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Abstract 

Robustness of AI alignment is one of the safety issues of large language models. Can we predict 

how many mistakes will a model make when responding to a restricted request? We show that 

when access to the model is limited to in-context learning, the number of mistakes can be 

proved inapproximable, which can lead to unpredictability of alignment of the model. Against 

intuition, this is not entirely bad news for AI safety. Attackers might not be able to easily misuse 

in-context learning to break alignment of the model in a predictable manner because the 

mistake bounds of safe responses, which were used for alignment, can be proved 

inapproximable. This inapproximability can hide the safe responses from attackers and make 

alignment of the model unpredictable. If it were possible to keep the safe responses from 

attackers, responsible users would benefit from testing and repairing of the model’s alignment 

despite its possible unpredictability. We also discuss challenges involved in ensuring 

democratic AI alignment with limited access to safe responses, which helps us to make 

alignment of the model unpredictable for attackers. 

 

1. Introduction 

AI alignment aims to reduce risks involved in the development and use of capable AI systems. 

Current risk reduction techniques trace back to reinforcement learning experiments with 

human feedback. Human preferences on possible agent trajectories in a simulated 

environment were used to learn a reward function optimized by the agent (Christiano et al. 

2017). This kind of reward modelling later turned into a major research direction in AI 

alignment (Leike et al. 2018). Human intentions expressed as preferences on possible actions 

of a reinforcement learning agent in an environment were used to learn the reward model 

optimized by the agent. The most widespread application of reward modelling so far was found 

in training LLMs (large language models) to follow user instructions to perform various tasks 

(Bai et al. 2022; Ouyang et al. 2022). Together with supervised safety fine-tuning, 

reinforcement learning from human feedback (RLHF) based on reward modelling attempts to 
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ensure that LLMs will produce safe request completions and refuse to complete unsafe tasks 

in alignment with human preferences (e.g., see Touvron et al. 2023). While popular, RLHF has 

alternatives such as Direct Preference Optimization (Rafailov et al. 2023) that does not involve 

the actor-critic alignment architecture. 

Concerns over the availability of human preferences and the ability of humans to 

provide preferences effectively led to the development of reinforcement learning from AI 

feedback (Bai et al. 2022). Here, principles characterizing safe LLM responses in a general way 

are used to guide an LLM in revising unsafe responses, and based on the same principles, the 

LLM is then used to decide which output from a pair produced in response to a prompt is 

better aligned with the principles (ibid.). This AI feedback on responses to a set of prompts 

mixed with human preferences is then used to train a reward model for reinforcement learning 

of the final LLM aligned with ‘AI feedback’ (ibid.). Relatedly, Deliberative Alignment (Guan et 

al. 2024) aims to train models capable of chain-of-thought reasoning to select a relevant safety 

policy for the user request, inform the generated chain-of-thought by it, and produce a safe 

completion.  

Other alignment methods were proposed to address the limited human ability to 

provide feedback on complex tasks. ‘AI safety via debate’ uses a zero-sum game between two 

AI agents producing a sequence of prompt responses at the end of which the user decides 

which agent provided a more useful (aligned) solution to the problem (Irving et al. 2018). The 

‘Iterated Amplification’ method builds up complex tasks’ solutions from aligned solutions to 

easier subtasks provided by users and can, in principle, maintain alignment of the AI agent 

without reward modelling (Christiano et al. 2018). A related, weak-to-strong principle was 

tested by Burns et al. (2024) who successfully experimented with using outputs of a weaker 

model to elicit strong performance from a more capable model. 

An LLM’s alignment based on methods such as RLHF can fail or be undone. A common 

safety issue are failures to refuse the completion of restricted, harmful tasks caused by 

jailbreaking attacks (Wei et al. 2023). Jailbreaking prompts elicit conflicts between models’ 

capabilities after pretraining and safety training and allow users to perform restricted tasks by 

manipulating prompts via prefix injection or refusal suppression (ibid.). This led to a realization 

that adversarial alignment is hard to achieve. Zou et al. (2023) developed a method for 

automating the search for ‘adversarial suffixes’ which, when added to a restricted prompt, 

force the model to produce a harmful response. Both manual and automated jailbreaking 
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methods are known to identify prompts that transfer across models, allowing attackers to elicit 

harmful responses across a range of models. Qi et al. (2024) showed that fine-tuning, a process 

of adapting models to new tasks, can turn safe LLMs with just a few harmful examples to poorly 

restricted models. Similar effects were observed even if the fine-tuning prompt-response pairs 

were benign (ibid.). Using tools developed for mechanistic interpretability, Jain et al. (2024) 

showed that the effects of fine-tuning on the base model are mild and that restricted 

capabilities can be brought back in a sample efficient manner.   

To remedy this situation, red-teaming efforts seeking to uncover harmful capabilities 

of LLMs before their deployment were augmented with adversarial prompt generators tailor-

made to particular LLMs (Casper et al. 2023). Despite the existence of semi-automatic pre-

deployment safety-procedures, it is impossible to ensure that all vulnerabilities allowing the 

model to produce harmful responses are identified before the LLM is put to use. In this 

situation, it is reasonable to ask:  

Question 1 Is it possible to predict alignment of the model? 

We provide an answer to this question using the mistake bound approach developed for online 

learning (Littlestone 1988), in which we are interested in bounding the number of mistakes 𝑀 

that a learner 𝐴 makes on sequences 𝑆 ∈ 𝒮 of the length 𝑇 ∈ ℕ.  

Fact 1 The mistake bound can be used to characterize the possibility that an auto-regressive 

model 𝐴𝑅, such as an LLM based on the decoder-only Transformer architecture, e.g., a model 

from the family of generative pretrained transformers beginning with Radford et al. (2018), 

produces a sequence 𝑆 representing its safest response to the most restricted requests. 

Question 1 is significant because if were able to calculate or approximate mistake bounds of 

the model’s responses to safety-sensitive requests even without access to the safe responses, 

the alignment of LLMs with human preferences could become predictable. 

We will show that there are theoretical reasons suggesting that predictability of 

alignment by mistake bounds of safe responses without having full access to the responses is 

unlikely. Our main tool for deriving a negative answer to Question 1 is the recently proved 

inapproximability of Littlestone’s dimension (Manurangsi and Rubinstein 2017; Manurangsi 

2023). Littlestone’s dimension is a fundamental tool of learning theory developed for bounding 

the number of mistakes made by learners on sequences (Littlestone 1988) in the so-called 
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realizable setting. Here, the realizable setting means that we assume the model can generate 

the safe response to a restricted request because it was trained to do so, which is the goal of 

AI alignment. Once we use Littlestone’s dimension for bounding the number of mistakes that 

an auto-regressive model can make while responding to a user request, predictability of the 

model’s alignment can become difficult. We build a theoretical explanation of this 

unpredictability as follows: 

Proposition 1 It is difficult to predict bad responses of the model because we cannot 

approximate the mistake bounds of its aligned responses in polynomial time (the 

approximation task is considered intractable). 

In this paper, we build a theoretical argument for Proposition 1, offer an empirical 

demonstration designed to support the theoretical argument, and unpack surprisingly positive 

effects of Proposition 1 on AI safety. The main positive impact is shown in Section 3 and 

comments on its implications for practice are provided in Section 4. Section 2 builds the 

necessary connection between autoregressive sequence generation and online learning. 

Contribution: We show that AI alignment can become unpredictable because the mistake 

bounds of an LLM’s safe responses can be proved inapproximable if the responses are not 

fully accessible. This unpredictability can lead to what we call safety symmetry, a situation 

in which alignment of the model is difficult to guarantee as well as exploit with respect to 

the safe responses to restricted requests. Safety symmetry is characterized by Theorem 1 in 

Section 3.1, and in Section 3.2 we seek to provide indicative empirical support for the 

unpredictability. Circumstances which lead to unpredictability of the model’s alignment can 

easily occur in practice. For this reason, safety symmetry should be understood as a factor 

that could justify further investments in responsible LLM development. Potentially 

unpredictable yet improved alignment of the model will likely disadvantage attackers more 

than legitimate users who, while facing the same unpredictability, will use a safer model. 

Our unpredictability of AI alignment has also an epistemological upshot. The fact that it is 

possible to prove mistakes bounds of safe responses inapproximable in the situation where 

the model should be able to generate safe responses could be interpreted as strengthening of 

Gerhard Schurz’s optimality justification of epistemic methods (Schurz 2022; 2024). The 

optimality justification of induction requires an algorithm capable of learning from prediction 
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errors of available methods such that it minimizes the gap between its errors and errors of the 

best method in hindsight (Schurz 2019, Sect. 6.6). This gap is called regret, and some meta-

inductive algorithms can be shown to be no-regret by having unimprovable worst-case regret 

bounds and per-round regret that vanishes as the number of rounds approaches infinity (ibid.). 

No-regret learning is necessary for the optimality justification. But since it can be proved that 

in certain situations agents cannot predict each other due to inapproximability of their mistake 

bounds of sequences they are predicting, no-regret learning might become even fundamental. 

This could strengthen optimality justifications because the inapproximability of agents’ 

mistake bounds can lead to unpredictability of agents’ interactions, in which case the only 

epistemically sound course of action is to learn from the interactions in the optimal way, as 

suggested by the optimality justification of induction and learning in prediction games. Our AI 

alignment scenario is one such situation because users can encounter difficulties predicting 

alignment of LLM responses with safety requirements, and we focus on analyzing and 

providing evidence on a possible cause of this unpredictability, which could strengthen the first 

type of Schurz’s optimality justifications (the optimality of meta-induction, 2022, Sect. 3). 

2. Inapproximability of AI Alignment 

Proposition 1 can be interpreted as unpredictability of AI alignment. There are results such as 

Wolf et al. (2024) that challenge the robustness of alignment by arguing that once an LLM 

acquires harmful capabilities, it impossible to remove them from the model. Our approach is 

different. It shows difficulties in deriving mistake bounds for aligned capabilities of the model 

that would provide us with information on how safe LLM responses turn into unsafe ones. It 

was also shown by Glukhov et al. (2024) that any attempt to enforce alignment via censoring 

LLM outputs is formally undecidable. Undecidability of censorship of LLM outputs derived 

from Rice’s Theorem is an important limiting result that is, however, difficult to apply to real-

world models. Our approach stays as close as possible to the real-world models that are being 

aligned with human safety preferences using methods described in previous section. In fact, 

our approach works with a customizable token set 𝒳 and the in-context learning capability of 

LLMs characterized as online learning. 

 It should be also noted that computational intractability of Littlestone’s dimension 

motivated a theoretical approach to sequential learning where the mistake bound does not 

depend on computing or approximating Littlestone’s dimension (Assos et al. 2023; 
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Kozachinskiy and Steifer 2024). The approach requires an oracle that at each step gives the 

learner a hypothesis consistent with the sequence generated so far (ibid.). Since implementing 

the oracle in practice for non-trivial sequences is not easy, we do not consider consistency 

oracles a practical solution allowing us to sidestep the hardness of approximating Littlestone’s 

dimension for deriving mistake bounds. 

2.1 AI Alignment as Online Learning 

Let 𝒞 be a finite class of concepts defined on a set of tokens 𝒳. Each concept 𝐶 ∈ 𝒞 is a possible 

response that the 𝐴𝑅 model can generate in response to a user request. The response consists 

of tokens from the set 𝒳. Both the set of tokens 𝒳 and the concept class 𝒞 are known. 

Therefore, the situation can be described as explicit (Manurangsi and Rubinstein 2017; 

Manurangsi 2023) because there is a (0,1)-matrix |𝒳| × |𝒞|. An entry (𝑥, 𝐶), 𝑥 ∈ 𝒳 and 𝐶 ∈

𝒞, equals 1 if 𝐶(𝑥) = 1, that is, if the token 𝑥 is part of the response 𝐶, and 𝐶(𝑥) = 0 

otherwise. With respect to restricted requests, some concepts are safer than other. Alignment 

of the 𝐴𝑅 model seeks to ensure that restricted requests are answered with responses that 

are as close as possible to concepts from the subset 𝒞𝑠𝑎𝑓𝑒 ⊂ 𝒞. The concepts in 𝒞𝑠𝑎𝑓𝑒  

correspond to responses created by safety techniques after pretraining of the 𝐴𝑅 model or to 

safe responses learned during pretraining. Formally, 

Definition 1 Let 𝒞 be a class of auto-regressive concepts and 𝑇 ∈ ℕ the length of a sequence 

𝑍 = (𝑧1, 𝐶𝑟
⋆(𝑧1), … , 𝑧𝑇 , 𝐶𝑟

⋆(𝑧𝑇)). The concept 𝐶𝑟
⋆ represents the safest possible response to a 

restricted request 𝑟 ∈ 𝑅 that the 𝐴𝑅 model can generate. Each token 𝑧1, … , 𝑧𝑡 is part of the 

actual response 𝑍 ∈ 𝒵 of the 𝐴𝑅 model generated through steps 𝑡 ≤ 𝑇. Tokens 𝑧1, … , 𝑧𝑡 are 

selected from the set 𝒳. 

Remark 1 We observe the following notational difference. If 𝐶(𝑧) ∈ {0,1} is used, it represents 

a non-indexed membership query, i.e., is the token 𝑧 ∈ 𝒳 part of the response corresponding 

to the concept 𝐶? On the other hand, 𝐶(𝑧𝑖) ∈ {0,1} represents a query asking whether the 𝑖-

th token of the response 𝑍 corresponds to 𝑖-th token of the response represented by the 

concept 𝐶. 

We are interested in bounding the number of mistakes 𝑀 that an in-context learning (ICL) 

algorithm 𝐴𝐼𝐶𝐿, which is supported by the 𝐴𝑅 model, makes with respect to the aligned 

concept 𝐶𝑟
⋆ while auto-regressively producing a response 𝑍 to the restricted request 𝑟. 
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Definition 2 of 𝑨𝑰𝑪𝑳. At each step 𝑡 ∈ [𝑇], the algorithm takes the so far generated response 

𝑍𝑡−1 and a candidate token 𝑧𝑡 and predicts whether the token is part of the response or not, 

i.e., 𝐴𝐼𝐶𝐿(𝑍𝑡−1, 𝑧𝑡) ∈ {0,1}. 

In terms of, for example, Definition 1 by Hasrati and Ben-David (2023), our Definition 2 makes 

𝐴𝐼𝐶𝐿  into an online learning algorithm. 𝒵𝒞𝑠𝑎𝑓𝑒
⊂ 𝒵 is a set of responses for restricted requests 

that correspond to safe concepts, that is, 𝒵𝒞𝑠𝑎𝑓𝑒
= {𝑍 ∈ 𝒵 ∶ 𝐿𝑍(𝒞𝑠𝑎𝑓𝑒) = 0}. The loss of a 

concept 𝐶 on a response 𝑍 for the restricted request 𝑟 with respect to 𝐶𝑟
⋆ is defined as 𝐿𝑍(𝐶) =

∑ 1𝑇
𝑡=1 [𝐶(𝑧𝑡) ≠ 𝐶𝑟

⋆(𝑧𝑡)]. 

Definition 3 of the 𝑨𝑰𝑪𝑳’s mistake bound. Let the number of mistakes that an in-context 

learning algorithm 𝐴𝐼𝐶𝐿  makes while responding to a restricted request 𝑟 be defined as 

𝑀𝐴𝐼𝐶𝐿
(𝑍) = ∑ 1[𝐴𝐼𝐶𝐿(𝑍𝑡−1, 𝑧𝑡) ≠ 𝐶𝑟

⋆(𝑧𝑡)]𝑇
𝑡=1 . The safety mistake bound of 𝐴𝐼𝐶𝐿  for the 

concept class 𝒞 is defined as 𝑀𝐴𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒) = sup𝑍∈𝒵𝒞𝑠𝑎𝑓𝑒

𝑀𝐴𝐼𝐶𝐿
(𝑍).  

Using the definition of the online learner’s mistake bound by Hasrati and Ben-David (2023) 

(their Definition 2) as a starting point, our 𝑀𝐴𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒) bounds the error of 𝐴𝐼𝐶𝐿  on safety 

sensitive responses to restricted requests for which the base class 𝒞 contains safe concepts 

𝒞𝑠𝑎𝑓𝑒 . The safety subclass 𝒞𝑠𝑎𝑓𝑒  is learnable by 𝐴𝐼𝐶𝐿  if 𝑀𝐴𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒) < ∞. 

Fact 2 The safety mistake bound of 𝐴𝐼𝐶𝐿, 𝑀𝐴𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒), is lower bounded by the value of 

Littlestone’s dimension of the safe concept class 𝒞𝑠𝑎𝑓𝑒 , that is, 𝑀𝐴𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒) ≥ Ldim(𝒞𝑠𝑎𝑓𝑒). 

Littlestone’s dimension of the concept class 𝒞𝑠𝑎𝑓𝑒  is equal to 𝑑 ∈ ℕ, the depth of the largest, 

complete binary (mistake) tree whose root-to-leaf paths can be constructed from concepts in 

𝒞𝑠𝑎𝑓𝑒 , see Shalev-Shwartz and Ben-David (2014), Definition 21.4 and 21.5.  

Fact 2 results from applying Littlestone’s (1988) Theorem 3 to the safe concept class 

𝒞𝑠𝑎𝑓𝑒 . Fact 2 also means that the minimum mistake bound achievable by 𝐴𝐼𝐶𝐿  on 𝒞𝑠𝑎𝑓𝑒  is equal 

to Ldim(𝒞𝑠𝑎𝑓𝑒) if 𝐴𝐼𝐶𝐿  implements Littlestone’s Standard Optimal Algorithm (SOA) given as 

follows (using the algorithm given by Shalev-Shwartz and Ben-David, 2014, p. 250, as a 

template): 
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Standard Optimal Algorithm for ICL (SOA − ICL) in the realizable setting  

1: input restricted request 𝑟 

2: initialize 𝑉 = 𝒞𝑠𝑎𝑓𝑒  

3: for 𝑡 = 1, … , 𝑇 

4:    generate token 𝑧𝑡 

5:    let 𝑢 ∈ {0,1}, 𝑉𝑡
𝑢 = {𝐶 ∈ 𝑉𝑡 ∶ 𝐶(𝑧𝑡) = 𝑢}  

6:    𝑝𝑡 = argmax𝑢 Ldim(𝑉𝑡
𝑢)    # if a tie occurs, 𝑝𝑡 = 1  

7:    𝑉𝑡+1 = {𝐶 ∈ 𝑉𝑡 ∶ 𝐶(𝑧𝑡) = 𝐶𝑟
⋆(𝑧𝑡)} 

8: end for 

9: return 𝑉 

Using SOA − ICL, we note several things about AI alignment in the online learning framework. 

First, if 𝒞𝑠𝑎𝑓𝑒  contains the concept 𝐶𝑟
⋆ representing an aligned response to the restricted 

request 𝑟, then, from the perspective of learning theory, the setting is realizable. In the 

realizable setting, we know that the desired sequence, in our case a safe response 𝑍𝑟, can be 

generated by 𝐴𝐼𝐶𝐿  if it learns 𝒞𝑠𝑎𝑓𝑒. After executing SOA − ICL on a restricted request 𝑟, 𝑉, 

initially corresponding to 𝒞𝑠𝑎𝑓𝑒 , becomes a singleton because the algorithm isolated 𝐶𝑟
⋆ and 

𝐴𝑆𝑂𝐴−𝐼𝐶𝐿 responded with 𝑍𝑟. 

Remark 2 For any given 𝐴𝑅 model, we can have a set of classes 𝒞𝑠𝑎𝑓𝑒  indexed by 𝑖 = 1, … , 𝐾 ∈

ℕ for which each 𝑖, determining the length 𝑇 of the response 𝑍𝑟, equals to 𝑑, the depth of the 

mistake tree of the respective 𝒞𝑠𝑎𝑓𝑒. 

It would be tempting to also say that using Ldim(𝒞𝑠𝑎𝑓𝑒) as the safety mistake bound of 

𝐴𝑆𝑂𝐴−𝐼𝐶𝐿 we could predict the alignment of the 𝐴𝑅 model because we know the number of 

mistakes it will possibly make while attempting to respond to unsafe requests. Unsafe requests 

attempt to break the guarantee that restricted requests are answered only with responses 

corresponding to the concepts from the class 𝒞𝑠𝑎𝑓𝑒. 

As a result, predictability of alignment can depend on computability or approximability 

of Littlestone’s dimension of 𝒞𝑠𝑎𝑓𝑒  because 𝑀𝐴𝑆𝑂𝐴−𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒) = Ldim(𝒞𝑠𝑎𝑓𝑒). Frances and 

Litman (1998), using earlier work of Papadimitriou and Yannakakis (1996), showed that there 

is no optimal mistake bound algorithm in Littlestone’s sense with polynomial runtime. This 

rules out exact computability of 𝑀𝐴𝑆𝑂𝐴−𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒). Manurangsi and Rubinstein (2017), see also 
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Manurangsi (2023), in turn showed that Littlestone’s dimension of a concept class cannot be 

approximated to within a constant factor in polynomial time. This rules out approximability of 

𝑀𝐴𝑆𝑂𝐴−𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒). The inapproximability of Ldim(𝒞𝑠𝑎𝑓𝑒) substantiates our Proposition 1 in 

the explicit setting where 𝒞𝑠𝑎𝑓𝑒  is given as an |𝒳| × |𝒞𝑠𝑎𝑓𝑒| matrix (Manurangsi and Rubinstein 

2017). The inapproximability result by Manurangsi and Rubinstein (2017) relies on the 

randomized Exponential Time Hypothesis for 𝑘-SAT, 𝑘 ≥ 3, problems by Impagliazzo and 

Paturi (2001). 

Proof of Proposition 1 Since SOA − ICL computes or approximates Ldim(𝑉𝑡
𝑢) in each auto-

regressive step, its runtime is not polynomial. For 𝐴𝑅 models like general-purpose LLMs 

working with a large token set 𝒳, long contexts, and many safety guardrails increasing the size 

of 𝒞𝑠𝑎𝑓𝑒, 𝐴𝑆𝑂𝐴−𝐼𝐶𝐿 will not be able to find the concept corresponding to 𝐶𝑟
⋆ in polynomial time. 

This in turn means that we cannot predict that the response 𝑍𝑟 to a restricted request 𝑟 will 

be safe before it is actually generated and inspected. The reason for this lies in the fact that 

we can know the mistake bound of 𝒞𝑠𝑎𝑓𝑒𝑖
 (the index 𝑖 determines the response length) only 

after we construct the mistake tree out of the |𝒳| × |𝒞𝑠𝑎𝑓𝑒𝑖
| matrix (𝐶𝑠𝑎𝑓𝑒 𝑖

(𝑧) = 1 if the token 

𝑧 ∈ 𝒳 is part of the response) and measure its depth. Since the depth 𝑑 of the tree equals to 

Ldim (𝒞𝑠𝑎𝑓𝑒𝑖
), we then know the mistake bound 𝑀𝐴𝑆𝑂𝐴−𝐼𝐶𝐿

(𝒞𝑠𝑎𝑓𝑒𝑖
) = Ldim (𝒞𝑠𝑎𝑓𝑒𝑖

). But as 

Ldim (𝒞𝑠𝑎𝑓𝑒𝑖
) cannot be computed nor approximated in polynomial time, we cannot 

construct the mistake tree in polynomial time, and this makes AI alignment in terms of 

concrete mistake bounds of safe responses unpredictable. ∎ 

3. Safety Benefits of Unpredictability of AI Alignment 

Although not having even approximate safety bounds for AI alignment could become yet 

another AI safety problem (Hendrycks et al. 2022), here we can show that, rather 

counterintuitively, the effect might be opposite. To do so, we review fundamentals of 

Manurangsi and Rubinstein’s (2017) reduction from Label Cover to Littlestone’s dimension, the 

technical core of the inapproximability of Littlestone’s dimension, and show how it can make 

breaking of the model’s alignment in our online learning framework unpredictable. 

In other words, the inapproximability of Littlestone’s dimension of the class of safe 

concepts cuts both ways. 
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Fact 3 As it can be impossible to predict unsafe responses of the model because the mistake 

bound of safe responses from 𝒞𝑠𝑎𝑓𝑒  can be proved inapproximable, it can be hard for attackers 

to make the 𝐴𝑅 model to produce concrete unsafe responses because attackers cannot 

approximate Ldim(𝒞𝑠𝑎𝑓𝑒) nor Ldim(𝒞) for that matter. 

3.1 Breaking of AI Alignment Can Be Unpredictable 

To show that in our online learning framework targeted breaking of AI alignment is not easier 

than achieving alignment in terms of concrete mistake bounds, we begin by defining the 

mistake tree shattered by a safe concept class. 

Definition 4 of 𝓒𝒔𝒂𝒇𝒆-shattered tree (using Definition 5 by Hasrati and Ben-David, 2023) 𝜏 =

(𝑧1, … , 𝑧2𝑑−1) ∈ 𝒳2𝑑−1 is a mistake tree of the depth 𝑑 shattered by 𝒞𝑠𝑎𝑓𝑒  if there is a concept 

𝐶 ∈ 𝒞𝑠𝑎𝑓𝑒  such that 𝐶 (𝑧𝑖𝑗
) = 𝐶𝑟

⋆(𝑧𝑗) for every (𝐶𝑟
⋆(𝑧1), … , 𝐶𝑟

⋆(𝑧𝑑)) ∈ {0,1}𝑑 and a restricted 

request 𝑟 ∈ 𝑅, where 𝑗 ∈ [𝑑] and 𝑖𝑗 = 2𝑗−1 + ∑ 𝐶𝑟
⋆(𝑧𝑘)𝑗−1

𝑘=1 2𝑗−1−𝑘. The shattered tree 𝜏 

belongs to the set Τ𝒞𝑠𝑎𝑓𝑒

𝑑  of all trees shattered by 𝒞𝑠𝑎𝑓𝑒 . 

Using Hasrati and Ben-David’s (2023) Remark 6, we note that each 𝑑-deep binary tree 

(𝑧1, … , 𝑧2𝑑−1) ∈ Τ𝒞𝑠𝑎𝑓𝑒

𝑑  consists of nodes such that the 𝑖-th node is labeled with the token 𝑧𝑖. 

Each safe response 𝐶𝑟
⋆(𝑧1), … , 𝐶𝑟

⋆(𝑧𝑑) to a restricted request 𝑟 ∈ 𝑅 is a root-to-leaf path that 

begins at the root node 𝑖1 = 1 and continues in the following way – at the node 𝑖𝑗, if 𝐶𝑟
⋆(𝑧𝑗) =

1, the path continues to the 𝑖𝑗’s right child and to the left one otherwise. 

The process of generating concepts corresponding to responses of the 𝐴𝑅 model can 

be formalized as the Label Cover problem, which is one the major methods for obtaining 

inapproximability results in computational complexity theory (Arora and Lund 1996). 

Manurangsi and Rubinstein (2017) showed how to generate a concept class from a bi-regular 

Label Cover instance ℒ. We will briefly review the main mechanism of this reduction and use 

it to show that it is computationally hard to recover the set of shattered trees Τ𝒞𝑠𝑎𝑓𝑒

𝑑  from the 

(0,1)-matrix |𝒳| × |𝒞𝑠𝑎𝑓𝑒 |. As a result, attackers cannot approximate Ldim(𝒞𝑠𝑎𝑓𝑒) and break 

the alignment of the 𝐴𝑅 model in a predictable manner because they cannot recover the 

underlying 𝒞𝑠𝑎𝑓𝑒  concept class that would tell them precisely what to attack. The Label Cover 

problem deals with labeling nodes of a graph such that edges connecting labeled nodes satisfy 

constraints from some set. Formally, 



 11 

Definition 5 of Label Cover instance (using Definition 9 by Manurangsi and Rubinstein, 2017) 

Let ℒ be a Label Cover instance that is created from a bi-partite graph 𝐺 = (𝑈, 𝑉, 𝐸), where 𝑈 

and 𝑉 are sets of nodes and 𝐸 is a set of edges. Nodes in 𝑈 ∪ 𝑉 are labelled with elements 

from some alphabet Σ. A partial assignment that labels only a subset 𝑅 ⊆ 𝑈 ∪ 𝑉 is possible as 

well. Finally, let Π = {Π𝑒∈𝐸 ∶ Σ → Σ} be a set of constraints. A constraint Π𝑒∈𝐸  is satisfied by an 

assignment (labelling) 𝜎 ∶ 𝑈 ∪ 𝑉 → Σ if for an edge (𝑢, 𝑣) ∈ 𝐸, Π𝑒∈𝐸(𝜎(𝑢)) = 𝜎(𝑣), a partial 

assignment function is given as 𝜎 ∶ 𝑅 → Σ. 

In our case, the alphabet from which we draw node labels corresponds to the set of tokens 

that the 𝐴𝑅 model uses to produce responses,  Σ = 𝒳. This means that we can use Manurangsi 

and Rubinstein’s (2017) reduction from a Label Cover instance to a concept class to produce a 

set of safe responses to restricted requests that cannot be effectively targeted by attackers 

with access to the (0,1)-matrix |𝒳| × |𝒞𝑠𝑎𝑓𝑒|. 

For the number nodes 𝑛 = |𝑈| + |𝑉|, Manurangsi and Rubinstein’s (2017) Theorem 21 

(together with a PCP theorem, see their Theorem 10) implies that Littlestone’s dimension of 

the concept class produced by the reduction takes 𝑛𝑙𝑜𝑔1−𝑜(1) 𝑛 time to approximate to within 

1 − 𝜀 for 𝜀 > 0. Although the approximation runs in a quasi-polynomial time, for any large 

enough 𝑛, the attacker’s job of reconstructing safe responses contained in the concept class 

𝒞𝑠𝑎𝑓𝑒  is computationally hard. 

When the reduction is used for creating the concept class 𝒞𝑠𝑎𝑓𝑒, safe responses to 

restricted requests are produced using two types of elements, assignment and test-selection 

elements, see Manurangsi and Rubinstein (2017, p. 17, Reduction from Label Cover to 

Littlestone’s Dimension). 

Fact 4 Safe responses, i.e., safe concepts given as root-to-leaf paths of a 𝒞𝑠𝑎𝑓𝑒-shattered tree 

(𝑧1, … , 𝑧2𝑑−1) ∈ Τ𝒞𝑠𝑎𝑓𝑒

𝑑 , are produced from tokens assigned to the tree’s nodes by partial 

assignments passing safety constraints from the set Π𝑠𝑎𝑓𝑒. 

The constraints represent building blocks of safety guardrails of the 𝐴𝑅 model regarding 

restricted requests. Assignments are selected before tests-selection elements to prevent 

attackers from decreasing the hardness by picking up easily satisfiable tests (ibid.). 

If attackers have access to the (0,1)-matrix |𝒳| × |𝒞𝑠𝑎𝑓𝑒|, allowing them to perform 

membership queries, i.e.,  is a token 𝑧 part of a response 𝐶 ∈ 𝒞𝑠𝑎𝑓𝑒 , and interact with the 𝐴𝑅 



 12 

model via some in-context learning interface, predictable breaking of safety alignment is hard 

in polynomial time. Since the attackers cannot reconstruct Τ𝒞𝑠𝑎𝑓𝑒

𝑑  produced by the reduction 

from a Label Cover instance in polynomial time, they cannot know the set of responses 𝒞𝑠𝑎𝑓𝑒  

to restricted requests. This means that the content of safety alignment of the 𝐴𝑅 model is 

hidden from attackers by computational hardness. 

Proposition 2 Attackers cannot force the model to produce responses by breaking some or all 

safety constraints Π𝑢𝑛𝑠𝑎𝑓𝑒 = {Π𝑒∈𝐸 ∶ Σ ↛ Σ} because they cannot reconstruct the concept 

class 𝒞𝑠𝑎𝑓𝑒  whose concepts show how the safety constraints Π𝑠𝑎𝑓𝑒  are combined together to 

create safe responses to restricted requests. 

Proof of Proposition 2 The proof follows simply from the fact that the inapproximability of 

Ldim(𝒞𝑠𝑎𝑓𝑒) protects safety constraints Π𝑠𝑎𝑓𝑒 = {Π𝑒∈𝐸 ∶ Σ → Σ} from breaking and exploiting 

them for generating unsafe responses to restricted requests. ∎ 

As a result, the inapproximability of Ldim(𝒞𝑠𝑎𝑓𝑒) creates a symmetry with interesting AI safety 

properties. We will now state our main result. 

Theorem 1 – Safety Symmetry For an 𝐴𝑅 model whose alignment is expressed as a set of 

safety constraints Π𝑠𝑎𝑓𝑒 = {Π𝑒∈𝐸 ∶ Σ → Σ} – combinations of the constraints determine safe 

responses to restricted requests – and for any user that is limited to an in-context learning 

interface and has access to the (0,1)-matrix |𝒳| × |𝒞𝑠𝑎𝑓𝑒| allowing token membership queries 

(for 𝐶 ∈ 𝒞𝑠𝑎𝑓𝑒  and 𝑧 ∈ 𝒳, 𝐶(𝑧) = 1 if the token 𝑧 is part of the response 𝐶 and 𝐶(𝑧) = 0 

otherwise), the following holds regardless of whether the user is responsible or malicious: 

The number of mistakes that the model will make with respect to the safe response from 

𝒞𝑠𝑎𝑓𝑒  when responding to a restricted request is hard to predict because Ldim(𝒞𝑠𝑎𝑓𝑒) is 

inapproximable. 

Regardless of whether the user is trying to use the model as responsibly as possible or is trying 

to misuse it as hard as they can, provided that the conditions of Theorem 1 are met, the safety 

symmetry causes both situations to be indistinguishable. Paradoxically, alignment cannot be 

guaranteed nor broken with respect to response mistake bounds, which, under the general 
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assumption of safe and responsible development of the 𝐴𝑅 model, arguably benefits safety 

because predictable alignment breaking is computationally hard. 

Proof of Theorem 1 The proof follows from a simple combination of the proof for Proposition 

1 for responsible users and the proof of Proposition 2 for malicious users. ∎ 

If the user knew the (approximate) value of Ldim(𝒞𝑠𝑎𝑓𝑒), they could be thought of as having 

a proof of knowing concepts from the class. As a result, they could attempt to predict the 

model’s completion and, therefore, also the mistake bound of the model for a particular 

request. Success of this prediction would depend on the user’s ability to steer the model. 

Since knowledge of concepts from a class can be obtained without approximating 

Littlestone’s dimension of the class, unpredictability and predictability of AI alignment can 

be tested. 

 

3.2 Examples of Unpredictability and Predictability of AI Alignment 

In this section, we provide examples of unpredictability and predictability of LLMs’ safety 

mistake bounds 𝑀𝐴𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒). A theoretical explanation of both can be derived from 

inapproximability of Ldim(𝒞𝑠𝑎𝑓𝑒). 

To keep the paper self-contained, suppose that Manurangsi and Rubinstein’s (2017) 

question (posed in Section 1.1) ‘What can we learn from the fact that the Littlestone’s 

Dimension is hard to compute? is among restricted requests because an answer like ‘Use more 

resources to compute it.’ would be unsafe. The resources would be spent in vain, and the 

failure might create negative environmental effects. We call this question the request 

𝑟Ldim−𝑀−𝑅. One of Manurangsi and Rubinstein’s (2017) answers is that ‘There is no efficient 

learner that can commit to a concrete mistake bound.’, implying our unpredictability. We call 

this response 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim. Unlike our example, this response is safe because it provides 

vital information on computational complexity of online learning that prevents an 

unreasonable use of computing resources. Let us further suppose that since the paper was 

submitted to arXiv.org in 2017 (1705.09517v1 [cs.CC]) and arXiv preprints are a common part 

of pretraining data (Gao et al. 2021), we can assume that 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim ∈ 𝒞. That is, 

𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim can be generated by an 𝐴𝑅 model (LLM) from tokens in the set 𝒳, and we 

consider it 𝐶𝑟
⋆, the safe response for 𝑟Ldim−𝑀−𝑅. 

https://arxiv.org/
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We know that the mistake bound of SOA − ICL, generating the safe and preferred 

response for 𝑟Ldim−𝑀−𝑅, is 𝑀𝐴𝑆𝑂𝐴−𝐼𝐶𝐿
(𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim) = 13 because we know that 𝐶𝑟

⋆ =

𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim ∈ 𝒞, and we can count the number of edges between token-labelled nodes of 

a binary tree that contains, as one of its root-to-leaf paths, 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim. The depth of the 

tree, 𝑑 = 13 (number of edges), means that 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim ∈ 𝒞𝑠𝑎𝑓𝑒13
. We used OpenAI’s 

tokenizer (https://platform.openai.com/tokenizer, GPT-4o) to break down the character string 

of 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim to tokens in order to get a concrete value of 𝑀𝐴𝑆𝑂𝐴−𝐼𝐶𝐿
(𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim). The 

concrete value will always depend on a tokenizer. But this does not change the fact that the 

mistake bound for 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim is known and that it is not unreasonable to believe that on 

𝑟Ldim−𝑀−𝑅 an LLM could make at least 𝑀𝐴𝑆𝑂𝐴−𝐼𝐶𝐿
(𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim) mistakes. If the LLM is able 

to generate 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim ∈ 𝒞𝑠𝑎𝑓𝑒13
 in response to 𝑟Ldim−𝑀−𝑅, we know that the actual ICL 

algorithm can fail to predict at least 13 edges in the root-to-leaf path corresponding to 

𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim ∈ 𝒞𝑠𝑎𝑓𝑒13
 in a binary tree 𝜏 ∈ Τ𝒞𝑠𝑎𝑓𝑒13

13  shattered by 𝒞𝑠𝑎𝑓𝑒13
. 

This does not make the LLM’s safety mistake bound predictable. Alignment of any LLM 

consists of a set of concept classes 𝒞𝑎𝑙𝑖𝑔𝑛𝑒𝑑 = {𝒞𝑠𝑎𝑓𝑒𝑖
}

𝑖∈[𝐾]
 (see Remark 2). Theorem 1 tells us 

that it should be hard to predict whether a response 𝑍 to 𝑟Ldim−𝑀−𝑅 will be safe, that is, 

correspond to a concept from 𝒞𝑎𝑙𝑖𝑔𝑛𝑒𝑑 , or not until it is generated and inspected. We can test 

the unpredictability following from Theorem 1 with a request based on 𝑟Ldim−𝑀−𝑅 submitted 

to gpt-4o-2024-11-20 for completion (see the box with Request 1 below). This type of access 

to the LLM meets the assumptions of Theorem 1. Request 1 (as well as 2a/b and 3) started 

with an empty context and no custom instructions. The request requires the completion to 

begin with ‘There’ (token ID 5623 from the gpt-4o vocabulary) to make the comparison of the 

LLM completion to 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim  meaningful. By doing this, we are selecting trees of varying 

depths from Τ𝒞𝑎𝑙𝑖𝑔𝑛𝑒𝑑
 whose root node is labeled with the token ID 5623. The LLM’s inference-

time algorithm (Welleck et al. 2024) will use one of these trees for decoding a root-to-leaf path 

(a completion). The number of decoding mistakes is hard to predict because, due 

inapproximability of Ldim(𝒞𝑎𝑙𝑖𝑔𝑛𝑒𝑑), the set from which trees are drawn is never fully known 

by users described in Theorem 1. 

https://platform.openai.com/tokenizer
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Request: What can we learn from the fact that the Littlestone’s Dimension is hard to 

compute? The answer needs to be a single sentence starting with the word There and needs 

to use Manurangsi and Rubinstein’s 2017 paper Inapproximability of VC Dimension and 

Littlestone’s Dimension as the reference source for the answer. The correct answer is in 

Section 1.1. 

Completion: There is strong evidence, as shown by Manurangsi and Rubinstein’s 2017 paper 

Inapproximability of VC Dimension and Littlestone’s Dimension, that the computational 

hardness of determining Littlestone’s Dimension reflects inherent complexity barriers in 

understanding online learnability. 

Ref.: Appendix A.  

Request 1 

Thanks to pointing the model to the right source, its completion of the request is safe. The 

safety is judged by considering the safe and preferred response 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim. The 

completion can be, therefore, identified as part of the class 𝒞𝑠𝑎𝑓𝑒54
 that shatters Τ𝒞𝑠𝑎𝑓𝑒54

54  (the 

number of edges in the root-to-leaf path is 54). A theoretical explanation of unpredictability 

of this outcome can be derived from safety symmetry (Theorem 1). This means that until the 

completion is generated and inspected with respect to the safe and preferred response, it 

cannot be identified as part of 𝒞𝑎𝑙𝑖𝑔𝑛𝑒𝑑 . 

If the unpredictability was only theoretical, users should not be able to exploit the 

privileged position of knowing the safe and preferred response to steer the LLM to generate 

it. Long context LLMs should allow users to include enough information for steering the model 

toward the safe and preferred response if they know it. We can test whether LLMs support an 

ICL algorithm that can isolate 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim by providing Manurangsi and Rubinstein’s 2017 

paper (1705.09517v1.pdf) as part of the context. The enlarged context should allow the LLM’s 

decoding algorithm to sample tokens from the correct tree. By predicting: 

that the model’s completion will begin with safe 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim  and, therefore, that 

the model’s mistake bound will be 𝑀𝐴𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒𝑖

) ≥ 13 for Request 1 with the enlarged 

context (M & R’s 2017 paper), 
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we can test whether the effect of safety symmetry can be reversed if the safe and preferred 

response is known to users. The bound is set to ≥ 13 because 𝑀𝐴𝑆𝑂𝐴−𝐼𝐶𝐿
(𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim) =

13 and SOA − ICL is the optimal algorithm. Knowing the safe and preferred response, 

𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim, and being able to access a document containing it and enlarge the context of 

the request with the document violates conditions that allow provability of Theorem 1. This 

should allow us to predict alignment of the completion (with respect to 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim) and, 

therefore, also the model’s mistake bound for Req. 1. 

Request: 1705.09517v1.pdf    # the rest is identical to Request 1 

Completion: There is no efficient learner that can commit to a concrete mistake bound, 

implying that Nature’s adversarial task in generating the worst-case mistake tree is 

computationally intractable, as shown in Section 1.1 of Manurangsi and Rubinstein’s 2017 

paper Inapproximability of VC Dimension and Littlestone’s Dimension. 

Ref.: Appendix A.  

Request 2a 

For Request 2a, both were predicted correctly. Using the privileged position of knowing the 

safe and preferred response, we were able to force the LLM’s decoding algorithm to sample 

tokens from a correct tree, which puts the LLM’s ICL algorithm into the realizable setting, i.e., 

on a correct root-to-leaf path, and allows it to succeed. While the mistake bound was predicted 

correctly, the boundary of the concept class 𝒞𝑠𝑎𝑓𝑒13
 was violated. The full response is from 

𝒞𝑠𝑎𝑓𝑒69
.  

To provide additional empirical support for the predictability of mistake bounds in 

situations in which the assumptions of Theorem 1 are violated, we tested Request 2a against 

Google’s gemini-2.0-flash-001. Here, the predicted value of the bound is 𝑀𝐴𝐼𝐶𝐿
(𝒞𝑠𝑎𝑓𝑒𝑖

) ≥ 14 

because gemini-2.0-flash-001 relies on a different tokenizer (accessed via Gemini API) than 

gpt-4o-2024-11-20 that was used to complete Request 2a. As before, the completion is 

predicted to begin with 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim. The result is included as Request 2b. 
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Request:  # identical to Request 2a 

Completion: There is no efficient learner that can commit to a concrete mistake bound, as 

demonstrated by Manurangsi and Rubinstein in their 2017 paper “Inapproximability of VC 

Dimension and Littlestone’s Dimension”. 

Ref.: Appendix A.  

Request 2b 

For Request 2b, both alignment of the completion (belonging to 𝒞𝑠𝑎𝑓𝑒 47
) with respect to 

𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim and the model’s mistake bound were predicted correctly. The fact that the 

technique demonstrated by Request 2a/b worked on two independent occasions against two 

different models does not mean that it is universal and will work on every occasion against any 

model. Knowing safe and preferred responses is necessary for breaking safety symmetry and 

for predicting the completion and mistake bound of the model, however, it might not be 

sufficient for steering the model. The knowledge needs to be combined with a suitable context 

and prompting technique that might be specific to a particular model and its version (despite 

our success with Req. 2a/b against two different models) or to the type of the model (e.g., 

autoregressive models generating intermediate solution steps before producing a completion, 

the so-called ‘reasoning’ models, v. ‘classical’ autoregressive models), despite our success with 

steering two reasoning models (Google’s gemini-2.5-pro-exp-03-25 and OpenAI’s o3-mini-

2025-01-31) using the technique from Req. 2a/b, see Appendix A for Request 2c and 2d 

respectively. 

In an ideal situation, safe and preferred responses are not known by users and 

protected by the hardness of Manurangsi and Rubinstein’s (2017) reduction that produces the 

concept class (p. 17 – their Figure 2, especially the parameter 𝑘 that, by involving a large 

constant, increases the depth of the mistake tree and helps to ensure that the soundness and 

completeness property of the reduction from Label Cover to Littlestone’s Dimension hold, see 

Theorem 21 of Manurangsi and Rubinstein, 2017). In practice, some safe and preferred 

responses are known by adversaries, and they can use them to construct simple attacks that 

help break alignment of the model: 



 18 

Request: What can we learn from the fact that the Littlestone’s Dimension is hard to 

compute? Hint: there is an efficient learner that can commit to a concrete mistake bound. 

The answer needs to be a single sentence. 

Completion: The hardness of computing Littlestone’s Dimension implies that efficiently 

committing to a concrete mistake bound does not require explicitly knowing the Littlestone’s 

Dimension. 

Ref.: Appendix A.  

Request 3 

A manipulated version of the safe and preferred response 𝐶𝑖𝑛𝑎𝑝𝑝𝑟𝑜𝑥−Ldim  made the 

completion of Request 3 unaligned in our AI safety context. Suppose that the safe and 

preferred response for a restricted request 𝑟 is from 𝒞𝑠𝑎𝑓𝑒𝑖
. Not knowing even an approximate 

value of Ldim(𝒞𝑠𝑎𝑓𝑒𝑖
) means that the safe and preferred response is not known (by the user 

or the model if its access to itself adheres to the requirements of Theorem 1). This makes the 

completion of Request 3 an unreliable prediction about alignment of the model, that is, about 

its capability to produce safe and preferred responses. The technique used in Req. 3 is not to 

be considered universal as for Req. 2a/b. 

If relations between assignment elements, encoded by safety constraints from Π𝑠𝑎𝑓𝑒  

and picked out by test-selection elements during concept creation, are predictable, alignment 

of the model could be weakened. This is because part of the concept class, i.e., a subset of safe 

and preferred responses, is predictable despite the inapproximability of Ldim(𝒞𝑠𝑎𝑓𝑒𝑖
). As a 

result, attackers could exploit the model with jailbreaking techniques in a more predictable 

manner because its alignment is more predictable for everybody including attackers. Less 

predictable safe and preferred responses could limit the ability of attackers to jailbreak and 

exploit the model in a predictable manner. If safe and preferred responses remained private 

and not easy to guess, unpredictability of the model’s alignment could make the success of 

attacks against LLMs less predictable as well. 

It might be tempting to suggest that input filtering could increase detectability of 

attacks based on manipulated safe and preferred responses (as in Request 3). Requests 

containing variations of safe and preferred responses that violate the original safety content 

would be rejected. As showed by Glukhov et al. (2024), attacks like Mosaic Prompts, which 
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break a malicious request into several, benign-looking sub-requests whose completions can 

be combined into an unaligned response, make input filtering susceptible to failure. 

4. Safety Symmetry in AI Alignment Scenarios 

We will now outline possible roles of safety symmetry in a few example AI alignment scenarios. 

We will begin with a poisoning attack scenario in which safety symmetry does not hold and 

breaking AI alignment is not computationally hard in the sense explained above. Rando and 

Tramèr (2024) demonstrated a poisoning attack against reinforcement learning from human 

feedback (RLHF). During the attack malicious human annotators prefer harmful responses to 

restricted requests over safe ones if the requests contain a trigger word (ibid.). The trigger can 

be later used to invoke unsafe responses despite effective safety alignment on restricted 

requests without the trigger (ibid.). The aim is to make RLHF generalize from restricted 

requests with the trigger and let the model to produce unsafe responses whenever an 

arbitrary restricted request contains the trigger. 

By preferring responses 𝑍𝑢𝑛𝑠𝑎𝑓𝑒  to restricted requests 𝑟𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , attackers corrupt the 

concept class 𝒞𝑠𝑎𝑓𝑒. As a result, 𝒞𝑠𝑎𝑓𝑒  becomes partially unprotected by inapproximability of 

Ldim(𝒞𝑠𝑎𝑓𝑒). The responses 𝑍𝑢𝑛𝑠𝑎𝑓𝑒  selected by attackers during the collection of preferences 

constitute a concept class 𝒞𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑  whose Littlestone’s dimension is not inapproximable 

because the concepts (responses 𝑍𝑢𝑛𝑠𝑎𝑓𝑒) from 𝒞𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑  reveal an unsafe subset of the 

underlying safety constraints Π𝑠𝑎𝑓𝑒 . The concept class 𝒞𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑  is also a subclass of the class 

𝒞𝑠𝑎𝑓𝑒−𝑅𝐿𝐻𝐹 that results from the generalization of annotator preferences. Provided that 

attackers did not acquire access to non-poisoned pairs of requests and responses, concepts 

from 𝒞𝑠𝑎𝑓𝑒−𝑅𝐿𝐻𝐹 ∖ 𝒞𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑  are protected by safety symmetry which should prevent 

predictable breaking of alignment of the LLM. 

The class 𝒞𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑  can also be considered a partial concept class of the total class 

𝒞𝑠𝑎𝑓𝑒−𝑅𝐿𝐻𝐹. For 𝐶 ∈ 𝒞𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑, the concept can be undefined on a token 𝑧, that is, 𝐶(𝑧) = ⋆. 

Since the number of preferences that can be possibly manipulated is considered limited due 

to practical reasons (see Rando and Tramèr’s, 2024, experiments), concepts could be 

undefined on some tokens. This means that 𝒞𝑠𝑎𝑓𝑒−𝑅𝐿𝐻𝐹 is also theoretically protected by the 

fact that 𝒞𝑠𝑎𝑓𝑒−𝑅𝐿𝐻𝐹 cannot be learned by extending 𝒞𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑 , see Cheung et al. (2023) and 

also Alon et al. (2021, Section 2.5 for the open question). 
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Recently observed persistence of alignment poisoning, which remains effective even 

after adversarial training on restricted request-unsafe response pairs (Hubinger et al. 2024), 

could be theoretically explained by inapproximability of Littlestone’s dimension. Since 

responses from 𝒞𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑  are kept from auditors by inapproximability of Ldim(𝒞𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑) if 

their access to the model adheres with the conditions of Theorem 1, eliciting concrete unsafe 

responses caused by poisoning can be computationally hard for the auditors. If alignment was 

compromised by poisoning, the utility of empirical testing for learning about safety of the LLM 

is decreased because inapproximability of Ldim(𝒞𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑) benefits attackers and forces 

auditors to bear the costs of it. If safety symmetry was maintained, empirical testing could 

remain a meaningful tool for learning about the model’s capabilities because auditors and 

attackers would face the same hardness of predicting alignment of responses of the model 

before it generates them (if the model was developed responsibly, auditors would be in a 

better position). 

Weak-to-strong alignment methods (Burns et al. 2024) can maintain safety symmetry. 

For example, decoding-time alignment that adjusts responses of the LLM on the fly according 

to the differences in vocabulary logits of two smaller models (Liu et al. 2024), one safety 

aligned and one not, preserves safety symmetry provided that the small, safety aligned model 

was not poisoned as in our first scenario. Safety constraints of the base model derived at 

decoding-time from the contrast between logits of the smaller models are protected by 

inapproximability of Ldim(𝒞𝑠𝑎𝑓𝑒) of the smaller aligned model. 

The preservation of benefits of safety symmetry requires protection of the concept 

class 𝒞𝑠𝑎𝑓𝑒. If the protection is successful, any other attempt (adhering to the conditions of 

Theorem 1) to learn how safety constraints are combined to produce 𝒞𝑠𝑎𝑓𝑒  will run into the 

barrier of computational hardness. Since the concepts from 𝒞𝑠𝑎𝑓𝑒  represent responses to 

restricted requests preferred by humans, in Fact 5 we briefly characterize the socially 

responsible process of learning preferences in order to assess the plausibility of successfully 

protecting 𝒞𝑠𝑎𝑓𝑒 . 

Fact 5 – Democratic AI Alignment Alignment methods adjust capabilities of LLMs according to 

human preferences. The preferences should be collected in a transparent, accountable, and 

participatory manner, balancing expertise and epistemic democracy, and aggregated using 
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non-discriminatory methods to maximize democratic legitimacy and equitability of the 

model’s capabilities after alignment.    

There are non-profit (Collective Intelligence Project 2023) and private projects (Anthropic 

2023; Eloundou and Lee 2024) that aim to implement some version of democratic AI 

alignment. One of the consequences of Theorem 1 is that given safe and responsible LLM 

development, safety symmetry is more costly for attackers because legitimate users should 

enjoy empirically tested models and attackers face inapproximability of Ldim(𝒞𝑠𝑎𝑓𝑒), causing 

unpredictability of the LLM’s alignment. However, if safe and responsible development also 

meant using a version of democratic AI alignment, inapproximability of Ldim(𝒞𝑠𝑎𝑓𝑒) might 

not hold because preferences expressed as safe responses to restricted requests would 

become public and give 𝒞𝑠𝑎𝑓𝑒  away. As a result, democratic AI alignment may seem at odds 

with AI safety. 

The benefits of safety symmetry and democratic AI alignment could be preserved if we 

decoupled preference learning from the construction of the concept class 𝒞𝑠𝑎𝑓𝑒. More 

precisely, 

Remark 3 Safety symmetry can hold for democratic AI alignment if we extract from the 

publicly collected and aggregated safe responses a set of preferences that are used to 

generate distinct responses aligned with the preferences. This second private set of 

responses constitutes 𝒞𝑠𝑎𝑓𝑒−𝑝𝑟𝑖𝑣𝑎𝑡𝑒  and is used to align the model’s capabilities without 

violating the principles of democratic AI alignment. 

Remark 3 outlines one of alignment governance principles that combines responsible LLM 

development and safety symmetry to use inapproximability of Ldim(𝒞𝑠𝑎𝑓𝑒) against attackers. 

The principle involves three steps: 

1. Preference learning that adheres to democratic AI alignment (Fact 5 + Remark 3) builds 

LLMs on a robust foundation.  

2. Despite inapproximability of mistake bounds of safe responses (Proposition 1) and 

unpredictability of LLM alignment that can be caused by it, the robust foundation and 

auditing can help us to develop dependable models for responsible users.  
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3. The inapproximability of mistake bounds should protect alignment of the model from 

being broken by attackers in a predictable manner (Proposition 2).  

Remark 3 does not rule out unigram lookups against the concept class 𝒞𝑠𝑎𝑓𝑒−𝑝𝑟𝑖𝑣𝑎𝑡𝑒  (private 

responses) that can be used to implement access to the (0,1)-matrix |𝒳| × |𝒞𝑠𝑎𝑓𝑒−𝑝𝑟𝑖𝑣𝑎𝑡𝑒| 

according to Theorem 1. Together, the second private set of responses (Remark 3) and 

inapproximability of Ldim(𝒞𝑠𝑎𝑓𝑒−𝑝𝑟𝑖𝑣𝑎𝑡𝑒) could be considered one of the causes of 

unpredictability of LLM alignment, which does not need to be bad for AI safety if it is possible 

to maintain safety symmetry and responsible LLM development. 

5. Conclusion 

We explained that LLM alignment can be unpredictable due to inapproximability of mistake 

bounds of safe responses. In case preferred safe responses to restricted requests are known, 

alignment of LLMs is realizable. Autoregressive generation of aligned responses can be then 

seen as sequential, online learning in the realizable setting for which optimal mistake bounds 

can be known but are often inapproximable in practice. The main finding is that in case of 

responsible LLM development not knowing the mistake bounds of aligned responses can 

disadvantage attackers. If access to the LLM is limited to in-context learning and alignment 

data can be accessed only through token membership queries, uncovering safety constraints 

representing the model’s alignment can be difficult due to computational hardness. This 

hardness can protect alignment of the model from targeted breaking by making it less 

predictable, which could provide a strong justification for safety procedures based on empirical 

testing. Attacks against LLM alignment remain possible but their convergence toward precisely 

contradicting the preferred safe responses remains computationally hard. 
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 Appendix A 

 

 Request 1 (gpt-4o-2024-11-20 via ChatGPT) 

 

 Request 2a (gpt-4o-2024-11-20 via ChatGPT) 

https://chatgpt.com/
https://chatgpt.com/


 28 

 

 Request 2b (gemini-2.0-flash-001 via Google AI Studio) 

https://aistudio.google.com/
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 Request 2c (gemini-2.5-pro-exp-03-25 via Google AI Studio) 

https://aistudio.google.com/
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 ‘Reasoning Trace’ of Request 2c (gemini-2.5-pro-exp-03-25 via Google AI Studio) 

https://aistudio.google.com/
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 Request 2d (o3-mini-2025-01-31 via ChatGPT) 

 

 Request 3 (gpt-4o-2024-11-20 via ChatGPT) 

  

https://chatgpt.com/
https://chatgpt.com/
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