collectively (Jackson & Wolinsky, 1996). Sometimes networks of this 

form are inconsistent with individual incentives, leading to a public goods problem 

(Jackson, 2008). Even when they are consistent with incentives it can be quite 



difficult for communities to find the optimal social arrangement because of the 

large search space (Watts 2001, Huttegger, Skyrms, & Zollman, 2014, Zollman, 

2017).

Many models of dynamic network formation explain polarization. They create an 

underlying process whereby both individuals' beliefs and their social network 

evolve over time (Kivinen 2017, Fu & Wang, 2008, Macy et al., 2003, Del Vicario et 

al., 2017, Santos, Lelkes, & Levin, 2021, Mäs & Flache, 2013).12 A common theme is 

that polarization can emerge from processes that lead to belief homophily—the 

tendency of people to interact more with people who have similar beliefs.

Conclusion

Network epistemology is a field rife for valuable interdisciplinary collaboration. 

Many of the social processes are too difficult to study entirely in the lab or 

naturalized settings. Instead, models are necessary. The models themselves 

require substantial empirical input, either testing the mechanisms that they use or 

12 The evolving distrust relationship present in some of the models can be seen as 

a type of evolving network. O’Connor and Weatherall (2018) show that distrust can 

lead to polarization in bandit problem models. 



their macroscopic predictions. While some of this testing has occurred, there 

remain many processes where the modeler must use her best guess. Many 

macroscopic predictions of these models remain untested.

The questions tackled by network epistemology are nonetheless critical. Social 

epistemic pathologies like polarization, misinformation, groupthink, economics 

bubbles, and the like are detrimental to our global society. Despite their 

importance, we remain ignorant about much of the individual-level and social-level 

contributing causes. Understanding the dynamics of networks is one component 

we must tackle in order to improve our society’s ability form and propagate true 

beliefs.
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