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Abstract. There are four well-known models of fundamental objec-
tive probabilistic reality: classical probability, comparative probability,
non-Archimedean probability, and primitive conditional probability. I
offer two desiderata for an account of fundamental objective probabil-
ity, comprehensiveness and non-superfluity. It is plausible that classical
probabilities lack comprehensiveness by not capturing some intuitively
correct probability comparisons, such as that it is less likely that 0 = 1
than that a dart randomly thrown at a target will hit the exact cen-
ter, even though both classically have probability zero. We thus want a
comparison between probabilities with a higher resolution than we get
from classical probabilities. Comparative and non-Archimedean prob-
abilities have a hope of providing such a comparison, but for known
reasons do not appear to satisfy our desiderata. The last approach to
this problem is to employ primitive conditional probabilities, such as
Popper functions, and then argue that P (0 = 1 | 0 = 1 or hit center) =
0 < 1 = P (hit center | 0 = 1 or hit center). But now we have a technical
question: How can we reconstruct a probability comparison, ideally sat-
isfying the standard axioms of comparative probability, from a primitive
conditional probability? I will prove that, given some plausible assump-
tions, it is impossible to perform this task: conditional probabilities just
do not carry enough information to define a satisfactory comparative
probability. The result is that of the models, no one satisfies our two
desiderata. We end by briefly considering three paths forward.

1. Introduction

There is a quest to capture fundamental probabilistic phenomena—whether
of the epistemic or the physically chancy sort—in a mathematical way.
There are four particularly common formal tools for such modeling: clas-
sical probability, comparative (also known as qualitative) probability, non-
Archimedean (especially hyperreal) probability, and primitive conditional
probability. We have two desiderata for a model of probability. First, com-
prehensiveness calls on the model to capture all of the fundamental proba-
bilistic features of reality, and, second, non-superfluity asks that the model
not include additional information beyond that reality. The probabilistic re-
ality of this paper is constituted by the phenomena of chance, stochasticity
and objective probability, rather than the credences of limited agents like us,
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which we know are not modeled by the formal tools except in an idealized
way.

I will begin by expanding on the requirement of the desiderata, sketching
some easy and/or already known observations on how the four best-known
models fare with regard to them, and then move on to discuss the main
results of this paper, whose main upshot is that the primitive conditional
probability model fails to be comprehensive. Thus we have good reason to
think that the primitive conditional probability model is not the right model
of fundamental probabilistic reality.

At the same time, the easy/known observations give us good reason to
think that the classical probability and comparative probability fail compre-
hensiveness, while the non-Archimedean model fails non-superfluity. Thus,
it seems that none of the four models is fully satisfactory. This leaves three
ways out of the difficulties: a model beyond the four models, a model com-
bining two or more of the four models, or biting the bullet on one of the
critiques. I will briefly sketch a promising example of each strategy.

2. The four models and two desiderata

The two desiderata on a model of probabilistic reality aimed at in this
investigation are comprehensiveness and non-superfluity. Now, useful mod-
els in general do come in a variety of degrees of realism, as the case of
physics nicely illustrates. A physical model of a situation that neglects fric-
tion will fail to be comprehensive, but can nonetheless be useful for both
applications and understanding. And for many purposes a finite and dis-
crete reality can be usefully approximated by an infinitary continuous model:
thus, in fluid dynamics, the distribution of pressure is taken to be a func-
tion, typically continuous, over an uncountably infinite space, even though
in fact the pressure is constituted by the interactions of a finite number of
particles. Similarly, a model of probabilistic reality can include more or less
structure than the reality (e.g., a discrete random walk can be usefully ap-
proximated by a continuous Brownian motion or vice versa) in which case
one respectively fails in non-superfluity or comprehensiveness, and yet one
can still gain understanding from the model.

But if we really want to capture the reality, we want comprehensiveness
and non-superfluity. The quest under discussion is not for useful approxima-
tions, but to find out something about what the fundamental probabilistic
features of reality are or are not. Models of probabilistic reality that lack
comprehensiveness or non-superfluity are useful: they give us understanding
of phenomena have applications. None of the arguments should be taken to
deny this. A reader who is not interested in the more ambitious pursuit of
a model that is comprehensive and non-superfluous can stop here—though
perhaps some of the technical results can still give some insight into the log-
ical interconnections between the models and desiderata, and the negative
results of the paper may move one to abandon the more ambitious quest.
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The best-developed model of probabilistic reality is classical probability.
An event A is assigned a real number P (A) between 0 and 1, satisfying plau-
sible axioms. This model captures genuine information about probabilistic
phenomena, and all the information contained in the model appears to really
reflect features of the reality at least in physically chancy situations and in
epistemic cases with idealized Bayesian agents (real agents have imprecise
probabilities of some sort).

The classical probability model would appear to be superfluous with re-
gard to subjective probabilities for limited agents in the case of continuous
distributions. Plausibly only a countable, and likely only finite, number of
probability values can serve as a possible credence for an agent like us, since
there are only countably many expressions in our language, and presum-
ably only finitely many of them can fit into our minds, while a continuous
distribution has uncountably many real-number values. However, with re-
gard to objective probabilities, classical probability appears to satisfy non-
superfluity as long as we have continuous distributions in the world, such
as spinners, darts thrown at targets, or radioactive decay1, or in some other
situations such as a countably infinite sequence of fair and independent coin
tosses.

However, the classical model appears to lack comprehensiveness. If I
throw a dart uniformly randomly at a circular target, it seems much more
likely that the dart lands somewhere on the horizontal line through the
center than that it lands at the very center itself, and if I spin a uniform
spinner, it appears more likely, and by a factor of 1.6, that the selected angle
is a multiple of five degrees than that it is a multiple of eight degrees. But
on a classical probability model, all these events have the same probability,
namely zero, as does the seemingly even more improbable contradiction
that 0 = 1. It appears we need something finer-grained to capture all of
probabilistic reality.

The second model is comparative or qualitative probabilities. A partial
comparative probability (cf. [8]) on an algebra F of events (a set of subsets
of a probability space Ω with F closed under unions and complements) is a
reflexive and transitive relation ≾ satisfying:

Pos: ∅ ≾ A, and
Add: if A ∪ B is disjoint from C, then A ≾ B if and only if (A ∪ C) ≾

(B ∪ C).
When A ≾ B, we say that B is at least as likely as A. To get a total
comparative probability, we add the totality condition that A ≾ B or B ≾ A
for all A and B in F . We write A ≺ B for the claim that A ≾ B but not
B ≾ A, and we write A ∼ B for the claim that A ≾ B and B ≾ A.2

1I am grateful to an anonymous reader for this argument.
2Note that we are departing from de Finetti’s notation [1], who uses A ∼ B to mean

that there is no comparison between A and B, i.e., (in our notation) neither A ≾ B nor
B ≾ A.
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It is very plausible that all the information conveyed by an appropriate
comparative probability model is genuine: we have non-superfluity. Fur-
thermore, unless one specifically assumes the qualitative probabilities to be
Archimedean, the “zero-probability” problem for the classical model disap-
pears on the comparative probability model: we can have primitive compar-
isons between classically zero-probability events.

But the comparative model still seems to omit important information.
If I have an unfair coin that favors heads, the comparative probability can
capture the fact that heads is more likely than tails, but omits quantitative
information as to how much more likely it is, which information was nicely
captured by classical probabilities. Indeed, we have good reason to think
that if the classical model is non-superfluous, then the comparative model
is non-comprehensive, as it leaves out some of the information from the
classical model.

Now, granted, given a richer space of events, one can recover some of this
information. For instance, if additionally our system contains a hundred-
sided die with all sides equally likely, we might say that our unfair coin
yielding heads is more likely than getting a number in the range from 1 to 57
on the die but less likely than getting a number in the range 1 to 58. Indeed,
given a rich enough space of events, we can express the precise numerical
probability using qualitative probabilities [9, 10]. However, although non-
hypothetical frequentists will deny this, there surely could be a world with
a single unfair coin flip and no other physically chancy events, and in that
world, comparative probabilities do not capture all the information about
how much more likely heads is than tails. Thus, we have reason to think
comparative probabilities are also non-comprehensive in general.

The third model is non-Archimedean probabilities, which are like classical
probabilities, except with additivity restricted to finite additivity, and the
probabilities ranging over some non-Archimedean field—most commonly a
field of hyperreals—that extends the real numbers by including infinitesimals
other than zero.3

This tool can nicely capture the distinctions between various events that
on a classical model have zero probability by assigning them different infin-
itesimal probabilities. While this model is representatively very rich, and
hence likely comprehensive, it has the opposite fault of superfluity: it has
been argued that it carries a vast amount of bogus information [5, 2, 14]. The
choice of a specific non-Archimedean field does not appear to reflect genuine
facts about the probabilistic phenomena, and there are infinitely many pos-
sible ways of assigning infinitesimal probabilities within a specific field that
do not appear to reflect any differences between probabilities phenomena.

3An infinitesimal is an α such that |α| < 1/n for all natural numbers n. A non-
Archimedean field will have all the standard relations on the reals—addition, subtraction,
multiplication, division, and comparison—but will include “infinite” elements I such that
n < |I| for all natural numbers n. The reciprocal of an infinite element is a non-zero
infinitesimal, and conversely.
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The fourth model, primitive conditional probabilities, carries strictly more
information than classical probabilities and strictly less than non-Archimedean
probabilities.4 We can take conditional probabilities P (A | B) as primitive
assignments of real numbers to pairs of events A and B, satisfying appropri-
ate axioms (typically those of Popper functions [21]), rather than defining
them by the classical ratio P (A | B) = P (A ∩ B)/P (B) which is undefined
when P (B) = 0.

More precisely, if F is an algebra of subsets—the events—of a non-empty
space Ω, a conditional probability or Popper function on F is an assignment
of a real number P (A | B) to any pair of events such that:

(P1) P (· | B) is a finitely additive probability function when B ̸= ∅
(P2) P (A ∩B | C) = P (A | C)P (B | A ∩ C)
(P3) if P (A | B) = P (B | A) = 1, then P (C | A) = P (C | B)
(P4) P (A | ∅) = 1.

Condition (P4) can be dropped if we restrict P (A | B) to being defined when
B ̸= ∅, but makes it simpler to state some claims. For convenience, we will
write P (A) = P (A | Ω) for the unconditional finitely-additive probability
defined by P .

A full conditional probability is one where F is the powerset of Ω.
It is fairly plausible that all the information conveyed by a good primitive

conditional probability model is genuine: differences in conditional proba-
bilities really do reflect differences in probabilistic phenomena. Thus, the
non-superfluity of the primitive conditional probability model is quite de-
fensible.

Moreover, a primitive probability model is capable of using conditional
probabilities to zoom in on zero-probability events and compare them. For
instance, we can say that it is more likely that the dart uniformly aimed at
the circular target will hit the horizontal line rather than the center because
the conditional probability of its hitting the horizontal line on the disjunction
of its hitting the horizontal line and the center is higher than the conditional
probability of its hitting the center on the same condition, and that the
conditional probability of the spinner yielding a multiple of five degrees is
1.6 times the conditional probability of the spinner yielding a multiple of
eight degrees, both conditionally on its yielding a multiple of five or eight
degrees. Hence, the zero-probability problem for the comprehensiveness of

4They carry strictly less information than non-Archimedean probabilities as the under-
determination theorem in [14] shows that there are distinct non-Archimedean probabilities
that define the same conditional probability. On the other hand, there are primitive con-
ditional probabilities for a fair spinner that are rotationally invariant [11, 12, 13]. This
is easily checked to imply that the conditional probability of the spinner landing on a
multiple of five degrees given that it lands on a multiple of five or eight degrees is greater
than that of the spinner landing on a multiple of eight degrees on the same condition, and
hence the model distinguishes outcomes that are classically indistinguishable, and hence
carries strictly more information than the classical model.
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the classical model is solved. The primitive conditional probability model
is, thus, quite promising.

The point of this paper, however, is to argue that conditional probability
models, like classical and comparative probability models, miss out on some
of the real probabilistic information, and hence also fail to be comprehensive.
The form of the argument is:

(A) For every probabilistic situation, there is an appropriate comparative
probability model all of the information in which is genuine and non-
superfluous.

(B) There is in general insufficient information in conditional probability
models to reconstruct the comparative probability model for the
situation being modeled.

(C) Therefore, there is genuine information about probabilistic situations
that is missed out by conditional probability models.

I take (A) to be very plausible: probabilistic reality includes probabilistic
comparisons between events, for an appropriate set of axioms for probabilis-
tic comparisons. I will take these axioms to be the standard axioms for total
or at least partial comparative probability. Thus the focus of the paper will
be on arguing for (B).

The literature contains two attempts at generating a total probabilistic
comparison out of a conditional probability. The first is apparently mistak-
enly attributed by Pruss [15] to de Finetti [1]:5

TDiff: A ≾ B if and only if P (A−B | A∆B) ≤ P (B −A | A∆B),

where A−B is the difference of A and B, i.e., the intersection of A with the
complement of B, while A∆ B is the symmetric difference between A and
B, i.e., (A−B)∪ (B−A). The second was given by Pruss [15] and perhaps
Easwaran [2]:6

Union: A ≾ B if and only if P (A | A ∪B) ≤ P (B | A ∪B).

5De Finetti [1, p. 567] writes that in the case where neither A ⊂ B nor B ⊂ A holds,
“[i]t is a question of comparing the conditional probabilities [P (A − B | A ∆ B)] and
[P (B − A | A ∆ B)] (whose sum = 1), saying that A is more or less probable than B
according to whether the first expression is greater than the second or is less.” In [15,
p. 3534n10], this is apparently misunderstood to imply that when the two conditional
probabilities are equal, then A and B are equiprobable, perhaps because it was assumed
that de Finetti was working with a total ordering, which his discussion of cases of non-
comparability implies he is not.

6Easwaran [2, p. 17] offers the suggestion (it may not be a definition) that A ≺ B if
and only if P (A | A ∪ B) < P (B | A ∪ B). Had it been one’s intention to define a total
(pre)ordering, then in the case where neither A ≺ B nor B ≺ A holds, one would need
to take A and B to be equiprobable, i.e., A ≾ B and B ≾ A, and so we would have
Union. But given that Easwaran, like de Finetti [1] before him, appears only interested
in a partial ordering (see [2, pp. 24–25]), he has not given us an answer to the question of
when exactly A and B are equiprobable (though again it was apparently not his intention
to do so). If we equip Easwaran’s account with the thesis that A and B are equiprobable
if and only if A = B, then the resulting partial order will be subject to the same criticisms
as the PDiff below is.
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Neither is satisfactory. In fact, it is shown in the Appendix that TDiff
does not in general make ≾ a transitive relation.7 On the other hand, it is
also shown in the Appendix that Union sometimes violates a very plausible
constraint on ≾, namely the Complementation Axiom:

Comp: A ≾ B if and only if Bc ≾ Ac,

where Ac is the complement of the event A. Violating Comp is probably
less bad than violating transitivity, but both are highly plausible constraints
on a probability ordering. (Note that Comp is easily seen to be a special of
the Additivity Axiom for comparative probabilities.)

De Finetti [1, pp. 566–567] may have suggested this partial probabilistic
comparison (see also [2, p. 17]):

PDiff: A ≾ B if and only if A ⊆ B or P (A−B | A∆B) < P (B−A | A∆B).

This comparison does satisfy all the axioms of a partial comparative prob-
ability, as will be shown in the Appendix.

All three relations defined above satisfy the following “zooming” intuition:

Zoom: If P (A | C) < P (B | C) for some C containing A ∪B, then A ≺ B,

where we say that A ≺ B if and only if A ≾ B but not B ≾ A. This zooming
condition is central to our intuition that primitive conditional probabilities
rightly capture the comparisons between the zero probability sets which
suggested the insufficiency of classical probability.

The Zoom condition together with (P1) implies Regularity:

Reg: If A is non-empty, then ∅ ≺ A.

This can be interpreted as saying that a possible event is more likely than
an impossible one, and encodes much of the intuition we started the paper
with. To see the implication from Zoom to Reg, note that P (∅ | A) = 0 <
1 = P (A | A) for any non-empty A by (P1).

However, I will argue for (B) by proving that there is no total and reg-
ular comparative probability satisfying the standard axioms for compara-
tive probabilities and which is “canonically” defined in terms of conditional
probabilities and boolean relations on sets (a precise necessary condition for
canonicity will be given). The same holds for partial comparative probabil-
ities if we add a weak and plausible constraint about how the comparative
probabilities must handle the case of a uniform spinner. Furthermore, the
result remains true even if we restrict ourselves to the case of comparative
probabilities for a uniform spinner and events that are countable unions of
intervals of angles.

Our result, with the method of proof behind it, is in the same spirit as
Thong’s recent argument [18, 19] that a number of proposals about relating
regular comparative probabilities to conditional probabilities and subset re-
lations fail. But our result provides stronger support for a general pessimistic
conclusion about grounding comparative probabilities in conditional proba-
bilities by not relying on refuting particular proposals for such a grounding.

7Contrary to the implicature of [15, p. 3534n10].
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We can conclude that of the four most common tools for modeling prob-
abilistic situations, only non-Archimedean probabilities capture all of the
information in a probabilistic situation. However, if [5, 2, 14] are correct
that non-Archimedean models is superfluous, then no one of the four tools
is satisfactory. In the concluding section, we discuss three possible ways
forward.

Finally, note that by the task of capturing “probabilistic reality” I mean
more than capturing all the particular probabilistic facts of our world.
Rather, I mean the modeling of the kinds of stochastic features that our
world contains. For instance, a number of our arguments will involve uni-
form spinners. Now, it may be that our universe does not actually have any
uniform spinners. But plausibly the kinds of stochastic features that the
non-uniform spinners of our “imperfect” universe exhibit—say, numerical
chances—would also be found in universes which have uniform spinners, and
so an account of what probabilistic phenomena fundamentally are should ex-
tend to those universes. The point here is analogous to how a philosopher of
science in searching for an account of nomic reality is looking for an account
that can account for laws of nature in universes where matter is differently
arranged from how it is arranged in our universe.

3. Main results and arguments

3.1. Canonicity. We now need to rigorously state our result that a con-
ditional probability function together with boolean set operations cannot
canonically define a probability comparison satisfying the requisite assump-
tions. What would it mean to define a probability comparison in terms of a
conditional probability? We would presumably have to have some sort of a
biconditional with A ≾ B on the left-hand-side and expressions involving A,
B and conditional probabilities on the right-hand-side, with TDiff, Union
and PDiff providing simple examples, and more complicated examples per-
haps involving quantification over other events.

Here, we need some way to ensure the right-hand-side of the biconditional
avoids cheating. Given a conditional probability P on Ω, there is a finitely-
additive hyperreal probability Q that is regular in the Bayesian sense that
Q(A) > 0 for all non-empty A and that generates P using the formula
P (A | B) = StdQ(A ∩ B)/Q(B) for B ̸= ∅ and P (A | ∅) = 1 [9, 10],
where Stdx is the real number closest to the finite hyperreal x.8 But then
Q generates a probability comparison by stipulating A ≾ B if and only
if Q(A) ≤ Q(B), and this ≾ satisfies all the axioms of a total probability
comparison as well as Zoom. Now, there are set theories with a global choice
function9 F such that F (U) ∈ U for every non-empty set U , and one could

8A hyperreal x is finite provided that there is a (standard) natural number N such that
|x| < N , and Stdx = sup{y ∈ R : y < x}.

9Such a theory is consistent if and only if standard Zermelo-Fraenkel set theory is con-
sistent, since it’s a conservative extension of Zermelo-Fraenkel set theory with choice [4].



GENERATING COMPARATIVE PROBABILITIES 9

use such a global choice function F to define the ordering ≾ given P : just let
CP be the set of all total comparative probabilities ≾ on the same algebra
as P is defined on that satisfy Zoom, use the fact just proved that CP is
non-empty, and define ≾P as the relation F (CP ). To put the point vividly,
suppose God exists, and that for any non-empty set, God has a favorite
member. Then we can stipulate that for any conditional probability P on a
space Ω, the probability comparison defined by P is God’s favorite member
of the nonempty set of total probability comparisons on the same algebra
as P is defined on that satisfy Zoom.

But this is cheating as we haven’t defined ≾ just by relying on the condi-
tional probability P and boolean relations between events, but by also re-
lying additional information contained in God’s preferences, or in whatever
set-theoretic machinery is involved in defining the global choice function.
That’s not what’s going on in our paradigm examples TDiff, Union, and
PDiff.

The intuition behind our canonicity condition will be that ≾ is defined in
terms of the boolean relations and operations on events (e.g., ⊆, ∪, ∩, (·)c)
and in terms of some mathematical vocabulary of real numbers, in addition
to logical terminology, but not in terms of other details. Suppose we have
one full conditional probability P1 defined on a standard 451 mm diameter
dart board at which a dart is uniformly randomly thrown and another full
conditional probability P2 defined on a one kilometer radius circular region
of space in another galaxy at which a perfectly spherical asteroid is thrown in
a uniformly distributed way, and there is a bijection ρ between the points of
the dart board and points of the region such that P2(ρA | ρB) = P1(A | B)
for all subsets A and B of the dart board10 where ρC = {ρ(x) : x ∈ C} for
a subset C of the dart board. Then we can say that the two situations are
isomorphic in terms of conditional probabilities, and canonicity will require
that the comparative probability orderings in the two situations generated
by P1 and P2 respectively are also order-isomorphic under ψ, since all of the
boolean relations and operations are preserved by the isomorphism. The
differences in size of targets and physical nature of projectiles are irrelevant
for a canonical definition of conditional probabilities.

More generally, if we have a conditional probability P on an algebra F
of subsets of Ω, and a bijection ρ of Ω to another space Ω′, we will have the
algebra Fρ = {ρA : A ∈ F} of subsets of Ω′, and the isomorphic conditional
probability P ρ on Fρ defined by P ρ(A | B) = P (ρ−1A | ρ−1B). If ≾Q is the
comparative probability defined by the conditional probability Q, then we
will then have this canonicity requirement:

Can: A ≾P B if and only if ρA ≾P ρ ρB, for all events A and B, conditional
probabilities P , and bijections ρ from the space that P is defined on.

10This condition need not be automatically satisfied for all uniform P1 and P2, as we
should be open to the possibility that there could be more than one uniform conditional
probability. (Cf. note 19, below.)
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This condition is satisfied by any definition of ≾P that in an intuitive sense
“depends only on the values of P and boolean relations between events”,
rather than on set theoretic facts about the specific identities of the sets
that P is defined on, divine preferences, or any other things that are not
preserved by the isomorphism between F and F ′ induced by ρ. In particular,
it is clearly satisfied by TDiff, Union and PDiff.

I do not know if Can fully captures all the intuitions behind the notion of
a canonical definition11, but it provides a very plausible necessary condition
for canonicity.12

3.2. Total comparative probabilities. Let us begin with the special case
of total comparative probabilities.13

Let T be the unit circle, and let F be the algebra of countable unions
of circular intervals or arcs, where a circular interval is the set of points at
angles θ where θ is constrained to lie in some interval of real numbers (includ-
ing the trivial interval [a, a] = {a}). Our main result for total comparative
probabilities is:

Theorem 1. There is no assignment of regular total comparative probabil-
ities ≾P to conditional probabilities P on F where the assignment satisfies
Can.

This result will be an immediate consequence of our Theorem 2 below
together with the existence of a strongly rotationally invariant full condi-
tional probability on the circle [11, 12, 13], where we say that P is strongly

11We might also consider a slightly stronger condition, namely that for any boolean
algebra isomorphism ρ from an algebra F to an algebra F ′, if we define P ρ(A | B) =
P (ρ−1A | ρ−1B), then ≾P and ≾Pρ are order-isomorphic under ρ. In Can this is only
required in the special case of boolean algebra isomorphisms generated by bijections of
the underlying space (the two conditions are equivalent in the case where F includes all
singletons). But since our technical results only require the weaker condition, we might
as well as stick to it.

12We can think of the above characterization of canonicity in terms of isomorphism as
a semantic characterization (in the sense of the semantic/syntactic distinction in logic).
We might instead try to characterize canonicity syntactically, by requiring there to be a
formula Φ(P,A,B) using some specified language L such that for any conditional prob-
ability P , the relation defined by A ≾P B if and only if Φ(P,A,B) is a comparative
probability satisfying additional conditions like Zoom. Specifying the language L so that
it be sufficiently rich to allow any reasonable definition of ≾ while at the same time not
letting in cheating definitions is not that easy. We could always wonder if some further
ingredients shouldn’t be allowed into the language, and hence whether one is being fair
to someone who thinks there is a good definition of comparative probability in terms of
conditional probability but doesn’t know what it is. But in any case, it is very plausible
that whatever plausible formula Φ(P,A,B) we might give, the formula should preserve
boolean-algebra isomorphisms generated by bijections, so we would have Φ(P,A,B) if and
only if Φ(P ρ, ρA, ρB), and hence Can would be satisfied.

13Although there may be cases where it’s plausible to deny totality, there presumably
are some who find totality plausible—for instance, anyone attracted to the fine-grainedness
of hyperreal probabilities is likely to find totality plausible.
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invariant under some collection G of bijections of Ω onto Ω (in our case, the
rotations) provided that P (A | B) = P (gA | B) whenever A ∪ gA ⊆ B.

Thus, conditional probabilities do not contain enough information to de-
fine a total comparative probability.

There is a way to see why this should be expected to be true. The
results in [12, 13] show that are a number of situations, such as uniform
spinners, where one can find full conditional probabilities that satisfy strong
symmetry conditions, but there do not exist total comparative probabilities
that satisfy even weak symmetry conditions. Because of this, assigning a
total comparative probability requires one to break the symmetry in the
conditional probability, and there is no canonical way of doing so.

3.3. Partial comparative probabilities.

3.3.1. Some technical results. What if we drop totality and consider partial
comparative probabilities?

The de Finetti-inspired ordering given by PDiff satisfies the axioms of
partial comparative probability as well as Zoom (see proof in the Appendix),
and clearly satisfies Can. It follows from Theorem 1 that it is not total,
but perhaps we can live with that. There might be events that are just
incomparable.14

The PDiff proposal has a very counterintuitive consequence, since it
implies:

Unfair There are no distinct equiprobable events.

Here, A and B are equiprobable provided that A ∼ B, i.e., both A ≾ B
and B ≾ A. But by PDiff this can only happen if A = B.15 Given
Unfair, there can be no fair coins, dice, lotteries or spinners. This is highly
implausible.

Indeed, this is so implausible that it provides a plausible argument that
de Finetti did not intend PDiff. While it is fairly clear from de Finetti [1,
pp. 566-567] that he intended to say that A ≺ B if and only if A is a proper
subset of B or P (A−B | A∆B) < P (B −A | A∆B), it is not completely
clear under what circumstances he would want to say that A and B are
equiprobable. In PDiff, I took the interpretation that he would want to
say this only if A = B, and hence in defining A ≾ B, I simply replaced the
proper subset relation in de Finetti’s definition of ≺ with a subset relation
when defining ≾.

14Fishburn [3] suggests that highly disparate events, such as predictions about a card
in a game given incomplete information and predictions about future population growth,
will sometimes be incomparable. A more technical possibility is that there is likely to
be incomparability between events such as a uniform spinner landing on a Lebesgue non-
measurable set A and its landing on a measurable set B, when the measure of B lies
between the lower and upper measures of A.

15The same point is true for the version of Easwaran’s [2] ordering when we interpret
it as partial in the way discussed above in note 6.
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There is some reason to think this is not an uncharitable interpretation.
For the alternative is that we try to save the possibility of a fair coin (say)
by having some equiprobability relation ∼ on the events that is weaker than
identity, and in particular that holds between heads (H) and tails (T ), and
then let ≾ be defined as the disjunction A ≺ B or A ∼ B. But this doesn’t
work.

To see that it doesn’t work, consider our fair coin, with its equiprobable
disjoint and mutually exhaustive events H and T , and suppose that we
also have some zero-probability non-empty event E that is not a subset
of H, say the event of an independent random dart hitting the center of
a target, or the event that the coins in some countably infinite collection
of independent fair coins that is also independent of our first coin all land
heads. Let H ′ = H∪E. Note that P (H−H ′ | H∆H ′) = P (∅ | E−H) = 0
but P (H ′ − H | H ∆ H ′) = P (E − H | E − H) = 1, so by the clear part
of de Finetti’s definition we have H ≺ H ′. If we have T ∼ H, then we
will have to have T ≺ H ′ (since if H ′ is more probable than something
equiprobable with T , it is more probable than T ). But H, H − T , T − H
and T ∆ H differ from H ′, H ′ − T , T − H ′ and T ∆ H ′, respectively, by
subsets of the zero-probability set E, and hence respectively have the same
unconditional probabilities. Since H −T = H, T −H = T , and T ∆H = Ω,
we have P (H − T | H ∆ T ) = 1/2 = P (T −H | H ∆ T ), and hence similarly
P (T−H ′ | T∆H ′) = 1/2 = P (H ′−T | T∆H ′), since P (T∆H ′) = P (Ω) = 1.
We also do not have T ⊂ H ′. Thus, we do not have T ≺ H ′ on the account
in question, and hence we cannot have T ∼ H. (This argument is similar to
one given by Thong [19, 18].)

At this point, it is reasonable to ask whether there might be some other
way of canonically defining a partial comparative probability in terms of a
conditional probability that avoids the problems with PDiff and as well as
with variants where ∼ is weaker than identity. I will argue that the answer
is negative.

In the spirit of Thong’s argument [19, 18], suppose we have a uniform spin-
ner choosing a random point on the unit circle T. By the work of Parikh
and Parnes [11] or Theorem 1 in [12, 13] (together with the fact that group
of rotations on the circle is commutative), there is a strongly rotationally
invariant full conditional probability P on T, and presumably some such
strongly rotationally invariant full conditional probability then models our
uniform spinner. But now consider the event T0 of the point being at an
angle between 0◦, inclusive, and 180◦ exclusive, and the event T1 of its being
at an angle between 180◦, inclusive, and 360◦, exclusive. Intuitively we ex-
pect these events to be probabilistically equivalent, i.e., T0 ∼ T1, even if we
do not insist that all events that are rotationally equivalent are probabilisti-
cally equivalent (there exist events A and B that are rotationally equivalent
but where nonetheless A is a proper subset of B, and there we do not expect
probabilistic equivalence [16]).
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But it will turn out that there is no way to canonically generate a regular
partial probability comparison out of a conditional probability that satisfies
Zoom and allows one to have T0 ∼ T1 when ≾ is generated out of the
appropriate strongly rotationally invariant conditional probability.

First, however, note that the same intuitions that pull one to accepting
regularity also pull towards Strong Regularity:

SReg: If A is a proper subset of B, then A ≺ B.

Strong regularity follows from regularity and additivity, since by additivity
if A is a proper subset of B, then ∅ ≺ B−A if and only if A ≺ B (since both
∅ and B − A are disjoint from A and ∅ ∪ A = A while (B − A) ∪ A = B).
However, assuming strong regularity is weaker than assuming additivity and
regularity16, and we saw that regularity follows from Zoom, so if we can
formulate a negative result in terms of strong regularity instead of additivity
and regularity, it is better to do so.

Identify our spinner probability space with T. Let T0 be the set of points
on T with angles in [0◦, 180◦) and let T1 be the set of points on T with angles
in [180◦, 360◦). As before, let F be all countable unions of circular intervals
on T.

Theorem 2. Suppose that for every conditional probability P there is a
transitive relation ≾P satisfying both SReg and Can. Then for every
strongly rotationally invariant conditional probability Q on F , we have nei-
ther T0 ≾Q T1 nor T1 ≾Q T0.

Recall that there is a strongly rotationally invariant conditional proba-
bility Q on all subsets of T [11, 12, 13], and hence on F , and it is plausible
that some such probability appropriately models our spinner. Thus, we
have a powerful argument that there is no way to define partial comparative
probabilities in terms of conditional probabilities.

As noted before, Theorem 1 follows immediately from Theorem 2 and the
existence of Q.

The above argument was run with strong rotational invariance. Weak
invariance under a symmetry ρ is the even more plausible condition that
Q(ρA | ρB) = Q(A | B), which may appeal to some readers. I do not know
if strong rotational invariance in Theorem 2 can be replaced with weak
rotational invariance. However, if we replace strong rotational invariance
with weak invariance under reflections about the center of the circle, the
result remains true. The reason is that weak invariance under reflections
implies strong invariance under reflections [17], and strong invariance under
reflections implies strong invariance under rotations, since any non-trivial
rotation can be generated by two reflections about different lines. Moreover,

16E.g., let Ω = {1, 2, 3}, and define A ≲ B if and only if either (a) A = B, or (b) |A| <
|B|, or (c) A = {1, 3} and B = {2, 3}. It is easy to see that this is a strongly regular
partial ordering, but it is not additive since {1, 3} ≲ {2, 3} but not {1} ≲ {2}.
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not only is there a strongly rotationally invariant conditional probability on
T, there is a strongly reflection-invariant one.17

3.3.2. The equiprobability of T0 and T1. Now, not everyone will accept it as
a constraint on a uniform spinner that T0 and T1 are equiprobable. One
might, after all, assign non-classical probabilities to a countably infinite fair
lottery in such a way that all singletons are equiprobable and that getting
an even number is equiprobable with getting an odd number, but one might
also do so in such a way that the evens are not equiprobable with the odds,
and one might think that both count as fair.18

For a reader who is not convinced that uniformity requires the equiprob-
ability of T0 and T1, I offer a somewhat more complex argument. Given
regularity, there indeed is plausibly no such thing as the uniform spinner.19

But then it is intuitively plausible among the uniform spinners, there is at
least one where T0 and T1 are equiprobable, even if there are other uniform
spinners where they are not comparable. Next note that as observed ear-
lier there actually is a strongly rotationally invariant conditional probability
Q on all subsets of the circle. Thus we would expect there to be possible
uniform spinners modeled by such invariant probabilities. The hypothesis I
am arguing against is that comparative probabilities are canonically derived
from conditional probabilities. On that hypothesis, the comparative prob-
abilities for a uniform spinner where T0 and T1 are equiprobable will have
to be derived from conditional probabilities. According to Theorem 2, they
must then be derived from a uniform spinner with conditional probabilities
that are not strongly rotationally invariant. But this is quite counterin-
tuitive. If there are uniform spinners modeled by a strongly rotationally
invariant conditional probability, and there are uniform spinners where T0
and T1 are equiprobable, we would expect this equiprobability to be genera-
ble from a strongly rotationally invariant conditional probability, assuming
that comparative probabilities are generated from conditional probabilities.

17This follows from Theorem 1 in [13] (see corrected proof in [12]) and the fact that
there is no reflection-paradoxical subset of the circle. For if A is a reflection-paradoxical
subset of the circle, then {θ : eiθ ∈ A} is a reflection-paradoxical subset of the real line,
but that is impossible since the isometries of the real line are a supramenable group. [20,
Th. 14.21 and Cor. 14.25].

18I am grateful to an anonymous reader for this objection.
19Consider two different ways of running a spinner, both of which are intuitively uni-

form. On the first one, we just “uniformly” spin the spinner, and report the final angle.
On the second one, take the final angle θ from the first spinner, then double it to get 2θ,
and then report the angle in [0, 360◦) degrees that is equivalent to 2θ. Both appear to be
uniform, but if all singletons are equally likely with the first spinner, they are still equally
likely with the second—but each singleton is twice as likely as with the first spinner, since
the second spinner reports the same angle ϕ in [0, 360◦) when the first spinner yields ϕ/2
as when the first spinner yields ϕ/2 + 180◦.
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3.3.3. One-way additivity. Finally, observe that the total ordering given by
Union, while it must fail to have additivity by Theorem 1 (since it has all
the other properties mentioned), does satisfy the one-way additivity axiom:

Add1: If C is disjoint from A ∪B and A ≾ B, then A ∪ C ≾ B ∪ C,
which is perhaps the even more intuitive half of additivity.

As show in the Appendix, Union is unsatisfactory because it fails the
very plausible axiom Comp. One might wonder if one could get a good
probability ordering out of a conditional if we replaced additivity with Add1
and Comp. However, it is easy to show that Add1 conjoined with Comp
implies full additivity, so this is not tenable.20

4. Conclusions

Two attempts to define of total comparative probabilities in terms of full
conditional probabilities fail to be satisfactory, one by violating the very
plausible Complementarity Axiom and the other, even worse, by violating
transitivity. This failure is no accident: there is no canonical definition
of total comparative probabilities in terms of full conditional probabilities.
Thus, there is an important sense in which a comparative probability as-
signment contains information that goes beyond the information in a full
conditional probability. One might have hoped that recovering partial com-
parative probabilities will work better than recovering total ones. However,
on the plausible assumption that a fair spinner is equally likely to fall in the
range from 0◦, inclusive, to 180◦, exclusive, as it is to fall in the range from
180◦, inclusive, to 360◦, exclusive, this hope is also undercut by our results.

We thus have good reason to think that primitive conditional probabil-
ities, like classical and comparative probabilities, fail the comprehensive-
ness desideratum on a model of probabilities. On the other hand, the non-
Archimedean model appears to fail non-superfluity by containing too much
information [5, 2, 14].

We end by sketching examples of the three possible ways out of the diffi-
culty.

First, we can combine models that are individually non-comprehensive
but also non-superfluous to get a model that we hope is both comprehensive
and non-superfluous. For instance, the classical and comparative models
had different difficulties with comprehensiveness, while neither appeared to
suffer from superfluity of information. The classical approach had trouble
with zero-probability events while the comparative model had trouble with
distinctions between probabilities in worlds with small probability spaces.

20Suppose we have Add1 and Comp, and suppose A∪C ≾ B∪C with C disjoint from
A∪C. Then (B∪C)c ≾ (A∪C)c by Comp. Thus, (B∪C)c∪C ≾ (A∪C)c∪C by Add1.
By Comp and De Morgan, (A ∪ C) ∩ Cc ≾ (B ∪ C) ∩ Cc, so A ≾ B since C is disjoint
from A and B.
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Perhaps we can then say that probabilistic reality has two aspects: a numer-
ical and a comparative one, and both numerical and comparative probabili-
ties are fundamental. Such a combination may have been what de Finetti [1]
actually had in mind. Combining primitive conditional probabilities with
comparative probabilities is another option.21 That said, such combinations
appear inelegant.

Second, we can consider or develop a model beyond the four most com-
mon ones. For example, Koopman [7] introduced conditional comparative
probabilities and James Hawthorne [6] has developed this suggestion in de-
tail. Such conditional comparative probabilities might be able to surmount
the small-worlds objection to taking comparative probabilities as the correct
model of probabilistic phenomena on the grounds. Recall the difficulty posed
by a world containing a single toss of an unfair coin, where unconditional
comparative probabilities were not able to specify how unfair the coin is.
But very speculatively (and going beyond what Koopman and Hawthorne
likely intend for their accounts) one could try to enrich the probability space
by including counterfactual options that are physically unavailable in a given
world. Thus, in a small world with one unfair coin, one might include in the
probability space physically unavailable (and hence classically zero prob-
ability) throws of many-sided dice, and then compare the unconditional
chance of our unfair coin being heads to chances of throws of many-sided
dice conditionally on such throws being made. That said, there is something
uncomfortable about understanding the chances of coin tosses in our world
in terms of physically unavailable dice throws. And inclusion of such tosses
may seem to violate the non-superfluity desideratum22, though whether this
is so is not completely clear, since reality might include facts about coun-
terfactual situations.

Finally, we might dispute the critiques of one or more of the four models.
For example, of the four, the classical probability model has the advantage
that it is the one that most mathematicians and statisticians use and has
shown itself especially rich in practical and theoretical applications. Perhaps
we can follow standard mathematical practice and bite the bullet on the
zero-probability problem, denying that the event of 0 = 1 is less likely
than the spinner’s landing at a specific point. On the other hand, if the
intuitions about comparing zero-probability events are taken as fixed, one
might simply take comparative probabilities as fundamental and bite the
bullet on the problem of small-worlds, denying that there is a fact about
whether the coin in the single-toss world is fair or not.23

21On the other hand, combining primitive conditional probabilities with classical prob-
abilities gains nothing, since primitive conditional probabilities already contain all of the
information of the classical model. And a combination including non-Archimedean prob-
abilities is going to suffer from the superfluity in non-Archimedean probabilities.

22I am grateful to an anonymous reader for this point
23I am grateful to two anonymous readers for a number of comments that have greatly

improved the philosophical argumentation and clarity of this paper.
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Appendix: Some proofs

We begin by giving the promised counterexample to the transitivity of
TDiff. Let Ω = {a, b, c}, and define a non-Archimedean finitely-additive
probability Q on Ω by Q({a}) = Q({b}) = 1/2 − α and Q({c}) = 2α for
an infinitesimal α > 0. Define P (A | B) = StdQ(A ∩ B)/Q(B) for B ̸= ∅,
where Stdx is the standard part of x, i.e., the real number closest to x,
assuming x is finite.24 Stipulate P (A | ∅) = 1. Then P satisfies all the
axioms of a full conditional probability.

Now, let A = {a} and B = {b, c}. Then A−B = A and B −A = B, and
A∆B = Ω. By TDiff, we have A ∼ B (i.e., A ≾ B and B ≾ A) since

P (A | Ω) = Std(1/2− α) = 1/2 = P (B | Ω).

Next let A′ = {a} and B′ = {b}. Then A′−B′ = A′ and B′−A′ = B′ while
A′ ∆B′ = {a, b}. Thus:

P (A′ | A′∆B′) = P ({a} | {a, b}) = 1/2 = P ({b} | {a, b}) = P (B′ | A′∆B′),

and so A′ ∼ B′. We have thus shown that {b, c} ∼ {a} and {a} ∼ {b}. If ≾
were transitive, it would follow that {b, c} ∼ {b}, so {b, c} ≾ {b}. But:

P ({b, c} − {b} | {b, c}∆ {b}) = P ({c} | {c}) = 1

> 0 = P ({b} − {b, c} | {b, c}∆ {b}),

since {b} − {b, c} = ∅. So by TDiff we would have {b} ≺ {b, c}, contra-
dicting {b} ∼ {b, c}.

The same P and Ω also show that the Pruss definition Union violates
Comp. Let A = {a, b} and B = Ω. Then P (A | A∪B) = 1 = P (B | A∪B),
so A ∼ B by Union. But Ac = {c} and Bc = ∅ while P (Ac | Ac ∪Bc) = 1
and P (Bc | Ac ∪Bc) = 0, so we do not have Ac ≾ Bc.

Proposition 1. Say that A ≾ B provided that A ⊆ B or P (A−B | A∆B) ≺
P (B−A | A∆B). This is a partial comparative probability satisfying Zoom.

Proof. Reflexivity and Pos are obvious. Moreover, ≾ is the union of two
orderings, one defined by A ⊆ B and the other by P (A − B | A ∆ B) ≺
P (B − A | A ∆ B). The former obviously satisfies additivity. To see that
the latter satisfies additivity, note that if C is disjoint from A ∪ B, and
A′ = A ∪ C and B′ = B ∪ C, then A− B = A′ − B′, B − A = B′ − A′ and
A′ ∆B′ = A∆B, so we have additivity.

That leaves transitivity and Zoom. For transitivity, suppose A ≾ B and
B ≾ C, and we must prove A ≾ C. If A ⊆ B and B ⊆ C, we are done.

Next suppose A ⊆ B, P (B−C | B∆C) ≺ P (C−B | B∆C) and C ⊆ D.
Then

P (B − C | (B ∆ C) ∪ (A∆D)) ≤ P (C −B | (B ∆ C) ∪ (A∆D)),

24A value x in a non-Archimedean field is finite provided that −N < x < N for some
integer N . We can define Stdx = sup{y ∈ R : y < x}.
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with equality only if

P (B ∆ C | A∆D) = 0,

since if P (U | W ) < P (V | W ) and U ∪ V ∪W ⊆ W ′, then P (U | W ′) ≤
P (V | W ′) with equality only if P (W | W ′) = 0, since P (U | W ′) = P (U |
W )P (W |W ′).

Suppose we don’t have equality. Then

P (A−D | (B ∆ C) ∪ (A∆D)) < P (D −A | B ∆ C ∪ (A∆D)),

since A − D ⊆ B − C and C − B ⊆ D − A. Since A − D ⊆ A ∆ D and
D −A ⊆ A∆D, it follows that:

P (A−D | A∆D) < P (D −A | A∆D),

and so A ≾ D. Suppose now that we have P (B ∆ C | A ∆ D) = 0. Then
P (A−D | A∆D) = 0, since A−D ⊆ B−C ⊆ B∆C. But unless A∆D = ∅,

1 = P (A−D | A∆D) + P (D −A | A∆D),

so

P (A−D | A∆D) = 0 < 1 = P (D −A | A∆D),

and once again A ≾ D. Suppose now that A∆D = ∅, in other words that
A = D. Then C ⊆ D = D ⊆ B, which is incompatible with P (B − C |
B ∆ C) < P (C −B | B ∆ C).

The remaining case of transitivity we need to handle is where P (A−B |
A∆ B) < P (B − A | A∆ B) and P (B − C | B ∆ C) < P (C − B | B ∆ C).
Letting E = (A∆B) ∪ (B ∆ C), we then have:

(1) P (A−B | E) ≤ P (B −A | E)

and

(2) P (B − C | E) ≤ P (C −B | E),

and the only we way we can have equality in both (1) and (2) is if

P (A∆B | E) = 0 = P (B ∆ C | E),

which is impossible by additivity and the definition of E, unless A ∆ B =
B ∆ C = ∅, which itself is incompatible with our assumptions. So, by
additivity from (1) and (2), together with strictness in at least one of them,
we must have:

(3) P ((A−B) ∪ (B − C) | E) < P ((B −A) ∪ (C −B) | E).

Now, in general, A − C = ((A − B) ∪ (B − C)) −D where D = (B − (A ∪
C)) ∪ (A ∩ C). Note that D ⊆ (A− B) ∪ (B − C). Swapping A and C, we
see that C − A = ((C − B) ∪ (B − A)) −D and D ⊆ (C − B) ∪ (B − C).
From (3) it follows by additivity that:

P (A− C | E) < P (C −D | E).

Since A∆ C ⊆ E, it follows that P (A − C | A∆ C) < P (C − A | A∆ C),
and so A ≾ C.
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It remains to show Zoom. Suppose P (A | C) < P (B | C). Then P (A −
(A ∩ B) | C) < P (B − (B ∩ A) | C) by additivity, and so P (A − B | C) <
P (B − A | C). Since (A − B) ∪ (B − A) ⊆ A∆ B ⊆ A ∪ B ⊆ C, it follows
that P (A−B | A∆B) < P (B−A | A∆B), and the proof is complete. □

Proof of Theorem 2. Let Q be strongly rotationally invariant. We will show
that T1 ≾Q T0 implies a contradiction. By symmetry (rotate the whole
set-up by π), it will follow that T0 ≾Q T1 also implies a contradiction.

Thus to obtain a contradiction, assume T1 ≾Q T0.

Write T = {eiθ : θ ∈ [0, 2π)}. Let ϕ ∈ (0, π) be an irrational multiple
of π. Let wk : R → [kπ, (k + 1)π) for k = 0, 1 be functions such that
wk(x)− x is an integral multiple of π (i.e., wk(x) = x− π⌊x/π⌋+ kπ). Let
Zk = {wk(nϕ) : n ∈ N} where N is the non-negative integers.

Now define a bijection ρ of T onto T as follows, where θ ∈ [0, 2π):

ρ(eiθ) =



ei(θ+ϕ) if θ ∈ Z0 ∩ [0, π − ϕ)

ei(θ+ϕ−π) if θ ∈ Z0 ∩ [π − ϕ, π)

ei(θ−ϕ) if θ ∈ Z1 ∩ [π + ϕ, 2π)

ei(θ−ϕ+π) if θ ∈ Z1 ∩ (π, π + ϕ)

1 if θ = π

eiθ otherwise.

Write TU = {eiθ : θ ∈ U} for a set U of real numbers. Let A1 = T(Z0 ∩
[0, π)), A′

1 = T(Z0 ∩ (0, π)), A2 = T(Z1 ∩ (π, 2π)), A′
2 = T(Z1 ∩ [π, 2π)),

A3 = T{π} = {−1}, A′
3 = T{0} = {1}, and A4 = A′

4 = T − T(Z0 ∪ Z1).
Then A1, A2, A3, A4 are a partition of T and so are A′

1, A
′
2, A

′
3, A

′
4, while ρ

is a bijection of Ai onto A
′
i for each i. Hence ρ is a bijection of T onto T.

Note too that all the Ai and A
′
i are countable unions of circular intervals.

Furthermore, ρ restricted to each individual set Ai is a rotation. It follows
by the finite additivity of Q and its strong rotational invariance that Q is
strongly ρ-invariant, i.e., if E ∪ ρ[E] ⊆ F , then:

Q(E | F ) =
4∑
i=1

Q(E ∩Ai | F )

=

4∑
i=1

Q(ρ[E ∩Ai] | F )

= Q

(
4⋃
i=1

ρ[E ∩Ai] | F

)
= Q(ρ[E] | F ).

Now let τ be rotation by angle π, and let ψ(z) = τ(ρ(z)). Since Q is strongly
rotationally invariant and strongly ρ-invariant, it is strongly ψ-invariant.
Hence by [17, p. 279], Q is weakly ψ-invariant, i.e., Qψ = Q.
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Then by Can, since T1 ≾Q T0, we have ψ[T1] ≾Q ψ[T0]. But ρ[T0] =
T(0, π) and ρ[T1] = T[π, 2π], so ψ[T0] = T(π, 2π) and ψ[T1] = T[0, π]. Thus
(4) T[0, π] ≾Q T(π, 2π).
Then by Strong Regularity and our assumption that T1 ≾Q T0, we have:

T(π, 2π) ≺Q T1 ≾Q T0 ≺ T[0, π],
which by transitivity contradicts (4). □
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