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Abstract: 

Predictive processing is an ambitious neurocomputational framework, offering an 
unified explanation of all cognitive processes in terms of a single computational 
operation, namely prediction error minimization. Whilst this ambitious unificatory 
claim has been thoroughly analyzed, less attention has been paid to what predictive 
processing entails for structure-function mappings in cognitive neuroscience. We 
argue that, taken at face value, predictive processing entails an all-to-one 
structure-function mapping, wherein each individual neural structure is assigned the 
same function, namely minimizing prediction error. Such a structure-function mapping, 
we show, is highly problematic. For, barring few, rare occasions, such a 
structure-function mapping fails to play the predictive, explanatory and heuristic roles 
structure-function mappings are expected to play in cognitive neuroscience. Worse 
still, it offers a picture of the brain that we know is wrong. For, it depicts the brain as an 
equipotential organ; an organ wherein structural differences do not correspond to any 
appreciable functional difference, and wherein each component can substitute for any 
other component without causing any loss or degradation of functionality. Somewhat 
ironically, the very neuroscientific roots of predictive processing motivate a form of 
skepticism concerning the framework’s most ambitious unificatory claims. Do these 
problems force us to abandon predictive processing? Not necessarily. For, once the 
assumption that all cognition can be accounted for exclusively in terms of prediction 
error minimization is relaxed, the problems we diagnosed lose their bite. 
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Structure and function in the predictive brain 

Abstract: 

Predictive processing is an ambitious neurocomputational framework, offering an 
unified explanation of all cognitive processes in terms of a single computational 
operation, namely prediction error minimization. Whilst this ambitious unificatory 
claim has been thoroughly analyzed, less attention has been paid to what predictive 
processing entails for structure-function mappings in cognitive neuroscience. We 
argue that, taken at face value, predictive processing entails an all-to-one 
structure-function mapping, wherein each individual neural structure is assigned the 
same function, namely minimizing prediction error. Such a structure-function mapping, 
we show, is highly problematic. For, barring few, rare occasions, such a 
structure-function mapping fails to play the predictive, explanatory and heuristic roles 
structure-function mappings are expected to play in cognitive neuroscience. Worse 
still, it offers a picture of the brain that we know is wrong. For, it depicts the brain as an 
equipotential organ; an organ wherein structural differences do not correspond to any 
appreciable functional difference, and wherein each component can substitute for any 
other component without causing any loss or degradation of functionality. Somewhat 
ironically, the very neuroscientific roots of predictive processing motivate a form of 
skepticism concerning the framework’s most ambitious unificatory claims. Do these 
problems force us to abandon predictive processing? Not necessarily. For, once the 
assumption that all cognition can be accounted for exclusively in terms of prediction 
error minimization is relaxed, the problems we diagnosed lose their bite. 
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1 - Introduction 

Cognitive neuroscience attempts to provide a scientific understanding of how the mind 
works and how it is implemented in its neural substrate. A popular strategy to this end is 
that of functional localization: the mapping of specific mental operations, often 
referred to as “cognitive functions”, onto specific neural structures (McCaffrey 2023). 

These mappings are supposed to play numerous relevant roles in cognitive 
neuroscience. First, they should play a predictive role. Knowing the functions of a neural 
structure should enable us to estimate which cognitive tasks recruit (“activate”) it, and 
to use patterns of neural activations to estimate which task is being executed. 
Secondly, structure-function mappings should play an explanatory role, as structure 
and functions should be mutually illuminating. The need of playing a certain function 
should explain why a structure boasts its specific organization; and its organization 
should in turn explain how the function is actually executed. Lastly, heuristically, 
structure-function mapping should suggest novel ways to probe neurocognitive 
functions and chart our neural architecture. 

Structure-function mappings are thus central for cognitive neuroscience to reach its 
goals. In the early days of the discipline, neuroimagers settled for establishing 
one-to-one correspondences between folksy defined cognitive functions and 
individual, anatomically localized neural areas (e.g. “language tasks increase activation 
in Broca’s area”). Yet, progressively cognitive neuroscientists replaced such 
“neo-phrenological”, one-to-one correspondences with more nuanced mapping holding 
between non-folksily-defined functions onto networks of co-activated areas (cf. 
Poldrack 2010; Sporns 2014; De Brigard & Gessell forthcoming). 

But this has not been the only relevant development in cognitive neuroscience. In the 
last decade or so, a neuro-computational framework known as Predictive Processing 
(PP) has set sail not “just” to explain mind and cognition in its entirety (see Hohwy 2013; 
Clark 2013, 2016; Spratling 2016), but also to provide a global account of the brain and its 
organization (Friston 2009, 2010, 2013). Importantly, PP casts our neurocognitive 
system as an hierarchy of processing units all devoted to the same task, that of 
minimizing an intracerebral signal known as prediction error. Different cognitive 
processes such as perception, action, attention and emotion, are thus reduced to 
different upshot of a single underlying neurocomputational process. 

Such a view of the brain has received enormous philosophical and scientific attention, 
mostly focused on its promise to explain different cognitive phenomena (e.g. Hohwy 
2020; Sun & Firestone 2020; Clark 2023) and to unify the cognitive sciences under a 
single banner (Colombo & Wright 2017; Litwin & Miłkowski 2020; Poth 2022). Less 
attention has been paid to what PP entails for cognitive neuroscience specifically. Our 
paper aims to partially fill in this gap, examining what PP entails for functional 
localization. We will show that PP entails an all-to-one structure function mapping, 
which assigns the same function to all neural structures, namely the function of 
minimizing prediction error. Such a structure-function mapping, we will argue, is 
ill-suited to play the predictive, explanatory and heuristic roles structure-function 
mappings are expected to play. In fact, it ends up depicting the brain as an 
equipotential organ - something we know the brain isn’t. This doesn’t, however, mean 
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that we should simply abandon PP. For, PP can avoid these problems simply by 
abandoning its ambitions of providing a complete explanation of brain and cognition, 
thereby making space for alternative functional ascriptions. 

Our paper is structured as follows. §§ 2 and 3 lay down the groundwork for our analysis. 
The former introduces the epistemic roles structure-function mappings are expected 
to play in the cognitive neurosciences; the latter introduces PP. §4 then capitalizes on 
this material to argue that PP entails an all-to-one structure-function mapping, wherein 
all neural structures are assigned one and the same cognitive function, which is the 
function of minimizing prediction error. This structure-function mapping, however, fails 
to play the relevant epistemic roles structure-function mappings are supposed to play 
in cognitive neuroscience. Worse still, the all-to-one structure function mapping PP 
entails casts the brain as an equipotential organ - something that, given our current 
knowledge, is almost certainly false. §5 examines and addresses some possible 
objections. Lastly, §6 offers a short conclusion, suggesting that, to avoid the problems 
we have highlighted, PP should give up its most ambitious explanatory aims. 

2 - Structure-function mappings in cognitive neuroscience 

Before explaining what roles we think structure-function mappings must play in 
cognitive neuroscience, let us clarify what we mean by “structure” and “function”. We 
use “structure” broadly, to designate all cognitively relevant “bits” of the brain, be them 
areas, regions, fascicules or networks. Similarly, “function” designates cognitive 
constructs such as those employed by cognitive neuroscientists, e.g. “cognitive 
control”, “working memory”, “binding features” or “minimizing prediction errors”. Notice 
that we are interested exclusively in cognitive functions. Other functions (e.g., 
monitoring the oxygen level in the blood, cf. Haueis 2018) are certainly relevant to 
understanding the brain, but we won’t deal with them here. Our talk of 
structure-function mapping should not be read as an implicit commitment to a naive 
localizationalism, or to the idea that each and every neural structure plays a 
single-context invariant, functional role. To put it bluntly, structure-function mappings, 
in the sense we are using the term, don’t need to be one-to-one: they can be 
many-to-many and context sensitive - and indeed, given our current knowledge, there 
is good reason to expect structure-function mappings to be many-to-many (Anderson 
et al. 2013)and/or context-sensitive in most cases (Burnston 2016). Still, in all cases, 
structure-function mappings involve the assignment of particular function(s) to 
individual neural structure(s). 

As anticipated, structure-function mappings should play at least three relevant 
epistemic roles in cognitive neuroscience. First, they should play a predictive role, 
enabling us to estimate the probability of a pattern of activation, given that the subject 
is performing a task (see Price & Friston 2005). And vice versa: based on certain 
patterns of activation, we should be able to estimate which cognitive functions have 
likely been recruited and the task that is likely being performed. Further, by observing 
that certain structures are damaged, we should be able to expect certain functions to 
be impaired. An ideal neurocognitive theory should allow us to make such estimations 
with the highest possible accuracy. Take, as an example of this predictive role, the 
renown fusiform face area (FFA). It has been that some portion of the right temporal 
cortex is selectively activated during the observation of faces (Kanwisher et al. 1997). 
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Furthermore, its stimulation leads to hallucinate faces (Schalk et al. 2017). Based on 
these findings, a clinical neurologist can reasonably hypothesize that a neurological 
patient with an impaired ability to recognise faces, i.e., suffering from acquired 
prosopagnosia, presents some lesions in the FFA. It is also reasonable to expect that 
novel face-related tasks will activate the FFA; and so, that subjects whose FFA is 
activated are dealing with face-related tasks. 

Structure-function mappings should also play an explanatory role: the way neural 
structure are internally organized and connected to each other should explain how 
neural functions are performed (cf. Craver 2007; Bechtel 2008). Neural structures differ 
in many respects (e.g. in their histology, connectivity, and receptive fields), and these 
differences presumably correspond to different functional roles. So, it is natural to 
appeal to the former to explain how the latter are carried out - for example, to suggest 
that the relevance of FFA for face perception may be driven also by an internal 
organization privileging face-like patterns and its connectivity bias, both downstream 
(as it receives projections from early visual areas most receptive of curvilinear stimuli 
represented at the center of the fovea) and upstream (by sending outputs to several 
areas thought to be involved in social cognition; Powell et al. 2018). It is also natural to 
do the inverse move, and appeal to different functions to explain why different neural 
structures are indeed different: the fact that the striate cortex plays an important role 
in vision, for example, offers an immediate and satisfactory explanation for its 
retinotopical organization (cf. Tootell et al. 1998). 

Now, carrying out these two roles flawlessly requires having an ideal or complete 
cognitive neuroscience, which it’s nowhere near us. And this is exactly why the third 
epistemic role of structure-function mappings is relevant; that is, a heuristic role in 
generating and testing hypotheses to progress and refine neuroscientific theories. 
Considered diachronically, the quest for structure-function mappings should propel 
scientists into refining their categories of cognitive functions and neural structures, 
aiming at increasing the explanatory and predictive power of structure-function 
mappings (Price & Friston 2005; Poldrack & Yarkoni 2016). As we mentioned in §1, early 
structure-function mappings were rather simple (and simplistic), owing them the 
charge of resembling modern phrenology (Uttal 2001). Yet, the charge of phrenology can 
be dropped insofar these mappings are not taken as definitive theory but rather 
working hypotheses to be evolved into more nuanced mappings via a series of iterative 
steps. For instance, when it turned out that, beside faces, the FFA of expert perceivers 
is also activated by holistic recognition of stimuli such as chess games or radiological 
images, some scholars proposed a redefinition of its function from “face recognition” to 
“expertise-based recognition” (Bilalić et al. 2011; 2016). In this way, testing a 
structure-function mapping forces neuroscientists to come up with a novel, better 
cognitive function, mapping in a more fine-grained way on neural structures (Bechtel 
2002; Francken et al. 2022). 

Summing up: structure-function mappings should play a predictive role, an explanatory 
role and a heuristic role in contemporary cognitive neuroscience. And these roles are 
central to the practice of cognitive neuroscience. Any theoretical framework 
preventing a structure-function mapping from satisfactorily playing these roles 
deprives cognitive neuroscientists of a valuable tool. We fear that this is the case with 
PP, which we shall now introduce. 
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3 - Predictive Processing 

PP is a neurocomputational framework claiming that the brain’s cognitive functioning 
can be understood in terms of a single computational objective, that of minimizing 
prediction error (see Friston 2005; Clark 2013, 2016; Hohwy 2013; Rao 2024). Thus, PP is 
- or at least strives to provide - a comprehensive, unificatory, and complete 
understanding of the brain and cognition in terms of a single computational operation 
(see Sprevak 2024). PP strives to be comprehensive, as it strives to offer an account of 
all cognitive - indeed all mental - phenomena, not just some of them (e.g. Hohwy 2015, 
2020; Clark 2016, 2023). PP strives to be unifying, as it explains all facets of mentality as 
the product of a single algorithm, repeatedly executed by numerous different brain 
structures. And it strives to be complete, in that it wants to offer an explanation of 
cognition covering all explanatory levels, from computation to physical implementation. 
As such, PP (as we use the term here) is different from the simple usage of predictive 
coding algorithms to explain only some aspects of mentality, such as vision (e.g. Rao & 
Ballard 1999), and also from “Bayesian” cognitive psychology (e.g. Kersten, Mamassian & 
Juille 2004; Griffiths and Zaslavsky 2023). The former are not comprehensive and 
unifying, and the latter are usually not complete, sitting only at the 
computational/algorithmic level. Hence, these proposals are significantly different 
from the kind of proposals put forth under the banner of PP. 

PP is canonically introduced considering perception and the hierarchical predictive 
coding algorithm. We will conform to this custom.1 Thus, consider perception. Since 
sensory stimuli are noisy and informationally impoverished, they can’t directly specify 
which worldly objects are generating them. Therefore, perceiving must amount to a 
form of (Bayesian) inference estimating the most likely cause of one's own sensory 
signals. PP suggests this estimate is drawn inverting a generative model thanks to a 
(hierarchical) predictive coding algorithm (Friston 2005; Clark 2013, 2016; Hohwy 2013). 

Generative models are data structures capturing the probabilistic linkages between 
observations (in this case, sensory inputs) and their hidden causes (the objects and 
events generating them), which are also able to predict the observations each hidden 
cause likely produces. According to PP, such models are hierarchically structured, so as 
to capture the hierarchical causal structure of the external world producing our sensory 
inputs. Computationally, this just means that each hierarchical layer of the overall 
generative model has to treat the activity of the layer hierarchically below it as 
observations, trying to guess the inner causes of them (cf. Hinton 2007, Foster 2022).2  

2 As it is customary, we will ignore the lateral (non hierarchical) complexity of generative models, about 
which see (Friston 2005). 

1 We will follow the so-called “low road” to PP. There is also a “high road” to PP, based on certain 
transcendental conditions biological beings must satisfy to remain alive. See (Friston 2019) for a quick 
introduction to the “high road” and its comparison to the “low road”. See also (Raja et al. 2021; Nave 
forthcoming) for a critical  analysis.  
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PP claims that this hierarchy operates according to a (hierarchical) predictive coding 
algorithm (e.g. Rao & Ballard 1999).3 Each hierarchical level (except the bottommost one 
directly observing the transducers) generates a signal, predicting the layer’s 
observations (i.e. activity of the layer directly below it or incoming signals, in the case 
of the bottommost layer). Predictions are sent to the estimated layers, which confront 
them with their actual activity (or the incoming sensory signals). If a mismatch is 
detected, then the lower levels generate a prediction error signal, which is conveyed to 
the higher (predicting) layers, forcing them to revise their predictions so as to minimize 
the incoming prediction error. When error reaches a minimum throughout the 
hierarchy, then the most likely cause of the observation has been identified, in a way 
that inverts the linkages from observation to causes of the generative model. 

Perception, however, is only one of the cognitive processes realized in this way. Since 
PP aims at being comprehensive, it claims that all mental phenomena are the result of 
prediction error minimization (e.g., Friston 2009, 2010; Hohwy 2015; Clark 2016, 2023; 
Spratling 2016; Rao 2024).4 Action, for example, minimizes prediction error by bringing 
about the predicted sensory singlas thanks to movement (cf. Adams et al. 2013a). 
Attention minimizes the weight (i.e. impact on processing) of prediction errors deemed 
noisy and unreliable - thereby allowing only informative reliable prediction error spread 
in the cerebral hierarchy, minimizing the overall quantity of error signal (cf. Feldman & 
Friston 2010). Learning consists in the minimization of prediction error through 
adjustments of the parameters of the generative model, so as to make it yield less 
prediction error in the future (Friston 2005, 2010). Emotion consists in the prediction 
and control of inner interoceptive predictions, again aimed at prediction error 
minimization (Seth & Friston 2016, Barrett 2017). Social cognition consists in the 
minimization of prediction errors concerning someone else’s behavior and behavioral 
causes (Friston & Frith 2015a, b). The list may continue (e.g. Spratling 2016; Hohwy 2015; 
2020), but the main message of PP should now be clear: all mental phenomena boil 
down to prediction error minimization, one way or another. 

The above provided a very schematic presentation of PP at the level of the algorithm. 
Recall, however, that PP aims to be complete, and speak also of the implementation 
level (Sprevak 2024). Hence defenders of PP project - more or less directly - this 
algorithm directly onto the brain, and especially the cortex (Mumford 1992; Friston 
2005, 2009, 2010; Shipp 2016). For, the entire brain is supposed to be (cf. Friston 2013) - 
or, more properly, to realize - the generative model. Each hierarchically ordered cortical 
area, from “lower” primary sensory and motor areas to “higher” multimodal areas, 
realizes a layer of the hierarchical model. Top-down, descending cortico-cortical 
connections carry predictions, whereas bottom-up, ascending cortico-cortical 

4 Sometimes, this claim is expressed in terms of free-energy minimization rather than prediction error 
minimization. As it is customary in the literature, we will talk about free-energy models in terms of 
prediction error (e.g. Hohwy 2020; Clark 2016, 2023). On the differences between free-energy and 
prediction error minimization, see (Hohwy 2021). For an up to date, general introduction to the 
free-energy principle, see (Ramstead et al. 2023). 

3 The details of which differentiate various PP proposals, see (Sprevak unpublished a; Spratling 2017). 
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connections carry prediction errors (e.g. Markov et al 2014).5 Superficial cortical layers 
(1-3) and the inner/deep granular layer (4) deal with precision and the messaging of 
prediction errors, whereas layer (5) generates descending predictions (cf. Mumford 
1992; Shipp 2016). This, in extreme succinct terms, is the way in which the cortex 
implements the algorithmic scheme suggested by PP. But subcortical structures 
participate to PP too, often managing the weight of prediction errors (cf. Barrett & 
Simmons 2015; Kanai et al. 2015). Indeed, even the “computationally modest” retinal 
neurons are in the task of prediction inputs and signaling prediction errors (cf. Hosoya 
et al. 2005; Clark 2013). Similarly, the spinal cord has been depicted as minimizing 
prediction errors via the triggering of the reflex arcs needed to bring about predicted 
inputs (Adams et al. 2013a). 

The moral, then, is that, on the view PP offers, each and every neural structure - be it a 
cortical network, an area, a cortical column (Bastos et al. 2012; Shipps 2016) or even and 
individual neuron (Isomura & Friston 2018; Isomura et al. 2023) - is in the task of 
minimizing prediction error. And so, PP appears to entail a all-to-one 
structure-function mapping: all neural structures perform a single function via a single 
algorithm; they all minimize prediction errors (cf. Friston 2009, 2010; Hohwy 2015; Clark 
2023).  

This all-to-one mapping is also central to PP’s aims of comprehensiveness, unity and 
completeness. Insofar PP wants to be unifying, it must claim that a same algorithmic 
procedure is implied; and insofar it wants to be comprehensive, it can’t but claim that 
all cognitive processes are the product of these algorithmic procedures. And given that 
PP wants to be complete - and sink its explanatory teeth also down to the 
implementation level, it can’t but assign all different networks and neural structures 
only one function; namely that of minimizing the prediction error they receive. 

4 - All-to-one mappings and equipotential brains 

There is no doubt that the PP story canvassed above captures something about brain 
structure and functioning. It captures, for example, the well known (and independently 
established) fact that neuronal responses are always “contextualized” and partially 
driven by the overall brain activity, and are not “sheer” responses to the presentation of 
stimuli (e.g. Mesulam 1998). The multilayered nature of the generative model also 
captures the hierarchical structure of the cortex; and the independence of variables 
tracked in the generative model may also be reflected in the gross anatomical structure 
of the brain. The distinction between “what” and “where” streams, for example, may be a 
result of the fact that variables for location and identity of objects rarely influence each 
other (cf. Friston 2013). 

All these explanations, however, concern some “global” aspect of brain structure, rather 
than the features of any individual neural structure, or how a single cognitive function 
can be mapped onto its neurobiological basis. So, they do not concern structure 

5 Through some PP models escape this scheme (e.g. Heeger 2017), and even in these who do not escape 
it, the interpretation of ascending and descending connections is more contested than what any 
standard interpretation of PP typically acknowledges (Orlandi & Lee 2019; Cao 2020; Walsh et al. 2020). 
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function mappings as typically understood in the cognitive brain sciences. How does PP 
fare in this regard? 

In some cases, it performs well. Consider, to start, the explanatory role 
structure-function mappings are supposed to play. Neural structures should explain 
how functions are carried out, and the need to perform these functions explain why we 
observe these specific structures. Prediction error minimization does, at times, play 
this role. For example, ascribing the function of minimizing prediction error explains 
why the motor cortex has an agranular architecture.6 The fourth, “granular” layer of the 
cortex is said to encode prediction error. But the motor cortex must not encode it. For, 
encoding it would prevent movement, as it would force the motor cortex to change 
predictions to fit the data, rather than to minimize prediction error via movement (cf. 
Adams et al. 2013, Shipp et al. 2013). In the case at hand, then, the ascribed function 
explains why we observe this particular neural structure, and the observed neural 
structure explains how the function is carried out. A similar line of thought can further 
explain the agranular nature of the limbic region, which controls (via prediction error 
minimization) our interoceptive stream of input (Barrett  & Simmons 2017). Again, their 
role is that of keeping that stream in check, within predicted bounds of viability, which 
must not be altered, on the pain of developing serious and chronic conditions. Hence 
the need to minimize prediction error changing the input, rather than the predictions. 

Similarly, PP can straightforwardly map attention to the brain, pointing to the series of 
mechanisms to selectively boost or diminish the impact of ascending neural signals (i.e. 
prediction errors, see Friston 2012). More generally, as noticed by Sprevak (unpublished 
b), PP often tends to appeal to facts about the physical implementation of the 
prediction error algorithm to account for a variety of exceptions from the standard 
(perception-like) prediction error minimization story and its obvious implications. In all 
these cases, the all-to-one mapping entailed by PP satisfies the explanatory role 
structure-function mappings are supposed to play. 

These explanations are real and important. Yet, they do not concern “standard” cases of 
prediction error minimization in which predictions are altered so as to fit the incoming 
input. Indeed, the all-to-one structure function mapping fails to play the relevant 
predictive, explanatory and heuristic role in such standard cases. Hence, the successes 
of the all-to-one structure function mapping in playing these roles are exceptions, lying 
on a fairly large pile of failures.  

Consider, first, the predictive role structure-function mappings are generally supposed 
to play. Knowing that a structure plays a given function should enable us to predict its 
(differential) activation in given contexts or tasks. It should also allow us to revert the 
inferential arrow, to infer what context or task most likely generated any activation 
pattern. 

However, according to PP each structure plays the same role any other structure plays. 
So, it offers us no reason to predict that visual tasks should mainly activate visual 
cortices, nor that activations of visual cortices will be strongly suggestive of the 

6 Though note that the agranularity of the motor cortex is not uncontroversial. See for example (Yamawaki 
et al. 2014). 
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execution of visual tasks. Indeed, PP offers us no reason to expect differential 
activations at all. If really all structures perform the same function, we should expect 
them to be equally active in every task. Thus, we shouldn’t expect the task-specific 
patterns of activation we factually observe.  

PP does not fare better when it comes to the explanatory role structure-function 
mappings are supposed to play. It is true that ascribing the function of minimizing 
prediction error allows us to explain the inner organization of certain neural structures 
in a more or less direct manner (as seen above with agranualr cortices). And it is also 
true that PP may allow us to seamlessly explain the features of structures that are 
repeated throughout the brain, such as cortical columns (Bastos et al. 2012; Shipp 
2016). Yet, given that PP ascribes the same function to all neural areas, it's very difficult 
to see how this function could explain the variety of neural structures we actually 
observe. Broadman’s brain parcellation for Homo sapiens listed more than 40 
anatomically differentiated areas (Broadman 1909/2006), and modern counts number 
around 180 anatomically differentiated areas per hemisphere (Glasser et al. 2016). This 
sort of variety surely doesn't seem a negligible explanandum (cf. Rathkopf 2013, p. 12), 
yet it is hard to see how PP can account for it. Why do we have so many different neural 
structures, if they all perform the same role? And how can all these different structures 
ultimately perform the same function? Relatedly, PP seems to make it mysterious why 
neural activations are selective and task specific. Why, if all neural structures perform 
the exact same function, are they selectively activated by specific tasks? As far as we 
can see, PP leaves these questions unanswered. Hence the structure-function mapping 
it entails seems unable to play the desired explanatory role. 

PP does not fare better when it comes to the heuristic role. PP is often regarded as a 
research programme which brought beneficial epistemic effect on the mind sciences 
as a whole (see Sprevak 2024). It provided a heuristic framework weaving together 
various distinct threads of research in a coherent and attractive picture (e.g. Clark 2016; 
Allen & Friston 2018) and inspired various computational models in robotics, artificial 
intelligence and the study of complex systems (cf. Tani 2016; Parr et al. 2022; Ramstead 
et al. 2023). However, such beneficial epistemic effects have not yet yielded many fruits 
in terms of working hypotheses of structure-function mappings. Recall (§2): to play the 
relevant heuristic role, structure-function mappings should lead to the progressive 
refinement of our functional and structural labels. But PP cannot refine the functional 
labels it provides, as long as it remains in the grip of its comprehensive, unificatory 
goals. And whilst PP is compatible with a variety of taxonomies of neural structures, 
these taxonomies cannot interact in any interesting way with the functional labels PP 
provides. For, no matter how neural structures are taxonomized, PP will project onto 
each neural structure the same function of minimizing prediction error. Thus, it is again 
hard to see how the all-to-one structure-function mapping PP entails may play the 
desired heuristic role. To be comprehensive, unificatory and complete, PP can’t provide 
any functional tag other than prediction error minimization. But this single functional 
tag interacts minimally with structural taxonomies, in a way that seems to prevent the 
former from playing any heuristic role when it comes to discovering the latter. Nor new 
functional taxonomies can refine PP, at least not without compromising its aspirations 
of comprehensiveness, unification and completeness (see §6).  
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So, the all-to-one structure-function mapping entailed by PP is not well suited to play 
the heuristic roles structure-function mappings are supposed to play. Worse still, that 
mapping paints a very problematic picture of the brain as a whole, as a massively 
degenerate, and indeed equipotential, organ. 

Degeneracy is the property of systems whereby a single function is played by 
structurally different components (cf. Edelman & Gally 2001). The immune system is a 
prime example of degeneracy: the elimination of virus and bacteria can be subserved 
by various types of structurally distinct cells like phagocytes, lymphocytes, mastocytes 
and other types of white blood cells. 

Some degeneracy makes good biological sense, for it allows a system to be robust. We 
survive most pathogens because the immune system has various different “defense 
mechanisms” which may compensate for the deficiencies of each other. A pathogen 
unscathed by phagocytes may be eradicated by lymphocytes, and vice-versa. 

Yet, in the picture PP proposes, the brain is not just degenerate - it is entirely and 
massively degenerate: all structurally different components do exactly the same thing. 
And this makes less biological sense.  

A first problem concerns the metabolic cost of our brains. Whilst the PP algorithm is 
metabolically efficient (Ali et al. 2022; Hechler et al 2023), human brains are still 
metabolically pricey, accounting for about 20% of bodily energy consumption (Raichle 
2006). Having a brain like ours, then, is a significant metabolic investment, which 
requires some sort of justification (see Sterling & Laughlin 2015). Such a justification 
can be easily provided by theories of brain functioning allowing different neural 
structures to play different functional roles: humans need to spend about 20% of their 
metabolic budget in their big brain because a big brain can be anatomically 
differentiated, which makes them able to play all the different cognitive functions 
humans need to execute to thrive. PP, however, cannot provide this answer, as it does 
not allow for different cognitive functions to be assigned to neural areas. So, how can it 
justify the metabolic investment in big brains? As far as we can see, this question is left 
unanswered in the PP literature. 

Massive degeneracy also makes it mysterious why our brains are constituted by 
anatomically different structures. Anatomical differentiation is often an indicator of 
functional differentiation: organs whose cells all play the same functional roles, such as 
the liver, tend not to be internally partitioned in different anatomical structures 
(McCaffrey 2015). According to PP, however, our neural structures are not functionally 
differentiated: they only play exactly the same functional role. So, PP would lead us to 
expect the brain to be a homogeneous organ with no appreciable internal structure - 
which it clearly isn’t. 

Relatedly: why if the anatomically different structures composing the brain have the 
same function, they do not equally participate in all cognitive functions? Why do we see 
diversified, task- and function- specific patterns of activation in the brain? Why, if the 
V1 and the supplementary motor area (SMA) play exactly the same functional role, does 
it never happen that V1 is selectively recruited in motor tasks and the SMA is recruited 
to perform visual tasks? These questions are easily answered if we assume that V1 and 
SMA play different functional roles. But how can this question be answered, if we 
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assume that V1 and SMA have the same function? Sadly, as far as we can see, PP leaves 
us with no guidance on this matter. 

This last point, we think, should be urgently addressed by defenders of PP. For, as 
things stand, it is hard not to conclude that, from the point of view PP offers, the brain 
is an equipotential organ. Not only PP does not predict the task-specific differential 
patterns of activation we in fact observe, it also predicts unspecific activations of all 
neural structures in all tasks. And this is precisely the core prediction of 
equipotentialism (Flourens & Nadel 1824). 

But equipotentialism is simply wrong. Sure, the brain is plastic: the functional role of 
many neural structures is not set in stone, and many neural structures often reorganize 
themselves either to perform their function better or to acquire some novel function.7 
But plasticity does not offer any foothold to either all-to-one mappings nor to 
equipotentialism. Plasticity allows neural structures to play diverse functions, opposing 
the all-to-one structure-function mapping. And neural plasticity is constrained by 
several structural and anatomical features. It is not the case that any neural structure 
can assume any function with any arbitrary degree of success. So, for example, whilst 
rewiring the visual cortex to the auditory thalamus in newborn ferrets allows the visual 
cortex to reorganize as a make-shift auditory cortex and forces the thalamus to take up 
the role of the visual cortex (Sharma et al. 2000), the thalamus cannot completely 
substitute for the visual cortex, as it is, for example, unable to perform the 
discriminations needed to determine the orientation of stimuli (von Melchener et al. 
2000). 

The all-to-one structure-function mapping suggested by PP thus appears to fail to play 
the desired epistemic roles structure-function mappings are supposed to play (§2). 
Worse still, it suggests an equipotential picture of the brain, a picture that we know is 
factually wrong.8  

This seems like a hard blow to PP. A fatal blow, perhaps? Let us consider some of the 
ways in which defenders of PP might react to our claim. 

5 - Is the threat  to PP real? 

Some defenders of PP may wish to resist our analysis. Let us consider some possible 
lines of resistance, and show that they do not really shield PP from our worries.  

8 These problems are even thornier for embodied readings of PP (e.g. Clark 2016, Kersten forthcoming) 
and views of PP closer to the expansive framework of the free-energy principle (e.g. Friston & Stephan 
2007). Embodied readings of PP argue that, at least at times, non-neural bodily structures play the role of 
minimizing prediction error. When it comes to the free-energy principle, one core claim is that everything 
an organism does (from cognizing to eating) minimizes free-energy, which is (under certain assumptions) 
an upper bound of prediction error. These readings make the link between structure and function even 
more tenuous, and the issue of degeneracy even more pressing. Why, if non-neural structures have the 
function of minimizing prediction error/free-energy too, do we have brains at all? Wouldn’t non-neuronal 
tissue be enough? And how do non-cognitive functions help us understand the structure of our 
non-neural organs, if these organs too are just in the task of minimizing free-energy? 

7 See, however, (Makin & Krakauer 2023) for a powerful argument to the contrary. 
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A first objection contends that we have attacked a strawman because our 
reconstruction of PP is misguided. PP simply does not really assign the same function 
to all neural structures - and so the problems we’ve diagnosed are simply not real. 

Sure, some applications of predictive coding are limited to only some neural functions 
or structures (e.g. Rao & Ballard 1999). But we are not talking about those. We are 
talking about PP, which strives for comprehensiveness, unity and completeness. For 
example Clark wrote: 

Matter, when organized so that it cannot help but try (and try, and try again) to 
successfully predict the complex plays of energies that are washing across its 
energy-sensitive surfaces, has many interesting properties. Matter, thus 
organized, turns out, as we’ll see, to be ideally positioned to perceive, to 
understand, to dream, to imagine, and (most importantly of all) to act. 
Perceiving, imagining, understanding, and acting are now bundled together, 
emerging as different aspects and manifestations of the same underlying 
prediction-driven, uncertainty-sensitive, machinery. (Clark 2016, p xiv, emphasis 
added) 

It is natural to read Clark as claiming that many (if not all, as the book seems to suggest) 
cognitive functions boil down just to prediction error minimization, and so that it is 
sufficient for the brain to minimize prediction error to give rise to our mental life. That 
is, Clark is claiming that many (maybe all) different neural structures need only to 
perform that single function; he’s suggesting an all-to-one mapping. 

Similarly Spratling (2016) relies on PP to model cognition in general, Friston (2009; 2010) 
offers it as an “unified theory” of brain and cognition, and Hohwy (2015) explicitly states 
that PP is set off to explain the mind in its globality. It’s hard to see how these proclaims 
could coherently be read without also endorsing the view that all the brain does is to 
minimize prediction error, and the consequent all-to-one mapping. 

Moreover, defenders of PP appear keen to downplay or even neglect functional 
differences in cortical areas: 

The primary motor cortex is no more or less a motor cortical area than striate 

(visual) cortex. The only difference between the motor cortex and visual cortex 

is that one predicts retinotopic input while the other predicts proprioceptive 

inputs from the motor plant (Friston, Mattout and Kilner 2011: 138). 

A natural (literal) and charitable interpretation of this passage is that it denies any 
functional difference between motor and visual areas. Indeed, the passage suggests 
that they both have the function of predicting certain inputs and minimizing the error 
relative to these predictions. The same function has also been assigned to structures in 
the “emotional brain” such as the insula and the amygdala (cf. Seth 2015; Seth & Friston 
2016; Barrett & Simmons 2017). The only difference between all these various neural 
structures seems only the sensory origin of the prediction error they minimize. So, we 
are not attacking a strawman here. 

A second objection claims that we have been using a functional taxonomy that is too 
coarse-grained. PP does not claim that neural structures have the function of 
minimizing  prediction error in general. Rather, it claims that neural structures have the 
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function of minimizing specific streams of prediction error. For example, the visual 
cortices have the function of minimizing visual prediction error, whereas auditory ones 
minimize auditory prediction error, and the motor and somatosensory cortices 
minimize somatosensory prediction errors, and so forth. This allows PP to have a form 
of functional differentiation (avoiding the problems connected with the all-to-one 
mapping) while maintaining comprehensiveness and unity unaltered. 

In reply, we note two flaws of this move. One is that the move still does not offer enough 
functional differentiation. V1, V2, the FFA would all be assigned the same function of 
minimizing visual prediction error. But how can that function explain their anatomical 
differences, or predict the specific task-dependent patterns of activation we observe? 
Why is the FFA rather than V1 differentially activated by faces? Why are V1 and the FFA 
anatomically distinct, if they perform the same function? We are back to confronting 
the problems we highlighted above, only at a smaller, modality-specific scale. Moreover, 
what sort of function would be assigned to non-sensory, associative cortices such as 
the prefrontal cortex? Such cortices do not seem to minimize any specific stream of 
sensory prediction error. The second flaw is instead that even primary sensory motor 
areas do not appear to deal with signals coming only from one modality (see for 
example Bell et al. 2019; Heimler & Amedi 2020; Rosemblun et al 2016; Murray et al 2016; 
Ghazanfar & Schroeder 2006). But if so, then it seems we have no good reason to claim, 
say, that the visual cortices minimize visual prediction errors. We are thus left only with 
the original, “coarse-grained” all-to-one structure function mapping. 

A related objection contends that PP assigns a single function to all brain areas only at a 
very high, and unhelpful, level of abstraction. At an appropriate level of abstraction PP 
would assign different functions to different neural structures. Compare: in very 
general terms, we can say that all cells in our body have the function of maximizing our 
fitness. This does not mean, of course, that that is their only function, nor the most 
relevant one in understanding what different types of cells do and how they do keep us 
alive. 

The analogy, however, doesn't really add up: surely, we can say that all our cells do is 
maximizing our fitness, and we agree that this is far from illuminating. And in fact, as far  
as we know, no biologist is proposing that as a framework to understand cell function 
and structure. Defenders of PP, however, do claim that observing the brain and brain 
structures through the lenses of prediction-error minimization is genuinely illuminating 
(see, for example, Friston 2009, 2010; Howhy 2013, 2015; Clark 2013, 2016, 2023). So 
reading their claims as pitched at such a high level of abstraction seems to trivialize 
them. 

At this point, the objector would likely argue that - at least in the free-energy variants of 
PP - the prediction error minimization has been unpacked in a variety of different 
computational operation, such as, for example, complexity/accuracy trade offs in the 
internal model servicing learning, risk/uncertainty trade offs servicing exploratory 
behaviors, and the minimization of a new, related quantity called expected free-energy 
(see Friston et al. 2023 for a global view of these changes). So, it is no longer true that 
the only relevant function is prediction error (or free-energy) minimization. 



15 

These developments are, for us, a step in the right direction, and do something to 
ameliorate the problems we have canvassed above. In particular, they are in and by 
themselves sufficient to avoid the all-to-one structure-function mapping, and thus the 
charge of equipotentialism. Still, PP would be left with a handful of functions to be 
paired to about 180 cortical areas and subcortical structures. There is little hope that 
these few functions will allow us to appropriately explain and highlight the diversity of 
neural structures. And in any case, in order to be psychologically meaningful, these 
functional labels will still have to be reconnected with a behaviorally transparent 
redescription of phenomena (Francken & Slors 2017; Klein 2012). 

Another objection attacks our (general) commitment to localizationism. Perhaps we 
shouldn’t try to assign functions to neural structures at all. Perhaps we should do 
something different. We might, for example, try to assign each structure a “working” 
(that is, an intrinsic computational profile) and then investigate how these “workings” 
enable the structure to partake, together with other structures, in the execution of 
various cognitive processes (Bergeron 2007; Anderson 2010). Or we could, to give 
another example, assign each structure a different “propensity” or “personality” making 
it more or less apt to cooperate with other structures in the execution of cognitive 
tasks (Anderson 2014). 

Now, it could seem that abandoning localizationism offers a straightforward solution to 
our problem. If we altogether abandon the idea of structure-function mappings, we 
also, eo ipso, abandon the problems the all-to-one mappings generate. Yet the escape 
from these problems is, alas, only illusory. Non-localizationist proposals still need to 
call upon different “workings” or “propensities” to account for the anatomical 
differences in brain structures, and to explain why neural structures are selectively 
recruited in various tasks. Yet, it is far from clear whether predictive processing can 
provide those. If “workings” are the intrinsic computational profile of neural structures, 
then it’s hard to see how PP can avoid to claim that all structures have the same 
“working”, as they all minimize prediction error according to the same algorithm. Maybe 
PP could assign differently, empirically determined, “propensities” to various neural 
structures (based, for example, on their response profile). But this move would come at 
a high price, as it hinders the completeness and comprehensiveness. Completeness 
would be under threat because PP would need an account of how algorithmically 
identical prediction error minimization units end up having different “propensities”; that 
is PP would need a novel way to relate the algorithmic level of prediction error 
minimization to the implementation level of “propensities”. Comprehensiveness would 
be under threat because a comprehensive neurocognitive account would have to 
mention the relevant “propensities”, that are not part PP. 

In sum, it seems that, in order to escape our argument, defenders of PP have to 
withdraw from its bolder ambitions of comprehensiveness, unity and/or completeness. 
Is that a price worth paying? As we will argue in the next and final section, probably so. 

6 - Conclusions: prediction without comprehensiveness, unity and completeness 

We have argued that the structure-function mapping entailed by PP is unable to play 
the epistemic roles structure-function mappings are supposed to play. Indeed, PP 
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paints a puzzling picture of the brain as a massively degenerate, equipotential organ - a 
picture we have excellent reasons to believe is false. 

It’s important to notice, however, that the problems we have been diagnosing do not 
strictly speaking come from the theoretical constructs PP deploys to explain the brain 
and cognition. These problems are not rooted in prediction error minimization per se. 
Rather, they stem from PP’s aspiration to comprehensive, unity and completeness. It is 
because PP has these aspirations that it is forced to ascribe all neural areas the same 
function, and thus in putting forth its all-to-one mapping. 

This means that, from the perspective of PP, our conclusions really are a mixed bag. On 
the one hand we have repeatedly noticed that PP can do - and in fact often does - some 
relevant explanatory work. It can, for example, explain why certain cortices boast an 
agranular structure (Shipp et al. 2013). PP seems also well positioned to explain 
recurrent computational motifs throughout the brain, such as the presence of cortical 
columns (Bastos et al. 2012; Shipp 2016). These explanations are real and important, and 
testify nicely that the explanatory tools of PP can prove useful in the mind sciences.  

However, we wish to insist that these tools alone do not provide a global, unified 
explanation of the brain and cognitive processing. Indeed, as we’ve argued, when used 
alone and applied indiscriminately, the explanatory tools of PP yield a picture of the 
brain as an equipotential organ - a picture we know is false. 

The natural moral to draw, then, is that PP, useful as it may be, cannot be the grand 
unified theory of the brain and cognition it aspires to be: its goals of 
comprehensiveness, unity and completeness are beyond its own epistemic reach.  

This isn’t, in and by itself, a novel conclusion. Following independent lines of arguments, 
other scholars (e.g. Colombo & Wright 2017; Litwin & Miłkowski 2020) have also 
highlighted that PP falls short of being the comprehensive, unificatory theory it 
promises to be. Our work diagnoses the same problem from a new, previously 
unexplored, angle. That several researchers reached the same conclusion walking 
different paths suggest that this conclusion is robust: there are several, theoretically 
independent, reasons to think that PP can’t be the complete, comprehensive and 
unificatory theory it is typically publicized to be. Suppose, now, that PP renounces its 
ambitions as a comprehensive, unificatory and complete theory of  cognition. What 
would follow for structure-function mappings? We think that the answer is, minimally, a 
form of functional pluralism (McCaffrey & Wright 2022). We can still continue to assign 
each and every neural structure the function of minimizing prediction error (supposing, 
for the sake of  discussion, that all neural structures do minimize prediction error); but, 
in addition to that, we must also assign differentiated, specialized functions to 
individual neural structures which clarifies how they contribute to behavior. Notice 
that, in principle, there is nothing puzzling about this sort of assignment of functions. 
Each component of an internal combustion engine has the function of making the car 
go (see Klein 2012). But each component also has some individual function that is 
uniquely played by that component (e.g. only the igniter has the function of igniting the 
fuel). 

Such a pluralistic assignment of functions could allow us to dodge the problems we 
have highlighted above. For, the individualized functions (or functional propensities, if 
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you prefer) assigned to each neural structure are in and by themselves sufficient to 
avoid casting the brain as an equipotential organ, to avoid massive degeneracy, and to 
play the epistemic roles of structure-functions mapping. Equipotentiality and massive 
degeneracy are avoided because neural structures are assigned (also) different 
functions. And the mapping from individual neural structures to specific functions does 
play the epistemic roles structure-function mappings are supposed to play as  well as 
any other structure function mapping, given that, PP aside, all structure-function 
mappings map individual neural structures on different functions (even if the mapping 
is often many-to-many, see McCaffrey 2023, Westlin et al. 2023). 

It is worth noticing, in closing, that PP itself is developing in a way that requires novel, 
different functional assignments. For example, to explain exploratory behaviors and 
curiosity within a PP framework, Kiverstein et al (2019) are forced to call upon a 
mechanism tracking the rate of prediction error minimization. Such a mechanism has 
not yet been mapped on any neural structure, but its mere presence within the 
theoretical apparatus of PP already introduces the need to assign functions other than 
prediction error minimization to at least some neural structures. Similarly, as noticed 
above, free-energy variants of PP have introduced a second quantity to minimize 
(so-called expected free-energy) and thus a second function that needs to be mapped 
on neural tissue. An analogous need for multiple functional assignments is emerging 
also from less theory-driven considerations. For example, Hull (2020) has recently 
reviewed the functionality of the cerebellum from a predictive processing perspective. 
Whilst the review takes the cerebellum as a predictor of sorts, the functions (plural) 
that are invoked in the review go well beyond just prediction error minimization. For 
example, Hull argues that the cerebellum minimizes reward prediction error, which is 
distinct from the sensory prediction error minimized in the cortex.9 Similarly, whilst the 
cerebellum is cast as a forward (generative) model busy predicting the sensory 
consequences of our movements, cerebellar predictions are described as based on 
motor commands computed by the motor cortex, which is thus assigned a function 
other than prediction error minimization.10 The cerebellum is also said to learn 
according to a non-trivial range of learning rules, which, again, go beyond the account 
of learning based exclusively on prediction error minimization that PP offers. 

Thus it seems that our claim that PP (in its current form) is not a comprehensive, 
unifying and complete theory of the brain and cognition, and our consequent call for a 
form of functional pluralism, is less inimical to the actual development of predictive 
processing than the “official” PP rhetoric may suggest. 

References 

Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: active 
inference in the motor system. Brain Structure and Function, 218, 611-643. 

10 And indeed, it is worth noticing that versions of predictive processing insisting on unity, 
comprehensiveness and completeness try to eliminate both rewards (Friston et al 2012) and motor 
commands (Adams et al. 2013). 

9 On their difference, see again (Sprevak 2024). 



18 

Ali, A., Ahmad, N., de Groot, E., van Gerven, M. A. J., & Kietzmann, T. C. (2022). 
Predictive coding is a consequence of energy efficiency in recurrent neural networks. 
Patterns, 3(12). 

Allen, M., & Friston, K. J. (2018). From cognitivism to autopoiesis: towards a 
computational framework for the embodied mind. Synthese, 195(6), 2459-2482. 

Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the 
brain. Behavioral and brain sciences, 33(4), 245-266. 

Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. The MIT 
Press. 

Anderson, M. L., Kinnison, J., & Pessoa, L. (2013). Describing functional diversity of 
brain regions and brain networks. Neuroimage, 73, 50-58. 

Barrett, L. F. (2017). The theory of constructed emotion: an active inference account of 
interoception and categorization. Social cognitive and affective neuroscience, 12(1), 
1-23. 

Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature 
reviews neuroscience, 16(7), 419-429. 

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). 
Canonical microcircuits for predictive coding. Neuron, 76(4), 695-711. 

Bechtel, W. (2002). Decomposing the mind-brain: A long-term pursuit. Brain and Mind, 
3, 229-242. 

Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive 
neuroscience. Taylor & Francis.  

Bergeron, V. (2007). Anatomical and functional modularity in cognitive science: Shifting 
the focus. Philosophical Psychology, 20(2), 175-195. 

Bell, L., Wagels, L., Neuschaefer-Rube, C., Fels, J., Gur, R. E., & Konrad, K. (2019). The 
cross-modal effects of sensory deprivation on spatial and temporal processes in vision 
and audition: A systematic review on behavioral and neuroimaging research since 
2000. Neural Plasticity, 2019, 9603469. 

Bilalić, M., Langner, R., Ulrich, R., & Grodd, W. (2011). Many faces of expertise: fusiform 
face area in chess experts and novices. Journal of neuroscience, 31(28), 10206-10214. 

Bilalić, M., Grottenthaler, T., Nägele, T., & Lindig, T. (2016). The faces in radiological 
images: fusiform face area supports radiological expertise. Cerebral Cortex, 26(3), 
1004-1014. 

Broadmann, K. (1909/2006). Vergleichende Lokalisationslehre der Grosshirnrinde in 
ihren Prinzipien dargestellt auf Grund des Zellenbaues, Johann Ambrosius Barth Verlag, 
Lipsia. English translation: Localization in the cerebral cortex. L. J. Garvey Trans, New 
York, NY: Springer. 

https://it.wikipedia.org/w/index.php?title=Johann_Ambrosius_Barth_Verlag&action=edit&redlink=1


19 

Burnston, D. C. (2016). A contextualist approach to functional localization in the brain. 
Biology & Philosophy, 31, 527-550. 

Cao, R. (2020). New labels for old ideas: Predictive processing and the interpretation of 
neural signals. Review of Philosophy and Psychology, 11(3), 517-546. 

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of 
cognitive science. Behavioral and brain sciences, 36(3), 181-204. 

Clark, A. (2016). Surfing Uncertainty. Oxford University Press. 

Clark, A. (2023). The experience machine. Penguin 

Colombo, M., & Wright, C. (2017). Explanatory pluralism: An unrewarding prediction 
error for free energy theorists. Brain and Cognition, 112, 3-12. 

Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of 
neuroscience. Clarendon Press. 

De Brigard, F., & Gessell, B. (2024). The mirage of big-data phrenology.  
https://doi.org/10.1086/732152 

Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. 
Proceedings of the National Academy of Sciences, 98(24), 13763–13768. 
https://doi.org/10.1073/pnas.231499798 

Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in 
human neuroscience, 4, 215. 

Flourens, M. J. P., & Nadel, L. (1824). Recherches experimentales sur les propietes et 
fonctions due systeme nerveus dans les animaus vertebres. Paris. Polster, MR, Nadel, L, 
and Schacter, DL (1991) Cognitive neuroscience analysis of memory: A historical 
perspective. Journal of Cognitive Neuroscience, 3(2), 95–116. 
https://doi.org/10.1162/jocn.1991.3.2.95 

Foster, D. (2022). Generative deep learning.  O'Reilly Media, Inc. 

Francken, J. C., & Slors, M. (2018). Neuroscience and everyday life: Facing the 
translation problem. Brain and Cognition, 120, 67-74. 

Francken, J. C., Slors, M., & Craver, C. F. (2022). Cognitive ontology and the search for 
neural mechanisms: three foundational problems. Synthese, 200(5), 378. 

Friston, K. (2005). A theory of cortical responses. Philosophical transactions of the 
Royal Society B: Biological sciences, 360(1456), 815-836. 

Friston, K. (2009). The free-energy principle: a rough guide to the brain?. Trends in 
cognitive sciences, 13(7), 293-301. 

Friston, K. (2010). The free-energy principle: a unified brain theory?. Nature reviews 
neuroscience, 11(2), 127-138. 



20 

Friston, K. (2012). Predictive coding, precision and synchrony. Cognitive neuroscience, 
3(3-4), 238-239. 

Friston, K. (2013). Active inference and free energy. Behavioral and brain sciences, 36(3), 
212. 

Friston, K. (2019). Beyond  the desert landscape. In Andy Clark & His Critics (ed. M. 
Colombo, M. Stapleton & L. Irvine). Oxford University Press. 

Friston, K., Adams, R., & Montague, R. (2012). What is value—accumulated reward or 
evidence?. Frontiers in neurorobotics, 6, 11. 

Friston, K., Da Costa, L., Sajid, N., Heins, C., Ueltzhöffer, K., Pavliotis, G. A., & Parr, T. 
(2023). The free energy principle made simpler but not too simple. Physics Reports, 
1024, 1-29. 

Friston, K. J., & Frith, C. (2015a). A duet for one. Consciousness and Cognition, 36, 
390–405. 

Friston, K. J., & Frith, C. (2015b). Active inference, communication and hermeneutics. 
Cortex, 68, 129–163 

Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159, 417-458. 

Ghazanfar, A., & Schroeder, C. (2006). Is neocortex essentially multisensory? Trends in 
Cognitive Sciences, 10(6), 278–285 

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., ... & 
Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 
536(7615), 171-178. 

Griffiths, T. L., & Zaslavsky, N. (2023). Bayesian approaches to color category learning. 
In Encyclopedia of Color Science and Technology (pp. 85-89). Cham: Springer 
International Publishing. 

Haueis, P. (2018). Beyond cognitive myopia: a patchwork approach to the concept of 
neural function. Synthese, 195(12), 5373-5402. 

Hechler, A., de Lange, F., & Riedl, V. (2023). The energy metabolic footprint of predictive 
processing in the human brain. bioRxiv, 2023-12. 

Heeger, D.J. (2017). Theory of cortical function. PNAS 114(8): 1773-1782. 

Heimler, B., & Amedi, A. (2020). Are critical periods reversible in the adult brain? 
Insights on cortical specialisations based on sensory deprivation studies. 
Neuroscience and Biobehavioral Reviews, 116, 494–507 

Hinton, G. (2007). Learning multiple layers of representations. Trends in Cognitive 
Sciences, 11(10), 428–434 

Hohwy, J. (2013). The Predictive mind. Oxford University press. 



21 

Hohwy, J. (2015). The neural organ explains the mind. In T. Metzinger & J. M. Windt (Eds). 
Open MIND: 19(T). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570016  

Hohwy, J. (2020). New directions in predictive processing. Mind & Language, 35(2), 
209-223. 

Hohwy, J. (2021). Self-supervision, normativity and the free energy principle. Synthese, 
199(1-2), 29-53. 

Hosoya, T., Baccus, S. A., & Meister, M. (2005). Dynamic predictive coding by the retina. 
Nature, 436(7047), 71-77. 

Hull, C. (2020). Prediction signals in the cerebellum: beyond supervised motor learning. 
elife, 9, e54073. 

Isomura, T., & Friston, K. (2018). In vitro neural networks minimise variational free 
energy. Scientific reports, 8(1), 16926. 

Isomura, T., Kotani, K., Jimbo, Y., & Friston, K. J. (2023). Experimental validation of the 
free-energy principle with in vitro neural networks. Nature Communications, 14(1), 4547. 

Kanai, R., Komura, Y., Shipp, S., & Friston, K. (2015). Cerebral hierarchies: predictive 
processing, precision and the pulvinar. Philosophical Transactions of the Royal Society 
B: Biological Sciences, 370(1668), 20140169. 

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in 
human extrastriate cortex specialized for face perception. Journal of neuroscience, 
17(11), 4302-4311. 

Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. 
Annu. Rev. Psychol., 55(1), 271-304. 

Kersten, L. (forthcoming). Predicting the Body or Embodied Prediction? New Directions 
in Embodied Predictive Processing In Larry Shapiro & Shannon Spaulding (eds.), 
Routledge Handbook of Embodied Cognition (2nd Edition). New York: Routledge. pp. 1-17 

Kiverstein, J., Miller, M., & Rietveld, E. (2019). The feeling of grip: novelty, error 
dynamics, and the predictive brain. Synthese, 196, 2847-2869. 

Klein, C. (2012). Cognitive ontology and region-versus network-oriented analyses. 
Philosophy of Science, 79(5), 952-960. 

Litwin, P., & Miłkowski, M. (2020). Unification by fiat: arrested development of 
predictive processing. Cognitive Science, 44(7), e12867. 

Makin, T. R., & Krakauer, J. W. (2023). Against cortical reorganisation. Elife, 12, e84716. 

Markov, N. T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., Lamy, C., 
Misery, P., Giroud, P., Ullman, S., Barone, P., Dehay, C., Knoblauch, K., & Kennedy, H. 
(2014). Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual 
cortex. J. Comp. Neurol., 522(1): 225–259 



22 

McCaffrey, J. B. (2015). The brain’s heterogeneous functional landscape. Philosophy of 
Science, 82(5), 1010-1022. 

McCaffrey, J. B. (2023). Evolving Concepts of Functional Localization. Philosophy 
Compass, e12914. 

McCaffrey, J., & Wright, J. (2022). Neuroscience and Cognitive Ontology: a Case for 
Pluralism. In F. De Brigard & W. Sinnott-Armstrong (Eds.), Neuroscience and Philosophy. 
MIT Press. https://doi.org/10.7551/mitpress/12611.001.0001 

Mesulam, M. M. (1998). From sensation to cognition. Brain: a journal of neurology, 121(6), 
1013-1052. 

Mumford, D. (1992). On the computational architecture of the neocortex: II The role of 
cortico-cortical loops. Biological cybernetics, 66(3), 241-251. 

Murray, M. M., Thelen, A., Thut, G., Romei, V., Martuzzi, R., & Matusz, P. J. (2016). The 
multisensory function of the human primary visual cortex. Neuropsychologia, 83, 161– 
169. 

Nave, K. (forthcoming). A drive to survive. The MIT Press. 

Orlandi, N., & Lee, G. (2019). How radical is predictive processing? In Andy Clark & His 
Critics (ed. M. Colombo, M. Stapleton & L. Irvine). Oxford University Press. 

Parr, T., Pezzulo, G., & Friston, K. J. (2022). Active inference: the free energy principle in 
mind, brain, and behavior. MIT Press. 

Poldrack, R. A. (2010). Mapping mental function to brain structure: how can cognitive 
neuroimaging succeed?. Perspectives on psychological science, 5(6), 753-761. 

Poldrack, R. A., & Yarkoni, T. (2016). From brain maps to cognitive ontologies: 
informatics and the search for mental structure. Annual review of psychology, 67, 
587-612. 

Poth, N. (2022). Schema-centred unity and process-centred pluralism of the predictive 
mind. Minds and Machines, 32(3), 433-459. 

Price, C. J., & Friston, K. J. (2005). Functional ontologies for cognition: The systematic 
definition of structure and function. Cognitive Neuropsychology, 22(3-4), 262-275. 

Powell, L. J., Kosakowski, H. L., & Saxe, R. (2018). Social origins of cortical face areas. 
Trends in cognitive sciences, 22(9), 752-763. 

Raichle, M. E. (2006). The brain's dark energy. Science, 314(5803), 1249-1250. 

Raja, V., Valluri, D., Baggs, E., Chemero, A., & Anderson, M. L. (2021). The Markov blanket 
trick: On the scope of the free energy principle and active inference. Physics of Life 
Reviews, 39, 49-72. 

Ramstead, M. J., Sakthivadivel, D. A., Heins, C., Koudahl, M., Millidge, B., Da Costa, L., ... 
& Friston, K. J. (2023). On Bayesian mechanics: a physics of and by beliefs. Interface 
Focus, 13(3), 20220029. 



23 

Rao, R. P. (2024). A sensory–motor theory of the neocortex. Nature Neuroscience, 27(7), 
1221-1235. 

Rao, R., & Ballard, D. (1999). Predictive coding in the visual cortex: A functional 
interpretation of some extra-classical receptive field effects. Nature Neuroscience, 
2(1), 79–87. 

Rathkopf, C. A. (2013). Localization and intrinsic function. Philosophy of Science, 80(1), 
1-21. 

Rosenblum, L. D., Dias, J. W., & Dorsi, J. (2016). The supramodal brain: Implications for 
auditory perception. Journal of Cognitive Psychology, 29(1), 65–87 

Schalk, G., et al. (2017). Facephenes and rainbows: Causal evidence for functional and 
anatomical specificity of face and color processing in the human brain. Proceedings of 
the National Academy of Sciences, 114(46), 12285-12290. 

Seth, A. K. (2015). The cybernetic bayesian brain. In T. Metzinger, J. Windt (eds.). Open 
MIND, 35. Frankfurt am Main, The MIND Group. https://doi.org/10.15502/9783958570108. 

Seth, A. K., & Friston, K. J. (2016). Active interoceptive inference and the emotional 
brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1708), 
20160007. 

Sharma, J., Angelucci, A., & Sur, M. (2000). Induction of visual orientation modules in 
auditory cortex. Nature, 404(6780), 841-847. 

Shipp, S. (2016). Neural elements for predictive coding. Frontiers in psychology, 7, 1792. 

Shipp, S., Adams, R. A., & Friston, K. J. (2013). Reflections on agranular architecture: 
predictive coding in the motor cortex. Trends in neurosciences, 36(12), 706-716. 

Sporns, O. (2014). Contributions and challenges for network models in cognitive 
neuroscience. Nature Neuroscience, 17(5), 652–660. https://doi.org/10.1038/nn.3690 

Spratling, M. W. (2016). Predictive coding as a model of cognition. Cognitive processing, 
17, 279-305. 

Spratling, M. W. (2017). A review of predictive coding algorithms. Brain and cognition, 
112, 92-97. 

Sprevak, M. (2010). Computation, individuation and the received view on representation. 
Studies in History and Philosophy of Science Part A, 41(3), 260–270. https://doi.org/10. 
1016/j.shpsa.2010.07.008 

Sprevak, M. (2024). Predictive coding I: Introduction. Philosophy Compass, 19(1), e12950. 

Sprevak, M. (unpublished a). Predictive coding III: the algorithmic level. Preprint at: 
https://philsci-archive.pitt.edu/19488/ cited with permission 

Sprevak, M. (unpublished b). Predictive coding IV: the implementation level. Preprint at: 
https://philsci-archive.pitt.edu/19669/ cited with permission 



24 

Sprevak, M., & Smith, R. (2023). An Introduction to Predictive Processing Models of 
Perception and Decision‐Making. Topics in Cognitive Science. 

Sterling, P., & Laughlin, S. (2015). Principles of neural design. The MIT press. 

Sun, Z., & Firestone, C. (2020). Optimism and pessimism in the predictive brain. Trends 
in Cognitive Sciences, 24(9), 683-685. 

Tani, J. (2016). Exploring robotic minds. Oxford University Press. 

Tootell, R. B., Hadjikhani, N. K., Mendola, J. D., Marrett, S., & Dale, A. M. (1998). From 
retinotopy to recognition: fMRI in human visual cortex. Trends in cognitive sciences, 
2(5), 174-183. 

Uttal, W. R. (2001). The new phrenology: the limits of localizing cognitive processes in 
the brain. MIT Press.  

Von Melchner, L., Pallas, S. L., & Sur, M. (2000). Visual behaviour mediated by retinal 
projections directed to the auditory pathway. Nature, 404(6780), 871-876. 

Walsh, K. S., McGovern, D. P., Clark, A., & O'Connell, R. G. (2020). Evaluating the 
neurophysiological evidence for predictive processing as a model of perception. Annals 
of the new York Academy of Sciences, 1464(1), 242-268. 

Westlin, C., Theriault, J. E., Katsumi, Y., Nieto-Castanon, A., Kucyi, A., Ruf, S. F., ... & 
Barrett, L. F. (2023). Improving the study of brain-behavior relationships by revisiting 
basic assumptions. Trends in cognitive sciences, 27(3), 246-257. 

Yamawaki, N., Borges, K., Suter, B. A., Harris, K. D., & Shepherd, G. M. (2014). A genuine 
layer 4 in motor cortex with prototypical synaptic circuit connectivity. Elife, 3, e05422. 


	Structure and function in the predictive brain 
	 
	Structure and function in the predictive brain 
	 
	1 - Introduction 
	2 - Structure-function mappings in cognitive neuroscience 
	3 - Predictive Processing 
	4 - All-to-one mappings and equipotential brains 
	5 - Is the threat  to PP real? 
	6 - Conclusions: prediction without comprehensiveness, unity and completeness 
	References 

