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Abstract 
A recent result from theoretical computer science provides for the verification of 

answers to the Halting Problem, even when there is no plausible means by which 

to derive those answers using a bottom-up approach. We argue that this result has 

profound implications for the existence of strongly emergent phenomena. In this 

work we develop a computer science-based framework for thinking about strong 

emergence and in doing so demonstrate the plausibility of strongly emergent phe-

nomena existing in our universe. We identify six sufficient criteria for strong emer-

gence and detail the actuality of five of the six criteria. Finally, we argue for the 

plausibility of the sixth criterion by analogy and a case study of Boltzmann brains 

(with additional case studies provided in the appendices.) 
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1. Introduction 
 

Emergent properties are normally understood as properties of a system that arise 

from changes in the complexity of the system’s constituents and are in some rele-

vant sense irreducible to those constituents (cf. El-Hani and Pereira, 2000; Kim, 

2006). One of the first classical formulations of the notion of emergence can be 
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found in the work of John Stuart Mill (1843), who offered a conceptual analysis for 

effects of joint causes that are not described as the algebraic sum of those causes. 

Based on Mill’s analysis, George Henry Lewes (1875) distinguished between re-

sultant and emergent effects, in what apparently involved the first use of the concept 

of emergence in a technical philosophical sense. A further development was made 

later by the so-called British emergentists Samuel Alexander (1920), Conwy Lloyd 

Morgan (1923), and Charles Dunbar Broad (1925), who deepened the notion of 

emergence, focusing on irreducibility and on its relevance to understand mental and 

biological processes. Given the remarkable progress of areas such as particle phys-

ics and molecular biology during the 20th century, among other reasons, the reduc-

tionist agenda gained force and emergentism began to be conceived as a less serious 

philosophical point of view. But later, with the development of complexity science, 

involving fields such as chaos theory and network theory, the concept of the emer-

gent property not only resurfaced as useful, but also as necessary (cf. Holland, 

2014). Some of the paradigmatic features of an emergent property, conceived in 

various approaches, are its relational character with regard to the basic parts of a 

system, its novelty, its irreducibility, and its holisticness (cf. Kim, 2006; Hum-

phreys, 2016). But where it succeeds, reductionism has neither lost methodological 

nor explanatory force. Now, is it possible to reconcile the concept of emergence 

with the empirical success of reductive explanations?  

A distinction that allows one to explore ways in which the notion of emergence 

could be compatible with reduction is the distinction between weak and strong 

emergence. According to the account developed by Mark Bedau (1997), a state of 

a system is weakly emergent with regard to the system’s constituents, if that state 

can be predicted from the constituents, but only by simulation, i.e., only by repro-

ducing all intermediate steps of the inferential chain between their representations. 

In a computational sense, weak emergence implies predictability but also incom-

pressibility (cf. Humphreys, 2016). By contrast, strongly emergent phenomena are 

not deducible at all from the constituents of the system. While Bedau has argued 

that cases of strong emergence seem mysterious and hard to characterize scientifi-

cally, David Chalmers (2006) claims that consciousness is a clear instance of it that 

can be understood in relation to the physical domain. Looking for a naturalistic ac-

count of strong emergence, Rani Lill Anjum and Stephen Mumford (2017) have 

proposed to characterize emergent properties in terms of causal powers, arguing that 

strong emergence implies causal transformations not only at the high-level, but also 

changes in the causal powers of the system’s constituents. Other recent views con-

sist in proposing algorithms for characterizing strong emergence that are consistent 

with the observable behavior and evolution of biological systems (Hao et al., 2021). 

In this work we analyze strong emergence from a digital physics perspective. 

Digital physics is the notion that the universe is a vast digital computer (or at least 

can be fully modeled as one). Many distinct variants of this notion have been pro-

posed since Konrad Zuse (1969) introduced the idea in his 1969 book Rechnender 

Raum, and Edward Fredkin coined the term “digital physics” (Fredkin, 2003). Whit-

worth (2008) argued that some discoveries in modern physics such as quantum min-

ima, quantum equivalence, the big bang, and the maximal speed of light for the 
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transmission of causal information, etc. point towards digital physics conclusions. 

More specifically, Seth Lloyd (2007) has argued that the universe itself is a giant 

quantum computer whose computed output is reality in real time. From this per-

spective, fundamental particles are simply bits (or qubits) of information. Any col-

lision or interaction between fundamental particles is therefore considered data pro-

cessing or computation (e.g., a bit flip) acting on the information. Stephen Wolfram 

has also contributed widely to this domain (Wolfram, 1985), and digital physics 

remains an area of active research (Beraldo-de-Araújo and Baravelle, 2017). Along 

a different vein, Nick Bostrom (2003) has argued for a version of digital physics 

known as the simulation hypothesis. This hypothesis posits that as technology ad-

vances, future generations will have a vast amount of compute power at their dis-

posal, enough to render a great number of full universe simulations. Each full uni-

verse simulation might, for example simulate a past state of the original universe or 

a counterfactual state of the original universe. Furthermore, Bostrom hypothesizes 

that each simulated universe could be home to many conscious, simulated human 

minds who are unaware that they are living within a simulation. From this, a popular 

(though controversial) argument proceeds: if the total number of minds of the sim-

ulated variety significantly outnumbers the quantity of non-simulated minds, then 

by the principle of indifference any individual should expect (with high probability) 

that they are actually a simulated mind living in a simulation. 

For the purposes of this work, we assume a digital physics backdrop with the 

following general (non-specific to a particular notion of digital physics) character-

istics: 

 

1) We assume that the entire universe either is a deterministic Turing machine or is 

a simulation running on a deterministic Turing machine. 

 

2) We assume that the universe can be treated as a computationally bounded system. 

This is to say that the total number of computational steps that can be carried out 

over the lifespan of the universe is a finite number.1 

 

3) We assume that the system is informationally closed (to non-random infor-

mation). No non-random information that was not present at the inception of the 

universe is allowed to enter into the system from an external source at a later time. 

Information can only propagate by transforming prior information contained within 

the system (since the inception of the system) or from random sources. For example, 

if the universe is a simulation running on a computer, no one is allowed to be typing 

at the keyboard attached to the computer after the inception of the universe. (We 

briefly suspend this assumption to discuss a set of one or more alien agents we 

 

1 In the case that the universe itself is a giant computer, see Comment 5 in Section 3. In the 

case that the universe is a simulation running on an external computer, we bound the system 

by segregating out the universe (simulation) and the computer it is running on as a single 

system. We can then draw an arbitrary box around the simulation and the hardware it is run-

ning on and call this a computationally bounded system. 
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denote as “Bob” in Section 4, but this is only used to illustrate a point and the input 

of information from a source external to the system is not key to the argument. The 

role of Bob is then pulled internal to the system in Section 6 to ensure that this 

assumption holds.) 

 

4) We assume that there is no source of infinite computational resources that could 

be accessed. 

 

The digital physics backdrop that we assume is tantamount to a specific form of 

physicalism (monist perspective) wherein the notion of physical is defined as some-

thing constituted of digital information, implemented and operating within a physi-

cal substrate.2 Under this backdrop, every future state of the system can (and must) 

be fully computed from a prior state of the system (in addition to any random infor-

mation that is injected into the system). More specifically, the state of the system at 

any specific timestep, Nt can be computed from a prior state Nt-1 plus any injected 

random information, RI. (This assumes certain rules of information transformation 

particular to the system, which we might loosely call the fundamental laws of phys-

ics.) Furthermore, the very act of computing the state of the next timestep of the 

system on the hardware of the system causes the system to enter into that state. 

Under this digital physics backdrop, the system can and must compute each future 

state in full using only its available computational resources. The system is infor-

mationally closed (to non-random information). 

Under general physicalism principles, this system would likely be presumed to 

be causally deterministic and closed to outside/additional influences (once infor-

mation about the prior state, Nt-1, and random information, RI, are considered). Each 

prior state (along with random information) defines the next state in a self-propa-

gating fashion. In this work, however, we describe counterexample cases wherein 

the informationally closed system may not be able to fully compute its next state 

(given limited internal computational resources). In these counterexample cases, the 

input information and rules of information transformation are known, but the com-

putational power necessary to perform the information transformation is lacking. 

Therefore, in order for the system to compute and propagate itself into the state of 

its next timestep, the system would effectively have to reach outside of itself and 

borrow computational resources from elsewhere. However, in Section 4 and Ap-

pendix A we describe how the quantity of computational resources that would have 

to be borrowed to solve specific problems can effectively be made arbitrarily large 

(while still finite). Therefore, for any finitely sized computational resource that the 

system might borrow from, we can point to the fact that for appropriately selected 

problems, the resource will still (and always) be too small. Moreover, by assump-

tion 4 above, it is unreasonable for the system to borrow computational resources 

from an infinite computational resource. This in turn creates a conundrum—how 

can the system compute and propagate itself into its next state (in a bottom-up 

 

2 Note that the arguments in this work can in principle be extended to apply to more general 

physicalist, monist perspectives. However, we leave this extension as future work. 
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fashion)? This conundrum points towards the plausibility of strong emergence and 

information that is discoverable and verifiable (and defines a future state of the sys-

tem) even if it is not derivable from the bottom up within the system. Here we define 

a bottom-up approach as a deductive sequence that starts from simple objects or 

axioms (that cannot be decomposed into subparts) and builds towards assemblies of 

parts. 

In order to flesh out the foundations of this conundrum, we start by describing 

the existence of specific instantiations of the Halting Problem that would require 

computational resources greater than the system’s bounded computational capacity 

in order to solve for the correct answer. We demonstrate that these types of prob-

lems are likely to exist and that their solutions are verifiable (though not derivable 

from the bottom up) with minimal computational resources.  

Furthermore, we argue that if these solutions can be discovered and verified, then 

they can have causal consequences for the whole system. For example, a robot could 

be programmed to take in input information regarding the solution to one such spe-

cific halting problem, verify the solution, and if verified, physically move in a way 

that is programmed to be different than if the solution were incorrect and could not 

be verified. Under physicalism, we would expect the robot’s actions to be fully de-

termined solely by the information embodied in the robot’s hardware and any soft-

ware inputs (along with the rules of fundamental physics). However, in our coun-

terexample cases, the robot’s actions would additionally be codetermined by objec-

tive information that is discoverable and verifiable within the system but not deriv-

able from the bottom up within the computationally bounded system. We will call 

this third input to the robot’s behavior (e.g., the answer to the specific instantiation 

of the Halting Problem in question) “ethereal information”.  

Therefore, the state of the overall system at the next timestep is determined by 

the robot’s hardware information, software information, and by ethereal infor-

mation. In this counterexample case the overall system would be underdetermined 

without considering the ethereal information input, and therefore the next state of 

the system could not be accurately determined. The existence of ethereal infor-

mation (of this type) would be indicative of strong emergence in a digital physics 

paradigm. 

Historically, strong emergence has been dismissed as mysterious and hard to 

characterize scientifically (Bedau, 1997). In this work we provide a conceptual 

framework for understanding strong emergence against the backdrop of digital 

physics. We do not attempt to prove or disprove the existence of strong emergence, 

but rather present deductive arguments and case studies that highlight and clarify 

its plausible existence. 

In this work we delineate strong emergence in a new manner that is slightly dif-

ferent from some other historical notions of strong emergence. Whereas in the past 

some have loosely defined strong emergence as that which could not be predicted 

by Laplace’s Demon, an entity with infinite capacities (cf. Davies, 2004; Gompert 

et al., 2022; Collier, 2011), in this work we are interested in that which could not be 

predicted given an arbitrarily large, though finite, computational capacity. We con-

tend that our version of strong emergence is strong enough to be philosophically 
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interesting. This is especially true within a digital physics backdrop. While this ver-

sion of strong emergence might only include future states that are logically entailed 

from prior states, random information, and the fundamental rules of information 

transformation, these future states cannot be predicted from within the computa-

tionally bounded system. Therefore, a conundrum arises as to how one state can 

cause a subsequent state without the computational power to predict that state. 

In order to cement this framework, we detail a set of six criteria that are sufficient 

for the existence of strong emergence and a deductive argument composed from 

these criteria. (We do not argue that these criteria are necessary, only that they are 

sufficient.) We go on to describe the existence of at least five of these six criteria 

and argue for the plausibility of the final criterion by case studies. If the six criteria 

do in fact exist within our universe, then they either indicate the existence of strong 

emergence or the implausibility of the digital physics paradigm that we have de-

scribed. 

 

 

 

2. Six proposed criteria that together  

imply strong emergence  
 

First, we will outline the criteria that we believe imply strong emergence. We argue 

that anything that meets the following six criteria should be considered strongly 

emergent (i.e., the criteria are sufficient, but not necessary, see Section 5). Specifi-

cally, these criteria can be met by a hypothetical question-and-answer pairing (to be 

discussed further). The question-and-answer format was selected as it lends itself to 

rigorous analysis by considering the mathematics of a closed system. Herein we 

define a closed system as one that is computationally bounded (i.e., constraints im-

pose a finite limit on the number of computational steps that can be taken within the 

system) and does not allow for the introduction of non-random information from an 

external source.3 The six criteria that we believe to be sufficient for a question-and-

answer pairing to exhibit strong emergence are: 

  

Criterion 1. The question-and-answer pairing can be formulated and posed in a way 

that is compatible with and containable within the constraints of the closed system.  

 

Criterion 2. The answer to the question has a non-random, objective (observer in-

dependent) truth value that corresponds to an object or construct within the closed 

system or to the system itself.4 

 

3 Of course, we don’t require the system to be absolutely closed, but that there must be a set 

of conditions, properties, or regularities (possibly laws) delimiting the information that is 

accessible within the system. 

4 For our purposes, “truth” or “truth value” simply indicates that the information is non-

random and can be verified in an objective sense (e.g., a fact, a law, a pattern, a regularity, 

etc.). For the purposes of this work, additional warrant indicating that the answer is true in 
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Criterion 3. The answer to the question cannot be derived using a bottom-up ap-

proach from within the closed system under consideration (although it might be 

derivable in an alternate system).5 

 

Criterion 4. The evidence necessary to argue for the truth value of the answer (in-

crease its a posteriori credence, conditioned on an event) is compatible with and 

containable within the constraints of the closed system. Therefore, the answer is 

hypothetically knowable within the system. 

 

Criterion 5. A gain in knowledge regarding the truth value of the answer can be 

induced to have physical, causal consequences within the system. 

 

Criterion 6. The answer and its supporting evidence are discoverable within the 

closed system. (Defined in more detail in Section 5.) 

 

We will explain each criterion and its importance in Sections 4 and 5. 

 

 

 

3. Background and assumptions  
 

In this section we comment on various assumptions and background information 

used in this work. 

 

 

Comment 1: Basic assumptions 

 

In this work we assume the validity of logic and mathematics. Without these starting 

assumptions, deductive and mathematical arguments of this sort could not proceed. 

Furthermore, for simplicity we assume the validity of modern physics (e.g., the 

standard model and general relativity). For our argument, it is not necessary that all 

of modern physics be complete or fully correct, but rather that specific points (as 

enumerated below) be correct so that we are able to make use of the results from 

“MIP* = RE” (Ji et al., 2021). “MIP* = RE” is the title of a 2021 paper published 

in Communications of the ACM. This paper proves that solutions to the Halting 

 

some deeper sense (beyond, for example, being a non-random, objectively verifiable regular-

ity) is not necessary (as our arguments do not rely on such). 

5 Here we use the term bottom-up derivation to denote the process of acting upon input in-

formation (present at the inception of the closed system) in ways allowed by the system’s 

fundamental rules of information transformation in order to generate new informational 

states. This process can then be iteratively applied to a new set of input information that 

additionally includes the new informational states from the prior steps. 
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Problem can be verified even if they cannot be derived in a bottom-up fashion 

(given finite computational resources). 

 

For portions of this work relying on “MIP* = RE,” we assume that 

 

1) finite-dimensional quantum mechanics is a good model of physics, 

2) the provers (Bob) cannot communicate directly amongst themselves, and 

3) the verifier (Alice) has access to truly random coin flips which are unknown to 

the provers. 

 

 

Comment 2: Gaining knowledge 

 

In this work we use the notion of “gaining knowledge” in the following context. Per 

our use of information theory, “gaining knowledge” about the truth value of an an-

swer to a question is not simply a matter of being able to write down or enumerate 

all possible answers in a list. “Gaining knowledge” comes from being able to dis-

cern (at least in part) the cases that possess truth value from the cases that are pure 

gibberish. This requires a process of verification.6 Per Comment 1, we have as-

sumed the validity of mathematics which provides one logical framework for the 

verification process. An alternate verification process can involve direct experien-

tial verification by acquaintance.  For the purposes of this paper, we will assume a 

factual notion of truth. To gain knowledge is to approach that truth in a probabilistic 

and verifiable fashion7. 

As an example, consider the somewhat misleading claim that “I know John’s six-

digit ATM pin number” because I have in my back pocket a list of all possible six-

digit numbers. Surely John’s pin number is on that list somewhere. However, I do 

not know where it is on the list. From an information theory standpoint, this is an 

equivalent way of saying that in reality I know no explicit information about John’s 

ATM pin number (beyond the obvious a priori constraints). If I were to learn the 

first three digits of John’s six-digit ATM pin number then I will have gained 

knowledge about John’s ATM pin number, even without learning all six digits. 

 In order to truly gain knowledge (or information), I must be able to separate or 

discern (at least in part) the needles (true answers) from the haystack (set of all 

possible answers). To gain knowledge (in our usage) is to increase the a posteriori 

credence that a particular answer (from the entire set of possible answers) is the true 

answer, conditioned on some event. This is in line with the Shannon entropy notion 

of gaining information. 

 

 

6 The verification process can be used to ensure that the information is non-random. 

7 For the present purposes, we prefer the idea of “gaining knowledge” instead of the one of 

“knowledge state”. The latter is stronger than what we need and implies constraints regarding 

justification that we do not have to discuss here. Furthermore, we may assume that the factual 

character of the truths that are approachable in the process of gaining knowledge depends on 

how they are described and is therefore not independent from epistemic conditions. 
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Comment 3: The Halting Problem 

 

In this work we repeatedly refer to the Halting Problem. The Halting Problem is a 

famous question in computer science that was one of the first decision problems 

that was proven to be unsolvable (Turing, 1936). In short, the question asks whether 

a specific computer program that is run on a specific deterministic Turing machine 

(computer) will halt after a finite number of steps (halt) or will continue running 

forever (not halt). One of the two options (either halt or not halt) must be correct. 

However, determining which option is correct is not simple (and sometimes not 

possible). One might naively try to write an analysis algorithm that will take in the 

specifics of the program and the specifics of the computer and within a bounded 

finite number of analysis steps always correctly determine whether the program will 

halt or not halt. Alan Turing proved that no such algorithm can exist that will work 

for all possible programs. 

Furthermore, throughout this work we refer to “specific”, “specifically posed”, 

or “specific instantiations” of the Halting Problem. By this we indicate an appropri-

ate pairing of a particular input program, x, with a particular computer, M that con-

forms to the criterion laid out in Appendix A. In short, this pairing should be se-

lected so that the question as to whether this combined system (x run on M) halts or 

does not halt cannot be answered (from the bottom up, within the closed system of 

our idealized universe). Additional details are provided in Appendix A. 

 

 

Comment 4: Examples of closed systems 

 

In this work we will go through and explain each of the six sufficient criteria and 

its importance. In this process we will consider two distinct examples of closed sys-

tems in which each criterion might be applied: Possible World One (w1), and Pos-

sible World Two (w2). These examples are included for explanatory purposes. w1 

is an idealized version of our universe (possibly surrounded by other distinct parallel 

universes that are themselves closed systems). This idealized version of our uni-

verse is used to illustrate concepts and not to make pronouncements on the true 

physics of the universe we inhabit. In w1, the total number of computational steps 

that can be taken is finite due to fundamental physics bounds, and this idealized 

universe comports with modern physics.  

w2 is an idealized simulated universe contained within a computer simulation on 

a standard laptop. This simulated universe contains conscious simulated minds and 

has a finite computational resource based on the capacity of the laptop. w2 also 

comports with modern physics. Both w1 and w2 examples are selected with the in-

tent to provide analogies that help to cement understanding and intuition regarding 

the six sufficient criteria listed above. Note that we cannot rule out the possibility 

that the real world which we inhabit is identical to w1 or w2. 
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Comment 5: Reasons to believe that our universe might be  

computationally bounded (a finite, closed system) 

 

In this work, for our arguments, we assume that our universe is computationally 

bounded (a closed system). We assume that the number of computational steps that 

can be carried out within our closed system (idealized universe) is finite. While this 

is a reasonable assumption to make (philosophically speaking), its veracity in our 

particular universe is a question for physics, not philosophy, that is beyond the scope 

of this work. Nonetheless, a number of discoveries in modern physics suggest the 

physics-derived reasonableness of this assumption. Fundamental, physics-based 

boundaries on how many computational steps can be taken in our universe can be 

approximated by combining known physical constants and laws. For example, the 

speed of light puts a physical constraint on the maximum volume of space over 

which causal interactions can occur (within a given time). It is hypothesized that 

this volume is in turn quantized and cannot be subdivided smaller than a Planck’s 

length (Planck, 1899). Together these constants set a maximum number of bits that 

can exist in the universe (using the Beckenstein bound (Beckenstein, 1981)). 

Bremermann’s limit in turn sets a maximum rate of computation for a system with 

finite mass-energy (Bremermann, 1962). Finally, the predicted heat death of the 

universe sets a time limit for this maximally grand computation. (Alternatively, if 

the universe were to end in a “Big Crunch”, this too would set a time limit for com-

putation.) The exact maximum number of computations that can occur within our 

universe doesn’t matter for the arguments herein. What does matter is that for our 

idealized universe the figure is finite, and that for every finite number there exists 

an infinite quantity of larger numbers. Accordingly, for any finitely sized system, 

there exist specifically posed programs for which we cannot determine, using a bot-

tom-up approach, whether or not the program will halt (see Appendix A). We might 

not be able to specify which programs fall into this special category, but by trying 

a broad swath of differently seeded programs we are likely to run across some that 

do fall into this special category. We leave any attempts to calculate or constrain 

the likelihood of encountering such programs for future work. 

 

 

 

4. Criteria 1-5 explained 
 

In this section we dive into the specifics of criteria 1-5. 

 

 

4.1 Criterion 1 

The first criterion is that the format of the question and its possible answers must 

be compatible with and containable within the closed system. Informational formats 

that cannot exist within the closed system might exist elsewhere, but are likely nei-

ther approachable, accessible, nor interesting to anyone within the closed system. If 
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we take w1 as an example of a closed system, an example of a forbidden format 

would be physical instantiations of higher dimensional objects that cannot exist in 

the limited dimensions of this universe. For example, higher dimensional beings in 

some other universe might have caught a 37-dimensional butterfly. However, there 

is no way for this high-dimensional butterfly to exist within the confines of our 

three-spatial-dimensional idealized universe (even if the beings had a method of 

transferring objects between universes). Alternatively, if we take w2 as an example 

of a closed system, then there could exist prohibited formats of information, such 

as special characters that are not recognizable within the syntax of w2, or analog 

information that cannot truly be digitized. Luckily, plenty of supported information 

formats do exist within each closed system. These formats allow us to ask interest-

ing questions like “is there a largest prime number?” This interesting question both 

makes sense and is easy to pose in the allowed language formats of either closed 

system (w1 or w2). The possible answers “yes” or “no” also can be readily enumer-

ated in either closed system. This is therefore a valid question for these closed sys-

tems. 

  

 

4.2 Criterion 2 

 

The second criterion demands that the question have a non-random, objective truth 

value in the context of the closed system. This mandates that the question makes 

sense and has at least one correct answer (and by proxy at least one incorrect an-

swer) in an objectively verifiable (observer independent) sense. Questions like, “Is 

the smallest prime number a good number?” or “What is the density of the smallest 

prime number?” would not satisfy this condition. These questions are ill-posed un-

der mathematics, so they do not have objectively true answers. However, the ques-

tion “is there a largest prime number?” does have an objectively true answer— “no” 

(there are infinite prime numbers and therefore no largest prime number exists). 

Note that here (once again) we are only concerned with pragmatic definitions of 

“objective truth” that suffice for the arguments at hand, without delving into deeper 

metaphysical questions regarding a general definition of “what is truth” or “what is 

objective”. For the purposes of this work, we define an answer as having “objective 

truth value” if it can be verified in a manner that is compatible with and logically 

follows from the fundamental rules of the system, and the verification will yield the 

same result regardless of which competent entity performs the verification.8 Note 

that the answer must be non-random and enable some mechanism and basis by 

which verification can be performed. For example, the observable values of purely 

random quantum noise would not suffice for this criterion. 

  

 

 

 

8 For the purposes of this work, we assume that the fundamental rules of the system (e.g., 

mathematics, logic, physical theories) are universally known and agreed upon. 



 

 

12 

 

4.3 Criterion 3 

 

Criterion 3 requires that the aforementioned truth value cannot be derived using a 

bottom-up approach. To illustrate, the fact that there are infinite prime numbers was 

proved (derived using a bottom-up approach) circa 300 BC by Euclid in ancient 

Greece. This was achieved by starting with basic axioms of mathematics and pro-

cessing on them collectively while following the laws of mathematics to generate 

simple theorems. These simple theorems could then be further processed on collec-

tively (again following the laws of mathematics) to generate more complex theo-

rems, and so on, until the desired answer is reached. This process illustrates a bot-

tom-up derivation approach wherein each stratum of theorems follows from and 

builds on the strata that lie beneath.  

Is it conceivable for a question to have an objectively true answer (within or 

about a closed system) when that answer cannot be derived using a bottom-up ap-

proach (within the closed system)? Gödel’s incompleteness theorems prove that it 

is impossible to prove (or derive from the bottom up in a finite number of steps) all 

truths about a closed system, from within that closed system. This surprising result 

from 1931 proved that there are true statements within a formal system that cannot 

be derived from the bottom up within that formal system (Gödel, 1931).9  

How can a true statement that is within and compatible with the framework of a 

formal system not be derivable from the bottom up within that formal system? One 

possible explanation lies in the clash between the finite and the infinite. When a true 

statement (or theorem) is derived from the bottom up, this process starts with a set 

of assumed fundamental axioms. Then, step by step, the logician combines and re-

arranges the fundamental axioms and their direct products, building up a ladder to 

the desired result (proved theorem), one rung at a time. Gödel proved that for some 

true results this process requires building a ladder with an infinite number of rungs. 

In a system of finite resources, achieving such a task that requires an infinite number 

of discrete steps is impossible. (For the purposes of this work we consider the clash 

between a system with finite computational resources and a specific halting problem 

task that can be induced to require any arbitrarily large (though finite) number of 

computational resources. This task, while technically finite, can therefore be placed 

an arbitrarily large distance out of reach for a specific system of finite computational 

resources. Accordingly, the impossibility of accomplishing the task in a bottom-up 

fashion from within the finite system mirrors the aforementioned clash between the 

finite and the infinite.)  

While there might exist myriad forms of ontological gaps (uncrossable chasms 

encountered when attempting to derive something from the bottom up), the clash 

between the finite and the infinite provides an easily intelligible form. How can a 

gap become (ontologically) impenetrable when the process of going from each rung 

of the ladder to the next higher rung of the ladder is well established? One answer 

is to create a region on the ladder that has infinite rungs. Imagine, for example, a 

 

9 Not all truths about, within, or pertaining to a system are truths that are necessarily acces-

sible from within the system. 
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ladder that is 90 feet tall and split into 3 regions. In the lower thirty feet of the ladder 

there are 30 rungs to climb. In the upper 30 feet of the ladder there are also 30 rungs 

to climb. But in the middle 30 feet there are an infinite number of rungs to climb. 

No entity constrained by finite resources could climb all the way from the bottom 

to the top of the ladder (rung by rung). Nonetheless, a finitely constrained en-

tity could make considerable progress by starting from the bottom (getting as far as 

30 feet up) and then naively extrapolate that if they have made it this far, there must 

be no reason why they can’t make it all the way up. This is a particular danger of 

the reductionist agenda (overextrapolation to untested regimes).   

Shortly after Gödel published his famous theorems proving that (within specific 

formal systems) mathematical truths exist that cannot be derived from the bottom 

up in a finite number of steps, Alan Turing proved that in computer science, too, 

there exist problems whose answers cannot be derived from the bottom up in a finite 

number of steps within the system. Turing proved that no general algorithm can 

correctly solve the Halting Problem in all cases, using a bottom-up approach and a 

specified finite number of steps (Turing, 1936). The Halting Problem is a decision 

problem which seeks to find out whether programs fed in as inputs, x, to a given 

computer, M, will ever finish their computations, or whether they will simply keep 

computing forever (lost on an infinite wild goose chase). Using a clever and indirect 

tactic, Alan Turing proved that in general there is no bottom-up shortcut to know 

which case it will be: will a program halt, or not halt? The only effective general 

method to determine whether a program will halt is to start running the program and 

wait it out. The program might run for a second and then halt, or a million years and 

then halt. It might run for a billion years and then halt, or it might even run for an 

infinitely long period of time and never halt.10 In his proof that the Halting Problem 

is generally undecidable, Turing showed that there is no general shortcut—we 

simply cannot rapidly know in general whether a program will halt or not, or how 

long the process will take if it does halt. This was one of the first yes/no decision 

problems that was proven to be impossible to solve.11 

It is also important to note that the Halting Problem is typically generalized for 

a Turing machine with infinite memory. This, of course, is impossible to build 

within a finite system. However, for our purposes either a hypothetical Turing ma-

chine with infinite memory or a physical Turing machine with a large, but finite 

memory will suffice. This is because the number of physical states that a Turing 

machine can explore without repeating itself is 2^(number of memory bits). In this 

way even a relatively small Turing machine can be made to have more physically 

realizable states than the estimated number of computations that could be achieved 

in our idealized universe. It is therefore relatively straightforward to produce a real 

Turing machine for which a specific instantiation of the Halting Problem could not 

be solved from the bottom up within our idealized universe (see Appendix A). This 

is to say that for some specific program inputs, we could never determine (in a 

 

10 Assuming a fixed computation rate 

11 More details on the specific types of input/computer pairings that we consider of interest 

in this work can be found in Appendix A. 
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bottom-up fashion from within the confines of our computationally bounded uni-

verse) whether the program will halt or not halt. 

 

 

 

4.4 Criterion 4 

 

The fourth criterion is that the evidence necessary to argue for the truth value of the 

answer (increase its a posteriori credence, conditioned on an event) is compatible 

with and containable within the constraints of the closed system. Therefore, the an-

swer is hypothetically knowable within the system. To elaborate, a truth that cannot 

be derived from the bottom up is one thing, but if it can’t be known even in principle 

(and perhaps has no causal force) within our universe, does it matter? If, for example 

37-dimensional butterflies do exist in some other universe but cannot interact with 

our universe in any way and even knowledge of their existence cannot be reasonably 

be argued for or against within our universe, one may question whether this truth 

has any importance. Are we just lost in Meinong’s Jungle of abstract hypotheticals 

(Meinong, 1910)? For many years, this inaccessibility presented an impasse. How-

ever, in 2021 groundbreaking new work in computer science shattered this impasse. 

In a technical, 206-page paper entitled “MIP* = RE,” Zhengfeng Ji, et al. for the 

first time proved that the answer to the Halting Problem is at least knowable (Ji et 

al., 2021).12 That is to say that if Bob already had the answer to a specific halting 

problem (e.g., the answer was provided by an oracle), then Bob could share the 

answer with Alice in such a way that Alice could verify that the answer is correct. 

Furthermore, this verification process could be performed by Alice in a short, fixed 

period of time, despite the fact that Alice cannot possibly derive the answer herself 

(from the bottom up, within her closed system). This satisfies the fourth criterion, 

that the answer must be knowable within the closed system. 

This radical new approach (“MIP*=RE”) that makes answers to the Halting 

Problem knowable relies on “interactive proofs”. Unlike standard, static proofs that 

build up theorems stratum by stratum, these proofs require interaction between an 

honest verifier and one or more untrusted provers. In general, the provers are as-

sumed to possess abilities that the verifiers do not possess (e.g., much greater com-

putational power, or access to an oracle). Thus, while the provers can obtain the 

answer to the problem, the verifier cannot replicate the procedure. Therefore, if the 

provers are to convince the verifier that they have actually solved for the correct 

answer (and are therefore not lying), they must provide incontrovertible evidence 

in a roundabout fashion known as an interactive proof.  

 

12 We assume a broad notion of “knowable” here. The answer could be known by acquaint-

ance, but not by description. It might be observable, but not inferentially explainable accord-

ing to the known laws of the system. This idea of knowledge is one of the roots of empirical 

science. Of course, in a question, the sought answer is formulated in relation to a description. 

However, we assume that the exact content of the answer could be known by acquaintance. 

The interesting task, then, is to show afterwards that such a non-descriptive knowledge fits 

the initial description of the sought answer. 
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As a rough analogy for an interactive proof, we can imagine a game played between 

Alice, an honest verifier who is blind, and Bob, an untrusted prover who has good 

vision (Hartnett, 2020). Alice possesses two marbles which are identical in size, 

shape, density, and surface smoothness. Bob points out that while identical to the 

touch, these marbles are visually distinct (e.g., different colors). However, Alice 

won’t automatically trust Bob’s assertion and lacks the ability to verify the assertion 

directly herself. Instead, she devises a game to put Bob’s assertion to the test. She 

shows one marble in her right hand and designates it as Marble #1. She shows the 

other marble in her left hand and designates it as Marble #2. Now she puts both 

marbles behind her back and swaps them a secret number of times (Bob cannot see 

behind her back). Now she again presents the marbles to Bob to test whether he can 

still identify Marble #1 from Marble #2. Note that Alice knows which marble is 

which by virtue of knowing how many times she switched the marbles behind her 

back. If Bob were to correctly distinguish between Marble #1 and Marble #2 just 

once, it could simply have been a lucky guess. But Alice can repeat the game as 

many times as she likes. If Bob continues to correctly distinguish between the mar-

bles, time and time again, proof of his assertion (that they are visually distinct) 

mounts. The probability of Bob getting the correct answer in every game by chance 

alone is one in 2N, where N is the number of games he has played. By playing the 

game over and over, Alice can effectively “prove” to within an arbitrarily tiny un-

certainty (for example only one chance in a trillion) that Bob is not lying.13 This 

analogy illustrates the nature of an interactive proof.14 

Zhengfeng Ji et al. took the idea of an interactive proof and supercharged it. They 

asked what types of interactive proofs could be constructed if there were more than 

one prover working in tandem (with still a single verifier). Moreover, what if the 

multiple provers could not communicate with one another directly, but only shared 

links provided by quantum entanglement? In fact, “MIP” stands for “Multiple In-

dependent Provers”, and the “*” indicates that they share quantum entangled states. 

“RE” stands for the class of recursively enumerable languages. To great surprise, 

the researchers found that these types of interactive proofs could verify answers to 

the Halting Problem.  

 

13 Note that in theory it would take infinite steps to bring Alice’s credence that Bob is telling 

the truth fully up to 1. However, there is a rapid convergence towards 1 as the number of 

steps is increased. This is fundamentally distinct from insoluble halting problems that cannot 

be solved in a finite number of steps. In the case of the Halting Problem there is no conver-

gence towards an answer. Therefore, a large finite number of steps could be taken without 

having any improved knowledge on whether the system will or won’t ultimately halt. 

14 Note that an “interactive proof” can provide compelling evidence of a fact (conditioned 

on events) in accordance with Bayes’ Theorem (built on prior assumptions of the validity of 

mathematics). The “interactive proof” is a verification method. Fortunately, the iterative tests 

of the interactive proof can be extended to impose an arbitrarily high bar to pass, so as to 

overcome any finite level of a priori skepticism (i.e., any prior greater than zero). Nonethe-

less, despite the name “interactive proof”, this verification method does not prove a statement 

beyond a shadow of a doubt, but instead it provides compelling evidence in support of gained 

knowledge. It is therefore potentially fallible in a sense. 
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In general, there is no shortcut to the Halting Problem. The only general way to 

determine whether a program will halt or not is to wait it out (wait for the compu-

tation to reach a point where it halts). This could take a year, a million years, a 

billion years, or infinite years— one just can’t know a priori or predict it. (Moreo-

ver, for certain specific programs it is generally believed that no significant bottom-

up shortcut (even a tailored one) exists—see Appendix A.) However, the “MIP* = 

RE” researchers showed that if some provers (Bob) knew that the program does in 

fact halt (perhaps after one billion years at a fixed computation rate) then Bob could 

use a relatively short interactive proof to convince the verifier (Alice) that the pro-

gram does in fact halt.15 Moreover, the short interactive proof has a small, finite 

number of computational steps that is independent of how long the program runs 

before it halts. For example, if the interactive proof takes ten seconds to carry out, 

it will take the same ten seconds to carry out regardless of whether the program 

takes one year or one billion years to halt.16 Alternatively, if the program never halts 

(runs for infinite steps) then Bob cannot provide compelling evidence of this fact.  

By providing objective, compelling evidence (interactive proof) to Alice that a 

specific program does halt (given a specific Turing machine construction), Bob has 

gifted Alice a small amount of additional knowledge (information) about her closed 

system. Prior to her interaction with Bob, Alice could enumerate the possible an-

swers to her specific halting problem: 1) the program halts, or 2) the program 

doesn’t halt. She may also have been able to put rough bounds on the probabilities 

of each outcome. Now, with Bob’s help, if the program does in fact halt, Alice can 

refine those probabilities (to indicate that the program almost certainly halts). In 

information theory, this process of refining one’s a posteriori credence of a state-

ment, given the outcome of an event, is identical to gaining information. If, on the 

other hand, the program doesn’t ever halt, then Bob will not be able to provide 

compelling evidence one way or the other, and Alice’s initial credence of the state-

ment will remain unchanged (no information gained). For our interests we will fo-

cus on the cases where Alice does gain information. (Note that if Alice keeps asking 

these types of questions for different, randomly seeded programs, she is very likely 

to stumble upon cases where she does gain information about her closed system that 

she could not have derived from the bottom up within her closed system—see Ap-

pendix A.) 

Let’s try to make this hypothetical interplay between the verifier (Alice) and the 

provers (Bob) a little more concrete. As a first example, in w2, Alice would exist as 

a simulated conscious being within the laptop universe whereas Bob could be ex-

ternal, real-world scientists tapping into and interacting with this “laptop universe” 

through distinct internet connections. Bob could thus project their own distinct av-

atars into the laptop universe and communicate back and forth with Alice. Note that 

anything Bob present to Alice must be done in a way that is fully compatible with 

 

15 It may be assumed here that Bob has access to (computational) capabilities well beyond 

those of Alice. Therefore, Bob can compute the answer in a bottom-up fashion while Alice 

cannot. 

16 Assuming a fixed computation rate. 
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and containable within the laptop universe (Criterion 1). Nonetheless, Bob may ad-

ditionally have access to external computational tools that don’t or can’t exist within 

the “laptop universe” (such as supercomputers or quantum computers) that enable 

Bob to derive answers that Alice could not.17 

In an alternate scenario, we could envision that the closed system is w1, and Alice 

is a human scientist within this universe. In this scenario  Bob exist as alien beings 

from beyond the universe (perhaps from a parallel universe). Once again, Bob may 

manifest themselves within Alice’s universe in order to communicate with Alice, 

but only in ways that are compatible with and containable within Alice’s universe.  

Alice, as a good scientist, would have to be a priori skeptical of the alien’s fan-

tastical claims of having solved the Halting Problem and would put the aliens to the 

test with an interactive proof. She must assume the laws of physics of w1 and some-

how verify that the aliens are not in direct communication with one another for the 

duration of her testing. For example, perhaps she would first space the aliens out on 

either side of her and at great distances. By posing questions to aliens on either side 

of her simultaneously (by transmitting the questions as light signals) and timing the 

aliens’ responses (also light signals) Alice could verify (based on the timing of the 

return signals) that the aliens are not secretly communicating with one another 

within w1 (colluding during the test), lest they be communicating faster than the 

speed of light. (Note that faster-than-light communication would break the rules of 

w1, irrespective of whether our actual universe is thus constrained.)18 After com-

pleting her full barrage of questions (the interactive proof), Alice will have the data 

that effectively “proves” something that can’t be derived from the bottom up within 

her universe—that a specific instantiation of the Halting Problem does in fact halt.  

Accepting an interactive proof conducted with aliens from another universe may 

seem like cheating. It may feel as if new information is being smuggled into the 

“closed system” universe by bringing in beings from outside the universe. However, 

this sentiment is partially misplaced. The aliens are not introducing a new truth into 

the closed system. They are simply illuminating a truth that already exists within 

the closed system.19 The true answer to the specifically posed Halting Problem al-

ready existed within (and was entailed by) the scope of the closed system, it was 

simply unknown (and unknowable from the bottom up within the system). The al-

iens only helped to make it known (converting the true facts into gained 

 

17 Note that Bob’s assertions to Alice do not carry any weight on the basis of Bob’s authority, 

credentials, or assumed methodology. Any weight that these statements carry is on the basis 

of the results of the interactive test that Alice conducts with Bob. 

18 Note that this constraint on faster-than-light communication is only one such example 

constraint, not an absolute constraint. One may simply posit that there is a means of preclud-

ing any cheating facilitated by communication between Bob in the closed system (by alternate 

mechanisms). 

19 Note that this particular example, as presented, still does require that the idealized universe 

be open to the input of non-random information from outside the idealized universe. There-

fore, this particular example would not demonstrate strong emergence. However, in Sections 

6 and 7 we describe how a similar effect may be achieved without the input of non-random 

information from outside the idealized universe. We further explore this possibility in relation 

to the Halting Problem in Appendix D. 
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information/knowledge that is instantiated in a person or machine within the uni-

verse). To further illustrate, we could imagine two metaphysically distinct hypo-

thetical versions of our idealized universe, Universe A in which the specifically 

posed Halting Problem halts, and Universe B in which it does not. Everything else 

about the two hypothetical versions of our idealized universe is identical (as far as 

can be determined from the bottom up within the closed system). Furthermore, we 

will ensure that everything that the aliens do within Universe A and Universe B is 

strictly identical. In both hypothetical universes the aliens will act in the exact same 

way and communicate the exact same signals. However, in Universe A, the aliens’ 

communications will result in conclusive proof that the specifically posed Halting 

Problem halts, whereas in Universe B, the exact same communications will result 

in inconclusive proof. (In Universe B the alien’s ramblings will likely seem inco-

herent.) Therefore, even though Universe A and Universe B were fully identical to 

each other up to this point in time and both receive identical inputs from the aliens, 

the evolution of Universe A will diverge drastically from Universe B from this point 

in time forward as a result of different truths already contained within (and entailed 

by) the scope of each hypothetical universe. (In a sense, the hypothetical universes 

diverge in behavior due to a difference in their “ethereal information”.) To reiterate: 

it is important to emphasize that the divergent evolution of hypothetical Universe A 

vs. hypothetical Universe B is independent of (not caused by) the content of the 

input provided by the aliens. 

 

Note 4.4.1: The truth (of whether or not the specifically posed Halting Problem 

halts) is likely to be logically entailed from the bottom up even if it is not de-

rivable from the bottom up (with a bounded computational resource). For ex-

ample, the answer to the Halting Problem might be entailed by the way in which 

Universe A and Universe B are physically constituted. Therefore, if Universe 

A and Universe B are identical in how they are physically constituted, they 

would both have the same answer to the Halting Problem. This, however, does 

not change the argument herein. In this thought experiment, Universe A and 

Universe B are not physically instantiated universes. Rather, they are two hy-

pothetically distinct possibilities of a single universe. Universe A and Universe 

B are identical in all aspects of their physical constitution (as far as can be 

known from the bottom up within the system) and are only distinct with respect 

to their hypothetical answer outcomes (ethereal information), which cannot be 

known from the bottom up within the system. 

 

Note 4.4.2: The universes are bounded by their computational capacities. Ac-

cordingly, the necessary consequences entailed by the logic of the fundamental 

rules of the system may not be derivable from the bottom up within the closed 

system. Furthermore, if the consequences are not derivable, then under a digital 

physics backdrop they cannot be causally instantiated in a bottom-up fashion. 
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4.5 Criterion 5 

 

Through the interactive proof conducted between Alice and Bob, Alice gained 

knowledge about her universe.20 While it remains controversial as to whether pure 

information can have direct causal consequences on its own (likely not), when in-

formation is instantiated into a person or machine as gained knowledge (or gained 

information), it arguably can have physical, causal consequences. For example, the 

mere abstract fact that a specific Halting Problem does halt may not have causal 

power on its own, but if this fact is made evident to Alice, then she can act on this 

newfound knowledge in physical ways by telling her friends, typing up a paper, or 

traveling to give a talk on the topic. In fact, we can even remove any direct human 

or consciousness complications. We could just as easily replace Alice by a mindless 

robot or computer that will interact with the aliens, conduct the interactive proof, 

verify the results and store and act on the subsequent conclusion.21 

The fifth criterion is that the resulting gained knowledge can be induced to have 

physical, causal consequences within the system. By instantiating the uncovered 

facts as gained knowledge in a person or machine, this criterion is easily satisfiable. 

For example, a computer could be programmed to trigger one action in the event 

that the evidence presented by the aliens conclusively shows that the specific Halt-

ing Problem halts (Case A), and do nothing if no evidence is presented, or if the 

evidence (interactive proof) is not conclusive (Case B). In the morbid extreme, the 

computer might be programmed to launch and detonate a massive arsenal of nuclear 

weapons if Case A occurs and do nothing if Case B occurs. Clearly the causal con-

sequences of this gained knowledge can be made very physical indeed.22 

It is noteworthy that the mechanistic behavior of the computer device described 

above (that can conduct the interactive proof, verify the results, and store and act 

on the subsequent conclusion) is effectively determined by three sources of 

 

20 Once again, by “gained knowledge” we only mean to imply that Alice can use the event 

to update her credence about the answer to the Halting Problem, thereby gaining information 

(in a Shannon entropy sense). 

21 Note that a mechanistic computer could only be induced to interact with, answer, or verify 

a problem that requires semantic understanding if it is set up to do so by an agent (e.g., a 

human) who has semantic understanding. Nonetheless, it is reasonable to believe that such a 

robot could be built with current technology and could mechanistically act on “ethereal in-

formation” that it gains and verifies. Furthermore, this robot would not require a mind, free 

will, or top-down causation in order to function. 

22 If one were to argue that this knowledge cannot be made physically causal, then one would 

have to explain why a computer device or robot that performs both the verification and the 

actions prescribed could not be built and implemented. Furthermore, it is important to note 

that “ethereal information” is non-random. Therefore, a robot acting on ethereal information 

(such as the answer to a specific halting problem) involves the robot physically acting in 

response to a verifiable regularity/fact of the universe. Accordingly, this verifiable regularity 

has causal influence in addition to “truth value”. A verifiable regularity of the universe that 

has causal influence but cannot be derived from the bottom up can be considered strongly 

emergent. This stands in stark contrast to a robot acting on purely random information (such 

as radioactive decay signals). This latter case would not indicate strong emergence.  
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information, not just the conventionally expected two sources of information. The 

two conventional sources of information that directly dictate the computer’s behav-

ior are its physical constitution (e.g., the location and connection of its fundamental 

particles along with the laws dictating the behavior of those fundamental particles), 

and the digital information fed into its processors (e.g., in bits including its pre-

loaded software and the inputs from Bob). However, in an indirect sense, the com-

puter’s behavior is also determined by a third source of information, the actual fact 

of whether or not the specific Halting Problem does halt. This is a fact that cannot 

be derived from the bottom up within the bounded system, but it is nonetheless 

entailed from the bottom up and objectively true. We might therefore call it an ethe-

real truth about the system (i.e., ethereal information). This ethereal truth (whether 

or not the specific Halting Problem does halt) dictates whether the inputs from Bob 

pass the verification test in this hypothetical universe, and therefore, whether the 

nuclear weapons are detonated.  

Additionally, we note that if the gained knowledge could not be made physically 

causal (and was perhaps only epiphenomenal), this would not rule out the possibility 

of strong emergence (see Appendix D for more discussion). In this work we are 

arguing for a set of sufficient, but not definitively necessary conditions for a partic-

ular delineation of strong emergence. 

 

 

 

5. Deductive argument for strong emergence  
 

In this section we lay out a deductive argument for strong emergence given the six 

sufficient criteria. 

 

Thus far we have addressed five of the six sufficient criteria for strong emergence. 

We have shown that an objectively verifiable truth can be compatible/containable, 

knowable, and physically causal within our universe, even if it cannot be derived 

from the bottom up. The sixth and final criterion is the trickiest: to demonstrate that 

this truth is also discoverable within our universe without any outside influences (a 

la aliens).23 For example, is it possible that even without external aliens, this truth 

could become clearly self-evident within the workings of a complex person or ma-

chine that is fully bounded by our closed-system universe? Such a discovery would 

 

23 There is a subtle difference between “knowable” and “discoverable” as defined in our 

framework. “Knowable” indicates that there exists a method by which to verify the truth of 

the statement or at least to gain knowledge about and therefore update the likelihood of the 

truth of the statement conditioned on an event (a posteriori). This method must be compatible 

and containable within the system. For example, in some scenario, we might note that the 

likelihood that a statement is true will increase if x + y/z >1. Therefore, given the existence 

of this inequality, the hypothetical statement is “knowable,” whether or not the inputs x, y, 

and z actually exist. However, in order for the statement to be “discoverable”, the inputs to 

the method must exist within the closed system (so that the inputs can be discovered, and the 

verification method instantiated within the closed system.) 
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persuasively indicate the existence of strong emergence. We contend that any phys-

ically causal phenomenon (i.e., objectively verifiable regularity) that is fully 

bounded by our universe but cannot be derived from the bottom up within our uni-

verse would constitute a clear example of strong emergence (under a digital physics 

backdrop). 

In Section 6 we will argue that answers of the aforementioned variety might in 

fact be discoverable within our universe (Criterion 6). However, first we will sum-

marize our overall argument in a deductive format. 

 

 

Premise 1. A physically causal phenomenon that is fully bounded by the closed 

system of our universe and impossible to derive from the bottom up within the 

closed system of our universe is an example of strong emergence.24 

 

Premise 2. A phenomenon is fully bounded by the closed system of our universe 

if it is a question/answer pairing wherein both the question and all possible 

answers are compatible with and containable within our universe, the answer 

is knowable within our universe, and the answer is discoverable within our uni-

verse. 

 

Premise 3. An answer is knowable within our universe if it is objectively true 

within our universe and the methods and inputs necessary to convincingly ar-

gue for this truth are compatible with and containable within our universe. 

 

Premise 4. An answer is discoverable within our universe if the inputs neces-

sary to argue for this objective truth do exist within our universe. (Discoverable 

is a subset of knowable.) 

 

Premise 5. An answer that is both knowable and discoverable can have physi-

cally causal consequences by the instantiation of the gained knowledge within 

a physical person or machine. (This assumes that a person or machine can act 

upon their gained knowledge.25) 

 

Conclusion 1. A phenomenon that is fully bounded by our closed system uni-

verse can be made physically causal within our universe. 

 

Premise 6. There exist question/answer pairings that are fully bounded by our 

closed system but not derivable from the bottom up within our universe. 

 

Conclusion 2. Cases of strong emergence exist within our universe. 

 

24 Note that if a new phenomenon is discovered that is not contingent on or supported by 

lower, more fundamental layers, then that phenomenon itself is a fundamental layer and is 

therefore derivable from the bottom up. 

25 Note, however, that this does not require “free will”. 
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So far, we have argued for the veracity all the key components of this deductive 

argument, except for the statement that the answer is discoverable (Criterion 6) 

within our universe. Unfortunately, we cannot prove out this last statement in full, 

but instead will argue for its plausibility by analogy and case studies (see Sections 

6-7 and Appendix C). 

 

 

 

6. The general case for criterion 6 
 

In this section we describe informally what Criterion 6 might entail and argue for 

its plausibility by analogy. 

 

How can convincing evidence26 of a truth27 be discoverable, if it is not derivable 

from the bottom up? One option is for the truth to pop into existence fully formed 

(self-evident/compelling) or in some such readily verifiable form. Given that this 

principle is difficult to conceptualize, we will attempt to clarify the idea using a 

photon-based analogy. According to Einstein’s Theory of Special Relativity, noth-

ing can accelerate from speeds below the speed of light up to the speed of light or 

through the speed of light. For a massive particle to do so would require that an 

infinite amount of energy be expended during the acceleration process (which is 

impossible in a universe constrained by finite resources). Once again, we have en-

countered a fundamental bound (or ontological gap) based on the clash between the 

finite and the infinite. Nonetheless, massless particles (most notably photons) do 

travel at the speed of light all the time. How do they get to this speed? They don’t 

accelerate into it; they are born at this speed, fully formed. Photons don’t take baby 

steps. They don’t learn to walk before they run. As soon as a photon is formed (for 

example emitted from an electron relaxation process) it is already (and always) trav-

eling at the speed of light. If strongly emergent phenomena are to be discoverable, 

they are likely to be born fully self-evident/compelling, in much the same way that 

photons are born at the speed of light. 

 Some scientists have also theorized the possibility of tachyons, which are hypo-

thetical particles that are born at and always travel at speeds greater than the speed 

of light (Feinberg, 1967). Compared to normal matter, tachyons would have the 

opposite problem— they cannot decelerate down to the speed of light or any lower 

speed. Loosely, if we think back to the 90-foot ladder analogy, normal matter is 

 

26 This evidence does not have to be convincing beyond a shadow of a doubt, but only suf-

ficiently compelling so as to alter the a posteriori probability distribution for the veracity of 

the answer, conditioned on the evidence. 

27 Once again, for our purposes, “truth” or “truth value” simply indicate that the information 

is non-random and can be verified in an objective sense (e.g., a fact, a law, a pattern, a regu-

larity, etc.). 
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born and trapped on the lower 30 rungs, at speeds below the speed of light. Like-

wise, tachyons (if they exist) are born and trapped within the upper 30 rungs at 

speeds above the speed of light. Neither can cross the gap in the middle. 

Bringing this back to the Halting Problem, we might posit an emergent property 

called “O” that allows for a person or machine to serve as an oracle for the Halting 

Problem. Moreover, this property might be born fully self-evident/compelling once 

the person or machine achieves a “latching state” afforded by a requisite type and 

level of complexity. That is to say that the property of “O” allows them to innately 

conjure the answer to the Halting Problem. Almost by definition we cannot explain 

directly how this property “O” works—our general pathway to understand/explain 

things is to derive them from the bottom up, which is necessarily impossible for any 

strongly emergent property. Nonetheless, persons or machines with this “O” prop-

erty could take the place of the aliens (in Section 4) and conduct interactive proofs 

with other entities within our universe that lack the “O” property. Note that in this 

way, no appeal to an entity outside of the closed system is necessary. The alien 

provers from another universe that were used in previous examples could thus be 

dispensed with. In this way the discovery and verification of an answer that implies 

strong emergence could be completed fully within the closed system of our uni-

verse. The property “O” might involve obtaining several small bits of information 

by acquaintance (e.g., experience). For example, while asleep I might have a vivid 

recurring dream that gives me a strong feeling that a specifically posed Halting 

Problem does in fact halt. The bits of information obtained by acquaintance from 

the dream could then be used as inputs in a mathematically rigorous interactive 

proof in order to determine (through verification) whether these dreams are true 

visions resultant from the emergent property “O” or simply false hallucinations that 

do not reflect truth.28 In Section 7 we provide an original case study describing an 

example verification process for gained knowledge that is discoverable but not de-

rivable from the bottom up. In Appendix C, we provide additional original case 

study examples. 

It is important to note that posing and/or answering the Halting Problem is a 

process that can only occur at high levels of complexity. Here “high complexity” is 

taken to mean a high rung on the ladder. Whether done in computers or brains, 

asking meaningful questions like the Halting Problem requires at minimum a level 

of complexity that can support semantic understanding. By contrast a few atoms 

interacting with one another could not meaningfully pose these types of questions. 

Semantic questions do not make sense to such small clusters of atoms. These ques-

tions/answers cannot be posed or made sense of at lower rungs of the ladder (that 

lack semantic understanding) and cannot be derived from these lower rungs (under 

finite computational resource assumptions). On the 90-foot ladder (analogy), it may 

be argued that these truths only begin to have viable existence some 40 feet into the 

air. Nonetheless they are verifiably true. These questions/answers can only exist at 

 

28 False hallucinations might be considered random information, depending on their 

source. 
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higher levels of complexity.29 Therefore, these questions and their answers super-

vene on the physical substrate that is contemplating the questions. 

What is more, there is a pathway by which these truths could be instantiated as 

gained knowledge/information and induced to have physically causal effects. Im-

portantly, this pathway (i.e., an interactive proof) only makes use of informational 

states that are fully compatible with and containable within the closed system of our 

universe (given rules established from the bottom up). This existing pathway makes 

these questions/answers knowable. What we do not necessarily know is whether the 

inputs required to go down this pathway exist and are accessible in our specific 

universe (i.e., are these questions/answers discoverable?). 

It is likely the case that the objectively true answer to a specific Halting Problem 

is constrained (i.e., set to a singular value) based on the fundamental truths that exist 

at the lowest rung (e.g., fundamental axioms of mathematics). This, however, does 

not change the argument presented herein at all. If the true answer to a Halting 

Problem cannot be derived from the bottom up (within the closed system), then it 

cannot propagate causal influence from the bottom up from within the closed system 

(per a digital physics perspective).30 If the true answer to a Halting Problem does 

have causal influence (when instantiated as information/knowledge) then that 

causal influence must enter at a higher rung (i.e., strong emergence).31 

So far no one has come forth claiming to be an oracle for the Halting Problem 

(possess the property of “O”). We don’t have any evidence to suggest whether or 

not this strongly emergent property exists within our universe. Nonetheless, in Sec-

tion 7 and Appendix C, we present case studies which suggest that some types of 

truth might be discoverable even when they are not derivable from the bottom up. 

 

 

 

7. Case study in support of criterion 6: testing for Boltzmann brains 
 

In this section we present a case study illustrating how gained knowledge about a 

truth could be discoverable, even if it is not derivable from the bottom up. This case 

study is supplemented by additional original case studies in Appendix C. These case 

 

29 Note that a mechanistic computer could only be induced to interact with, answer, or verify 

a problem that requires semantic understanding if it is set up to do so by an agent (e.g., a 

human) who has semantic understanding. 

30 Note that this assumes a universe whose structure is similar to a computer, in which each 

subsequent timestep must be computed from the prior timestep(s) and any randomly injected 

information (e.g., from quantum mechanics). 

31 To recap in brief, we contend that the answer to a specific halting problem is an objectively 

verifiable regularity pertaining to our universe. Furthermore, physical systems within our 

universe can be induced to physically act on this gained information/knowledge. Therefore, 

if the question/answer can only be stated at higher levels on the complexity ladder and the 

answer cannot be derived from lower levels on the complexity ladder, then the answer should 

be considered an example of strong emergence. The answer has causal influence that cannot 

(in principle) have propagated in a continuous fashion from the bottom rungs of the ladder 

up to higher rungs (while staying within the closed system). 
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studies illustrate the plausibility of discoverable knowledge absent derivability 

(even if in some cases the discoverable knowledge is only epiphenomenal. 

 

We present an original case study highlighting a potential truth that might be dis-

coverable even if it is not derivable from the bottom up. The purpose of this case 

study is to argue for the plausibility of criterion 6 (by example). In this case study, 

a conscious observer gains information about the likelihood that they are not a 

Boltzmann brain.32  

A Boltzmann brain is a type of entity postulated by a famous thought experiment 

from physics that posits that conscious, physical brains can and will randomly as-

semble in outer space (over the course of very long timescales) purely as a result of 

random fluctuations (Cotzen, 2020). For example, it is very improbable for atoms 

to randomly take on the configuration of a functional brain at any specific time, but 

over sufficiently long timescales, atoms drifting about in outer space will take on 

every possible configuration, including configurations that constitute functional 

brains. Note that this occurs without any teleological impetus. The assembly of a 

low entropy state (like a functional brain) from a high entropy state is an allowed 

violation of the second law of thermodynamics if the experiment is conducted over 

sufficiently long timescales (e.g., the Poincaré recurrence time). These fluctuations 

could be either thermodynamic or quantum in nature. Cases involving thermody-

namic and/or quantum fluctuations have been studied as thought experiments in 

cosmology (Davenport and Olum, 2010). Surprisingly, under a wide range of uni-

verse and/or multiverse conditions it has been predicted that the total quantity of 

Boltzmann brains that should (statistically) come into existence will vastly outnum-

ber the total quantity of regular brains that will come into existence, i.e., brains that 

arise through a gradual process like evolution (Carroll, 2020). Furthermore, Boltz-

mann brains can pop into existence with false memories and false impressions of 

experiences. Boltzmann brains might come (randomly) preloaded with false mem-

ories of having a body, observing the external universe around it, or having lived a 

long life. To a conscious observer, these false memories of empirical data can be 

indistinguishable from genuine memories of the external world derived from actual 

sensory organs. Note that for the purposes of our thought experiment, Boltzmann 

brains necessarily lack sensory organs. Therefore, such Boltzmann brains cannot 

interact with or absorb empirical information from outside themselves. 

This poses a conundrum of sorts. To illustrate, the predicted total number of 

Boltzmann brains that randomly happen to contain memories and experiences like 

my own will vastly outnumber the predicted total number of regular (non-Boltz-

mann) brains that contain memories and experiences like my own (Carroll, 2020). 

Therefore, by the principle of indifference, I might conclude that I am vastly more 

likely to be a conscious observer with a Boltzmann brain than a regular brain. How-

ever, if I am a Boltzmann brain, I cannot trust my memories or external experiences 

or any empirical data that I believe I have observed regarding the external world, 

 

32 Note that gained information does not necessarily imply the discovery of an objective truth 

with absolute certainty.  
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because Boltzmann brains don’t have sensory organs with which to make any ob-

servations about the external world. Therefore, I cannot use empirical data (includ-

ing the empirical sciences) in order to argue whether or not I am in fact a Boltzmann 

brain or a regular brain. 

It appears that any test that relies on empirical data about the physical universe 

or empirically derived science is potentially unreliable as it could simply have re-

sulted from false memories or false external experiences. Therefore, it is likely im-

possible for a specific conscious observer to determine whether he or she is a Boltz-

mann brain or a regular brain using a bottom-up approach. Any fundamental physics 

axioms about what the physical world consists of and how it operates (i.e., the axi-

oms that would provide the necessary foundation for the bottom-up derivation) are 

suspect precisely because they must be empirically founded. Nonetheless, we pro-

pose that under a few assumptions there is an interactive proof that can help a con-

scious observer to statistically constrain the possibility that they are a Boltzmann 

brain. (These assumptions follow from rationalism, not empiricism.) The statistical 

constraints that this interactive proof provide constitute gained infor-

mation/knowledge about the truth of the matter (whether the observer is a Boltz-

mann brain or a regular brain). This interactive proof provides an example of a truth 

that is discoverable even when it is not derivable from the bottom up.33  In a way, 

we are taking a rationalist stance for this case (although the general notion of infor-

mation/knowledge we have been considering does not depend crucially on this). In 

principle, a rational agent (John) could gain knowledge through a non-empirical 

interactive proof about whether he is likely a Boltzmann brain or a regular brain. 

The assumptions for conducting this interactive proof are as follows.34 First, we 

assume that an observer (either a Boltzmann brain or a regular brain) is presently 

aware of their own consciousness and thinking.35 Second, we assume that mathe-

matics and logic are a priori valid and consistent, independent of the empirical, 

 

33 We assume that no empiricist or rationalist bottom-up approach could answer this same 

question. An empiricist bottom-up approach would require empirically derived axioms that 

cannot be trusted if obtained in a Boltzmann brain that lacks sensory organs. At the same, a 

purely rationalist bottom-up approach (without access to empirical axioms) would likely be 

able to equally arrive at both answers (Boltzmann brain vs. regular brain) without being able 

to select one answer over the other (therefore precluding a rationalist bottom-up resolution to 

the question). We leave further exploration of the limitations of such bottom-up approaches 

to future work. 

34 We contend that these eight assumptions are reasonable and defensible metaphysically for 

a possible idealized universe (regardless of how our universe is actually constituted). Others 

might posit different fundamental assumptions and create a different test accordingly. None-

theless, the point is to illustrate a potential example wherein knowledge can be verifiably 

gained within an idealized universe even if that knowledge cannot be derived from the bottom 

up. 

35 We assume that the observer can distinguish between the sensation of their current, pre-

sent awareness of their own consciousness and memories that might suggest that they were 

conscious in the past. Note that such memories might be false memories. Therefore, the ob-

server can might have false, past memories of having performed and passed the proposed test, 

but these memories cannot be relied upon. The observer can only trust thoughts from their 

current, presently known “continuity of mind”. 
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physical universe and that the observer can consciously and knowingly perform 

mathematical and logical operations. Third, we assume that larger and more com-

plex Boltzmann brains are less likely to form than smaller or less complex ones (and 

furthermore that the larger and more complex Boltzmann brains remain functionally 

intact, by chance, for a shorter duration of time). This follows from statistical (math-

ematical) arguments concerning the likelihood of low entropy states forming by 

chance alone (and remaining in that functionally intact, low entropy state for a finite 

period of time).  Fourth, we assume that the computational resource available to a 

Boltzmann brain (i.e., total number of computational steps that can be undertaken 

while functionally intact) is constrained by its size, complexity, and the time over 

which the Boltzmann brain remains functionally intact. Fifth, we assume that an 

observer can act on random information that is created moment by moment and not 

fully determined by prior events (e.g., random inputs from quantum mechanics—

equivalent to access to truly random coin flips).36 Sixth, we assume that PNP (see 

Appendix B for elaboration). Seventh, suppose that John can knowingly possess 

continuity of mind (free from false memories pertaining to his own internal thinking 

during this period) for at least a small, finite period of time (presumably the actual 

time over which the Boltzmann brain is functionally intact).37 Eighth, we assume 

that there is no retrocausality (i.e., that events in the future cannot causally affect 

events in the temporal past, taken from John’s perspective and within John’s static 

frame of reference). Note that John can become convinced of assumptions 1,2,3,4,6, 

and 7 by processes of internal thought and reflection (taking a rationalist stance).38 

Even if John cannot become convinced of assumptions 5 and 8, he can still gain 

knowledge (from the proposed test) that could not otherwise be derived from the 

bottom up. He could gain the knowledge that either he is not likely to be a Boltz-

mann brain, or that assumptions 5 and/or 8 do not hold. 

Using these assumptions, we can create a test for an individual (e.g., John) to 

determine if it is statistically unlikely that he is a Boltzmann brain. This test will 

help to determine the relative likelihood of whether John is actually perceiving and 

interacting with an external world, or whether he is simply imagining it through 

false memories/experiences in his brain. We suggest that the blockchain could be 

an exemplar way to implement this test—a suggestion we will not dig into in detail 

in this work but will investigate as future work. Nonetheless, we note that a similar 

 

36 Note that this assumption does not require free will. It only requires that truly random 

information exists within the system and can have causal influence. 

37 We assume that while John is in a state of “continuity of mind”, he might still have con-

tinued false experiences of an external world but will not have false memories of things that 

he has thought or computations that he has mentally performed within this period of time 

(and furthermore is aware of the trustworthiness of his internal, mental thinking and compu-

tational processes while in this state). This case study assumes a type of rationalist stance. 

38 These assumptions fall into three broad buckets (each of which John can assess by internal 

processes without external empirical data): basic assumptions (e.g., the validity of mathemat-

ics and logic), consequences of mathematics and/or logic (e.g., PNP, statistical arguments), 

and assumptions based on direct awareness/intuition (e.g., awareness of one’s own present 

consciousness). 
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test can be constructed from any NP-complete problem (even if it is not mediated 

by a blockchain). Note that an “NP-complete problem” is a class of problems in 

computational complexity theory. Each problem in this class has a solution that can 

be verified in polynomial time but can only be solved in non-deterministic polyno-

mial time. Moreover, any NP-complete problem can be used to simulate any other 

NP-complete problem (see Appendix B for additional information). 

 

Test to assess likelihood that John is not a Boltzmann brain. 

1) John identifies a system that presumably exists in the physical world inde-

pendent of and external to his brain (from his perspective) and involves solving 

computationally expensive NP-complete math problems with regularly pub-

lished results. For example, a blockchain could be established wherein the proof 

of work requires solving NP-complete math problems and publicly disseminat-

ing their solutions for each block as it is completed. John (from his perspective) 

would perceive the blockchain to exist and function independently from his 

brain. 

2) On the basis of random information generated moment by moment (e.g., 

through quantum processes), John undertakes an action to manipulate the input 

to the NP-complete problem that is next in line to be solved. For example, John 

measures radioactive decay to obtain a random number and then sends that quan-

tity of cryptocurrency to an address on the blockchain. A cryptographic hash of 

the next block on the blockchain with this random transaction information will 

be distinct from a cryptographic hash of the next block without this random trans-

action information. Assuming that the cryptographic hash sets the seed condi-

tions for the next NP-complete problem to be solved when mining the next block, 

John has succeeded in his manipulation of the blockchain. 

3) John checks (directly using mental math) that the published solution pertain-

ing to the next block is a valid solution to the NP-complete problem that was 

posed (the specifics of this problem are contingent on John’s prior manipulation 

of the blockchain inputs). 

4) If John can complete this entire verification process while maintaining conti-

nuity of mind, then he can have increased confidence that he is not a Boltzmann 

brain (and that he is in fact interacting with a world external to his own brain). 

 

This test functions on the basis of two distinct notions. First, John must argue that 

it is highly improbable that the correct answer to the NP-complete problem would 

have been found by dumb luck alone. Second, John must argue that it is highly 

improbable that John’s subconscious would have performed the required computa-

tion (unbeknownst to his conscious self) in order to feed the correct answer to his 

conscious mind.  

First off, John can mathematically analyze the probability that the published so-

lution to the NP-complete problem is in fact the correct solution by random happen-

stance (dumb luck alone). This probability can be determined by considering the 

solution as a pair mapping between two numbers, the seed number that defines the 

problem, and the solution number to the problem. By considering the size and 
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distribution of the set of possible solutions (given a specific seed number), John can 

compute the likelihood of a seed number and its correct solution number being ran-

domly paired together. In general, this likelihood will be exceedingly low, so as to 

render the hypothesis that this fortuitous (correct) pairing occurred by random hap-

penstance untenable. 

Alternatively, John could posit that while his conscious mind was unaware of 

how the solution was determined, his subconscious mind was hard at work solving 

the NP-complete problem in a straightforward and computationally expensive man-

ner. The first question that arises is, “Why would John’s subconscious do such a 

thing?” It is conceivable that his subconscious might be required to perform some 

interpretation, rectification, error correction, cognitive dissonance dissipation, or 

fill-in-the-blank work to ensure that John has a reasonably sane, acceptable, or co-

herent experience for his conscious mind. This might (or might not) be a minimum 

criterion for John to function as a conscious observer at all.39 However, it is difficult 

to fathom that John’s conscious mind could not perform as a functional observer if 

obscure mathematical details in the weeds of his perceived reality did not fully 

check out. For example, if John found out that the published solution to the block-

chain did not mathematically check out, he would likely not be rendered insane or 

incapacitated to the point of no longer existing as a conscious observer. Rather, he 

would more likely believe that there was a bug in the blockchain mining code, and 

that the blockchain as it was set up was flawed. Therefore, if John were a Boltzmann 

brain, it is difficult to understand why John’s subconscious would expend such a 

computational resource to ensure the validity of mathematical details of such minor 

importance. 

However, this proposition (that John’s subconscious solved the NP-complete 

problem unbeknownst to his conscious mind) becomes even more untenable under 

the assumptions that computational resources are limited by the size and complexity 

of a Boltzmann brain and that there is an (exponential) inverse correlation between 

the size/complexity of an object and the likelihood of that object assembling from 

random fluctuations. (This exponential inverse correlation comes from statistics, 

and we assumed the trustworthiness of mathematics from the outset.) John may test 

his conscious mind and its computational power using phenomenological tests (e.g., 

one such test might check how quickly John can consciously solve math problems 

of a certain type). He may also presume that the computational resource needed by 

his subconscious mind is a finite quantity related to the computational power 

(scope) of his conscious mind. The necessary computational resource of John’s sub-

conscious mind would be based on the subconscious computational work necessary 

to support John’s conscious mind (e.g., maintain sanity or conscious observer sta-

tus). Arbitrarily adding the need to solve computationally expensive NP-complete 

problems could significantly increase the necessary computational resource of 

John’s subconscious mind. Furthermore, the difficulty of the posed NP-complete 

 

39 Here we do not attempt to adjudicate on the issue of what requirements are necessary for 

an entity to be considered a conscious observer and instead leave this as an open question for 

future work. 
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problems can be scaled somewhat arbitrarily. Therefore, if John is in fact a Boltz-

mann brain that can solve arbitrarily large and computationally expensive NP-com-

plete problems, then John’s subconscious mind must have an arbitrarily large com-

putational resource. 

In the absence of trustworthy empirical data about the physical universe, we can-

not put definitive limits on John’s subconscious computational capacity (if he is a 

Boltzmann brain). However, we can readily show that Boltzmann brains that have 

expanded subconscious computational resources in order to solve computationally 

expensive NP-complete problems should be vastly outnumbered by Boltzmann 

brains that do not have these expanded subconscious computational resources.40 

This follows from the assumption that computational resource is constrained by 

size/complexity of the Boltzmann brain and increasing size/complexity of assem-

bled objects exponentially decreases their likelihood of assembly. Therefore, by the 

principle of indifference, John is much more likely to be a Boltzmann brain without 

expanded subconscious computational resources (if he is a Boltzmann brain). This 

argument, therefore, makes it highly unlikely that John’s subconscious could or 

would solve the NP-complete problem.  

Additionally, there might exist a statistically constrained maximal computational 

capacity for any Boltzmann brain. This follows from the fact that the total number 

of computations that a Boltzmann brain can carry out (before it falls apart) is a 

product of the rate at which it can compute (correlated with its size) and the time 

over which it can compute before it falls apart or becomes non-functional (inversely 

correlated with its size). As the size of the Boltzmann brain increases and its com-

putational speed increases, its functional lifespan decreases, suggesting that a max-

imal computational power might exist.41 

In recap, John can test whether he is a Boltzmann brain by checking the solutions 

to asymmetrical math problems that are difficult to solve, but easy to check the 

solution. If John believes he lives in an external world where a blockchain regularly 

publishes these solutions, he can test the validity of one such solution, following 

each step in his mind throughout a finite time period wherein he has continuity of 

mind. If this blockchain truly exists in the external world, outside of John’s own 

mind, then it is making use of significant computational resources pooled together 

by blockchain miners from around the world. If John is truly interacting with an 

external world, this explanation makes sense. However, if John is a Boltzmann 

brain, his subconscious would have had to race ahead of his conscious mind by 

 

40 Note that the ratio between the expected number Boltzmann brains with vs. without the 

capacity to solve large NP-complete problems has an exponential dependence on the ratio 

between the computational resource needed for each type of Boltzmann brain. Therefore, 

small increases in the computational expense of solving the posed NP-complete problem lead 

to significant increases in the credence that John in not a Boltzmann brain. It is therefore 

advantageous (for this thought experiment) to take advantage of the most computationally 

expensive solved and publicly published NP-complete problems available, such as those that 

can be found in blockchain mining. 

41 Note that this case study does not crucially depend on the existence of a maximal compu-

tational capacity for Boltzmann brains. 
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using vast computational resources in order to solve the NP-complete problem cor-

rectly on its own. (Note that John’s conscious mind has a sufficient computational 

resource to verify a published answer rapidly, but not to find the answer.) The pos-

sibility of John’s subconscious successfully racing ahead is highly unlikely for the 

aforementioned reasons. Therefore, if John finds that (upon conscious verification) 

the published solution to the NP-complete problem is correct, then he can have in-

creased confidence that he is truly interacting with an external world and is not a 

Boltzmann brain. He has gained information about the truth of his circumstances 

based on an event (the results of his verification efforts).42 

 

Note: It is important that John verify the solution to the math problem himself 

and during a period of continuity of mind. He cannot outsource this step to any-

one or anything else as these could yield false memories/results. Furthermore, it 

behooves John to verify the solutions of the most computationally expensive NP-

complete problem that is available to him as his confidence (that he is not a 

Boltzmann brain) can grow exponentially with the computational expense re-

quired to solve the math problem. In this work we only outline this case study. 

We leave a more rigorous formalization of this case study argument as future 

work. 

 

This case study showcases an example of a truth (gained information/knowledge) 

that could be learned through a type of interactive test, but not derived from the 

bottom up. Here John’s direct mental verification of the solution to the math prob-

lem is like an interactive proof. However, this truth (that John is likely not a Boltz-

mann brain) could not be derived from the bottom up (i.e., from some sort of first 

principles) given that empirical evidence about the physical universe could not be 

trusted. This truth is therefore potentially discoverable even though it is likely not 

derivable. 

 

Note: The test described above makes use of statistics and random sampling and 

could potentially be applied in other skeptical scenarios (e.g., brain in a vat) as 

long as random sampling criteria are met. Other applications of this argument 

are beyond the scope of this work. 

 

In Sections 6-7 and Appendix C we have argued that truths may be discoverable 

within a closed system even if they cannot be derived from the bottom up (Criterion 

6). First, we gave an analogy to help conceptualize how strong emergence might be 

 

42 Of course, if John is too skeptical to believe in the 8 assumptions we have laid out, then 

this test will not work for him. For example, if John does not trust the logic or mathematics 

performed by his mind, then this test will not work. However, if John does trust the 8 assump-

tions we have laid out, then by performing the test on increasingly difficult math problems, 

John can gain increased confidence that he is not a Boltzmann brain. In theory, if arbitrarily 

large math problems can be used (and John trusts the 8 assumptions), then John’s increased 

confidence that he is not a Boltzmann brain can overcome any prior prejudice to the contrary 

(any prior greater than zero). 
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born fully formed (self-evident/compelling). Second, we presented a case study of 

a truth that might be discoverable within our universe even if it is not derivable from 

the bottom up within our universe. This case study was presented as a brief sketch 

of an argument without going into significant detail, which is left for future work. 

Additional original case studies are presented in Appendix C. It is notable that the 

case studies we have presented in this work all rely on a conscious observer and 

private information (that is accessible to the conscious observer themselves but is 

seemingly not equally accessible to an outside party). It is unclear whether all dis-

coverable but non-derivable phenomena must share in these traits or whether these 

case studies are limited by the authors’ abilities to imagine examples of a totally 

different nature. We leave these further questions as future work. Furthermore, we 

note that in each case study, knowledge by acquaintance is accumulated and used 

as evidence in a process that loosely resembles an interactive proof wherein infor-

mational knowledge can be gained.  

In our overall work, the use of the Halting Problem and its verification by the 

interactive proof of “MIP*=RE” is critically important. Within the backdrop of dig-

ital physics, the verification of answers to the Halting Problem makes formal and 

explicit use of an interactive proof between multiple external parties that demon-

strates verification in an external fashion that is credible to external observers (un-

like case studies #1-#4). This external verification increases the reasonableness of 

assuming that the gained knowledge can be made physically causal and affect the 

system at large. Case studies #1-#4 are only used to illustrate the plausibility of 

truths that are discoverable but are not derivable. The deductive argument (Section 

5) that makes use of the six sufficient criteria is based upon the Halting Problem 

and “MIP*=RE”. We also note that it is possible that facts of the Boltzmann brain 

case study type are discoverable, while facts of the “O” type are not. However, if 

true, this would lead to questions for future work, namely determining the bounds 

on what types of truths are discoverable but not derivable and why those bounds 

exist (see Appendix D for further discussion). 

Taken together with the previously discussed criteria, Criterion 6 completes the 

deductive argument for strong emergence (Section 5). We have analyzed known 

cases of question/answer pairings that are 1) compatible/containable, 2) non-ran-

dom but objectively true, 3) non-derivable, 4) knowable, and 5) have the potential 

to be made physically causal within our universe. Moreover, we have argued for the 

plausible existence of truths that are 6) discoverable, even if they are not derivable 

from the bottom up. 
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8. The bigger picture 
 

In this section we briefly summarize one possible reason why the existence or non-

existence of strong emergence remains an open question. 

 

 

If strong emergence really does exist, why haven’t more cases been observed and 

reported? We believe this may result from a selection bias that has more to do with 

where and how scientists and philosophers look for strong emergence, than the ac-

tual abundance or scarcity of strongly emergent phenomena. To illustrate, when 

Kurt Gödel set off to determine whether truths exist that cannot be derived from the 

bottom up within their own formal systems, the answer was not obvious. In order 

to prove that at least one truth exists that cannot be derived from the bottom up, 

Gödel had to devise subtle, ingenious, and incredibly roundabout proofs. Even to-

day we have no idea whether underivable truths of the type that Gödel identified are 

rare or commonplace. By definition, there is no direct path for finding them. (More-

over, it is likely that if strong emergence were encountered it might be difficult or 

impossible to identify it as such in certain cases.) If a phenomenon cannot be pre-

dicted from the bottom up (strong emergence) and is not known from direct expo-

sure, then it tends to evade our scientific tools as we know them. Reductionism has 

proven an incredibly powerful tool in the scientific toolchest thus far. It is therefore 

easy to extrapolate and assume that what has worked so well in some domains will 

continue to work through every domain. However, this is an unsupported extrapo-

lation—an overextrapolation.  

In general, we test our assumptions by looking for agreement between prediction 

and experiment. We might test the reductionist assumption that there are no strongly 

emergent causal properties at any level except for the bottom rung by predicting the 

results of complex phenomena from the bottom upwards and comparing predicted 

results to real-world experiments. However, to date, scientists cannot predict com-

plex phenomena (or their downstream effects) at any reasonable scale. The world’s 

fastest supercomputers still struggle to simulate more than about a billion atoms 

interacting together at a time. This size is approximately 15 orders of magnitude 

smaller than the scale at which humans live. Since we can’t yet make predictions 

regarding complex phenomena at an appropriate scale, we cannot and have not be-

gun to test the assumptions of reductionism. We cannot reasonably begin to rule out 

the possibility that strongly emergent properties have causal effects—chaos theory 

has thus far prevented us from conducting the necessary simulations and experi-

ments.  At present, there is simply no sufficient experimental data for or against the 

hypothesis of reductionism. Reductionism is an interesting, though untested hypoth-

esis. 
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Conclusion 
 

In this work we have developed a conceptual framework for strong emergence and 

argued for the plausibility that strongly emergent phenomena exist in our universe. 

An important facet of the conceptualization of strong emergence presented in this 

work is that while these strongly emergent phenomena have causal power to influ-

ence physical events, that causal power cannot have propagated from the bottom 

up. We have identified six sufficient criteria for strong emergence: a question/an-

swer pairing that is 1) compatible and containable, 2) non-random but objectively 

true, 3) non-derivable from the bottom up, 4) knowable, 5) physically causal, and 

6) discoverable within our universe. Furthermore, we have presented a deductive 

argument based on six premises and two conclusions in support of strong emergence 

(based on the six sufficient criteria). Of the six sufficient criteria, we make a case 

for the real existence of five of the criteria and argue for the plausibility of the sixth 

criterion by analogy and case studies. If discovered, the existence of strongly emer-

gent phenomena would shatter the perspective that all of reality is reductionistic and 

would have implications for questions regarding free will and other philosophical 

questions. The computer science-based framework presented in this paper (used for 

the analysis of strong emergence) will be applied to these alternate philosophical 

questions in future work. 
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Appendices 

 

 

 

 

 

Appendix A  

Information about the Halting Problem, contiued 
 

At several points throughout this work, we refer to a “specific”, “specifically 

posed”, or “specific instantiations” of the Halting Problem. This language is short-

hand used throughout the main text for the purpose of brevity. Herein we will ad-

dress more explicitly what types of questions qualify under this category for the 

interests of this work. To summarize up front, we are interested in programs for 

which there is reason to believe that it is impossible to determine whether or not the 

program will halt (from the bottom up, within the computational limits of our uni-

verse or closed system). We refer to such programs as “specific”, “specifically 

posed”, or “specific instantiations” of the Halting Problem. 

The Halting Problem (which Alan Turing proved to be undecidable over Turing 

machines) asks the question as to whether there exists a general algorithm that can 

accurately determine whether any particular program/input pair (x) will halt or not 

halt, for all possible x on a Turing machine (M). Here a program/input pair refers to 

a program that has been uniquely modified by a specific seed number (i.e., an input). 

It has been proven that this general algorithm cannot exist. 

However, this does not imply that for any given program/input pair it is impos-

sible to find a shortcut to determine whether or not that x on that M will halt. Indeed, 

there are many trivial such x for which it is readily apparent whether or not each 

will halt. Two examples are provided below: 

 

The program (pseudocode)  

print “Hello, world!” 
 

will obviously halt. Whereas the program (pseudocode) 

while (1=1) 
  print “Hello, world!” 
 

will obviously continue forever and never halt. 

 

 

As the programs become more complex, the question as to whether or not each will 

halt becomes less and less tractable, and shortcuts to determine this truth become 

less and less obvious. In fact, we contend that for some special classes of programs 

it is reasonable to believe that no significant shortcut can be used to determine 
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whether or not x will halt when run on M. We defend this assertion with the follow-

ing argument: 

1) Does each and every unique computer program that halts have a unique 

(though unknown) shortcut that accurately indicates that the program in 

question will halt? 2) Can every shortcut of the aforementioned type com-

plete its execution within the same fixed, finite number of steps, N? If both 

questions were answered in the affirmative, then given any arbitrary com-

puter program one could simply search the entire finite space of shortcuts of 

less than N+1 steps.  

 

If the shortcut were found during this finite search, then it would be known that the 

program halts. If no shortcut were found during this finite search, then it would be 

known that the program doesn’t halt. However, this process, if possible, would pro-

vide a general solution to the Halting Problem (and a way to calculate Chaitin’s 

constant, which is known to be impossible (Chaitin, 1975)). Thus, by contradiction, 

this process is not possible. Therefore, we can conclude that not every program that 

halts will have a shortcut that takes less than N+1 steps. If we choose N to be greater 

than the total number of computational steps allowed within our computationally 

bounded system, then we can show that computer programs exist that will halt, but 

for which no shortcut can be successfully run to completion within our closed (com-

putationally bounded) system. 

Below we explain an example of one such special class of programs for which it 

is reasonable to believe that no shortcut can be run to completion within our closed 

system. 

One of the most frustrating features of Gödel’s incompleteness theorems is that 

they prove not only that there exist questions whose truths cannot be derived from 

the bottom up within their own formal systems, but also that we cannot know de-

finitively which questions fall into this category. Accordingly, we cannot know for 

certain which question/answer pairings cannot be derived from the bottom up, but 

we can be assured that they do exist, and can even make guesses as to which ques-

tions are most likely to fall into this category. One strong contender (as a ques-

tion/answer pairing that cannot be solved from the bottom up) is Goldbach’s con-

jecture (Wang, 2002). 

Goldbach’s conjecture (in number theory) asserts that every even whole number 

greater than two can be expressed as the sum of two prime numbers. This conjecture 

has been successfully tested for every even whole number up to 4 x 1018 and has 

resisted every attempt at a proof since it was first proposed in 1742 (Oliveira e Silva 

et al., 2014). Many mathematicians suspect that Goldbach’s conjecture is in fact 

true but unprovable. No entity that is constrained by finite resources could possibly 

prove the truth of Goldbach’s conjecture by directly testing every even number—

there are infinite even numbers and infinite prime numbers. If no roundabout, finite-

length proof of Goldbach’s conjecture exists, then its truth (if true) cannot be veri-

fied from the bottom up. Alternatively, Goldbach’s conjecture may be false. There 

may exist one or more counterexamples—very large even numbers that haven’t yet 

been tested that cannot be written as the sum of two primes. 
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Interestingly, Goldbach’s conjecture can be posed as a Halting Problem (on a Tu-

ring machine with infinite memory). First, we can write a simple subroutine that 

will take an even whole number, u, as an input and check whether or not u can be 

expressed as the sum of two prime numbers. (If we are not concerned about effi-

ciency, we can simply have the subroutine check the sum value for every combina-

tion of two prime numbers where each prime number is less than u.) Next, we can 

write a program that will take this subroutine and progressively run it on every even 

whole number starting with the number four (incrementing the input by two in each 

step). If the subroutine finds an even number that cannot be expressed as the sum 

of two primes, then it will trigger the program to halt. Otherwise, the program will 

continue running indefinitely. Therefore, if we could determine whether or not this 

program (which can be written as a finite set of instructions) halts, then we could 

solve Goldbach’s conjecture (one way or the other). The answer to this Halting 

Problem would give us the answer to Goldbach’s conjecture. 

Let us assume for the moment that Goldbach’s conjecture is false and there exists 

at least one counterexample—i.e. an even whole number that cannot be expressed 

as the sum of the two primes. (Here we will assume that no finite length proof exists 

that can identify all such counterexamples.) The smallest counterexample may be 

such a large number that running the program described above will not reach the 

counterexample within the finite number of computational steps allowed by our fi-

nite universe. Nonetheless, it may be possible (though improbable) to find the coun-

terexample by simply guessing and checking random even numbers. Therefore, 

even though the program may not find the counterexample through its process of 

incrementation, the ultimate fate of the program (that it would eventually halt) might 

(improbably) be determined by a guess and check process (shortcut). This would 

make the answer to this Halting Problem improbable to find but not impossible to 

determine within the confines of our universe. 

For the purposes of this paper, we are only interested in programs for which it is 

believed to be impossible, not improbable (from within the confines of our finite 

universe) to determine in a bottom-up fashion whether or not the program should 

eventually halt. Therefore, we will modify the program described above to instead 

pose a modified version of Goldbach’s conjecture as a Halting Problem. In lieu of 

Goldbach’s conjecture, which asks whether or not ALL even whole numbers greater 

than two can be composed as the sum of two primes, our Modified Goldbach’s con-

jecture only applies to a subset of all even whole numbers. 

Our Modified Goldbach’s conjecture problem, posed as a Halting Problem, is 

composed as follows. First an arbitrary seed number, yn, is randomly selected 

(where yn must be an even whole number greater than two). Second, the aforemen-

tioned subroutine is used to determine whether yn is the sum of two prime numbers. 

If so, then yn and its two prime addends are fed into an inherently sequential algo-

rithm that undergoes a predetermined computation. An inherently sequential algo-

rithm cannot be sped up by parallelization (assuming NC  P). (Note that NC com-

prises the set of decision problems that are decidable in polylogarithmic time when 

using a parallel computer with a polynomial quantity of processors. P comprises the 

set of all decision problems that can be solved in polynomial time on a deterministic 
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Turing machine. It is unknown whether or not NC = P, but it is generally believed 

that NC  P.) The results of this computation are then fed into a cryptographic hash 

function. In turn, the output of the hash function is fed into a second function as its 

argument. This second function will select for a deterministic but arbitrary even 

number, z. This whole process is then repeated for a new value of yn, yn+1, where 

yn+1 = yn + z. This process will continue to iterate as described unless a value of yn 

is found which cannot be composed as the sum of two primes, in which case the 

program will halt.  

As can be seen, this modified program cannot be shortcut by a guess and check 

process. One cannot know a priori which even whole numbers will be a part of the 

subset considered. This can be ensured by the appropriate selection of an inherently 

sequential algorithm (assuming NC  P). Therefore, a guess and check strategy 

might uncover counterexamples to Goldbach’s conjecture, but these counterexam-

ples on their own will not indicate whether or not the modified program will halt. 

This is because the counterexamples might not be included in the subset of even 

whole numbers considered by this program. 

If counterexamples to Goldbach’s conjecture do exist, then for certain seed val-

ues that are input into the modified program, it will be impossible to determine 

(from the bottom up, within the computational constraints of our universe) whether 

or not the program will halt. This is because the quantity of computations necessary 

to uncover counterexamples (that fall within the subset of even whole numbers con-

sidered by the program) will exceed the finite computational limits of our finite 

universe. Note that this can be arranged even for a Turing machine with a large, but 

finite memory. Furthermore, we note that there is likely no way to determine (a 

priori) which inputs will result in specific instantiations of the Halting Problem that 

cannot be decided from the bottom up within the constraints of our finite universe. 

Nonetheless, we argue that if counterexamples to Goldbach’s conjecture do exist, 

then by posing a multitude of different instantiations of the Halting Problem (as 

described), each with a different arbitrary seed, there is a possibility and a probabil-

ity of stumbling upon a program with the desired criterion (i.e., cannot be derived 

from the bottom up within our universe.)43 

In this appendix we have elaborated on the key criterion indicated when we refer 

to a “specific”, “specifically posed”, or “specific instantiations” of the Halting Prob-

lem. To recap, this criterion is that it is impossible to determine in a bottom-up 

fashion from within the constraints of our computationally bounded universe 

whether or not that program will halt. Furthermore, we have identified a class of 

programs that may meet this criterion (based on a modified version of Goldbach’s 

conjecture). Different instantiations of this program can be produced by changing 

the initial seed number. We note that this is likely just one of many classes of pro-

grams that might meet the desired criterion. Further exploration is likely to uncover 

 

43 Note that just as we cannot definitively know whether a specific truth is unprovable (by 

Gödel’s incompleteness theorems), we cannot know specifically which seeded programs can-

not be computed from the bottom up given a finite computational resource. Nonetheless, the 

mere likelihood of encountering such a program is sufficient to test for strong emergence. 
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other such classes of programs (possibly based on other open questions in mathe-

matics such as the Collatz Conjecture, etc.). 

A key idea in this work is that there exist programs for which it is impossible to 

determine whether or not they will halt eventually, from a bottom-up perspective 

and given the finite computational constraints of our universe. At the same time, 

based on the recent results from “MIP* = RE”, answers to the Halting Problem are 

verifiable in cases where the true result is “halt” (Ji et al., 2021). Therefore, while 

an answer to a specifically posed Halting Problem cannot be derived from the bot-

tom up, it can be verified. For an informal discussion of this result, see the excerpt 

below written by Henry Yuen (2020), an author of “MIP*=RE”.:44 

 
In the Halting problem, you want to decide if whether a Turing machine M, if you started 

running it, would eventually terminate with a well-defined answer, or would it get stuck 

in an infinite loop. Alan Turing showed that this problem is undecidable: there is no 

algorithm that can solve this problem in general. Loosely speaking, the best thing you 

can do is to just flick on the power switch to M, and wait to see if it eventually stops. 

If M gets stuck in an infinite loop — well, you’re going to be waiting forever. 

MIP* = RE shows with the help of all-powerful Alice and Bob, a time-limited veri-

fier can run an interactive proof to “shortcut” the waiting. Given the Turing machine M's 

description (its “source code”), the verifier can efficiently compute a description of a 

nonlocal game GM whose behavior reflects that of M. If M does eventually halt (which 

could happen after a million years), then there is a strategy for Alice and Bob that causes 

the verifier to accept with probability 1. In other words, ω∗(GM)=1. If M gets stuck in 

an infinite loop, then no matter what strategy Alice and Bob use, the verifier always 

rejects with high probability, so ω∗(GM) is close to 0. 

By playing this nonlocal game, the verifier can obtain statistical evidence that M is 

a Turing machine that eventually terminates. If the verifier plays GM and the provers 

win, then the verifier should believe that it is likely that M halts. If they lose, then the 

verifier concludes there isn’t enough evidence that M halts. The verifier never actually 

runs M in this game; she has offloaded the task to Alice and Bob, who we can assume 

are computational gods capable of performing million-year-long computations in-

stantly. For them, the challenge is instead to convince the verifier that if she were to wait 

millions of years, she would witness the termination of M. Incredibly, the amount of 

work put in by the verifier in the interactive proof is independent of the time it takes 

for M to halt! 

 

 

  

 

44 Note that in this excerpt, both Alice and Bob are provers. In the main text, Bob is the 

prover and Alice is the verifier. This is only a difference in labeling.  

https://en.wikipedia.org/wiki/Turing's_proof
http://www.henryyuen.net/post/alice-and-bob-visit/
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Appendix B 

An aside on why NP-complete problems cannot be substituted in place 

of the Halting Problem for the purposes of this work            
 

To readers who are familiar with cryptography, the notion of a true statement that 

cannot be derived (within a closed system) but can be verified might sound vaguely 

familiar. Cryptographic protocols make use of mathematical problems for which 

finding the correct answers is ludicrously difficult, and yet verifying correct answers 

once they have been discovered is relatively easy. This is almost analogous to a 

“Where’s Waldo” puzzle book. It could take someone hours to locate Waldo’s hid-

den location, but once he or she points Waldo’s location out to a friend, the friend 

can verify immediately that Waldo has indeed been found. As a more mathematical 

example, given a large composite number, it is computationally very expensive to 

find its unique prime factors (using conventional computing). However, if already 

provided with the prime factors, a simple multiplication would verify that the given 

answer is correct. There are many other mathematical problems that have similar 

structures: very difficult to find the answer, but easy to verify the answer if it is 

provided. These “asymmetrical” problems can be found in modular exponentiation, 

cryptographic hashes, and the general class of NP-complete problems.  

In fact, it is relatively straightforward to use an asymmetrical problem to pose a 

question with a true and “knowable” answer that is unlikely to ever be found within 

the computational constraints of our universe. In this case, the odds of stumbling 

upon the correct answer are stacked heavily against. However, small though the 

odds may be, they are not zero. This is a subtle, but very important distinction (from 

the Halting Problem). For appropriately selected specific Halting Problems, the 

probability of deriving (and knowing) the correct answer from the bottom up within 

our universe is truly zero. There is no guess and check process by which a fortuitous 

guess might give knowledge of the correct answer. Bottom-up derivation is truly 

impossible. This condition can be made even stronger by adding inherently sequen-

tial computations into the Halting Problem program, assuming NC  P (see Appen-

dix A.) 

An appropriately selected specific Halting Problem cannot be solved from the 

bottom up within our finite universe; there is an uncrossable chasm. An NP-com-

plete problem, on the other hand, can be solved by some bottom-up pathways within 

our universe; it is just unlikely that these pathways will be fortuitously stumbled 

upon (on account of their rarity). There is no uncrossable chasm here. (Note that 

once the answer to an NP-complete problem is found, the bottom-up path to get 

there becomes obvious.) Furthermore, whereas a guess and check strategy can work 

for NP-complete problems, it cannot work for the Halting Problem or for interactive 
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proofs in general. To illustrate, NP-complete problems can in principle be solved 

using a shotgun approach—keep guessing random but possible answers and check-

ing until an answer is found that checks out correctly. However, the shotgun ap-

proach would not result in a valid interactive proof, whose “proof” is based on the 

statistically derived improbability of getting a series of correct answers by chance 

alone. 
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Appendix C 

Additional case studies of information that might be discoverable even 

if it is not derivable in a bottom-up fashion 
 

Note that here we present brief sketches of several potential truths that might be 

discoverable even if they cannot be derived using a bottom-up approach. We leave 

more in-depth discussion of these case studies as future work. 

 

 

Case study #2: The Hard Problem of Consciousness 

 

The second case study we will discuss (briefly) is a famous historical example that 

may point to strong emergence—the existence of experiential (or phenomenologi-

cal), qualia-based aspects of consciousness (what it is like to be/feel a certain way). 

David Chalmers (1995) proposed dividing the questions of consciousness and of 

mind into two categories: the “easy problems” and “The Hard Problem”. The Hard 

Problem can be paraphrased as, “Why do some organisms have a subjective, expe-

riential sensation (or awareness) that accompanies the information they are pro-

cessing?” 

Using lines of reasoning such as the “Philosophical Zombies” argument 

(Chalmers, 1997), the “Inverted Qualia” argument (Block, 1990), or “Mary’s 

Room” argument (Jackson, 1982), many have argued that to directly test the exist-

ence of another person’s experience of qualia is intrinsically impossible. Chalmers 

has argued that even if we could measure and map every single fundamental phys-

ical particle and all of their associated interactions in a person’s brain, we would 

still not be any closer to answering the Hard Problem of Consciousness. We would 

still be unable to determine whether another individual experiences qualia and, if 

so, the character of that experience. Measuring a person’s brainwaves, electrical 

impulses, chemical and neurological structures, and behavior won’t help because 

the problem is fundamentally intractable to this type of approach. A vast body of 

literature has explored the Hard Problem of Consciousness and its implications for 

strong emergence (cf. Block, 2002; Levine, 2009; McGinn, 2012). Accordingly, we 

will forego an in-depth discussion here. 

Nonetheless, we see parallels between the Hard Problem of Consciousness and 

the Halting Problem. If Chalmers is correct, the question of whether or not a specific 

individual has qualia-derived experiences, and whether a specific program will halt 

on a specific computer both have definitive answers within our closed system, and 

yet those answers cannot be derived from the bottom up. Moreover, in each case the 

physical circumstances can be fully specified without providing an answer or a route 

to an answer. In the case of the Halting Problem, we can fully specify the designs 

and working of both the computer program and the computer (without solving the 
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problem). In the Hard Problem of Consciousness, we might fully specify all of the 

fundamental particles and their locations in the individual’s brain (without solving 

the problem). Additionally, in each case we can fully enumerate the possible answer 

space (the answer must be either “yes” or “no” when asking whether an individual 

does experience qualia and when asking whether a specific program will halt.) 

Moreover, in both cases the answer is hypothetically knowable within the closed 

system. In the case of the Halting Problem, knowledge of the answer can be ob-

tained through an interactive proof between the provers and the verifier. For the 

Hard Problem of Consciousness, at least one individual (the subject in question) can 

know whether or not they experience qualia. In fact, we might even choose to view 

the process by which an individual gains awareness of their own experiences of 

qualia as a subtle interactive proof wherein that individual tests themselves by ef-

fectively playing the roles of both the prover and the verifier. Like a photon, expe-

rience of qualia seems to be born fully self-evident/compelling if the appropriate 

introspective self-tests are conducted. Regardless of whether or not consciousness 

is epiphenomenal, the Hard Problem of Consciousness suggests that a property can 

be discoverable, even if it is not derivable from the bottom up. 

 

 

Case study #3: Many-Worlds Interpretation of quantum mechanics 

 

We present a third case study highlighting a potential truth that might be reasonably 

discoverable even if it is not derivable from the bottom up. While quantum mechan-

ics is generally considered to be the most rigorously tested theory in all of science, 

the interpretation of what quantum mechanics implies about reality remains conten-

tious. Over a dozen distinct interpretations of quantum mechanics have been put 

forward. However, among these interpretations, the two most popular (the Copen-

hagen Interpretation (Stapp, 1972) and the Many Worlds Interpretation (Everett, 

2015)) are generally believed to be indistinguishable to observers within our closed 

system using bottom-up experimentation or derivation. It remains controversial as 

to whether the differences between these interpretations is indistinguishable in prac-

tice or in principle (using an empirical bottom-up approach).45 Nonetheless, it is 

therefore possible that if either the Copenhagen Interpretation or the Many Worlds 

Interpretation is correct, the truth of the matter could not be derived from the bottom 

up (from within the system). 

However, Max Tegmark (1998) has formalized a possible test by which to falsify 

interpretations of quantum mechanics that do not incorporate many worlds. (Note 

that the viability of this test remains controversial (Gao, 2022)). This test, known as 

 

45 Note that for the purposes of this thought experiment it is not necessary to delve into the 

physics controversy of whether or not the Copenhagen Interpretation and the Many Worlds 

Interpretation are distinguishable by experimental methods from the bottom up within our 

universe. Instead, what is important to notice is that it is metaphysically plausible for a uni-

verse to exist in which the Copenhagen Interpretation and the Many Worlds Interpretation 

are indistinguishable from a bottom-up approach but can be distinguished by the quantum 

suicide experiment. 
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“quantum suicide,” necessitates that the experimenter take the place of Schrö-

dinger’s cat. By climbing into a box that will rapidly kill the experimenter with a 

high probability (mediated by a quantum event), the experimenter is all but assured 

death under the Copenhagen Interpretation of quantum mechanics. However, if the 

Many Worlds Interpretation of quantum mechanics is in fact correct, then there will 

exist universes (rare though they may be) in which the experimenter survives. The 

Many Worlds Interpretation alleges that all universes (branches of the wavefunc-

tion) are equally real. However, the experimenter cannot be aware of branches of 

the wavefunction in which he is dead. Therefore, by the anthropic principle the ex-

perimenter will find himself (by necessity) in one of the branches of the wavefunc-

tion where he fortuitously (and improbably) survived. At this point, the experi-

menter will be reasonably convinced (to within an arbitrarily high certainty) that the 

Many Worlds Interpretation of quantum mechanics is correct. (This credence fol-

lows from the improbability of the experimenter having survived under the singular 

outcome of the Copenhagen Interpretation, in contrast to the alleged certainty of 

survival under the Many Worlds Interpretation.) Note that this credence can be fur-

ther strengthened by reducing the experimenter’s chance of survival in any ran-

domly selected branch of the wavefunction. Unfortunately, like in the case of expe-

riencing qualia, no one apart from the experimenter will be convinced by the evi-

dence presented by the experimenter who risked his or her life. The evidence is only 

compelling from the first-person perspective (to someone who has gone inside the 

box and survived). From a third-person perspective, there is no mechanism for a 

self-selection bias that would downselect specifically for universes in which the ex-

perimenter survived (i.e., the anthropic principle). Therefore, from a third-person 

perspective, the experimenter, if he or she survived, should be considered extremely 

lucky, but nothing more can be gleaned. 

In a sense, the experimenter can be thought of as verifying the truth of the Many 

Worlds Interpretation by an interactive proof (iterated with his or her own life in 

various branches of the wavefunction).46 Implicitly, the multitude of branches under 

the Many Worlds Interpretation serves as the prover and the surviving experimen-

talist acts as a verifier. Moreover, this interactive proof can only compellingly con-

vey knowledge (as to the truth of the Many Worlds Interpretation) to an entity with 

a sufficient minimum level of complexity (e.g., consciousness, sematic understand-

ing). This scenario therefore closely parallels the verification of the answer to the 

Halting Problem (by an interactive proof). While there is possibly no bottom-up 

path by which to decide between the Copenhagen Interpretation and the Many 

Worlds Interpretation (though this remains controversial), there may exist an emer-

gent pathway to gain this information/knowledge (via the quantum suicide experi-

ment). If the Many Worlds Interpretation is correct, this truth might be discoverable, 

even if it is not derivable from the bottom up. 

 

 

46 Note that as with other “interactive proofs” these verification methods do not provide 

absolute, infallible proof of a conclusion. Rather they provide compelling evidence (given 

assumptions) in support of gained knowledge.  
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Case study #4: Multiverse 

 

We present a fourth (and original) case study highlighting a potential truth that 

might be discoverable even if it is not derivable from the bottom up. This case study 

provides a means for falsifying the hypothesis of the existence of a vast level II 

multiverse—composed of near infinite parallel universes, each with different values 

for fundamental constants and initial conditions apart from our own (Tegmark, 

2003). This case study makes use of anthropic reasoning and makes use of the fol-

lowing assumptions. (Note that this is a thought experiment and not intended to 

reflect the most recent advancements in cosmology and theoretical physics.) 

First, we assume that our universe is fine-tuned for complex, chemistry-based 

intelligence, as is a popular opinion among cosmologists on the basis of observa-

tions and modeling (Rees, 2008). This is to say that the constants and initial condi-

tions of our universe take on very precise values (from within the presumed range 

of all possible values) that happen to be permitting to the existence of complex, 

chemistry-based intelligence. If these constants and initial conditions were even a 

hair’s breadth different, then the universe would either explode or implode (or oth-

erwise be altered) so fast that the formation of stars and the assembly of complex, 

chemistry-based intelligence would be impossible anywhere in the universe. Chang-

ing these constants or initial conditions even slightly would preclude all complex, 

chemistry-based intelligence in our universe. Let us call complex, chemistry-based 

intelligence, “Type A Intelligence”. Second, we assume that a physical theory called 

“Theory S” predicts the existence of near infinite47 parallel universes (in a vast mul-

tiverse that contains our own universe). Furthermore, Theory S predicts a very large 

(but finite) range (and probability distribution) of possible values for constants and 

initial conditions with which these near infinite parallel universes could be instan-

tiated.  

Additionally, we assume that we can roughly simulate (on a supercomputer) each 

possible universe in order to get the gist of what it could or could not contain, given 

its set of constant and initial condition values (e.g., could that universe contain com-

plex, chemistry-based intelligence). Granted, completing these numerous simula-

tions would require immense computational power, but this is only a thought exper-

iment. Finally, let us define a form of omni-survivable intelligence that would come 

into existence, survive, and thrive (i.e., multiply) in almost any universe allowed for 

by Theory S (with high probability). Let us call this intelligence form “Type B In-

telligence”. (Note that the values of the constants and initial conditions that would 

support “Type A Intelligence” are a small subset of the full range of constant and 

initial condition values allowed for by Theory S.)48 It is presumed that under Theory 

 

47 A very large number that is nonetheless finite. 

48 Note that we can posit other types of intelligence, C, D, E…, each of which is fine-tuned 

for its own universe in different ways (not necessarily relying on the existence of complex 

chemistry). However, as long as the vast majority of universes predicted to exist in the mul-

tiverse (by Theory S) are barren of any form of intelligence, save for Type B Intelligence, 

then the argument remains unaffected. 
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S, distinct universes within the multiverse are instantiated randomly, with randomly 

selected values for their constants and initial conditions (given the ranges and prob-

ability distributions entailed by Theory S). It is further presumed that under Theory 

S almost all universes in the multiverse are not capable of supporting any form of 

intelligence, save for “Type B Intelligence.”  

Under these assumptions, if a vast level II multiverse exists (owing to Theory S), 

then throughout the multiverse as a whole, cases of Type B Intelligence will vastly 

outnumber cases of Type A Intelligence (or any other intelligence that can only exist 

in highly fine-tuned universes). This follows from the fact that Type B Intelligence 

can and is expected to exist in abundance in almost all of the universes in the mul-

tiverse. In contrast, Type A Intelligence and other types of intelligence that can only 

flourish in highly fine-tuned universes can only exist in a small fraction of the total 

universes in the multiverse.49 Therefore, if one were to randomly sample from the 

total set of intelligent observers in the multiverse, one would expect to draw an 

observer of Type B Intelligence with much higher probability that any other Type 

of Intelligence. One way in which to sample from the total pool of intelligent ob-

servers in the multiverse (in a presumably unbiased and random fashion) is to con-

sider oneself. 

An individual, e.g., Jane, could awaken one day and realize that she is an intelli-

gent observer, and presumably a randomly sampled observer in the absence of any 

pressure to have awoken as “Jane” as opposed to any other intelligent observer. As 

an observer she can make measurements on the values of the constants and initial 

conditions of her universe and furthermore determine that her type of intelligence 

could only exist within a very small subset of the total parameter space predicted 

by Theory S. Jane can thus discover that she is of Type A Intelligence. She can use 

these realizations to put to the test the hypothesis that there exist a vast number of 

universes (in a level II multiverse) beyond her own universe (randomly instantiated 

within the predicted parameter-space distribution of Theory S). 

 

Multiverse Test. Imagine that Jane would like to rule out the existence of a near 

infinite level II multiverse (randomly instantiated by Theory S). She could simply 

run computer simulations to search for Type B Intelligence, given the ensemble of 

universes allowed for by Theory S. If she discovers Type B Intelligence (and can 

through simulation validate the other aforementioned assumptions), then she has 

statistically precluded the existence of a near infinite level II multiverse, randomly 

instantiated by Theory S. (Here we assume that Jane is aware that she is of Type A 

Intelligence.) 

 

This conclusion follows from anthropic reasoning, codified in the following deduc-

tive argument: 

 

 

49 It is also important to consider the quantity of individual intelligent observers that would 

be expected to exist in each universe (sorted by their Intelligence Type). This could be also 

addressed by computer simulations. 
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(1) If there are near infinite parallel universes randomly instantiated by The-

ory S, and Type B Intelligence exists (given Theory S), then (by statistics) 

Jane will not find that her universe is fine-tuned for her type of intelligence 

(Type A Intelligence).  

(2) Jane finds that her universe is fine-tuned for Type A Intelligence. 

(3) Therefore, (by statistics) there do not exist both near infinite parallel uni-

verses randomly instantiated by Theory S, and Type B Intelligence (given 

Theory S). 

(4) Type B Intelligence (given Theory S) does exist (per Jane’s computer sim-

ulations). 

(5) Therefore, near infinite parallel universes (randomly instantiated by The-

ory S) do not exist. 

 

In this interactive test, Jane discovers that near infinite parallel universes (randomly 

instantiated by Theory S) are very unlikely to exist. Put another way, Jane’s uni-

verse is very likely not surrounded by near infinite parallel universes (randomly 

instantiated by Theory S). This is a truth that Jane can potentially learn about her 

own universe (gained information/knowledge), despite the fact that there likely does 

not exist any way for Jane to derive this truth from the bottom up (from within her 

own universe). Therefore, this provides another case study of a truth that might be 

discoverable even if it is not derivable from the bottom up (within the closed sys-

tem). (Once again, the truth does not need to be known with a credence of 1, but 

only an increased credence conditioned on the interactive test—i.e., gained 

knowledge.) 

Note that two important pieces of this interactive test are that Jane knows herself 

to be an observer of Type A Intelligence and that Jane knows herself to be a ran-

domly selected sample of an intelligent observer. Again, this argument would not 

be compelling to others as it requires private (first person) information (pertaining 

to Jane’s status as a randomly selected observer among the set of all possible ob-

servers throughout the multiverse). The argument only works because Jane can as-

sume herself to be a randomly selected element from the whole set of observers. If 

Jane were to select any other individual as the representative intelligent observer, 

the selection would presumably be based on limited information (accessible to Jane) 

that would create a selection bias and invalidate any result. 
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Appendix D 

Thought experiment in the search for strong emergence 
 

Historically, a lack of rigorous specificity in the definition of strong emergence and 

the criteria that are sufficient for it have muddled the concept and made it difficult 

to seek out or study. In this work we provide a sufficient set of criteria for strong 

emergence and a deductive argument based on these six criteria. This new concep-

tual framework for understanding strong emergence suggests new ways to search 

for strong emergence in our universe. An example thought experiment is provided 

below. 

Let us imagine that a hypothetical scientist, Sally, is determined to design and 

build a fleet of robots that will search for strong emergence. (Sally plays an im-

portant role as she possesses semantic understanding of the experimental setup and 

results.) The robots function as follows. Each robot has a computer, an interface for 

communicating with humans, an internal atomic clock, encrypted radio signal-

based communication channels, a quantum communication channel, and an internal 

quantum random number generator. The robots are mobile, spread themselves out 

across the planet, and randomly approach different individuals living across the 

planet. The robots have the purpose of searching for strong emergence by seeking 

out groups of individuals with the property “O”. As defined in the main text, this 

property entails the hypothetical, emergent ability of an individual to serve as an 

oracle for the Halting Problem (i.e., the individual intuitively knows the answer to 

the Halting Problem without having to derive it from the bottom up). It is likely that 

the property “O” does not actually exist within our universe, but that does not pose 

a hindrance to this thought experiment. The deeper question at hand is whether it is 

impossible for the property “O” to exist within our universe, and if so, why? 

The robots act as verifiers to the Halting Problem. The randomly selected hu-

mans (“contestants” from around the world) who communicate with the robots act 

as Bob, providing oracle-like information regarding the Halting Problem. In order 

to have multiple independent provers, as required by “MIP* = RE” (Ji et al., 2021), 

the robots will randomly select and assemble simultaneous groups of individuals 

(contestants) at distant geographic locations around the globe. For example, the ro-

bots might approach and engage with random individuals found in public spaces 

around the world (e.g., Times Square in New York, Shibuya in Tokyo, and Picca-

dilly Circus in London). Separating the simultaneous contestants out geographically 

helps to ensure that they are acting independently. In theory this independence can 

be further ensured by timing the contestants’ responses using the robots’ internal 

atomic clocks and only accepting responses within specified timeframes (that pre-

clude collusion amongst the contestants, assuming no faster-than-light communica-

tion between the contestants). In practice, this anti-cheating measure would be dif-

ficult to implement, and alternative anti-cheating measures could be conceived of. 
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The robots communicate with each other via radio signals at the speed of light. Also, 

the humans are allowed to access and make use of the quantum communication 

channels embedded in each robot. In this way the multiple independent humans 

serving as Bob cannot communicate directly with each other but can make use of 

shared quantum information (as required by “MIP* = RE”; Ji et al., 2021). 

First the robots will collectively generate a random number using their quantum 

random number generators. This random number will serve as a seed number (yn) 

in a Modified Goldbach’s conjecture Halting Problem (see Appendix A). The con-

testants will be asked to take part in an interactive proof to verify whether this par-

ticular Halting Problem halts by playing a nonlocal game (using the shared quantum 

information). If the contestants have the property “O”, they will be able to win the 

game and, in the process, provide input data to the robots verifying that the partic-

ular Halting Problem does halt (when true). Otherwise, the inputs provided by the 

contestants will be inconclusive. If the contestants win a particular game (and 

thereby “prove”50 that a particular Halting Problem does halt), then the robots will 

unfurl robotic butterfly wings and flap them three times as a congratulatory cele-

bration. This also has the effect of converting a largely informational game into a 

physical disturbance in the world with chaotic downstream physical consequences 

(e.g., by the butterfly effect). 

The robots will continue to approach new contestants and play the game over 

and over (each time starting with a different, randomly selected seed number). If 

the contestants win the game for a particular Halting Problem (and thereby prove 

that the particular Halting Problem does halt), two possibilities follow: 1) the pro-

gram can be shown to halt within the computational bounds of our universe, or 2) 

the computational resource necessary to derive the solution to this Halting Problem 

is greater than the computational bounds of our universe. Only possibility #2 unam-

biguously demonstrates strong emergence as delineated in this work. Moreover, in 

general it will not be clear if a particular Halting Problem falls within possibility #1 

or possibility #2. However, as the robots continuously play this game with different, 

randomly selected seed numbers, they are likely to stumble upon Halting Problems 

that fall within possibility #2 (even if we are unable to determine which cases do).51 

In this thought experiment we have laid out a hypothetical method by which 

strong emergence might be sought out (and plausibly stumbled upon). Indeed, we 

find it unlikely that strong emergence of this particular form (humans possessing 

the property “O”) does in fact exist within our universe, but that is not the point. 

 

50 As previously discussed, in “interactive proofs” the term “proof” is used loosely. These 

verification methods do not provide absolute, infallible proof of a conclusion. Rather they 

provide compelling evidence (given assumptions) in support of gained knowledge. 

51 Note that even if the particular halting problem falls within possibility #1, it might be 

possible to determine constraints on the computational power available to the contestants 

(e.g., based on the total mass and volume over which they can exert control). These con-

straints will presumably limit the contestants to a smaller computational resource than that of 

the entire universe. Therefore, it might still be possible to show that computing the answer to 

the particular halting problem from the bottom up is impossible for the contestants (within 

the allotted time and computational resource constraints.) 
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The point is that in order to argue for strict reductionism (i.e., that strong emergence 

does not exist), one must specifically argue why it would be impossible (or at least 

unreasonable) for the aforementioned thought experiment to be able to stumble 

upon strong emergence.52 This thought experiment therefore helps to clarify where 

such strict reductionist arguments might focus and whether they are likely to suc-

ceed. Additionally, this thought experiment demonstrates that one might have an 

encounter with strong emergence without having the ability to discern that it is 

strong emergence, in support of Section 8. (Note that this thought experiment as-

sumes the same digital physics backdrop as the main text.) 

In order to argue for strict reductionism, one must argue that the aforementioned 

thought experiment must necessarily fail to encounter strong emergence. Below we 

go through different possible hindrances to the aforementioned thought experiment 

(“arguments” as to why it should fail) and reasons why each is lacking as an argu-

ment for strict reductionism (“counterarguments”). The conclusion is that the argu-

ments for strict reductionism are weak, leaving open the plausibility of strong emer-

gence. 

 

 

 

Possible Arguments for Strict Reductionism  
(Possible hindrances wherein the aforementioned thought  

experiment is alleged to be destined to fail) 

 

 

Argument 1. Robots of this functionality could not be designed and built. 

 

Counterargument: The sophistication of the robots described in this thought exper-

iment is not significantly beyond the capabilities of current technology. Importantly, 

there is no presumption that these robots are conscious or have computational abil-

ities exceeding that of today’s computers. It would be difficult to argue that robots 

with this functionality could not be designed and built. 

 

 

Argument 2. The robots could not convert informational states into a causal, physi-

cal disturbances. 

 

Counterargument: In cases of the mind controlling the body there exist controver-

sies about the plausibility of downward causation. However, in this thought exper-

iment there is no presumption that the robots are conscious, have minds, or free 

wills. The robots are programmed by Sally (a conscious scientist with sematic un-

derstanding) to mechanistically take in inputs and produce outputs. Direct inputs 

 

52 Note that here we only use the property “O” and its associated interactive proof as an 

arbitrarily selected example of strong emergence. However, the prescribed search process can 

be generalized to other cases of strong emergence. 
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include the information provided by the humans (through the communication inter-

faces) and communications received from other robots in the fleet. Indirect inputs 

of information include the programming of the robot and the robot’s physical con-

stitution (both designed and built by Sally). Given these various inputs, each robot 

will act mechanistically to either flap its wings or not (in accordance with its de-

sign). At an abstract level, if a specific instantiation of the Halting Problem is veri-

fied to halt, then the robot’s subsequent actions will also be codetermined by “ethe-

real information” (see Section 1 of the main text). This thought experiment sidesteps 

the controversial concept of downward causation (i.e., a mind controlling a body) 

in the robots. Therefore, it would be difficult to argue that the robots could not be 

built to function as described and would not actually function as described (pro-

cessing on informational inputs to produce distinct physical actions or physical dis-

turbances in their environments). 

 

 

Argument 3. Specific halting problems that halt, but whose answer cannot be de-

rived in a bottom-up fashion within our computationally bounded universe cannot 

exist or cannot be stumbled upon. 

 

Counterargument: We have detailed the likely existence of such Specific Halting 

Problems in Appendix A. 

 

 

Argument 4. Answers to the specific halting problems of Argument 3 cannot be 

verified (knowable) within our computationally bounded universe. 

 

Counterargument: This argument is strongly refuted by the cited work, “MIP* = 

RE” (Ji et al., 2021). 

 

 

 

Argument 5. The oracle-like information necessary to verify answers to the specific 

Halting Problems of Argument 3 cannot be discovered and communicated to the 

robots. 

 

Counterargument: Argument 5 is likely the most interesting of the (strict reduction-

ism) arguments proposed here. One might initially claim that information cannot be 

discoverable if it is not derivable from the bottom up. However, in case studies #1-

#4 we have presented several examples to refute this claim. Admittedly, all of these 

case studies involve a conscious being and private information discovered within 

the mind of the conscious being that relates to the direct experiences of the con-

scious being. We say that the information is private because the conscious mind 

within which that information is discovered has (seemingly) privileged access to 

the information above and beyond what an outside observer would easily be able to 

access. 
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The private nature of the information discovered in case studies #1-#4 raises the 

question as to whether certain types of information are discoverable but not deriva-

ble, while other types of information are not. This raises the possibility that perhaps 

information that is discoverable but not derivable cannot be publicly and persua-

sively communicated to others. Perhaps, for example the information necessary to 

verify answers to the Halting Problem is discoverable but cannot be communicated 

to the robots. For example, the information might be epiphenomenal53. 

However, if this constraint were true, it would raise other thorny questions for 

strict reductionism within a digital physics backdrop. We might ask whether strict 

reductionism within a monist digital physics backdrop has room for epiphenomena. 

Would the information of this epiphenomena take a digital form (a seeming require-

ment of a monist digital physics backdrop)? If so, where would this digital infor-

mation be stored or computed? Would this epiphenomenal data not be a part of the 

digital physics universe, and if so, would adding or altering the epiphenomenal data 

not also constitute a physical change within some part of the digital physics uni-

verse? Perhaps more conspicuously, does strict reductionism within a monist digital 

physics backdrop allow for private information? In this system, wouldn’t everything 

be equally privileged and equally a part of the same digital/physical substrate? In 

this system, what would delineate the boundary between public and private, be-

tween a specific mind and the rest of everything? 

  

 

53 I.e. caused by physical states but without causal power on the physical 
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