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Abstract

The idea of using lattice methods to provide a mathematically
well-defined formulation of realistic effective quantum field theories
(QFTs) and clarify their physical content has gained traction in the
last decades. In this paper, I argue that this strategy faces a two-
sided obstacle: realistic lattice QFTs are (i) too different from their
effective continuum counterparts even at low energies to serve as their
foundational proxies and (ii) far from reproducing all of their empir-
ical and explanatory successes to replace them altogether. I briefly
conclude with some lessons for the foundations of QFT.

1 Introduction

Realistic quantum field theories (QFTs), which still figure as the most fun-
damental and empirically successful theories ever built, have been fraught
since their inception with deep mathematical and conceptual issues. The
foundational toll even seems to have grown out of control over time, moving
from infinite energy levels and infinite probabilistic predictions to divergent
perturbative series, divergent interaction parameters at a finite scale, incon-
sistent perturbative schemes, and ill-defined functional measures, to name
only some of the toughest latecomers.

Physicists have designed two main strategies in response: (i) a pragmatic
work-around strategy based on renormalization and effective field theory
(EFT) methods; (ii) an axiomatic start-afresh strategy based on more ad-
vanced mathematical methods. The first has yielded approximate models
whose empirical success remains unprecedented in the history of physics but
whose mathematical and conceptual structure still lacks a proper founda-
tion. For instance, the functional measure of realistic continuum EFTs is still
ill-defined, strictly speaking. The second strategy has enabled physicists to
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identify candidate sets of axioms and well-defined mathematical structures
for QFTs. But they are still yet to be shown to be instantiated by sufficiently
realistic models. As it stands, although both strategies have contributed in
their own way to the foundations of QFT, neither has succeeded in meeting
all the legitimate demands of interested parties yet.1

There is nonetheless a promising middle path. The felt need to account
more precisely for the mathematical structure of successful models, boosted
by the widespread belief that QFT is probably not meant to deliver fun-
damental ones, has made increasingly attractive the idea of reformulating
realistic QFTs as lattice models. As for renormalization and EFT methods,
this strategy requires relinquishing some of their most cherished features:
most obviously, their continuous space-time symmetries. But since these
symmetries are unlikely to be fundamental and since there is not yet any
ideal solution, there has been a growing recognition that lattice QFT cur-
rently provides a legitimate, if not the best, way to put realistic effective
models on a perfectly firm mathematical and conceptual footing (e.g., Wal-
lace, 2006; Duncan, 2012; J. D. Fraser, 2020b). Lattice QFT is indeed
arguably the only game in town that has exact realistic interacting models
and thus an adequate set of interpretative targets (cf. J. D. Fraser, 2020a).2

I argue in this paper that this middle-path strategy faces a two-sided ob-
stacle. The most interesting side in my sense is theoretical: realistic lattice
QFTs are just too different from realistic continuum EFTs even at low en-
ergies to serve as their foundational proxies, where, by ‘foundational proxy,’
I mean a mathematically well-defined reformulation of a theory (or model)
that is sufficiently similar to its original formulation in the relevant respects
to clarify its physical content (I provide more detail in section 4). We may of
course bypass this obstacle by declaring that QFT was not at all the way we
thought it was and endorsing lattice QFT as a new foundation for realistic ef-
fective QFTs, independently of its relationship to existing continuum EFTs.
But we face again a serious albeit somewhat less interesting obstacle in this
case: namely, lattice QFTs are far from reproducing all the empirical and
explanatory successes of their effective continuum counterparts to replace
them altogether. In fact, the very idea of using lattice QFT for this purpose
would even sound incongruous to many lattice practitioners. Lattice QFTs
have been designed to probe non-perturbative aspects of their continuum

1In fact, mixed methods involving mathematically more rigorous versions of renor-
malization and EFT methods have become increasingly popular among axiomatic and
algebraic quantum field theorists, witness the development of the constructive field the-
ory and causal perturbation theory programs (see, e.g., J. D. Fraser and Rejzner, 2024;
Blum, forthcoming, for more historical detail). As we will see below, lattice QFT can be
seen as a particularly successful instance of this trend.

2I use ‘effective QFT’ to refer to any kind of non-fundamental QFT model and ‘con-
tinuum EFTs’ for the subset of such models built on a continuum background.
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counterparts, whether fundamental or effective (e.g., Creutz, 1985, p. 5;
Degrand and Detar, 2006, p. 1). But they are rather impractical for the
set of standard perturbative applications that underwrite the remarkable
success of realistic QFTs (see, e.g., Capitani, 2003, for an introduction to
lattice perturbation theory).

The paper is organized as follows. Section 2 briefly rehearses key aspects
of continuum QFTs together with the set of traditional issues that affect
them. Section 3 introduces lattice QFT, emphasizing, in particular, how it
fully dissolves those issues. Section 4 provides a detailed account of how
lattice QFTs differ from their effective continuum counterparts. Section 5
responds to various attempts to save the foundational role of lattice QFT.
Section 6 concludes.

Three disclaimers are in order. First, the argument is largely independent
of interpretative issues surrounding cut-offs and the existence of disanalogies
between particle and condensed matter physics (e.g., Wallace, 2006, 2011;
D. Fraser, 2009, 2011, 2020; Rosaler and Harlander, 2019). In particular,
taking lattice QFTs seriously for foundational purposes does not require
interpreting their lattice spacing overly strictly, say, as referring to some
fundamental discreteness. As for continuum EFTs, we may perfectly well
interpret the lattice spacing of a model as some unknown scale beyond which
the effects of new physics become too significant for the model to be able to
accommodate them.

Second, the argument is largely independent of the epistemic standing of
the EFT framework. There are indeed very good theoretical and empirical
reasons to believe that the most fundamental and empirically successful
QFTs built so far are best formulated as effective theories, independently of
their ill-defined mathematical and conceptual structure (see, e.g., Langacker,
2017, sec. 10.1; Isidori et al., 2024, pp. 2-5, for key limitations in the case
of the standard model (SM) of particle physics). I only take issue with the
additional step of taking our best continuum EFTs to be best formulated as
lattice QFTs here.

Third, continuum EFTs form a diverse group including smooth momen-
tum cut-off models, sharp momentum cut-off models, and dimensionally
regularized models restricted to a UV-bounded segment of a renormaliza-
tion group (RG) flow, to mention only a few (see, e.g., Bain, 2013; Rivat,
2025, sec. 2, for an introduction to continuum EFTs). I will take the latter
as my reference point when comparing lattice QFTs with continuum EFTs
in section 4. Diverse types of continuum EFTs may well exhibit different
low-energy features too. But although I suspect that those differences (if
any) are much less significant than for lattice QFTs, I will not have the
space to argue for that here.
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2 The hotbed of continuum QFTs

The most successful formulations of realistic QFTs, whether putatively fun-
damental or effective, rely on the path (or functional) integral formalism.
To a large extent, this is also true of generalizations of standard QFTs, say,
to non-equilibrium situations and gravitational contexts, as well as of the
discretized versions below. I will accordingly start by presenting some of its
key features, as a manner of introduction to the hotbed of issues that plague
realistic QFTs.

Particle physicists are typically interested in computing the probability
amplitude ⟨f |i⟩ for a given set of fields, say, a scalar field ϕ(x), to evolve
from some initial configuration state |i⟩ to some final configuration state |f⟩.
To obtain this kind of experimental quantity, they usually first compute the
probability amplitude ⟨Ω|ϕ(x1)...ϕ(xn)|Ω⟩ for a more generic process where
the field of interest, which is initially in its vacuum state |Ω⟩, transits into
various configuration states across space-time ϕ(x1)...ϕ(xn)|Ω⟩ until it decays
again into its vacuum state |Ω⟩. These generic probability amplitudes are
referred to as “correlation functions” in the general case. As it happens,
they can be derived from an even more elementary mathematical building
block Z[J ] called the “generating functional,” which encodes all the required
dynamical information about the system and reduces to the so-called “path
integral” once we ignore external sources J :

Z[0] =

∫
d[ϕ(x)]eiS[ϕ(x)], (1)

where the measure d[ϕ(x)] specifies the distance between two arbitrarily
close configurations and the action S encodes the dynamics of the system.
Roughly put, the path integral represents the time-evolution of the system by
attributing different weights eiS to the different intermediary configurations
that ϕ(x) may evolve into in between some initial and final states.

Despite the remarkable success of this formalism, realistic QFTs still re-
main affected by serious mathematical and conceptual issues. Perhaps the
most ancient and well-known one, the so-called “problem of ultraviolet diver-
gences,” stems from the fact that most of the correlation functions obtained
by applying perturbative methods to the path integral are infinite when the
model of interest ranges over arbitrarily high energies. The renormalization
program brings some relief (see, e.g., Butterfield and Bouatta, 2015; Rivat,
2019, for a philosophical discussion). But: (i) many perturbatively renor-
malized realistic QFTs still have at least some of their interaction parameters
diverge either at some low- or high-energy scale (the so-called infrared and
ultraviolet “Landau poles”); (ii) renormalized experimental quantities typ-
ically take the form of asymptotic perturbative series, which means (very
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roughly) that they diverge in a relatively well-behaved way. To this day,
none of these more advanced issues has been fully solved by constructing
more robust realistic models or using improved approximation methods. For
instance, general considerations suggest that most of the perturbative series
obtained from realistic QFTs are not Borel summable, which means that
they cannot be uniquely matched to some exact function with the help of
this rather natural resummation method (see, e.g., Fischer, 1997; Beneke,
1999, for more detail; Miller, 2021, 2023, for a discussion of the philosophical
significance of asymptotic perturbative series).

But that is not all. Realistic QFTs are also strewn with a host of more
abstract mathematical and conceptual issues that cast doubt on the well-
standing of the QFT framework itself and its various approximation schemes
(rather than on a specific set of realistic models). For instance, more ab-
stract investigations into the structure of QFT have shown that the stan-
dard implementation of perturbative methods in the presence of interactions
is inconsistent, strictly speaking. This result is enshrined in what came
to be known as Haag’s theorem (see, e.g., Earman and D. Fraser, 2006;
Miller, 2018; Mitsch et al., 2024, for a philosophical discussion). The use
of infinite-dimensional Hilbert spaces is also usually taken to raise impor-
tant conceptual and interpretative issues (see, e.g., Ruetsche, 2011; Baker,
2016; Earman, 2020, for a philosophical discussion of unitarily inequivalent
representations and non-separable Hilbert spaces).

The path integral formulation of realistic models also comes with its own
mathematical and conceptual twists. Two are worthy of notice for models
involving interacting bosonic fields. First, the path integral measure d[ϕ(x)]
does not have a mathematically precise definition. The reason runs deep:
little is known about the structure of the space of functions over which
we integrate.3 Second, the path integral Z contains a complex undamped
exponential term exp(iS[ϕ(x)]) that oscillates widely for configurations ϕ(x)
that are far from minimizing S. There is thus in general no reason to expect
Z to converge.

As it happens, EFT methods have brought a welcome pragmatic solution
to most of these issues. For instance, if we introduce a sharp momentum cut-
off at low and high energies, we immediately obtain finite perturbative pre-
dictions. UV (resp. IR) Landau poles can also be easily avoided by imposing
a sufficiently low-energy (resp. high-energy) boundary on renormalization-
scale-dependent interaction parameters. And even if we do not restrict the
range of realistic models so abruptly, or even explicitly, treating them as
renormalized continuum EFTs already goes a long way toward taming their
most threatening infinities. In particular, the traditional Landau pole sin-

3Strictly speaking, the same issue arises for fermionic fields. But it is less pressing
since all the functional integrals involving Grassmann variables are finite.
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gularities affecting realistic models seem to disappear once we introduce
higher-order interaction terms (see, e.g., Djukanovic et al., 2018, for a dis-
cussion).

The EFT framework also cuts off the natural expectation of making ex-
act predictions. Continuum EFTs are indeed designed to make more or less
precise predictions by taking into account the contributions of a larger or
smaller set of higher-order interaction terms (see, e.g., Georgi, 1993, p. 214,
for a simple explanation). To make arbitrarily precise perturbative predic-
tions, we need in principle to include every possible interaction term (since
they are eventually all required when we consider higher orders in pertur-
bation theory) and thus fix the value of an infinite number of independent
parameters. Since this is impossible in practice, the threat of asymptotic
series loses much of its bite in the EFT framework: there is just no reason
to take seriously the full series for predictive purposes.

For all its merits, the standard continuum formulation of EFTs is still
far from providing a principled answer to the most deeply entrenched issues
affecting realistic QFTs. Consider again the issue of asymptotic perturba-
tive series, which take the schematic form A =

∑
n n! g

nAn in the simplest
cases, with g some interaction parameter. Imposing a finite cut-off on each
sub-amplitude An does not undercut what typically makes those series diver-
gent, to wit, the factorial contribution n! at each perturbative order. There
is thus in general no reason to expect the perturbative series derived from
continuum EFTs to have better convergence properties than those of their
perturbatively renormalizable counterparts—if anything, the new contribu-
tions arising from higher-order interaction terms at each perturbative order
make the situation even worse. One may of course try to massage the diver-
gent behavior of perturbative series by using Borel resummation techniques
for instance. But similar types of ambiguities seem to arise in standard cases
of EFTs too (see, e.g., Luke et al., 1995, for a discussion).

Perhaps even more problematically, continuum EFTs are still formulated
by means of a continuum path integral with an ill-defined measure. To take
the conceptually simplest example, suppose that the continuum EFT of in-
terest is defined by separating its field variables according to some separation
scale Λ, i.e., ϕ(x) = ϕ<Λ(x) + ϕ>Λ(x), and integrating out its high-energy
field configurations ϕ>Λ(x). The resulting path integral is still formulated
with a similar continuum measure:

Z[0] =

∫
d[ϕ<Λ(x)]e

iSeff[ϕ<Λ(x)], (2)

with eiSeff[ϕ<Λ(x)] =

∫
d[ϕ>Λ(x)]e

iS[ϕ<Λ(x),ϕ>Λ(x)].
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Worse still, the very definition of the effective action Seff is on unstable
foundations, insofar as it is defined by means of a functional integral average
over a continuum of high-energy field configurations.4

To sum up, continuum EFTs do bring some relief. Yet they still inherit
some of the deepest mathematical and conceptual issues that affect realistic
continuum QFTs. For those who like to keep their feet on firm mathematical
ground and work with concrete realistic models, the lattice formulation of
QFTs offers a way out, as we are now about to see (see, e.g., Montvay
and Münster, 1994; Smit, 2002; Moore, 2003; Maas, 2020, for conceptually
insightful introductions).

3 Lattice QFTs to the rescue

The key idea of lattice QFT is to reduce continuum quantum fields to finite-
dimensional systems by assigning field variables only to every site and link
of a discrete lattice of finite extent. The most common choice is to pick a
periodic hypercubic Euclidean lattice with spacing a and size na, with n4

the total number of lattice points, i.e., M = {x|xµ/a ∈ [0, n[}.5 In the case
of our simple scalar example, the system is thus specified by assigning a
field variable ϕ(x) at each lattice point x. The Fourier transform of ϕ(x)
in momentum space, i.e., ϕ(p), takes values in the first Brillouin zone BZ =
] − π/a, π/a]4. For a finite-dimensional lattice, both ϕ(x) and ϕ(p) take
values on finitely many position and momentum sites, respectively. And all
the usual continuous derivatives and integrals in position and momentum
space are replaced by differences and sums.

From there, the path integral takes a familiar form:

Z[a] =

∫
Πxdϕ(x)e

−S[ϕ(x),a], (3)

where the continuum integration measure is replaced by a discrete product of
Lebesgue measures at each lattice point x. Although a different formulation
is usually used for concrete applications, the discretized action for ϕ4-theory

4Note that imposing a sharp momentum cut-off, either on the perturbative integral
expression of correlation functions in momentum space or at the level of the path integral
measure, is not the same as discretizing the model of interest (see, e.g., Rivat, 2019, pp.
9-10, for a toy example).

5Other choices are of course possible (e.g., a discretized space with continuous time, a
random lattice). But a hypercubic Euclidean lattice is often privileged for computational
purposes. For convenience, I will sometimes use a lattice of infinite extent M = aZ4 to
simplify equations in what follows.
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can also be expressed in a familiar form:

S[ϕ, a] =
1

2

∑
x,µ

a4(∂fµϕ∂
f
µϕ+m2ϕ2) +

λ

4!

∑
x

a4ϕ4(x), (4)

with ∂fµϕ(x) = (ϕ(x + µ) − ϕ(x))/a the forward derivative, λ some inter-
action parameter, and m the mass of the field. The action involves both a
sum over every possible direction µ within each elementary hypercube and
every discrete point x in the hypercubic lattice. As in standard QFT, we can
use the discrete path integral to define a generating functional Z[a, J ] and
derive correlation functions ⟨ϕ(x1)...ϕ(xn)⟩ on the lattice, either with tradi-
tional perturbative methods in the interaction parameter, other perturba-
tive methods like the strong coupling expansion, or even non-perturbatively
through numerical simulations (depending on the model and one’s aims).

Although ϕ4-theory is used as a component part of realistic QFTs, the
real power of the lattice comes in full display in the context of lattice gauge
theories. The latticization involves a new set of concepts in this case, two of
which are particularly important. The first is the link variable U(x, x+ µ),
which links the value of a field, say, a scalar field or a spinor field, at a
point x to its value at a neighboring point in the µ direction. We can then
define a gauge field Aµ(x) = Aa

µ(x)T
a as the generator of this elementary

transformation, i.e., U(x, x+ µ) = exp(aAµ), with T
a the generators of the

relevant Lie algebra used for a given gauge model. Note that Aµ lives on a
link, strictly speaking. The second is the plaquette variable along a closed
path. The most elementary plaquette variable defined around the smallest
square of the lattice is given by:

Up = U(x, x+ µ)U(x+ µ, x+ µ+ ν)U †(x+ ν, x+ µ+ ν)U †(x, x+ ν). (5)

We can again define the field strength Fµν(x) as the generator of this el-
ementary transformation Up = exp(a2Fµν). And we can of course define
plaquette variables around more complicated loops (Fig. 1).

Coming back to dynamical matters, the simplest and most common
gauge-invariant action for a pure lattice gauge theory is the so-called “Wilson
action:”

S[U ] =
∑
p

β
[
1− 1

dF
Re(TrUp)

]
. (6)

The index p runs over arbitrary elementary plaquettes. The trace runs over
gauge indices (e.g., Tr(FµνF

µν) = F a
µνF

aµν , with a = 1, ..., 8 for SU(3)). dF
is the dimension of the fundamental representation of the gauge group and
β = 2dF/g

2, with g some interaction parameter chosen so that S[U ] reduces
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Figure 1: An elementary plaquette (a) and an arbitrary plaquette (b)
in two dimensions.

to the standard pure gauge action in the (classical) continuum limit a→ 0:

S =
1

g2

∑
x,µ,ν

a4Tr(FµνF
µν) +O(a5). (7)

Two remarks are in order at this point. First, the action is automatically
invariant under local gauge transformations U ′(x, x + µ) = Λ−1(x)U(x, x +
µ)Λ(x+ µ) (since TrU

′
p = TrUp). Second, the link variables can be used to

couple other field variables located at lattice sites:

Z[a] =

∫
Πxdϕ(x) Πx,µdU(x, x+ µ)e−S[U,ϕ,a], (8)

where dU(x, x+ µ) is the Haar measure on the compact Lie group of gauge
transformations. This path integral may be used to compute gauge-invariant
quantities. Of particular interest is the Wilson loop, i.e., the expectation
value of the trace of a plaquette.

Now, for the good news, lattice QFT allows us to dissolve every single
mathematical and conceptual issue we have been worried about so far. As
we will see in section 4, there is a cost to that. But I will bracket it for now.

Starting with the traditional issues, then, all the momentum integrals
involved in (perturbative) correlation functions reduce to discrete sums with
a high-energy cut-off π/a. (If needed, we may also introduce a low-energy
regulator to eliminate infrared divergences in perturbation theory.) Every
(perturbatively) renormalized interaction parameter is also either fixed at
the lattice scale a or depends on some scale whose interval is appropriately
bounded. And so every (perturbative) prediction (at a given order) is finite
in lattice QFT.
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The more fundamental issues plaguing realistic QFTs disappear too. (i)
The premises of Haag’s theorem are simply not satisfied on a lattice of fi-
nite extent. (ii) The traditional issues arising from the putative relevance
of non-separable Hilbert spaces and infinite-dimensional unitarily inequiv-
alent representations are also irrelevant in this setting. (iii) Lattice QFT
opens the door to non-perturbative numerical computations and new kinds
of perturbative methods that are better behaved than the standard ones. Of
particular importance is the strong coupling expansion, which has a finite
radius of convergence (see, e.g., Itzykson and Drouffe, 1989, sec. 6.3.1). (iv)
The path integral measure in lattice QFT takes the form of a countable
product of well-defined Lebesgue measures dϕ(x) for scalar fields, Berezin
measures dψ(x) for spinor fields, and Haar measures dU(x, x + µ) for link
variables. Because we integrate over a compact Lie group instead of a non-
compact Lie algebra in the latter case, we do not even need to partially fix
the gauge to avoid divergences originating from gauge redundancies. (v)
The standard Euclidean formulation (which is also sometimes used in the
continuum QFT setting) ensures that the exponential term exp(−S[U, ϕ]) is
dampened for field configurations (U, ϕ) that are far from minimizing S. All
in all, lattice QFTs succeed with brio to escape all the trouble we encounter
with their continuum counterparts.

Does that mean that we should take lattice QFT seriously for founda-
tional and interpretative purposes? In the wake of the success of EFTs,
philosophers have become increasingly inclined to recognize that lattice
methods provide a legitimate way to understand the structure of realistic
effective QFTs (e.g., J. D. Fraser, 2018, 2020b; Rosaler and Harlander, 2019;
Williams, 2019).6 As James Fraser puts it, assimilating cut-off QFTs with
lattice QFTs here (cf. J. D. Fraser, 2020b, p. 282):

The central problem here was the lack of a clear answer to the
question of what empirically successful QFTs are—both mathe-
matically and physically. We saw in Section 14.3, however, that
it is possible to precisely define the path integral for the partition
function and explicitly construct realistic QFTs as mathematical
models if the degrees of freedom of the field associated with ar-
bitrarily large energies and momenta are removed via the cutoff.
This provides a non-perturbative characterization of QFT which
has a crucial advantage over the axiomatic systems discussed in
Section 14.2; we can explicitly write down cutoff formulations of
empirically successful QFTs, and the standard model in partic-
ular. Furthermore, we have seen good reasons to regard these
cutoff models as conceptually respectable, and empirically suc-

6Despite my preference for effective continuum fields, I also now think that I was too
quick when appealing to scalar lattice models in (Rivat, 2021, secs. 4-5).
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cessful, theories in their own right. (J. D. Fraser, 2020b, pp.
285-6)

To be fair, Fraser does not explicitly endorse lattice QFT as the correct
foundational setup for understanding realistic effective QFTs. But he does
seem to acknowledge its legitimacy. We may indeed perfectly well formulate
realistic four-dimensional gauge field theories on a lattice and extract em-
pirical numbers out of them without infringing on the highest standards of
mathematical rigor and conceptual clarity.

Among all, David Wallace seems to come the closest to endorsing the
lattice formulation of QFTs as the best current way of putting realistic
effective QFTs on a perfectly secure mathematical and conceptual footing
(see, esp., Wallace, 2006, p. 48). He is of course well aware of the diversity
of existing regularization schemes and of the varying degree of mathematical
well-definedness exemplified by different kinds of cut-off QFTs. He is also
far from taking the claims that any particular cut-off model makes at its
cut-off scale seriously. In fact, he does not even take the lattice formulation
of a given QFT model (or the discretized version he outlines in 2006, p. 48)
to be the correct way to formulate it. If anything, the correct definition of
realistic effective QFTs will be provided by a mathematically well-defined
superseding theory.7 And in the absence of such a theory, the second-best
choice is to define a realistic effective QFT through the equivalence class of
cut-off QFTs with a similar low-energy structure that one may define for
the model at stake.

But Wallace still seems to be ready to grant that some regularizations, in-
cluding the standard lattice regularization and the discretization procedure
he picks in (2006), provide a maximally robust mathematical characteri-
zation of realistic effective QFTs. This suggests, in turn, that the subset
of lattice QFTs for a given model furnishes us with the mathematically
cleanest representatives of the equivalence class of cut-off QFTs available
for that model. And insofar as lattice QFTs enable us to put any such
equivalence class on a perfectly firm mathematical and conceptual footing,
they also seem to provide a privileged interpretative standpoint to under-
stand the low-energy physical content of realistic effective models (until we
find a mathematically well-defined and empirically successful superseding
theory).8

7Note that this is a rather strong desideratum. We may well find realistic superseding
theories that are as badly defined as our best current QFTs.

8One may wonder whether Wallace (2006, p. 48) is genuinely committed to any strict
form of latticization or discretization, and may not easily fall back to more flexible forms of
regularization, which remove all but a finite number of momentum modes ϕ(p)—or even
merely eliminate high- and low-energy ones—while leaving the continuum background
structure of the regularized model intact. Although this is certainly worth exploring, I
am inclined to be skeptical toward this strategy in its current shape. (i) The regularization
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Now, as I will argue in sections 4-5, singling out lattice (or discretized)
QFTs for such foundational and interpretative purposes is too quick. Even
on this kind of sophisticated account, there is a principled theoretical ob-
stacle to taking lattice QFTs to form a representative of continuum EFTs:
namely, lattice QFTs are just too different from their effective continuum
counterparts even at low energies to be put in the same low-energy equiva-
lence class. We may of course take those differences seriously and concede
that lattice QFT provides us with an altogether new foundation for realistic
effective QFTs. But as we will see in section 5, there is a serious obstacle
waiting for us in this case too.

4 A radical departure

I will now examine more closely how the latticization of a continuum QFT
distorts its structure across scales.

4.1 Preliminary remarks

We first need to clarify the idea of using lattice QFT to put continuum EFTs
on a robust mathematical and conceptual footing. There are several options
here.

The first and perhaps the most intuitive one is to appeal to the traditional
axiomatic account: to put a theory (or a model) on a robust mathematical
and conceptual footing is to show that it instantiates a mathematically pre-
cise and consistent set of definitions and axioms. In practice, we could try
to use lattice QFTs to identify the set of definitions and axioms instantiated
by their effective continuum counterparts. This would give us, in turn, a
precise and general characterization of the class of systems they depict. Yet
it is fairly clear that continuum EFTs and lattice QFTs do not have the
same axiomatic structure, witness their different background space (I will
provide more detail below). We could try to show instead that they instan-
tiate equivalent sets of definitions and axioms. Yet, to establish any sort of
equivalence theorem, we would first need to find the set of definitions and
axioms instantiated by continuum EFTs, which, if successful, would directly
undermine the foundational relevance of lattice QFT. Perhaps lattice models

would need to be concretely implemented for realistic models to properly assess its merits,
both theoretical and practical. (ii) There are preliminary reasons to believe that the
regularized models would be worse than their lattice counterparts. If we keep a continuum
of field configurations, either in position or momentum space, we still have an ill-defined
continuum path integral measure. Inversely, if we keep only a finite number of momentum
or position modes in some unruly fashion, the resulting models will probably have even
fewer symmetries than their lattice counterparts and depart even more from continuum
EFTs.
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should then be used to identify the set of definitions and axioms that their
effective continuum counterparts approximately instantiate. This strategy,
however, seems to be overly elusive. After all, an inconsistent theory may
well approximately instantiate a consistent set of axioms. We might for in-
stance think of a QFT model whose predictions violate only slightly some
unitarity bound (see, e.g., Schwartz, 2013, sec. 24.1.5, for an introductory
account). Thus, on this refined account, even if we succeed in clarifying the
axiomatic structure of lattice QFTs, we might still be far from having a clear
view on the foundational status of their effective continuum counterparts.

Another option is to appeal to the traditional reductionist account: to
put a theory (or a model) on a robust mathematical and conceptual footing
is to show that it can be derived from a mathematically well-defined and
consistent theory (or model) with the help of auxiliary assumptions and ap-
proximations. There is no need to excavate the axiomatic structure of lattice
QFTs and continuum EFTs in this case. Rather, the goal is to gain some
confidence in the foundational standing of continuum EFTs by rederiving
them, perhaps only approximately, from their mathematically well-defined
lattice counterparts, and clarify their physical content by extracting some
partial and approximate interpretative targets out of those lattice models.
Yet it seems that this strategy defeats once again its purpose. To recover
the continuum EFT of interest, we would first need to find a well-defined
continuum limit for the relevant lattice QFT and then restrict again its do-
main, say, by integrating out its high-energy continuum field configurations.
The real foundational work would thus be done in this case by the putatively
fundamental QFT obtained in the continuum limit, thereby relegating the
role of lattice QFT to that of a mere heuristic ladder to be thrown away
once the derivation is complete.

A better option in my sense is to take a lattice QFT to provide a math-
ematically well-defined reformulation of a continuum EFT (see Hunt, 2024,
forthcoming, for recent work on the nature and value of reformulations in
physics). This does not require us to know anything about their axiomatic
structure or to be able to derive them from each other. Rather, the goal of
a foundational reformulation is to replace problematic component parts of
an input theory (or model) with mathematically well-defined ones and use
the output theory (or model) to clarify its physical content. In practice, we
should thus use lattice QFTs to show that continuum EFTs are free from
contradiction and mathematical ambiguity once properly reformulated.

Now, of course, the reformulation may affect more or less the mathemat-
ical structure of the input theory. As we have seen, the output and input
theories presumably do not need to be theoretically equivalent or satisfy
the same definitions and axioms. In particular, insofar as lattice QFTs and
continuum EFTs are not meant to be fundamental, they may well depart
radically from each other at the scale of a lattice spacing or a momentum
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cut-off. Yet, if the goal is ultimately to use lattice QFTs to clarify the phys-
ical content of their effective continuum counterparts and thus genuinely
treat them as “foundational proxies,” we should presumably require the in-
put and output theories to be sufficiently similar to each other in the relevant
respects (I briefly discuss alternative strategies at the end of section 5).

Finding the right notion of similarity for theories (or models) is nonethe-
less far from trivial and usually recognized to be context-dependent (e.g.,
Rosaler, 2015; Fletcher, forthcoming). There are two aspects to disentangle
in our case: (i) clarify the sense in which the mathematical structures of the
two models to be compared are similar to each other; (ii) identify the set of
mathematical structures (and properties) that are physically significant and
thus underwrite the extent to which the two models have approximately the
same physical content.

Regarding (i), the similarities between the mathematical structures of
lattice QFTs and continuum EFTs are well captured by two kinds of rela-
tions.

First, the models involve mathematical structures like complex functions
for which the standard Lebesgue measure is rather natural. We may thus
safely speak in this case of numerical approximation in the relevant range
or domain, and talk of approximate truth for the corresponding physical
statements. As we will see below, the ideal scenario in this case arises when
a mathematical structure of a lattice QFT takes the form of a perturba-
tive approximation in the lattice spacing parameter a of a mathematical
structure of a continuum EFT, with an infinite amount of structure whose
contributions become negligible for physical situations characterized by a
sufficiently low energy scale k ≪ 1/a.

Second, the models also contain more abstract mathematical structures
for which it is more sensible to use a broader notion of approximate iso-
morphism. We may for instance wish to compare a discrete lattice with a
continuum manifold, a discrete symmetry with a continuous one, or a Rie-
mann sum with a continuous integral. These mathematical structures may
well give rise to good numerical approximations, as when the value of a large
Riemann sum approximates well the value of a continuous integral. But the
underlying structures behind these quantities need not be approximately
isomorphic to each other, as for the number of elements in a Riemann sum
with respect to the continuum of values over which we integrate. The notion
of approximate isomorphism may of course be further specified depending
on the mathematical structure of interest. But in general, for the notion to
provide an adequate measure of similarity, the approximate isomorphism ar-
guably needs to range over a sufficiently comprehensive set of elements and
preserve a sufficiently important number of relations and properties between
these elements (see, e.g., Rivat, 2021, sec. 5, for a discussion).

Regarding (ii), we can again identify two sets of physically significant
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mathematical structures and properties. First, the path integral formalism
makes it rather natural to interpret the basic physical content of a model in
terms of its background space, degrees of freedom, dynamics, and correlation
functions. Second, this basic physical content typically possesses physically
significant higher-order structures and properties, whether we speak of sym-
metries, locality, analyticity or hermiticity for instance. In both cases, there
is of course some leeway about how to best carve out the physical content of
lattice QFTs and continuum EFTs. In particular, a more austere interpreta-
tion in terms of the numerical information encoded in correlation functions
is a live option (see, e.g., J. D. Fraser, 2018; Ruetsche, 2020; Rivat, 2021,
for a discussion). However, as I will briefly argue in section 5, this option
seems to make continuum EFTs interpretatively irrelevant and thus to bring
us back to the idea of taking lattice QFTs to replace them altogether.

On this rather natural account, then, we may portray the success case
as follows: although lattice QFTs and continuum EFTs may differ radically
from each other at the scale of a lattice spacing or momentum cut-off, most of
their physically significant mathematical structures become approximately
equal or isomorphic to each other and are governed for the most part by the
same physically significant principles and properties at low energies, without
any ad hoc intervention on our part (on pain of comparing the continuum
EFT of interest with a different model).

To give a straightforward example of a successful low-energy approxima-
tion, consider the continuum effective model of a massless scalar field ϕ(x)
with a Gaussian cut-off. The kinetic term takes the form ∂µϕ(x) exp(−∂2/Λ2)∂µϕ(x).
High-energy perturbative contributions are accordingly damped by the mod-
ified propagator exp(−p2/Λ2)/p2. Now suppose that we define a continuum
effective model with a less “peaked” Gaussian cut-off by using the kinetic
damping factor exp(−∂4/Λ4). The two models have exactly the same back-
ground space, degrees of freedom, and higher-order properties. The only
difference lies in higher-order contributions to the dynamics and correlation
functions. Once expanded, the more and less “peaked” kinetic damping fac-
tors exp(−∂2/Λ2) and exp(−∂4/Λ4) indeed give rise to an infinite series of
different contributions to higher-order dynamical terms ∂µϕ(x)(∂

2/Λ2)n∂µϕ(x)
(n ≥ 1) (which are in principle already included in the effective dynamics).
Since all these different contributions become irrelevant at low energies, we
seem to be justified in concluding that the two effective models have approx-
imately the same physical content in this regime.

Now, the situation certainly becomes more thorny when comparing other
kinds of continuum EFTs, say, a sharp cut-off and a dimensionally regular-
ized model. Gauge and translation invariance are particularly worrying for
sharp cut-off models. But even in such cases, the continuum EFTs of inter-
est seem to be much more similar to each other at low energies than they
are to lattice or discretized QFTs. As already emphasized, I unfortunately
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do not have the space to defend this claim here. Since lattice QFT has been
deemed to enjoy a special foundational role, I will restrict myself to the
claim that lattice models are too dissimilar from their effective continuum
counterparts at low energies to serve as their foundational proxies (using the
case of dimensionally regularized models as my reference point). As we will
see, we can certainly obtain a number of important low-energy quantities
that are in close numerical agreement with each other. Yet the latticization
also leads us to chop off an infinite amount of physically significant mathe-
matical structure and violate key physical principles down to arbitrarily low
energies.

4.2 Basic physical content

Let us first focus on the basic physical content of lattice QFTs and continuum
EFTs.

Starting with background spaces, the four-dimensional Minkowski space-
time of a continuum QFT is replaced by a flat hypercubic lattice space with
periodic boundary conditions in standard applications. Needless to say, the
Euclideanization, discretization and compactification procedures make the
two spaces nothing alike for any non-zero value of a, whether we speak
of their cardinality, topology or metric (including the space-time split and
related causal structures). The spatio-temporal structures of a lattice system
and its effective continuum counterparts thus remain radically different from
each other, no matter how we coarse-grain both types of systems. We may of
course discretize Minkowski space-time in different ways, some of which may
look at first sight more physically significant than others, as when we keep
time continuous in the Hamiltonian formulation of lattice QFTs (Kogut and
Susskind, 1975). But they tend to be more cumbersome and not as successful
as the standard Euclidean discretization.9

The two types of models are also radically different with respect to their
physical degrees of freedom. Most obviously, lattice QFTs involve only a
finite number of degrees of freedom compared to their effective continuum
counterparts. The space of lattice field configurations is likewise nowhere
approximately isomorphic to the space of low-energy field configurations of
a continuum EFT for any non-zero value of a (or ak). And this is true even
if we impose both a low-energy and high-energy sharp momentum cut-off
in the path integral measure of a continuum EFT: the resulting model still
involves a continuum of variables on the space-time manifold as well as a

9One might think that those spatio-temporal differences are ultimately physically in-
significant since there is little reason to take seriously the flat background space-time
structure of relativistic QFTs in light of quantum gravity. As we will see in sections 4.3
and 5, however, even such seemingly innocuous differences do have a serious impact on a
variety of other physically significant mathematical structures.
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continuous space of field configurations (if we put issues pertaining to its
mathematical definition aside).

Yet the difference is not just quantitative. Discretizing a model also
has a significant impact on the selection of physically relevant dynamical
variables. As we saw above, the most elementary gauge invariant structures
of pure lattice gauge models are plaquette variables Up (once we take the
trace). Likewise, more general models make irreducible use of intrinsically
non-local variables U(x, x + µ) that live on intermediary lattice links and
whose values lie on the complex circle in contrast to the real-valued local
gauge field variables of their effective continuum counterparts.

Those basic differences have important repercussions for the states of
the systems studied too. I will speak in more detail about irreducible
particle-state representations below. For now, the brief presentation of lat-
tice QFTs outlined in section 3 is sufficient to make the point. For pure lat-
tice gauge models, the only physical states are the so-called “glueball” states
obtained by applying gauge-invariant operators to the vacuum state |0⟩ (e.g.,
Tr(Up)|0⟩ for an elementary plaquette state). For more general models, the
physically salient configurations take the form of open and closed tetris-like
configurations built out of site and link variables, as illustrated in Fig. 1,
which makes lattice QFTs more akin to string theories than local field the-
ories (see, e.g., Kogut and Susskind, 1975, sec. V; Montvay and Münster,
1994, sec. 3.6.1, for more detail).

Regarding the dynamics and correlation functions of lattice QFTs, there
is a well-deserved respite: they ultimately do furnish a good numerical ap-
proximation to their effective continuum counterparts at sufficiently low en-
ergies. But as we will see below and in sections 4.3-5, this comes at the
price of ad hoc fine-tuning maneuvers and significant higher-order physical
differences.

Consider first the dynamics of lattice QFTs. A first pass at a lattice
action suggests that it is very different from its effective continuum counter-
parts. (i) The Minkowski action is replaced by a Euclidean one in standard
applications, whether it is directly posited or obtained by analytic contin-
uation from its Minkowski counterpart (t → −it). (ii) The continuum Eu-
clidean action over local field variables is replaced by a discrete sum over local
site variables and non-local link variables.10 (iii) The lattice action typically
involves non-polynomial interaction terms like ϕ†(x) exp(iaAµ(x))ϕ(x + µ)
instead of polynomial interaction terms like ϕ†(x)Aµ(x)∂

µϕ(x). (iv) The lat-
tice action contains an infinite number of additional interaction terms aris-
ing from the use of differences instead of derivatives and from the weakly
constrained symmetric structure of interaction terms on the lattice. In par-

10Note that we are also chopping “most” of the space of monomials of fields and their
derivatives across space-time by taking into account only those defined on lattice sites
and links.
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ticular, the homogeneous Lorentz group SO(3, 1) forces us to keep only in-
teraction terms with indices summed in pairs. By contrast, the hypercubic
group H(4) allows us to use interaction terms with indices summed in even
numbers like

∑
µ(∂µϕ)

4 and
∑

µ ϕ(∂
4
µϕ) for instance (see, e.g., Moore, 2003,

p. 8, for more detail). (v) The lattice action allows for a greater amount of
operator mixing, including between operators of different dimensions (see,
e.g., Capitani, 2003, sec. 14; Degrand and Detar, 2006, sec. 16.2.4). De-
pending on the model, we may thus be forced to fine-tune the parameters of
relevant interaction terms generated upon renormalization in order to match
a lattice action to its effective continuum counterparts.

Upon closer examination, however, we still seem to be able to erase
at least the dynamical differences (iii)-(v) at sufficiently low energies with
enough fine-tuning. We can indeed first re-express the lattice action in terms
of site and gauge variables and make it closely resemble its effective contin-
uum counterparts (in Euclidean space) with additional dynamical lattice
artifacts organized in terms of increasing powers of the lattice spacing a.
Then, it is easy to show that the dynamical lattice artifacts originating from
the lack of spatio-temporal constraints all become negligible at arbitrarily
low energies ak → 0 for sufficiently well-behaved configurations. This is in
part due to the fact that differentiable functions and their derivatives are
well approximated by differences of functions for a small lattice spacing. As
we will see in sections 4.3 and 5, the situation is more complicated with
respect to other dynamical artifacts, especially for those that are relevant
at low energies and require fine-tuning. But even for models involving such
artifacts, there is still a clear sense in which the lattice action is similar to its
effective continuum counterparts in the relevant regime: the sets of dynam-
ical terms in the two actions become increasingly approximately isomorphic
to each other as we neglect and fine-tune increasingly many dynamical lattice
artifacts for arbitrarily small ak. Schematically:

Slatt = Seff︸︷︷︸
partly

fine-tuned

+ S
′

0 +
1

a
S

′

1 + ...+
1

a4
S

′

4︸ ︷︷ ︸
fine-tuned

+ aS1 + a2S2 + ...︸ ︷︷ ︸
negligible

, (9)

where the parameters of Seff include both relevant and irrelevant a-dependent
renormalization contributions and Si, S

′
i include new dynamical lattice ar-

tifacts not present among Seff’s interaction terms.11

11For instance, in non-abelian gauge theories, the action includes relevant dynamical
lattice artifacts like a gluon mass term g2(Aa

µ)
2/a2, which arises from the gauge-invariant

measure (e.g., Capitani, 2003, sec. 5.2.1; Maas, 2020, pp. 90-1). We also have relevant
perturbative contributions arising from irrelevant dynamical artifacts, say, an interaction
term involving two quark fields and two gluon fields whose O(a)-dependence at tree
level is compensated by O(1/a)-contributions from loop integrals. More generally, all
the relevant and irrelevant dynamical lattice artifacts are required to maintain gauge
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At the risk of belaboring the point, the situation is similar for correla-
tion functions. At first sight, the latticization introduces again important
structural differences. (i) The correlation functions are defined over a dis-
crete Euclidean space for which no time ordering is required (or drastically
modified, as when states are defined on successive Euclidean slices). (ii) The
correlation functions provide only information about the average values of
field products over a finite set of possible points. (iii) The Feynman rules
become rather unusual if we use lattice QFTs in the perturbative setting:
propagators and vertices inherit a complicated pattern of trigonometric de-
pendence, and new vertices associated with dynamical lattice artifacts enter
the scene too (see, e.g., Montvay and Münster, 1994, secs. 2.2.2, 3.3.1, 5.1.5,
for some examples).

Yet, as for the lattice action, there are good reasons to believe that lat-
tice correlation functions ultimately have approximately the same values as
their effective continuum counterparts in the perturbative regime, at least at
sufficiently low energies and modulo some heavy fine-tuning. Once relevant
contributions are absorbed by adjusting the value of bare parameters, all the
remaining perturbative contributions indeed become negligible or converge
towards their effective continuum counterparts at low energies. To take the
simplest example, the lattice propagator of a massive scalar field, which cor-
responds to a two-point non-interacting correlation function, converges to
the continuum propagator at low energies ak → 0:

1

4
∑

µ
1
a2
sin2(akµ

2
) +m2

→ 1

k2 +m2
, (10)

with kµ ∈] − π/a, π/a]. In the non-perturbative regime, by contrast, the
situation is less clear since we do not yet have good non-perturbative con-
trol over realistic continuum EFTs. It is thus harder to assess for instance
whether the correlation functions of the effective version of continuum quan-
tum chromodynamics naturally match with their lattice counterpart at low
energies.

To sum up, the basic low-energy physical content of lattice QFTs and
continuum EFTs is radically different from each other. We can still use the
dynamics and correlation functions of lattice QFTs to approximate that of
their effective continuum counterparts at low energies. But there are good
reasons to think that the similarity at play in this case is largely numerical.
Not only is the mapping highly partial and subject to ad hoc fine-tuning
maneuvers. But as we are now going to see, there are also many significant
higher-order properties of the dynamics and correlation functions that are
lost at arbitrarily low energies.

invariance in perturbation theory.
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4.3 Physical principles

On the face of it, lattice QFTs violate almost all the sacred principles of
physics, whether we speak of locality, space-time symmetry principles, or
energy-momentum conservation laws. But we need to discuss whether this
is a real problem at low energies.

Let me first say a brief word about locality, causality, and analytic-
ity. (i) As we saw above, lattice QFTs make essential use of non-local link
variables and non-local interaction terms, even in what is usually deemed
the non-interacting part of their effective continuum counterparts (e.g., the
term ∂fµϕ∂

f
µϕ in Equation 4). (ii) Lattice QFTs violate standard relativistic

causal principles prohibiting spacelike physical processes and superluminal
propagation for any non-zero value of a. In particular, neighboring scalar
and spinor degrees of freedom seem to affect each other at a distance. The
traditional microcausality condition of continuum QFTs does not make any
sense either, strictly speaking. The change of background structure indeed
requires a new metric δij (0 ≤ i, j ≤ 3), which undermines any kind of
meaningful distinction between spacelike and timelike separation (besides
affecting the causal structure of events). (iii) Insofar as lattice models in-
volve discrete functions, the discretization also makes us lose analyticity.
Yet, in spite of it all, there is still an important sense in which the lattice
action remains “local:” namely, the kinetic operator in position space de-
cays sufficiently fast with distance, in the sense that it is bounded by some
function C exp(−γ|x|), with C and γ some constants.12

Next, the latticization of a continuum QFT drastically affects its space-
time symmetries, no matter how small a (or ak) is. Continuous translations
(R4) become discrete (Z4

n): we can translate the system by one unit of the
lattice spacing at a time with periodic boundary conditions. Time reversal
invariance is replaced by reflection positivity, which must hold for both site
and link reflections. The switch from Minkowski space-time to the contin-
uum Euclidean space forces us to replace the homogeneous Lorentz group
SO(3, 1) by the orthogonal group SO(4). The latticization, in turn, forces us
to replace SO(4) by the hypercubic group H(4), which consists of discrete
block rotations by π/2 and reflections. To be sure, the remnant discrete
group of lattice transformations constitutes a subgroup of its continuous
Euclidean counterpart R4 ⋊ SO(4). There is also no issue with restoring
R4 ⋊ SO(4) by taking n → ∞ and a → 0. But this does not alter the
fact that the spatio-temporal symmetric structures of a lattice QFT and

12This brief warning is of course far from doing justice to the topic of locality, causality,
and analyticity in non-relativistic quantum theories. Particularly worthy of notice here
is the existence of generic bounds on the maximal speed at which information propagates
(see, e.g., Nachtergaele et al., 2019, for a review). I am thankful to Benjamin Feintzeig
for bringing this to my attention.
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its effective continuum counterparts are far from being approximately iso-
morphic to each other for any non-zero value of a. Chopping “most” of
the continuum structure of the background space indeed forces us to chop
as well “most” of the continuum structure of its space-time symmetries no
matter how coarse-grained the lattice system is.

This has two physically salient implications besides changing the trans-
formation properties of the dynamics and correlation functions and making
them less constrained (as we saw in section 4.2).

First, the loss of spatio-temporal symmetric structure leaves us with at
best a partial energy-momentum conservation law, i.e., energy-momentum
is conserved only up to 2π/a for a lattice with spacing a. Note that this does
not mean that energy-momentum is approximately conserved at sufficiently
low energies. Any such partial conservation law indeed allows for arbitrarily
large violations of energy-momentum by 2nπ/a. Concretely, this means that,
on a lattice, low-energy incoming particles with k ∼ 0 can in principle give
rise with high probability to an arbitrary even number of outgoing high-
energy particles with k ∼ π/a.

Second, the traditional classification of particles in terms of infinite-
dimensional irreducible representations of the Poincaré group breaks down.
We can of course distinguish between different kinds of lattice entities by
appealing to the irreducible representations of the lattice symmetry group.
But there are significant physical differences in this case too. For a start,
the definition of momentum eigenstates on a Euclidean lattice of spacing a
and finite extent na implies that: (i) the energy spectrum is discrete and
bounded, with a smallest momentum 2π/na and a largest momentum π/a in
any direction; (ii) the mass of a particle becomes a trigonometric function of
its momentum. Worse still, since H(4) is compact in contrast to SO(3, 1),
we only have a finite number of irreducible representations on the lattice
to account for known particles with non-zero spin or helicity. We may try
to match this finite set to the infinite set available on the continuum. In
practice, this is easier to do with a three-dimensional spatial lattice since the
discrete cubic group of rotations H(3) constitutes a subgroup of the group
of spatial rotations in Minkowski space-time. But even in this simplified
case, mapping the finite set of irreducible representations of H(3) to those
of SO(3) still gives rise to serious interpretative ambiguities (see, e.g., Mont-
vay and Münster, 1994, pp. 153-5; Maas, 2020, sec. 2.9.1.3, for a discussion).
For instance, if we want to account for a massive continuum particle with a
given spin, we are typically forced to decompose its reducible continuum rep-
resentation into distinct irreducible lattice representations and thus “split” it
into distinct lattice species. In practice, this means that we may for instance
have to attribute different masses to lattice particles that have otherwise the
same mass on the continuum (e.g., Montvay and Münster, 1994, pp. 154-5).

What about internal symmetries? The good news first: gauge symme-
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tries are exactly preserved in lattice QFTs. One might even say that the
lattice’s raison d’être is to obtain a well-defined non-perturbative gauge-
invariant formulation of QFTs. We do not need to fix partially the gauge in
the path integral to obtain a quantized model. We do not need ghost fields
and more sophisticated symmetries like BRST—although we can of course
formulate perturbative versions of lattice gauge theories and recover all of
this structure if needed. And the same assessment goes for other internal
global symmetries like O(N) for N -component scalar fields.13

But all is not perfect either. Physicists have found that there are princi-
pled reasons to believe that chiral invariance cannot be exactly implemented
on the lattice without giving up on some other important principle. The is-
sue is best introduced through the so-called “fermion doubling problem:”
namely, the näıve formulation of lattice QFTs involving fermionic fields dis-
plays, as a matter of principle, redundant fermionic particle species (the
so-called “fermion doublers” or “mirror fermions”). We can already see this
generic pattern in the dispersion relation of a massless fermionic field in a
two-dimensional lattice model (see, e.g., Tong, 2018, sec. 4.3.1, for a physi-
cally intuitive account):

E(k) =
1

a
sin(ak). (11)

This dispersion relation has two zeros in the first Brillouin zone, i.e., two
distinct massless fermionic species with opposite chiralities for k = 0 and
k = π/a. This result generalizes to any dimension d: every fermion has 2d−1
partners, with the same number of left-handed and right-handed fermions in
total. The underlying reason comes from the fact that the standard kinetic
term for fermionic fields involves only first-order derivatives compared to
scalar and gauge fields. This leads to the problematic dependence of the
dispersion relation on sin(ak), as opposed to sin2(ak/2) for scalar and gauge
fields, which does not give rise to zeros at the edges of the Brillouin zone.14

13See, e.g., Dougherty (2021) and Rivat (forthcoming) for philosophical discussions
related to perturbative continuum gauge theories. As it turns out, lattice gauge theories
actually have more global gauge symmetries than their effective continuum counterparts.
For instance, for the gauge group SU(N), the lattice action is invariant under the center
of the gauge group ZN . Otherwise, more advanced symmetries like supersymmetry, which
can be seen as “mixing” internal and external symmetries, are not preserved by standard
latticization procedures (see, e.g., Bergner and Catterall, 2016; Schaich, 2019, for recent
reviews).

14More technically, the origin of the problem comes from the so-called “spectrum dou-
bling symmetry” of the näıve lattice action (see Montvay and Münster, 1994, sec. 4.4.1,
for more detail). In a nutshell, the näıve discretization of a continuum QFT gives rise
to too much symmetric structure, which must be broken in some way or another (or re-
used for some other purpose) for the issue to disappear. Note as well that taking either
the forward or the backward derivative for the fermionic field allows us to replace the
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The fermion doubling problem might be thought to disappear at suffi-
ciently low energies (k ≪ 1/a) since the dispersion relations in the lattice
and continuum models become approximately the same in this case, i.e.,
E ∼ k in the massless case. But this is misleading. Energy-momentum
is conserved up to translation by 2π/a in the Brillouin zone. So two arbi-
trarily soft incoming fermions with momentum k ∼ 0 can for instance give
rise even at tree level to two different kinds of outgoing fermions with mo-
mentum k ∼ π/a and opposite chirality (e.g., Karsten and Smit, 1981, pp.
107-8; Smit, 1986, p. 4). Insofar as the lattice action involves interaction
terms, we could thus observe in principle redundant fermions for arbitrarily
low-energy inputs.

Now, as often in physics, we can solve the issue of interest by distort-
ing the theory in some way or another. There are, in fact, many different
kinds of solutions in this case. But they all come at a cost. The so-called
“Wilson fermions” and “staggered fermions” solutions to the fermion dou-
bling problem provide two popular examples. The first consists in adding a
new non-renormalizable term to the action, which gives rise to an additional
effective mass for fermion doublers (Wilson, 1977). This effective mass be-
comes arbitrarily large for a sufficiently small lattice spacing a, which means
that the problematic fermion doublers become “invisible” at sufficiently low
energies. The procedure, however, comes at the cost of chiral symmetry, and
this for any value of the lattice spacing (see, e.g., Moore, 2003, pp. 32-3, for
a short summary of the main issues affecting this solution).

The second solution consists in using the sixteen doublers in four dimen-
sions to define four Dirac spinors and spread their components appropriately
over each hypercube of the lattice—hence the label “staggered” (Kogut and
Susskind, 1975; Banks et al., 1976; Susskind, 1977). These spinors may be
reinterpreted in terms of a new kind of flavor and matched to traditional
fermions in the continuum limit when each hypercube goes to a point. This
is sufficient to make the original issue disappear. But for any non-zero value
of the lattice spacing, the original flavor and translational symmetries of the
model are lost (see, e.g., Capitani, 2003, sec. 7, for a discussion).

As it happens, the Nielsen-Ninomiya theorem provides principled rea-
sons to believe that there is no fully satisfactory solution (Nielsen and Ni-
nomiya, 1981a,b,c; Friedan, 1982). At a heuristic level, this theorem states
that it is impossible to put chiral fermions on a lattice without introducing
new fermionic particle species, breaking chiral symmetry, or violating some
other desirable principle. A more precise yet still intuitive formulation in
Euclidean space goes as follows. Suppose that the fermionic kinetic part of

problematic sin(ak) by sin(ak/2). But in this case, the action is not Hermitian (see, e.g.,
Capitani, 2003, p. 46, for more detail).
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a lattice action takes the following form (for a lattice of infinite extent):

S[a] =
1

a

∫
BZ

d4k

(2π)4
ψ̄(−k)D(k)ψ(k), (12)

where the integral runs over the first continuous Brillouin zone (BZ), ψ̄ and
ψ refer to fermionic field variables in momentum space, and D(k) stands for
the kinetic operator in momentum space. Then, the theorem states that the
following four conditions cannot be all satisfied: (i) D(k) is continuous in
the Brillouin zone, which is equivalent to assuming that the kinetic operator
in position space is local, in the sense that it decreases exponentially with
distance; (ii) D(k) reduces to the continuum fermionic operator in the con-
tinuum limit, i.e., D(k) ∼ γµkµ for k ≪ 1/a; (iii) D−1(k) has only a pole at
k = 0 and thus no fermion doublers; (iv) D(k) preserves chiral symmetry,
i.e., {γ5, D(k)} = 0 (see, e.g., Moore, 2003, sec. 8, for pedagogical proofs).15

The scope of the Nielsen-Ninomiya theorem is also far-reaching. In the
Euclidean form stated above, it applies to any regularization involving a
partially compact momentum space with periodic boundary conditions. We
may of course obtain the very same unwanted consequences by regularizing
the model in a different way. For instance, the standard implementation of
dimensional regularization for chiral theories breaks chiral invariance (see,
e.g., Collins, 1986, sec. 13.2, for more detail). But in contrast to lattice
models, this kind of intermediary violation need not be a defining feature
of the model. In particular, we may perfectly well define a continuum EFT
by integrating out some high-energy field configurations, compute relevant
perturbative quantities with the help of dimensional regularization methods,
and remove the regulator at the end of the procedure to obtain chirally
invariant quantities. We can also explicitly delineate the domain of the
continuum EFT through boundary conditions on its renormalized correlation
functions.16

15One might wonder about the relevance of this theorem since chiral invariance is
broken in the SM. The issue reappears in this case through the appearance of incorrect
corrections to the chiral current. For instance, in the simple case where we have fermion
doublers, the contribution is such that the chiral anomaly cancels exactly since we have
the same number of left-handed and right-handed fermions. But having the correct chiral
anomaly is crucial to obtaining correct predictions, say, about the decay of neutral pions.

16Relatedly, Nielsen and Ninomiya’s claim that the theorem extends to any regular-
ization scheme seems to be rather heuristic (1981a, p. 222). They merely point to the
failure of familiar regularization schemes like the Pauli-Villars and dimensional regular-
ization schemes to satisfy all the conditions of (a slightly different version of) the theorem.
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5 Discussion

I have argued so far that lattice QFTs are too different from their effec-
tive continuum counterparts to serve as their foundational proxies. We can
certainly use lattice QFTs (in perturbation theory) to obtain good enough
numerical estimates for the dynamics and correlation functions of contin-
uum EFTs. But their underlying mathematical structure and the physical
systems they depict are far from alike even at low energies. In particular, for
any non-zero lattice spacing, the dynamics and correlation functions asso-
ciated with each system involve different physical degrees of freedom and a
number of different core principles and symmetries. The Nielsen-Ninomiya
theorem even provides principled reasons to believe that a latticization intro-
duces an irreducible incompatibility between lattice QFTs and continuum
EFTs.

There are two kinds of responses one might have in mind at this point:
(i) resist the claim that the latticization introduces significant physical dif-
ferences at low energies; (ii) grant the existence of such differences but take
lattice QFTs to provide a new foundation for continuum EFTs. As I will
now argue, response (i) is not compelling and response (ii) faces a serious
obstacle.

Consider response (i) first. RG-informed discussions of realistic effective
QFTs suggest a natural way out (e.g., Wallace, 2006; J. D. Fraser, 2018;
Williams, 2019). We might insist that significant physical deviations be-
tween lattice QFTs and continuum EFTs, be it through their background
space, degrees of freedom or symmetries, are ultimately all parametrized by
irrelevant contributions to the action, correlation functions, and predictions
that become increasingly negligible at low energies. And we might take this
to support the claim that lattice QFTs are ultimately “scale-l equivalent”
to continuum EFTs, in the sense that they generate approximately isomor-
phic algebras of operators at sufficiently low energies relative to a reference
cut-off l (Wallace, 2006, p. 48), or, in the path integral formalism, that
their correlation functions are approximately isomorphic to each other in
this regime (Wallace, 2011, p. 122).

Although RG-informed strategies are largely successful in my view when
applied to continuum EFTs and lattice QFTs separately, the situation is
more complicated when we compare them with each other. Let me pick two
particularly salient cases discussed above to illustrate this point.

First, although the contributions of dynamical lattice artifacts originat-
ing from the lack of spatiotemporal constraints become increasingly small
at low energies, the lattice system remains to a large extent as much spatio-
temporally non-covariant at low and high energies. Granted: lattice transla-
tions do become increasingly refined for arbitrarily small a. So I agree with
Wallace (2006, p. 51) that the lack of translation covariance is a “small-scale
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property” of lattice QFTs that we can ultimately deem as physically insignif-
icant at low energies. But there is no sense in which the energy-momentum
conservation law becomes increasingly similar to its continuum counterpart
at low energies: we can in principle produce arbitrarily high-energy outputs
from low-energy inputs even in the case of an arbitrarily large first Brillouin
zone k ∈] − π/a, π/a] in the limit a → 0. There is also no sense in which
rotations of lattice structures by π/2 become “infinitesimal” when we de-
crease a. There is likewise no sense in which irreducible representations of
the discrete rotation group become increasingly similar to their continuum
counterparts in this limit. And the same can of course be said of the causal
and local structure of the lattice system, whether we speak of its metric or
non-local interactions. In a word: many built-in lattice properties hold as
much at low- and high-energy scales.

Second, the Nielsen-Ninomiya theorem also holds indifferently across
scales. For a start, the most popular solutions to the fermion doubling
problem do not merely confine its effects to the irrelevant dynamical sector
of lattice models. Take staggered fermions for instance. Strictly speaking,
they do not give rise to relevant dynamical artifacts. But the staggered
lattice action still violates the spin-flavor structure of its effective contin-
uum counterparts at arbitrarily low energies (among other issues). The case
of Wilson fermions is even more straightforward: we obtain both relevant
and irrelevant contributions upon renormalization due to the loss of chiral
invariance. We may safely neglect irrelevant contributions at low energies.
But for relevant contributions like a quark mass renormalization, we need to
fine-tune the bare parameters of the Wilson action as we move toward low
energies (e.g., Capitani, 2003, p. 44). And this, in turn, arguably signals a
physically significant impact of the lattice at low energies, in close analogy
with the naturalness problem in the Higgs case (Williams, 2015).

But perhaps we should not be overly worried about eliminating remnant
low-energy lattice artifacts “by hand”. Since there is no reason to interpret
the lattice overly strictly as some real discrete structure lying at short dis-
tances, we should arguably not take overly seriously remnant artifacts of the
latticization at long distances. Fine-tuning the bare parameters of a lattice
action merely amounts in this case to compensating for an overly drastic
idealization.17

There are two main things to say in response here. (i) Relevant dynamical
artifacts are not tied to specific lattice models. Rather, they enjoy a certain
degree of universality, in the sense that they can be generated by any kind of
regularization or any kind of matching to a high-energy theory that violates
the low-energy constraint of interest (e.g., chiral invariance). So even if we
do not take any particular latticization or any specific solution to the fermion

17I am thankful to David Wallace for pressing me on this point.
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doubling problem too seriously, there is still room for being worried about
the physical significance of the relevant dynamical terms they may generate.
(ii) Interpreting this specific kind of fine-tuning procedure in formal terms
does not seem to be perfectly neutral with respect to the content of high-
energy physics. For all we know, the next high-energy theory ahead may well
break chiral invariance as crudely as Wilson fermions do, and there may well
be a high-energy mechanism that prevents the appearance of relevant chiral-
symmetry-breaking contributions at low energies. In this case, we would be
justified in reinterpreting the fine-tuning procedure as a model-independent
implementation of this mechanism at low energies.

Now, physicists may ultimately find a lattice solution to the fermion
doubling problem that fully confines its effects to that of irrelevant dynamical
terms. Yet this prospect seems unlikely for two reasons.

First, the four conditions in the Euclidean version of the Nielsen-Ninomiya
theorem outlined above cannot be violated only at high energies, strictly
speaking. Regarding condition (i), the continuity of D(k) is a global prop-
erty of the kinematic structure of fermionic fields that holds as much at
low and high energies. Condition (ii) is even worse: it may be read as a
strictly low-energy condition, i.e., D(k) reduces to the continuum fermionic
operator at low energies k ≪ 1/a. Giving up condition (iii) is no better:
as we saw above, we could in principle produce high-energy doublers with
low-energy incoming fermions. And violating condition (iv) opens up the
door for relevant contributions otherwise forbidden by chiral invariance.

Second, as far as I can tell, all the most well-known solutions to the
fermion doubling problem like SLAC fermions and Ginsparg-Wilson fermions
(including domain wall, perfect and overlap fermions) do irreducibly present
some remnant mark of it at arbitrarily low energies. For instance, Ginsparg-
Wilson fermions break the standard chiral symmetry for arbitrary a directly
at the level of the standard kinetic term (which is a relevant term). So
although the departure from standard chiral invariance becomes increasingly
negligible in the continuum limit, i.e. [γ5, D] = aDγ5D, the fact that it
is broken is still carried by the kinetic properties of arbitrarily low-energy
fermions (see, e.g., Tong, 2018, sec. 4.4, for an introductory discussion).18

We might follow two lines of retreat at this stage. The first is to content
ourselves with the existence of a continuum limit for lattice QFTs. They
may be too mathematically and physically different from their effective con-
tinuum counterparts at any non-zero energy scale ak. But this does not

18Relatedly, I am sympathetic to the overall spirit—but not the specifics—of Ruetsche’s
remark: “Although the details of [mirror fermions’] appearance vary with the details of
the lattice spacing and model, the fact of their appearance does not.” (2020, p. 311)
Strictly speaking, there are many ways to get rid of fermion doublers simpliciter. So their
appearance is far from factual. But whichever solution we choose, it always comes at a
cost at any finite energy.
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undermine the existence of a smooth connection between them at a = 0
and thus our ability to track how lattice QFTs provide a mathematically
well-defined reformulation of continuum EFTs, one might say.

Yet there are good reasons to doubt the success of this line of retreat. For
a start, we do not yet have a well-defined and non-trivial continuum limit of
realistic lattice QFTs. Any attempt to ground continuum EFTs with their
lattice counterpart in this way is thus blocked in the very first step. But
there is worse. As already emphasized, if realistic lattice QFTs had a well-
defined and non-trivial continuum limit, they would immediately lose their
foundational relevance. We would be able to provide a clear foundation for
continuum EFTs out of their “internal” non-perturbative UV completion,
regardless of whether we may come up one day with a well-defined and em-
pirically successful “external” non-perturbative UV completion (presumably
in the form of a theory of quantum gravity).

The second line of retreat is to adopt a more austere interpretation of re-
alistic effective QFTs in terms of the numerical information encoded across
a background space by low-energy correlation functions. On this view, we
should for instance not attribute any kind of physical significance to the
degrees of freedom, symmetries, and other higher-order principles at play
in any given model. Their physical content must be entirely expressible
numerically by means of correlation functions across arbitrary space-time
points. And in this case, it does seem that lattice QFTs and their effective
continuum counterparts have approximately the same physical content at
sufficiently low energies. We indeed do not need to take seriously correla-
tions over the continuum—looking at sufficiently coarse-grained regions is
enough. Irrelevant interaction terms also bring negligible numerical contri-
butions to correlation functions. And this interpretative move allows us to
simply ignore the physical underpinning of ad hoc fine-tuning procedures
and lattice-dependent deviations from existing principles (as for space-time
and chiral symmetries).

I see two main issues with this line of retreat. (i) On this view, lat-
tice QFTs do not really provide a foundation for their effective continuum
counterparts but rather replace them altogether. All that matters is indeed
to recover the approximate numerical value of correlation functions across
some background space. There is thus no need to account for the back-
ground mathematical structures, physical content and principles of contin-
uum EFTs, or even explain their inner workings and successes. (ii) In prac-
tice, lattice QFTs and their effective continuum counterparts are meant to
obtain numerical information on largely non-overlapping domains. Although
lattice perturbative techniques have been developed to fill the gap and help
to compare their respective predictions, lattice QFTs tend to be highly im-
practical in the perturbative regime. Continuum EFTs, by contrast, are
typically used in sufficiently well-behaved perturbative regimes. So, at least
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in practice, there is no sense in which lattice QFTs are meant to be used
as a means to derive approximately the same correlation functions as their
effective continuum counterparts.

This brings us at last to the opposite reaction, i.e., response (ii) above.
We may decide to embrace the multifaceted mathematical and physical dif-
ferences existing between lattice QFTs and their effective continuum coun-
terparts and take the former to provide a new definition for realistic effective
QFTs. On this view, continuum EFTs are downgraded to a set of efficient
perturbative computational schemes with no proper foundation. The advent
of lattice QFT even undermines the need to provide any such foundation.

But this response faces a severe obstacle, which is already familiar in the
philosophical literature on axiomatic approaches to the foundations of QFTs.
In Ruetsche’s (2011, p. 11) and Williams’ (2019, p. 2) words, lattice QFTs
are far from “discharging” realistic effective QFTs of their “scientific duties,”
whether we speak of prediction or explanation. As already emphasized,
using lattice QFTs in the perturbative regime is indeed highly impractical,
especially when it comes to computing higher-order loop contributions. And
it is not as if lattice practitioners have been able (or even willing) to use
lattice QFTs to reproduce the entire set of perturbative predictions that
underwrite the remarkable success of their effective continuum counterparts.

I should emphasize that the empirical and explanatory standing of lattice
QFTs is still in much better shape than that of their algebraic counterparts.
With enough fiddling and tuning, we can formulate any kind of realistic
scalar, fermionic, and gauge model in four dimensions. Lattice QFTs also
come with improved non-perturbative explanations and predictions, whether
we speak of confinement or hadron masses for instance. Yet there are still
both practical and principled limitations to lattice QFTs’ ability to supplant
their effective continuum counterparts. I have already mentioned their lim-
ited perturbative power. But it is worth noting that despite remarkable
progress during the last two decades, lattice numerical simulations are still
severely limited in terms of computational cost (see Aoki et al., 2025, for the
latest FLAG review). And on the theoretical side, as we have already seen,
using lattice QFT for models involving fermions typically involves round-
about solutions with intrinsic limitations. For instance, although staggered
fermions constitute the computationally most effective method, it only en-
ables us to account for four fermionic species, which is of course unsuitable
for the six existing quark flavors.

Before concluding, let me emphasize that there may well be various ways
of steering a middle course, acknowledging both the radical departure of lat-
tice QFTs from their effective continuum counterparts and their inability to
replace them altogether. We might for instance think of lattice QFTs as
“foundational band-aids:” they allow us to assign a clear mathematical and
conceptual meaning to some defective component parts of a target theory
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and thus clarify their physical meaning independently of its remaining com-
ponent parts. The path integral measure provides a particularly clear ex-
ample: lattice QFT suggests that a continuum measure merely corresponds
to a well-defined continuum product of well-known measures at each space-
time point. But although this avenue is worth exploring, it is likely to face
its own issues too. In particular, it is not entirely clear to me whether we
can interpret the central component parts of a theory in complete isolation.
As we saw above, discretizing the path integral measure typically generates
new dynamical artifacts. And this suggests that we cannot interpret the
path integral measure of a continuum EFT completely independently of its
dynamics (and inversely).

6 Conclusion

I have argued that the middle-path strategy of using lattice quantum field
theory to provide a proper mathematical and conceptual foundation for con-
tinuum effective field theories faces a two-sided obstacle. The most interest-
ing side in my sense is theoretical: realistic lattice QFTs are just too different
from realistic continuum EFTs even at low energies to serve as their foun-
dational proxies. In particular, we have seen how replacing their continuum
background space-time had drastic higher-order physical implications at the
level of the dynamics and correlation functions. Perhaps most surprising of
all is the stubborn resistance of lattice QFT to accommodate fermionic fields
in the standard way. Changing gears and taking lattice QFTs to provide an
altogether new foundation for their effective continuum counterparts does
not work either. We face again a severe albeit more straightforward obstacle
in this case: lattice QFTs are far from reproducing all their empirical and
explanatory successes.

What should we do then? Although I do not have the space to develop
and defend this here, let me conclude by suggesting two lessons. First, we
should grant that lattice QFTs play their own heuristic, explanatory, and
computational roles independently of continuum EFTs, be it the search for a
non-perturbative UV-complete QFT or the computation of low-energy non-
perturbative quantities. That is, lattice QFT is probably best seen as a self-
standing framework in the multi-faceted toolkit physicists use to study QFT
(as opposed to a substitute framework developed to give a proper foundation
to continuum EFTs). Second, we should endorse a form of methodological
pluralism about standards of mathematical rigor, acknowledging the well-
foundedness of more or less formal interpretative projects. In particular,
although we may not have the clearest mathematical sense of how effective
continuum field configurations are interlocked with one another, continuum
EFTs are still presumably sufficiently well-defined to address at least some
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significant foundational and conceptual issues. If we follow this route, how-
ever, the challenge will be to understand how, exactly, we are supposed
to integrate the various insights gained from those interpretative projects
together.
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