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Abstract

Weatherall and Manchak (2014) show that Reichenbachean universal effects, constrained to a rank-2 tensor

field representation in the geodesic equation, always exist in non-relativistic gravity but not so for relativistic

spacetimes. Thus general relativity is less susceptible to underdetermination than its Newtonian predecessor.

Dürr and Ben-Menahem (2022) argue these assumptions are exploitable as loopholes, effectively establishing a

(rich) no-go theorem. I disambiguate between two targets of the proof, which have previously been conflated:

the existence claim of at least one alternative geometry to a given one and Reichenbach’s (in)famous ”theorem

theta”, which amounts to a universality claim that any geometry can function as an alternative to any other.

I show there is no (rich) no-go theorem to save theorem theta. I illustrate this by explicitly breaking one of

the assumptions and generalising the proof to torsionful spacetimes. Finally, I suggest a programmatic attitude:

rather than undermining the proof one can use it to systematically and rigorously articulate stronger propositions

to be proved, thereby systematically exploring the space of alternative spacetime theories.
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1. Introduction

Conventionality about space, or spacetime, is the view in the epistemology of geometry –
loosely associated with ideas by Poincaré, Duhem, Schlick, Carnap, Reichenbach, and others
– that ascertaining the geometry of the world requires in some way or another a conventional
aspect. On the one hand, it is in the empiricist tradition to recognise that there is an empirical
question to be asked about the true geometry of the world, as opposed to the abstract
mathematical (hence analytically true) formalisms of Euclidean and non-Euclidean geometry:
physical practice is seen to have a grip on revealing synthetic geometric facts about the world.
On the other hand, geometric conventionalists hold that such a physical geometry is, at least
in itself, beyond empirical reach: it can only be given empirical content by means of an
anchoring point, a conventional choice that cannot itself be justified on empirical grounds.

Canonically, such geometric conventionalism is grounded in the idea that different
spacetime theories can be empirically indistinguishable, despite being based on distinct ge-
ometric structures. This underdetermination arises when models with different geometries –
models within the same spacetime theory or between prima facie distinct spacetime theories
– can be made empirically equivalent by introducing ‘universal forces’ (or ‘universal effects’)
that correct for their geometric differences in such a way that the empirically accessible tra-
jectories of bodies remain unaffected. Hence the ‘conventionality of geometry’, one of the
largest debates in the epistemology of spacetime since its conception.1

Ostensibly, this is the position that J.O. Weatherall and J.B. Manchak (2014, hence-
forth: W&M), set out to question rigorously in their “The Geometry of Conventionality”:

If one understands “force” in the standard way in the context of our best classical
(i.e., non-quantum) theories of space and time, can one accommodate different
choices of geometry by postulating some sort of “universal force field”? (W&M
2014, p. 234).

They present two proofs, one non-relativistic and one for general relativity (GR), restricting
the universal force field to be represented by a rank-2 tensor field in the geodesic equation.
The non-relativistic proof confirms that the conventionalist’s claim that there are empirically
adequate alternatives if one allows universal forces; the relativistic proof falsifies the claim
that this can always be done for general relativistic spacetimes. This paper will focus on the
relativistic proof, which shows that GR does not admit the same leeway for conventionalism
as Newtonian gravity because there does not exist a reasonable “force” tensor that relates
the geodesics of two conformally related metrics. That is, under reasonable assumptions.

Certainly, W&M showcase conventionalism in a novel way, mentioning much previous
scholarship on the topic, but not obviously connecting to the questions posed in those works.
An upshot is that they reformulate the problem in the full glory of modern spacetime theory,
introducing much-needed rigour into a debate that has often relied on proofs of concept. As
such, they kick off a fresh way to handle these questions. A downside is that at first sight
their claims are remarkable, even shocking, given the numerous debates on this topic: has

1The modern literature on geometric conventionalism (let alone conventionalism generally) is too vast
to review, but a (non-exhaustive) list from which I draw is (Sklar 1974; Glymour 1977; Dieks 1987; Ben-
Menahem 2006; Acuña 2013; Ivanova 2015; Padovani 2017; Ivanova 2021; Dewar 2022; Dewar, Linnemann,
and Read 2022; Dürr and Read 2024 ).
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more than a century of scholarship missed a trick, perhaps because of the lack of a sufficiently
rigorous analysis? In particular, a roadmap about whether we can now safely adopt a realist
conception of general relativistic spacetimes, or what kind of future work would be required
to establish such commitment, is left to the reader.

Given this unconventional anti-conventionality, controversy is to be expected. In fact,
Patrick Dürr and Yemima Ben-Menahem (2022, henceforth: D&BM) write a response that
makes no secret of their belief that the assumptions of the proof are overly restrictive, not
sufficiently justified, open to counterexamples, and not in accordance with historical and
philosophical scholarship on the topic. They present W&M’s relativistic proof as an incon-
sistency proof, lining up its assumptions together with an existence claim of alternative
geometries and pointing out how each of these assumptions can be rejected. As such, each
rejection opens up possibilities for constructing empirically equivalent models.

One can feel at a loss about the overall gain of this debate, if any. If D&BM are
correct, have W&M proven nothing of importance? In this paper, I clarify two different
kinds of underdetermination that serve to underpin two very different positions, each of
a conventionalist but nonetheless distinct flavour. Some conventionalists have in mind an
existence claim: for any one given metric there exists at least one other metric which can do
the same empirically adequate job, given the universal forces (what I will call (UDT-∀g∃g̃)
in §3). Other conventionalists have in mind a universality claim (UDT-∀g∀g̃): any metric
can replace any other metric, if suitably adjusted for by universal forces—a claim most
prominently promulgated by Reichenbach, enshrined in his (in)famous “theorem θ”:

Theorem θ: “Given a geometry G′ to which the measuring instruments conform,
we can imagine a universal force F which affects the instruments in such a way
that the actual geometry is an arbitrary geometry G, while the observed devi-
ation from G is due to a universal deformation of the measuring instruments.”
(Reichenbach 1928, §8, p. 33, emphasis added)

This paper contextualises W&M’s relativistic result by distinguishing between (restricted)
existence and (restricted) universality claims. Expanding on a list of assumptions of the proof
identified by D&BM, I discuss their loophole-based critique (§2). Then §3 clarifies the logical
structure of the proof by distinguishing between claims of existence of model underdeter-
mination or claims that model underdetermination is universal. I argue that the proof (a)
severely restricts but does not undermine underdetermination tout court, leaving (an ever
tightening) space for the existence of alternative models, and (b) theorem θ is nevertheless
successfully dispelled—an observation none of the authors addressed clearly. I then gener-
alise the proof to torsionful spacetimes (§4), showing that (i) for a given torsionful connection
there exist some connections which cannot be related by a force field in the standard way, il-
lustrating that violating an assumption does not serve as a loophole to save theorem θ in GR,
and, more generally, that (ii) for a given torsionful connection there exists no conformally
equivalent torsionful connection which can be so related. In §5 I discuss conventionalism
more broadly and argue that the current debate concerns underdetermination, not conven-
tionalism per se. Finally, §6 proposes reframing W&M’s assumptions as part of a research
programme to develop stronger theorems, eventually culminating in a systematic grip on the
formal landscape of the space of (conceived and unconceived) relativistic spacetime theories.
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2. Weatherall and Manchak’s relativistic proof and its assumptions

To mathematically cash out the question whether in GR one can accommodate different
geometries via the postulation of a universal force field, W&M pose it in terms of the affine-
connection uniquely associated (given torsion-freeness and metric-compatibility) with the
metric: for a relativistic spacetime on manifold M with metric gab with its associated Levi-
Civita connection∇, and a distinct metric g̃ab (on the sameM) with its associated connection

∇̃, and ξa the velocity vector (the unit-norm, timelike vector tangent to a particle’s curve
γ(τ), i.e., ξa = γ̇).The question then reads: “Is there some rank-2 tensor field Fab such
that, given a curve γ, γ is a geodesic (up to reparametrisation) relative to ∇ just in case its

acceleration relative to ∇̃ is given by F a
nξ̃

n, where ξ̃a is the tangent field to γ with unit length
relative to g̃ab?” This gives sufficient ingredients to write down the following proposition2

Proposition 2 [The relativistic case]—Let (M , gab) be a relativistic spacetime, let g̃ab =

Ω2gab be a metric conformally equivalent to gab, and let ∇ and ∇̃ be the Levi-Civita derivative
operators compatible with gab and g̃ab, respectively. Suppose Ω is non-constant. Then there is
no tensor field Fab such that an arbitrary curve γ is a geodesic relative to ∇ if and only if
its acceleration relative to ∇̃ is given by F a

nξ̃
n, where ξ̃n is the tangent field to γ with unit

length relative to g̃ab. (Weatherall and Manchak 2014, p. 242)

That is, given any geometry, we cannot always write down a new geometry such that a rank-
2 tensor relates their geodesics. Proposition 2 is then proven to be correct (in Appendix A
one can follow the steps of this proof and the use of assumptions, in the context of the
logically stronger proposition given in §4). Thus it is in general not possible to construct
empirically-equivalent models by postulating such an Fab.

All proofs make assumptions. Evaluating the importance of the W&M proof must
involve an investigation of what exactly is assumed, and how weak or strong these assumptions
are. Dürr & Ben-Menahem (2022) have listed some of the assumptions used in the proof, on
which I will largely rely. Yet, I add to this list some topological assumptions and give a finer
rendition of the assumption of Riemannian geometry. Also, since W&M explicitly restrict
themselves to models of GR, I distinguish between assumptions within GR and assumptions
that bring us beyond it. The list is:

• (CONF) The alternative metric is conformally related to the standard metric g̃ab =
Ω2(x)gab. (D&BM, p. 156)

• (NORM) ξ̃a is a unit-norm (with respect to the new geometry’s metric) tangent vector
to the particle’s curve: g̃abξ̃

aξ̃b = 1. (ibid., p. 156)

• (FORCE) The [geometrical] alternative to standard acceleration must take the ‘stan-

dard’ force-law form ξb∇bξ
a = ξ̃b∇̃bξ̃

a + F a
bξ̃

b (ibid., p. 156).

And here are assumptions that would take one beyond GR:

2Proposition 1 is the non-relativistic case, for which the verdict is that a suitable force tensor field does
exist. Furthermore, I follow (Einstein 1921; Reichenbach 1928) in using G for geometry and F for universal
effects, and Fab for the rank-2 tensorial form of F . W&M use Gab for the latter.
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• (RIEM) Geometric alternatives must employ Riemannian geometry: being solely ex-

pressible in terms of a metric g̃ and associated Levi-Civita connection ∇̃. (ibid., p. 156)

Here I would add two assumptions constitutive of (RIEM):

– (RIEM-SYMM) the affine-connection is torsion-free.

– (RIEM-COMP) the affine-connection is fully metric compatible, so that the
disformation vanishes identically.

• (TOPO) Geometric alternatives are constructed on the same manifold. In particular3:

– (DIM4) the manifold in question is restricted to four dimensions.

– (HAUS) points can be kept apart by open sets (for every pair of distinct points
p, q ∈ M there exist neighbourhoods disjoint open sets U, V ∈ M such that p ∈ U ,
q ∈ V and U ∩ V = ∅). (Hausdorff condition)

These assumptions are indeed needed for the proof to come off the ground in the way that
it does—see W&M’s original and Appendix A for additional steps (in the context of a gen-
eralisation of Proposition 2).

Generally, (Dürr and Ben-Menahem 2022) is a tour de force of the conceptual history
of geometric conventionalism, but begin their paper by scrutinizing W&M’s proof by ques-
tioning its assumptions – without disputing its formal validity – by presenting the proof as
a no-go theorem. The above list constitutes a set of mutually inconsistent premises when a
particular conventionalist thesis is added:

• (ALT-ACC) Geometric alternatives for general-relativistic acceleration of a test-particle,
ξb∇bξ

a must exist [...]. (D&BM, p. 155)

As per usual with inconsistency, the proper response is to reject at least one premise, thereby
restoring consistency. That is, the conjunction ¬((ALT-ACC) ∧ (CONF) ∧ (NORM) ∧
(RIEM) ∧ (FORCE) ∧ (TOPO)) is equivalent to the disjunction of the negations of each
conjunct: ¬(ALT-ACC)∨¬(CONF)∨¬(NORM)∨¬(RIEM)∨¬(FORCE)∨¬(TOPO).
In this way, framing a debate in terms of a set of mutually inconsistent premises is a natural
way of clarifying and classifying different views in a complex debate, by identifying each view
with the rejection of one of the premises. (I will articulate such classification in §6).

D&BM would reject one or all of the premises except (ALT-ACC), thereby retaining
a conventionalist position; they attribute to W&M the position ¬(ALT-ACC), that a trade-
off between geometries and universal forces is never possible. They (2022, pp. 156-157) speak
of assumption (NORM) as “unwarranted”, (CONF) as overly restrictive and thus “defeat-
ing its purpose”, and of “by-passing” and “short-circuiting” the proof itself by rejecting such
assumptions. For example, denying (CONF) opens up space for underdetermination of mod-
els, because two models are then allowed (interpreting conformal rescalings passively rather
than as active transformations) to differ by ‘running units’, where the choice of numerical
units trades off against different conformal scalings (ibid., p. 157); one can do the same with

3As always in philosophy, some assumptions remain suppressed, e.g., smoothness (SMOOTH), paracom-
pactness (PARA) and those that go ‘even deeper down’. D&BM may very well have regarded (TOPO) as
‘deeper down’, so this is meant as supplementation, not correction. For reasons why see (§6).
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volume elements (ibid., p. 158). By denying (NORM), we can use reparametrisations of
curves to create empirically equivalent models that differ with respect to lengths of vectors
(ibid., p. 156). By denying (RIEM), possibilities open up to modify the affine-connection so
as to include non-Riemannian spacetimes (ibid., pp. 159-160). Finally, by denying (FORCE),
interpreting F more loosely as an ‘interaction’ or ‘effect’ rather than a strict ‘force’ such as
the electromagnetic force represented by the Faraday tensor. Thus,

Of course, W&M are aware of the fact that the strength of their theorems on
which their reasoning rests depends on their assumptions. But the reader is led
to believe that those assumptions are quite natural; to deny them would appear
to exact a rebarbatively high price. It is the naturalness of those assumptions (not
the validity of W&M’s theorems) that we subsequently seek to question. (Dürr
and Ben-Menahem 2022, p. 155)

3. Universality, not existence: most assumptions are not loopholes to theorem θ

Surely, W&M’s paper is written in an anti-conventionalist tone. Reading the title of the paper
and some of their commentary, they can easily be misread as implying that their result shows
that GR does not allow for conventionalism at all. That is, as if trade-offs between metrics and
universal forces/effects can never be made, or perhaps only in very exotic cases. Furthermore,
some assumptions of §2 are not explicitly discussed, or only mentioned in passing. The one
assumption that receives extensive attention is (FORCE). Take, for example, (CONF), the
restriction to conformally equivalent spacetimes. In a footnote, they say:

Note, though, that requiring conformal equivalence only strengthens our results.
If the conventionalist cannot accommodate conformally equivalent metrics, then
a fortiori one cannot accommodate arbitrary metrics; conversely, if Reichenbach’s
proposal fails even in the special case of conformally equivalent metrics, then it
fails in the case of (arguably) greatest interest.” (W&M 2014, fn. 13, p. 237)

A few pages later, the same is said about (CONF) in a footnote to Proposition 2 directly:

Again, this restriction strengthens the result. If the proposal does not work even in
this special case, it cannot work in general; moreover, the special case is arguably
the most interesting. (W&M 2014, fn. 22, p. 242)

This may strike one as quaint, even plainly wrong: aiming to debunk conventionalism, dis-
carding a whole class of spacetimes – in casu the conformally inequivalent spacetimes – does
not strengthen but weaken the result. Right? If you take a subset of the full set of spacetimes,
one excludes by fiat a whole range of candidate empirically indistinguishable spacetimes: why
is one not allowed to look for empirically equivalent models outside of that subset?

I argue that both D&BM andW&M do not clearly distinguish between two conceivable
positions that Proposition 2 can be taken to dispel, namely whether – with the help of
universal forces – at least one model is equally capable of making the same predictions as a
given model, or whether all of them are. The first is an existence claim, like (ALT-ACC).
The second is a universality claim, like theorem θ. The crux of the matter is that there are
different kinds of conventionalism—or different kinds of model underdetermination that give
rise to different conventionalisms:
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- Existence (UDT-∀g∃g̃): For each metric of an adequate model of some spacetime
theory there exists at least one distinct metric of a model of that theory that is equally
capable of predicting the same observable consequences, given suitable universal effects.

- Universality (UDT-∀g∀g̃): For each metric of an adequate model of some spacetime
theory any other distinct metric of a model of that theory is equally capable of predict-
ing the same observable consequences, given suitable universal effects.

Several remarks are in order. First, note that (UDT-∀g∀g̃) implies (UDT-∀g∃g̃). Then,
(UDT-∀g∃g̃) is a rendering of theorem θ in terms of formal model underdetermination
within a theory (excluding bona fide conventionalist worries about non-factual choices that
enable measuring devices). Furthermore, in the context of GR, (UDT-∀g∃g̃) takes the form
of (ALT-ACC). Finally, the clause ‘suitable universal effects’ can be broadly or narrowly
fleshed out—W&M flesh it out narrowly as (FORCE).

From the formulation of (ALT-ACC) it is clear that D&BM assume that W&M’s
target is the existence claim of UDT-∀g∃g̃, since it states that W&M disprove the claim
that geometric alternatives must exist. A closer reading reveals that W&M do not target
(ALT-ACC)—even when all assumptions are fully granted. The question whether there in
general exist particular pairs of Levi-Civita connections whose geodesics can be related by
some Fab, and hence whether (UDT-∀g∃g̃) is correct in GR or Newtonian gravity, is never
posed by W&M. What they disprove instead, roughly, is the statement that the geodesics of
any given spacetimes (M, g) and those of an alternative but conformally equivalent spacetime
(M, g̃) can be related by a force field satisfying (FORCE). That is, we should consider these
claims also with restricted quantifiers that only range over the conformally equivalent metric
to a given metric:

- Restricted Existence (UDT-∀g∃confg̃): For each metric of an adequate model of
some spacetime theory there exists at least one distinct conformally equivalent metric
of a model of that theory that is equally capable of predicting the same observable
consequences, given suitable universal effects.

- Restricted Universality (UDT-∀g∀confg̃): For each metric of an adequate model of
some spacetime theory any other distinct conformally equivalent metric of a model of
that theory is equally capable of predicting the same observable consequences, given
suitable universal effects.

Again, (UDT-∀g∀confg̃) implies (UDT-∀g∃confg̃).
As I read it, W&M slide between two targets, i.e., (UDT-∀g∃confg̃) and (UDT-∀g∀g̃).

On the one hand, “If the conventionalist cannot accommodate conformally equivalent met-
rics, then a fortiori one cannot accommodate arbitrary metrics”, targets (UDT-∀g∀g̃). On
the other hand, “[...] conversely, if Reichenbach’s proposal fails even in the special case of
conformally equivalent metrics, then it fails in the case of (arguably) greatest interest”, has
in mind (UDT-∀g∃g̃). Let us consider both.

D&BM (2022, p. 156) say that W&M “believe this restriction [i.e., (CONF)] doesn’t
diminish the argument’s generality, since for Reichenbach any arbitrary geometry can be
upheld [...].” The reason they attribute to W&M for this belief is their remark about the
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non-conventionality of causal structure, a point first made by Malament (1985): since Re-
ichenbach famously took causal statements as non-conventional, he would presumably hold
that conformal structure is factual because it derives directly from causal facts. Thus, on his
own terms, he should be committed to the conformal part of the metric as non-conventional.
On this reading, one would indeed hold that (UDT-∀g∃confg̃) implies (UDT-∀g∃g̃), since
both classes exhaust the physically viable (or rather: factual) differences. Yet, few of us are
committed to Reichenbach’s causal theory of time—and besides, W&M themselves say they
are not primarily concerned with Reichenbach’s project. One could of course read this as
a motivating remark why conformally equivalent spacetimes are interesting. The argument
why (UDT-∀g∃confg̃ → UDT-∀g∃g̃) remains unjustified, or at least implicit. This means
that (UDT-∀g∃g̃) remains a viable option.4

Yet, despite D&BM’s objections, denying (CONF) – or any of the assumptions for
that matter, except (FORCE) – will not save theorem θ. For let us consider (UDT-∀g∀g̃)
as an implicit target of the proof. First, Proposition 2 denies (UDT-∀g∃confg̃) in the con-
text of GR. Then, the restricted universality claim implies the restricted existence claim
(UDT-∀g∀confg̃ → UDT-∀g∃confg̃), so we have (by modus tollens) that ¬(UDT-∀g∀confg̃).
In turn, it is clear that (UDT-∀g∀g̃) implies (UDT-∀g∀confg̃), so we have ¬(UDT-∀g∀g̃).
In this way we can interpret Proposition 2, roughly, as disproving the statement ‘for any
pair of (conformally equivalent) spacetimes (M, g) and (M, g̃), there is a force field satisfying
(FORCE) that relates their geodesics’, with the parentheses around ‘conformally equivalent’
highlighting the redundancy of this qualification.

Another way to see this is to consider the region of GR spacetimes, assuming (TOPO),
that are conformally equivalent (CONF), Riemannian (RIEM), and renormalisable (NORM),
as illustrated by the solid green region in Figure 1. W&M refute that any two spacetimes
in this region can be related by a “standard” force tensor field Fab satisfying (FORCE).
Suppose we deny (CONF); this expands the space to include Riemannian, renormalisable
spacetimes regardless of conformal equivalence. But this merely enlarges the region to that
marked ‘GR’ in Figure 1b, with the original subset (Figure 1a) still contained within it.
The same proof that rules out a force field in the narrower region applies to the wider one.
Strictly analogous reasoning applies to the denial of (RIEM), (NORM) and (if one goes
beyond GR) (TOPO): the nature of Proposition 2 as an argument against theorem θ is that
it remains true under generalisation.

4. Generalising to torsionful connections

One way of generalising W&M’s relativistic result in a controlled way is by explicitly re-
jecting (RIEM), or more specifically its constitutive premise (RIEM-SYMM), by allowing
for torsionful connections, i.e. connections that generically (i.e., they are ‘not-necessarily
symmetric’) have an anti-symmetric part:

4I am grateful to an anonymous reviewer for pointing me to a recent preprint by Roberts (202?), which
putatively proves a strengthening of Proposition 2 without (CONF). However, the result does not straightfor-
wardly imply Proposition 2 as claimed: a residual underdetermination remains when postulating spacetimes
differing in physical magnitudes involving length. Despite ∇̃ = ∇ and F ab = 0, a standard force is still con-
ceived of as proportional to acceleration in the new geometry, ξ̃a∇̃ξ̃b = Cabcξ̃aξ̃b (on a ∇-geodesic). Roberts’
force tensor thus fails to satisfy (FORCE) in the new geometry. See also §6.5.

7



Proposition 3 The relativistic torsionful case—Let (M , gab) be a relativistic space-

time, let g̃ab = Ω2gab be a metric conformally equivalent to gab, and let ∇ and ∇̃ be not-
necessarily-symmetric derivative operators compatible with gab and g̃ab, respectively. Suppose
Ω is non-constant. Then there is no tensor field Fab such that an arbitrary curve γ is a
geodesic relative to ∇ if and only if its acceleration relative to ∇̃ is given by F a

nξ̃
n, where ξ̃n

is the tangent field to γ with unit length relative to g̃ab.

In light of the existence of empirically equivalent torsionful models, i.e., the so-called telepar-
allel equivalent of GR (cf. Hayashi and Shirafuji 1979), the truth or falsity of this proposition
promises to be insightful. In Appendix A I show Proposition 3 to be true, starting from a
more general difference tensor as given in (Jensen 2005). Because the additional torsionful
terms do not depend on the metric, they are not affected by a conformal transformation, and
so the proof goes through largely analogously to the proof of Proposition 2.

Again it is important to distinguish the target. If it is the universality claim (UDT-∀g∀g̃),
then expanding the scope of a universal quantifier does not affect the falsity of the claim: if
the universality claim fails in the original case, it trivially fails in the broader one too. The key
point is that for a given torsionful connection, some others cannot be related by a force field
Fab—thus violating (RIEM-SYMM) but still refuting theorem θ under (FORCE). That
does not mean this result tells us nothing new. Proposition 3 is a genuine generalisation in
the sense that it proves that for any torsionful connection, there exists some (non-trivially
conformally equivalent) torsionful connection that cannot be related by a force field Fab.

If the target is (UDT-∀g ∇torsionful;∃g̃ ∇̃torsionful) is taken, this existence claim fails
within the class of conformally equivalent spacetimes, see Figure (1c). That is, it is a gener-
alisation of Proposition 2 in the sense that for a given torsionful connection there exists no
conformally equivalent torsionful connection that can be related by a force field Fab.

5

To pre-empt misreading: Proposition 3 does not rule out the existence of a teleparallel
equivalent to GR. Logically speaking, a force field could still relate torsion-free and torsionful
spacetimes, and this should motivate more stringent existence claims (cf. §6). However, the
above framework does allow for a more direct assessment of whether torsion (in teleparallel
gravity) counts as a force. The torsionful deviation from geodesic motion, governed by the
Weitzenböck connection, does not appear to satisfy (FORCE): it enters the geodesic equation
via the contorsion tensor contracted with two velocity vectors and cannot generally be cast
as a conservative force represented by a rank-2 tensor. It would be more naturally interpreted
as a geometric effect, albeit not solely through the metric alone: geometric facts would be
represented by the metric in tandem with the connection and its associated contorsion. In
this relativistic context, then, torsion is not a force.

5I thank an anonymous reviewer for asking me to compare the proof of Proposition 2 with Theorem
1 in (Roberts 202?), which considers conformally inequivalent spacetimes. Just as Appendix A generalises
Proposition 2, one might attempt to extend Roberts’ Theorem 1 to not-necessarily-symmetric connections
using Jensen’s Eq.(A.1). However, Roberts’ conclusion that F a

b = 0 relies on the symmetry of the connecting
field Ca

bc, which fails in the torsionful case. Following Theorem 1’s proof (202?, p. 22, Eq. (6)), one sees
that the torsion must cancel the symmetric part of the connection field identically: Ca

bc = Ka
(bc). This

condition is highly non-generic, so a generalisation of Theorem 1 along the lines of Proposition 3 does not
straightforwardly carry over. Moreover, as noted in footnote 4, Theorem 1 is not strictly a generalisation of
Proposition 2, nor is its torsionful counterpart a strict generalisation of Proposition 3.
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(a) For GR, W&M disprove the existence claim
(UDT-∀g∃g̃) that there is a force tensor sat-
isfying (FORCE) that can make two confor-
mally equivalent spacetimes (highlighted re-
gion) empirically equivalent.

(b) Denying (CONF), one may still believe
(UDT-∀g∃g̃) could be true in GR. Yet this
does not undermine the disproof of the uni-
versality claim (UDT-∀g∀g̃), but generalises it:
theorem θ remains false under (FORCE).

(c) Proposition 3 generalises the result in
(a) by allowing torsionful connections (cf. §4
and Appendix A) by rejecting the assumption
(RIEM-SYMM). This does not serve as a
loophole to save theorem θ in GR; more gener-
ally, there exists no pair of conformally equiva-
lent torsionful spacetimes related by a standard
force field.

(d) To-be-proven existence claims: the yellow
line indicating (UDT-∀g∃g̃), the purple lines
the existence claims towards the other two
nodes of the geometric trinity of gravity, and
the blue line searching for the existence of mod-
els equivalent to GR that go beyond differential
geometry (e.g. Einstein algebra formulations),
all under (FORCE).

Figure 1: The space of relativistic spacetimes and some inhabitants.
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5. Underdetermination, conventionalism and Conjecture θ

Note how all-encompassing theorem θ is: it states that for any arbitrary given metric, any
other arbitrary metric is equally good, at least as far as observable facts go. What counts as
a duration in one geometry may be a length in another; what is a continuous path in one
may appear as a particle popping in and out of existence in the other. This is what makes
theorem θ a version of the universality claim (UDT-∀g∀g̃), under a broad understanding
of ‘universal effects’, which are particularly fleshed out under Helmholtzian measurability
conditions and a fine-grained concept of physical geometry (an operationalist semantics also
alluded by D&BM 2022, p. 161).

Reichenbach (1928, §8, p. 31–33) states theorem θ without proof. He extrapolates from
Poincaré’s (1891) intertranslatability of the three constant-curvature geometries, i.e., flat Eu-
clidean, positively-curved Riemannian and negatively-curved Bolyai-Lobachevsky geometry,
and adds: “No epistemological objection can be made against the correctness of theorem θ”
(1928, p. 33). Would we see clearer when we think of it as ‘Conjecture θ’, in need of proof, as
W&M (at least implicitly) seem to do? The answer involves some subtle interplay between
the semantic and the epistemic components of realism, which will clarify the sliding between
(UDT-∀g∀g̃) and (UDT-∀g∃g̃) discussed in §3.

On the one hand, starting from a conventionalist position that assumes that for a
(physical) geometric fact to be meaningful we first need to stipulate a baseline to calibrate our
measuring apparatuses (cf. Padovani 2017) – note Reichenbach explicit mention of “universal
deformation of measuring instruments” – and with this stipulation itself not epistemically
determinable, surely no further proof is required: Poincaré’s one-to-one equivalence results
trivially back it up.This amounts to a selective realism, arguing that to begin with there are
no geometric facts independent of conventions that are not dictated by nature.

On the other hand, in that case the designation ‘theorem’ is also an exaggeration.
Theorem θ would then amount to saying that geometric structure can always be semantically
construed as non-geometric structure. Reichenbach’s “no epistemological objection can be
made” may express this, but then why not apply the same logic to any physical structure?
Hypothetically any structure can be translated into some other structure in ways we cannot
empirically distinguish, even in terms of structures we have not yet conceived?

It seems to me that Reichenbach, enamoured by Helmholtz’ empirical approach to
physical geometry and Einstein’s successful application of curved spacetimes, had a too fine-
grained conception of physical geometry. In particular, he takes the metric tensor as the
unique vehicle to directly represents physical geometrical properties. In its wake, this enforces
that Fab cannot meaningfully perform that job and should be interpreted as something non-
geometrical, e.g., a force. Thus, the metric was treated as exhaustively constitutive of ‘physical
geometry’, stipulating that no other structure could meaningfully supplement or displace
it.6 On this fixed way of giving meaning to geometric terms, Reichenbach hides physical

6Essentially, this is an accusation of essentialism: just as a classical essentialist holds that a concept is
defined by a fixed list of necessary properties, the conventionalist insists that geometrical properties consist
exactly of the axioms or analytic stipulations they adopt. Putnam’s “negative” essentialism (Putnam 1974)
similarly responds to Quinean holism, by contending that reference should be secured by maximising internal
coherence (e.g., simplicity, intuitive fit) and external coherence (basically: empirical confirmation) across the
whole of science. Reichenbach shows clear concern with the practice of how our geometric terms actually
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geometry behind an epistemic veil, because the metric tensor and the universal effect tensor
are presumptively meaningfully distinct. In this sense, we need not enquire into (UDT-∀g∃g̃),
for the existence of meaningfully distinct models is trivially secured: (UDT-∀g∀g̃) is already
possible through mere substitution of the metric by another metric and a universal effect
gab = Fab − g̃ab, without any need for (FORCE).

Another kind of ‘conventionalist’ (better: empiricist), emphasising the epistemic over
the semantic, can still hold (UDT-∀g∃g̃). Such an anti-realist only needs one instance of
underdetermination, and although W&M’s Proposition 2 removes some, it does remove all
underdetermination—unless each assumption is independently justified (which may well be
possible). It seems this is the kind of geometric anti-realism W&M take as their foil, and
D&BM implicitly endorse this by formulating (ALT-ACC). Thus W&M’s project is mean-
ingfully distinct from Reichenbach’s.

The above thus explains why W&M – and this is criticised by D&BM (2022, pp. 161-
162) – cite many conventionalist authors but do not engage with their key concepts: co-
ordinative definitions, congruences, truth. Of course a good deal more is to be said about
the nature of conventions and the conventionalist stance – indeed about a century-worth of
literature fleshes out various ‘conventional’ choices – but little subtlety is needed to eval-
uate Proposition 2. For W&M only address the formal problem of the existence of model
underdetermination without addressing conventionalism per se. Whether geometric state-
ments are ‘true-by-convention’ are not central to their approach. That is, W&M adopt the
same coordinative definitions commonly used to link the formalism of GR to the world.

6. A programme: systematically exploring the space of spacetime theories

Purely formally, the debate over geometric conventionalism partly stems from the observation
that prima facie one can trade geometric structure for universal effects, at least mathemat-
ically. We saw that Reichenbach claimed this holds for any pair of metrics, and that W&M
show that, in GR, under (FORCE), this is not so. Still, (UDT-∀g∃g̃) remains neither proven
nor refuted, leaving open the possibility that some metrics can. Were (UDT-∀g∃g̃) proven
correct for GR under (FORCE), there would definitively be no grounds for the conven-
tionalist view (besides denying (FORCE)). Unfortunately, it is hard to get mathematical
traction on such a general statement as (UDT-∀g∃g̃). Yet, the formal machinery of the proof
provides intermediate positions, opening up possibilities for articulating – even generating –
empirically equivalent models, bringing into focus those inhabitants of the formal space of
alternative spacetime theories that are known to us. This section explores some options.

6.1. Logical structure of the ‘go theorem’ and its targets. Rather than attempting to
undermine the proof, I suggest a programmatic attitude: use the list of assumptions in §2 not
just as inspiration but as formal tools to write down further propositions, quantified either
universally or existentially. Tasdan and Thébault (2024) adopt a consonant constructive
spirit. Citing D&BM, who deny Proposition 2 any merit, Tasdan and Thébault instead give
the no-go theorem a more exploratory twist:

acquire determinate reference; yet, he disagrees with Putnam that theoretical virtues like simplicity, which
underlie coherence, are truth-conducive. I would nevertheless argue that in any case he unjustifiably singles
out geometric facts from other physical magnitudes, by treating their representation by the metric as fixed.
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Since the theorem contained in their Proposition 2 is both valid and non-trivial,
we take there to be good cause to explore its implications as a ‘go theorem’ in
the context of the negation of the various physical, mathematical and framework
assumptions. (Tasdan and Thébault 2024, p. 492)

They then explore five rearticulations of spacetime conventionalism, “Spacetime Conven-
tionalism 1–5”.7 Introducing these, Tasdan and Thébault appeal to (Dardashti 2021), which
focusses on the heuristic value of no-go theorems for theory development in physics and high-
lights the fact that no-go results do not dictate what must be abandoned, only that something
in the setup must give.8 I wholeheartedly agree with Tasdan and Thébault’s constructive at-
titude. However, Tasdan and Thébault do not find their five conventionalist theses via the
negations of premises.9 Rather, they affirmatively formulate their own without reference to
the assumptions that underlie Proposition 2. Rather than following the logical structure of
the theorem, they independently conceive of interesting conventionalist positions. In part, this
is because they distinguish – following (Dardashti 2021) – between formal possibilities and
physical interpretations, to be rejected independently. As such, they characterise (RIEM)
as a formal assumption and (CONF) as a physical assumption.

Below I will proceed differently, staying closer to the no-go logic of the set of mu-
tually inconsistent premisses on a formal level. This helps to explore the formal space of
spacetime theories that can be generated given GR as a starting point, and actively using
the assumptions in §2. This is reminiscent of D&BM’s approach but gives their systematic
approach a new direction along the lines of the constructive spirit of Tasdan and Thébault.
It will also cover much additional territory, while keeping an eye on D&BM’s requirement
that alternatives should at least have a “modicum of initial plausibility” (2022, p. 170).

6.2. ¬(TOPO). Assumption (TOPO) is relevant for W&M’s proof in that it keeps the

topological structure constant: the choice of different connections ∇ and ∇̃ is considered to

7The first three, which respectively focus on affine structure, inertial structure, and tidal effects, are
ultimately rejected as either mathematically inconsistent, physically unmotivated, or ruled out by invariant
geometric identities. (For further undermining of Conventionalism 3, see Theorem 2 in (Roberts 202?)).
Spacetime Conventionalism 4 and 5, concerning the underdetermination of nomic structure and the possible
non-uniqueness of the Bach tensor (i.e., the conformally invariant part of the Einstein tensor) as the unique
conformally invariant rank-2 tensor in four dimensions (the Bach conjecture), remain potentially viable.

8Note that this method of identifying the structure of thesis rejection is a common formal method in
philosophy, both heuristically and for the purposes of classifying by matching positions in an extant debate
with the denial of each premise (see for example (Häggqvist 2009; Mulder and Muller 2023) for modal-logical
no-go theorems that undermine destructive thought experiments).

9With one exception: for Spacetime Conventionalism 5, Tasdan and Thébault appeal to W&M’s no-
go theorem to claim that the universal effect tensor Aab, i.e., the non-conformally invariant part of the
Einstein tensor, is not a standard force apparently because it is not conformally invariant: “Clearly, by the
theorem of Weatherall and Manchak (2014), Aab will not be expressible as a Newtonian force” (ibid., p. 503).
The conclusion is correct but does not follow from the logic of the theorem: ¬(CONF) does not imply
¬(FORCE). Whether Aab is a force depends on whether it enters the geodesic equation as a conservative
rank-2 tensor term – not on its conformal behaviour. Because of the contracted Bianchi identity, ∇aG

ab = 0,
we have ∇aA

ab = ∇aB
ab, and, because Bab is interpreted to “characterise facts about geometric spacetime

structure” (ibid., p. 503), the divergence ∇aA
ab is generally not a rank-2 tensor field in the geodesic equation.

Moreover, if Aab is interpreted as a tidal effect it fails to meet (FORCE) entirely for it does not act on a
particle—it represents not the acceleration of curves but between curves).
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take place on the same manifold, i.e., between (M,∇) and (M, ∇̃), not between (M,∇) and

(N , ∇̃) (for N ̸= M). This is a reasonable assumption, in line with the historical trend of
the debate about conventionalism by focussing on local rather than global features. However,
it is an open question whether some kind of topological conventionality relevantly interacts
with traditional geometric conventionality.

Consider ¬(DIM4). In some theories, the effect of what is considered a force in GR can
be modelled by a geometric structure in higher dimensions, such as the identification of elec-
tromagnetic charge with the value of momentum of particles in the fourth spatial dimension
of Kaluza-Klein theory (Kaluza 2018, 1921). Roberts (202?) discusses how simply embedding
GR in higher-dimensional spaces from which the four-dimensional spacetime curvature can
be recovered generally reflects not a freedom of conventional choice, but creates incomplete-
ness: such frameworks introduce fine-tuning problems and require unexplained features unless
completed by additional physical laws. Kaluza-Klein theory succeeds miraculously, precisely
because it posits such laws in five dimensions, eliminating arbitrariness.

Next, consider ¬(HAUS). That is, the denial that any two distinct points in the
manifold can be separated by neighbourhoods. This means that there may be distinct space-
time events that may nevertheless be indistinguishable topologically: points of the manifold
become ‘glued together’.10 Luc (2020) suggests that (HAUS) is not mandatory for GR but
usually imposed as a deterministic demand: to rule out future evolutions otherwise compati-
ble with the same initial data. J.B. Manchak (2013, pp. 47–48) argues that (non-Hausdorff)
Misner spacetime – where causal regions and CTC regions are neatly separated – may be
physically viable, too. This breakdown of standard GR topology also suggests an algebraic
reformulation of spacetime in terms of Einstein algebras (Geroch 1972; cf. Müller 2013; Rosen-
stock, Barrett, and Weatherall 2015; Shi 202?), which avoids the situation that spacetime is
defined by points and encodes motion algebraically: (FORCE) may not even be meaningful.

Finally, one can also consider upending causal properties by introducing divergent
global structures. Reichenbach (1928, §12) already discusses underdetermination G+ F +A
by postulating particular causal anomalies A such as singularities, closed timelike curves, or
topological gluing—for an overview of suggestions towards concrete empirically equivalent
models G′ + F ′ + A′, see for example (Manchak 2013, Ch. 5) or (Arntzenius and Maudlin
2002; Mulder and Dieks 2017) for underdetermination of models in GR without closed time-
like curves by models with them. More generally, Grimmer (202?) introduces a broad method
– which he calls the ISE Method – to systematically generate topologically distinct but phys-
ically equivalent formulations of a spacetime theory. The Möbius–Euclid duality developed
there illustrates how two theories with very different topologies (e.g., a point particle on a
Möbius strip versus a line on the Euclidean plane) can nonetheless encode identical dynamics,
thus demonstrating that topological structure can be redescribed without loss of empirical
content. This provides ample leeway to construct initially plausible topologically distinct
alternatives to models of GR.

10Because showing paracompactness in GR often relies on Hausdorffness, dropping (HAUS) can make
(PARA) harder to establish for some equivalent model of GR. Yet there do exist non-Hausdorff paracompact
spaces empirically equivalent to GR (cf. Wu and Weatherall forthcoming, Appendix, Lemma 1).
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6.3. ¬(RIEM). It is certainly plausible to deny (RIEM). W&M pose the underdeter-
mination question within the class of Levi-Civita connections. Yet, there is a plausible reason
to consider a broader range of affine-connections to inform further propositions, namely the
existence of metric-affine alternative theories to GR that do not centrally employ Levi-Civita
connections. The main examples are the theories of the so-called ‘geometric trinity of grav-
ity’. In GR, gravitational effects are a manifestation of spacetime curvature, but it is by now
well-known there is a theory prima facie distinct from GR, empirically equivalent to it, and in
which gravitational effects are a manifestation of spacetime torsion (cf. Lyre and Eynck 2003;
Knox 2011; Wolf and Read 2023; Mulder and Read 2024; Weatherall and Meskhidze 2024).
This latter theory is known as the ‘teleparallel equivalent of general relativity’ (TEGR). In-
creasingly well-known known amongst philosophers (Chen and Read 2023; Wolf, Sanchioni,
and Read 2024; Mulder 202?; Weatherall 202?) is a third theory (cf. Bahamonde et al.
2023; Heisenberg 2024), called the ‘symmetric teleparallel equivalent of general relativity’
(STEGR), in which gravitational effects are a manifestation of spacetime non-metricity, i.e.,
the non-compatibility of the connection with the metric.

Reichenbach had no scruples using an anti-symmetric affine-connection, as becomes
clear in his geometrisation of electromagnetism. Giovanelli (Section 4, 2021) shows in what
way Reichenbach was not naive about these matters, attempting (arguably successfully) to
geometrise the electromagnetic field by decomposing the affine-connection into the Christoffel
symbols as the product of a mixed anti-symmetrical tensor and a covariant vector.

Furthermore, the Appendix to Raum und Zeit makes clear that Reichenbach saw the
geometrisation of gravity as one way of casting the physical content (that is, gravity) in a
mathematical mould of geometry, which he regarded as a mere visual “shiny cloak”—see
the recently translated (and long out of print) Appendix to Reichenbach’s book analysed in
(Giovanelli 2021). This inspires a search for what such a shiny cloak could be hiding, which
(less metaphorically) means a ‘force theory’ or other causal theory in which the curvature is
constant, and in particular flat:

- UDT-∀g∃η: for each metric featuring in an empirically adequate model of some space-
time theory, the Minkowski metric (or Euclidean, for non-relativistic theories) is capable
of reproducing the same observable consequences, given suitable universal effects.

For GR and under (FORCE), this is proven false by Proposition 2, for W&M prove there
are models for which this cannot be done, namely for conformally flat models, and hence
there is no equivalent flat space standard force version of the theory of GR as a whole.

6.4. ¬(FORCE). In fact W&M (2014, pp. 235-237) are a bit more detailed than D&BM’s
formulation of (FORCE). I find three minimal specifications of their standard force: (FORCE-
a) a force is some physical quantity acting on a massive body or point particle; (FORCE-b)
forces are represented by rank-2 tensors at a point; (FORCE-c) the total force acting on a
particle at a point must be proportional to the acceleration of the particle at that point, and
vanishes just in case the acceleration vanishes.

One may deny (FORCE-a) by rejecting that universal effects must enter as force-like
terms in the geodesic equation—after all, not all physical influences act by locally deflecting
particles from geodesic motion. Tasdan and Thébault (2024) consider one such route via the
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geodesic deviation equation, which captures relative acceleration rather than particle-level
forces. They find it promising but lacking concrete proposals.

One may deny (FORCE-b) by allowing universal effects to be encoded in higher-
rank tensor fields, e.g. Ca

bcξ
bξc. Alternatively, one may even reject the universal effect to be

fundamentally conservative. Alternatively, one might reject that universal effects must be
conservative. While forces are typically derived from a potential, nothing a priori rules out
universal effects of a “drag” type: velocity- or history-dependent interactions familiar from,
for example, radiation theory. These violate integrability and energy conservation—serious
drawbacks if deemed fundamental, but not obviously ruled out just by empirical adequacy.

To deny (FORCE-c), one rejects the idea that universal effects must be proportional
to acceleration. In other words, that it necessarily manifests as a deviation from inertial
motion. In GR, famously, gravity causes no proper acceleration: free-falling particles follow
geodesics. Likewise, one might imagine a universal effect that alters relative motion (e.g. via
curvature or background fields) without pushing particles off their geodesics, and so without
acting as a local force in the Newtonian sense.11

6.5. ¬(CONF). One may ask whether it is possible to drop the conformal restriction
(CONF). Given that ‘conformal structure’, ‘light-cone structure’, and ‘causal structure’
are used interchangeably, one could investigate where such concepts come apart via different
interpretations of identifying their factual or conventional underpinnings. For Reichenbach,
the factual content of the theory of gravity is given by causal relations, as established via
certain operational means such as the sending and receiving of light-signals. Before specifying
one’s method to establish them, lengths and durations are not distinguished.

But more to the formal point, under the coordinative definitions W&M adopt, one may
drop (CONF) and subsequently attempt to prove the proposition that for any two spacetimes
of GR there is no tensor field Fab such that an arbitrary curve γ is a geodesic relative to
∇ iff its acceleration relative to ∇̃ is given by F a

n ξ̃
n. Then introduce the connecting field

(Eq. (A.1)) and write the g̃–acceleration of a g–geodesic, i.e., ξ̃b∇̃bξ̃
a = ξ̃b∇bξ̃

a − Ca
bcξ̃

bξ̃c,
and ask whether the right hand side reduces to a linear map on the velocity vector field.
But despite the (potentially simplifying) freedom to evaluate this on a g-geodesics, without
imposing extra structure there is no straightforward route to relating ξa to ξ̃a. Because
covariant differentiation requires knowledge of how a field varies off the curve, there is thus
no straightforward way to compute ∇bξ̃

a.
In particular, there is no unique, linear cone-preserving map from g-timelike vectors to

g̃-timelike vectors. This highlights the traction obtained via (CONF): if the metrics are con-
formally equivalent their light-cones coincide and thus admit of a one-to-one correspondence
of time-like vectors (and vice versa). Without that, one is mixing some time-like vectors of
one geometry with some space-like vectors of the other.

How could one proceed generally? I believe it beneficial to dive into some detail here,
for it is worth emphasising how (CONF) and (FORCE) hang together in GR. In full
generality, one may attempt the following. At each point p the timelike cones of two metrics

11Finding yourself in a Reichenbachean mood, hypothesise a non-constant scalar field τ(x) which alters the
behaviour of rods and clocks without exerting any force on particles, e.g., shifting atomic frequencies. Test
particles would still follow geodesics, but observers using τ -dependent measurement devices observe relative
drifts or redshifts. Thus τ produces observable structure without deflecting motion, evading (FORCE-c).
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gab and g̃ab appear as open double-cones in the tangent space TpM . One may introduce a
relative endomorphism Sa

b = gacg̃cb. (Check the special conformal case: for g̃ab = Ω2gab one
finds Sa

b = Ω2δab and hence the g-cone and g̃-cone coincide again.) Generally, Sa
b is self-

adjoint with respect to g and thus diagonalizable with real eigenvalues {λi}, so that in a
g-orthonormal basis we have g̃ab = diag(−λ0, λ1, λ2, λ3). (Check again the conformal case:
at a point, ξ̃a will not be parallel to ξa unless all these eigenvalues coincide.) In general,
because the eigenvalues are positive – assuming the two metrics are non-degenerate and have
the same signature – the spectral theorem tells us there is a unique smooth endomorphism
P a

b =
√

g−1g̃ such that Sa
b = P a

nP
n
b. We can now use this to carry back and forth vectors

between the geometries: ξ̃a = (P−1)abξ
b ⇐⇒ ξa = P a

bξ̃
b. By construction g̃abξ̃

aξ̃b =
gab(P ξ̃)a(P ξ̃)b = gabξ

aξb, and ξa is timelike with respect to the new metric g̃ iff g̃abξ
aξb > 0

and thus also gabξ
aSb

cξ
c > 0. Thus, the sign of g̃(ξ, ξ) is determined (pointwise) by the

quadratic form g(Sξ, ξ).

Now let us compute the acceleration of a ∇-geodesic in the new geometry,

ξ̃b∇̃bξ̃
a = ξ̃b∇b((P

−1)acξ
c) + Ca

bcξ̃
bξ̃c

= ξ̃b
[
∇b(P

−1)acξ
c + (P−1)ac���*0

∇bξ
c

]
+ Ca

bcξ̃
bξ̃c

= −ξ̃b
(
(P−1)ad(∇bP

d
e)(P

−1)ec
)
ξc + Ca

bcξ̃
bξ̃c, (6.1)

where the last step is an identity.12 Conversely, let Ca
bc = (P−1)ad∇bP

d
c and check the

acceleration of the curve in the original geometry,

ξb∇bξ
a = ξb∇b

(
P a

dξ̃
d
)

= ξb∇bP
a
dξ̃

d + P a
dξ

b∇bξ̃
d

=
(
Ca

bdP
d
c

)
ξbξ̃c + P a

d

(
−Cd

bcξ
bξc

)
= Ca

bcξ
bξc − Ca

bcξ
bξc = 0, (6.2)

recovering the original g–geodesic equation ξb∇bξ
a = 0.

Despite the relative triviality of the above derivation, making explicit the (1,1)-form
P shows a rather general point about the prospects of denying ¬(CONF) on its own. The
connecting field Ca

bc, which has tensor rank 3, of course measures precisely the deviation of
a g-geodesic from a g̃-geodesic. As W&M observe, it does not resemble a standard force as
demanded by (FORCE). The above, however, shows that it can generally be expressed as
Ca

bc = (P−1)ad∇bP
d
c, from which one sees that in general no simplification is possible: only

when P a
b is a pure scalar multiple of the identity can you collapse that rank-3 object Ca

bc

down to a rank-2 tensor field. That is, if P a
b = Λδab, then

Ca
bc = (P−1)ad∇bP

d
c =

1

Λ
δad∇b

(
Λδdc

)
= δac∂b ln Λ + δab∂c ln Λ, (6.3)

12Starting from P a
d(P

−1)dc = δac and taking the derivative (with respect to ∇) on both sides gives
∇b

(
P a

d(P
−1)dc

)
= (∇bP

a
d)(P

−1)dc + P a
d∇b(P

−1)dc = 0. Now solving for ∇b(P
−1)dc gives ∇b(P

−1)dc =
−(P−1)da(∇bP

a
e)(P

−1)ec.
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so one can write
Ca

bc = δabωc + δacωb, ωb = ∂b ln Λ, (6.4)

such that one can write the geodesic equation

ξ̃b∇̃bξ̃
a = F a

bξ̃
b, F a

b = −2Λ2(ωdξ̃
d)δab, (6.5)

which is manifestly a rank-2 tensor acting on ξ̃b. But this is precisely the conformal case that
we have tried to deny! Thus it seems one cannot satisfy both ¬(CONF) and (FORCE).

6.6. ¬(NORM). In the previous subsection, no normalisation was imposed. Doing so simply

gives g̃abξ̃
aξ̃b = gab(P ξ̃)a(P ξ̃)b = gabξ

aξb = 1. Technically: imposing normalisation does not
shrink the space of allowable maps but simply picks out those vectors on which you evaluate
P a

b. Denying (NORM), i.e. both gabξ
aξb ̸= 1 and g̃abξ̃

aξ̃b ̸= 1, but still setting ξ̃a = (P−1)abξ
b,

the geodesic equation obtains an additional reparametrization term (cf. Carroll 2003, p. 109):
ξ̃b∇̃bξ̃

a = −Ca
bcξ̃

bξ̃c + ξ̃n∇̃n ln(|g̃(ξ̃, ξ̃)|1/2)ξ̃a. This is because ξ̃a no longer has constant unit-
length in g̃, so one should correct for the failure of affinity in the g̃-geometry. This fact is
used by D&BM (2022, p. 156), but I have here given the general case.

Within GR, (NORM) naturally goes hand in hand with (CONF): when the two
spacetimes share the same light-cone structure, one can simply rescale the vectors since they
are already pointing in the same direction. That is, having the conformal relation g̃ab = Ω2gab
gives a simple conformal rescaling for normalised time-like vectors: ξ̃a = Ω−1ξa. Since a
Levi–Civita connection determines its metric only up to an overall constant conformal factor,
if one wants to satisfy (FORCE) one sees that the choice of norm is here not independent
from the choice of scale: without a unit-norm condition one cannot match accelerations across
geometries, and without a fixed conformal class one cannot compare norms.

7. Discussion: conceiving of alternatives through rigorous conventionalism

W&M’s proof of Proposition 2 restricts the possibilities for model underdetermination in GR.
Whether this restriction is significant is in the eye of the beholder. The fact remains that,
under (FORCE), the proof refutes the universality claim that all metrics can be traded
off against each other, but leaves open the existence claim that at least one alternative
metric g̃ may exist for a given g. As such, D&BM’s (ALT-ACC) can still be conjectured to
hold, unless convincing justifications are given for each assumption listed in §2. Indeed, the
responsibility to make things explicit often falls on those who deny underdetermination.

Yet, there is no rich no-go theorem to save (UDT-∀g∀g̃) in GR, for it requires only
two premises: theorem θ and (FORCE). Even without a justification for any of the other
assumptions, the only genuine loophole to save theorem θ is the restriction that the universal
effect should act like a standard force field. The benefit of this constraint is that it affords
mathematical tractability. But indeed, many conventionalists would reject it—by denying
either that universal effects must enter the geodesic equation, or that they must be represented
by rank-2 tensors. Reichenbach likely would have rejected the latter.

Ultimately, W&M’s project is best viewed as distinct from the Reichenbachian one, or
from (anti-)conventionalism proper. They consider the leeway possible between our leading
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theory of gravity and our leading concept of force, all the while keeping the usual coordinative
definitions of GR intact. This is much in the spirit of David Malament:

Philosophers of science have written at great length about the geometric structure
of physical space. But they have devoted their attention primarily to the question
of the epistemic status of our attributions of geometric structure. They have
debated whether our attributions are a priori truths, empirical discoveries, or, in
a special sense, matters of stipulation or convention. It is the goal of this chapter
to explore a quite different issue — the role played by assumptions of spatial
geometry within physical theory [...]. (Malament 1986, p. 405, original emphasis)

Seen in this light, I suggested continuing W&M’s work by interpreting the relativistic proof of
Prop. (2) as the starting point of a research programme, for example through extensions such
as Proposition 3 (§4) and systematically exploring the space that I have begun to classify in
§6. I have given only a handful of examples, but these can be multiplied by casting our net
wider and wider over a space of alternatives, including those that move away from differential
geometry, approaching the unconceived. Indeed, Stanford’s (2010) so-called New Induction
reminds us that our current theory space is unlikely to be exhausted. Constraining this space
allows for a disciplined exploration (quite distinct from our stance on realism). Systematic
rejections of the assumptions to W&M’s proof provide such constraining and thus allow for
a controlled exploration of the formal landscape underlying the titular “Theory of Spacetime
Theories” of (Lehmkuhl, Schiemann, and Scholz 2016): with newly formulated propositions
one can trace routes between charted regions of the space of spacetimes, forming a growing
atlas of alternative relativistic formulations.

A. Proving Proposition 3: generalising to torsionful spacetimes

Proposition 3 in §4 is a genuine generalisation in the sense that it proves that for any tor-
sionful connection, there exists some (non-trivially conformally equivalent) torsionful con-
nection which cannot be related by a force field Fab. To prove it, we take as a starting
point Stuart Jensen’s (2005) Eq. (3.1.28), which is the extension of the ‘difference’ tensor
Ca

bc =
1
2
gan (∇ngbc −∇bgnc −∇cgbn) , when both connections are allowed to be torsionful13

Ca
bc =

1

2
gan (∇ngbc −∇bgnc −∇cgbn −∆T a

bd −∆T a
b d +∆T a

d b) , (A.2)

for the torsion tensor T a
bc, which measures the anti-symmetric part of the associated connec-

tion (in coordinate-language it is given by T ρ
µν := 2Γρ

[µν]), and ∆Tabd the difference between

13The difference tensor relates two connections to each other as they act on a smooth tensor α of arbitrary
rank (Malament 2012, Proposition 1.7.3, p. 51) as:(

∇̃m −∇m

)
αa1...ar

b1...bs = αa1...ar
n...bsC

n
mb1 + ...+ αa1...ar

b1...nC
n
mbs (A.1)

− αn...ar
b1...bsC

a1
mn − ...− αa1...n

b1...bsC
ar

mn.

The standard difference tensor in GR (cf. Malament 2012, p. 78, Eq. 1.9.6) holds only for a metric-compatible
and torsion-free connection, hence note the use of (RIEM-COMP) and (RIEM-SYMM) in Proposition
2; here (RIEM-SYMM) is broken explicitly.
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the torsion tensors associated with ∇ and ∇̃. Let us group the torsion terms together as a
‘generalised contorsion tensor’: 2Kabc := −∆Tabd−∆Tbad+∆Tdab, which reduces to the usual
contorsion tensor if just one of the connections is torsionful and not the other.

Then, taking (CONF), one now takes a non-trivial conformal factor Ω that relates a
new metric g̃ab = Ω2gab of a new geometry to the old one. One can now compute Eq. (A.2)
for this new metric (for upper indices we have g̃cd = Ω2g̃cag̃dbgab = Ω2Ω−4gcd = Ω−2gcd.) we
have

Ca
bc −Ka

bc =
1

2Ω2
gan

[
∇n

(
Ω2gbc

)
−∇b

(
Ω2gnc

)
−∇c

(
Ω2gbn

)]
=

1

2Ω2
gan

(
gbc∇nΩ

2 + Ω2
����:0∇ngbc − gnc∇bΩ

2 − Ω2
����:0∇bgnc − gbn∇cΩ

2 − Ω2
����:0∇cgbn

)
=

1

2Ω2

(
gbcg

an∇nΩ
2 − δ a

c ∇bΩ
2 − δ a

b ∇cΩ
2
)
, (A.3)

where the vanishing terms vanish due to metric compatibility (RIEM-COMP).

As in W&M’s proof, given any smooth timelike curve γ, if ξa is the tangent field to γ
with unit length relative to (the old) gab, then the tangent field to (the same curve) γ with
unit length relative to (the new) metric g̃ab is given by

ξ̃a = Ω−1ξa, (A.4)

which holds due to (NORM): if gabξ
aξb = 1 and g̃abξ̃

aξ̃b = 1 then g̃abξ̃
aξ̃b = gabΩ

2ξ̃aξ̃b = 1.

Then, from Eq. (A.1), we see that the difference tensor acts on a vector as ∇̃mα
a1 =

∇mα
a1 − αnCa1

nm. Now take any geodesic curve of the old connection ∇a, and compute the

acceleration relative to (the new) ∇̃a, which is

ãn := ξ̃n∇̃nξ̃
a = ξ̃n∇nξ̃

a − Ca
nmξ̃

nξ̃m =
ξn

Ω
∇n

ξm

Ω
− Ca

nm

ξn

Ω

ξm

Ω

=
ξn

Ω
∇n

ξm

Ω
+

(
1

2Ω2

(
δ a
m ∇nΩ

2 + δ a
n ∇mΩ

2 − gnmg
ar∇rΩ

2
)
−Ka

nm

)
ξn

Ω

ξm

Ω
,

where Eq. (A.4) and Eq. (A.3) are used in the second and last line, respectively. Performing
the derivatives and bringing terms together,

ξ̃n∇̃nξ̃
a +Ka

nm

ξnξm

Ω2
=

ξn

Ω
∇n

ξm

Ω
+

1

2Ω2

(
δ a
m ∇nΩ

2 + δ a
n ∇mΩ

2 − gnmg
ar∇rΩ

2
) ξn
Ω

ξm

Ω

=
1

Ω2�
����:0

ξn∇nξ
a − 1

Ω3
ξnξa∇nΩ +

2Ω

2Ω4
(δ a

m ∇nΩ + δ a
n ∇mΩ− gnmg

ar∇rΩ) ξ
nξm

= − 1

Ω3
ξnξa∇nΩ +

1

Ω3

(
ξnξa∇nΩ + ξaξm∇mΩ−�����:1

gnmξ
nξm gar∇rΩ

)
=

1

Ω3
(−ξaξn + 2ξaξn − gan)∇nΩ

=
1

Ω3
(ξaξn − gan)∇nΩ, (A.5)

where the vanishing term in the second line is due to being on a geodesic of the old geometry,
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(NORM) is invoked in the third line, and indices are relabelled in the fourth.
Starting from the other side of Proposition 3, assume that a tensor field Fab exists—

with the properties as described in (FORCE). In that case, it would have to balance out the
old geometry (in which there are no forces, since γ is a geodesic) relative to the acceleration
of the new geometry, so that

F a
mξ̃

m = ξ̃n∇̃nξ̃
a. (A.6)

The left-hand side can be rewritten as

F a
mξ̃

m =
1

Ω
F a

mξ
m =

1

Ω
g̃anFnmξ

m, (A.7)

while the right-hand side of Eq. (A.6) is known, for it is given by Eq. (A.5):

g̃anFnmξ
m =

1

Ω2
(ξaξn − gan)∇nΩ +

1

Ω
Ka

nmξ
nξm, (A.8)

and this holds for any smooth timelike tangent vector ξa at any point p, for Fab is a tensor.
Now a proof by contradiction. Pick any point p on the curve, and choose at that point

two arbitrary distinct timelike vectors µa and ηa and their superposed vector ζa = α (µa + ηa),
renormalised by the scalar α to be unit length relative to (the old) gab. The idea is that
Eq. (A.8) applies to both µa and ηa individually as well as to ζa directly, after which the
results can be set equal to each other. Thus,

g̃anFnmζ
m = α (g̃anFnmµ

m + g̃anFnmη
m)

=
α

Ω2
(µaµn − gan)∇nΩ +

α

Ω2
(ηaηn − gan)∇nΩ +

α

Ω
(µnµm + ηnηm)Ka

nm

=
α

Ω2
(µaµn + ηaηn − 2gan)∇nΩ +

α

Ω
(µnµm + ηnηm)Ka

nm, (A.9)

and applying Eq. (A.8) to ζa directly and then using its definition, we have

g̃anFnmζ
m =

1

Ω2
(ζaζn − gan)∇nΩ +

α2

Ω
ζnζmKa

nm

=
α2

Ω2

(
µaµn + µaηn + ηaµn + ηaηn − α−2gan

)
∇nΩ

+
α2

Ω
(µnµm + µnηm + ηnµm + ηnηm)Ka

nm. (A.10)

After equating Eqs. (A.9) and (A.10), and rearranging so as to isolate the metric, we finally
obtain (

2α− 1

α

)
gan∇nΩ = [(1− α) (µaµn + ηaηn)− µaηn − ηaµn]∇nΩ

+ Ω [(1− α) (µnµm + ηnηm)− µnηm − ηnµm]Ka
nm (A.11)

But this is logically inconsistent: the left-hand side is a vector independent of µa and ηa,
whereas µa and ηa are arbitrary vectors. Thus Proposition 3 is true: also in the torsionful
case, there is no tensor field Fab that can everywhere relate the geodesics of ∇ and ∇̃.
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