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Abstract

We present a thought experiment extending Einstein’s “reference mollusk” to explore operational

realizations of coordinate systems in general relativity. Observers carrying four independently

programmable clock-like devices assign numerical labels to events, constructing coordinate charts

without the structural constraints of mollusk-type frames. This approach decouples coordinate

assignment from both motion and geometry, enabling the representation of arbitrary charts.

The framework offers pedagogical clarity: coordinate freedom appears as the capacity to freely

program clocks, subject only to the (pre-deployment) programming condition that their collective

readings fulfill the minimum mathematical properties required of all charts (in particular smooth-

ness). Following the logical structure of differential geometry, charts precede metric determination,

which arises from comparing displayed values with measurements in local inertial frames.

We emphasize two key aspects. First, any smooth observer congruence suffices to construct

every valid coordinate chart, generalizing Einstein’s construction. Second, and more strongly,

a single congruence suffices to simultaneously also represent any other chart: by corresponding

programming of displays, observers following fixed timelike worldlines can display multiple charts

(if more than four numbers are displayed), and emulate also any smooth coordinate transformation,

including displaying charts with null coordinate directions in the spacetime in which the swarm

is deployed. The timelike motion of the observers is only required to fulfill the task of covering a

spacetime region, but does not restrict the freedom of programming.

Keywords: operational reference frames, programmable clocks, observer swarm, general co-

variance, diffeomorphism invariance, spacetime individuation, gauge symmetry, scalar field de-

parametrization
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I. INTRODUCTION

The general theory of relativity permits arbitrary smooth coordinate systems, reflect-

ing its diffeomorphism invariance and the absence of fixed background geometric struc-

tures. This mathematical freedom raises conceptual questions: which coordinate systems

possess empirical significance, and how can their physical meaning be understood? The

hole argument, originally formulated by Einstein in 1913, initially led him to reject general

covariance due to concerns about underdetermination—the worry that the field equations

might not uniquely specify the metric even given all physical boundary conditions. Only

later did he recognize that diffeomorphically related models represent the same physical

situation, thereby resolving this apparent failure of unique determination1,2. On this under-

standing, coordinate values lack intrinsic physical meaning; what matters empirically are

coincidences—intersections of worldlines, measurement events, and localized interactions.

General covariance allows the use of any smooth coordinate chart, and practical modeling

in relativity exploits this freedom. Yet the relationship between mathematical coordinate

freedom and physical reference frames remains a source of conceptual tension. While physi-

cists routinely employ coordinate systems for calculations and predictions, the operational

meaning of such systems continues to generate philosophical discussion.

This paper presents a thought experiment that may help clarify these issues by exploring

how arbitrary coordinate charts could, in principle, be operationally instantiated. Following

Einstein’s tradition of the “reference mollusk”3—itself an idealized construction meant to

illustrate coordinate generality—we consider reference frames constructed from swarms of

local observers, each equipped with four independently programmable clock-like devices.

These devices assign numerical labels to locally encountered events, enabling the swarm to

realize any smooth coordinate chart within its coverage region.60

This construction extends Einstein’s mollusk metaphor while sharing its status as a con-

ceptual tool rather than a practical proposal. Just as the mollusk clarified how non-rigid

reference frames could be conceived without requiring actual mollusks, and just as dust-based

scalar field models illuminate gauge-fixing without requiring actual dust distributions, our

framework aims to clarify the operational meaning of coordinate freedom without proposing

literal implementation.
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The thought experiment offers several conceptual insights. It illustrates how coordinate

charts could be understood as arising from programmable labeling conventions rather than

geometric structures. It provides a concrete visualization of how general covariance might

be interpreted operationally: coordinate freedom becomes the conceptual capacity to pro-

gram clocks, while diffeomorphism invariance is mirrored by the ability to reprogram them

equivalently. This perspective may offer pedagogical value in teaching general relativity and

could inform discussions about the interpretation of gauge redundancy.

Additionally, since programmable clocks can, in principle, emulate arbitrary scalar field

profiles, the framework suggests viewing scalar fields used in deparametrization schemes as

pragmatic modeling tools rather than fundamental structures. This perspective comple-

ments existing approaches while highlighting their conventional aspects.

Like other thought experiments in the foundations of physics, this construction is not

intended as a blueprint for actual implementation. Rather, it serves to clarify conceptual

relationships and provide an intuitive framework for understanding the interplay between

mathematical formalism and operational thinking in general relativity.

Outline of the paper

The paper is organized as follows. Section II reviews previous approaches to understand-

ing reference frames in general relativity, including mollusk-like constructions, scalar-field-

based methods, and observer-based frameworks, while noting connections to philosophical

and pedagogical discussions. Section III briefly recalls operational reference frames in special

relativity as context for the general framework. Section IVA revisits Einstein’s reference

mollusk, which motivates the thought experiment presented in Section IVB: a conceptual

framework where observers carry four programmable clock-like devices to assign coordinate

values along their worldlines. This construction explores how arbitrary coordinate charts

might be operationally understood without requiring specific foliations or coordinate split-

tings. The framework is developed to include coordinate transformations and considerations

for metric determination (Section IVC). Section IVD discusses conceptual issues including

the meaning of programmability in deterministic theories. The appendices examine specific

aspects of the construction. Appendix A analyzes mollusk-type reference frames and their

limitations. Appendix B provides illustrative examples, showing how the proposed four pro-

grammable clocks per observer in an observer congruence can avoid such limitations and

instantiate every smooth chart.
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II. BACKGROUND AND PRIOR WORK

A. Mollusk-like reference frames

Einstein’s mollusk provides a pedagogical metaphor for understanding deformable coor-

dinate systems in curved spacetime. However, mollusk-adapted coordinates rely on a slicing

into spatial hypersurfaces, with comoving observers carrying fixed spatial labels and a single

arbitrarily advancing clock. Similar constructions have appeared throughout the literature,

though often without explicit reference to Einstein’s original conception.

Norton2 surveys physical reference frames including a space-filling family of clocks that

carry “three smoothly assigned indices (functioning as spatial coordinates), while requir-

ing that the clocks tick smoothly—though not necessarily in proper time—and that time

readings vary smoothly across neighboring clocks”.

Rovelli5 presents a similar model, introducing a “cloud” of particles labeled by a three-

dimensional continuum index y⃗, with one clock per particle. As he notes, “Having matter

elements distinguished by ‘names’ is, in a sense, the peculiar property of any reference

system: think, for instance, of a rod and its ticks with numbers.”

These constructions share a common feature: while each observer carries a time param-

eter, spatial coordinates remain tied to fixed labels that identify entire worldlines rather

than individual spacetime points. The present work explores what happens when these

fixed spatial labels are replaced by programmable values that can vary along each worldline.

By equipping each observer with four programmable clock-like devices instead of one, we

obtain a thought experiment that can, in principle, instantiate arbitrary coordinate values

at each point along the worldlines. This appears to be a natural extension that has not been

previously explored in the literature.

B. Fields defining reference frames

The use of four programmable devices per observer differs from approaches that derive

coordinate systems from dynamical scalar fields. Understanding this distinction may help

clarify both approaches.

Bergmann and Komar7,8 introduced curvature-invariant scalars to define spacetime points

intrinsically, with subsequent canonical formulations by others9,10. These constructions face
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technical challenges: ensuring that curvature-based scalars yield smooth, invertible coordi-

nate charts requires addressing potential degeneracies and singularities.

Other approaches introduce dynamically independent scalar fields. Brown and Kuchař’s

dust models14 employ one timelike and three spacelike scalar fields tied to pressureless dust,

later extended to null dust15. Giesel and Thiemann16 develop sophisticated deparametriza-

tion schemes using such models to construct gauge-invariant observables in canonical gravity.

Tambornino17 reviews these approaches comprehensively.

Additional examples include Klein-Gordon fields for reference frames11, macroscopic

scalar field coincidences12, and explicitly operational frameworks13.

A technical point worth noting: while scalar fields can define local charts when gra-

dients are linearly independent, ensuring injectivity over finite regions requires additional

conditions rarely verified in practice. The literature typically relies on local Jacobian con-

ditions without addressing global invertibility, leaving the validity of scalar-field charts over

extended domains as an open technical question.

The programmable clock approach sidesteps these issues by design. Since clock values

are freely assignable rather than dynamically determined, questions of injectivity or criti-

cal points do not arise in the same way. Moreover, programmed values can emulate any

scalar field behavior if desired, potentially suggesting simplified scalar field constructions

tailored for specific technical purposes. This flexibility might be particularly relevant for

deparametrization schemes in canonical quantum gravity, where scalar fields are often in-

troduced primarily for their technical utility in addressing the problem of time.

C. Other Observer-Based Approaches

Several recent developments share an observer-centric perspective, each with distinct

methodologies and goals.

Geometric Observer Space: Gielen and Wise18 reformulate general relativity using the

seven-dimensional observer space (unit future-directed timelike tangent bundle), equipped

with Cartan geometry. While mathematically elegant, this approach operates at a different

conceptual level than the present thought experiment, which focuses on how coordinate

values might be operationally assigned by physical devices.
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Observer-Based Decompositions: Bini and colleagues19 develop 1+3 and 1+1+2 splittings

of Einstein’s equations relative to timelike congruences. These methods, while valuable for

calculations, presuppose a given metric structure. The present framework instead explores

how coordinate systems might be established prior to metric determination, following the

standard logical sequence of differential geometry.

Relativistic Positioning Systems: The RPS program by Coll and collaborators20 assigns co-

ordinates via proper times broadcast by moving emitters, proceeding independently of back-

ground metrics. Rovelli21 employs similar GPS-inspired constructions for defining relational

observables in canonical gravity. Real GPS systems22 demonstrate practical implementation,

while recent work explores metric reconstruction from signal data23. These signal-based ap-

proaches offer material economy but are optimized for receivers actively determining their

position. The observer-swarm thought experiment instead imagines dense local recording of

arbitrary events, providing conceptual clarity at the cost of requiring extensive (idealized)

deployment.

D. Causal Reconstruction and the Role of Charts

Spacetime geometry can, in principle, be reconstructed from causal structure without

coordinate charts24–26,28,29. However, this chart-free reconstruction does not extend to matter

fields, which in current theoretical frameworks require coordinate representations for their

description. The programmable clock framework offers one perspective on this situation:

it provides a thought experiment for how arbitrary charts might be operationally realized,

potentially useful when considering both geometric and matter field descriptions.

E. Gauge-Invariance and Reference Frames

The hole argument and related discussions2,31–34 emphasize that coordinate values lack

intrinsic physical meaning unless grounded in operational procedures. The programmable

clock framework offers a concrete thought experiment for understanding this point: coordi-

nate freedom can be visualized as the freedom to program clocks, while gauge equivalence

corresponds to different programming choices yielding the same physical content.

This perspective does not resolve foundational debates but may provide a useful mental
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model for understanding the operational meaning of diffeomorphism invariance.

F. Relation to Spacetime Discussions

While this framework touches on issues discussed in spacetime philosophy28,32,35,36, it

makes no claims about spacetime ontology. Instead, it offers a thought experiment for how

coordinate systems might be operationally understood, remaining neutral on deeper meta-

physical questions. The framework simply explores one way to think about the relationship

between mathematical coordinate freedom and potential physical realization, without claim-

ing this relationship has ontological significance.

G. Reference frames as pedagogical tools

From a pedagogical perspective, this thought experiment follows the operational tradi-

tion of Bridgman and Reichenbach37,38, who emphasized that physical concepts gain clarity

through consideration of measurement procedures. Standard textbooks on general relativity

typically begin by noting that global inertial frames cannot be extended to curved space-

times, motivating the introduction of curvilinear coordinates and pseudo-Riemannian geom-

etry39–41. However, such treatments rarely explore how general coordinate systems might

be operationally understood, leaving students to work with abstract formalism without a

concrete picture connecting coordinates to potential measurements.

The textbook Gravitation42 motivates coordinate systems through their capacity to label

events in orderly fashion. While conceptually sound, this approach may not distinguish

between mathematical labeling conventions and physical measurement procedures. The

programmable clock framework offers one way to visualize this distinction: coordinate labels

could be understood as arising from programmable device readings, while physical relations

like proper time intervals and causal connections remain independently measurable.

Actual experimental reference systems involve technical complexities unsuitable for in-

troductory exposition. The observer-swarm thought experiment provides a middle ground:

it is simple enough to visualize, general enough to illustrate arbitrary coordinate systems,

and transparent enough to clarify the conceptual relationship between observer readings and

coordinate assignments.
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III. SPECIAL RELATIVITY’S REFERENCE FRAMES

To prepare for general relativity, we begin by revisiting and slightly reframing the con-

struction of physical reference frames in special relativity (SR). The foundational princi-

ple—shared by all relativistic theories—is that only local coincidences of events can be

assigned physically unique meaning. This locality principle therefore also serves as the op-

erational starting point for the formulation of reference frames.

Consequently, even in special relativity, an “observer” must not be understood as a single

pointlike abstraction, but rather as a swarm of local observers, each equipped with measuring

devices and capable of recording only those events that occur in their immediate vicinity.

A spacetime diagram, then, represents an operational construct: the aggregate record of

all localized measurements gathered by these assistant observers, who conceptually fill the

spacetime region of interest. Each local device assigns coordinate values—its own clock

reading and spatial position—to the events it registers. The diagram emerges only by

conceptually collecting and assembling these local records into a coherent global account.

Mathematically, these coordinates are typically denoted by xµ with µ = 0, 1, 2, 3, so that

a spacetime event is labeled by x = (x0, x1, x2, x3). The temporal coordinate is given by

x0 ≡ ct̄, where c is the speed of light and t̄ is the local clock reading. The spatial coordinates

are written as (x1, x2, x3) ≡ x̄.

Some introductory texts visually depict such a reference frame as a regular three-

dimensional lattice, composed of idealized measuring rods and regularly placed idealized and

synchronized clocks43,44. These constructions are designed to illustrate the operational as-

sumptions of inertial frames in SR—such as the Euclidean geometry of space, idealized rods

and clocks, global clock synchronization, and the idealization of zero spacetime separation

between the event and its recording observer.

An equivalent and more locality-focused depiction is shown in Fig. 1. Here, spacetime

events are assigned coordinates by a distributed network of observers, each using their lo-

cally maintained synchronized clocks and pre-established positions relative to others. When

needed, spatial alignment across the network can be re-calibrated by activating orthogonal

laser pulses, which form a transient coordinate grid. This operational picture emphasizes

that it is the observers—and not the coordinate mesh—that serve as the physical basis of

the reference frame.
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FIG. 1. A special relativistic reference frame depicted from an operational perspective.

Once established, a reference frame enables the measurement of spatial distances, time in-

tervals, and kinematic quantities by combining purely local observations of events, even when

those events are spatially and/or temporally separated. For instance, measuring the length

of a small rod—whether it is at rest or moving uniformly relative to the frame—requires

identifying two events that are simultaneous within the frame but occur at different loca-

tions: one recorded by the observer who happens to be positioned at one end of the rod at

an agreed time, and the other by a second observer located at the opposite end at that same

agreed time. Both observers rely on their synchronized clocks to ensure simultaneity within

the frame. The length of the rod is then computed as the Euclidean distance between the

spatial positions of the two observers at that moment.

The configuration of free-floating observers shown in Fig. 1 naturally generalizes to mul-

tiple overlapping inertial reference frames, such as frame A (Alice) and frame B (Bob),

covering the same region of spacetime. Each frame is constructed independently, using only

9



its own network of observers, synchronized clocks, and internal measurement protocols.

As a result, any given spacetime event can be assigned two sets of coordinates—x and

x̃—depending on which frame’s observers perform the local assignment. Because the two

networks are coextensive, observers in one frame can also access the measurements made by

their local counterparts in the other. This operational comparison allows one to empirically

determine a transformation function:

x̃ = ΛA→B(x). (1)

A striking empirical result would be obtained when performing this experiment: when two

inertial frames A and B are constructed independently—each relying solely on its own local

observers and synchronization protocol—the form of the transformation ΛA→B turns out not

to be Galilean, as would be expected in Newtonian mechanics. Instead, it corresponds to

a Lorentz transformation (up to translations), in accordance with the Poincaré symmetry

that preserves the form of Maxwell’s equations. This result is theoretically equivalent to the

constancy of the speed of light as measured in any inertial reference frame — the principle

originally postulated by Einstein and used to derive the Lorentz transformation. In modern

terms, this invariance is understood as the Poincaré invariance of special relativity: the

spacetime interval between any two events remains the same in all inertial frames.

Expressing the Poincaré transformation in component form in Einstein notation as

x̃µ = Λµ
νx

ν + oµ, (2)

where the constant four-vector oµ accounts for arbitrary (but physically irrelevant) offsets

in spacetime origins between frames, and introducing the invariant Minkowski metric tensor

ηµν = diag(−1,+1,+1,+1), (3)

the invariance of the infinitesimal spacetime interval ds2 is expressed as

ds2 = ηµν dx
µdxν = ηµν dx̃

µdx̃ν . (4)

These equations involve only the differences in spacetime coordinates between events, and

as discussed above, such differences can be determined through purely local measurements

within each reference frame, using synchronized clocks and known spatial positions. Conse-

quently, the value of the invariant spacetime interval is directly computable from physically

measurable quantities in either frame. The presented construction of SR reference frames is

conceptual, but also approximately realized by particle detectors in collider experiments.
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IV. GENERAL RELATIVITY’S REFERENCE FRAMES

Introductory treatments of general relativity typically emphasize that globally inertial ref-

erence frames, as defined in special relativity, cannot be extended to generic curved space-

times. This motivates the transition to curvilinear coordinates, the adoption of general

covariance, and the use of the formalism of pseudo-Riemannian differential geometry. Yet,

during this transition, the analogy between physically realizable reference systems and their

mathematical counterparts often remains conceptually incomplete.

Only part of this analogy is typically developed. The equivalence principle establishes a

local correspondence between a freely falling physical reference frame—realized, for instance,

by idealized observers equipped with mutually orthogonal measuring rods and synchronized

clocks for temporal measurement—and the mathematical notion of a locally flat infinitesimal

part of a curved manifold M, formalized as the tangent space TpM at a point p ∈ M. How-

ever, no corresponding operational framework is typically provided for constructing general

finite coordinate charts on the manifold. The extension from infinitesimal inertial frames to

arbitrary curvilinear coordinates is usually carried out purely in the abstract, without offer-

ing concrete procedures that could be implemented by individual observers using only local

measurement processes. Pedagogical analogies—when offered—frequently appeal to carto-

graphic projections, such as mapping Earth’s surface, but these remain disconnected from

the question of how general reference frames might be physically realized in spacetime. The

step needed to complete the analogy—constructing arbitrary reference frames based solely

on the data physically accessible to observers operating independently—is often omitted, or

substituted with technically elaborate formalisms.

As a result, the connection between arbitrary coordinate systems defined over finite re-

gions of curved spacetimes and their operational construction remains underexplained and

continues to call for more accessible and physically grounded introductions.

Even a textbook as conceptually thorough as Gravitation42 exemplifies this broader trend.

It begins its treatment of coordinates (pp. 5–10) with a vivid physical description of events

as intersections of worldlines and physical interactions. The introduction of coordinates

is explicitly delayed until events have been described physically. However, the transition

to coordinate systems is then carried out in purely mathematical terms: Coordinates are

introduced as abstract ordering devices applied post hoc to an idealized event structure:
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Nothing is more distressing on first contact with the idea of “curved spacetime”

than the fear that every simple means of measurement has lost its power in this

unfamiliar context. [...] No numbers. No coordinate system. No coordinates.

[...] To order events, introduce coordinates! [...] Coordinates are four indexed

numbers per event in spacetime. [...] In christening events with coordinates, one

demands smoothness but foregoes every thought of mensuration.

For some students, such remarks may be reassuring enough to allay the acknowledged

“fear that every simple means of measurement has lost its power.” Still, from an operational

perspective, the lack of an explicit physical construction linking coordinate labels to mea-

surable quantities may obscure the logical continuity between SR and GR. Since Einstein’s

mollusk (and in particular its generalization introduced below) offers a direct and conceptu-

ally smooth transition from operational SR frames to their GR counterparts, for others the

absence of this construction might amount to a missed opportunity for conceptual clarity.

In what follows, we demonstrate how the extension from SR to GR reference frames can

proceed continuously and transparently, requiring only a few well-motivated generalizations.

A. The Einstein Mollusk

As previously mentioned, the first popular exposition of general relativity3 was written

by Einstein himself, who did not shy away from introducing the vivid operational image of

a physical “reference mollusk”:

What does it mean to assign to an event the particular co-ordinates x1, x2, x3, x4,

if in themselves these co-ordinates have no significance? More careful consider-

ation shows, however, that this anxiety is unfounded [...] For this reason non-

rigid reference-bodies are used, which are as a whole not only moving in any way

whatsoever, but which also suffer alterations in form ad lib. during their motion.

Clocks, for which the law of motion is of any kind, however irregular, serve for

the definition of time. We have to imagine each of these clocks fixed at a point

on the non-rigid reference-body. These clocks satisfy only the one condition, that

the “readings” which are observed simultaneously on adjacent clocks (in space)

differ from each other by an indefinitely small amount. This non-rigid reference-

body, which might appropriately be termed a “reference-mollusk”, is in the main

12



equivalent to a Gaussian four-dimensional co-ordinate system chosen arbitrar-

ily. That which gives the “mollusk” a certain comprehensibility as compared with

the Gauss co-ordinate system is the (really unjustified) formal retention of the

separate existence of the space co-ordinates as opposed to the time co-ordinate.

Every point on the mollusk is treated as a space-point, and every material point

which is at rest relatively to it as at rest, so long as the mollusk is considered as

reference-body. The general principle of relativity requires that all these mollusks

can be used as reference-bodies with equal right and equal success in the formula-

tion of the general laws of nature; the laws themselves must be quite independent

of the choice of mollusk.

A visual representation of this idea is shown in Fig. 2 which attempts to capture the

mollusk metaphor using a nested-surface visualization, or the top-surface of a dough, but the

physical framework is not tied to any particular visualization of physical three-dimensional

space. The mollusk and its associated clock-carrying observers cover a (possibly infinite)

spatial (sub-)set of R3. This suffices for the operational definition of the spatial labels63.

The mollusk generalizes the spatial lattice of special relativity to a flexible reference

structure. Local observers, each equipped with a clock that may run non-uniformly, are

distributed across spatial coordinates that are allowed to warp arbitrarily. These coordinates

define a continuous network of physically distinguishable events without relying on global

synchronization or idealized rulers. The mollusk as a whole may also evolve in time, with

the shape of each surface changing and clocks ticking at locally arbitrary rates — it is,

metaphorically speaking, “alive and kicking.”64

It is worth emphasizing how fundamentally Einstein’s account anchors coordinate mean-

ing in physical reference systems. In his explanation, even a complete specification of events

does not yield coordinate values unless those events are situated relative to some other phys-

ical entity acting as a reference frame. This relational view may seem trivial, but it is easily

overlooked when no attempt is made to operationalize general relativistic coordinates. The

risk is particularly pronounced in coordinate-free formulations, where the absence of explicit

charting procedures can obscure the empirically indispensable link between mathematical

structure and observable quantities.
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FIG. 2. One spatial surface of an Einstein mollusk, representing a local physical reference frame.

Observers with arbitrarily varying clocks are positioned along nonlinearly deformed spatial co-

ordinates. The surface is one of many spatial layers that, together, define a deformable three-

dimensional reference structure. The entire mollusk may change its shape over time.

Since we are interested in physically realizable reference frames, and because the entire

spacetime manifold M can be covered by a countable collection of overlapping (open) sets

U ⊂ M, we may approximately represent each of those regions in which spacetime is probed

by a distinct physical mollusk — that is, by a distinct deformable reference frame constructed

from comoving observers equipped with local clocks and measuring devices65. If mollusks are

defined on multiple overlapping regions, their respective coordinate labels must be defined

so as to ensure mutual consistency.

A mollusk-adapted coordinate system within U is then given by the coordinate functions

(x0, x1, x2, x3) := (λ(τ, x1, x2, x3), x1, x2, x3), (5)
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where each co-moving observer remains at fixed spatial coordinates xi, with i = 1, 2, 3,

relative to the arbitrarily moving mollusk, while the local clock shows λ, which increases

monotonically with the observer’s proper time τ . These functions define a smooth local

coordinate chart on spacetime, i.e., a local diffeomorphism from R4 to U .

However, it is important to distinguish between the mathematical existence of arbitrary

local charts—guaranteed by the manifold structure of spacetime—and the construction of

such charts via physical procedures. Material reference frames are constrained by their

material nature and have to be erected in actual spacetime geometries. These factors may

affect whether they can reproduce all mathematically admissible charts. The mollusk can

only realize mollusk-adapted coordinates given the actual Lorentzian spacetime in which

it happens to find itself. It is important to recognize that a mollusk is thus not merely a

physical realization of an abstract coordinate chart, but a realization that is structurally

constrained by its mode of implementation in a spacetime. A mollusk-adapted chart is more

than a smooth diffeomorphism from R4 to a spacetime region U : it is a chart with built-

in metric constraints. Specifically, the coordinate direction associated with x0 = λ(τ, xi)

must be timelike, while the spatial directions associated with xi must be spacelike within

the mollusk’s domain. This restriction is inherited from the mollusk’s realization by a

congruence of comoving timelike observers, each with a single clock and fixed spatial label.

As a consequence, the mollusk does not enjoy general covariance, as revealed by asking:

can the mollusk instantiate any admissible mathematical chart? Importantly, we are not

asking whether a mollusk-adapted chart can be transformed into any other chart via co-

ordinate change; rather, we ask whether it can directly represent arbitrary charts through

its physical construction. The answer is negative: irrespective of the geometry of the spe-

cific spacetime in which the mollusk is physically realized, the mollusk can never instantiate

coordinate systems that require null directions, as found in (double-)null charts. In such

cases, there is no way to associate the required coordinate structure with the mollusk’s single

timelike direction and its fixed spatial labeling (for details, and the mollusk’s relationship

to the ADM decomposition, see Appendix A).

This limitation reveals a deeper insight: physically implemented coordinate charts typ-

ically carry not only a smooth labeling of events, but also structural constraints inherited

from the physical systems that realize them.
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B. The reference swarm of unconstrained observers

To overcome this, and to locally realize any chart—regardless of its causal or foliation

structure—we require a physical system in which the coordinate labels are decoupled from

both spacetime geometry and observer motion. This is precisely what the generalized ob-

server swarm provides: each observer carries four freely and independently programmable

clock readings, which serve purely as dynamic numerical labels. These can be chosen to

reflect any smooth chart on spacetime, without implying anything about the causal or geo-

metric structure of the observer’s worldline66. The role of the observers’ timelike worldlines

is merely to create a congruence which ensures that spacetime is locally covered by mea-

surement devices; once this coverage is achieved, the freely programmable clocks can assign

arbitrary coordinate values to any point in spacetime. Each observer’s clocks can be freely

programmed to advance according to any smooth function of their proper time or local

measurements67. In this way, the observer swarm serves both as a conceptual tool and a

physically realizable construction (at least in principle): a congruence of observers locally

provides any chart and is free from geometric constraints.

We may arrive at the same insight from a slightly different point of view. Building on our

earlier shift in special relativity—from an idealized lattice to a distributed network of local

observers (as depicted in Fig. 1)—we now complete this progression by shifting attention

away from coordinate labels derived from spatial slices. Instead, we regard the observers

themselves—and, in particular, the information they locally assign—as the primary carriers

of coordinate structure. Specifically, we propose eliminating all ties to fixed spatial coor-

dinate values by implementing a general physical reference frame in general relativity as a

swarm of local observers in motion, each equipped with four independent and arbitrarily

evolving clocks (replacing any constant readings or fixed spatial positions). The readings

of these clocks provide smooth, unique, but otherwise arbitrary numerical labels to events

observed in the neighborhood of each observer (i.e. conceptually infinitesimal neighborhood

in which the assumed chart smoothness allows the observers to distinguish which neighbors

are closer: they show more similar numerical values). Together, they define a general local

coordinate system—unrestricted by any geometric structure or synchronization constraints.

This contrasts with, for example, ADM-like formulations based on global spacelike foliations

and with tetrad-based approaches tied to orthonormal bases.
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FIG. 3. A swarm, flock or cloud of observers in motion fills spacetime without relying on any

foliation. Each observer locally records observed events in a notebook and uses four arbitrarily

evolving numerical labels to index them— for instance, as displayed on a single device. These values

define general local coordinates in a covariant, slicing-independent framework (smooth chart).

While we summarize the construction as involving four arbitrary clock values per observer,

in practice a single physical clock—such as an atomic timekeeping device—suffices. The four

coordinate values can then be algorithmically generated as functions of this single internal

clock reading, and/or additionally or exclusively depending also on local measurements of

physical fields. The reference to arbitrary clocks should emphasize the dynamic nature

of the displayed values, not imply four different time-keeping mechanisms. Regardless of

the underlying mechanism67, the key requirement is that the displayed coordinate values

evolve freely and independently of external physical dynamics, ensuring the strict decoupling

between the possibilities for coordinate assignment and physical behavior in an ambient

spacetime. For pedagogical concreteness, we may imagine that the four continuously updated

clock readings are displayed on a single device—such as a smartphone screen—carried by

each observer, as depicted in Fig. 3. The proposed generalization thus yields an operational

realization of a reference frame that respects general covariance. It introduces no additional

structure beyond the smooth invertibility of the observer-assigned labels and makes no
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assumptions about slicing, symmetries, or background geometry. Indeed, it remains agnostic

even to spacetime dimensionality (if more or fewer than four numbers are displayed).

Moreover, since the numerical displays of the observers are entirely unconstrained —

evolving arbitrarily in both space and time — the framework naturally accommodates the

mathematical structure of an arbitrary atlas on a smooth manifold. The local continuity

of the four numbers ensures that overlapping neighborhoods can collectively form a smooth

cover of spacetime in which chart transitions are realized algorithmically through the con-

sistent labeling of events in intersecting regions.

Let M be a smooth 4-dimensional Lorentzian manifold, and let U ⊂ M be a neighbor-

hood in which we implement our physical reference frame. We define a local congruence

of timelike worldlines via a smooth, future-directed, unit timelike vector field uµ(x). The

integral curves of uµ then define the worldlines of the observers. We keep U sufficiently

small, and the density of observers sufficiently low, so as to neglect back-reaction on the

ambient geometry and to exclude both self-gravitational effects and caustics.

Let now x(τ) denote the worldline of one observer in U , parametrized by a scalar pa-

rameter τ denoting the proper time of the observer, as measured by a (fifth) clock that

is no longer arbitrary (e.g., an atomic clock). Associated with the congruence of observer

worldlines, we introduce four functions Xµ(x), interpreted as the numerical values assigned

to events by local observers—that is, the arbitrary clock readings or algorithmically defined

numbers displayed on each observer’s screen. This setup is analogous to the situation in

fluid mechanics: the observer worldlines correspond to the Lagrangian viewpoint, while the

quadruples Xµ(x) reflect an Eulerian description.

For the following, the Eulerian description Xµ(x) is preferred because the mapping

X : x 7→
(
X0(x), X1(x), X2(x), X3(x)

)
(6)

can define a physically realized coordinate chart on the region U ⊂ M, mapping events

to coordinate tuples in R4, provided the Jacobian matrix ∂Xµ/∂xν is invertible. It is im-

portant to stress that the functions Xµ(x) are smooth, real-valued assignments made by

observers. They are neither scalar fields nor components of a vector field in the tensorial

sense. They do not transform covariantly under diffeomorphisms and carry no intrinsic

geometric meaning beyond their operational role in providing general arbitrary labels for

events. We intentionally use Greek superscripts for both the abstract manifold coordinates
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xµ and the arbitrary observer-assigned functions Xµ, with µ = 0, 1, 2, 3, to highlight their

respective roles as abstract and observable coordinates. The use of a capital X emphasizes

the operational origin — a reference frame realized physically by measurement procedures.

This distinction, while useful here, may be safely omitted in what follows, since any mathe-

matical coordinate chart x defined on a region U ⊂ M—for instance, one used in solving the

Einstein field equations—can now be trivially realized on the observers’ screens by choosing

the observable coordinates Xµ(x) to coincide with the abstract coordinates:

Xµ(x) := xµ.

We are allowed to use any assignment and choose Xµ(x) := xµ without any loss in gen-

erality since already our choice of chart coordinate values xµ is completely unconstrained.

Therefore this construction reflects a central feature of the observer swarm: the coordi-

nate values carried by each observer need not correspond to physically intrinsic quantities.

Rather, these values can be freely assigned and algorithmically updated, enabling observers

to carry abstract coordinate labels that encode structures not directly tied to their own local

state and the realization of coordinate systems not adapted to the underlying timelike con-

gruence—including null foliations or even coordinate charts with formal singularities. The

roles of the observers are thus cleanly separated: they must be present throughout the region

U in order to record everything that happens, but the coordinate values they carry are not

restricted by their motion. In this respect, the observers are best understood as carriers of

programmable labels which implement the chosen chart, which can be conceptually realized

irrespective of the details of the local dynamics of the observers themselves.

Even after selecting chart coordinates xµ and identifying Xµ(x) := xµ, we retain freedom

in specifying the observer motion uµ(x) through the choice of initial conditions.

Of course, once these design choices have been fixed, the resulting quantities must satisfy

certain consistency conditions. In particular, since the clock readings Xµ(x) are defined

operationally by clocks carried by moving observers, their evolution along each worldline

must satisfy the mathematical identity dXµ

dτ
= uν∂νX

µ. Our identification Xµ := xµ yields

∂νX
µ = δµν , and the expression therefore simplifies to

dXµ

dτ
= uµ.

This relation is not a physical constraint. It reflects the bookkeeping requirement underlying

the programming of each observer’s clocks if they should keep their readings in synchronicity
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with freely assigned coordinate values xµ as the swarm moves through spacetime. The

construction is illustrated in a few concrete examples given in Appendix B.

As for examples, any timelike congruence in the GR literature can be interpreted as an

observer swarm by viewing the coordinate evolution uµ(x) along worldlines as programmed

labels rather than dynamically determined values. For instance, the standard congruence of

radially infalling observers in Schwarzschild spacetime, which naturally implements Painlevé-

Gullstrand coordinates, becomes an example of our framework when the coordinate values

are understood as programmable clock displays (cf. Appendix B). This reinterpretation ap-

plies to any coordinate system realized by observer congruences in the literature: Lemâıtre

coordinates, Gaussian normal coordinates, or even exotic constructions—all become exam-

ples of programmable clock displays.

Every diffeomorphism between two coordinate systems, x 7→ x̃(x) now corresponds in the

operational setting to a transformation between two physically realized coordinate systems:

X̃µ(X) = x̃µ
(
x(X)

)
, (7)

where x(X) is the inverse of the physically realized chart X : x 7→ X(x), and X̃µ denotes

the new observer-assigned coordinates. This shows that diffeomorphisms appear as trans-

formations between observable coordinate assignments, and that any mathematical chart

or coordinate transformation can be physically realized by a suitably constructed swarm of

observers and their associated quadruples of clock readings.

Crucially, a single observer congruence suffices to implement any coordinate chart in a

region. Given one reference congruence with coordinates Xµ, observers can display any

transformed coordinates X̃µ(X) through appropriate programming. This includes charts

with null coordinate directions: for instance, radially infalling observers in Schwarzschild

can display Kruskal-Szekeres coordinates U,V despite these being null. The observers them-

selves follow timelike paths, but their programmable displays can represent any smooth

coordinate system: because of their coordinated pre-deployment programming they are ca-

pable of displaying in combination even coordinate systems having no timelike directions (cf.

again Appendix B). Expressed in a somewhat catchy manner: the observer swarm achieves

maximum generality with minimum machinery.

In particular, it must be noted that none of the four displayed numbers would be known

to directly correspond to time or space directions as such. At this stage of the operational-
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ization, these numbers are only four smoothly varying labels, not implying more information

than any purely mathematical chart would imply before the manifold has been equipped

with a metric. In this sense the construction follows the logic of differential geometry even

though the observers must be deployed in a real spacetime: the freedom of programming

has decoupled their coordinate values from any constraints potentially arising through their

timelike motion.

Once the observer-assigned labels Xµ are identified with a chosen mathematical chart xµ,

it becomes convenient—though conceptually distinct—to adopt a unified notation. Since

both sets of functions share the same mathematical properties as coordinate functions on

a manifold, their distinction lies purely in their operational meaning: one stems from an

idealized chart, the other from observer-based measurement procedures. In the formalism

itself, however, no confusion arises if both the abstract coordinates and their physically

realized counterparts are denoted using lowercase symbols xµ and x̃µ(x).

Operationally, coordinate transformations can be realized in different equivalent ways.

For example, we may again introduce two interspersed swarms of observers — defining two

independent reference frames, A (for Alice) and B (for Bob) — each covering the same region

U of spacetime. Alternatively, we may choose to assign multiple distinct sets of four numer-

ical values to each observer within a single swarm. In this case, each observer carries several

coordinate quadruples simultaneously, which may be displayed on two screens per observer

(or a shared screen for both coordinate systems). In all of these scenarios, a general coor-

dinate transformation between frames is implemented physically by having each observer

record both their own set of coordinate labels x and those of the nearest observer from the

other frame x̃. The transformation x̃µ = x̃µ(x) in all of U is then inferred from all local

comparisons. Moreover, since observers can observe a (conceptually infinitesimal) neigh-

borhood around them, the smoothness of charts allows them to order their (infinitesimally

close) neighbors according to proximity (the closer neighbors have more similar coordinate

values). Accordingly, an infinitesimal coordinate displacement dx̃ in the reference frame A

of the Alice observers can be established operationally, and it is related to the corresponding

difference dx in the reference frame B of the Bob observers via the Jacobian matrix (differ-

entials remaining differentials in every frame due to the smoothness of chart transforms):

dx̃µ =
∂x̃µ

∂xν
dxν . (8)
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All quantities appearing in this vectorial transformation law eq. (8) correspond to observ-

able differences: both dx̃µ and dxν represent measurable differences between the coordinates

of two nearby events, as recorded in two distinct reference frames by the respective swarms

of Alice and Bob observers. Note again that “nearby” is operationally definable without

knowledge of any metric only using the smoothness of charts (closer events have more similar

coordinate values). The partial derivatives in the Jacobian matrix can be obtained directly

from such measured values using basic linear algebra, or by numerically differentiating the

transformation relation given in Eq. (7). Each term thus admits a concrete operational

interpretation and reflects actual measurements followed by computational analysis.

Although physical laws must be expressed in locally covariant form to ensure consistency

under coordinate transformations, non-covariant expressions—such as coordinate values or

Christoffel symbols—retain operational significance within a fixed reference frame. Their

empirical relevance derives from the fact that they correspond to directly measurable quan-

tities, once the reference frame is specified. For example, coordinate values correspond to

actual numbers displayed on screens in Fig. 3, reflecting measurable quantities within a

physically realized reference frame. These values can be freely chosen, but once assigned,

they constitute real outputs of local measurements.

Such distinctions are easily overlooked when physical constructions of reference frames

are not explicitly considered. Yet they are both pedagogically and conceptually important.

For example, in Rovelli’s terms34, coordinate values and non-tensorial quantities like the

Christoffel symbols qualify as partial observables—quantities that are directly measurable,

even though they are not tensorial.

All operations required to verify Eqs. (7)–(8) can be carried out locally by the observers

in the frame. Any quantity computed from coordinates—whether tensorial or not—can thus

be viewed as the result of data processing based on numerical results obtained from physical

operations. Properties like tensoriality can, in principle, be operationally tested.

22



C. Measuring the Metric in GR

In special relativity (SR), the flatness of spacetime68 is reflected in the ability to choose

globally rectilinear coordinates in which the metric tensor assumes its canonical Minkowski

form η. Its global constancy ensures that coordinate differences dxµ correspond directly to

physically meaningful intervals, as shown in Eq. (4). In curvilinear coordinates, coordinate

differences dxµ alone are not physically meaningful. To obtain, for example, proper distances

or durations, one must also know the locally varying metric tensor gµν(x), which allows to

extend beyond SR by encoding spacetime curvature. This section shows how this additional

structure can be gently introduced using the operational framework developed so far.

FIG. 4. A GR reference frame consists of a swarm of unconstrained observers traveling arbitrarily

in spacetime, measuring whatever happens in their immediate vicinity. A second reference frame,

in the form of an Einstein elevator, covers an infinitesimal region in space and time in which the

laws of SR hold and can be expressed in the elevator’s special relativistic coordinate system.

Einstein was led to general relativity (GR) by a second stroke of genius: he recognized the
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true reason why all bodies fall with the same acceleration in Galileo’s famous Leaning Tower

of Pisa experiment. Gravitational effects can be locally eliminated by using the coordinate

values of a freely falling reference frame. More figuratively, the interior of an infinitesimally

small, freely falling elevator constitutes a local inertial frame in which the laws of special

relativity (SR) hold—without curvature or gravitational effects—for a very short duration

and within a very small spatial region. This is the content of the equivalence principle.

This empirical insight can be applied to the analysis of any event p with coordinate values

xµ in an arbitrary GR reference frame. In the infinitesimal neighborhood of p, one can always

construct a freely falling Einstein elevator passing through the event, as illustrated in Fig. 4.

The condition of free fall can be operationally verified by ensuring zero readings from an

(infinitesimal) accelerometer. Since SR holds locally inside this tiny, transient frame, an

orthonormal local SR coordinate system x̃ can also be constructed—a latticework as in

Fig. 1—but now centered on p and valid only within an infinitesimally small region of

spacetime.

For ease of visualization, we assume that the Einstein elevator has no physical walls,

allowing the observers from both reference frames—the general relativistic (GR) frame and

the local inertial special relativistic (SR) frame—to be interspersed throughout the same

region, including inside the elevator. Observers from both systems can thus record the

same events occurring within the elevator. The GR observers assign four coordinate values

xµ, while the SR observers use locally valid coordinates x̃µ. These coordinate systems are

related by a smooth transformation x̃µ = x̃µ(x), which is valid only in a small neighborhood

around the event p, but is otherwise no different from a conventional operationalization of

coordinate transforms.

Operationally, this transformation can be physically realized in the usual manner: each

observer in one reference frame simply records the coordinate values displayed on the device

of their neighboring counterpart in the other frame. Since the x̃µ coordinates belong to a

local SR reference frame, spacetime intervals expressed in these coordinates have immediate

physical significance; in particular, the invariant expression of the interval ds2 = ηµν dx̃
µdx̃ν

remains valid throughout the short lifetime and spatial extent of the Einstein elevator.

By applying the coordinate transformation x̃µ = x̃µ(x) and using Eq. (8), the spacetime

interval can be rewritten in terms of the general coordinates xµ, which alone do not carry
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immediate physical meaning:

ds2 = ηµν
∂x̃µ

∂xα

∂x̃ν

∂xβ
dxαdxβ ≡ gαβ(x) dx

αdxβ, (9)

where we have defined the general relativistic metric tensor by

gαβ(x) = ηµν
∂x̃µ

∂xα

∂x̃ν

∂xβ
. (10)

Once the functional form of the coordinate transformation x̃µ(x) is determined—through

local comparison of observer readings over sufficiently small neighborhoods—its derivatives

yield the metric components via Eq. (10), completing the reconstruction from local SR

measurements.

Alternatively, one may reconstruct the components of gµν(x) directly from physically

measured finite but sufficiently small displacements dx̃µ in the elevator frame and the

corresponding coordinate differences dxµ in the general frame, using the defining relation

gαβdx
αdxβ ≡ ηµνdx̃

µdx̃ν and standard linear algebra, as first presented by Einstein.45

If we switch to a different GR reference frame with coordinates x′µ, and construct a

corresponding local SR frame x̃′µ, we again define the metric via local measurements as

ds2 = ηαβ dx̃
′αdx̃′β = g′µν(x

′) dx′µdx′ν . (11)

Since both the original and the new GR frames use the same underlying local SR mea-

surements (up to Lorentz or Poincaré transformations, which preserve ds2), and since both

expressions yield the same invariant interval, we have

gµν(x) dx
µdxν = g′αβ(x

′) dx′αdx′β. (12)

But the coordinate displacements are related via the Jacobian matrix in eq. (8).

Substituting into the left-hand side of eq. (12), we get (since the infinitesimal displace-

ments were arbitrary):

g′αβ(x
′) =

∂xµ

∂x′α
∂xν

∂x′β gµν(x), (13)

which is the transformation law of a (0,2)-tensor. Thus, the metric’s tensorial character

follows from the invariance of ds2 which is operationally defined through local measurements

in overlapping reference frames.
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Since the local GR metric gαβ(x) is operationally defined via a transformation from a

local SR coordinate system, it can also be used to analyze causal relationships in the GR

coordinates. For any event p with assigned coordinates xµ in a general reference frame, one

can construct the local light cone by first identifying the standard SR light cone at p in the

local inertial frame, defined by the null condition

ds2 = ηµν dx̃
µdx̃ν = 0, (14)

and then applying the local coordinate transformation to express these directions in terms

of the GR coordinates. This yields the GR light cone at x, defined by

ds2 = gαβ(x) dx
αdxβ = 0, (15)

whose causal structure thus arises directly from the mapping of the local SR structure into

the general frame.

This provides a useful practical insight, especially in spacetimes with potentially mis-

leading coordinate labels (such as the Schwarzschild interior). It allows one to determine

unambiguously which coordinate displacements dxα are timelike, spacelike, or null by eval-

uating the associated invariant:

ds2


< 0 timelike,

= 0 null,

> 0 spacelike.

(16)

Regardless of the coordinate names or conventions, the causal character of any direction can

thus be determined locally from the metric.

Slightly more advanced approaches may start from the idea that local light cone structures

could anyway be determined directly through the observation of light rays, without explicitly

constructing any local inertial system. This provides an independent observational route

to determining the local metric structure26,42,48. Since null displacements satisfy eq. (15),

knowledge of enough linearly independent null directions dxα, obtained for instance by

tracing the trajectories of different light rays through the same event p having coordinates

x, determines the metric gαβ(x) up to a conformal factor. The remaining scale ambiguity

can be fixed, for example, via a (fifth) clock which is no longer arbitrary but rather has to

26



record proper time along the timelike worldline of the observer passing through p. While

this approach may be more directly practical, it tends to obscure the conceptual link to

the equivalence principle and the analogy with locally flat coordinate patches in differential

geometry.

Regardless of which operational route is chosen—local SR-based construction or direct

causal probing—the same procedure can be repeated (at least conceptually) at each event

p, q, r, . . . in the reference frame. In this way, one reconstructs the spacetime-dependent

metric tensor gαβ(x) over the domain of interest, over the domain of interest, subject to the

practical constraints of measurement density and accuracy. Once the metric tensor is known

throughout spacetime, all geometrical quantities—such as the connection and curvature

tensors—become, at least in principle, derivable from observable data. The foundational

structure of general relativity is therefore rooted in conceptually transparent measurement

procedures, based entirely on coordinate readings and local observations24.

While conceptually not necessary, it is of practical value to simplify any measured metric

tensor by checking whether it can (in our operational setup only afterwards) be fit to a

model geometry, and to establish the coordinate transform to such model-adapted coordinate

systems.

We may also note that the physical framework developed so far already suffices to describe

non-gravitational physical processes in GR coordinate frames. The procedure is straightfor-

ward: such processes are first analyzed in the local inertial SR frame, where the known laws

of special relativity apply for short durations and over small spatial regions. These results

are then translated into GR coordinates using the local coordinate transformation and the

metric tensor defined in Eq. (10), as needed.

In this way, locally force-free motion becomes geodesic motion in spacetime, ordinary

derivatives in SR translate to covariant derivatives in GR coordinates, and so forth. More-

over, the notion of a local inertial frame can be formalized a posteriori through the construc-

tion of Riemann normal coordinates x̃ centered at a point p, in which the metric reduces

to the Minkowski form ηµν and its first derivatives vanish49. This completes the conceptual

circle: the observer swarm itself is composed of local observers, each of whom experiences a

momentarily special relativistic description of spacetime.

It is worth emphasizing, however, that we have so far only scratched the surface of the

mathematical structure of differential geometry. The reason further mathematical devel-
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opment becomes useful is not abstract preference, but physical necessity: the local flatness

implied by the equivalence principle is conceptually analogous to the flatness of small patches

on curved surfaces. In this sense, physics has led us naturally to the tools of differential

geometry, not the other way around. This conceptual flow can be obscured in treatments

that begin with a few physical images (such as local SR latticeworks) but then make a rapid

leap to abstract mathematics (e.g., tangent spaces to curved manifolds), without developing

the underlying physical motivation.

Moreover, since we were forced to engage in local metric reconstruction precisely because

gravity prohibits the existence of a global SR frame, it should come as no surprise that

local variations in the metric tensor gαβ(x) will also play a central role in the gravitational

field equations themselves. It is instructive to contrast this with the case of curvilinear

coordinates in special relativity, which also yield a locally varying metric, but one with a

vanishing Riemann curvature tensor49. Hence, also the operational framework developed

here makes it clear from the outset that any genuine generalization of special relativity to

include gravitation must involve field equations that yield nonzero spacetime curvature.

D. Interpretational and Conceptual Remarks

Before concluding, it is worth highlighting several important qualifications of the physical

picture developed here, in which moving timelike observers serve as carriers of a general

reference frame via their freely programmable four coordinate readings.

1. Practice versus Gedanken-Experiments

In typical experimental practice, the coordinate chart is often treated as a mathematically

declared structure rather than an operationally instantiated one. This is not an oversight

but a pragmatic and methodologically sound approach: the operational content resides in

the measurements themselves—ticks of clocks, detection events, frequency shifts—which

are then related to theoretical quantities such as scalars, distances, and intervals using the

postulated metric expressed in the assumed chart. The chart itself frequently remains a

formal background structure, implicitly assumed rather than constructed from first oper-

ational principles. Indeed, this pragmatic methodical choice may have contributed to the
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view that charts are not themselves objects requiring or even capable of unrestricted oper-

ationalization. This approach, however, implies that a whole chain of assumptions is tested

by observations. While this is the regular research practice, it may interfere with the step-

by-step pedagogical development of concepts desirable at an early stage of contact with

relativity. Thus, the proposed framework actually serves a different purpose: it primarily

acts as a conceptual and pedagogical scaffold and a mathematically and logically rigorous

operationalization of coordinate freedom.

2. Determinism vs. Freely Programmable Arbitrary Clocks

A subtle but important tension arises between the mathematical freedom to define ar-

bitrary coordinate charts and the physical determinism of classical field theories like gen-

eral relativity. In our construction, each observer is equipped with freely programmable

clocks, allowing arbitrary numerical labels to be assigned to events within a region U ⊂ M.

This operationalizes chart freedom: any smooth, invertible map Xµ(x) can be implemented

through suitable clock programming. From a deterministic perspective, however, such free-

dom is physically illusory. If all field values—including the observers’ internal states—are

fixed by initial data and deterministic evolution, then the clock readings themselves are

also determined. In this view, coordinate labels become a derived consequence of physical

evolution, not a freely chosen input. This is a reflection of a general issue: operational inter-

pretations of mathematical freedoms in deterministic theories must confront this constraint.

The swarm makes this tension explicit. Just as scalar fields or Einstein’s mollusk evolve

deterministically once initialized, so too do the clock values.

The only genuine freedom lies in the choice of initial conditions during pre-deployment -

and this freedom is restricted by the necessity to ensure that the motion of the observers will

cover the region U and that their collectively coordinated programming of clocks will ensure

displaying of a smooth chart during deployment; “arbitrary” coordinate assignments mean

that these conditions can lead to any smooth coordinate chart via deterministic evolution

(see also again the examples in the Appendix B).

29



V. CONCLUSION

This paper has introduced a general, physically realizable framework for constructing

reference frames in general relativity using swarms of local observers, each equipped with four

independently programmable clocks. The construction provides a transparent operational

implementation of coordinate systems, avoiding reliance on abstract geometric structures

introduced a priori, while respecting the diffeomorphism freedom of the theory.

Moreover, this approach allows one to represent general curvilinear coordinate sys-

tems—including those defined by null surfaces or irregular foliations—without introducing

artificial structural assumptions such as global slicings or synchronized emitter networks. It

also utilizes the programmability of observers to allow one single congruence (for example

radially in-falling observers in a Schwarzschild spacetime) to display any other coordinate

system (even, for example, Kruskal–Szekeres).

By foregrounding the material realization of coordinate systems, the framework offers a

concrete model for interpreting general covariance as an operational capacity: the freedom to

assign arbitrary smooth coordinates is here instantiated as the freedom to program observers’

clocks. This provides a new vantage point on the physical interpretation of gauge redundancy

and the role of observables.

The same structure also supports pedagogical and conceptual aims. It generalizes Ein-

stein’s “reference mollusk” into a covariant setting, extending familiar images such as the

special-relativistic spacetime lattice into the regime of curved spacetime. Because coor-

dinate labels arise from programmable clocks, the model offers an accessible yet rigorous

way to connect local measurement procedures to the abstract formalism of general relativ-

ity—useful both in teaching and in conceptual analysis. This operational construction thus

directly realizes—to our knowledge for the first time without conceptual gaps—the text-

book analogy between differential geometry’s local flat patches and curvilinear coordinates.

What is usually visualized through cartographic projections (flat map versus curved Earth)

here becomes physically realized by observer swarms: local Minkowski frames are the‘ ‘flat

patches” while programmable displays provide arbitrary “curvilinear” labels.

Because the assigned coordinate values are generated entirely by local, freely pro-

grammable devices, the framework mirrors—to our knowledge for the first time—in a

transparent operational manner the logical architecture of differential geometry: charts,
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transitions, and manifolds are not presupposed but enacted through physical procedures.

Metric and other structures are measured and follow only after the coordinate frame is

established as such.

The observer-swarm interpretation may complement existing scalar-field-based construc-

tions of reference frames. Since freely programmable clock values can emulate any scalar

field behavior, the framework provides a possibility to conceptually reinterpret every scalar

field as algorithmically chosen.

While elementary in formulation, the framework touches on several foundational and

interpretive themes in general relativity. It does not aim to resolve longstanding debates

but to offer a concrete structure in which the operational content of coordinate freedom,

measurement, and reference systems can be examined without undue abstraction. It is

hoped that this perspective proves helpful in both research and pedagogy, and in clarifying

the role of material systems in the realization of spacetime structure.
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Appendix A: Mollusk-like Charts: Scope and Limitations

This appendix examines cases which illustrate that mollusk-adapted coordinate systems

are remarkably general but still fail to realize the general covariance permitted by general

relativity. The examples highlight that, while mathematically any smooth coordinate chart

is admissible, only a subset can be physically realized by mollusk observers who are by

definition subject to built-in causal and metric constraints. By contrast, the observer swarm

can assign arbitrary programmable numerical values to cover such charts, since the labels

are decoupled from the observers’ physical motion. This situation may be summarized in a

somewhat catchy manner as: The mollusk realizes only a constrained subset of charts; the

observer swarm realizes them all.

The Einstein mollusk is a chart realized by a physical congruence of timelike worldlines,

each labeled by fixed spatial coordinates and equipped with a clock defining a monotoni-

cally increasing time coordinate. This construction imposes additional geometric constraints

beyond the mathematical smoothness of arbitrary charts.

In mollusk-adapted (co-moving) coordinates, the chart necessarily takes the form:

(x0, x1, x2, x3) := (λ(τ, x1, x2, x3), x1, x2, x3),

where λ is a monotonically increasing function of the proper time τ along each worldline,

and observers are located at fixed values of (x1, x2, x3). The coordinate differential dx0 must

be timelike. The spatial directions dxi span the directions of infinitesimal displacements

between neighboring observers and must be spacelike. These causal types are physical

constraints imposed by the reference body’s construction.

To clarify this distinction, we first state the necessary conditions that a coordinate chart

xµ = (λ, x1, x2, x3) must satisfy to be interpreted as mollusk-adapted:

1. Timelike time direction: The coordinate vector field associated with λ must be

everywhere timelike. In terms of the metric,

g00 < 0. (A1)

2. Spacelike spatial grid: The subspace spanned by {dxi}, for i = 1, 2, 3, must be

spacelike. That is, the induced spatial 3-metric gij must be positive definite:

For any nonzero spatial vextor ξi, gijξ
iξj > 0. (A2)
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3. Causal realizability: The worldlines defined by holding xi = const and increasing

λ must form a smooth timelike congruence. This means observers sit at fixed spatial

labels and experience λ as a valid arbitrary clock reading.

4. Lorentzian signature: The spacetime metric must preserve the Lorentzian signature

to ensure a well-defined causal structure.

The following table summarizes the first two key invariant conditions on the coordinate

differentials:

Direction Invariant requirement Metric condition

Time (dλ) dλ timelike g00 < 0

Space (dxi) span of dxi spacelike gijξ
iξj > 0 ∀ξi ̸= 0

No condition is imposed on the cross terms g0i; they may vanish or not, depending

on whether the spatial coordinate grid is orthogonal to the time flow. Also, no condition is

imposed on the diagonal spatial components gii; these need not be positive individually, since

the spatial coordinate differentials dxi are not required to be mutually orthogonal. What

matters is that the spatial metric gij is positive definite, ensuring that the spatial subspace

is spacelike. However, conditions 1–4 must all be satisfied for a mollusk interpretation to be

valid. Note also that permuting the coordinate labels merely permutes the corresponding

metric indices and thus preserves the logical content of the constraints; the underlying

geometry remains unchanged. What matters is that one coordinate direction corresponds

to the worldlines of the timelike observers, while the remaining three coordinates label fixed

spatial positions along those worldlines.

1. Failure to instantiate charts with null directions

First consider the Schwarzschild metric in standard coordinates t, r, θ, ϕ:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (A3)

where dΩ2 = dθ2 + sin2 θ dϕ2. This chart and its associated metric satisfy the mollusk

conditions outside the horizon (r > 2M): the mollusk can be used as a physical reference

frame in this situation.

33



Now consider the Schwarzschild geometry expressed in Kruskal–Szekeres coordinates42.

These are defined via null coordinates

U = −e−u/4M , V = ev/4M , (A4)

where u = t − r∗ and v = t + r∗ are the usual retarded and advanced times, and r∗ is the

tortoise coordinate,

r∗ = r + 2M ln
∣∣∣ r

2M
− 1
∣∣∣ . (A5)

In these coordinates, the Schwarzschild metric takes the form:

ds2 = −32M3

r
e−r/2MdUdV + r2dΩ2, (A6)

where r is implicitly a function of UV via the coordinate transformation.

The key feature of this chart is that both dU and dV correspond to null directions: the

metric has gUU = gV V = 0, with only a cross-term gUV ̸= 0. This means that neither U

nor V labels a direction that can be associated with a timelike vector field. Instead, both

coordinate directions are null, and the others space-like.

This violates a basic requirement of mollusk-adapted charts: that there exist one timelike

and three spacelike coordinate directions. A coordinate system based on null directions can-

not be instantiated by a mollusk-style congruence of observers carrying proper-time clocks

and fixed spatial labels. It is also important to stress that Kruskal–Szekeres coordinates are

globally regular and extend across the Schwarzschild horizon, and yet they provide a clear

example of a smooth, maximally extended chart for Schwarzschild spacetime that is incom-

patible with any mollusk realization. This highlights a clear shortcoming of the Einstein

mollusk: even in cases in which it can model spacetime geometry in one coordinate chart, it

may fail to realize all charts in which the same spacetime geometry is expressed, including

charts providing highly regular metric expressions.

2. Canonical ADM charts can be instantiated by a single mollusk

The ADM decomposition42 expresses the spacetime metric using a time coordinate t, a

lapse function N , a shift vector N i, and a spatial metric hij. The metric takes the form:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt), (A7)
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with components:

gtt = −N2 + hijN
iN j, (A8)

gti = hijN
j, (A9)

gij = hij. (A10)

To determine whether an ADM chart can be physically instantiated by a mollusk, we

require that the coordinate chart (t, xi) satisfy the mollusk metric conditions:

1. The coordinate time differential dt must define a timelike direction: gtt < 0.

2. The spatial coordinate differentials dxi must span a spacelike subspace: hij must be

positive definite.

3. The worldlines at fixed xi and varying t must be timelike curves that form a smooth

congruence.

The second and third conditions are automatically satisfied by the structure of ADM:

hij is Riemannian, and the coordinate grid defines smooth families of curves. The crucial

constraint is the first: the metric component gtt must be negative. Since

gtt = −N2 + hijN
iN j, (A11)

it follows that this condition is violated when the shift vector becomes sufficiently large

relative to the lapse. In such regions, the coordinate time direction dt becomes null or

spacelike. However, then the ADM formulation breaks down: the hypersurfaces Σt are no

longer valid Cauchy surfaces, the evolution vector leaves the causal cone, and the initial-

value problem becomes ill-posed. Such cases are considered pathological and are explicitly

avoided in both canonical ADM theory and numerical relativity practice. ADM charts as

employed in practice can therefore also be directly instantiated by mollusks since they also

fulfill the condition gtt < 0.

This example shows that the Einstein mollusk can represent a broad class of spacetimes,

since material reference frames are typically constructed only on subsets U ⊂ M where local

3+1 foliations exist. However, it cannot realize arbitrary coordinate charts and their metric

forms in U and thus does not capture the mathematical freedom of general covariance.
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Appendix B: Example Implementations of Observer Swarms

To concretely illustrate the operational model of reference frames developed in the main

text, we will consider a few specific examples of observer swarms. For concreteness we

will consider Schwarzschild spacetime, but assuming knowledge of the underlying spacetime

metric is a pedagogical device, not a prerequisite: the logical flow in section IV leads from

initial physical chart construction in section IVB to subsequent estimation of the metric in

section IVC. If the swarm is deployed without knowledge of the metric it will still implement

an allowable chart (chart-freedom). Most likely this chart will not be adapted to the actual

metric of the spacetime in which the observer swarm is deployed. The measured metric

tensor will thus typically not be of a simple form and contain many non-zero off-diagonal

values. However, the free programmability of the devices can then be used to change to

metric-adapted coordinates, if so desired.

The first example demonstrates in detail how radially in-falling observers can be pro-

grammed to assign chart values Xµ in a physically meaningful way. The second example

will briefly discuss the idea of satellites as observers in an observer swarm.

Assigning Chart Values by Local Programming

We consider the Schwarzschild solution in ingoing Painlevé–Gullstrand (PG) or rain co-

ordinates (T, r, θ, ϕ), where the line element is given by

ds2 = −
(
1− 2M

r

)
dT 2 + 2

√
2M

r
dT dr + dr2 + r2dΩ2, (B1)

with dΩ2 = dθ2 + sin2 θ dϕ2.

As mentioned in the main text, any coordinate system may be locally modeled by the

observer swarm. We choose Painlevé–Gullstrand coordinates as starting point only because

they allow for a particularly simple mathematical chart from which to build a first opera-

tional chart, which can then be generalized to any arbitrary operationally defined chart.

In all of our examples, we consider any finite subset U excluding the singularity r = 0

and we cover U by a swarm of observers in motion, idealizing each observer as a test particle

moving along a timelike curve parameterized by proper time τ , starting at τ = 0. Their
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position in spacetime is therefore described by a curve xµ(τ), and the four-velocity is

uµ :=
dxµ

dτ
. (B2)

We define the observer’s displayed chart values Xµ operationally as the values of the

coordinates along its worldline:

Xµ(τ) := xµ(τ), (B3)

and therefore obtain
dXµ

dτ
= uµ. (B4)

1. Geodesic Congruences in Schwarzschild Spacetime

In the first example, each observer is a test particle in free fall moving along a timelike

geodesic parameterized by proper time τ , starting at τ = 0.

In other words, we choose an observer swarm whose four-velocity components should be:

uµ =

(
1,−

√
2M

r
, 0, 0

)
, (B5)

which satisfies the normalization condition gµνu
µuν = −1 and the geodesic equation

uµ∇µu
ν = 0. This congruence is irrotational, timelike, and the observers’ worldlines are

mutually non-intersecting until r = 0 and admit a smooth coordinate assignment. The

corresponding evolution equations of the coordinate readings of our observers are:

dXT

dτ
= 1, (B6)

dXr

dτ
= −

√
2M

Xr
, (B7)

dXθ

dτ
= 0,

dXϕ

dτ
= 0. (B8)

These equations determine the chart values to be displayed along each observer’s trajectory.

The angular coordinates remain fixed and can thus also be displayed directly. The time

coordinate evolves as XT = τ and can thus be directly displayed from the reading of the

atomic clock carried by the observer. Note, however, that the PG time coordinate coin-

cides with proper time only for the specific infalling geodesic congruence, not for arbitrary

observers. The radial coordinate satisfies

Xr(τ) =

(
Xr(0)3/2 − 3

2

√
2M τ

)2/3

, (B9)
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which remains valid until the particle reaches the caustic limit r = 0.

Both XT and Xr evolve along each single observer’s worldline (Lagrangian viewpoint).

The observer swarm may be conceptually imagined as being initialized at T = 0 to fill a

corresponding spatial region such that the swarm of observers covers U as time progresses and

each individual observer falls inward to smaller radii and therefore must display a different

radial value Xr(τ). Importantly, the ensemble continues to span the spatial domain of

our considered region U : at any fixed radial position r and at each time T inside U there

will be a (different) in-falling observer at these coordinates who is displaying the correct

values XT = T and Xr = r (Eulerian viewpoint). In mathematical terms the Eulerian

field description Xµ(x) is recovered by inverting the motion equations. For instance, given

the radial trajectory Xr(τ) we solve for the proper time at which a freely falling observer

starting at r0 at τ = 0 crosses a given radius:

τ(r) =
2

3
√
2M

(
r
3/2
0 − r3/2

)
.

Using this, one can express Xr(τ(r)) = r and thereby show that the observers’ programmed

clock readings reproduce the chart Xµ(x) = xµ. The operational field Xµ(x) thus recov-

ers the standard Eulerian coordinates from the ensemble of programmed observers. This

distinction between individual motion and ensemble structure reflects the standard picture

of a fluid or dust: while individual elements move, the cloud they define remains spatially

complete. Thus, the congruence as a whole forms a valid reference frame for each spacetime

point outside the singularity, even though each observer will ultimately become affected by

the black hole center, which lies outside the considered region U . Ultimately our congruence

worldlines meet at the center in finite proper time, marking the caustic limit.

Ensuring coverage of the region U ⊂ M

As a technical subtlety note that we will have to account for observers leaving and en-

tering the spatial domain represented by U during the observation period. This may be

implemented by allowing for an observer swarm in a slightly larger region V ⊃ U such that

the observers in the spatial domain of V at T = 0 will ensure that U is densely covered. For

a concrete example, let U be a finite spacetime region defined as follows: we consider a fixed

spatial domain bounded between Schwarzschild radii ra and rb, with ra < rb, and an obser-
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vation period from coordinate time T = 0 to T = T1, all defined within Painlevé–Gullstrand

coordinates. The region U ⊂ M is then given by:

U := {(T, r, θ, ϕ) | 0 ≤ T ≤ T1, ra ≤ r ≤ rb} . (B10)

To ensure that chart values are assigned by a continuous observer swarm throughout U ,

we must take into account that freely falling observers may enter or exit the spatial domain

[ra, rb] during the observation interval. Therefore, we define a larger region V ⊃ U which

must be covered by the swarm at T = 0 to ensure complete coverage of U at all times

T ∈ [0, T1]. Let an observer begin free fall from rest at radius rc at time T = 0, following the

geodesic equations for Painlevé–Gullstrand coordinates. To determine the maximal initial

radius rc such that the corresponding observer reaches rb precisely at time T = T1, we start

from

rb =

(
r3/2c − 3

2

√
2M T1

)2/3

, (B11)

and solve for rc, obtaining

rc =

(
r
3/2
b +

3

2

√
2M T1

)2/3

. (B12)

Hence, to cover the spacetime region U with infalling observers whose worldlines start at

T = 0, the spatial domain of the initial swarm must extend from r = ra to r = rc, where:

V := {(T, r, θ, ϕ) | 0 ≤ T ≤ T1, ra ≤ r ≤ rc} . (B13)

Caution. While the regions U and V are geometrically well-defined and coordinate-

independent as subsets of spacetime, their temporal boundaries are expressed in Painlevé–

Gullstrand time T and therefore do not correspond to constant ranges of Schwarzschild

time; only the radial boundaries ra ≤ r ≤ rb are shared across both coordinate systems.

Any chart by transforming X̃µ(X)

While we selected a chart corresponding to our Painlevé–Gullstrand coordinates for

Schwarzschild spacetime, we could of course also display any other coordinate chart X̃µ = x̃µ

simply by implementing the corresponding coordinate transform X̃µ(X). For example, we

may choose to display Kruskal–Szekeres coordinates as discussed in Appendix A.
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To achieve this, we need to specify the exact coordinate transformation from Painlevé–

Gullstrand (PG) coordinates (T, r) to Kruskal–Szekeres (KS) coordinates (U, V ). Since both

systems share the angular part (θ, ϕ), we restrict ourselves to the (T, r) ↔ (U, V ) sector.

First, we recall the Schwarzschild radial tortoise coordinate r∗, defined by

r∗ = r + 2M ln
∣∣∣ r

2M
− 1
∣∣∣ . (B14)

We then define the Schwarzschild null coordinates u = t − r∗, v = t + r∗, where t is

Schwarzschild coordinate time.

Kruskal–Szekeres coordinates (U, V ) are given in terms of these null coordinates by:

U = − exp
(
− u

4M

)
, V = exp

( v

4M

)
. (B15)

This yields a transformation from Schwarzschild (t, r) to (U, V ).

To express this in terms of Painlevé–Gullstrand coordinates (T, r), we use the relation

between Schwarzschild time t and PG time T :

t = T − 2
√
2Mr + 2M ln

∣∣∣∣∣
√
r +

√
2M

√
r −

√
2M

∣∣∣∣∣ . (B16)

Hence, the transformation from PG coordinates (T, r) to Kruskal–Szekeres coordinates

(U, V ) becomes:

r∗ = r + 2M ln
∣∣∣ r

2M
− 1
∣∣∣ , (B17)

t = T − 2
√
2Mr + 2M ln

∣∣∣∣∣
√
r +

√
2M

√
r −

√
2M

∣∣∣∣∣ , (B18)

u = t− r∗, v = t+ r∗, (B19)

U = − exp
(
− u

4M

)
, V = exp

( v

4M

)
. (B20)

These expressions determine (U, V ) as explicit functions of (T, r), and hence define the

coordinate transformation X̃µ(X). Each observer in the swarm can now be programmed to

display X̃µ(Xν(τ)), where Xν(τ) = xν(τ) follows from its geodesic motion. The field X̃µ(x)

is then operationally realized as before.

This demonstrates how the very same observer swarm can be used to instantiate arbitrary

coordinate charts, even those like the Kruskal–Szekeres system that globally extend the

spacetime manifold across the horizon. The operational framework is thus completely general
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with respect to the choice of coordinates: only the transformation function X̃µ(X) needs to

be specified.
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15 J. Bičák and K. V. Kuchař, “Null dust in canonical gravity,” Physical Review D, vol. 56, no. 8,

pp. 4878–4895, 1997.

16 K. Giesel and T. Thiemann, “Scalar material reference systems and loop quantum gravity,”

Classical and Quantum Gravity, vol.32, p. 135010, 2015.

17 J. Tambornino, “Relational observables in gravity: a review,” Symmetry, Integrability and

Geometry: Methods and Applications, vol. 8, pp. 17-30, 2012

18 S. Gielen and D. K. Wise, “Lifting general relativity to observer space,” Journal of Mathematical

Physics, vol. 54, no. 5, 052501, 2013.

19 D. Bini, “Observers, observables and measurements in general relativity,” in General Relativity,

Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177, Springer, 2014.

20 B. Coll, “Relativistic Positioning Systems,” AIP Conference Proceedings, vol. 841, no. 1,

pp. 277–284, 2006.

21 C. Rovelli, “GPS observables in general relativity,” Physical Review D, vol. 65, no. 4, p. 044017,

2002.

22 N. Ashby, “Relativity in the Global Positioning System,” Living Reviews in Relativity, vol. 6,

no. 1, 2003.

23 P. Delva and J. T. Olympio, “Mapping the spacetime metric with GNSS: A preliminary study,”

in Proceedings of the 2nd International Colloquium on Scientific and Fundamental Aspects of

the Galileo Programme, Padova, Italy, October 2009. arXiv:0912.4418.

24 R. Geroch, General Relativity from A to B, University of Chicago Press, 1978.

25 J. Ehlers, F. A. E. Pirani, and A. Schild, “The geometry of free fall and light propagation,”

General Relativity and Gravitation, vol. 44, no. 6, pp. 1587–1609, 2012.

26 S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Uni-

versity Press, 1973.

27 D. B. Malament, “The class of continuous timelike curves determines the topology of spacetime,”

Journal of Mathematical Physics, vol. 18, no. 7, pp. 1399–1404, 1977.

28 D. B. Malament, Topics in the Foundations of General Relativity and Newtonian Gravitation

Theory. Chicago, IL: University of Chicago Press, 2012.

29 L. Bombelli, J. Lee, D. Meyer, and R. D. Sorkin, “Space-time as a causal set,” Physical Review

Letters, vol. 59, no. 5, pp. 521–524, 1987.

30 X. Nomaan, “Quantum Field Theory on Causal Sets,” in Handbook of Quantum Gravity,

43



C. Bambi, L. Modesto, and I. Shapiro, Eds., Springer, 2024.

31 J. L. Anderson, Principles of Relativity Physics, Academic Press, New York, 1967.

32 J. Earman and J. D. Norton, “What Price Spacetime Substantivalism? The Hole Story,” British

Journal for the Philosophy of Science, vol. 38, no. 4, pp. 515–525, 1987.

33 J. Stachel, “The Hole Argument and Some Physical and Philosophical Implications,” Living

Reviews in Relativity, vol. 17, 2014.

34 C. Rovelli, “Partial observables”, Phys. Rev. D 65, 124013, 2002.

35 H. R. Brown and O. Pooley, “Minkowski Space–Time: A Glorious Non-Entity,” in The Ontology

of Spacetime, edited by D. Dieks, Elsevier, pp. 67–89, 2006.

36 J. O. Weatherall, “Some Philosophical Prehistory of the (Earman–Norton) Hole Argument,”

Studies in History and Philosophy of Modern Physics, vol. 70, pp. 79–87, 2020.

37 P. W. Bridgman, The Logic of Modern Physics, Macmillan, 1927.

38 H. Reichenbach, The Philosophy of Space and Time, Dover Publications, 1958.

39 J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity, Addison-Wesley, 2003.

40 S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Addison-Wesley,

2004.

41 B. F. Schutz, A First Course in General Relativity, 2nd ed., Cambridge University Press, 2009.

42 Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, 1973. See i.a.

§§1.2, 6.5, Exercise 13.7, 16.4-16.5, 21.4-7, Boxes 16.4, 29.1, 31.2.A.

43 E. F. Taylor and J. A. Wheeler, Spacetime Physics: Introduction to Special Relativity, 2nd ed.,

W. H. Freeman, 199. See i.a. §§2.6-2.7, Fig. 2-6.

44 P. A. Tipler and R. A. Llewellyn, Modern Physics, 5th ed., W. H. Freeman, 2008. See Fig. 1-13.

45 A. Einstein, “Die Grundlage der allgemeinen Relativitätstheorie,” Annalen der Physik, vol. 354,

no. 7, pp. 769–822, 1916 (see in particular §4). https://doi.org/10.1002/andp.19163540702

“The Foundation of the General Theory of Relativity,” in The Collected Papers of Albert Ein-

stein, Vol. 6, Princeton University Press, pp. 146–200, 1997 (English translation).

46 B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity (Academic Press, 1983).

47 J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, 2nd ed. (Marcel

Dekker, 1996).

48 R. M. Wald, General Relativity, University of Chicago Press, 1984. See especially Ch. 8.

49 S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of

44



Relativity, John Wiley & Sons, 1972.

50 G. F. R. Ellis, Relativistic Cosmology, Cambridge University Press, 2012.

51 D. W. Hogg, “Distance measures in cosmology,” arXiv:astro-ph/9905116, 1999.

52 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of

Gravitational Waves from a Binary Black Hole Merger,” Physical Review Letters, vol. 116, no. 6,

p. 061102, 2016.

53 R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics,

University of Chicago Press, 1994.
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57 M. Korzyński, “Backreaction and continuum limit in a closed universe filled with black holes,”

Classical and Quantum Gravity, vol. 31, no. 8, p. 085002, 2014.

58 S. Mastrogiovanni and D. A. Steer, “Measuring cosmological parameters with gravitational

waves,” ch. 45 in Handbook of Gravitational Wave Astronomy, C. Bambi, S. Katsanevas, and

K. D. Kokkotas, Eds., Springer, 2022.

59 M. Boyle, “Transformations of asymptotic gravitational-wave data,” Physical Review D, vol. 93,

no. 8, 084031, 2016.

Endnotes:

60 We adopt the simplifying assumption that observer worldlines follow geodesic motion. This is not

a conceptual limitation: the coordinate construction relies on freely programmable clocks and

thus allows to display any values, provided the observers are able to cover the probed region. A

fundamental constraint arises instead from the distinction between mathematical congruences,

which assume smooth, gapless coverage, and any physically realizable swarm with inherent

resolution limits. This limitation is shared with all other dust-like models that conceptually

assume dense coverage but can practically only achieve an approximation.
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61 Dense constructions based on light-signal exchanges between observers typically presuppose that

each observer is already equipped with an individual clock—potentially nonlinear but locally

monotonic in proper time. Such signal exchanges are inherently local and should not be conflated

with global synchronization procedures, as used for inertial frames in special relativity. Geroch24

presents a locally consistent operational method in which idealized clocks, combined with light-

signal reflections, define simultaneity hypersurfaces relative to an observer’s worldline. This

allows for the local measurement of spacetime intervals, including proper lengths defined along

spacelike geodesics within those hypersurfaces. Conceptually similar are constructions of physi-

cal light-clocks—devices where photons bounce between mirrors whose separation is assumed to

be locally fixed and known. While light-clocks are sometimes invoked to ground time measure-

ment in the causal structure itself, their logical consistency in curved spacetime is nontrivial

since it depends on presupposed spatial distance definitions. In all these constructions each

worldline is ultimately associated with a single clock, and distinct worldlines require additional

(fixed) labels for disambiguation. This naturally results in mollusk-like reference frames, where

the spatial labeling is fixed and not freely programmable as in the observer swarm framework

developed here.

62 For pedagogical clarity, we also adopt a differential-geometric language in which expressions

like dx denote coordinate displacements along the direction x, rather than employing the more

abstract identification of partial derivatives ∂/∂x with tangent vectors in TpM, the tangent

space to the Lorentzian manifold M at a point p. In standard differential geometry, each co-

ordinate function x in a local chart induces two associated structures at each point p ∈ M:

the coordinate displacement dx, which is a differential one-form belonging to the cotangent

space T ∗
pM, and the partial derivative operator ∂/∂x, which is a basis vector in the tangent

space TpM. The formal duality between these arises because the tangent space TpM consists

of directional derivative operators acting on smooth functions, while the cotangent space T ∗
pM

consists of linear functionals acting on tangent vectors. In this paper, we intentionally adopt

the older physicists’ convention in which dx is read as a differential or an infinitesimal coordi-

nate displacement, rather than invoking the more abstract identification of ∂/∂x as a tangent

vector at p. This choice avoids requiring the reader to work within the modern coordinate-free

formulation of differential geometry. It is therefore intended to make the presentation accessible

to a wider audience, including readers with only rudimentary familiarity with general relativ-
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ity and without formal training in modern differential geometry. It also aligns with the logical

structure of the main text, where elementary physical operationalizations naturally lead to the

mathematical apparatus of differential geometry.

63 Various visualization metaphors may help to convey the structure of such a 3D region. For ex-

ample, one may imagine it as built from stacked, warped paper-like layers (suggesting a topology

corresponding to R×R2), or as composed of warped, nested surfaces (each homeomorphic to a

topological two-sphere, suggesting R×S2). A third, perhaps even more flexible, metaphor would

be a deformable blob of dough, without any preferred foliation at all. These visualizations are

not topologically restrictive; each describes the same underlying mathematical object: a three-

dimensional region with standard topology, continuously populated by local observers and their

clocks. In the nested-surfaces analogy, the surface shown in Fig. 2 would be read as representing

a two-dimensional, warped spatial slice. Multiple such surfaces would be imagined to be stacked

spatially to fill a three-dimensional region (possibly extending to infinity in some or all of the

three-spatial directions), like the layers of an onion or the nested shells of a matryoshka doll.

64 This formulation should not be misunderstood as implying that the mollusk reference frame is

situated in any other higher-dimensional frame. The most general (co-moving) reference frame

of mollusk-type is instead given by eq. (5). The implications and limitations inherent due to

this formulation are overcome by the subsequently proposed generalization: a congruence of

observers in which each observer carries four clock values, replacing fixed spatial coordinates

with four coordinate values that can vary along the timeline of each observer.

65 To remain consistent with the geometric and dynamical constraints of general relativity, each

mollusk must be of sufficiently low density to avoid backreactions on spacetime geometry (and

keep also gravitational radiation negligible), and restricted to a region U small enough to neglect

its own self-gravitation and to exclude the formation of collapsing matter. This may involve non-

trivial trade-offs and constraints on the scaling of the observer number density: the mollusk must

be sufficiently dense to support smooth interpolation of its coordinate functions but sufficiently

dilute to avoid generating significant gravitational backreaction. See also the corresponding

discussion below.66

66 This generalization permits the physical realization of any smooth local chart, including those

with null coordinate differentials or non-spacelike level surfaces. Regarding the viability of mate-

rial reference systems that produce null coordinates: this relies entirely on the free programma-
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bility of clocks and the assumed pre-deployment of a swarm across the entire measurement

region. In particular, material observers need neither signal nor travel along the null directions

themselves; rather, they are simply deployed in such a manner that their collectively displayed

coordinate values instantiate null coordinates. Indeed, the only physical requirement is sufficient

swarm coverage of the region U ⊂ M. This physical requirement introduces exactly the same

physical viability constraints as for any other cloud/swarm/Mollusk/dust-based model in the lit-

erature, notably avoidance of caustics (restricting the regions U), idealized zero back-reaction on

the geometry (affecting i.a. achievable density, maximum mass and motion-types of observers).

However, once the physical coverage of U is guaranteed, the programming achieves smooth-

ness and local invertibility, and the displayed labels define a valid coordinate chart—without

the need for synchronization conventions, background symmetries, or orthonormal frames. This

approach avoids the structural assumptions built into other approaches, for example, ADM-

type formulations or tetrad-based methods and enables the construction of any chart in any

spacetime geometry.

67 If the freely programmable clock displays are made to depend on local measurements—either

instead of, or in addition to, an observer’s internal (e.g., atomic) clock—then the observer

swarm may be realized as a hybrid construction. In such cases, the displayed coordinate values

can reflect quantities used in other approaches, such as physical fields (e.g., scalar or tensor

fields) permeating spacetime, or signals locally received from external sources, including other

observers. The observer swarm may then help to mitigate some of the potential limitations

of these alternative approaches, by providing additional freedom through the independently

programmable clocks (and the potential availability of a local proper time clock).

68 Flatness corresponds to the vanishing of the Riemann curvature tensor49. In such cases, the

metric can always be brought locally — and globally if the manifold is topologically trivial —

into the canonical Minkowski form η via a coordinate transformation. Thus, any coordinate

system defined in a flat spacetime, even if curved, describes special relativity when properly

interpreted. For pedagogical reasons, we assume rectilinear coordinates and the canonical form

η for SR in freely falling local inertial frames, cf. also Fig. 4, such that the correspondence

between coordinate differences and physical intervals becomes most transparent.
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