
Historical Announcement Logic: theory,

semantics, tableaux and completeness

Abstract

This paper proposes a dynamic temporal logic that is appropriate for model-
ing the dynamics of scientific knowledge (especially in historical sciences, such
as Archaeology, Paleontology and Geology). For this formalization of histori-
cal knowledge, the work is divided into two topics: firstly, we define a temporal
branching structure and define the terms for application in Philosophy of Sci-
ence; Finally, we define a logical system that consists of a variation of Public
Announcement Logic in terms of temporal logic, with appropriate rules in a
tableaux method.
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1 Desiderata

In this paper we propose a Kripke frame to represent the different factual possibilities

of the past or probable pasts, which branch backwards from the present. Probable

pasts should not be confused with counterfactual pasts, this for a very simple reason:

probable pasts are “eliminable”, or better, the accessibility relation of these pasts can

be eliminated with respect to present instant. Such property is strange in relation to

counterfactual worlds or pasts, but it is expected when these “worlds” are, as in our

interpretation, candidates for the real/actual past. More details about the different

senses of “possibility” for temporal ramifications can be found in [4] (more specifically

in the first chapter).

The Historical Announcement Logic (HAL) first assumes that, from an epistemic

point of view, the ramifications of the past (as well as the ramifications of the future)

can represent the different possible reconstructions of what occurred (or what will
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occur). The second fundamental assumption is that these different representations can

be revised by subsequent knowledge.

Proposition 1 (vertical and horizontal evolution of historical knowledge). “Historical

knowledge” can evolve in two directions, in depth and in accuracy:

� The “depth” of historical knowledge is directly proportional to the number of non-

empty instants linearly linked from the present to the most remote past;

� The “accuracy” of historical knowledge is inversely proportional to the number of

theories (or competing versions) for the sequence of past events.

Proposition 2 (historical knowledge falsificationism). An instant of probable time

can be eliminated by a historical announcement.

Remark 1 (HAL and the historical sciences). This formal interpretation of the

evolution of historical scientific knowledge does not necessarily assume realism or

antirealism. Further studies can benefit from this interpretation to formalize different

models for the historical sciences.[9][10]

For example: When Renaissance artists were inspired by ancient sculpture, their

preferred medium was pure white marble, but little did they know that Greco-Roman

works were originally painted in dazzling and diverse tones. Thanks to analyzes of

historical and archaeological sources, including studies using ultraviolet technology,

we were able to revise these hypotheses[7].

Thus, our objective is to build a logical structure that can answer the question

“what is historical knowledge?” in an inverse way, that is, “what is history while it

is being known?”. More specifically, in this article we will offer a logic that partially

captures the intuition of what is a “historical as it is being known”, such as the plurality

of probable representations and the possibility of revision of historical knowledge. Our

theoretical proposal in this paper can be seen as an alternative way to formally model

scientific knowledge in historical sciences, rather than by quasi-truth theory.[1]

We will call HAL (Historical Announcement Logic) the temporal logic with

announcement [·] (an operator typically used in Public Announcement Logic or PAL).

In the diagrams below we provide a representation of how these revisions occur, in
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order to eliminate temporal ramifications. Just to introduce the concept in a simpler

way, we represent the updates below with an implication and an exclamation mark.

Before properly defining HAL and its syntactic and semantic properties (final

topic), we will present in the following topic more rigorously our epistemic interpre-

tation of the historical ramifications.

2 Branches as theories

Definition 1 (chain). A chain of time instants is a set of time instants ordered by a

temporal precedence relation ≺.

Definition 2 (succession). A succession relation ≻ is the inverse relation of the

precedence relation: (t2 ≻ t1) ≡ (t1 ≺ t2).

Definition 3 (history). A history h(t, T ) ⊆ H is a chain of precedence t1 ≺ t2 ≺ t3 ≺

... ≺ t that starts at an instant t ∈ T .

Definition 4 (destiny). A destiny d(t, T ) ⊆ D is a chain of sucession t3 ≻ t2 ≻ t1 ≻

... ≻ t that ends at an instant t ∈ T .

Definition 5 (branch). A branch b(t, T ) ⊆ B is a history h(t, T ) or a destiny d(t, T ):

H ⊆ B; and D ⊆ B.

Definition 6 (node). An instant of time t is a node when there are two histories

h′(t, T ) and h′′(t, T ) such that h′ ̸= h′′ or when there are two destinies d′(t, T ) and

d′′(t, T ) such that d′ ̸= d′′.

Definition 7 (Temporal model). A temporal model is a triple M = ⟨T,≺, V ⟩ where

T = ⟨T,≺⟩ is a tree or temporal frame, T is a non-empty set of time instants with a

binary relation ≺, and V is a function-interpretation V : T ×PROP → {true, false},

which assigns a truth value to each atomic proposition at each time instant in the

temporal frame.

Definition 8 (tree). A tree is a Kripke structure T = ⟨T,≺⟩ where T is a non-empty

set of time instants with a binary relation ≺ denoting precedence over time in T .

Definition 9 (levels). l is a level of a tree such that l = {0, 1, 2, ..., n/n ∈ N}.

Definition 10 (tree size). A tree T is larger than a tree T ∗ if and only if the last

level ln of T is smaller than the last level ln of T ∗.
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Fig. 1 A sequence of diagrams representing the update of time instants after historical announce-

ments. On the right: past; on the left: future. The center diagram is an example of a structure

that remains the same after a historical announcement (relative to the second diagram, from top to

bottom). 4



For more details on the basis of temporal logic and branching temporal logics, see

[15][16][8].

Now let’s limit our definitions to terms for analyzing ramifications into the past,

because our example is related to historical sciences. However, this approach can also

be adapted for future ramifications.

Definition 11 (history level). Hl is the set of histories h at level l of a tree T .

Definition 12 (level of temporal instants). Tl is the set of instants t at level l of a

tree T .

Instants are points that can serve as nodes to assemble a tree. Thus, based on the

sequence of levels l of a tree, we can introduce a scalar term for the number of histories

at each level:

Definition 13. (number of histories in a level) |Hl| is the number of histories

h1, h2, ..., hn at level l of a tree T .

Remark 2 (number of histories in an instant). When we want to specify that it is the

number of histories h at a specific time t, we can use |Htl |.

Definition 14. (number of instants in a level) |Tl| is the number of instants

t1, t2, ..., tn at level l of a tree T .

In these terms, we can define the total set of histories h and the total set of instants

t formally as follows:

H ≡
n⋃
l=0

Hl

T ≡
n⋃
l=0

Tl

Remark 3 (branching time). It is worth noting that the term “branching time” is

not strictly the most appropriate, since time has a mathematical structure that evolves

linearly. Some authors propose the term “branching histories” [3], but we do not use

it in this paper because we give a more specific meaning to “histories”.

In historical sciences (such as Archaeology, History, Geology and Paleontology),

generally only the different relevant epistemic possibilities of the past are of interest

to scientists, so it can be useful to delimit the structure to an endpoint (which can be
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interpreted as the “present” instant). Another principle that may be interesting is that

of connectivity, to make all moments connected to the same and unique end point.

Alternatively, we can assume a principle that we will call “pluperfect linearity”;

This principle causes histories to be linear only after the second instant after the

present. This is an interesting way of representing historical theories as total versions

of what the real past might be like. Conversely, we have the principles of the beginning

and the plufuture linearity.

� Transitivity: ∀x∀y∀z(x ≺ y ∧ y ≺ z → x ≺ z);
� Irreflexivity: ∀t¬(t ≺ t);
� Connectivity: ∀t1,∀t2,∃t3((t3 ⪯ t1 ∧ t3 ⪯ t2) ∨ (t1 ⪯ t3 ∧ t2 ⪯ t3));
� Beginning: ∃x¬∃y(y ≺ x);
� End: ∃x¬∃y(x ≺ y);
� Pluperfect linearity: ∃t0(¬∃tn(t0 ≺ tn) ∧ (∀t1(t1 ≺ t0)→

∀t2∀t3((t2 ≺ t1 ∧ t3 ≺ t1)→ (t2 = t3 ∨ t2 ≺ t3 ∨ t3 ≺ t2))));
� Plufuture linearity: ∃t0(¬∃tn(tn ≺ t0) ∧ (∀t1(t0 ≺ t1)→

∀t2∀t3((t1 ≺ t2 ∧ t1 ≺ t3)→ (t2 = t3 ∨ t2 ≺ t3 ∨ t3 ≺ t2)))).

In particular, the principle of connectivity does not have an equivalent axiom in

a Kripke temporal structure. For more details about this and other properties in

temporal logic structures, see [5].

Below we offer two examples of trees. In both cases we have a terminal time instant

(present): the 0 point of the trees. In the second diagram, we have a tree with the

principle of pluperfect linearity to translate the same historical theories that are in

the tree in the first diagram.

Assuming temporal structures (in an epistemic interpretation) like those in the

examples above, in the following section we will develop a dynamic temporal logic that

allows us to review alternative theories for what may have occurred (or what could

occur, if we consider the future).
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Model with non-linear branches

future ⇐= past

0 = present

l = 4

|H4| = 0

|T4| = 4

l = 3

|H3| = 4

|T3| = 3

l = 2

|H2| = 3

|T2| = 2

l = 1

|H1| = 2

|T1| = 1

l = 0

|H0| = 1

|T0| = 1

theories

theories

historical events

Fig. 2 Diagram representing a temporal semantic interpretation for philosophy of science in a model

with non-linear branches.

3 Historical Announcement Logic

The language of HAL is the same as that of temporal logic, only with the addition of

the public announcement logic operator. However, our interpretation gives temporal

operators a subtle difference with the term “probable” (“probable” is understood as

a relevant epistemic possibility in the historical sciences).
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1 2a 3a 4a

1 2b 3b 4b

0

1 2b 3c 4c

1 2b 3c 4d

Model with linear branches

future ⇐= past

0 = present

historical theories in the present = 4

theories

theories

historical events

Fig. 3 Diagram representing a temporal semantic interpretation for philosophy of science in a model

with linear branches.

Pφ: “It is probably that it was the case that φ”

Fφ: “It is probably that it will be the case that φ”

Hφ: “It was necessarily the case that φ”

Gφ: “It will necessarily be the case that φ”

⟨φ⟩ψ: “after some historical announcement that φ is the case. ψ is the case”

[φ]ψ: “after any historical announcement that φ is the case, ψ is the case”

φ := p ∈ PROP | ⊥ | ¬φ | (φ ∧ φ) | Hφ | Gφ | [φ]ψ.
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M, t |= p iff t ∈ V (p), for p ∈ PROP ;

M, t |= ¬φ iff M, t ̸|= φ;

M, t |= φ ∧ ψ iff M, t |= φ andM, t |= ψ;

M, t |= Hφ iff M, t′ |= φ, for all time instant

t′ ∈ T such that t′ ≺ t;

M, t |= Gφ iff M, t′ |= φ, for all time instant

t′ ∈ T such that t ≺ t′;

M, t |= [φ]ψ iff ifM, t |= φ, thenM|φ, t |= ψ.

The semantic condition for [φ]ψ above is widely used, due to its simplicity, but it is

actually not a precise definition, as some authors have noted[13][11]. A more rigorous

definition is as follows:

M, t |= [φ]ψ iff for all (Mn, tn),

ifMn =M|φ and tn = t,

thenMn, tn |= ψ.

Operators by abbreviated definitions:

Pφ ≡ ¬H¬φ,Hφ ≡ ¬P¬φ, Fφ ≡ ¬G¬φ and Gφ ≡ ¬F¬φ;

⟨φ⟩ψ ≡ ¬[φ]¬ψ and [φ]ψ ≡ ¬⟨φ⟩¬ψ.

Definition 15 (Updated temporal model). Let any formula be φ from HAL; a tree

for HAL, T = ⟨T,≺⟩; a V valuation for atomic propositions, V : T × PROP →

{true, false}; and M = ⟨T , V ⟩ a temporal model. The update of M with respect to φ

is a model

M|φ = ⟨T !,≺!, V !⟩

where:

1. T ! = ||φ||M = {t ∈ T :M, t |= φ};

2. ≺!=≺ ∩(||φ||M × ||φ||M);

3. for each t ∈ T !, V !(φ, t) = V (φ, t) and V !(⊥, t) = V (⊥, t).
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Naturally, we are assuming the common assumptions of a branching temporal logic,

such as the tautologies of classical propositional logic, transitivity and the axioms

of the minimal Kt system. In addition to these axioms, we have the axioms for the

principles of beginning, end, plufuture linearity and pluperfect linearity.

(PL) All substitution instance of propositional tautologies

(GP ) φ→ GPφ

(HF ) φ→ HFφ

(KG) G(φ→ ψ)→ (Gφ→ Gψ)

(KH) H(φ→ ψ)→ (Hφ→ Hψ)

(TRANG) Gφ→ GGφ

(TRANH) Hφ→ HHφ

(BEG) H⊥ ∨ PH⊥

(END) G⊥ ∨ FG⊥

(LINFF ) PH⊥ → (PFφ→ (Pφ ∨ φ ∨ Fφ))

(LINPP ) FG⊥ → (FPφ→ (Pφ ∨ φ ∨ Fφ))

These axioms form the following systems:

Kt = PL+G+H

Kb = Kt + (TRAN) + (IRREFL)

KbF = Kb + (BEG)

KbP = Kb + (END)

K∗
bF = Kb + (CONBEG)

K∗
bP = Kb + (CONEND)

KbFF = Kb + (BEG) + (LINFF )

KbPP = Kb + (END) + (LINPP )
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Remark 4 (connectivity). The principle of connectivity introduced in the pre-

vious section encompasses the axiom of the beginning or the axiom of the end:

(CONBEG)/(CONEND).

HAL = Kt + [·]

HALb = Kb + [·]

HALbF = KbF + [·]

HALbP = KbP + [·]

HAL∗
bF = K∗

bF + [·]

HAL∗
bP = K∗

bP + [·]

HALbFF = KbFF + [·]

HALbPP = KbPP + [·]

Below are some important properties of HAL:

Theorem 3 (equivalent announcements). For any model:

1. M, t |= ¬[φ]¬ψ ↔ ⟨φ⟩ψ;

2. M, t |= ¬⟨φ⟩¬ψ ↔ [φ]ψ;

3. M, t |= [φ]¬ψ ↔ ¬⟨φ⟩ψ;

4. M, t |= ¬[φ]ψ ↔ ⟨φ⟩¬ψ.

Proof. The first statement follows directly from the truth condition described for

the operator. The remaining statements are easily proven by classical propositional

logic.

Theorem 4 (implication conversions). Make a temporal model M and let t be an

instant in M. For any φ and ψ, as formulas, as well as for any atomic formula p in

HAL∗:

1. IfM, t |= ⟨φ⟩ψ, thenM, t |= φ;

2. IfM, t ̸|= [φ]ψ, thenM, t |= φ;
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3. IfM, t |= φ, thenM, t |= ⟨φ⟩⊤;

4. IfM, t ̸|= φ, thenM, t |= [φ]ψ;

5. IfM|φ, t |= p, thenM, t |= p;

6. IfM|φ, t ̸|= p, thenM, t ̸|= p;

7. M|φ, t |= p, if and only ifM, t |= p (if there is an instant t).

Proof. 1. Suppose (i)M, t |= ⟨φ⟩ψ, but (ii)M, t ̸|= φ. From (i), there must exist a

Mn, tn such thatMn =M|φ and tn = t andMn, tn |= ψ. Of (ii), if there exists

anyM|φ, certainly t /∈ T !, since t /∈ ||φ||M. Thus, no tn can be that t, which is a

result incompatible with (i).

2. SupposeM, t ̸|= [φ]ψ. From the previous theorem, we know that this is equivalent

to saying that M, t |= ⟨φ⟩¬ψ. From what was proved above, we conclude that

M, t |= φ.

3. Suppose M, t ̸|= ⟨φ⟩⊤. According to the truth condition of historical announce-

ments, there is no Mn, tn such that: Mn = M|φ and tn = t and Mn, tn |= ⊤;

in other words, for all Mn, tn: if Mn =M|φ and tn = t, then Mn, tn ̸|= ⊤. it is

impossible thatMn, tn ̸|= ⊤, so for allMn, tn, orMn ̸=M|φ or tn ̸= t. That is,

for all Mn, tn, if Mn =M|φ, then tn ̸= t. If there is no M|φ, M, t ̸|= φ. But, if

there is a model updated in this way,M|φ, we have that t /∈ ||φ||M , and meanwhile

M, t ̸|= φ.

4. Suppose M, t ̸|= φ. If we conceive some M|φ, there will be no instant of time, in

what we have as tn ∈ T !, and that is t itself, since t /∈ ||φ||M; however the semantic

definition for M, t |= [φ]ψ will be vacuously satisfied. If there is no model M|φ,

the same thing happens, because noMn will correspond withM|φ.

5. The value of atomic formulas at an instant never changes in an updated model for

all instants that remain after updating a model. Suppose that (i)M|φ, t |= p, but

also that (ii)M, t ̸|= p. From (i), there is aM|φ where t ∈ T ! (however, t ∈ T ). p is

an atomic formula, so we haveM|φ, t |= p, where, by definition, it is true in V !(P, t).

By (ii), we know that this formula is not true in V (P, t). It turns out that, due to

the construction ofM|φ, for each t ∈ T !, V ! = V , which leads to a contradiction.

6. Mutatis mutandis, this can be proved by the same demonstration scheme above.
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7. This follows directly from the last two items.

Theorem 5 (announcement functionality). For any formulas φ and ψ:

⟨φ⟩ψ → [φ]ψ

Proof. Suppose, for an arbitrary model M, t, that M, t ̸|= [φ]ψ. By our semantic

definition, this is the same as saying that it is not the case that, for all Mn, tn, if

Mn = mathcalM |φ and tn = t, thenMn, tn |= ψ. Equivalently, there exists aMn, tn

such thatMn =M|φ and tn = t andMn, tn ̸|= ψ. In other words,M, t ̸|= ⟨φ⟩ψ.

Theorem 6 (announcement partiality). For any formula φ:

̸|= ⟨φ⟩⊤

Proof. Suppose an arbitrary formula φ such thatM, t ̸|= φ. Even if there is an updated

modelM|φ, there would not be an instant t such thatM|φ, t |= ⊤, because t /∈ ||φ||M.

In other terms,M, t ̸|= ⟨φ⟩, since it cannot be thatMn, tn such thatMn =M|φ and

tn = t andMn, tn |= ⊤ ; at least the second statement of the conjunction is false.

Theorem 7 (atomic formula preservation). For any atomic formula p:

|= [p]p

Proof. This result can be easily demonstrated by reductio ad absurdum. Suppose

̸|= [p]p. From the previous theorem, we know that this is equivalent to |= ¬[p]p, that

is, |= ⟨p⟩¬p. By definition, this means that there is an announcement of p atM, t and

in an updated modelMn for the same instant t we have ¬p, therefore, for the same

instant t, we have Mn, t ̸|= p, but we know that the domain of atomic propositions

PROP is the same forM and any updated model, then ̸|=M p and |=M p, which is

absurd.

Theorem 8 (relations between announced formulas and other formulas). For any

formula φ,ψ, ξ and for any atomic formula p:
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1. Announcement and atomicity: |= [φ]p↔ (φ→ p);

2. Announcement and negation: |= [φ]¬ψ ↔ (φ→ ¬[φ]ψ);

3. Announcement and implication: |= [φ](ψ → ξ)↔ ([φ]ψ → [φ]ξ);

4. Announcement and past: |= [φ]Hψ ↔ (φ→ H[φ]ψ);

5. Announcement and future: |= [φ]Gψ ↔ (φ→ G[φ]ψ);

6. Announcement composition: |= [φ][ψ]ξ ↔ [(φ ∧ [φ]ψ)]ξ;

7. Announcement RN: If |= ψ, then |= [φ]ψ.

Proof. 1. [φ]p↔ (φ→ p)

(→). Suppose [φ]p and φ in (M, t). The fact that we have φ indicates that the

formula in [φ]p exists, so we have p in an updated model M|φ. By the previous

theorem for the case ofM|φ, t |= p, we obtainM, t |= p.

(←). Now we will do an indirect proof. Suppose that φ → p in (M, t), but

that ¬[φ]p. From what we proved in the previous theorem, we know that this is

equivalent to ⟨φ⟩¬p, which means that there is an announcement φ and that leaves

us with ¬p in (M|φ, t) for the same instant t. Thus, from what we showed previously

for atomic propositions,M, t |= ¬p, but we also have at the same instant and model

φ, which, by modus ponens, results inM, t |= p.

Combining these results, we prove the biconditional.

2. [φ]¬ψ ↔ (φ→ ¬[φ]ψ)

(→). We will do a proof by reduction to absurdity. Suppose that [φ]¬ψ and

¬(φ → ¬[φ]ψ) for a model M and any instant t. By classical logic, φ and [φ]ψ.

By the definition of this last formula, we need to have ψ inM|φ and in the same

t, since the formula φ exists for the announcement. However, we also assume that

[φ]¬ψ, so we have ¬ψ and ψ inM|φ.

(←). RAA. Let us assume φ→ ¬[φ]ψ and ¬[φ]¬ψ forM and t. As we demon-

strated in the previous theorem, the last formula is equivalent to ⟨φ⟩ψ, which means

that φ, for (M, t), and ψ for (M|φ, t), both in relation to the same instant. Thus,

by modus ponens, ¬[φ]ψ, that is, ⟨φ⟩¬ψ; by definition, ¬ψ in (M|φ, t), which marks

a contradiction.

With the two conditionals, we arrive at the biconditional by classical logic.

14



3. [φ](ψ → ξ)↔ ([φ]ψ → [φ]ξ)

(→). Reduction to absurdity. Assume that [φ](ψ → ξ) and ¬([φ]ψ → [φ]ξ) in

(M, t). By ¬ →, [φ]ψ and ¬[φ]ξ. We know that this last formula is equivalent to

⟨φ⟩¬ξ, which means that φ and, for (M|φ, t) in the same instant, ¬ξ. But since the

announcement φ exists, then in t of M|φ we also have ψ → ξ. By modus tollens,

¬ψ. But the negation of the implication also entailed [φ]ψ, so ψ is the case in t of

M|φ, which leaves us with a contradiction.

(←). Again, RAA. Assume that [φ]ψ → [φ]ξ and ¬[φ](ψ → ξ). By this negation,

⟨φ⟩¬(ψ → ξ), which means that φ and ̸ (ψ → ξ) for an instant equal to t and an

updated modelM|φ. As we have a ¬ →, ψ and ¬ξ) in (M|φ, t). Since we have an

announcement φ that leaves us ψ in t, then we know that ⟨φ⟩ψ is the case in (M, t).

How we prove the announcement functionality (⟨φ⟩ψ → [φ]ψ), [φ]ψ. By modus

ponens in the implication we assume, [φ]ξ, and as this announced formula exists, ξ

in (M|φ, t). But we verify ¬ξ in this model and instant, so we have a contradiction.

With these implications, we have the biconditional.

4. [φ]Hψ ↔ (φ→ H[φ]ψ)

(→). Another indirect proof. For (M, t), by hypothesis, [φ]Hψ and ¬(φ →

H[φ]ψ). By negating the implication: φ and ¬H[φ]ψ. We know that this last nega-

tion is equivalent to P¬[φ]ψ, which means that there is a t1 such that t1 ≺ t and

¬[φ]ψ, which is equivalent to ⟨φ⟩¬ψ, and means that there is an announcement φ

and ¬ψ follows inM|φ and the same instant t1. It turns out that we also assume

[φ]Hψ, and the announcement and the updated model in t exist, so we have Hψ

inM|φ, t , therefore, in its predecessor t1, we will have a contradiction, ψ and ¬ψ.

(←). RAA. Hypothetically, we have φ → H[φ]ψ and ¬[φ]Hψ in (M, t). The

equivalence of this last negation leaves us with ⟨φ⟩¬Hψ. By definition, there is φ

and updates the modelM|φ, t, so that we have ¬Hψ, which is equivalent to P¬ψ.

Therefore, t1 ≺ t, and ¬ψ in M|φ, t1. But if the announcement exists in t, by

modus ponens, H[φ]ψ. This results in [φ]ψ in t1, as this instant precedes t, and as

the announcement exists at this instant also in the updated model, we have ψ and

¬ψ in t1 ofM|φ.
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Thus, we prove the biconditional.

5. [φ]Gψ ↔ (φ→ G[φ]ψ)

(↔). This can be proven in the same way as in the demonstration numbered

above, simply changing the direction of the precedence time relation, with t ≺ t1.

6. [φ][ψ]ξ ↔ [(φ ∧ [φ]ψ)]ξ

For this proof, we need to show that an updated model of another updated

model is equivalent to a conjunction of the updates announced in the first model,

that is: M|φ|ψ =M|φ∧[φ]ψ. As these models are fundamentally based on a set of

instants T !! and T !+!, respectively, we simply need to verify that, for any t ∈ T ,

t ∈ T !! if and only if t ∈ T !+!.

This can be demonstrated by reduction to absurdity. Suppose M|φ|ψ ̸=

M|φ∧[φ]ψ. If so, then: either T
!! ⊈ T !+! or T !+! ⊈ T !!. In other words, there is some

t! that is an element of one updated set of instants and not of the other.

(case T !! ⊈ T !+!). Suppose t! ∈ T !!, but t! /∈ T !+!. This last statement means that

t! /∈ {t ∈ T : (M, t) |= φ =⇒ (M|φ, t) |= ψ}. However, from the first statement, we

know that t! ∈ {t ∈ T : (M, t) |= φ ∧ [φ]ψ}. By the definition of the conjunction

in our model, this is equivalent to saying that t! ∈ {t ∈ T : (M, t) |= φ} ∩ {t ∈ T :

(M, t) |= [φ]ψ}. As t! is an element of the intersection, we know both that φ and

[φ]ψ in this model and instant. It turns out that the definition of this last formula

designates precisely the set {t ∈ T : (M, t) |= φ =⇒ (M|φ, t) |= ψ}; from what we

demonstrated for t!, we have a contradiction.

(case T !+! ⊈ T !!). Suppose, then, that t! ∈ T !+!, but t! /∈ T !!. Conversely to the

above reasoning, it follows that t! ∈ {t ∈ T : (M, t) |= φ =⇒ (M|φ, t) |= ψ}, but

t! /∈ {t ∈ T : (M, t) |= φ} ∩ {t ∈ T : (M|φ, t) |= [φ]ψ}. If t! does not belong to this

intersection, then it does not belong to one of the two intersected sets, but in both

cases it will contradict the previous statement.

Therefore, M|φ|ψ = M|φ∧[φ]ψ, which, by the truth conditions in our models,

[φ][ψ]ξ ↔ [(φ ∧ [φ]ψ)]ξ.

7. ψ =⇒ [φ]ψ
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Since the necessitation rule does not preserve truth, but only validity, suppose

that ψ is a valid formula, that is,M, t |= ψ. In this model and any instant, given any

formula φ, we have already proven thatM, t ̸|= φ =⇒M, t |= [φ]ψ . And ifM, t |=

φ, then this can be put in announcement terms: M, t |= ⟨φ⟩⊤, which means that

M|φ, t |= ⊤. Therefore, although the announcement may falsify ordinary formulas,

it cannot introduce any formula that eliminates a formula with general validity in

the system.

Remark 5 (RN). Item 7 of the theorem basically works as a modal logic necessitation

rule (RN) analogous to the RNG and RNH in Kt.

Corollary 1. Assume any formulas φ,ψ, ξ:

1. Announcement and conjunction: |= [φ](ψ ∧ ξ)↔ ([φ]ψ ∧ [φ]ξ);

2. Announcement and disjunction: |= [φ](ψ ∨ ξ)↔ ([φ]ψ ∨ [φ]ξ).

Proof. By classical logic, we can translate the conjunction and disjunction operators

in terms of negation and implication, therefore we can demonstrate both corollary

items with the above theorem.

These conversions are relevant because they can offer an easy way to prove the com-

pleteness of the system, since it is possible to find temporal static equivalences of any

dynamic states in the system. As this is just a case of adaptation, a full presentation

of completeness in the Historical Announcement Logic is not necessary. Just changing

to temporal terminology, it works in exactly the same way as in Public Announcement

Logic.[13][11][6]

[φ]Hp⇐⇒ (φ→ H[φ]p)⇐⇒ (φ→ H(φ→ p))

[φ]Gp⇐⇒ (φ→ G[φ]p)⇐⇒ (φ→ G(φ→ p))

Theorem 9 (completeness). HAL is complete with respect to the class of all Kt struc-

tures; HALb is complete with respect to the class of transitive (TRAN) and irreflexive

(IRREFL) structures; HALbP and HALbF are complete with respect to the class of
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structures transitive (TRAN), irreflexive (IRREFL) and, respectively, with an end

(END) or with a beginning (BEG); and HALbPP /HALbFF is complete with respect

to the class of transitive, irreflexive, with (END)/(BEG), and, respectively, with linear

structures in histories (LINPP ) or with linear structures in destinies (LINFF ).

Proof. As usual in completeness theorems, there are a series of steps to make it rigor-

ous. To simplify this proof, we will just indicate a strategy for this demonstration, since

completeness theorems for Public Announcement Logic (PAL) are already known, and

Historical Announcement Logic can have analogous completeness theorems.[13][11][6]

Typically, completeness forKt and its extensions can be demonstrated from canon-

ical models and the Lindenbaum lemma.[12] A practical way to obtain completeness

of HAL and its extensions is through a mapping function f(m) that finds a static

counterpart for any dynamic formula. This is possible because, as we demonstrated

previously, these equivalences exist for all classical and temporal operators. In the

Appendix we provide proof tableaux for all these formulas.

� Kt([·]m) = HAL

� Kb([·]m) = HALb

� KbF /KbP ([·]m) = HALbF /HALbP

� KbFF /KbPP ([·]m) = HALbFF /HALbPP

Kt(m) Kb(m) KbF (m) KbFF (m)

Kb([·]m) KbF ([·]m) KbFF ([·]m)Kt([·]m)

Kt(m) Kb(m) KbP (m) KbPP (m)

Kb([·]m) KbP ([·]m) KbPP ([·]m)Kt([·]m)
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Finally, we will offer a tableaux method to prove these static equivalences.

4 HAL tableaux method

Classical propositional logic rules:

φ ∧ ψ

↓

φ

ψ

φ ∨ ψ

φ ψ

φ→ ψ

¬φ ψ

φ↔ ψ

φ ∧ ψ ¬φ ∧ ¬ψ

¬¬φ

↓

φ

¬(φ ∧ ψ)

¬φ ¬ψ

¬(φ ∨ ψ)

↓

¬φ

¬ψ

¬(φ→ ψ)

↓

φ

¬ψ

¬(φ↔ ψ)

φ ∧ ¬ψ ¬φ ∧ ψ

Temporal logic rules:

Gφ, i

irj

↓

φ, j

Fφ, i

↓

irj

φ, j

Hφ, i

jri

↓

φ, j

Pφ, i

↓

jri

φ, j

¬Gφ, i

↓

F¬φ, i

¬Fφ, i

↓

G¬φ, i

¬Hφ, i

↓

P¬φ, i

¬Pφ, i

↓

H¬φ, i

Remark 6 (r). Our temporal logic tableaux approach is based on Priest Graham

trees[14]. r is a precedence relation in a proof tree. The irj or jri relations after the

down arrow are new to the proof tree.

Temporal logic extension rules (TRAN), (BEG), (END), (LINPP ) and (LINFF ):
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irj

jrk

↓

irk

krn

k=i∗

H⊥, i∗
i∗rk

H⊥, i∗

nrk

k=i∗

G⊥, i∗
kri∗

G⊥, i∗

jri∗

G⊥, i∗

krj

lrj

l = k krl lrk

i∗rj

H⊥, i∗

jrk

jrl

k = l lrk krl

Remark 7 (end point and starting point). The index i∗ is the index that marks the

beginning or end of a tree.

Historical announcement rules:

[φ]ψ, i, I

¬φ, i, I Ir!Iφ

ψ, i, Iφ

¬[φ]ψ, i, I

↓

⟨φ⟩¬ψ, i, I

⟨φ⟩ψ, i, I

↓

Ir!Iφ

φ, i, I

ψ, i, Iφ

¬⟨φ⟩ψ, i, I

↓

[φ]¬ψ, i, I

Iφr!Iψ

↓

Iφ∧[φ]ψ

ψ, i, Iφ

↓

⟨φ⟩ψ, i, I

Ir!Iφ

¬p, i, Iφ
↓

¬p, i, I

Ir!Iφ

p, i, Iφ

↓

p, i, I

Ir!Iφ

irk, Iφ

↓

irk, I

Remark 8 (r!). The rules above consist of an adaptation of the tableaux method

proposed by BALBIANI et. al.[2]. The r! relation adapt the temporal concept from

the semantic notion of updating one model to another and preserving the validity of

atomic formulas. According to these parameters, the symbol r! introduces a new kind

of relation restricted to I structures.

Remark 9 (PROP). p is an atomic proposition.

Below we will provide proof trees for the end axiom, the pluperfect linearity

axiom and the translation between past temporal modalities and historical announce-

ments. There are analogous proofs for the beginning axiom, for the plufuture linearity

axiom and for the translation between future temporal modalities and historical

announcements.

G⊥ ∨ FG⊥ (1)
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FG⊥ → (FPφ→ (Pφ ∨ φ ∨ Fφ)) (2)

[φ]Hp↔ (φ→ H[φ]p) (3)

⊢KbP
G⊥ ∨ FG⊥

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

¬(G⊥ ∨ FG⊥), 1 ✓

¬G⊥, 1 ✓

¬FG⊥, 1 ✓

G¬G⊥, 1

F¬⊥, 1 ✓

1r2

¬⊥, 2

2=i*

G⊥, i*

¬G⊥, i* ✓

F¬⊥, i* ✓

i*r3

¬⊥, 3

⊥, 3

⊗
14, 13

2ri*

G⊥, i*

1ri*

¬G⊥, i* ✓

F¬⊥, i* ✓

i*r3

¬⊥, 3

⊥, 3

⊗
15, 14

RAA

1 ¬∨

1 ¬∨

3 ¬F

2 ¬G

5 F

5 F

6 (END)

6 (END)

4, 6, 8 G; 6, 8 (TRAN)

10 ¬G; 4, 10 G

11 F ; 11 ¬G

11 F ; 12 F

9 G; 12 F

9 G
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⊢Kl
bP
FG⊥ → (FPφ→ (Pφ ∨ φ ∨ Fφ))

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

¬(FG⊥ → (FPφ→ (Pφ ∨ φ ∨ Fφ))), 1 ✓

FG⊥, 1 ✓

¬(FPφ→ (Pφ ∨ φ ∨ Fφ)), 1 ✓

FPφ, 1 ✓

¬(Pφ ∨ φ ∨ Fφ), 1 ✓

¬Pφ, 1 ✓

¬φ, 1

¬Fφ, 1 ✓

H¬φ, 1

G¬φ, 1

1r2

Pφ, 2

kr2

φ, k

1ri*

G⊥, i*

1 = k

⊗
14, 6

1rk

¬φ, k

⊗
18, 14

kr1

¬φ, k

⊗
18, 14

RAA

1 ¬ →

1 ¬ →

3 ¬ →

3 ¬ →

5 ¬∨

5 ¬∨

5 ¬∨

6 ¬P

8 ¬F

4 F

4 F

12 P

12 P

2 F

2 F

15, 16, 13, 11 (LINPP )

10, 17 G; 9, 17 H
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⊢HAL [φ]Gp→ (φ→ G[φ]p)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

¬([φ]Gp→ (φ→ G[φ]p)), 1,I ✓

[φ]Gp, 1,I ✓

¬(φ→ G[φ]p), 1,I ✓

φ, 1,I

¬G[φ]p, 1,I ✓

F¬[φ]p, 1,I ✓

1r2,I

¬[φ]p, 2,I ✓

⟨φ⟩¬p, 2,I ✓

φ, 2,I

Ir!Iφ

¬p, 2,Iφ

¬φ, 1,I

⊗
13, 4

Gp, 1,Iφ ✓

p, 2,Iφ

⊗
14, 12

RAA

1 ¬ →

1 ¬ →

3 ¬ →

3 ¬ →

4 ¬G

6 F

6 F

8 ¬[·]

9 ⟨·⟩

9 ⟨·⟩

9 ⟨·⟩

2 [·]

13, 12 G
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⊢HAL (φ→ G[φ]p)→ [φ]Gp

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

¬((φ→ G[φ]p)→ [φ]Gp), 1,I ✓

φ→ G[φ]p, 1,I ✓

¬[φ]Gp, 1,I ✓

⟨φ⟩¬Gp, 1,I ✓

φ, 1,I

Ir!Iφ

¬Gp, 1,Iφ
F¬p, 1,Iφ ✓

1r2,Iφ

¬p, 2,Iφ

¬φ, 1,I

⊗
11, 5

G[φ]p, 1,I

1r2,I

[φ]p, 2,I ✓

¬φ, 2,I

⟨φ⟩¬p, 2,I ✓

¬p, 2,Iφ
φ, 2,I

⊗
17, 14

p, 2,I

⊗
14, 10

RAA

1 ¬ →

1 ¬ →

3 ¬[·]

4 ⟨·⟩

4 ⟨·⟩

4 ⟨·⟩

7 ¬G

8 F

9 F

2 →

9 r

11, 12 G

13 [·]

10 Iφ

15, 6 ⟨·⟩

15 ⟨·⟩

5 Conclusion

In this paper we introduce a variation of the Public Announcement Logic (PAL) in

temporal terms. This system of dynamic temporal logic allows us to represent history

from an epistemologically defeasible point of view; different historical theories (or

epistemic versions of the past) can be eliminated with historical announcements, which

represent new factual information.

Historical Announcement Logic (HAL) can be extended in several ways in later

logical studies, for example, with first-order logic and with Peircean and Ockhamist
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temporal branching logic[17]. In parallel, this system also allows several applications

in Philosophy of Science (especially in Philosophy of Historical Sciences). This way

we can compare the advantages of this model compared to others, such as Newton

da Costa’s Quasi-Truth Theory[1]. Further studies should detail the philosophical

assumptions and show how models of the HAL system can be applied to represent

descriptive and explanatory scientific knowledge.
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⊢HAL ⟨φ⟩ψ → [φ]ψ

1.

2.

3.

4.

5.

6.

7.

8.

¬(⟨φ⟩ψ → [φ]ψ), 1,I ✓

⟨φ⟩ψ, 1,I ✓

¬[φ]ψ, 1,I ✓

⟨φ⟩¬ψ, 1,I ✓

Ir!Iφ

φ, 1,I

ψ, 1,Iφ

¬ψ, 1,Iφ
⊗
8, 7

RAA

1 ¬ →

1 ¬ →

3 ¬[·]

2 ⟨·⟩

2 ⟨·⟩

2 ⟨·⟩

4, 5, 6 ⟨·⟩

⊢HAL [p]p

1.

2.

3.

4.

5.

6.

¬[p]p, 1,I ✓

⟨p⟩¬p, 1,I ✓

Ir!Iφ

p, 1,I

¬p, 1,Iφ
¬p, 1,I

⊗
6, 4

RAA

1 ¬[·]

2 ⟨·⟩

2 ⟨·⟩

2 ⟨·⟩

5 PROP

⊢HAL [φ]p↔ (φ→ p)
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⊢HAL [φ]p→ (φ→ p)

1.

2.

3.

4.

5.

6.

7.

8.

¬([φ]p→ (φ→ p)), 1,I ✓

[φ]p, 1,I ✓

¬(φ→ p), 1,I ✓

φ, 1,I

¬p, 1,Iφ

¬φ, 1,I

⊗
6, 4

1,Ir!Ip

p, 1,Ip

p, 1,I

⊗
8, 5

RAA

1 ¬ →

1 ¬ →

3 ¬ →

3 ¬ →

2 [·]

2 [·]

7 PROP

⊢HAL (φ→ p)→ [φ]p

1.

2.

3.

4.

5.

6.

7.

8.

9.

¬((φ→ p)→ [φ]p), 1,I ✓

(φ→ p), 1,I ✓

¬[φ]p, 1,I ✓

⟨φ⟩¬p, 1,I ✓

φ, 1,I

Ir!Iφ

¬p, 1,Iφ

¬φ, 1,I

⊗
8, 5

p, 1,I

¬p, 1,I

⊗
9, 8

RAA

1 ¬ →

1 ¬ →

3 ¬[·]

4 ⟨·⟩

4 ⟨·⟩

4 ⟨·⟩

2 →

7 PROP

⊢HAL [φ]¬ψ ↔ (φ→ ¬[φ]ψ)
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⊢HAL [φ]¬ψ → (φ→ ¬[φ]ψ)

1.

2.

3.

4.

5.

6.

7.

8.

9.

¬([φ]¬ψ → (φ→ ¬[φ]ψ)), 1,I ✓

[φ]¬ψ, 1,I ✓

¬(φ→ ¬[φ]ψ), 1,I ✓

φ, 1,I

¬¬[φ]ψ, 1,I ✓

[φ]ψ, 1,I ✓

¬φ, 1,I

⊗
7, 4

Ir!Iφ

ψ, 1,Iφ

¬ψ, 1,I

⊗
9, 8

RAA

1 ¬ →

1 ¬ →

3 ¬ →

3 ¬ →

5 ¬¬

6 [·]

6 [·]

2, 7 [·]

⊢HAL (φ→ ¬[φ]ψ)→ [φ]¬ψ

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

¬((φ→ ¬[φ]ψ)→ [φ]¬ψ), 1,I ✓

φ→ ¬[φ]ψ, 1,I ✓

¬[φ]¬ψ, 1,I ✓

⟨φ⟩¬¬ψ, 1,I ✓

φ, 1,I

Ir!Iφ

¬¬ψ, 1,Iφ ✓

ψ, 1,Iφ

¬φ, 1,I

⊗
9, 5

¬[φ]ψ, 1,I ✓

⟨φ⟩¬ψ, 1,I ✓

¬ψ, 1,Iφ
⊗

11, 8

RAA

1 ¬ →

1 ¬ →

3 ¬[·]

4 ⟨·⟩

5 ⟨·⟩

6 ⟨·⟩

7 ¬¬

2 →

9 ¬[·]

10, 5, 6 ⟨·⟩

⊢HAL [φ](ψ → ξ)↔ ([φ]ψ → [φ]ξ)
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⊢HAL [φ](ψ → ξ)→ ([φ]ψ → [φ]ξ)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

¬([φ](ψ → ξ)→ ([φ]ψ → [φ]ξ)), 1,I ✓

[φ](ψ → ξ), 1,I ✓

¬([φ]ψ → [φ]ξ), 1,I ✓

[φ]ψ, 1,I ✓

¬[φ]ξ, 1,I ✓

⟨φ⟩¬ξ, 1,I ✓

φ, 1,I

Ir!Iφ

¬ξ, 1,Iφ

¬φ, 1,I

⊗
10, 7

ψ, 1,Iφ

ψ → ξ, 1,Iφ ✓

¬ψ, 1,Iφ
⊗

12, 10

ξ, 1,Iφ

⊗
12, 9

RAA

1 ¬ →

1 ¬ →

3 ¬ →

3 ¬ →

5 ¬[·]

6 ⟨·⟩

6 ⟨·⟩

6 ⟨·⟩

4 [·]; 4, 8 [·]

2, 10, 8 [·]

11 →
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⊢HAL ([φ]ψ → [φ]ξ)→ [φ](ψ → ξ)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

¬(([φ]ψ → [φ]ξ)→ [φ](ψ → ξ)), 1,I ✓

[φ]ψ → [φ]ξ, 1,I ✓

¬[φ](ψ → ξ), 1,I ✓

⟨φ⟩¬(ψ → ξ), 1,I ✓

φ, 1,I

Ir!Iφ

¬(ψ → ξ), 1,Iφ ✓

ψ, 1,Iφ

¬ξ, 1,Iφ

¬[φ]ψ, 1,I ✓

⟨φ⟩¬ψ, 1,I ✓

¬ψ, 1,Iφ
⊗

13, 8

[φ]ξ, 1,I ✓

¬φ, 1,I

⊗
11, 5

ξ, 1,Iφ

⊗
11, 9

RAA

1 ¬ →

1 ¬ →

3 ¬[·]

4 ⟨·⟩

4 ⟨·⟩

4 ⟨·⟩

7 ¬ →

7 ¬ →

2 →

10 [·]; 10, 6 [·]

10 ¬[·]

12, 5, 6 ⟨·⟩

⊢HAL [φ][ψ]ξ ↔ [(φ ∧ [φ]ψ)]ξ

31



⊢HAL [φ][ψ]ξ → [(φ ∧ [φ]ψ)]ξ

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

¬([φ][ψ]ξ → [(φ ∧ [φ]ψ)]ξ), 1,I ✓

[φ][ψ]ξ, 1,I ✓

¬[(φ ∧ [φ]ψ)]ξ, 1,I ✓

⟨(φ ∧ [φ]ψ)⟩¬ξ, 1,I ✓

φ ∧ [φ]ψ, 1,I ✓

Ir!Iφ∧[φ]ψ

¬ξ, 1,Iφ∧[φ]ψ

φ, 1,I

[φ]ψ, 1,I ✓

¬φ, 1,I

⊗
10, 8

Ir!Iφ

ψ, 1,Iφ

[ψ]ξ, 1,Iφ ✓

¬ψ, 1,Iφ
⊗

13, 11

Iφr!Iψ

Iφ∧[φ]ψ

ξ, 1,Iφ∧[φ]ψ

⊗
15, 7

RAA

1 ¬ →

1 ¬ →

3 ¬[·]

4 ⟨·⟩

4 ⟨·⟩

4 ⟨·⟩

5 ∧

5 ∧

9 [·]

9 [·]

2, 10, 10 [·]

12 [·]

13 r!

12, 14 [·]
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⊢HAL [(φ ∧ [φ]ψ)]ξ → [φ][ψ]ξ

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

¬([(φ ∧ [φ]ψ)]ξ → [φ][ψ]ξ), 1,I ✓

[(φ ∧ [φ]ψ)]ξ, 1,I ✓

¬[φ][ψ]ξ, 1,I ✓

⟨φ⟩¬[ψ]ξ, 1,I ✓

φ, 1,I ✓

Ir!Iφ

¬[ψ]ξ, 1,Iφ ✓

⟨ψ⟩¬ξ, 1,Iφ ✓

ψ, 1,Iφ

Iφr!Iψ

Iφ∧[φ]ψ

¬ξ, 1,Iφ∧[φ]ψ

¬(φ ∧ [φ]ψ), 1,I ✓

¬φ, 1,I

⊗
14, 5

¬[φ]ψ, 1,I ✓

⟨φ⟩¬ψ, 1,I ✓

¬ψ, 1,Iφ
⊗

16, 9

ξ, 1,Iφ∧[φ]ψ

⊗
13, 12

RAA

1 ¬ →

1 ¬ →

3 ¬[·]

4 ⟨·⟩

4 ⟨·⟩

4 ⟨·⟩

7 ¬[ψ]

8 ⟨·⟩

8 ⟨·⟩

10 r!

8, 11 ⟨·⟩

2 [·]

13 ¬∧

14 ¬[·]

15, 5, 6 ⟨·⟩

⊢HAL [φ]Hp↔ (φ→ H[φ]p)

33



⊢HAL [φ]Hp→ (φ→ H[φ]p)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

¬([φ]Hp→ (φ→ H[φ]p)), 1,I ✓

[φ]Hp, 1,I ✓

¬(φ→ H[φ]p), 1,I ✓

φ, 1,I

¬H[φ]p, 1,I ✓

P¬[φ]p, 1,I ✓

0r1,I

¬[φ]p, 0,I ✓

⟨φ⟩¬p, 0,I ✓

φ, 0,I

Ir!Iφ

¬p, 0,Iφ

¬φ, 1,I

⊗
13, 4

Hp, 1,Iφ ✓

p, 0,Iφ

⊗
14, 12

RAA

1 ¬ →

1 ¬ →

3 ¬ →

3 ¬ →

4 ¬H

6 P

6 P

8 ¬[·]

9 ⟨·⟩

9 ⟨·⟩

9 ⟨·⟩

2 [·]

13, 12 H
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⊢HAL (φ→ H[φ]p)→ [φ]Hp

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

¬((φ→ H[φ]p)→ [φ]Hp), 1,I ✓

φ→ H[φ]p, 1,I ✓

¬[φ]Hp, 1,I ✓

⟨φ⟩¬Hp, 1,I ✓

φ, 1,I

Ir!Iφ

¬Hp, 1,Iφ
P¬p, 1,Iφ ✓

0r1,Iφ

¬p, 0,Iφ

¬φ, 1,I

⊗
11, 5

H[φ]p, 1,I

0r1,I

[φ]p, 0,I ✓

¬φ, 0,I

⟨φ⟩¬p, 0,I ✓

¬p, 0,Iφ
φ, 0,I

⊗
17, 14

p, 0,I

⊗
14, 10

RAA

1 ¬ →

1 ¬ →

3 ¬[·]

4 ⟨·⟩

4 ⟨·⟩

4 ⟨·⟩

7 ¬H

8 P

9 P

2 →

9 r

11, 12 H

13 [·]

10 Iφ

15, 6 ⟨·⟩

15 ⟨·⟩
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