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Abstract

I will look at Bohr’s contentious doctrine of classical concepts - the claim that

measurement requires classical concepts to be understood - and argue that measure-

ment theory supports a similar conclusion. I will argue that representing a prop-

erty in terms of a metric scale, which marks a shift from the empirical process

of measurement to the informational output, introduces the inherently classical

assumption of definite states and precise values, thus fulfilling Bohr’s doctrine. I

examine how realism about metric scales implies that Bohr’s doctrine is ontological,

while more moderate coherentist or model-based approaches to realism render it

epistemological. Regardless of one’s stance towards measurement realism, however,

measurement cannot be entirely quantum and quantum mechanics can model only

the empirical side of measurement, not its informational output. Finally, I discuss

how this might influence our understanding of the measurement problem.

Keywords: Bohr; classical concepts; measurement; metrology; uncertainty; cal-

ibration

1 Introduction

One of the central ideas of Bohr’s philosophy of physics is that measurements cannot

be modelled entirely in quantum mechanical terms; instead we must treat some aspects

of the measurement set-up as classical. This has come to be called the doctrine of clas-

sical concepts. Bohr’s ideas are hard to pin down, and this doctrine is now frequently

disregarded despite its influence on early interpretations of quantum mechanics.

In this paper I will show that Bohr’s doctrine should still be taken seriously, even if it is

only as an epistemological concern, by comparing it to implicit assumptions about precise

values and definite states that are made in measurement theory. Measurement theory has

a long history and there are various competing views on what exactly a measurement is,

but a dominant and long standing core of many of these views is that measurement is,

at its heart, the representation and quantification of a property via a metric scale. This

is what allows us to give numerical outcomes as measurement results and converts our
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experience of the empirical world into usable information. I will argue that representing

a property of the world in this way introduces the assumption that the property has a

definite, precise value; an assumption that encapsulates Bohr’s doctrine.

This paper is not intended to be a historical analysis of Bohr’s ideas. I will take Bohr’s

doctrine of classical concepts as a starting point and draw out ways in which the philo-

sophy of measurement raises the same issue, even if it does not match Bohr’s account to

the letter. Since Bohr’s work is notoriously vague, I will largely follow Howard’s (1994)

reconstruction of Bohr’s doctrine of classical concepts (which he notes goes beyond Bohr

in many places)2, as well as Zinkernagel (2015), and draw from Saunders (2005) and

Camilleri and Schlosshauer (2015) for wider aspects of Bohr’s thought. Howard’s recon-

struction is limited and does not cover all aspects of Bohr’s thought; I use it here as it

effectively captures the comparison to measurement theory I am making, but I do not

defend it as the best, or only, interpretation of Bohr’s work.

The comparison between Bohr’s doctrine and measurement theory translates Bohr’s ideas

into a new context, pinning them down more precisely in a way that relates to our

current understanding of measurement. There are two main implications: First, Bohr’s

doctrine can be seen either as an epistemological point or an ontological one depending on

what stance one takes towards measurement realism. A strong version of realism about

numerical measurement outcomes creates a conflict between the classical assumptions

embodied by metric scales and the quantum description of the property. Model-based or

coherentist approaches, however, foreground the pragmatic and conventional elements of

measurement – especially when it comes to calibration and uncertainty – and use this to

posit a more moderate form of realism. The tensions between quantum mechanics and

strong realism may be reason to prefer the model-based approaches, where the use of

metric scales and the assumption of precise values on those scales can be viewed as a

pragmatic tool to make sense of measurement (which is a process with the operational

goal of producing numerical outcomes). This enables the epistemological reading of Bohr.

Second, we can give a definitive answer to the title question – can measurement be en-

tirely quantum? By upholding Bohr’s doctrine I answer the question in the negative:

measurement requires us to make certain classical assumptions and cannot be modelled

entirely within quantum mechanics. This does not mean that the world cannot be mod-

elled entirely within quantum mechanics. Measurement theory distinguishes between the

empirical side of measurement, modelling the interactions of physical systems, and the

informational side where we apply metric scales and measurement units (see Section 3).

2Howard gives a reconstruction of Bohr that he takes to be a coherent way of making Bohr’s ideas

more precise, but notes that he does not himself agree with Bohr’s claims.
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It is on the latter side that we must go beyond a quantum model of the world, even if it

is just on a pragmatic basis (as per the epistemological reading of Bohr’s doctrine). This

side of measurement is essential if we are to produce a numerical measurement outcome.

While a measurement device can be treated the same as any other type of system, if we

are to use it to perform a measurement we must make use of metric scales in addition to

an ordinary quantum state description.

As is inevitable with any discussion of measurement in quantum mechanics, the measure-

ment problem looms in the background. Although this issue extends beyond the scope

of what can be considered in the space available here, I will offer some suggestions on

how the comparison between Bohr’s doctrine and measurement theory could, while not

resolving the problem, offer insights into it.

I will start, in section 2, by laying out Bohr’s doctrine of classical concepts, focusing

on Howard’s (1994) reconstruction of it. Then, in section 3, I will lay out the basic

elements of measurement theory and look at how it relies on representing properties with

a metric scale. In section 4, I will argue that a realist view of the metric scales used

in measurement introduces the assumption of precise values and draw the comparison

between this and Bohr’s doctrine of classical concepts. I will also argue that the treatment

of uncertainties during the calibration of measurement devices countermands arguments

for realism and pushes us towards an epistemological interpretation of Bohr’s doctrine,

but also demonstrates its ineliminability. Finally, in section 5, I will answer the title

question and look at implications for the measurement problem.

2 Bohr’s Doctrine of Classical Concepts

Many different interpretations have been given for what exactly Bohr means when he

claims that classical concepts are needed to understand quantum mechanics. This is also

mixed up with complementarity, although the two ideas can be separated. In Bohr’s own

words the doctrine of classical concepts is this:

“[H]owever far the phenomena transcend the scope of the classical physical

explanation, the account of evidence must be expressed in classical terms.

The argument is simply that by the word “experiment” we refer to a situation

where we can tell others what we have done and what we have learned and

that, therefore, the account of the experimental arrangement and of the results

of the observations must be expressed in unambiguous language with suitable

application of the terminology of classical physics.” (Bohr 1949, p. 209)
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Roughly speaking what it means for a concept to be classical is not that is is part of

the formal theory of classical mechanics, but just that it describes the world in the way

we intuitively think of in the classical domain. Concerns could be raised about whether

such a classical terminology exists and there is plenty of entirely reasonable doubt as to

whether it could ever be said to be unambiguous. This confusion is often put aside in

favour of focusing on one specific classical assumption: that objects possess definite states.

What is meant by a definite state is a state that can be specified independently of any

other systems (separability) and has a definite value of a given property such as position

and momentum, as is familiar in the classical domain. This, while not impossible within

quantum mechanics, is at odds with the ubiquitous existence of superposition states.3

In some cases, Bohr has been taken to posit an ontological distinction between a classical

macroscopic objects and microscopic quantum ones. However, it is clear from the above

quote that Bohr’s interest in the use of classical concepts is focused on experimental

evidence and how it is communicated, rather than on the ontology of the world, so

we can reject this ontological framing. There is a growing consensus, along these lines,

that his argument is epistemological rather than ontological (Howard 1994; Saunders

2005; Camilleri & Schlosshauer 2015). The epistemological reading implies that every

system is in principle describable by quantum mechanics, but for the sake of pragmatically

describing a measurement we have to give certain systems a classical description as a

definite state. Section 4.3 will argue in support of the epistemological reading.

Many instead take Bohr’s doctrine as dividing between a quantum system and a classical

apparatus, commonly read as an epistemological divide. While more plausible – especially

since Bohr emphasizes the classical description of the apparatus – I follow Howard’s (1994)

claim that a classical description must also apply to the target property of the quantum

system. I take Bohr to imply this when insisting that both the account of the apparatus

and the measurement results must be expressed classically.

Howard argues that a classical description of the target property is one that treats the

system as if it is in a definite, but unknown, state, represented by a statistical mixture

(in contrast to the pure states and improper mixtures used in quantum mechanics). More

specifically, we should use a statistical mixture of all the eigenstates of the observable

representing that property. These eigenstates represent the possible definite states in

which the system could be found upon measurement. This goes beyond the actual text of

what Bohr says and tries to present the doctrine in more formal terms. Howard chooses to

3The issue here is with superpositions in the values of single properties. As I will explain below, Bohr’s

classical descriptions apply to a single property at a time. I will take having simultaneously definite values

for different properties to be a separate issue that relates to Bohr’s ideas on complementarity.
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maintain the use of quantum terminology such as eigenstates despite Bohr’s emphasis on

using the terminology of classical physics. Instead, what is classical about the description

is that it is a statistical mixture and we act as if the system is in a definite eigenstate, but

we don’t know which. Eigenstates are apt to represent definite states as a measurement

of an observable on an eigenstate of that observable produces a single definite outcome

(the associated eigenvalue) for the value of that observable property.

Crucially, only the property we are investigating should be represented in this way and not

the system as a whole; assigning this classical description to the entire system would give

incorrect predictions of its behaviour in subsequent measurements of other properties.

This classical description is localised to a specific measurement scenario (this relates to

Bohr’s ideas about complementarity, which is the idea that the description of the system

must depend on the measurement context - see Howard (1994) for a discussion of how

this relates to the doctrine of classical concepts). Furthermore, we treat this as a one-

off, instantaneous description suitable for this measurement alone; we do not evolve the

statistical mixture with the Schrödinger equation.

One thing that Howard’s reconstruction does not make clear is what the function of

such a description is when we know that, absent a hidden variable interpretation, the

quantum state does not have a definite value prior to the measurement actually taking

place. If we know that the description as a statistical mixture is strictly false, then what

exactly is its use? The fact that we should not evolve the description under quantum

dynamics also means it cannot be used to model the interaction between system and

apparatus, which would be done by evolving the state with an interaction Hamiltonian.

The comparison with measurement theory in this paper will show why this description is

useful for measurement by arguing that it plays a similar role to the metric scales used

to represent properties.

For the classical description of the apparatus we can do better than a mixture; in fact, one

of the notable features of measurement (at least in the Bohrian tradition) is that we always

assume that we have exact knowledge of the state of the measurement device. For example,

we assume the position of a pointer is either here or there and that we can determine this

simply by glancing at it. This can even be found in textbook presentations of quantum

mechanics: “The classical nature of the apparatus appears in the fact that, at any given

instant, we can say with certainty that it is in one of the known states, ϕn, with some

definite value of the quantity g” (Landau & Liftshitz 2013, pg. 21)4. Zinkernagel (2015)

draws something similar from Bohr’s work, calling it the reference system argument: To

4Landau and Liftshitz’s work follows in the footsteps of Bohr, as Landau was Bohr’s student (see

discussion in Bell (1990)).
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measure a property of the quantum system we must always do so relative to a well-

defined, fixed reference system, otherwise the result would be meaningless. Part of the

reference system argument is that we need this fixed state to define many of the essential

elements that are used in the background of measurement, whether this be the scales and

clocks the measuring device consists of or definitions of the properties being measured.5

Thus, for the apparatus, we describe the relevant property (or properties) of the device

with a single definite state. Sections 3 and 4 will discuss how we define scientific units

in measurement theory, which is directly related to the reference frame argument and

constitutes a natural extension of Bohr’s ideas.

To summarise, there are two aspects to Bohr’s doctrine of classical concepts: 1) treat the

target property as classical by representing it with a statistical mixture of definite states,

and 2) treat the measurement apparatus as being in a single definite state.

3 Measurement Theory

During the 20th century, largely separate from quantum mechanics, a general analysis of

measurement was taking place.6 I will lay out a brief history of this, focusing on two views

from measurement theory – first the Representational Theory of Measurement and then

a more recent model-based approach. These views will form the basis for a comparison

with Bohr’s doctrine and their respective commitments to realism about measurement

will determine how we interpret the doctrine.

Measurement theory dates back to Helmholtz in 1887 but comes into sharp focus with

Stevens and Suppes in the 1940s/1950s onwards (see Dı́ez (1997a, b) for a history). The

central output of this project was a formal analysis of how our qualitative experience of

physical properties could be quantified by representing the property with a metric scale.

The basic idea was to start with magnitudes that can be qualitatively compared through

certain physical operations (e.g. lengths can be arranged from greater to lesser or placed

end-to-end to combine their lengths).7 From these physical operations, we establish a set

of axioms that specify the relationships between magnitudes (e.g. ordering, additivity).

5The latter relates to Bohr’s ideas of complementarity. He particularly discusses how a fixed reference

system is necessary for spatio-temporal coordination and the definitions of energy and momentum (see

Saunders 2005). Here I take a broader interpretation of the argument.
6An interesting historical question is what influence the development of measurement theory had

on ideas about measurement in quantum mechanics, and vice versa. I do not attempt to address this

question of historical lineage.
7Here I gloss over the differences between (for example) magnitudes, attributes, quantities and ob-

jects that formed a large part of early debates about measurement. These debates culminated in the

representational view, which I take to incorporate this history (see Michell 1997).
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Finally, we find a metric scale that satisfies these axioms (and find a set of numbers,

e.g. the positive reals, that reflect this scale). Once we have this scale, we can use it

to quantify a specific magnitude (e.g. we determine that some specific object is 5m in

length – I will say more about units later on). Different types of properties have different

relations, which are not always straightforwardly captured by numerical representation,

and therefore are characterised by different scales. For example, it makes sense to say

that a 10m rod is twice the length of a 5m one – mirroring the numerical relation that

10 is twice 5 – but it isn’t really meaningful to say that 10◦C is twice as hot as 5◦C.8

This developed into the Representational Theory of Measurement (RTM), grounded

primarily in the work of Suppes (e.g. Suppes (1951) – see Dı́ez (1997a, b) and Tal (2020)

for overviews), who combined work on the classification of different types of scales with

work on the empirical operations that determine suitable axioms. The transition between

empirical operations, which deal with physical objects and qualitative comparisons, and

the numerical representation of these properties is the core element of what a measure-

ment is in the RTM. This transition will be essential to understanding where Bohr’s

doctrine comes into play.

However, the RTM has been criticized as being too simplistic to be a full account of

measurement. Mari, Wilson and Maul (2023) see it as at most a study of measurability

that is useful for characterising the necessary features that properties must have to be

the subject of measurement and for distinguishing between different types of properties.

They argue that a full account of measurement must be focused on the actual method

of attaining data with a practical procedure that specifies the design and operation of

the measurement apparatus, the methods for controlling error, and the management of

uncertainties (given Bohr’s emphasis on the apparatus this is useful for the comparison I

will be making); representing a property by a metric scale is just one part of this. Mari,

Wilson and Maul are a prominent example of a model-based, coherentist approach to

measurement, wherein measurement is dependent on a coherent network of theories and

models that deal with the different aspects of measurement and calibration. Tal (2017) is

another prominent example of the coherentist approach, with many similarities to Mari,

Wilson and Maul. I will primarily use Mari, Wilson and Maul’s model throughout this

paper as it is the most thorough and detailed account, but will also discuss arguments

from Tal where relevant.

In their model, Mari, Wilson and Maul break measurement down into five main stages:

8This is because temperature (in Celsius or Fahrenheit) is an interval scale while length is a ratio

scale, and the zero point on the Celsius scale is arbitrary (see Stevens 1946).
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1. Coupling: the target property is coupled to a property of the measurement device.

E.g. the temperature of an object is coupled to the volume of the mercury in a

thermometer.

2. Matching: the property of the measurement device is matched to a chosen reference

property. E.g. the top line of mercury in a thermometer is compared to lines etched

on the glass. (Length (spatial position) is the most common reference property used

in measurement).

3. Local Scale Application: A numerical output can be read off from the reference

property by applying a metric scale to it. E.g. We read off a value such as ‘30’ (±
some uncertainty) from the thermometer scale. This is also mapped back to the

target property and converted into a local value for this property (this will depend

on understanding the coupling procedure).

4. Creating a Public Scale: A standardized, shared public scale is independently agreed

upon. (E.g. The Celsius scale of temperature is defined based on the freezing and

boiling points of water under certain conditions of pressure etc).

5. Calibration: The local scale is calibrated with the public scale, ensuring that meas-

urements taken on the local device correspond to agreed-upon standards. (E.g. We

understand a reading of ‘30’ on the local thermometer scale to convey the inform-

ation that the target system has a temperature of 30◦C ± some uncertainty)

Whilst this model foregrounds the practical procedure of measurement and calibration,

it shares the same essential feature as the RTM: the transition between the qualitative

property in the world and the numerical representation of it. Mari, Wilson and Maul

replace basic numerical representation with the idea of information to stress the context

dependence of the numerical result of measurement and how, for the numerical result to

actually be an informative measurement outcome, it must be situated in terms of publicly

shared and calibrated reference scales (this is the difference between the local numerical

value of ‘30’ in step 3 and the informative outcome ‘30◦C’ in step 5).9 The transition

from empirical to informational starts to take place in step (3) of the above process,

when a local scale is applied to the reference property. This is the first step in the process

where we get a numerical output that quantifies a property of the empirical world. We

9This use of ‘information’ is not connected to information theory or concepts such as Shannon inform-

ation. Mari, Wilson and Maul do not give a precise definition of the difference between empirical and

informational but elucidate the distinction by saying that if we think of a verbal utterance, the empirical

side is the wavelength of the sound wave, its duration and other physical facts, while the informational

side is the number of words and letters in the message, the meaning of the words, what language it is

spoken in and other facts about the content of the utterance.
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are no longer simply treating the scenario as two systems interacting, but have a specific

operational goal of extracting a quantitative value.

How we define and apply metric scales will be essential for the arguments of the next

section, and is worth exploring in more depth. Mari, Wilson and Maul emphasise that

applying a metric scale (both the local and the shared public one) always has a physical

basis in a reference artefact that is used to establish the units of the scale. For example,

in the case of a length scale we start with a particular object – the metre rod used in the

Paris international standard for example – which is designated as 1 unit. Concatenating

two identical rods (which requires a specified operation for concatenation and another

operation for determining whether two magnitudes are identical) end-to-end gives 2 units,

etc. Creating a reference scale in this way is the basis for representing a property with a

metric scale (this is where Mari, Wilson and Maul’s model incorporates the work done

by the RTM on the representation of properties and the empirical operations – such as

comparison and concatenation – that are required to build a scale). Of course, our current

methods for creating fundamental units are now significantly more complex and in most

cases we have shifted to using fundamental constants such as the speed of light to define

a base unit rather than using a specific artefact (see the next section for more on this).

In the background of this analysis of measurement is the question of whether, or to what

extent, we should be realists about measurement. Mari, Wilson and Maul are measure-

ment realists but state that while they commit to a moderate realism about (at least some)

properties they are not realist about the numerical values that measurement produces.

Their focus on calibration models leads them to claim that the numerical measurement

outcomes should only be understood in an operational context (see Mari, Wilson, & Maul

2023, chapter 4).

Extending Mari, Wilson, and Maul’s view even further is Tal (2017; 2018) who, while

not explicitly stating whether his view is realist or anti-realist, strongly advocates for

recognising how much of creating scales comes down to convention. Both in obviously

pragmatic cases such as fixing the zero point on the Celsius scale and in less obvious

cases such as specifying conventions for establishing when two quantities are equal. Tal’s

coherentist view sees both properties and numerical values as entirely model dependent.

Others, however, take a much stronger realist stance that is realist about the numerical

values and takes the structure of the metric scales to be directly instantiated in the world.

Both Michell (2005; 1997) and Isaac (2019) argue for measurement realism of this kind

on the basis of how metric scales are used in measurement and the explanatory value

that they have. Michell in particular sees this as a necessary consequence of the RTM
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(Michell 2005) I will explore these arguments further in the following section, particularly

regarding the role of precision in their ideas.

4 Quantum Measurement

I will now make the comparison between Bohr’s doctrine of classical concepts and meas-

urement theory. I will argue that representing a property by a metric scale introduces an

implicit assumption that effectively corresponds to Bohr’s doctrine of classical concepts.

The assumption is introduced because applying a reference scale to a property requires

us to assume that the property instantiates a precise value on that scale, hence implying

that the property has a definite state. In particular, I will focus on how units are defined

using reference artefacts which are assumed to have precise states. While the use of metric

scales is sometimes treated as a mathematical idealisation, they also play an important

role in discussions about realism in measurement.

I will first, in Section 4.1, look at how precise definite values have featured generally in

debates about measurement realism and then at a more specific argument about defining

units. Then in Section 4.2, I will argue that this fulfils Bohr’s doctrine. Finally, in Section

4.3, I will look at how the treatment of uncertainties and calibration countermands the

arguments for realism and pushes us towards an epistemological or pragmatic reading of

Bohr’s doctrine, but also shows how deeply ingrained the use of precise values and metric

scales is.

4.1 Precision

On a general level, the idea of precision and definite values has played an important

role in debates about measurement realism. Within scientific communities it is almost

universally assumed that measurement outcomes take the form of x± uncertainty (with

appropriate units). In other words, the outcome is a single definite value with some

uncertainty introduced by practical considerations. Chang (2004) identifies this as the

principle of single values, the almost universally accepted assumption that real objects

can have no more than one definite value in any situation, and therefore we get single

definite values as measurement outcomes. Chang notes that this holds even in quantum

mechanics (although he does not address some of the interpretational questions around

this).

It is also common to assume that future measurements will reduce uncertainty and give

increasingly precise values. This is widely relied upon in discussions of measurement

realism: Isaac (2019) takes the fact that improving precision is an important goal for
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experimentalists, and that this has been by and large historically possible to do, as a

reason to be a realist about the outcomes of measurement and see them as increasingly

good estimates of a precise definite value that is instantiated in the world. He argues that

the instantiation of metric scales by empirical properties (following the RTM) is what

grounds precision as a criterion of success. Taking this further, amenability to precision

has been suggested as a criterion to judge whether new theoretical concepts (such as a

constant introduced as part of a new theory) should be taken seriously as elements of

reality, and the overall success of a research programme in delivering increasingly precise

measurements has been seen as a indicator of quality (Smith & Seth 2020; Stan & Smeenk

2023).

Quantum mechanics has raised many questions about the limits to precision in meas-

urements, so it is arguable that quantum mechanics calls this whole programme of using

precision as a basis for realism into doubt. However, quantum measurements are not

of a fundamentally different type to other measurements in physics, and involve many

of the same basic properties such as position, momentum etc that have been used and

defined in a classical context; so we would expect to be able to use the same criteria

– including precision – to judge quantum measurements. Additionally, the metric scales

that we apply to these properties in a quantum context are the same ones that have

been defined and analysed independently of quantum mechanics, so the claims we make

about these scales are carried over to the quantum context. The public scales for length

and momentum, for example, were well understood in a classical context and imported

into quantum measurements complete with the assumptions of single values and preci-

sion. Maintaining this continuity between quantum and classical properties is important

for the practical process of measurement in the lab (which amplifies quantum effects to

classical readouts).

But, beyond these general points about precision and realism, I will draw out one specific

argument from this literature that will be especially crucial for the comparison with Bohr’s

doctrine in the next section. This argument comes from Michell (1997) and concerns the

definition of units. As introduced in section 3: to define a unit we take a particular artefact

(such as the metre rod held in Paris) to designate as 1 unit on the scale and build the

rest of the scale from that unit. We assume that the artefact has a precise, definite value

of the relevant property that perfectly corresponds to 1 on the scale. This introduces

the precision of the scale and stipulates by definition that this precision has empirical

meaning and is instantiated by the object. Of course, this is a somewhat outdated method

of defining units, the metre is now defined as the distance travelled by light in a vacuum

in a certain fraction of a second (see Tal (2018) for discussion of this change). This shifts
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the definitions of the scales away from an empirical artefact that can never be practically

observed with absolute precision towards a theoretical definition where such precision is

possible. In many ways this reinforces the assumption of precision by stipulating an exact,

fixed value of the constants used in the definition, thereby increasing the prominence of the

numerical scale representing that physical constant. Regardless, the definition of the metre

in turn depends on the SI unit of the second, which is itself defined based on the hyperfine

ground-state transition frequency of the caesium-133 atom under certain conditions. As a

result our current definitions of the SI units rely on a reference phenomena that is taken

to be extremely stable rather than a specific physical artefact, but the connection between

precision in the numerical scale and in the empirical world is maintained by assuming

that this frequency is precisely instantiated. Additionally, we must inevitably use some

empirical reference objects, both to make local calibrations and to calibrate the local

scale to the shared public scale. These reference objects are ineliminable in the process

of creating a numerical value scale and getting a numerical result from a measurement,

and the assumption that they have precise, definite states is tied into how we define the

units of the scale.

Michell (1997; 2005) builds on this (and other points) to conclude that if we adopt the

RTM and take metric scales to represent properties then we must also be realist about

those scales and the numerical results they give.10 Numerical results are ratios between

a specific magnitude and the unit. For example, a result of 5m tells us the object we are

measuring is exactly 5 times the magnitude of the artefact used to define the metre. This

implies that both the unit and the measured magnitude must be precisely instantiated in

the world. Crucially, Michell rejects the line of thought that the precision and continuity

of metric scales is just a convenient mathematical idealisation (as argued in e.g. Pap

1959). The scale is not just an abstraction from the actual objects in the world (which

only instantiate a finite subset of the possible values on the scale and have operational

limits on how precisely we can determine their values) but represents the full range of

possible values that any specific magnitude could instantiate and defines the relationships

between magnitudes. According to Michell, treating metric scales and their mathematical

structure as merely convenient idealisations means they cannot be used in explanatory

statements such as claims like “the fact that rod a spans the linear concatenation of rods

b and c is explained by the fact that these rods are of lengths, la , lb and lc , respectively,

and la = lb + lc” (Michell 1997, pg. 268). Thus, Michell concludes that making the realist

assumption – that the continuity and precision of the metric scales is instantiated directly

10Here Michell is arguing that metric scales are not only used to represent but are directly instantiated,

a claim which is connected to foundationalist work on measurement that predates the RTM (see Michell

1997 for discussion).
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in the empirical world – has direct explanatory value.

This certainly does not exhaust the arguments for and against measurement realism, or

address the possible responses to Michell’s arguments. In particular, I have not discussed

the role of uncertainty as a limit on precision, which I will return to in Section 4.3. My

aim is not to defend this sort of realism, but to show how it leads to classical assumptions

of definite states - which I take Michell’s arguments to do. I will show in the next section

that this line of argument about precision encapsulates Bohr’s doctrine.

4.2 Bohr and Measurement Theory Compared

As the previous section showed, the use of metric scales in measurement has been argued

to imply that properties in the world have precise states, due to how we define units and

more generally in how we take the structure of the scales to explain the behaviour of the

empirical properties. There are two parts of Bohr’s doctrine: 1) treat the target property

as classical by representing it with a statistical mixture of definite states and 2) treat the

relevant property of the measurement apparatus as being in a single definite state. I will

address both of these aspects and show that in both cases we assign a metric scale that

implies precise values.

Starting with part (2), concerning the measurement apparatus: As Zinkernagel (2015)

points out, part (2) of Bohr’s doctrine is that we must have a precise state of the meas-

urement apparatus, which we can compare the property of the quantum system to and

use to define any constants and scales used in the measurement (the reference system

argument). We can find the analogue of this in measurement theory by applying a met-

ric scale to the reference property of the measurement apparatus. Here I turn to Mari,

Wilson, and Maul’s model as it makes a clearer distinction between system and appar-

atus than the RTM does. Applying a metric scale to the measurement apparatus starts

in step (3) of their model and continues into steps (4) and (5), where we define units and

calibrate local and public scales.

Following Michell’s arguments given in the previous section, defining the units of a scale

inextricably involves the assumption of precision (Mari, Wilson, and Maul – although

they do not espouse Michell’s realist conclusion – independently make a similar analysis

of how we define units that makes the same assumption of precision). Whatever reference

object we use to define 1 unit (whether this be the metre rod or the transition frequency

of a Caesium-133 atom used to define the second) is assumed to have such a property

precisely. We must assume that these reference objects for the publically agreed upon

standard that we use to calibrate our measurements have precise states with definite
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values of the relevant property. This also applies to the local reference objects (such

as a thermometer casing with division markings inscribed on it) that we use to the

define the local scale, which is then calibrated to the public scale. This embodies Bohr’s

doctrine by assuming that the relevant parts of the apparatus used to define units and

scales have precise definite states, as is indicated by the reference system argument given

in Section 2. The assumption of precision made in the definition of units ignores any

entanglement the reference property will inevitably form with its environment or the

system being measured. Furthermore, defining units and calibrating the local scale with

the public scale is done separately from any actual measurement and we assume that

the states of the reference properties involved are not affected when they are placed in

different environments (within reasonable parameters such as standard temperature and

pressure). Regardless of the practical question of whether it is true that any variation or

uncertainty due to entanglement will be negligible and subsumed by other uncertainties

in the device (see further discussion in the next section), we are still making a definitional

claim that whatever magnitude the reference property has, this corresponds to a precise

value on the scale.

The other aspect of Bohr’s doctrine is (1): giving a classical description to the target

property. This is not as clearly evident in Bohr’s thought as the reference system argument

is and is primarily argued for by Howard, who proposes using a statistical mixture of

eigenstates as a formal way of expressing the classical description. I take the comparison to

measurement theory made below to support Howard’s claim that the classical description

should be applied to the target property as well as the measurement apparatus.

While applying a local scale is first done to the reference property (step 3), it is also

important that this is then extended backwards to work out the correspondence between

the scale of the reference property and the scale used to represent the target property (this

is part of steps 3-5). In some cases, the target property is directly measurable (for example

measuring the length of an object), in others it is indirect (as in the case of temperature,

which must be matched to something like volume which is then directly compared to the

reference property). But in all cases when we report the outcomes of measurement we do

so in terms of the public scale that is taken to represent the target property and not the

reference property (we report temperature in terms of Celsius, Fahrenheit or Kelvin not

in terms of the units of length applied to the markings on the thermometer). So on top

of representing the reference property with a metric scale, we also represent the target

property with its own metric scale.

In section 2, I raised the question of what the purpose of Howard’s proposed way of

formalising the classical description of the target property – writing the description of
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the property as a statistical mixture of eigenstates – is, when we know it to be strictly

speaking a false representation (the quantum system does not actually have a definite

value that we are ignorant of). The answer is to think of it as mediating between the

metric scale that we take to represent a property such as a length – for which the scale

determines a continuous range of possible values that any specific object could instantiate

– and the restrictions of quantum mechanics. Quantum mechanics restricts the possible

values of the metric scale that we could get as outcomes of measurements. The set of

eigenstates of an observable specify the precise measurement outcomes that are possible

in a specific quantum measurement, just as the metric scale does more generally. Because

quantum mechanics introduces fundamental limits on precision and continuity we need

this further specification of the possible values in addition to the metric scales that

were developed prior to the advent of quantum mechanics; for example, in addition to

a continuous scale representing energy, we must specify the discrete energy levels that a

system could instantiate. The classical description – like metric scales in general – defines

and characterises the measureable property, but it is not taken as an empirical model of

the property that can be evolved under dynamical equations.

Whether we take this application of the metric scale to imply that the target property

has a precise value depends on whether we are realists about measurement outcomes.

Michell’s arguments for realism, given in the previous section, state that we should un-

derstand a measurement outcome to be a ratio between the reference artefact defining the

scale and the target property, and this ratio is instantiated in the world, implying that

the target property does have a precise value. When it comes to quantum measurements,

however, we tend to be far more aware of the limits on precision, and this influences how

we interpret definite measurement outcomes. Take, for example, POVM measurements;

POVM measurements do not use eigenstates and are used for imperfectly isolated sys-

tems. These are the measurements that are practically carried out in laboratories. We do

still report the results of a POVM measurement in terms of a precise metric scale, giving

a result in the familiar single value form – x± uncertainty; for example, a POVM meas-

urement of position separates the length scale into bins of finite resolution and we get a

result when the system is sufficiently localised to one bin. Even when the system in not in

a precise eigenstate we report it as a precise value and put all further considerations into

the uncertainty. But this case makes the question of how we treat uncertainties unavoid-

able. While we do report the outcomes of POVM measurements as single precise values

and may use Howard’s proposed mixture of eigenstates to characterise the property in

question, this is mainly as a pragmatic choice for convenience. We are well aware of the

limits on precision in this case and do not take the single value outcome too literally.

This challenges the arguments for realism about measurement outcomes.

15



The next section will consider this, and what this means for how we interpret Bohr’s

doctrine, in more depth. But what is clear is that both aspects of Bohr’s doctrine –

treating the 1) target property and 2) the property of the measurement device as classical

– are fulfilled by the way we assign metric scales and define units, and the assumption

of precise, definite states that is built into this. This is stronger for the case of the

measurement apparatus, where reference properties and the precision assumed in defining

units are largely taken for granted. For the target property, although we do apply precise

values, we are more likely to be aware of the pragmatic elements of this.

4.3 Uncertainty and Calibration

While the precision inherent in metric scales and the way that we define units has been

used as an argument for realism about measurement, this largely overlooks how we think

of uncertainty and the practical calibration procedures that are used to implement these

scales. Model-based approaches to measurement, such as Mari, Wilson and Maul’s, fore-

ground the role of calibration and uncertainty and, as a result, tend to reject the strong

realist conclusion in favour of a more moderate realism about properties but not spe-

cific numerical measurement outcomes. This would imply an epistemological rather than

ontological reading of Bohr’s doctrine.

Before looking at this in more depth, here is what the realist conclusion means for Bohr’s

doctrine: Measurement realism, in Michell’s sense, is realism about metric scales used

to represent properties (i.e. the belief that these scales are instantiated) and about the

definite values we get as measurement outcomes. Issac (2019) also emphasises how the

arguments from precision in metric scales lead to realism specifically about the numerical

values produced by measurement. In the context of Bohr’s doctrine, the realist conclusion

therefore entails that we are realist about the definite states (or mixtures of definite states)

we assign both to the reference properties and the target property. This is an ontological

reading of Bohr’s doctrine: in measurement contexts the relevant properties really have

classical definite states. Given that the quantum state fails to specify such definite states,

this suggests an incompatibility between measurement realism and quantum mechanics.

If we take Bohr’s doctrine as ontological then we seem to be positing an ontological

difference between what systems are like in the context of measurement and what they

are like more generally. While this ontological reading of Bohr is possible (for example,

Zinkernagel (2015) argues in support of a nuanced ontological view based on Bohr’s idea

of complementarity), it has generally been argued against (Saunders 2005; Camilleri &

Schlosshauer 2015).

The alternative is an epistemological reading in which the assignment of definite states
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and precise values is a pragmatic choice that facilitates the operational goal of measure-

ment and enables us to extract usable information from the measurement scenario. On

this reading, although the world may be entirely quantum, the demands of measurement

and the limitations of our abilities as observers – and indeed as language users – require

that we use classical descriptions with definite states (Camilleri & Schlosshauer 2015).

Given the nature of uncertainties in quantum mechanics, the epistemological reading ap-

pears more promising. In a POVM measurement of position we see the uncertainty in the

measurement results as representing the range of values that the system is approximately

localised to. The quantum system does not actually instantiate a precise value, this is

merely an artifact of how we report measurement outcomes – it is more convenient to

stick to the familiar format of x ± uncertainty than to switch to reporting ranges of

values. But this gives us reason to reject realism about the precise value x.

Mari, Wilson and Maul reject realism about numerical measurement outcomes based on

similar considerations about the pragmatic and conventional elements of how we treat

uncertainty and calibration, though they focus on uncertainties more generally and not

the specific ontological uncertainty of quantum mechanics. The stated uncertainty in a

measurement result includes many uncertainties from the functioning of the measurement

device. The most easily identifiable sources of uncertainty are direct operational factors

such as the finite resolution of the measurement scale, human error in reading off the

scale (e.g. due to parallax). There is also a basic uncertainty in the functioning of the

measurement device itself and the conditions (such as temperature and pressure) that it

is designed to operate at; these are worked out from calibration tests. Additionally, these

uncertainties are also present in the procedures used to define and calibrate unit scales,

despite the assumptions of precision built into the process (as described in the previous

sections). Tal (2017) argues that once we acknowledge how many idealisations are made

and how often conventional standards are applied in the calibration process we must also

accept that measurement is a coherentist modelling procedure that balances all these

factors. Mari, Wilson and Maul make similar claims.

This analysis of uncertainties and calibration gives us reason to be sceptical of a realist

interpretation of measurement outcomes (even if we are still realist about other aspects

of measurement such as the existence of properties). Correspondingly, it implies that

Bohr’s doctrine of classical concepts is pragmatic and epistemological. The definite states

we assign are convenient descriptors that allow us to get a handle on the measurement

set-up and the scales and units involved, but we acknowledge that there are idealisations

and conventional aspects at play. In Bohr’s own statements, he repeatedly emphasizes

that the doctrine of classicality stems from the need to be able to give an account of
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scientific evidence in a way that can easily be used and shared by a scientific community

(as evidenced by the quote given in section 2); this is an epistemological not an ontological

claim.

However, even if we see the use of definite states and precise values as pragmatic ideal-

isations, thinking about the complexity of calibration also proves how ineliminable the

use of them is. The most basic form of calibration is to use the instrument to measure

properties with known values to check that the device produces correct readings, this is a

simplistic black-box model of calibration that treats the measurement device as an input-

output function. More sophisticated models of calibration – white-box models – break

down the device in more detail to establish the sources of uncertainty within the device

(Tal 2017). White-box calibration breaks the device down into a series of individual mod-

ules; each of these can be analysed to establish factors such as how the parts might react

to changes in temperature or pressure, the effects of friction between components, etc.

Treating calibration and uncertainty in this modular way strengthens Bohr’s reference

system argument considerably and illustrates why classical descriptions are ineliminable

from measurement, even if they are epistemological tools: Calculating the uncertainties

from all the different components of the device requires that the device be broken down

and metric scales applied to each component individually to quantify the associated un-

certainty budgets (Tal (2017) gives examples of these sorts of uncertainty budgets given

by manufacturers). This means that a model of a measurement device requires a vast

number of supplementary measurements to establish how the device functions, calibrate

it correctly, and calculate its uncertainties. To enable this, precise metric scales must be

applied many times over in order to quantify all the necessary components, making the use

of these scales, and the pragmatic assumption of precise values, effectively ineliminable

from measurement.11

As such, an epistemological reading of Bohr’s doctrine shouldn’t be seen as a reason to

dismiss it; it is important to recognise that classical assumptions are built into how we

report measurement results and are essential to how we design measurement devices and

define units. Even if the classical assumption is understood to be a pragmatic idealisation

it is still a necessary part of measurement. The next section will consider the implica-

tions of Bohr’s doctrine and suggest how this might influence our understanding of the

measurement problem.

11We also universally ignore the possible effects of entanglement between components of the device

and treat them as separable – which is a classical assumption in itself. We take any effects from this to

be negligible compared to other factors.
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5 Can Measurement be Entirely Quantum?

We are now in a position to answer the title question: can measurement be entirely

quantum? The answer is no. By looking at detailed models of the measurement process it

becomes clear that there is far more to measurement than modelling the systems involved

in quantum mechanical terms. In common accounts of quantum measurement, such as the

decoherence account (which is particularly applied in the Many Worlds interpretation),

what is modelled is at most the empirical side of measurement where the target system

becomes coupled to the measurement device and to a reference property (steps 1-2 of

Mari, Wilson and Maul’s model).12

This does not touch on the informational side of measurement where we apply metric

scales, define units, and specify procedures of calibration with the operational goal of pro-

ducing numerical measurement outcomes (steps 3-5 of Mari, Wilson and Maul’s model).

We cannot ignore this practical side of measurement when thinking about quantum mech-

anics; it is here that classical assumptions of precise values and definite states creep in,

even if it is only on a pragmatic basis. Bohr’s doctrine, and the connection to measure-

ment theory made in this paper, make this clear. Using metric scales is unavoidable in

how we design measurement devices and quantify uncertainties, and is baked into our

definitions of units. These conditions are necessary for the epistemological practice of

measurement and have important ramifications for how measurement is conceived of.

That measurement is not entirely quantum does not imply a strong ontological claim

that classical concepts are prior to quantum ones or that the world cannot be modelled

entirely within quantum mechanics. All systems can be given a quantum mechanical

description if necessary, but without the additional steps of applying metric scales and

making classical assumptions of definite states we would be unable to extract a usable

measurement outcome.

This conclusion has implications for how we understand the measurement problem. The

epistemological reading of Bohr’s doctrine is generally not taken to provide a solution to

the measurement problem and it must still be combined with some further interpretation

(although the ontological reading does attempt a solution – Zinkernagel 2015). However,

even as an epistemological doctrine, the fact the measurement is not entirely quantum

provides important context to the measurement problem and suggests that aspects of it

have been overlooked.

The measurement problem, following Maudlin’s (1995) presentation, is an inconsistency

12Alternatives being the dynamical collapse models – which also involve decoherence, or how Bohmian

Mechanics resolves the measurement problem by specifying determinate trajectories.
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between these three principles:

“1.A The wave-function of a system is complete, i.e. the wave-function spe-

cifies (directly or indirectly) all of the physical properties of a system.

1.B The wave-function always evolves in accord with a linear dynamical equa-

tion (e.g. the [time dependent] Schrödinger equation).

1.C Measurements of, e.g., the spin of an electron always (or at least usually)

have determinate outcomes, i.e., at the end of the measurement the measuring

device is either in a state that indicates spin up (and not down) or spin down

(and not up)” (Maudlin 1995, pg. 7)

This is presented as a problem of quantum dynamics and completeness. Yet it presup-

poses a concept of measurement that is prior to and independent of quantum mechanics.

Measurement is a hybrid process that involves both the quantum dynamics of the sys-

tem and a set of operational procedures, yet the latter does not enter into the standard

formulation of the measurement problem.

Principle 1.A takes for granted that we have a preconceived idea of measurable properties.

What is not included in the measurement problem is how these properties are defined and

the way in which metric scales are used to characterise the measurability of properties

in the first place. As mentioned in Section 4.1, this has largely been done outside of

quantum mechanics and imported in along with assumptions about how we expect those

properties to behave in a classical domain. For example, the axioms used to characterise

a property such as length include that length is infinitely divisible (see Michell 1997; Dı́ez

1997a, b) – which faces challenges when we get to the Planck scale. The impact of this

is that, when it comes to quantum measurements, we apply familiar criteria of success –

such as precision and the principle of single values (which Chang (2004) identifies – see

Section 4.1) – to judge their quality and to guide our reasoning without independently

assessing whether these criteria apply. Relatively little has been done in measurement

theory on whether quantum mechanics changes our understanding of the scales we use to

represent these properties. Further analysis of quantum properties that focuses specifically

on metric scales and measurement theory could help to clarify how we should think about

the quantum state and the way that it specifies properties. As I have suggested in Section

4.2, tools such as Howard’s suggested classical descriptions could assist with bridging this

gap.13 How we define properties in quantum mechanics has been given some attention

13This would also allow for a deeper investigation of the arguments in support of realism about meas-

urement outcomes and whether they can be maintained within quantum mechanics (although I have

suggested here that they cannot).
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in the literature, but is largely separated from discussions of the measurement problem.

Measurement theory, with its reliance on the representation of properties by metric scales,

makes it clear that this is a mistake and the two issues should be seen as closely connected.

How the quantum states specifies the values of properties and what it means for those

properties to be measureable is an undeniable background to the measurement problem

that deserves more attention.

Likewise, principle 1.C takes for granted that measurement produces determinate out-

comes without examining the infrastructure of metric scales, reference standards and

operational procedures that make this intelligible. These form a set of epistemological

requirements that are necessary if we are to design processes that we call measurement.

There are multiple avenues to explore the implications of this and how these aspects

of measurement could be incorporated into the measurement problem. Inevitably some

quantum interpretation that specifies a solution to the measurement problem is still

needed to make sense of superpositions and explain basis selection, but the epistemological

conditions of measurement could be incorporated in a number of ways. One option is to

stay close to the existing interpretations of quantum mechanics and their solutions to the

measurement problem, but to see the informational side of measurement as exposing an

added dimension of it. For example, the Many Worlds approach (Wallace 2012) relies on

decoherence to take us arbitrarily close to determinate values. (Camilleri & Schlosshauer

(2015) discuss how Bohr’s ideas are compatible with decoherence.) The formal result

of decoherence is the effective diagonalization of the density matrix; the off-diagonal

terms, which represent interference, decay until they are negligible and we can treat the

system as if if is correctly described by a classical statistical mixture. This effectively

produces the description of the property that Howard proposes – a statistical mixture

of eigenstates.14 This is a promising way of connecting up the use of metric scales to

the quantum mechanical model. Connecting the Many World’s decoherence account of

measurement to measurement theory also helps to specify what the actual process of

measurement is from the perspective of the observer within a single branch rather than

putting measurement in abstract third-personal terms that cover multiple branches of the

wavefunction (Mason (2025) explores this aspect of measurement and how it influences

the way in which we interpret the quantum state). The observer’s viewpoint is essential

if we are to understand the operational procedures that we rely on to define metric scales

and characterise measureable properties.

14This could also be a way to recover realism about measurement outcomes at an emergent level, based

on the emergentist programme that Wallace supports. It also exposes a new context in which classical

descriptions such as the statistical mixture of eigenstates (the effectively diagonalised density matrix)

could have novel explanatory value – which is part of the justification for emergent classical ontologies.
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More radical approaches are available, however, that place the epistemology behind meas-

urement at the core of the measurement problem. An example of this would be recent

attempts to use transcendentalist ideas from Kant and phenomenologists such as Husserl

to inform or resolve the measurement problem (e.g. French 2023). The idea of this is that

there are epistemological preconditions on perception and our experience of the world,

and therefore on what concepts we use to formulate scientific theories; it is this that cre-

ates the paradox of measurement in quantum mechanics. French’s ideas focus on the fact

that when conscious agents reflect on their own internal state, they always find it to be de-

terminate (an idea that has particular resonance with Bohr’s reference system argument)

and this is treated as the key to the measurement problem. There have been multiple

studies that look at the transcendentalist ideas in Bohr’s work (e.g. Wiltsche 2024; Bit-

bol 2017), and measurement theory similarly draws from transcendentalist thought and

ideas about human perception (as discussed in Michell (1997) and Mari, Wilson and Maul

(2023, pg. 114)). As such, measurement theory, and its connection to Bohr identified here,

could be an avenue to formalise the application of transcendentalist thought to quantum

mechanics and connect these more abstract philosophical ideas to scientific measurement

more concretely.

This is just a brief sketch of some of the possible implications. What is undeniable is that

there is more to measurement than a model within quantum mechanics, and looking at

measurement theory has the potential to shape how we think about the measurement

problem.

6 Conclusion

Our exact solution to the measurement problem will depend on what interpretation of

quantum mechanics we adopt. How Bohr’s doctrine, and the debate about measurement

realism, have a bearing on the measurement problem will be different in each of the main

interpretations. But, identifying how Bohr’s doctrine is fulfilled by the assumption of pre-

cision that comes along with using metric scales to represent properties and the way that

we define units, which is a central element of both the RTM and model-based approaches

to measurement, opens up a way to move this discussion forwards and recognises how

debates in measurement theory could assist our understanding of quantum mechanics.
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