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Abstract

We ask how and why mathematical physics may be seen as a rigorous discipline. Starting with
Newton but drawing on a philosophical tradition ranging from Aristotle to (late) Wittgenstein,
we argue that, as in mathematics, rigour ultimately comes from rules. These include logical
rules of inference as well as definitions that give a precise meaning to physical concepts such
as space and time by providing rules governing their use in models of the theories in which
they are defined. In particular, so-called implicit definitions characterize “indefinables” whose
traditionally assumed familiarity through “intuition” or “acquaintance” from Aristotle down
to Russell blasts any hope of both rigour and innovation. Given the basic physical concepts,
one may subsequently define derived concepts (like black holes or determinism). Definitions
are seen as a priori meaning-constitutive conventions that are neither necessary à la Kant nor
arbitrary à la Carnap, as they originate in empirical science as well as in the autonomous
development of mathematics and physics. As such definitions are best seen as hypothetical.
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1 Introduction

The two most influential books in the history of the exact sciences are unquestionably Euclid’s
Elements and Newton’s Principia. The former marked the beginning of mathematics as a rig-
orous discipline, whereas the latter performed the same job for mathematical physics. Newton
apparently modeled his opus magnum on Euclid: both start with definitions and axioms,1 and
proceed to derive a large number of mathematical propositions from these.2 Pulte (2001, 2005)
even calls Principia a ‘Euclidean system’ in a sense described by Lakatos (1978), viz. a ‘deduc-
tive system with an indubitable truth-injection at the top (a finite conjunction of axioms)—so that
truth, flowing down from the top through the safe truth-preserving channels of valid inferences,
inundates the whole system’ (Lakatos, 1978, p. 28). On the other hand, although this is the way
Euclid was mostly read until at least the early modern era, it is unknown how Euclid himself
(who is silent about all this) interpreted his postulates; it has even been argued that he did so
rather more hypothetically than truthfully, in the style of both traditional Greek dialectics before
Plato and modern mathematics since Hilbert.3 Historically speaking, the term ‘Aristotelian sys-
tem’ may therefore be more appropriate for Principia than ‘Euclidean system’. Indeed, although
the Scientific Revolution—of which Principia was the culmination— incorporated a radical break
with Aristotle’s natural philosophy led by Galilei and Descartes, Principia seamlessly fits into the
mould of Aristotle’s theory of demonstrative sciences as expounded in his Posterior Analytics:

a demonstrative science is an axiomatised deductive system comprising a finite set of con-
nected demonstrations. (. . . ) the premisses of a demonstration must be (a) true; (b) necessary
and universal; (c) immediate; and (d) causally related to the conclusion, which must itself be
true, necessary, and universal. (Barnes 1969, p. 123)

Once again, also since the causal connection between Aristotle and Euclid is unclear,4 it is a
difficult question to what extent also the Elements actually fits into this Aristotelian mould,5 but
for our purposes it is enough to note that for at least 2000 years it was widely taken to do so
and as such was seen as the pinnacle of rigorous reasoning, copied in style not only by Newton in
Principia but also in a completely different context by Spinoza in his Ethics. This practice showed,
more or less by example, what was actually meant by “rigour”, at least in a mathematical context.

Key ingredients of this example have usefully been summarized by Burgess (2015), pp. 6–7:

We can read in—or read into—Aristotle a statement of what remains today the requirement
of rigor by which the individual mathematical author hoping to achieve publication in a rec-
ognized journal is confronted:

(1) Mathematical rigor requires that every new proposition must be deduced from previ-
ously established propositions (. . . )

1Euclid splits his axioms into postulates and common notions (the latter being principles of proof common to all
13 books of the Elements or even mathematics as a whole. Newton does not do this but conflates axiomas with laws:
axiomata sive leges motus i.e. ‘axioms or laws of motion’. Newton also differs from Euclid, who writes as tersely as
possible, in going out of his way to explain his definitions, axioms, and propositions via comments and entire scholia.

2Even the presence of two kinds of propositions, namely theorems and problems or constructions, is shared.
3See Szabó (1960, 1978), Jahnke (2009), Paseau and Wrigley (2024), and surely others.
4Apart from the nature of the premisses, this also concerns deduction: there is a mismatch between Aristotle’s

syllogistic inferences (which at least are based on clearly stated rules) and Euclid’s proofs, which are not only informal,
but, if formalized, cannot be syllogistic (Mancosu and Mugnai, 2023). This became increasingly clear in the middle
ages and led to the so-called Quaestio de Certitudine Mathematicarum (Mancosu, 1999). Hilbert (1899), in his famous
reaxiomatization of Euclidean geometry, did not provide an explicit formal proof system either (25 years later it would
have been first-order logic). Avigad, Dean, and Mumma (2009) present a formal minimal proof system for the Elements.

5See for example Heath (1956) and Mancosu and Mugnai (2023).
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(2) On pain of circularity or infinite regress, if later propositions must be proved from earlier
ones, then we must start from some unproved propositions or postulates.
Such unproved propositions are also called axioms.

(3) Mathematical rigor requires that every new notion must be defined in terms of previ-
ously explained notions (. . . )

(4) On pain of circularity or infinite regress, if later notions must be explained in terms of
earlier ones, then we must start from some unexplained notions or primitives.

The first two points concern deduction, the last two are about definition; as we shall see, there is
no sharp boundary between axioms and definitions. Superficially, the idea of rigour has therefore
hardly changed since Aristotle: it is grounded in an axiomatic-deductive style of reasoning with
due attention to definition. What has changed, though, is the interpretation of concepts like de-
duction and definition. At least since Newton’s Principia, mathematical physics has aspired to the
same standards of rigour as mathematics itself (for better or worse), and as far as deduction is con-
cerned there seems to be little difference between mathematical physics (as opposed to theoretical
physics!) and mathematics. We will therefore be relatively brief about deduction and focus on
definition, whose role in mathematical physics does stand apart from (pure) mathematics.

Thus in §2 we review the status of deduction in mathematics (and hence mathematical physics)
vis-à-vis rigour. The more substantial §§3–5 are concerned with definition in historical context,
starting with Aristotle and moving on to Frege and Hilbert, initially discussing mathematics but
moving to mathematical physics, highlighting different uses in these different contexts, and paying
special attention to the problem of indefinables as solved by ‘implicit definition’. The last section
relates this historical development to some recent insights from the philosophy of mathematical
practice; and this combination is finally illustrated by a few examples, including general relativity.

2 Deduction

Deduction is of course no longer based on either Aristotle’s syllogisms or Euclid’s informal rea-
soning. Since Frege, Russell, and Hilbert, at least mathematical deduction has been formalized via
explicitly stated rules of inference appropriate to mathematics, of which there are many valid and
even inequivalent versions.6 Barring some rare exceptions, in practice mathematical physicists
simply adopt the style of mainstream mathematicians. In the 17th century Newton was in fact
one of these exceptions,7 but his eclectic style never became mainstream (since no one was able
to copy it) and his case is so singular that for our purposes we may as well ignore it in so far as
mathematical inference is concerned. In the 18th and early 19th centuries there was hardly any
difference between (mainstream) mathematics and mathematical physics: top mathematicians like
Euler, Lagrange, and Laplace co-created both.8 In the 19th century mathematics and (mathemat-
ical) physics did start to decouple,9 but some of the greatest and most influential mathematicians
involved in this process, like Riemann and later Hilbert and Poincaré, continued to work in both
mathematical physics and mathematics, and in their latter capacity adopted or were even instru-
mental in defining the corresponding standards of rigour, so that these (changing) standards of
mathematical rigour continued to be used in mathematical physics, too. As the classics of 20th

6In our view Gentzen’s system of Natural Deduction, which exists in both classical and intuitionistic versions, is
the crowning achievement of the quest for such rules (Pelletier and Hazen, 2012, 2024; von Plato, 2013; Peregrin,
2020). The existence of competing (inequivalent) logical systems is by no means a modernist phenomenon; Stoic logic
was already an alternative to syllogistic logic (Kneale and Kneale, 1962). See also the end of §2 below.

7Principia is a mix of ‘ancient’ techniques and Newton’s own innovations (Whiteside, 1974; Guicciardini, 2009).
8See e.g. Darrigol (2005), Gray (2021), and Stan (2025).
9See e.g. Jungnickel and McCormmach (1986), Gray (2008), and Maddy (2008).
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century mathematical physics exemplify,10 this resulted in the fact that mathematical physicists
tend to present their mathematical formalism in the same way as mainstream mathematicians.

Thus the question what rigour of deductions (or proofs) in mathematical physics amounts to
is prcatically the same as for mathematics as a whole. This does not mean that this question is
easy; but it is not our main theme, so we will be brief.11 In principle a proof is rigorous if it has
been formalized in such a way that each step follows from the previous one(s) according to some
explicitly indicated rule(s) of inference of the proof system in use. Moreover, anyone trained in
the use of such rules should be able to verify and validate the proof, like a chess umpire.12

For [this] concept of rigor we make a historical claim: That rigor is absolute and here to stay.
The future may see additional axioms for sets or alternatives to set theory or perhaps new new
more efficient ways of recording (or discovering) proofs., but the notion of a rigorous proof
as a series of formal steps in accordance with prescribed rules of inference will remain. (Mac
Lane, 1986, p. 378)

In practice, except for exams and Principia Mathematica, no proof is ever stated in this way:13

Moreover, there are good reasons why Mathematicians do not usually present their proofs in
fully formal style. It is because proofs are not only a means to certainty, but also a means to
understanding. Behind each substantial proof there lies an idea, or perhaps several ideas. They
idea, initially perhaps tenuous, explains why the result holds. The idea becomes Mathematics
only when it can be formally expressed, but that expression must be so couched as to reveal the
idea; it will not do to bury the idea under the formalism. (. . . ) Proofs serve both to convince
and to explain—and they should be so presented. (Mac Lane, 1986, p. 378–379)

Alternatively, according to Wittgenstein,14 ‘The proof must be surveyable’ in the sense that ‘it
should be visible that a proof is a proof.’ The key tension is that a short informal proof is intended
to be clear at the cost of rigour, whereas a formal proof is intended to be rigorous by sacrificing
clarity. Both are error-prone, in different ways: informal inferences may be hard to verify by an
‘umpire’ and may even be wrong,15 whereas formal proofs may introduce errors because of their
gigantic length. Moreover, errors in formal proofs are more severe than those in informal ones:

an attempt at a formal derivation with even a single error is not a derivation, [whereas] an
informal proof can have small mistakes and yet still reasonably lead us to believe in the cor-
rectness of its conclusion. (Avigad, 2021, pp. 7384–7385)

10Here one may think for example of von Neumann (1932), Streater and Wightman (1964), Ruelle (1969, 1978),
Reed and Simon (1972–1978), Hawking and Ellis (1973), Thirring (1977–1980), Bratteli and Robinson (1979, 1981),
Haag (1992), and Choquet-Bruhat (2009), which despite its publication date belongs to the 20th century.

11See Thurston (1994), Dutilh Novaes (2011), Weir (2014), Hamami (2018), Ording (2019), Avigad (2021), Burgess
& De Toffoli (2022), and Stillwell (2022) for perspectives on the wide variety of styles of proof in mathematics.

12This analogy is based on the following correspondence between a formal proof and a game of chess, proposed by
Weyl (1926): the axioms of some theory are analogous to the starting position of a game of chess; the deduction rules
are analogous to the possible moves; a sentence (as defined in logic) is analogous to some position on a chess board;
a theorem is like a legal position in a correctly played chess game; and finally a proof is like a game leading to that
position, played according to the rules. In mathematics, the ultimate umpire would be a proof assistant that verifies
a completely formalized proof, see e.g. Geuvers (2009) and Wiedijk (2023) for introductions and examples. See also
Sing (2023), who discusses this possibility in more detail as a language game, and Landsman and Singh (2024).

13Indeed, ‘most mathematicians cannot even state the axioms of a particular formal system’ (Avigad, 2021, p. 7378).
14Quoted from Ms 122: p. 105, see Mühlhölzer, 2010, p. 574, and Floyd (2023).
15On top of this even informal proofs may have thousands of pages: the classification of finite simple groups comes

to mind (Wikipedia, undated). In mathematical physics the proof of the stability of Schwarzschild spacetime is a
worrying example (Dafermos et al., 2019, 2021), as are many other proofs in the field called mathematical relativity.
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One may add the conceptual complications added by computer-assisted proofs, as in the four-
colour theorem, where the reduction of the proof to an astronomical number of case distinctions
is clear, whilst the actual verification thereof is as remote from ‘surveyable’ as one can have it.16

In conclusion, the gap between the Scylla of formal rigour (with its associated fragility) and
the Charybdis of informal clarity (with its intrinsic human frailty) remains wide. As importantly,
what also remains undecided is the origin of the rules of inference (i.e., of logic).17 We merely
state our own view (Landsman and Singh, 2024; Landsman, 2025), inspired by Wittgenstein:18

It is as if we had hardened the empirical proposition [Erfahrungssatz] into a rule. And now we
have, not an hypothesis that gets tested by experience, but a paradigm with which experience
is compared and judged. (Wittgenstein, 1969, Part VI, §22)

Read ‘mathematical practice’ for ‘the empirical proposition’ and ‘experience’: the idea is that
for various reasons rules of inference arose in mathematical practice (presumably well before
Euclid),19 became widely adopted, and eventually—even before they were formalized and explic-
itly stated—crossed the line from the a posteriori into the a priori and thus became normative.
Wittgenstein’s famous ‘hardness of the logical must’ just reflects this a priori status of logic:20

once some inferential practice has hardened into rules it has become immune to empirical verifi-
cation and instead has become a paradigm or yardstick.21 As the history of mathematics shows,
this does not mean that a given system of rules of inference is immune to possible change; mutatis
mutandis its local normativity is an example of Friedman’s ‘relativized a priori’.22 See also §5.

3 Definition: Aristotle

Socrates, disregarding the physical universe and confining his study to moral questions, sought
in this sphere for the universal and was the first to concentrate upon definition. (Aristotle,
Metaphysics 987b1)

We now analyze the second ingredient of rigour in mathematics and mathematical physics (and
even in philosophy and reasoning in general), side by side with deduction: definition.23 Many of
Plato’s dialogues are, or include, searches for definitions,24 but ironically, most such attempts fail.

16See Haken (2006) and Gonthier (2008) for the theorem, and Tymoczko (1979), Shanker (1987), pp. 143–160, and
Singh (2023) for the ensuing philosophical debate.

17See e.g. Jacquette (2002, 2007), Shapiro (2007), Haaparanta (2009), and Blanchette (2012) for various opinions.
18Wittgenstein admittedly says this about 25×25 = 625 rather than about the rules of logic. However, as explained

in Landsman (2025), various passages of the Philosophical Investigations, such as §§130–131, suggest that he held
similar views about language games, which are his (“late”) forms of logic (Kuusela, 2019).

19See e.g. Szabó (1960, 1978) and Dutilh Novaes (2020) for various speculations about the origins of these rules.
20See Wittgenstein (1969), Part I, §121 and Part VI, §49, as well as Kuusela (2019) and Bangu (2021, 2025).
21See especially Philosophical Investigations, §§130–131. The German original ‘Maßstab’ is superior to the English

translation ‘yardstick’ in that the original much better expresses the intended normative character of the word.
22See Friedman (2001, 2002) for the relativized a priori, which Friedman applies to theories of space and time etc.

rather than to logic; putting the latter into this context was inspired by Peregrin (2020). Landsman and Singh (2024)
argue that mathematics may be seen as a ‘rhododendron of language games’ in which various proof systems for math-
ematics (or logical foundations thereof) peacefully coexist, corresponding to different branches of the ‘rhododendron’.

23The literature on this topic is vast. Our summary of Aristotle below is based on Charles (2010), Bronstein (2025),
and Smith (2022). General historical and philosophical studies of definitions are Robinson (1954), Abelson (1967),
Charles, ed. (2010), Gupta and Mackereth (2023), and Anstey and Bronstein (2025). In connection with mathematics
see also Lakatos (1963/2015), Werndl (2009), Cellucci (2018), Coumans (2023), Sereni (2024), and §§4–5 below.

24For example, Meno, Eutyphro, Laches, Sophist, Theaetetus, Charmides, Philebus, Cratylus, and Republic are
(or may profitably be structured as) roughly speaking searches for the definition of virtue, piety, courage, sophistry,
knowledge, temperance, pleasure, names and signs and reference, and justice, respectively.
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For both Plato and Aristotle, defining was a search for essence, which Plato sought in the
lofty realm of forms or ideas, whereas Aristotle approached it on earth, as it were, through his
theory of the demonstrative sciences in the Posterior Analytics. As we have seen, Aristotle’s
demonstrations start from premisses. These include axioms (which are common to all sciences)
as well as definitions and hypotheses (both of which belong to some given science): whereas the
former are neutral as to the possible existence of some definiendum, the latter assures its existence.
All premisses, hence in particular all definitions, must be ‘true, primary, immediate better known
or more familiar than the conclusion, prior to the conclusion, and causes of the conclusion.’25

The purpose of a definition of X is to reveal the essence of X , where X is some concept,26 so
that its definition is an answer to the question what X is by explaining why it is; in other words, the
questions what X is and why X is have the same answer, namely the definition of X . This, in turn,
involves identifying one or more of the four possible causes of X , which for Aristotle famously
could be efficient (i.e., preceding), final, formal, or material. Thus a definition of X could be
the conclusion of a demonstration that provides such causes of X (and ideally also shows that X
is “necessary”), following which X might serve as a premiss of some new demonstration. This
gives the dual nature of Aristotle’s definitions: scientific demonstrations or explanations rely on
definitions, which in turn may be the conclusions of such demonstrations. But they need not be,
in which case some definition is said to be indemonstrable, or a principle, or a primary premiss.

Indemonstrable definitions have haunted philosophy from Plato (who clearly saw their need
and problems, too, albeit perhaps in a less formal way) to the present day. Aristotle’s own way out
follows a dismissal of Plato’s suggestion that such principles are innate, concluding that:27

It is clear that we must get to know the primary premisses by induction; for the method by
which even sense-perception implants the universal is inductive. Now of the thinking states by
which we grasp truth, some are unfailingly true, others admit of error— opinion, for instance,
and calculation, whereas scientific knowing and intuition are always true: further, no other
kind of thought except intuition is more accurate than scientific knowledge, whereas primary
premisses are more knowable than demonstrations, and all scientific knowledge is discursive.
From these considerations it follows that there will be no scientific knowledge of the primary
premisses, and since except intuition nothing can be truer than scientific knowledge, it will be
intuition that apprehends the primary premisses. (Posterior Analytics II.19, tr. G.R.G. Mure)

Thus indemonstrable definitions are grasped by intuition, claimed to be even more true than sci-
entific knowledge; and what is grasped is ‘known by induction’. But this seems at odds with
the idea that premisses are supposed to be certain, a property hardly associated with either in-
tuition or inductively gained knowledge.28 Thus Aristotle’s scheme eventually gave way to our
current hypothetico-deductive view of scientific procedure,29 in which no premiss of some sci-
entific demonstration is regarded as strictly true, self-evident, or necessary, and the flow is from
some empirically welcome conclusion to an increased belief or acceptance of the premisses.30

25See Smith (2022), here quoted verbatim, for the meaning of these criteria (which is not uncontroversial).
26Hence Plato and Aristotle are often said to seek real definitions. Any concept X is of course conventionally

approached via some word, but the idea is that both the word(s) for X and its ‘real’ definition are linguistic formulae for
some language-independent part of the world. In the footsteps of Aristotle, Galen more explicitly split definitions into
two parts: a nominal part pinpointing X by initial naming (accepted by all competent speakers of the given language)
and an essential one found out by enquiring into the nature of X (Hood, 2010).

27Elsewhere, Aristotle describes induction as ‘argument from the particular to the universal’.
28Already Euclid struggled with this tension, as is obvious from his attempts, widely regarded as unsatisfactory

already in antiquity, to define what in his approach logically speaking should have been indefinables, such as points,
lines, and surfaces. See Heath (1908), pp. 155–194. This was fully clarified only by Hilbert (1899); see also §4 below.

29See Pulte (2001, 2005) and more briefly Paseau and Wrigley (2024), summarized in Landsman (2025).
30For those who still follow Popper, this flow can only lead to the falsification of one or more of the premisses.
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But this does not make Aristotle’s analysis of definition irrelevant; as we shall see, in mathe-
matical physics his search for essence remains, mutatis mutandis, an important goal of definition.

What has changed since Aristotle’s work on definition, then, is especially that:

1. definitions should no longer be regarded as true, necessary, or self-evident;

2. the four Aristotelian causes supposed to ground every definition in its goal of providing
essence have, since Galilei, been replaced by ingredients from mathematics and experiment.

3. indemonstrable definitions, or “indefinables”, are dealt with via implicit definition (see §4).

4 Definition: Frege to Hilbert

We now skip 2200 years: despite the importance of various intermediate events, Frege and Hilbert
provide a valid point of entry into the modern era.31 In Frege’s Begrifsschrift from 1879, a defini-
tion was an abbreviation, i.e., an arbitrary stipulation by which a new sign is introduced to take the
place of a complex expression whose meaning we already know. But Grundlagen der Arithmetik
from 1884 is a sustained quest for the definition of number, and more generally for the “definition
of a definition”. In the best Platonic tradition the former is not found, but about the latter:

The basic picture of definition in Grundlagen is this. We start with an expression that has
been in use for some time, and in which we have not discerned any logical structure — call
such expressions ‘simple’. A definition of this expression rests on an analysis of the con-
cept that it expresses as logically structured from simpler concepts; the definiens reflects this
logical structure by including occurrences of truth-functional connectives and quantifiers —
call such expressions ‘complex’. Using such a definition, one can import additional logical
structure into those propositions which have been in use prior to the analysis and in which
the definiendum occurs. In virtue of the presence of the additional logical structure, we can
discern deductive relationships to and from these propositions that we could not discern prior
to the analysis-based definition. In this sense, the definition enables us to prove things we
could not prove without it. (Shieh, 2008, p. 997)

This points to a much loftier goal of defining than mere abbreviating, namely concept formation.
This might also be called explication (a term more often used in connection with Carnap), viz.

a reconstruction of the meaning of some expression already in use in terms of others that are
better understood, or in some other ways less problematic. (Horty, 2007, p. 35)

Here one may think of 19th century definitions of continuity, or of real numbers, etc.: the avail-
ability of an advanced logical language is crucial for the clarity that this kind of definition brings.
The more interesting ones among Frege’s definitions therefore have dual nature: formally, they
are abbreviations or notational conventions, but if the definiendum was already in use, typically
somewhat informally and hence without having been defined before (even in mathematics!), then
the definiens not only clarifies it but is even meaning-constitutive. This duality is echoed by a
famous passage from Principa Mathematica (whose debt to Frege is generally enormous):

31For a glimpse of what happened during these 2200 years one may consult Anstey and Bronstein (2025). In our
brief account cannot possibly do justice to Frege either; apart from the original sources (Frege 1879, 1884, 1903) see
for example Dummett (1996), chapter 2, Horty (2007), Shieh (2008), and Hallett (2021).
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Theoretically, it is unnecessary ever to give a definition: we might always use the definiens
instead, and thus wholly dispense with the definiendum. Thus although we employ definitions
and do not define “definition,” yet “definition” does not appear among our primitive ideas,
because the definitions are no part of our subject, but are, strictly speaking, mere typographical
conveniences. Practically, of course, if we introduced no definitions, our formulae would
very soon become so lengthy as to be unmanageable; but theoretically, all definitions are
superfluous. In spite of the fact that definitions are theoretically superfluous, it is nevertheless
true that they often convey more important information than is contained in the propositions
in which they are used. This arises from two causes. First, a definition usually implies that
the definiens is worthy of careful consideration. Hence the collection of definitions embodies
our choice of subjects and our judgment as to what is most important. Secondly, when what is
defined is (as often occurs) something already familiar, such as cardinal or ordinal numbers,
the definition contains an analysis of a common idea, and may therefore express a notable
advance. Cantor’s definition of the continuum illustrates this: his definition amounts to the
statement that what he is defining is the object which has the properties commonly associated
with the word “continuum,” though what precisely constitutes these properties had not before
been known. In such cases, a definition is a “making definite”: it gives definiteness to an idea
which had previously been more or less vague. For these reasons, it will be found, in what
follows, that the definitions are what is most important, and what most deserves the reader’s
prolonged attention. (Russell and Whitehead, 1910, pp. 11–12).

Dummett (1991), following G.E. Moore, refers to this duality or ambiguity in definition as the
‘paradox of analysis’: if the definiendum) is not obviously “the same” as the definiens, how can
we maintain we have given a correct definition? For example, while there was never any doubt
about the meaning of a prime number or a finite group, finding the right definition of the continuum
was definitely a struggle that divided the greatest mathematicians like Hilbert, Brouwer, and Weyl.

How does Frege deal with indemonstrable definitions? To start, in his view ‘we must never
present as a definition something that is in need of proof or of some other confirmation of its
truth’,32 so in that sense all his definitions are indemonstrable. Nonetheless, he does face a problem
similar to Aristotle, in that at the end of the day some terms in some basic definitions will not
themselves be defined. Frege’s solution is not to appeal to ‘intuition’ but to ‘elucidation’:33

One can also recognize a third proposition, elucidatory propositions, but I would not want to
count them as part of mathematics itself but refer them to the antechamber, the propaedeutics.
They are similar to the definitions, in that they too are concerned with fixing the meaning of
a sign (or word). But in addition, they contain elements whose meaning cannot be assumed
as known completely and beyond question, perhaps because they are used variously or am-
biguously in the language of everyday life. In the cases where a meaning is to be given to
a sign which is logically simple, then one cannot give a definition proper, but one must con-
tent oneself with fending off the unwanted meanings which crop up in the use of language,
indicating the one intended. In doing this, certainly one must always count on a cooperative
understanding trying to hit upon the meaning. Such statements of elucidation cannot be used
in the same way that the definitions can, because they lack the necessary precision. (Frege to
Hilbert, 27 December 1899; Gabriel et al., 1980, pp. 36–37).

32Frege to Hilbert, 27 December 1899; Gabriel et al., 1980, p. 36. The Frege–Hilbert correspondence, to which we
will return, lasted from 1895 to 1903, centered around Hilbert’s Grundlagen der Geometry (Foundations of Geometry)
from 1899, in which he developed and analyzed new axioms for Euclidean geometry in a style of mathematics which
became dominant in the twentieth century. The correspondence is reprinted with commentary in Gabriel et al. (1980).
See also Hallett (2010, 2021), Blanchette (2018), and Rohr (2023) for the Frege–Hilbert debate as a whole.

33See Hallett (2021), pp. 171–173 for what follows.
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As noted by Hallett (2021), since Frege insisted throughout his career that at least in mathematics
words without fixed meaning has no meaning at all, relying on something as vague as ‘elucidation’
is disastrous for Frege’s entire logicist program, indeed at least as damaging as Russell’s paradox
(which is usually seen as the death blow to this program). Frege even follows Aristotle in calling
‘axioms propositions that are true but are not proved because our knowledge of them flows from a
source very different from the logical source, a source which may be called spatial intuition.’34

Neither elucidation nor spatial intuition was necessary for Hilbert, who circumvented both:35

You [Frege] say further: ‘The explanations in sect. 1 are apparently of a very different kind,
for here the meanings of the words “point”, “line”, . . . are not given, but are assumed to be
known in advance.’ This is apparently where the cardinal point of the misunderstanding lies.
I do not want to assume anything as known in advance; I regard my explanation in sect. 1 as
the definition of the concepts point, line, plane – if one adds again all the axioms of groups I
to V as characteristic marks. If one is looking for other definitions of a “point”, e.g., through
paraphrase in terms of extensionless, etc., then I must indeed oppose such attempts in the
most decisive way; one is looking for something one can never find because there is nothing
there; and everything gets lost and becomes vague and tangled and degenerates into a game
of hide-and-seek. (Hilbert to Frege, 29 December, 1899; Gabriel et al., 1980, p. 39)

In my opinion, a concept can be fixed logically only by its relations to other concepts. These
relations, formulated in certain statements, I call axioms, thus arriving at the view that ax-
ioms (perhaps together with propositions assigning names to concepts) are the definitions of
the concepts. I did not think of this view because I had nothing better to do, but I found
myself forced into it by the requirements of strictness in logical inference and in the logical
construction of a theory. (Hilbert to Frege, 22 September 1900; Gabriel et al., 1980, p. 51)

To justify these well-known quotations: it is hard to find a better expression of the opposition
between a referential semantics of mathematics, where the basic objects of mathematics are sup-
posed to be ‘given in advance’ (notably by definitions) prior to axiomatization,36 and an inferential
semantics where these indefinables are defined by the system of axioms in which they appear.37

A similar attitude towards Frege was displayed by “middle” Wittgenstein,38 whose comments
on the analogy between mathematics and chess heralded his late philosophy and provided strong
(but probably unintended) philosophical support for Hilbert’s position. For example:

It is, incidentally, very important that by merely looking at the little pieces of wood I cannot
see whether they are pawns, bishops, castles, etc. I cannot say, “This is a pawn and such-and-
such rules hold for this piece.” Rather, it is only the rules of the game that define this piece.
A pawn is the sum of the rules according to which it moves (a square is a piece too), just as
in language the rules of syntax define the logical element of a word. (Wittgenstein, 1967, p.
134)

34Frege to Hilbert, 27 December 1899; Gabriel et al., 1980, p. 37.‘
35Hilbert’s reference to ‘sect. 1’ etc. in the first excerpt below is to his Grundlagen (Hilbert, 1899).
36Here we advocate the following definition: ‘An object is given in advance iff the criteria of identity for the object

which the language game is about are not completely stated or presented by the language game itself; and it is not given
in advance iff the criteria of identity for the object are completely stated or presented in the language game – [so] that
this identity is given by the language game alone and by nothing else.’ (Mühlhölzer, 2012, p. 114).

37Unnecessarily conservatively, Hilbert initially interpreted the logical connectives in the traditional way; but as
suggested by his student Gentzen, even these are implicitly defined by the rules for logical inference. See Giovannini
& Schiemer (2021), §4.2, and references therein, as well as von Plato (2013).

38 Weiberg & Majetschak (2022) define Wittgenstein’s middle period as 1929–1936. Kienzler (1997), Mühlhölzer
(2008, 2010), Stenlund (2015), and Max (2020) discuss some of Wittgenstein’s comments on chess. As reviewed by
Epple (1994), serious discussion (and criticism) of the analogy between mathematics and chess started with Frege. In
the context of implicit definitions connections between Hilbert and Wittgenstein have been discussed before by among
others Muller (2004), Mühlhölzer (2008, 2010), Friederich (2011), and Landsman and Singh (2024).
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What Hilbert proposes above is usually called implicit definition.39 Poincaré, like Hilbert in con-
nection with (non-) Euclidean geometry, proposed the same idea under the name of ‘definition in
disguise’.40 His ensuing debate with Russell mirrored the one between Hilbert and Frege:41

For Russell, shape is just the sort of “indefinable” basic term of which we have an unanalyz-
able, immediate grasp, and asking for a definition of it is like asking for “the spelling of the
letter A”. For Poincaré, that allegedly immediate grasp may be relevant to the psychology of
the individual. But it cannot help us to understand how a concept functions within a coherent
system of principles, so that two persons who may not associate the same immediate intuition
with a concept can nonetheless reason with it in accord with one another. That requires that
both apply the same systematic criteria that constitutes its implicit definition. This has two
notable consequences: that the vague intuitive notion can be made precise by articulation the
principle that is implicitly assumed in our use of it; and that such a principle, once isolated,
allows us to treat the subject as a formal one that is independent of intuition altogether. (. . . )

It was Poincaré who understood that if there is [a Kantian] “form of intuition,” it must be
implicit in the concepts that we impose upon intuition. Those concepts are implicit in the
rules that guide our intuitive practice. (DiSalle, 2006, pp. 85–86)

The Frege–Hilbert debate did clarify some respects in which implicit definition is ambiguous:

1. One may or may not desire a unique reference for the terms that are implicitly defined by
the axioms (up to an appropriate kind of isomorphism). One may want this in some (non-
Wittgensteinian) philosophies of language, and perhaps sometimes also in mathematics,42

but in mathematics and mathematical physics this is usually as impossible as it is undesirable
(and boring if it happens to be the case). Here is the most famous passage from Hilbert:

You [Frege] say that my concepts, e.g. ‘point’, ‘between’, are not unequivocally fixed;
e.g. ‘between’ is understood differently on p.2̇0, and a point is there a pair of numbers.
But it is surely obvious that every theory is only a scaffolding or schema of concepts
together with their necessary relations to one another, and that the basic elements can
be thought of in any way one likes. If in speaking of my points I think of some system
of things, e.g. the system: love, law, chimney sweep . . . and then assume all my axioms
as relations between these things, then my propositions, e.g. Pythagoras’ theorem, are
also valid for these things. In other words: any theory can always be applied to infinitely
many systems of basic elements. [This] can never be a defect in a theory, and it is in any
case unavoidable. (Hilbert to Frege, 29 December, 1899; Gabriel et al., 1980, p. 40)

39The tangled history of this idea is sometimes said to have started with Gergonne (1818). See Pollard (2010),
Torretti (2012), Schlimm (2013), Mancosu (2016), Giovannini and Schiemer (2021), Biagioli (2024), and Sereni (2024)
for details and additional references. Briefly: Hilbert, partly following Dedekind and Pasch, was the high point of
a German development towards implicit definition, to which there was also an independent Italian route involving
among others Burali-Forti, Peano, and Enriques. For Poincaré’s route, closely related to his conventionalism, see Coffa
(1991), Friedman (1999), Ben-Menahem, (2006), DiSalle (2006), Stump (2015), and Warren (2020). The term ‘implicit
definition’ was probably introduced by Enriques (1913) and was subsequently adopted by the logical positivists, see
below. Giovannini & Schiemer (2021) call implicit definitions structural, since the words ‘implicit’ and ‘explicit’ are
adjectives for certain technical definitions in logic (which Beth’s definability theorem actually identifies).

40Poincaré’s views on this topic were developed in a large number of his writings (of which the most famous one
was his popular book Science and Hypothesis), which can be traced from Gray (2013).

41Russell’s ‘knowledge by acquaintance’ of indefinables, i.e., direct awareness without the intermediary of infer-
ence or any knowledge of truths (Hasan and Fumerton, 2024) is as problematic as Frege’s ‘elucidation’ or Aristotle’s
‘intuition’. The poverty of this is odd since Russell considered indefinables the chief problem of philosophical logic!

42Indeed, Hilbert (1900) himself defined the real numbers as a particular ordered field in what is now called a
categorical way, i.e., with a unique model (up to isomorphism), but this was done in what later became second-order
logic. Even the Dedekind–Peano axioms do not characterize the natural numbers, but even if they did, both examples
would be misleading in so far as mathematical physics as well as much of mathematics is concerned.
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2. At the semantic level, one may conceive implicit definitions as either:

• Determining the meaning of the undefinables or primitives in the axioms, for exam-
ple by simply be declaring that this has been done by postulating their mutual logical
relations (which was the opinion of e.g. Peano and Enriques), or by fixing their possi-
ble interpretations (as would be made more precise about three decades later in model
theory),43 which was arguably the view of Hilbert himself, as well as of Poincaré:

[His] analysis reveals the foundation of geometry in a “disguised” or implicit defini-
tion. But having this foundation does not make geometry an uninterpreted structure.
For the definition itself constitutes an interpretation of a specific type of phenomenon
as instantiating a specific mathematical structure. (DiSalle, 2002, p. 181)

This highlights an interpretation of geometry (or even mathematics in general) that
also Wittgenstein adopted in his later work, namely that it is not descriptive of some
external reality but normative for possible descriptions thereof through convention.44

• Defining a structure (which was Frege’s view, who called it a ‘second-level concept’),
cashed out, in later parlance, by its models. In each of these the undefinables are actu-
ally defined in a traditional sense, namely by their interpretation in the given model.

3. It is common in the philosophical literature to interpret implicit definitions as ‘truths [that]
are merely reflections of what we mean — or which concepts we employ’ (Warren, 2022,
p. 28), so that the axioms, or, in ordinary language, sentences containing the definienda,
determine the meaning of the latter by the ‘free stipulation of the truth’ of these sentences.45

We reject this and do not attribute any kind of truth to definitions.46 Instead, we follow at
least this aspect of Poincaré’s conventionalism as paraphrased by Ben-Menahem:47

On this [Poincaré’s] construal, implicit definition is indeed a matter of stipulation, but
does not purport to generate truth. (. . . ) Rather than conceiving of the axioms as freely
postulated truths, we should think of them as hypothetical conditions, somewhat anal-
ogous to a set of equations that determines the values of a set of variables. (. . . ) The
axioms are considered to bestow meaning on the implicitly defined terms in the sense
that they fix a range of possible interpretations. On this construal, there is no postulation
of truth by convention. (Ben-Menahem, 2006, p. 140)

To avoid confusion between the various kinds of conventionalism on the market (and especially
their different concepts of truth), on the above view we therefore propose to write ‘hypothetical’
instead of ‘conventional’; this terminology especially respects the decisive historical transition
from the ‘Euclidean’ (= Aristotelian) model to the ‘hypothetico-deductive’ model, cf. §1.

43See Eder and Schiemer (1918).
44Here is an example from Wittgenstein: ‘What about the sentence “The sum of the angles in the triangle is 180◦’?

If it does not turn out to be 180◦’ in a measurement, I will assume a measurement error. The sentence is therefore
a postulate about the manner of description.’ (Ts-212,XV-114-5[1], where all Typescripts (Ts-) can be found online
via http://www.wittgensteinsource.org). Baker & Hacker (2009), §VII.4) write that mathematical theorems are
‘norms of representation’, in the sense that theorems are not (primarily) descriptive, as in a platonic view; instead they
are normative for possible descriptions. Similarly, Mühlhölzer (2012), p. 109, says that mathematical propositions are
preparatory for descriptions of empirical states of affair, instead of being about such states. See also Bangu (2025).

45This kind of truth attribution is also shared by the neo-logicists, see e.g. Hale and Wright (2000)
46This is part of a discussion about the possible truth of the conventions that form the a priori (Landsman, 2025).
47And earlier in her book: ‘The literature is replete with ambiguity as to what the meaning of ‘convention’ is (. . . )

The most serious confusion pertains to the notion of truth by convention typically associated with conventionalism. A
central theme of this book is that conventionalism does not purport to base truth on convention, but rather, seeks to
forestall the conflation of truth and convention.’ (Ben-Menahem, 2006, p. 1). Hear hear!
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5 Definition: Mathematical physics

As we just saw, implicit (or disguised) definitions first arose in the context of spatial (i.e., Eu-
clidean and non-Euclidean) geometry through the work of Hilbert, Poincaré, Enriques, and others,
providing not only a solution to the problem of indefinables but en passant turning the traditional
referential interpretation of mathematics in which primary objects are supposed to be known be-
fore mathematics starts describing them, into an inferential one is which the meaning of symbols
is given by their use according to the (inferential) rules following from their (implicit) definitions.

Unlike Hilbert at least initially, but like Kant and Helmholtz in earlier phases of the discus-
sion, Poincaré’s views on geometry were closely related to physics, with explicit discussions of
Newtonian mechanics and later relativity in the light of his conventionalism (which is inseparable
from his use of implicit or ‘disguised’ definitions).48 Although Enriques partly opposed Poincaré’s
conventionalist views,49 he also saw the possibility of a vast expansion of implicit definitions:

In Enriques’s usage, implicit definitions of the basic concepts of geometry indicate that the
meaning of the abstract terms designating them in an axiomatic system is determined relative
to the formal implications of the theory, along with its possible instantiations in concrete sci-
entific domains. Enriques also gave a fully general interpretation of the notion of implicit defi-
nition by identifying the basic concepts of all disciplines as abstract concepts, whose meaning
is determined in part by a formal theory and in part by empirical circumstances. (Biagioli,
2024, p. 19)

Inspired rather by by Hilbert and (early) Wittgenstein, Schlick (1918/2009) also suggested such
generalizations. Providing more detail than our previous authors, his idea was to relate ostensive
definitions of objects in reality, which are connected through a ‘network of empirical judgements’,
with implicit definitions of objects in some mathematical theory, of which however the only “ex-
ample” Schlick gives is that of ‘the basic equations of physics’. These two networks of definitions
‘completely agree’ in that they are uniquely connected by a coordination procedure. Although
Schlick’s book followed his earlier one on relativity within a year, the above program wasn’t even
carried out for special or general relativity, let alone for the rest of (modern) physics.50

Nonetheless, despite this false start the idea to extend implicit definition from pure mathemat-
ics to physics seems sound: it means that theories of mathematical physics (such as Newtonian
mechanics or general relativity) implicitly define the physical concepts appearing therein (such
as space, time, and motion), assuming the mathematical concepts, such as a Euclidean or more
general manifold and a specific fixed or variable metric, are understood via their own axioms and
definitions. Returning to the Frege–Hilbert opposition, it is as if Frege would insist that concepts
like space and time are understood prior to the establishment of the theory in which they (subse-
quently) appear, whereas Hilbert (whom we obviously side with) would define these concepts by
such a theory (and hence subject to change if the underlying theory changes). In particular, im-
plicit definitions are taken to be meaning-constitutive for the indefinables, in the Wittgensteinian
sense that meaning is defined by use according to the rules set by the theory in question.51

One might even argue that this pragmatic “meaning = use” point of view goes back to Newton:

48It is rather within mathematics that Poincaré restrained himself in this respect, arguing (similar to Brouwer) that
arithmetic had a completely different origin from geometry, namely in the human experience of time, cf. Gray (2013).

49Both were very influential mathematicians, philosophers, and popularizer of science.
50See Coffa (1991) and DiSalle (2006) for critical reviews; see also Wagner (2022). In a delightful televised discus-

sion with Bryan Magee in 1977 on ‘Logical Positivism and its Legacy’, Alfred Ayer replied to Magee’s question what
he regarded as the main shortcomings of logical positivism: ‘I suppose the greatest defect is that nearly all of it was
false.’ Quoted by Edmonds (2020), p. 259. See https://www.youtube.com/watch?v=x2SrXueVAos at 34:19.

51Following Brandom we take these rules to be inferential, cf. Landsman and Singh (2024) and Landsman (2025).
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Relative quantities, therefore, are not the actual quantities whose names they bear but are
those sensible measures of them (whether true or erroneous) that are commonly used instead
of the quantities being measured. But if the meanings of words are to be determined by usage,
then it is these sensible measures which should properly be understood by the terms “time,”
space,”, “place,” and motion, and the manner of expression will be out of the ordinary (. . . )
(Principia, Scholium in Book 1; Cohen and Whitman, 1999, pp. 413–414)

Indeed, we follow DiSalle (2006) in his claim that Newton, in Principia, realized that the key
conceptual ingredients of his mechanics such as space, time, mass, and force should be embedded
in his theory as definitions that ground his edifice. One might say that some of Newton’s attempts
to define things explicitly tend to be as unsuccessful (in being vague and/or circular) as Euclid’s;
but what does work is taking his definitions and axioms/laws as a whole in mutual dependence.52

Furthermore, the (mistaken) idea of the logical positivists that (implicit) definitions are arbi-
trary conventions has already been answered by DiSalle particularly in connection with Newton:

That his arguments concern definitions, rather than making metaphysical claims, might seem
incompatible with what seems to be an incontrovertible fact, namely, that Newton’s views of
space and time are essential to the ontological basis for his theory — part of his understanding
of how the world really is. This incompatibility is only apparent. It comes from the assump-
tion that such definitions are arbitrary, as the positivists suggested, and adopted because of
the simplicity and general usefulness of the conceptual frame work in which they occur; it
overlooks the fact that Newton’s definitions emerge from a conceptual analysis. Newton un-
doubtedly believed in a world of real things (. . . ) governed by the laws of nature, whatever
those might be. He therefore attempted to define space, time, and motion in such a way that
[his] picture of the world might make sense — that is, not to stipulate the character of space
and time, but to discover, by analysis of what we do know about the world, how they must be
defined in order to make sense of such a world. (DiSalle, 2006, p. 40)

Also from later authors (within our canon) the picture arises that far from being arbitrary conven-
tions, definitions in mathematical physics are the result of applying conceptual analysis to em-
pirical phenomena. In particular, Wittgenstein argued that ‘empirical propositions are hardened
into rules’ (cf. §2), and according to Poincaré, ‘empirical generalization are exalted to become a
postulate’.53 Hilbert, in explaining his program of axiomatization, made a similar point:

it is important to give the theories formed on the basis of experience a firmer structure and a
basis that is as simple as possible. For this it is necessary to clearly work out the prerequisites
and to differentiate exactly what is an assumption and what is a logical conclusion. In this
way, one gains clarity about all unconsciously made assumptions, and one recognizes the
significance of the various assumptions, so that one can oversee what modifications will arise
if one or the other of these assumptions has to be eliminated. (Hilbert, 1920/1992, pp. 17–18)

Having crossed the line from the a posteriori to the a priori, such definitions then become nor-
mative or meaning-constitutive for the correct use of the concepts thus defined. As argued in
Landsman (2025), the basic physical concepts then appear with the meaning a specific theory has
already endowed them with in the models of the underlying theories.54

52See also Cohen and Whitman (1999). DiSalle (2006), chapter 2, partly following Stein (1967), explains how
Newton’s definitions of absolute time and space in the Scholium following Definitions 1–8 in Book 1 make sense
(only) in connection with his laws of motion. Similarly, his explicit definitions of mass and force only make good sense
in combination with—and hence in current parlance are implicitly defined by— his laws of motion, which in turn rely
on mass and force. This was also Poincaré’s view (DiSalle, 2002; Gray, 2013, pp. 370–371).

53See DiSalle (2006), p. 84, as well as DiSalle (2002), passim.
54We take a relaxed view of what a model of a theory of mathematical physics amounts to (Landsman, 2025).
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6 Synthesis and examples

In his thesis on definitions in mathematical practice (which covers the present era), Coumans
(2023), p. 212, gives the following ‘partial taxonomy of definitions based on their roles’:55

1. Abbreviational definitions help to efficiently write down a mathematical text.

2. Narrative definitions structure the narrative of a mathematical text.

3. Functional definitions are needed to complete various steps in a proof.

4. Essential definitions capture the essence of a possibly preformal concept.

5. Explanatory definitions provide a fruitful perspective on a particular concept.

These categories overlap, making it natural to see “definition” as a family resemblance:56

I can think of no better expression to characterize these similarities than “family resem-
blances”; for the various resemblances between members of a family: build, features, colour
of eyes, gait, temperament, etc. etc. overlap and criss-cross in the same way. (Wittgenstein,
2009, §67)

As we have seen, the first point in the list is the one initially declared by Frege as well as by
Russell and Whitehead to be the only “official” possibility; the second is a more relaxed version
thereof. The third was highlighted by Lakatos (1963/2015). The fourth was taken to be the higher
goal of definition not just by Aristotle but also by Frege, Russell, and Whitehead. As Coumans
explains, essential definitions should align with previous intuition about the definiendum, whereas
explanatory definitions need not do so; but in practice they are hard to distinguish. We may add:

A more promising notion of definition by conceptual analysis is based not on the question,
“what do we typically mean by X?”, but rather on the question, “what conception of X is
implicit in our established empirical judgments and practices?” (DiSalle, 2002, p. 179)

This gives a Kantian twist to Aristotle’s essential definitions, unique to mathematical physics:

6. Transcendental definitions clarify what is implicit in our empirical judgments and practices.

To this list we also add a further distinction between explicit and implicit definition, as we see it:

• explicit definitions are always abbreviational and may also belong to any other category.

• implicit definitions paradoxically “define undefinables” via axiom systems in which they
occur; as such, recent as they may be, they belong to the Aristotelian categories 4, 5, and 6.

In pure mathematics, set theory arguably provides the clearest examples of implicit definition:

To replace this [naive] notion [of a set] the axiomatic method is employed; that is, one for-
mulates a number of postulates in which, to be sure, the word “set” occurs but without any
meaning. Here (in the spirit of the axiomatic method) one understands by “set” nothing but
an object of which one knows no more and wants to know no more than what follows about it
from the postulates. (von Neumann, 1925/1967, p. 395).

55We changed the order and added a numbering.
56See also Slug (2006) and Baker and Hacker (2009a), Chapter XI.
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At one stroke, this replaced half a century of failed attempts by Dedekind, Cantor, Frege, and
others to define sets explicitly or intuitively; von Neumann effectively declares the concept of a
set to be indefinable in the traditional sense, but definable via implicit definition,57 falling into
the Aristotelian category 4 above. Note that the membership relation ∈ is part of this implicit
definition (much as the equality sign = used in set theory is defined implicitly by the axioms of
first-order logic), upon which all of the usual set-theoretic symbols like ⊂ and ∩ etc. are defined
explicitly. Also more generally, explicit definitions ultimately rely on implicit ones.

In mathematical physics ‘axiom systems’ should be replaced by mathematically rigorous the-
ories of physics such as (precise) formulations of classical mechanics, general relativity, quantum
(field) theory, and statistical mechanics. Moreover, implicit definition should be construed in a
more relaxed way than in pure mathematics. In the latter, symbols like ∈ and = and words like
‘set’ are implicitly defined as indicated by von Neumann; in the original example of Hilbert (1899)
it is the words ‘point’, ‘line’, and ‘plane’ that are thus defined. In mathematical physics, on the
other hand, the typical situation is illustrated by general relativity: spacetime is first defined ex-
plicitly within mathematics (i.e., as a connected 4d Lorentzian manifold, possibly time oriented).58

However, that the mathematical objects thus defined play the role of physical spacetime, including
the physical meaning thereof, is implicitly defined by the theory as a whole.

Similarly: in Principia, Newton gave explicit definitions of time, space, and force (in words);
but that these explicit definitions indeed define time, space, and force is only clear from his theory
as a whole, including his laws of motion (see footnote 52). To take a simpler example involving
the meaning of just a constant: in special relativity one may explicitly define “the speed of light” as
a positive constant c entering the metric ds2 as well as Maxwell’s equations; but that this constant
defines the physical speed of light is only clear from special relativity and electrodynamics as a
whole. Although there may be some preformal idea, there isn’t a well-defined concept like “the
speed of light” prior to its appearance in special relativistic electrodynamics.59 But this applies
not just to constants but even to e.g. space and time. As such, the discussion is similar to the
Frege–Hilbert and Russell–Poincaré debates about spatial geometry mentioned earlier.

Once the basic “category 6” concepts have thus been defined explicitly by some mathematical
stipulation but implicitly by the entire physical theory (or some relevant fragment thereof), one
may try, on that basis, to define both concepts within the theory, such as black holes, or concepts
about the theory, such as determinism. Both of these fall into the Aristotelian categories 4 and/or
5 in the above list. The same point seems to apply here: though often defined explicitly in a
mathematical sense, the physical meaning of these concepts is defined by the theory as a whole.

For example, the definition of a black hole in general relativity rests on two ideas:60

• Penrose’s definition of an event horizon as the boundary of the region in spacetime where
light-rays can escape to (null) infinity (which is what makes a black hole “black”);

• A bumpy road, starting with Einstein, which led to the identification of a spacetime singu-
larity (the “hole” in black hole) with an incomplete and inextendible causal geodesic.

Concepts like this are defined in an ambient theory (which in this case is general relativity),61

57See Ferreirós (2008) for history and Muller (2004) specifically on von Neumann (1925/1967).
58See e.g. Hawking and Ellis (1973), §3.1, or Landsman (2022a), Definition 5.3.
59Or, taking an example from Knox and Wallace (2023): viscosity enters the Navier–Stokes equations as a real

constant η in a specific place; but that this constant captures the essence of the preformal concept of viscosity is
implicit in these equations and the theory of their solutions (that is, in hydrodynamics) as a whole (Darrigol, 2005).
More generally, the ‘constitutive spacetime functionalism’ proposed by Knox and Wallace (2023) seems, apart from
their realist agenda, close to the use of definitions we propose here. See also Butterfield and Gomes (2023).

60See Landsman (2022ab) for details and references. The technical details are by themselves a major achievement.
61See Landsman (2025) for details, embedded in a general philosophy of mathematical physics.
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upon which specific models of this theory (such as: spacetimes satisfying the vacuum Einstein
equations) may or may not have the property thus defined (like the Schwarzschild or Kerr space-
times having a black hole and Minkowski spacetime not having one).

A property like determinism should similarly be defined at the level of general relativity, but it
isn’t this theory that does or doesn’t have this property (much as classical mechanics cannot be said
to be deterministic or not—this depends on the specific forces in a model);62 as in the case of black
holes, it is a specific model of general relativity, i.e., a spacetime, that may or not be deterministic
according to some definition—hypothetical, like all definitions!—agreed on earlier.63 upon which
specific models may or may not in fact be deterministic, according to the given definition.

Likewise, (rigorous) statistical mechanics defines basic concepts like temperature, equilib-
rium, entropy, probability, fluctuations, etc., and from these, derived properties like irreversibility.
Quantum mechanics defines the meaning of preformal concepts like state, observable, probabil-
ity, spectrum, measurement, etc.; much as quantum field theory defines what we mean by fields,
particles, energy, locality, renormalization, vacuum, and so on. Its Standard Model then adds defi-
nitions of for example quarks, gluons, and weak neutral currents. Though originally motivated by
experiments, such concepts have crossed the line to become definitions and hence rules, at home
in what Wittgenstein (2009), §108, called the ‘crystalline purity’ of language games. These are
modes of examination as opposed to descriptions, and it would be a fundamental mistake—made
by realists—to confuse these modes, i.e., theories and models, with the things they examine.
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From Peano to the Vienna Circle, eds. Cantù, P., Schiemer, G., pp. 175–192. (Springer).

[132] Warren, J. (2020). Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism (Ox-
ford University Press).

[133] Warren, J. (2022). The A Priori Without Magic (Cambridge University Press).

[134] Weiberg, A., Majetschak, S., Hg. (2022). Wittgenstein Handbuch: Leben – Werk –Wirkung (J.B.
Metzler).

[135] Weir, A. (2014). Informal proof, formal proof, formalism. The Review of Symbolic Logic 9, 23–43.
https://doi.org/10.1017/S1755020315000234.

[136] Werndl, C. (2009). Justifying definitions in mathematics—going beyond Lakatos. Philosophia Math-
ematica 17, 313–340. https://doi.org/10.1093/philmat/nkp006.

[137] Weyl, H. (1926). Die heutige Erkenntnislage in der Mathematik. Symposion-Heft 3 (Weltkreisver-
lag, Erlangen). Translation: The current epistemological situation in mathematics, From Brouwer to
Hilbert: The Debate on the Foundations of Mathematics in the 1920s, ed. Mancosu, P., pp. 123–142
(Oxford University Press, 1998).

[138] Whiteside, D. T. (1974). The Mathematical Papers of Isaac Newton. Volume VI: 1684–1691. (Cam-
bridge University Press).

[139] Wiedijk. F. (2023). Formalizing 100 Theorems. https://www.cs.ru.nl/~freek/100/index.
html.

[140] Wikipedia (undated). Classification of finite simple groups. https://en.wikipedia.org/wiki/
Classification_of_finite_simple_groups.

[141] Wittgenstein, L. (1967). Wittgenstein and the Vienna Circle, ed. McGuinness, B.F. (Blackwell).

[142] Wittgenstein, L. (1969). Remarks on the Foundations of Mathematics (Blackwell).

[143] Wittgenstein, L. (2009). Philosophical Investigations. The German Text with an English Translation.
Revised 4th edition by P.M.S. Hacker and Joachim Schulte (Wiley–Blackwell).

22

https://www.jstor.org/stable/41133209
https://doi.org/10.1090/S0273-0979-1994-00502-6
https://doi.org/10.2307/2025976
https://doi.org/10.1007/s10838-014-9241-0
https://doi.org/10.1007/s10838-014-9241-0
https://doi.org/10.1140/epjh/s13129-021-00012-x
https://doi.org/10.1140/epjh/s13129-021-00012-x
https://doi.org/10.1515/crll.1925.154.219
https://doi.org/10.1017/S1755020315000234
https://doi.org/10.1093/philmat/nkp006
https://www.cs.ru.nl/~freek/100/index.html
https://www.cs.ru.nl/~freek/100/index.html
https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups
https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups

	Introduction
	Deduction
	Definition: Aristotle
	Definition: Frege to Hilbert
	Definition: Mathematical physics
	Synthesis and examples
	References

