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Abstract

The Pusey-Barrett-Rudolph (PBR) theorem proves that the joint wave function ψ1⊗ψ2

of a composite quantum system is ψ-ontic, representing the system’s physical reality. We
present a minimalist proof showing that this result, combined with the tensor product struc-
ture assigning ψ1 to subsystem 1 and ψ2 to subsystem 2, directly implies that ψ1 and ψ2

are ψ-ontic for their respective subsystems. This establishes ψ-ontology for single quan-
tum systems without requiring preparation independence or other assumptions. Our proof
challenges the widely held view that joint ψ-onticity permits subsystem ψ-epistemicity via
correlations, providing a simpler, more direct understanding of the wave function’s ontolog-
ical status in quantum mechanics.

1 Introduction

The ontological status of the quantum wave function—whether it represents physical reality (ψ-
ontic) or mere knowledge (ψ-epistemic)—remains a pivotal question in quantum mechanics [1].
The Pusey-Barrett-Rudolph (PBR) theorem proves that the joint wave function ψ1 ⊗ ψ2 of a
composite system is ψ-ontic, uniquely determining the system’s physical state [2]. However,
extending this result to single systems relies on the preparation independence postulate (PIP),
which assumes uncorrelated ontic states for independently prepared subsystems. The widely
held view suggests that relaxing PIP may allow subsystem wave functions to be ψ-epistemic,
with distinct states sharing the same physical reality via correlations [3].

We present a minimalist proof that the PBR theorem’s result for a composite system, com-
bined with the tensor product structure assigning ψ1 to subsystem 1 and ψ2 to subsystem 2,
directly implies that ψ1 and ψ2 are ψ-ontic for their respective subsystems. This establishes
ψ-ontology for single systems without PIP or other assumptions, challenging the view that joint
ψ-onticity permits subsystem ψ-epistemicity. Section 2 introduces the PBR theorem and PIP,
Section 3 details our proof, and Section 4 addresses limitations of ψ-epistemic models, with
implications discussed in Section 6.

2 The PBR Theorem: Joint ψ-Onticity and PIP

In ontological models of quantum mechanics, a physical system, which can be assigned to a
wave function or pure state, is described by an ontic state λ ∈ Λ, which may include the wave
function and additional hidden variables (e.g., particle positions in Bohmian mechanics). A wave
function |ψ⟩ is ψ-ontic if each ontic state λ corresponds to at most one quantum state, meaning
the epistemic distributions µψ(λ) and µϕ(λ) for distinct states |ψ⟩ ≠ |ϕ⟩ have disjoint supports
in the ontic state space Λ. This ensures that |ψ⟩ is a physical property uniquely determined by
λ. In contrast, |ψ⟩ is ψ-epistemic if distinct states can share ontic states, allowing overlapping
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epistemic distributions [3]. In models with hidden variables, the ontic state may be λ = (λψ, η),
where λψ is the ψ-related part and η represents hidden variables. In a ψ-ontic model, the
epistemic distribution takes the form:

µψ(λ) = δ(λψ − ψ)νψ(η), (1)

where νψ(η) is a distribution over hidden variables that may depend on |ψ⟩, and distinct states
|ψ⟩ and |ϕ⟩ correspond to distinct λψ, ensuring non-overlapping epistemic distributions.

The PBR theorem addresses the ontological status of the quantum wave function, specifically
whether it is ψ-ontic or ψ-epistemic [2]. For a composite quantum system with Hilbert space
H1 ⊗H2, the theorem considers product states |ψ1 ⊗ ψ2⟩, where |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2 are
prepared for subsystems 1 and 2, respectively. The PBR theorem proves that the joint wave
function |ψ1 ⊗ ψ2⟩ is ψ-ontic, meaning the epistemic distributions µψ1⊗ψ2(λ) and µϕ1⊗ϕ2(λ) for
distinct joint states |ψ1 ⊗ ψ2⟩ ≠ |ϕ1 ⊗ ϕ2⟩ have disjoint supports in the composite ontic state
space Λ. For an ontic state λ = (λψ, η) with λψ = ψ1 ⊗ ψ2, the epistemic distribution is:

µψ1⊗ψ2(λ) = δ(λψ − ψ1 ⊗ ψ2)νψ1⊗ψ2(η), (2)

ensuring that each λ uniquely determines |ψ1 ⊗ ψ2⟩, making the joint wave function a physical
property of the composite system.

The PBR theorem relies on PIP to extend ψ-onticity to single systems. PIP posits that
when subsystems 1 and 2 are prepared independently, their ontic states are uncorrelated, such
that the joint ontic state distribution factorizes:

µψ1⊗ψ2(λ1, λ2) = µψ1(λ1)µψ2(λ2), (3)

where λ1 ∈ Λ1 and λ2 ∈ Λ2 are the ontic states of subsystems 1 and 2, respectively. The
theorem tests ψ-epistemic models by considering multiple product states (e.g., |0⟩ ⊗ |0⟩, |0⟩ ⊗
|+⟩, |+⟩ ⊗ |0⟩, |+⟩ ⊗ |+⟩) measured in an entangled basis (e.g., 1√
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(|0⟩|1⟩ − |1⟩|0⟩)). In a ψ-

epistemic model, distinct single-system states like |0⟩ and |+⟩ could share ontic states, leading to
overlapping epistemic distributions µ0(λ1) and µ+(λ1). PIP ensures that the joint distributions
µ0⊗0(λ1, λ2) = µ0(λ1)µ0(λ2), µ0⊗+(λ1, λ2) = µ0(λ1)µ+(λ2), etc., also overlap if the single-
system distributions do. This overlap predicts non-zero probabilities for measurement outcomes
that quantum mechanics assigns zero probability, creating a contradiction unless the single-
system states are ψ-ontic. Thus, PIP is critical to the PBR theorem’s proof that |ψ1⟩ and |ψ2⟩
are ψ-ontic, as it prevents correlations between subsystems from allowing ψ-epistemicity [2].

The widely received view holds that the PBR theorem’s joint ψ-onticity does not necessarily
imply ψ-onticity for single systems if PIP is relaxed, allowing correlated ontic states across
subsystems to permit ψ-epistemicity [3]. Models like that of Lewis et al. suggest that ψ-
epistemicity for single systems is possible by introducing such correlations, though they did
not show that their model fully reproduces quantum mechanics’ entanglement measurement
predictions [4]. Our minimalist proof, presented in the next section, challenges this view by
demonstrating that ψ-onticity for single systems follows directly from the PBR theorem’s result
for composite systems and the tensor product structure, without requiring PIP.

3 A Direct Proof of Single-System ψ-Ontology

We prove that the subsystem wave functions |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2 are ψ-ontic, using only
the PBR theorem’s result that the joint wave function |ψ1 ⊗ ψ2⟩ is ψ-ontic [2], and the tensor
product structure of quantum mechanics, which ensures that |ψ1⟩ and |ψ2⟩ are associated with
their respective subsystems in product states, without implying their ontological status (i.e.,
whether they are ψ-ontic or ψ-epistemic for those subsystems).
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The PBR theorem establishes that the joint state |ψ1 ⊗ ψ2⟩ is ψ-ontic, with the epistemic
distribution:

µψ1⊗ψ2(λ) = δ(λψ − ψ1 ⊗ ψ2)νψ1⊗ψ2(η), (4)

in the composite ontic state space Λ, where λ = (λψ, η) and λψ = ψ1⊗ψ2. This ensures that the
physical reality of the composite system, described by λ, uniquely determines |ψ1 ⊗ ψ2⟩, with
νψ1⊗ψ2(η) allowing variation in hidden variables. The tensor product structure of the Hilbert
space H1 ⊗H2 implies that the joint wave function |ψ1 ⊗ ψ2⟩ separates into |ψ1⟩ for subsystem
1 and |ψ2⟩ for subsystem 2. Correspondingly, the delta-distribution for the composite system
can be decomposed as:

δ(λψ − ψ1 ⊗ ψ2) = δ(λψ1 − ψ1)δ(λψ2 − ψ2), (5)

where λψ1 = ψ1 and λψ2 = ψ2 are the ψ-related parts of the subsystem ontic states λ1 =
(λψ1 , η1) ∈ Λ1 and λ2 = (λψ2 , η2) ∈ Λ2, respectively.

This decomposition reflects the separable nature of the product state and implies that the
epistemic distribution for the composite system includes contributions from the ψ-related parts
of each subsystem:

µψ1⊗ψ2(λ) = δ(λψ1 − ψ1)δ(λψ2 − ψ2)νψ1⊗ψ2(η). (6)

For subsystem 1, we focus on the epistemic distribution over the ψ-related part λψ1 , denoted
µψ1(λψ1), which is obtained by marginalizing over the hidden variables η:

µψ1(λψ1) = δ(λψ1 − ψ1). (7)

Similarly, for subsystem 2:
µψ2(λψ2) = δ(λψ2 − ψ2). (8)

The delta distributions δ(λψ1 − ψ1) and δ(λψ2 − ψ2) ensure that λψ1 and λψ2 are uniquely tied
to |ψ1⟩ and |ψ2⟩, respectively. Thus, for distinct states |ψ1⟩ ̸= |ϕ1⟩, the distributions µψ1(λψ1)
and µϕ1(λψ1) have disjoint supports in Λ1, and similarly for subsystem 2, establishing that |ψ1⟩
and |ψ2⟩ are ψ-ontic.

This proof does not require assumptions about hidden variables or their correlations. Whether
the ontic state is λ = λψ = ψ1 ⊗ ψ2 (no hidden variables) or λ = (ψ1 ⊗ ψ2, η) (with hidden
variables), the PBR theorem’s result ensures that |ψ1 ⊗ ψ2⟩ is uniquely determined by the
composite system’s physical reality via disjoint epistemic distributions. The decomposition
δ(λψ − ψ1 ⊗ ψ2) = δ(λψ1 − ψ1)δ(λψ2 − ψ2) enforces that |ψ1⟩ and |ψ2⟩ are uniquely determined
by their subsystems’ ψ-related parts through µψ1(λψ1) = δ(λψ1−ψ1) and µψ2(λψ2) = δ(λψ2−ψ2),
respectively. Hidden variables, if present, and their potential correlations are accounted for in
νψ1⊗ψ2(η), but the disjointness of µψ1(λψ1) and µϕ1(λψ1), and similarly for subsystem 2, depends
only on the ψ-related parts λψ1 and λψ2 , ensuring ψ-onticity.

To summarize, ψ-ontology for single quantum systems can be established based on the PBR
theorem’s result about composite systems and the tensor product structure. The proof avoids
reliance on PIP or assumptions about the independence of hidden variables. The conclusion
that |ψ1⟩ and |ψ2⟩ are ψ-ontic holds regardless of correlations in hidden variables, as the decom-
position of the ψ-related epistemic distribution and the tensor product structure enforce their
role as physical properties of their respective subsystems, establishing ψ-ontology for a single
quantum system in a direct and rigorous manner.

4 Failure of ψ-Epistemic Models

A notable attempt to construct a ψ-epistemic model, where distinct quantum states may share
ontic states, is presented by Lewis et al. [4]. Their model is designed for single quantum systems
and claims to reproduce quantum mechanics’ Born rule for projective measurements. However,
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its limitations, particularly in addressing composite systems and entanglement measurements,
mean it does not challenge our proof of subsystem ψ-ontology, which relies on the PBR theorem’s
ψ-onticity grounded in quantum mechanics’ entanglement measurement predictions.

The Lewis et al. model defines an ontic state space Λ = CP d−1 × [0, 1], where |λ⟩ ∈ CP d−1

represents the ψ-related part (equivalent to the quantum state space, e.g., S2 for qubits) and
x ∈ [0, 1] is a hidden variable. For qubits, a preferred state |0⟩ (north pole on the Bloch sphere)
defines a hemisphere R0 (θλ < π/2) and a subset E0 = {(λ̂, x) : λ̂ ∈ R0, 0 ≤ x < (1− sin θλ)/2},
where θλ is the angle from |0⟩. The epistemic state for a quantum state |ψ⟩ ∈ R0 is given by:

µψ(λ̂, x) = δ(λ̂− ψ̂)Θ

(
x−

1− sin θψ
2

)
+

1− sin θψ
2

µE0(λ̂, x), (9)

where µE0 is a distribution over E0. This allows distinct states |ψ⟩, |ϕ⟩ ∈ R0 to share on-
tic states with different λ̂ ∈ R0, achieving ψ-epistemicity. The response function, ξϕk(λ̂, x) =
Θ
[
(|⟨λ|ϕ0⟩|2 − x)(−1)k

]
, ensures the Born rule for single-system projective measurements, where

measurements are ordered relative to |0⟩ (e.g., |⟨ϕ0|0⟩|2 ≥ |⟨ϕ1|0⟩|2).
The model is explicitly constructed for single systems, reproducing quantum mechanics’

Born rule for projective measurements. However, the PBR theorem, which our proof relies
upon, leverages quantum mechanics’ predictions for entanglement measurements in composite
systems to establish ψ-onticity [2]. The Lewis et al. model does not provide a detailed framework
for composite systems or specify response functions for joint measurements, particularly those
involving entanglement, such as Bell-basis measurements critical to the PBR theorem.

The PBR theorem considers composite states like |0⟩⊗|0⟩, |0⟩⊗|+⟩, |+⟩⊗|0⟩, and |+⟩⊗|+⟩,
measured in an entangled basis (e.g., 1√

2
(|0⟩|1⟩ − |1⟩|0⟩)). If epistemic distributions overlap,

a ψ-epistemic model predicts non-zero probabilities for outcomes quantum mechanics assigns
zero probability, leading to a contradiction. In the Lewis et al. model, distinct states like |0⟩
and |+⟩ share ontic states in E0 with the same λ̂ ∈ R0. If extended to a composite system,
the epistemic states for |0⟩ ⊗ |0⟩ and |0⟩ ⊗ |+⟩ could overlap, potentially predicting incorrect
probabilities for entangled measurements. Lewis et al. suggest their model can be extended to
composite systems by relaxing PIP, allowing correlated ontic states, but they provide no explicit
construction demonstrating that it reproduces quantum mechanics’ entanglement measurement
predictions.

In addition, the model’s reliance on a preferred state |0⟩ to defineR0 and E0 violates quantum
mechanics’ basis invariance, a principle requiring predictions to be consistent across all bases.
Entanglement measurements, being basis-independent, may be disrupted by this preferred state,
as response functions are ordered relative to |0⟩. This further complicates the model’s ability to
address composite system predictions without redefinition for each basis, which is not provided.

Our proof relies on the PBR theorem’s ψ-onticity for ψ1 ⊗ ψ2, grounded in quantum me-
chanics’ entanglement measurement predictions, and the tensor product structure to establish
subsystem ψ-onticity. The Lewis et al. model’s limitation lies in its failure to demonstrate that
it can reproduce these predictions for composite systems. Without such a demonstration, it
does not challenge the PBR theorem’s conclusion or our proof’s assertion that ψ1 and ψ2 are
ψ-ontic for their subsystems.

5 Criticisms and Responses

5.1 Hidden Variables and Correlations

Criticism: The proof assumes that the decomposition of the delta distribution enforces ψ-
onticity for subsystems, even in the presence of hidden variables η. However, if hidden variables
introduce correlations between subsystems (as suggested by ψ-epistemic models like Lewis et
al.’s), the disjointness of subsystem distributions might not hold. The paper dismisses this by
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claiming hidden variables do not affect the conclusion, but this is not rigorously justified. For
example, if νψ1⊗ψ2(η) encodes correlations, the subsystem distributions µψ1(λ1) and µψ2(λ2)
could overlap despite the delta distributions for λψ1 and λψ2 .

Response: This is incorrect. The PBR theorem establishes that |ψ1 ⊗ ψ2⟩ is ψ-ontic,
with epistemic distribution µψ1⊗ψ2(λ) = δ(λψ − ψ1 ⊗ ψ2)νψ1⊗ψ2(η) (Section 3). The delta
distribution decomposes as δ(λψ − ψ1 ⊗ ψ2) = δ(λψ1 − ψ1)δ(λψ2 − ψ2), fixing λψ1 = ψ1 and
λψ2 = ψ2. Correlations in η, encoded in νψ1⊗ψ2(η), cannot alter λψ1 or λψ2 , as the delta
functions enforce strict equality. Thus, for distinct states |ψ1⟩ ̸= |ϕ1⟩, µψ1(λψ1) = δ(λψ1 − ψ1)
and µψ2(λψ2) = δ(λψ2 − ψ2) have disjoint supports, ensuring ψ-onticity, as stated in Section 3.
Hidden variables affect only η, not the ψ-related parts, preserving disjointness regardless of
correlations.

5.2 Role of PIP

Criticism: The proof claims to avoid PIP, but the decomposition µψ1⊗ψ2(λ) = δ(λψ1 −
ψ1)δ(λψ2 −ψ2)νψ1⊗ψ2(η) implicitly assumes a form of independence or separability in the ontic
states of the subsystems. If νψ1⊗ψ2(η) is not factorizable (i.e., if there are correlations), the
proof’s conclusion may not hold. The paper does not fully address how such correlations would
be ruled out without PIP.

Response: The decomposition is a mathematical consequence of the tensor product struc-
ture of H1 ⊗H2, which assigns |ψ1⟩ to subsystem 1 and |ψ2⟩ to subsystem 2 for product states,
and the PBR theorem’s result that |ψ1 ⊗ ψ2⟩ is ψ-ontic (Section 3). The delta distribution
δ(λψ − ψ1 ⊗ ψ2) = δ(λψ1 − ψ1)δ(λψ2 − ψ2) holds by definition for product states, requiring no
assumption about the factorizability of νψ1⊗ψ2(η). Correlations in η do not affect the ψ-related
parts λψ1 and λψ2 , which remain distinct for distinct states. The proof thus avoids PIP, relying
solely on the tensor product and PBR result, as clarified in Section 3.

5.3 Lewis et al.’s Model

Criticism: The paper critiques Lewis et al.’s ψ-epistemic model for not addressing composite
systems, but it does not construct a concrete counterexample where the model fails to reproduce
the PBR theorem’s predictions. A stronger rebuttal would require showing that any ψ-epistemic
model for subsystems necessarily contradicts the PBR theorem’s experimental predictions.

Response: The Lewis et al. model’s structural limitations suffice (Section 4). Designed
for single systems, it reproduces the Born rule for projective measurements but lacks response
functions for composite-system entanglement measurements, such as Bell-basis measurements
critical to the PBR theorem [2]. The model allows distinct states like |0⟩ and |+⟩ to share ontic
states in Λ = CP d−1 × [0, 1], relying on correlations to violate PIP and permit ψ-epistemicity.
However, it provides no framework for joint measurements, leaving unspecified how joint states
like |0⊗ 0⟩ or |0⊗+⟩ are represented or measured. Any extension to composite systems would
require response functions that either reproduce quantum predictions (requiring ψ-onticity per
the PBR theorem) or fail, contradicting quantum mechanics. The model’s preferred state |0⟩
violates basis invariance, further preventing compatibility with entanglement measurements,
ensuring it cannot refute our proof’s ψ-onticity claim.

6 Implications for ψ-Ontology

The widely held view posits that joint ψ-onticity may allow subsystem ψ-epistemicity through
correlations between subsystem ontic states [3]. Our proof demonstrates that this is incorrect:
the tensor product structure ensures that |ψ1⟩ and |ψ2⟩ are associated with subsystems 1 and 2,
respectively, independently of their ontological status. Since |ψ1⊗ψ2⟩ is ψ-ontic, with epistemic
distribution µψ1⊗ψ2(λ) = δ(λψ − ψ1 ⊗ ψ2)νψ1⊗ψ2(η), the decomposition δ(λψ − ψ1 ⊗ ψ2) =
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δ(λψ1 − ψ1)δ(λψ2 − ψ2) implies that µψ1(λψ1) and µψ2(λψ2) have disjoint supports for distinct
states, establishing subsystem ψ-onticity without preparation independence.

The persistence of this view, 13 years after the PBR theorem [2], likely stems from a mis-
conception that the epistemic distribution for |ψ1 ⊗ ψ2⟩ is not a delta distribution for λψ due
to mixing with hidden variables η. Since the full ontic state λ = (λψ, η) has a distribution
νψ1⊗ψ2(η) that is not a delta distribution, researchers may assume ψ1 and ψ2 could be ψ-
epistemic. Our proof clarifies that the delta distribution δ(λψ −ψ1 ⊗ψ2) ensures λψ1 = ψ1 and
λψ2 = ψ2, enforcing ψ-onticity for subsystems regardless of hidden variables, thus resolving this
misconception and reinforcing the wave function’s physical reality.

7 Conclusion

We have demonstrated a minimalist proof that the PBR theorem’s result—that the joint wave
function ψ1 ⊗ ψ2 is ψ-ontic—combined with the tensor product structure, directly establishes
that ψ1 and ψ2 are ψ-ontic for their respective subsystems. This proves ψ-ontology for single
quantum systems without preparation independence or other assumptions, correcting the widely
held view that joint ψ-onticity permits subsystem ψ-epistemicity via correlations [3]. The Lewis
et al. ψ-epistemic model, limited by its failure to reproduce quantum mechanics’ entanglement
measurement predictions, does not challenge our proof [4]. Our simpler proof strengthens the
case for the wave function as a physical property of single systems, clarifying its ontological
status in quantum mechanics.
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