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Abstract
Causal Set Theory (CST) is a promising approach to fundamental physics that 
seems to treat causation as a basic posit. But in exactly what sense is CST causal? 
We argue that if the growth dynamics is interpreted as a physical process, then 
CST employs relations of actual causation between causal set elements, whereby 
elements bring one another into existence. This is important, as it provides a better 
sense of how CST works, highlights important differences from general relativity—
where relations between spacetime points are typically seen as cases of mere causal 
connectibility rather than actual causation of the relevant type—and points toward 
a specific understanding of the emergence of spacetime within CST.

Keywords Causation · Causal · Causal set theory · Spacetime emergence · 
Quantum gravity

1 Introduction

Causal Set Theory (CST) is a promising approach to developing a quantum theory of 
gravity.1 It aims to reconstruct physics from a discrete structure of elements and rela-
tions, which collectively give rise to the macroscopic world as we know it, including 
the spatiotemporal manifold described by general relativity. The basic structure of 
CST is a causal set: a discrete set of elements C connected by an ordering relation 
commonly denoted as ≺. The structure is usually described as evolving through the 
operation of a dynamical law that adds elements one-by-one.

1 [4, 5, 7, 8, 19, 25, 26].
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The causal aspect of CST is often emphasised by the engineers of the theory (and 
also by philosophers, see e.g. [16, 40]). For instance, Dowker writes that

CST  arises by combining discreteness and causality to create a substance 
that can be the basis of a theory of quantum gravity. [6, p. 446]

Rideout and Sorkin describe CST in similar, causal terms:

... the order relation constituting C [a causal set] will be causal in the dynamical 
sense, and not only in name. [26, p. 6]

Sverdlov and Bombelli also view causal set theory as causal, writing:

The causal set approach to quantum gravity uses causal sets as the only fun-
damental structure for the description of the geometry of spacetime. [30, p. 1]

But in exactly what sense is CST causal? Our goal is to answer this question. Focus-
ing on the standard sequential growth dynamics for CST, we argue that if the dynam-
ics is treated as a real physical process, then CST makes use of causation of a specific 
sort, whereby causal set elements causally depend for their existence on previous 
elements. To show this, we use the framework of interventionism [22, 33], which is 
a helpful tool for identifying causal relations of various types. Treating the growth 
process as a real physical process is controversial (see [1, 15, 38]). As we shall see, 
however, our analysis might help to reimagine the growth process by treating it as 
a causal process rather than a process of temporal passage or becoming. This is sig-
nificant, since much of the resistance to treating the growth process as a real process 
stems from the conceptualisation of it as a process of becoming.

We begin, in §2, by clarifying and motivating the project of examining causa-
tion in CST. In §3 we outline CST in a bit more detail and in §4 we summarise the 
interventionist framework developed by [22] and [33]. After that, in §5, we apply 
interventionism to the dynamics of CST and show that causal set elements causally 
depend for their existence on previous elements. In §5.1 we assume that the classi-
cal sequential growth dynamics corresponds to a real physical process. In §5.2 we 
modify this assumption in line with [38] and show that even taking this modification 
into account, interventionism identifies causal dependence between elements of the 
relevant sort. §5.3 looks at objections and §6 sums up.

2 Clarification and Motivation

We begin by clarifying the core question at hand: in what sense is causal set theory 
causal? This question stands in need of clarification because there is already a well-
understood sense in which causal set theory is causal.

To see this, it is instructive to consider general relativity (GR) and the way the con-
cept of causality is deployed therein. In the framework of general relativity, causation 
usually refers to the existence of a lightcone structure that places constraints on what 
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can, and cannot, be dynamically connected via propagating signals. Two events in 
a manifold are causally related in this sense if and only if there is a timelike or null 
curve connecting them. It is easy to understand why one would want to qualify such a 
structure as being causal, as it specifies the domain of possible, physical interactions. 
However, this structure only delimits the domain of entities that can or cannot be con-
nected by physical signals, which could be consistent, in principle, with the view that 
no stronger notion of causation is required by general relativity.

This notion of causation is important to CST and is the one from which the research 
program inherited its name. For CST was founded on a set of theorems developed 
by [12, 20] and others, showing that the metric structure of spacetime can be derived 
from the lightcone structure of general relativity, up to a conformal factor. Now, it 
could be that the only sense in which CST is causal is that it involves causation in 
the sense of recovering the causal structure of general relativity. The point was nicely 
made by Wüthrich and Huggett who write:

The worry is familiar from relativity, and surely from the causal theory of 
(space)time, to which pedants (ourselves included) have always interjected that 
the ‘causal structure’ of spacetimes merely captures a minimally necessary, but 
not sufficient, connection between events for them to be causally related as 
cause and effect. The objection is motivated by the observation that we do not 
attribute causal efficacy to all timelike or null relations; given an event, we take 
neither all events in its past lightcone to be its ‘causes’, nor all events in its 
future lightcone to be its ‘effects’. [40, p. 14]

We grant that CST is causal in the sense described above. What we want to know is 
whether it is causal in a stronger sense. We can sharpen the point, initially, by dif-
ferentiating between two notions of causation. The first is the notion identified above, 
of causal connectibility. We consider this to be a weak notion of causation. That’s 
because, to say that there is a relation of causal connectibility between x and y is just 
to say that there is a possibility of causal influence between x and y. This says nothing 
of any actual causal relations.

A stronger notion of causation goes beyond causal connectibility to actual cau-
sation. Thus, x and y are causally connected in this stronger sense when there is 
an actual causal relation between them. That is, when x actually does—not merely 
could—influence y.

Note that causal connectibility does not imply the presence of actual causation. We 
will demonstrate this further later on. For now, the point can be illustrated by consider-
ing a general relativistic spacetime that is entirely empty—no matter fields (formally, 
all matter fields one could introduce are zero-valued everywhere), only the metric 
field is present. The metric allows one to define causal connectibility (via timelike or 
null curves). Yet, in such a scenario, no actual causal processes are occurring, since 
there are no entities undergoing change or exerting influence via the matter fields. 
This shows that causal connectivity can, in principle, exist absent actual causation.

Thus, when we ask whether causal set theory is causal, what we want to know 
is whether it is causal in the stronger sense of actual causation, which goes beyond 
causal connectibility. However, this is not yet enough to specify the focus of this 
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paper. Our interest is not just in any type of actual causation. Rather, we are interested 
in actual causation of a very specific variety. For, as we see it, there are two distinct 
types of actual causation.

Think again of the general relativistic case. One type of actual causation might 
hold between whatever is located at two spacetime points. So, for instance, we might 
look at how light emitted from point x affects a detector located in its future light-
cone, at point y. Call this type of actual causation: material causation. Another, more 
radical type of actual causation might hold between the spacetime points themselves, 
regardless of what is located there. So, for instance, we might say that a spacetime 
point x actually causes spacetime point y to exist. Call this type of actual causation: 
elemental causation, since it holds between the basal elements of a theory, in this case 
between the spacetime points.2

Elemental causation is best demonstrated using the interventionist framework out-
lined below. The basic idea, though, is this: elemental causation occurs when, were 
one to ‘remove’ an element x this would make a difference to whether another ele-
ment y exists, or to the probability of y existing. For instance, a spacetime point y 
depends on a spacetime point x in this sense when, hypothetically, removing x would 
require removing y as well: y’s existence is not independent of x’s.

Now, while we have used general relativity to illustrate the notion of elemental 
causation, we are not claiming that there is causation of this type between spacetime 
points in general relativity (though we return to this in §5.3). Rather, the point is just 
to clarify the kind of causation we are interested in with regard to CST. In the case of 
CST, we are interested in elemental causation, and not material causation. What we 
want to know is whether the existence of a causal set element depends on the exis-
tence of elements in its past. Thus, our question is: do causal set elements cause one 
another to exist and thus does CST exhibit elemental causation?

This question matters for three reasons. First, answering it helps us to better under-
stand how CST works. For it clarifies the role that causation plays under a specific 
interpretation of that theory, where the growth process is taken seriously (more on 
this in a moment), which in turn helps us to better understand what the world would 
have to be like for CST so interpreted to be true. At the fundamental level, there 
would need to be actual causal relations linking causal set elements. Where, and 
this is important, those actual causal relations hold between the elements themselves 
(rather than whatever is located at those elements), so that elements literally bring 
other elements into existence.

Second, it has been argued that CST is not, fundamentally, a spatial, temporal or 
spatiotemporal theory (see [36, 39]). Rather, spacetime emerges from a causal set. 
Moreover, this happens only under certain conditions. Many physically possible causal 

2 One might worry that elemental causation collapses into causal connectibility. Again, consider the case 
of general relativity. Both causal connectibility and elemental causation appear to exist merely in virtue 
of spacetime structure, without mediation by a matter field. Indeed, both connectibility and elemental 
causation could exist in a vacuum world. But does that entail the two notions are equivalent? We think 
not, as any coextension is at best contingent. For one can accept causal connectibility without endorsing 
the view that spacetime points cause other points to exist. Indeed, as we discuss in §5.3, this is precisely 
what we should think in the case of general relativity, which further highlights the way that the two 
notions of causation can come apart.
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sets do not correspond to any solutions of general relativity and thus to any spacetime. 
It thus seems that the basic structure of a causal set—the structure that is present across 
all models of the theory—is not spatial, temporal or spatiotemporal structure.

Suppose that CST is indeed fundamentally non-spatiotemporal, with spacetime 
emerging (we will return to this assumption in a moment). If spacetime is emergent 
in CST it is clearly emergent from causation in some sense, since causation is one of 
the only basic posits of the theory. What we don’t have a clear picture of just yet is 
how spacetime emerges from causation.

One possibility is that spacetime emerges in CST from relations of actual causa-
tion, analysed along interventionist lines, and consonant with elemental causation 
[2]. The viability of this picture of spacetime emergence thus hangs on the question 
of whether there is actual causation of a specific variety ‘at the bottom’, as it were in 
CST, that can be used as the basis for spacetime.

If there are no such actual relations of causation, then this tells us that a new meta-
physical account of how spacetime emerges in CST is needed, one that relies on a 
different notion of causation, perhaps specified in terms of causal connectibility or 
a notion of actual causation other than elemental causation. Perhaps indeed such an 
account can be developed. The point, though, is that until we consider what type of 
causation is operative in CST, we have less available conceptual resources for pro-
ducing a metaphysical account of how spacetime emerges.

A third reason for considering causation in the context of CST relates to broader 
questions of whether causation plays a role in physics. A number of philosophers 
maintain that causation plays no role in fundamental physics. Norton [21], for 
instance, regards the concept of causation as pertaining to an approximately true, 
but strictly false, folk theory, which has been falsified on many occasions with the 
development of science. Science, in some sense, transcends this notion of causation. 
As [27, p. 2] famously put it:

The law of causality, I believe, like much that passes muster among philoso-
phers, is a relic of a bygone age, surviving, like the monarchy, only because it 
is erroneously supposed to do no, harm.

In a similar vein, causal republicanism has gained momentum and is portrayed as the 
view that causation, although remaining a useful notion, is generated by agents and is 
not found in the fundamental ontology of physics [23].

The focus of this scepticism about causation is not on causal connectibility, which 
as indicated is present even in GR. The focus is on actual causation. The question 
is whether causation in any sense stronger than connectibility has a role to play in 
physics. If CST makes use of actual, elemental causation, then it might provide an 
interesting case study in this broader debate about the role of causation. If actual, 
elemental causation is no part of CST, then this would tend to strengthen the sceptical 
position that Norton, Price and Russell have expressed. It is thus worth looking a bit 
closer at CST to see what role causation plays in the theory.

With these three points in mind, we propose a limited answer to the question of 
whether there is elemental causation in CST. We argue for the affirmative, that there 
is elemental causation in CST, however our argument is conditional, in this sense: 
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there is elemental causation in CST on the condition that a particular interpretation of 
the dynamics is adopted. Specifically, an interpretation in which the growth process 
in the standard dynamics corresponds to a real physical process.

We grant that there is a controversy over whether the growth process should be 
taken as a real physical process at all. We consider this more fully in §5. For now, 
we note two things. First, some of the main engineers of CST (e.g., [6, 29]) take the 
growth process seriously, which is at least an invitation to do the same in philosophy, 
to see what can be made of it. Second, the controversy regarding the growth process 
revolves mainly around the claim made by some physicists and challenged by some 
philosophers that the process is one of passage, analogous to the passage of time 
found in theories like the growing block theory of time (see [1, 38]). We think it is 
exactly this feature of the controversy that makes our argument useful. For if there is 
causation between the elements of causal set theory, then this opens up an alternative 
way to interpret the growth process as physical. We can interpret it as the unfolding of 
a specific causal process, rather than a process involving the passage of time.

This has some potential advantages: thinking of the process as a causal process 
may provide a new way to take the process physically seriously. The passage of time 
is already controversial, and so interpreting CST in this way wraps it in this contro-
versy from the beginning. Looking at the theory from a purely causal perspective 
may be an improvement. That’s because the worries that philosophers have voiced 
concerning the growth process being physical seem less concerning with regard to 
causation. The main worry is that treating the process as a physical process results 
in a kind of metaphysical indeterminacy, which is unattractive if we are considering 
the process as temporal passage, which usually lacks this feature. However, as [14] 
argues, causation in general appears to be indeterminate, and so the kind of indeter-
minacy at issue may be exactly what we should expect, and thus no more of a prob-
lem than for causation in general. This is not to say that indeterminacy is not vexing. 
The point is that a causal interpretation of the growth process may move the bump in 
the carpet in a helpful way, by treating the problem of metaphysical indeterminacy as 
an issue for causation in general, rather than the metaphysical interpretation of CST 
per se.3

Our argument is useful for another reason: the specific type of actual causation 
we are focusing on gives us a clearer picture of the type of emergence we can expect 
(again, assuming the growth process is physical). As noted, the kind of causation 
we are interested in is one where the causal set elements actually cause one another 
to exist. Philosophically, this reveals the kind of metaphysical picture at issue: CST 
coupled to an interpretation of the growth process as physical is highly analogous to 
the causal theory of time advocated by [18] [1715] (1989), in which time is generated 
from a causal process. Scientifically, it reveals that the emergence of spacetime is the 
outcome of a causal process. This makes it analogous to the type of emergence we 
find in phase transitions, where a system undergoes a sequence of causal interactions 

3 Our approach can also help to provide a non-spatiotemporal interpretation of CST that is still compatible 
with growth. On this interpretation, growth is a process of causal, rather than spatiotemporal develop-
ment. This is potentially useful as it may reconcile the conviction that some physicists have that the 
growth process is real, with the apparently non-spatiotemporal nature of the theory, something that can-
not otherwise be done if growth is interpreted as passage.
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that trigger a state-change. This provides an interesting lens through which to view 
causal set theory under a growth interpretation and, perhaps, more generally.

3 Causal Set Theory

To determine whether CST makes use of actual causation, we need a bit of set up. 
First, we need to provide an overview of CST and the standard sequential growth 
dynamics. Next, we need a framework for identifying actual causation to guide our 
search. For this, we use interventionism, since it is the leading approach to actual 
causation available. We outline interventionism in the next section. In this section, 
we outline some details of CST.

The kinematics of CST can be represented as a causal set, or causet for short:

 ⟨C, ≺⟩

Here C is a set of elements and ≺ is a relation defined on C.4 CST obeys three axioms. 
First, ≺ is a strict partial order over C: it is irreflexive, transitive and anti-symmetric. 
This turns each causal set into a partially ordered set (a poset).5 Second, causal sets 
are locally finite:6

 ∀a, c ∈ C, card({b ∈ C|a ≺ b ≺ c}) < ∞

Where card denotes the cardinality of a set, and ({b ∈ C|a ≺ b ≺ c}) denotes the 
set of elements that are between a and c by ≺. Local finiteness is a way of imposing 
discreteness on causal sets. The basic idea being that between any two causal set ele-
ments ordered by ≺ there is at most a countable, finite number of elements. Third, C 
is countable (that is, there exists an injective function from the set of elements to the 
natural numbers).

In addition to these axioms, we adopt further assumptions from Rideout and Sor-
kin [26]: 

a. The past of an element x ∈ C is the subset past(x) = {y ∈ C|y ≺ x}.
b. A chain is a linearly ordered subset of C.
c. An antichain is a totally unordered subset of C.
d. A partial stem of C is a finite subset which contains its own past.

4 This relation is sometimes called the relation of causal precedence. However, as a referee notes, given 
that ≺ is transitive, it does not correspond to causation as many think of that notion. We don’t see this as 
a problem for what follows. In line with the discussion in §1, the relation is supposed to be causal in the 
sense that it captures the light-cone structure of general relativity, i.e. the timelike relations, which are 
indeed closed under transitivity.

5 In the most general statement of the theory, ≺ is reflexive. Here we follow Rideout and Sorkin ([26, p. 
024002-2]) and impose an irreflexivity convention on ≺ to turn causal sets into strict partial orders. We 
do this because that is how they set up the growth dynamics.

6 We use here a statement of local finiteness from [37].
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e. A link of C (i.e., an instance of ≺) is irreducible (cannot be built from other rela-
tions on C).

f. A path in C is a chain of elements, each related by a link.

The dynamics of a causal set is defined in terms of a step-wise random, Markovian 
process of ‘growth’. The process starts with the empty set. At each step of the pro-
cess, a new element is added to the causal set with some probability. The new element 
is either connected to an existing element with a link, or is unconnected to existing 
elements.

The elements that are added through the growth process are given a labelling in 
terms of integers, such that x ≺ y → label(x) < label(y). Importantly, no element is 
added into the past of an existing element. This condition is commonly called inter-
nal temporality. As Rideout and Sorkin note, the labels add an element of ‘gauge’ into 
the initial statement of the dynamics. The elements of causal set theory are treated as 
though they came into existence in a definite order (thus suggesting an external time 
for the growth process). Ultimately, though, conditions are added to the dynamics to 
render them gauge invariant (more on this in a moment).

We can represent the dynamics of causal set theory in terms of a sequence of 
causal sets that originates from the empty set and then terminates in a causal set C. 
This sequence can also be represented as a partially ordered set, though this ordering 
is not via ≺( which joins elements within a causal set) but by a second ordering, →, 
which joins sets of elements. For causal sets x and y such that x → y, we say that x 
is the parent and y is the child. The stochastic process can then be captured via a set 
of transition probabilities from parents to children: the probability of a given child, 
given a certain parent. The set of transition probabilities issuing from a parent causal 
set to its children should always sum to unity. Rideout and Sorkin [26] call this the 
Markov Sum Rule.

The transition probability an from a causal set Cn made of n elements to a causal 
set Cn+1 is given via the following rule:

 an = pm(1 − p)n−ϖ (1)

Where p, a fixed parameter, is the probability of a new element being added that is 
linked to an existing element; q = (1 − p) is the probability of a new element being 
added that is unlinked to existing elements; m is the number of maximal elements in 
the precursor set, which for the new element e added in Cn+1 is the set of elements in 
Cn such that each member of the set is (i) ordered with respect to e by ≺; (ii) is prior 
to e in that ordering. The maximal elements of the precursor set are those elements 
in the set that are not prior to any element in the ordering ≺; ϖ is then the size of the 
entire precursor set.

To complete the dynamics, two further conditions are added. The first is discrete 
general covariance. The second is Bell causality. We take each in turn. Discrete 
general covariance is added to render the dynamics gauge invariant, thereby undoing 
the fact that the dynamics is generally written in terms of a gauge (via a labelling of 
the growth order of elements). The upshot of discrete general covariance, Rideout 
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and Sorkin note, is that the order of growth specified by the gauge is not physically 
significant. As they put it, “the labels carry no physical meaning” [26, 26

If γ is any path through the poset P  of finite causal sets that originates at the 
empty causet and terminates at C, then the product of the transitional probabili-
ties along the links of γ must be the same as for any other path arriving at C.

To see the idea, let us consider a toy model. In this toy model, we are considering the 
growth of a causal set to its third element. We assume that the causal set continues to 
grow to infinity, but we don’t model those stages of the process for obvious reasons. 
In the model, we also use a choice of label, and thus write the dynamics in a choice 
of gauge. For this, we use colours (causal sets with labels are often called ‘coloured’ 
causal sets in the literature). The colours represent the order of the growth elements 
chosen to produce the model. It is this information—the coloured labels—that dis-
crete general covariance will ultimately factor out. But, as is standard, we start with a 
choice of labels first, and then apply discrete general covariance to produce the gener-
ally covariant dynamics. The toy model can be depicted as follows:

Notice that in Fig. 1 there are three paths to the following causal set:

Fig. 1 A toy model of growth 
dynamics, where p is the prob-
ability of adding an element that 
is linked to existing elements; 
and q = (1 − p) is the prob-
ability of adding an element that 
is unlinked to existing elements. 
Transition probabilities in the 
bubbles are derived from p 
and q using the general rule 
an = pm(1 − p)n−ϖ  intro-
duced before
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What discrete general covariance tells us, is that the product of the transition prob-
abilities along the three paths that lead from the first causal set to this causal set 
should be the same. This is, in fact, the case in our diagram. There are three paths to 
the causal set in question. The probabilities can be computed as follows: 

P1 : q × pq = pq2

P2 : q × pq = pq2

P3 : p × q2 = pq2

Discrete general covariance captures a kind of ‘path independence’ in the stochastic 
process that generates causal sets. It also implies that the probability of a particular 
causal set issuing from a growth process is independent of the order of birth we 
attribute to causal set elements. As noted, this is interpreted to mean that there is no 
physical significance to how we might order elements in the final causal set in terms 
of when they were added via the dynamics, since it is equally likely that the final 
causal set was birthed from multiple paths that, under a choice of gauge, involve dif-
ferent orderings of elements.

This brings us to Bell Causality. Bell Causality is a familiar notion of indepen-
dence. The condition is added to capture the idea that elements of a causal set should 
only be influenced by their past, and not by other factors. In this way, the Bell Causal-
ity condition is close to what is sometimes called the causal Markov condition (not 
to be confused with the Markov sum rule above) which seeks to capture the idea that 
events are solely influenced by their immediate past.

To see the idea a bit more clearly, consider the following statement of Bell Causal-
ity from Rideout and Sorkin [26, p. 024002-6]:

The ratio of the transitional probabilities leading to two possible children of 
a given causet depend only on the triad consisting of the two corresponding 
precursor sets and their union.

As noted, the precursor set for an element e in causal set Cn+1 at stage n of the 
growth process is the set of elements that are earlier than e in Cn+1( and that are 
members of the causal set Cn at the previous stage of the growth process). What Bell 
Causality does is ensure that no elements of Cn other than those that are in the precur-
sor set impact the probabilistic dependence of Cn+1 on Cn.

Bell Causality can be stated more formally as follows:

 
P (C → C1)
P (C → C2)

= P (B → B1)
P (B → B2)

In this equation, C → C1 represents the transition from a parent causal set to one of 
its children, as does the transition from C → C2. B is the union of the precursor sets 
for C1 and C2. B → B1 and B → B2 represent the transition from B to versions of 
C1 and C2 in which the same elements are added as in those sets, but any other ele-
ments have been pruned. Specifically, B1 is B plus just the extra element added in C1 
and B2 is B plus just the extra element added in C2. The union of the precursor sets is 
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used because Bell Causality states a relationship between two children that may have 
different precursor sets, and so the two sets need to be combined for the relationship 
to be specified.

To see how Bell Causality works, consider Fig. 2. On the left-hand side, we have a 
parent causal set, C and two possible children C1 and C2. The precursor set of C1 is 
just the bottom element in C, whereas the precursor set of C2 is the first two elements 
in C. The union B of the two precursor sets thus contains the first two elements of C. 
On the right hand side, we start from B and then transition to causal sets containing 
just the elements added in the transitions from C to C1 and C2. Other elements of C1 
and C2 have been removed from B1 and B2.

What Bell Causality tells us is that the elements that are missing on the right-hand 
side of Fig. 2 compared to the left-hand side make no difference to the transition 
probabilities between causal set C and its two children. That’s what is captured by 
the equation above: the ratio of transition probabilities from B to B1 and B2 is the 
same as the ratio of transition probabilities from C to C1 and C2. This, in turn, cap-
tures the idea that the elements that are not in the past of new elements that are added 
during a transition between causal sets make no difference to the transition prob-
abilities between those sets. Note that causal set C would have more than just these 
two children, and so in this sense Fig. 2 is an idealized picture, one that is simplified 
for the purposes of demonstrating Bell Causality. Bell Causality can be applied more 
generally to any number of children, by using it for every way of pairing a causal 
set’s children.7

7 [37] interprets this to mean that events at a spacelike distance don’t influence one another. This is rea-
sonable, if we interpret the output of the growth process as something that is approximately isomorphic 
to a spatiotemporal manifold, with anti-chains corresponding to spacelike connections and chains cor-
responding to timelike connections. For then the Bell Causality condition would ensure that there is no 
non-local causation, which does appear to be necessary for recovering a spatiotemporal manifold.

Fig. 2 C is the parent and C1 and C2 are children. B is the union of the precursor sets for elements 
added in C1 and C2, and B1 and B2 are causal sets formed by adding the new elements from C1 and 
C2 into B. According to Bell Causality, the transition probabilities on the left of Fig. 2 from parent to 
child, are the same as on the right of Fig. 2
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4 Interventionism

Having outlined CST, we turn now to the interventionist approach to causation devel-
oped by [22] and [33], before applying it in §5. As noted, interventionism is here used 
to provide an account of actual causation—causation in the stronger sense alluded to 
in §2.

For present purposes, we will understand actual causation in terms of direct causa-
tion, which is defined as follows:

[Direct Cause] A necessary and sufficient condition for X to be a (type-level) 
direct cause of Y with respect to a variable set V is that there be a possible inter-
vention on X that will change Y or the probability distribution of Y when one 
holds fixed at some value all other variables Zi in V. [33, p. 59]

Direct causation is thus defined for variables, with respect to a variable set. A variable 
set is a way of modelling the different aspects of a given physical system. Woodward 
[33, p. 42] assumes that if X is a direct cause of Y, then X is a cause of Y, and so we 
will do the same.8 We can read causation back into the physical system being mod-
elled by inferring that direct causation between variables implies causation between 
the aspects of the system that they represent.

Each variable within the set can take a range of different values. The values of a 
variable represent possible ways for the different aspects of the physical system to 
be. A variable set is combined with a set of structural equations that link variables. 
The structural equations capture generalisations that relate the different aspects of a 
physical system.

So, for example, consider a very simple physical system involving: (i) the strik-
ing of a match, (ii) the match lighting, and (iii) the subsequent burning of someone’s 
hand. For this system, we can introduce three variables: A, B and C. These variables 
represent the striking, the lighting and the burning respectively, and they constitute 
our variable set. In general, variables can have any number of distinct possible val-
ues. For this simple system, however, we can treat the variables as having binary 
values: 1 and 0, where 1 represents the occurrence of the event and 0 represents the 

8 The notion of a direct cause does not give Woodward’s full picture of causation. For that, we need two 
further notions. First, the notion of a contributing cause:

A necessary and sufficient condition for X to be a (type-level) contributing cause of Y with respect 
to variable set V is that (I) there be a directed path from X to Y such that each link in this path is 
a direct causal relationship; that is a set of variables Z1...Zn such that X is a direct cause of Z1, 
which in turn is a direct cause of Z2, which is a direct cause of... Zn, which is a direct cause of Y, 
and that (ii) there be some intervention on X that will change Y when all other variables in V that 
are not on this path are fixed at some value. If there is only one path P from X to Y or if the only 
alternative path from X to Y besides P contains no intermediate variables (i.e., is direct), then X is 
a contributing cause of Y as long as there is some intervention on X that will change the value of Y, 
for some values of the other variables in V.

Next, the notion of a total cause:X is a total cause of Y if and only if there is a possible interven-
tion on X that will change Y or the probability distribution of Y. [33, p.51]Together, Direct Cause, 
Contributing Cause and Total Cause “give us a way of fully capturing or cashing out the content of 
causal claims in terms of facts about what would happen under interventions” [33, p. 61].
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non-occurrence of the event (e.g., A = 1 represents that the match is struck, A = 0 
represents that the match is not struck).

This physical system, we can suppose, is governed by two generalisations: one 
that relates strikings to lightings, and one that relates lightings to burnings. These 
generalisations are encoded by structural equations that specify the way that the val-
ues of one variable are determined by the values of another. For this system, we have 
the very simple equations: B = A, C = B, which represent two facts: first, that the 
striking determines the lighting and, second, that the lighting determines the burning.

The set of variables and the set of structural equations can then be used to con-
struct a graph. Each node in the graph corresponds to a variable, and links in the 
graph correspond to relationships specified by the structural equations between vari-
ables. If a relationship between variables X and Y is described by an equation, then X 
and Y are also linked in the graph. Together, the graph, the variables and the structural 
equations constitute a model. Note that within such a model, the variables that never 
appear on the left-hand side of a structural equation (or as the output of a probability 
function, see below) are commonly known as exogenous variables and the rest are 
endogenous variables. Figure 3 depicts a model for the simple match-striking system.

Once a model has been constructed, we can then use it to work out what causes 
what within the system. To do this we begin by setting the values of the variables in 
a model to their actual values (or, as we shall see below, by setting actual probability 
distributions over the values of some variables given the actual values of others). 
So, for the simple model above, we set the striking, the lighting and the burning to 
1. Next, we consider interventions on the variables. For [33], an intervention on a 
variable is a possible cause that (i) changes the value of that variable from its actual 
value to some possible value and (ii) breaks the dependence of that variable on other 
variables via any structural equations. Importantly, interventions are not supposed to 
be anthropomorphic, in the sense that they are practically possible events that we, as 
agents, can bring about. The notion of an intervention transcends practical possibility 
(though by how much is something that we return to later on).

Woodward models interventions via the addition of an extra variable into a model, 
that acts as a ‘switch’ for the intervened upon variable such that the intervened 
upon variable is a function only of the intervention variable and nothing else. So, 
for instance, in the match-striking example, we can intervene to prevent the match 
from being struck, which would involve the addition of a new variable, I, and a new 
structural equation, A = (1 − I), which effectively switches A off. Equally, however, 
we could add a new variable I and a new structural equation B = (1 − I), and then 
remove the equation B = A. This leaves the striking in place, but cancels its effect on 
the lighting. In the first case, the intervention variable might correspond to restraining 
the person striking the match, in the second case, it might correspond to dousing the 
match with water.

By considering various interventions on the system, we can gather causal informa-
tion. For instance, suppose we intervene on the striking to prevent it, to see what hap-
pens for the lighting, while holding the burning fixed. When we do this, we discover 

Fig. 3 A toy model. A is the striking, B is the lighting and C 
is the burning. The structural equations are: B = A, C = B
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that the lighting does not happen (because of the structural equation that links the 
lighting to the striking). By the definition of a direct cause, we can thus conclude that 
the striking caused the lighting. Similarly, suppose we intervene on the striking to see 
its effect on the burning. To do this, we hold fixed all other variables. In this case, that 
means holding fixed the lighting. When we do this, we see that stopping the striking 
does not alter the burning, and so the striking is not a direct cause of the burning.9

In sum, then, the basic interventionist picture has three features: (i) a model con-
sisting of a variable set, structural equations and a graph; (ii) an interventionist defi-
nition of direct causation and (iii) interventions that can be used to reveal causal 
information about a system. For our purposes, this basic interventionist picture needs 
to be expanded in two ways. The first concerns Woodward’s notion of an interven-
tion. This notion can be difficult to apply to physics [11]. To see this, suppose that 
we have a cosmological model of physics that describes a complete universe. Each 
variable corresponds to part of the universe, and the structural equations capture the 
lawful relations between parts. An intervention, in Woodward’s sense, is the addition 
of a new possible cause that interrupts the system. But for a model of the universe as 
a whole, such a cause would need to come from outside the universe, which is dif-
ficult to understand.

A further issue concerns Woodward’s specification of an intervention as a possible 
cause. In the case of causal set theory, we are interested in intervening on the ele-
ments of a causal set. Our goal is to use that framework to reveal causal dependence 
within the causal set structure. If, however, interventions require adding causes that 
effectively act as switches for other features of the system (inhibiting or activating 
those features), then in a sense we must presuppose that there is good sense to be 
made of interventionist causation within causal set theory already. Indeed, since the 
only things we can really add to a causal set are more elements, the only interventions 
we can make involve causal relations between causal set elements, whereby elements 
‘switch on’ or ‘switch off’ other elements. The problem, then, is that working with 
Woodward’s notion of an intervention would appear to be question-begging in the 
current context. It would require assuming, from the outset, that there is elemental 
causation operative in causal set theory.

To be clear, by raising these two problems we are not criticising Woodward’s 
approach to interventionism. Nor do we rule it out that there is a way to make Wood-
ward’s approach work for our project or for applications to physics in general (indeed, 
it may work better in some cases, see below). The point is simply that Woodward’s 
approach is not the right fit for what we are trying to do in this paper, and things work 
a bit more smoothly if we use a slightly different version of the interventionist frame-
work. The way forward, for us, is to make use of the notion of a ‘setting intervention’. 
A setting intervention is an intervention that involves simply setting some variable to 
a value “with no further restrictions on when such a setting operation is possible (or 
when it is permissible or legitimate to invoke it)” [35]. A setting intervention allows 

9 The striking is still a causal contributor to the burning. As noted in footnote 9, for [33], a variable X is a 
causal contributor to a variable Y when there is a chain of direct causes between X and Y. There is such 
a chain for the striking and the burning, because there is direct causation between the striking and the 
lighting and the lighting and the burning (for this second case note that an intervention on the lighting 
will switch off the burning).
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one to change the value of a variable however one likes (so long as the resulting value 
is possible in the broadest sense), and then process the result. This is to be contrasted 
with the notion of an intervention specified in terms of possible causes (or possibility 
in general), which allows for only certain kinds of changes to the values of variables. 
Woodward [35] dubs these ‘possibility constrained’ interventions.

A setting intervention does not involve adding a new variable to a model. Rather, 
we simply change the values of variables directly, without the addition of a possible 
cause. This can be formally captured using Pearl’s ‘do-calculus’, which involves the 
addition of an operation on variables, the ‘do’ operator. The ‘do’ operator is a func-
tion from the values of variables to other values. So, for instance, we can intervene 
on the striking by setting A to 0 (do (A = 0)) and we can intervene on the lighting 
by setting B to 0 (do (B = 0)).10 As with possibility constrained interventions, set-
ting interventions break structural equations. Figure 4 depicts the difference between 
possibility constrained and setting interventions on variable B for the match-lighting 
system.

Unlike possibility constrained interventions, setting interventions do not require 
the specification of possible causes external to the system. This serves our purposes 
well: a setting intervention does not require the possibility of anything ‘impinging’ 
on the system from the outside, and in this way we can make sense of causation in 
models of the universe as a whole. Moreover, a setting intervention is not analysed in 
terms of possible causes, and so we avoid begging important questions about causa-
tion in the context of CST.

We should note, however, that there is controversy over whether possibility con-
strained interventions or setting interventions should be used in applications of inter-
ventionism to physics. [24] and [11, 34] argues that the use of setting interventions is 
too liberal: it allows for the identification of causal structure where there shouldn’t be 
any. For instance, a setting intervention can be used to identify causation between the 
matter and metric fields in general relativity, and between correlated particles in an 
EPR-type experiment. It is plausible, however, that these are cases in which causation 
is in fact absent. We take these examples seriously, but addressing them lies beyond 
the scope of this paper. For now, it is enough to say that we have sympathies for both 

10 While we use Pearl’s do-calculus to model setting interventions, Pearl does not endorse this picture of 
interventions. Indeed, Pearl’s approach to interventionism is very similar to Woodward’s. It is just as non-
reductive about causation and Pearl seems to agree with Woodward insofar as he takes interventions that 
come from ‘outside’ of the universe to be problematic. Pearl makes this explicit when he writes “if you 
wish to include the whole universe in the model, causality disappears because interventions disappear” 
[22, p. 350].

Fig. 4 Possibility constrained versus setting interventions. When circles are white, the value of the 
associated variable is 1, and 0 when black. On the left, a new variable is added to switch B off. On 
the right, the do operator sets B directly to 0 (do (B = 0)). In both cases the structural equation B=A 
is cancelled
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sides of the debate, but that we ultimately side with Reutlinger and Frisch. Every-
thing we say in what follows is thus contingent on the use of setting interventions.

The second expansion of the basic interventionist picture that we need is the addi-
tion of probabilities. We fit probabilities to a model by adding a probability distribu-
tion over the exogenous variables, P(U), and by replacing the structural equations 
with a set of functions, fi that fix the probabilities for endogenous variables X1...Xn 
based on the probabilities of exogenous variables U1...Un. Each such function has 
the form Xi = fi(Parents Xi, Ui). The parents of a variable are those variables that 
are directly connected to it. For instance, in the match-striking case, C has only one 
parent, B, and B has only one parent, A. Note that C is a descendent of A, but A is not 
C’s parent. The set of functions gives us a probability distribution over the values of 
each endogenous variable for each possible value of parent variables and exogenous 
variables.

To see how this works, we can convert the matching-lighting case into a probabi-
listic example. To do that, we start by adding a probability distribution over the exog-
enous variables. In this case, only A (the striking) is exogenous. For simplicity, let us 
suppose that A has two possible values: striking and not striking, and that there’s a 
good chance of the striking happening, say.9 (and thus.1 of the striking not happen-
ing). What we do is add a set of functions that set the probabilities of B given values 
of A, and the probabilities of C given values of A and B (Tables 1 and 2).

Starting with B, let us suppose that the lighting is very likely if the striking occurs 
(.9), but unlikely if the striking doesn’t occur (.1). We can then map the probability 
distribution for B as follows:

C is more complicated, because we need to assign a probability distribution over 
its values for each combination of values for A and B. We can simplify matters, 
however, by applying the Markov Condition. For variables V representing nodes in a 
directed acyclic graph G, the Markov condition can be stated as follows:11

For every variable X in V, and every set of variables Y ⊆ V \DE(X), 
P (X|Ps(X)&Y ) = P (X|Ps(X))

Where V\DE(X) is a set of variables in Y that excludes the descendants of X, and 
where Ps corresponds to the parents of X. What this condition does is effectively 
‘screen off’ the probabilistic influence of A on C: the conditional probability of C on 

11 This is the ‘screening off’ condition stated by [13].

Burning (r) Not Burning (¬r)
l .9 .1
¬l .1 .9

Table 2 Probability distributions 
for values of C
 

Light (l) Not Light (¬l)
Strike (s) .9 .1
Not Strike (¬s) .1 .9

Table 1 Probability distributions 
for values of B
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its parent B is the same as the conditional probability of C on B and A. We can thus 
specify probabilities and probability distributions for C in terms of B as follows:

The causal Markov condition is closely analogous to the Bell Causality condition 
imposed on causal sets (not the Markov sum rule). Both the Markov condition on 
interventionist models and the Bell Causality condition play a similar role, namely 
to induce a kind of probabilistic independence. Given the similar roles that Bell Cau-
sality and the Markov condition play in CST and interventionism respectively, we 
will impose the Markov condition on the interventionist framework in what follows. 
This is in line with the standard modelling practice for interventionism anyway, and 
ensures that the interventionist framework lines up with CST growth dynamics in an 
appropriate way by encoding something close to Bell Causality.

5 Application

We are now in a position to apply the interventionist framework to CST. We will do 
this in two stages. We proceed in this manner due to apparent disagreement over the 
extent to which the classical sequential growth dynamics for CST can be considered 
a real physical process. Thus, in the first instance, we will assume that the dynamics 
straightforwardly captures a real physical process, and apply interventionism under 
this assumption in §5.1.

Here we are largely following [9] and [29] who treat the growth process in this 
manner. Dowker notes that one can just run the dynamics to infinity, and then sim-
ply select ‘completed’ causal sets according to the probability measure given by the 
process, thereby effectively treating the growth process as a kind of fiction. However, 
she pushes back on this idea, writing that:

... it produces a different physical theory—some might want to call it a differ-
ent interpretation of the theory—in which there is nothing to correlate with the 
occurrence of events. This blockified theory correlates less well with our sense 
experience than the one in which the birth of new spacetime atoms is a physical 
process. [9, p. 23]

[29] takes a similar line, noting that the growth process “offers us an active process 
of growth in which ‘things really happen’, but at the same time it honours general 
covariance”. This interpretation of the growth dynamics is however controversial (for 
philosophical analysis, see, e.g., [1, 15, 38]). And so, in §5.2, we will consider this 
controversy in a bit of detail and then re-apply interventionism. As we’ll see, even if 
we weaken the assumption that the growth dynamics corresponds to a real physical 
process, there remains scope for finding interventionist causation in CST. In §5.3, 
we consider objections, including the worry that the growth process should not be 
considered a physical process.

Why take the growth process as physical at all? We do this, in part, because (as can 
be seen from the quotes above) some physicists do treat it as a real physical process. 
Moreover, the idea that the growth process is physical has played some role in the 
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thinking around CST since the theory was developed, and so we believe it is impor-
tant to consider this idea carefully.

However, our argument is not that just because physicists take the growth process 
seriously, that therefore we should too. Rather, we take this as an interesting starting 
point—an invitation—to see whether there is a way to take the process as physical, 
and what doing so would mean exactly. Our analysis reveals that it likely involves 
treating the process as a causal process, whereby causal set elements actually cause 
one another to exist in the sense of elemental causation. Thus, as noted in §2, rather 
than thinking of the growth process as passage or becoming, we can think of it as cau-
sation. In this way taking the growth process as real is worthwhile for our analysis, 
since doing so reveals an alternative way to understand this process, which is signifi-
cant given the troubles with the current way of interpreting it as physical.

5.1 Stage One

We start with an observation. Consider the toy model of sequential growth dynamics 
from Fig. 1, which depicts the growth of a causal set up to three elements (noting, 
again, that this does not represent the entire, potentially infinite growth process). 
Now, consider again the following causal set:

Call a causal set of this type: a Type 1 set. As can be seen from Fig. 1, there are 
three causal sets of this type. The transition probabilities toward this single physical 
state appear to depend on what happens at a previous stage of the growth process. If, 
at the second stage of the growth process, an element is added that is unlinked to any 
existing elements, then the transition probability to each Type 1 set is pq. If, however, 
at the second stage, an element is added that is linked to existing elements, then the 
transition probability to each Type 1 is q2. Thus, since generally pq ̸= q2, it follows 
that the transition probabilities to Type 1 causal sets at the third stage differ, depend-
ing on what happens at the second stage.12

12 One might worry that the transition probabilities only diverge when p ̸= q. That is true for this particular 
case (though ultimately, it doesn’t matter for the application of interventionism, see below). However, it is 
not true in general. For instance, consider the following four element causal set:

Call this a Type 3 set. There are four paths to this causal set. Three of them issue from the Type 1 causal set 
discussed above. The fourth path, by contrast, issues from the following causal set:

Call this a Type 2 set. For each transition from a Type 1 set to a Type 3 set, the transition probability is 
the same: pq. However, for the transition from a Type 2 set to a Type 3 set the transition probability is q3( 
by the transition probability rule with n = 3, m = 0, and ϖ = 0). Note that pq ̸= q3 even when p = q.
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We can thus imagine ‘switching’ the growth process at the second stage from one 
causal set to another, resulting in a change in the available transition probabilities to a 
Type 1 causal set at the third stage (Fig. 5). This can be depicted as follows:

This switching is indicative of causation. To show this, we can capture the switch-
ing within an interventionist model. To do this, we will assume that the first element 
of the causal set has been generated, and look to intervene on the addition of the 
second and third elements. We thus add two binary variables: A with possible values 
a1 and a2 and B with possible values b1 and b2. The values for A correspond to the 
two possible causal set types that can exist at the second stage of the growth process. 
The values for B, by contrast, correspond either to a situation in which a Type 1 set 
is produced at the third stage or to a situation in which some causal set of another 
type from the available options is produced at that stage. A and B represent nodes 
in a simple two-node, directed acyclic graph, such that A is the parent of B (Fig. 6).

Next, we add an initial probability distribution over the values of A: a1 and a2. 
Since a1 is the addition of an element that is linked to existing elements, and a2 is the 
addition of an element that is unlinked to existing elements, and because we know 
from the dynamics that the addition of a linked element at this stage occurs with prob-
ability p and the addition of an unlinked element occurs with probability q = (1 − p), 
we have the following initial probability distribution over a1 and a2:

Now, we need a probability distribution over values of B in terms of values of A. 
We have to be a bit careful here. We can’t let any probability distribution for values 
of B correspond to net transition probabilities for the generation of Type 1 sets (since 

a1 a2
p q = (1 − p)

Table 3 Probability distribution 
for values of A
 

Fig. 6 Intervening on the growth process. White nodes have value 1, black nodes have value 0. We 
intervene on B with a setting intervention modelled by the do-calculus: do (B = 0)

 

Fig. 5 A switching effect in the growth dynamics. At the second stage, the growth process is switched, 
altering the transition probabilities
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these are all the same, regardless of the path taken through the dynamics). Nor can 
we let the probability distribution correspond straightforwardly to the transition prob-
abilities for causal sets into the third stage, since the transition probabilities are for 
labelled causal sets—which are tokens—and the values for B correspond to types 
(namely the presence/absence of a Type 1 set at the third stage).

One natural way forward is to derive a probability distribution for values of B 
from transition probabilities as follows. Suppose that at the second stage a coloured 
causal set of two unlinked elements is generated. This is the situation corresponding 
to a2. We know by the dynamics that there are four coloured causal sets that can be 
produced at the third stage. Two of these are of the same type (Type 1). Thus, to work 
out the overall probability of there being a Type 1 causal set at the third stage, we can 
add the transition probabilities for the two ways of producing that set. Thus, because 
each way of producing a Type 1 causal set has a transition probability of pq, we can 
set an overall probability of 2pq for b1 given a1. Since by the Markov sum rule all 
transition probabilities must sum to 1, we can also use 1 − 2pq as the probability for 
b2 given a1.

The same reasoning can be applied to the situation in which a causal set of two 
linked elements is generated at the second stage, i.e. a1. In this case, however, there 
is just one way of producing a Type 1 causal set with transition probability q2, and so 
we can use the transition probability q2 for b1 given a2. As before, using the Markov 
sum rule, we let 1 − q2 be the probability of b2 given a2. Thus, we have the following 
probability distribution over values for B in terms of values for A:

We now have a precise way to consider interventions into the toy model of growth 
dynamics (Table 4). Suppose that, as a matter of fact, the system moves from the first 
stage to the second stage. We thus set the value of A to a1, meaning that the system 
adds a second element, and that element is connected to the first element by a link. 
This determines the probability distribution at B as the second row in Table 4.

Next, we imagine an intervention into the system at the second stage whereby 
we force the system to take an alternative path. Thus, instead of a1, we intervene to 
switch the system to a2 at the second stage (i.e. do (A = a2)). This, in turn, changes 
the probability distribution over the options at B. In particular, the probability dis-
tribution over the options at the third stage switches from the second row in Table 
4 to the first row. We can expect the two probability distributions to be different 
because 2pq ̸= q2 generally speaking. This hypothetical intervention therefore satis-
fies Woodward’s definition of a direct cause specified in §3.1. For recall that, accord-
ing to that definition, it is sufficient for a variable X to be a direct cause of a variable 
Y if intervening on X alters the probability distribution at Y. That is what happens 
in our model: when we intervene on A the probability distribution over B changes.

Is the probabilistic dependence of the causal set at the third stage on the causal set 
at the second stage indicative of elemental causation? We believe so. For the two sce-
narios being ‘switched’ between are quite different. In one scenario, the third element 
that is added at the third stage (the red element) is linked to existing elements, in the 

b1 b2

a1 2pq 1 − 2pq

a2 q2 1 − q2

Table 4 Probability distributions 
for values of B
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second scenario it is unlinked. But it is plausible that causal set elements are individu-
ated by the relations they stand in [37]. Thus, what we are seeing is two scenarios in 
which different elements are added, depending on what happens at the second stage. 
Our analysis thus reveals that the existence of a particular element depends, with a 
certain probability, on which elements exist at the second stage.

There are two points to note about this result. First, the result is based on a choice 
of variables. A different choice of variables might have a different outcome. For 
instance, if one lets the values of B correspond to each possible causal set at the third 
stage, then it is unlikely that the shift in probabilities that we have identified will 
show up. That shift relies on taking B to correspond either to the generation of a Type 
1 set or to its failure to generate. We have built the model so that the probability dis-
tribution applies in this way. It is tempting to think that, as a result, the causation we 
have identified is somehow ‘subjective’, based on a choice that we make. But that’s 
not the case: so long as there is some choice of variables that reveals causal depen-
dency and that satisfies the requirements of both interventionism and the dynamics of 
the system at hand, we have found a causal connection. It is just that for other ways 
of representing the same system using variables, this causal connection may not be 
discoverable using interventionism. But it doesn’t follow that the connection is not a 
part of the system. The choice of variables is a way of finding causal connections in 
a system by describing it in the right way; it is not a way of inventing causal connec-
tions through one’s description.

Second, we can expect a similar ‘switching’ intervention to be applicable through-
out the growth dynamics. There are many causal set types that can be reached via 
multiple paths. Discrete general covariance tells us that the net transition probabili-
ties toward any such set will be the same. However, it is generally compatible with 
this that the transition probabilities that lead immediately into a causal set of a given 
type from the previous stage are not all the same (keeping in mind that the transition 
probabilities and the net transition probabilities are different things). That is, for a 
causal set of type T that arises at a stage n of the growth dynamics, it is not in general 
the case that the transition probabilities from causal sets at n − 1 to T at n are all 
identical. Quite the opposite: they often differ.13

This provides a basis for the switching behaviour we have identified. For a causal 
set of type T that arises at a stage n of the growth dynamics, if there are at least two 
causal sets C1 and C2 at stage n − 1 such that the transition probability from C1 at 
n − 1 to T at n is not the same as the transition probability from C2 at n − 1 to T at 
n, then intervening to ‘switch’ the system from C1 to C2 at n − 1 will influence the 
transition probability from n − 1 to T at n. This switching can generally be captured 
by an interventionist model of two binary variables A and B, where A corresponds to 
the choice between C1 and C2; B corresponds to the occurrence or non-occurrence of 
a set of type T and where the probability distribution over values of B is determined 

13 Indeed, so far as we can tell, when, for a causal set of type T at n there are two causal sets C1 and C2 
of different types T1 and T2 at n − 1 such that there is a transition probability from those causal sets to 
a T-type set at n, those transition probabilities will generally diverge, even while the net transition prob-
abilities agree.
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by the transition probabilities from C1/C2 into T using the same method as above.14 
Thus, we can in general model interventions that correspond to the switching we have 
identified, and these cases will satisfy the notion of a direct cause. There is thus some 
reason to think that there will be actual causation throughout the growth dynamics. 
We’ve already suggested that this actual causation is elemental causation. We will 
strengthen this conviction in §5.2.

5.2 Stage Two

In the previous section, we assumed that the sequential growth dynamics corre-
sponds to a real physical process. As noted, we have proceeded in this way in the first 
instance, as it seems to align with the way that some causal set theorists think about 
the view. However, there are reasons to doubt this picture of CST.

The problem comes this way: discrete general covariance seems to inject a peculiar 
indeterminacy into the growth dynamics. To see this, consider again the toy model in 
Fig. 1, and consider a Type 1 set. As we’ve seen, there are three paths to a causal set 
of this type, and the net transition probabilities along each path are the same. As also 
discussed, this is interpreted to mean that there is no physical difference between the 
three coloured versions of a Type 1 set in Fig. 1. More than this, however, it is taken 
to imply that the labelling used to produce the causal sets is not physically meaning-
ful. The labelling is a mere choice of gauge. There is thus no fact of the matter as to 
which causal set elements came into existence ‘first’ beyond the constraint imposed 
by internal temporality.

This has striking implications. If we look at the three paths that produce a Type 1 
set, we see that they are quite different at the second stage. On some paths, there are 
two unlinked causal set elements at the second stage, whereas on other paths there are 
two linked causal set elements at the second stage. As [38] note, there seems to be no 
fact of the matter as to which causal set exists at the second stage. The problem gen-
eralises in an uncomfortable way: there appears to be no fact of the matter as to what 
exists at the nth stage for any finite stopping point, because the probability measure 
of causal sets is only well-defined in the limit. It is thus only once the dynamics is run 
to infinity that the causal set ‘snaps’ into place.

It is tempting to therefore conclude that the only real causal set is the one produced 
in the limit, and that the causal sets produced along the way are not physically real. If 
the causal sets produced along the way are not physically real, then there is no sense 
to be made of intervening at a given stage in the growth process to switch it to a dif-
ferent causal set.15

As[38, p. 922] note, however, discrete general covariance does not completely 
undermine the prospects for interpreting the sequential growth dynamics as a real 
physical process. This is so for two reasons. First, they note that many causal set 

14 The probability distribution over A is a bit tricky. Having tested this on a range of different causal sets, it 
is clear that an idealisation must be invoked: namely, we must assume that the values of A are exhaustive, 
and thus that the probability distribution over its values is essentially that given in Table 3.
15 As Wüthrich and Callender (2017, p. 920) remark, one potential way around this is to develop a ‘hidden 
variables’ interpretation of the causal set dynamics. [10] considers this, but it is criticised by [1]. Such an 
interpretation, if viable, would provide a basis for the interventionist analysis in §4.1.
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models feature ‘posts’. A post is an element that is ‘comparable’ to all other elements 
in the causal set. That it is comparable means that it’s either later or earlier than all 
other elements (no elements are disconnected from it). A causal set model can reach 
a post in a finite number of steps. When it does, everything earlier than the post snaps 
into determinate existence, despite the growth process being incomplete (insofar as 
it has not yet reached the infinite limit). This suggests that we can make sense of the 
growth dynamics reaching some definite, determined stopping points along the way 
toward future-infinite completeness.

Second, [38, p. 923] point out that the cardinality of the causal set is generally 
well-defined for each stage of the growth process, even if the process itself is only 
completed when run to infinity. Thus, while we cannot say exactly which causal set 
exists at the nth stage of the growth process for any finite n, we can say what the 
cardinality of the causal set at that stage will be, namely: n. Moreover, we also know 
that the cardinality strictly increases with the procession of the growth dynamics. 
Thus, the cardinality of the causal set for any stage of the growth process n is strictly 
smaller than the cardinality for any stage of the growth process n + 1.

Do these two points help us? Take the presence of posts first. At first glance, a 
post presents a definite stopping point, and so offers a point at which one might apply 
interventions. However, a first problem is that whether any element is a post is only 
specified in the limit [38, pp. 922-923]. At any finite point in the growth process, for 
any element e such that every element is ordered with respect to e, there can be a new 
element added later on that is not ordered with respect to e. Thus, we seem to face the 
same problem as above: it is unclear that there is after all a determined stopping point 
in the growth process that is open to intervention. A second issue is that it’s not clear 
that it’s enough for our purposes to show stages involving posts are stages of real 
physical processes. It would be better if the interventionist machinery could capture 
causal relations in causets in general, and not in specific stages involving posts only.

The second point made by [38] provides a better basis for our analysis. One impor-
tant aspect of the causal set dynamics is that it is step-wise. This means that for a 
causal set to grow from n elements to n + 2 elements, it must first grow to n + 1 ele-
ments. So, for instance, there is no way to ‘jump’ from a causal set of 2 elements to a 
causal set of 4 elements. Such transitions go beyond the standard sequential growth 
dynamics insofar as there is no dynamical mechanism by which causal sets can grow 
by more than one element at a time.

Given this, we can consider a different kind of intervention into the dynamics. 
Rather than intervening to ‘switch’ the process from one causal set to another at a 
stage, we intervene to ‘prevent’ the growth of an element at a stage. Intuitively, pre-
venting the addition of any element at a stage n of the growth process will prevent the 
addition of any element at stage n + 1. That’s because if we prevent the addition of 
an element at stage n, then for the growth process to continue, there must be growth 
from a causal set of n − 1 elements to a causal set of n + 1 elements. But that is 
dynamically disallowed. If we intervene to prevent the growth of an element, we 
effectively intervene to prematurely halt the dynamical process.

We can easily build an interventionist model to reflect this kind of change. To do 
this, we take toy the model of the dynamics in Fig. 1 and introduce a set of three 
variables: A, B and C. Each variable is binary, and represents either an element being 
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added (1), or no element being added (0). Values of A represent the first element 
being added or not being added; values of B represent the second element being 
added or not being added; values of C represent the third element being added or not 
being added.

The structure of the model is just this: the second element is added just in case the 
first element is added and the third element is added just in case the second element is 
added. We thus have two structural equations for the system: B = A and C = B. We 
can now consider interventions on the system to prevent the growth of causal sets. 
Thus, we can imagine intervening on B to prevent the addition of the second element. 
When we do this, we thereby prevent the addition of the third element. We can model 
this intervention as follows:

We can easily extend this model for any finite stage in the growth process. To do 
that we introduce variables v1...vn where the ith variable represents the addition or 
non-addition of the nth element. We then add a set of equations, E, where each equa-
tion says that the value of the i + 1th variable is equal to the value of the ith variable, 
for i > 1. For any sized model, if we intervene on the ith variable to switch it from 1 
to 0, this will set the i + 1th variable to 0 as well, which will have a knock-on effect 
for all other variables j > i + 1. In other words, if we halt the addition of an element 
at any stage n, then we halt the addition of an element at the n + 1th stage and for 
all stages m > n.16

What this shows is that if for any finite stage there is a determinate cardinality for 
the causal set that exists, then there is also causal dependence between each stage of 
the growth process. In particular, there is a model in which the addition of the nth 
element is a direct cause of the addition of the n + 1th element, which is indicative 
of elemental causation.

Note that this is different to the weak sense of causation identified in §2, involving 
causal connectibility. Recall that this weak notion of causation is present in general 
relativity. The notion of causation we have identified in this section goes beyond that 
notion of causation. For it is not the case, so far as we know, that there is elemental 
causation in general relativity: spacetime points don’t actually cause one another to 
exist in any substantive sense (more on this in §5.3). That is, if we imagine an inter-
vention that removes a spacetime point, it is far from clear that this will wipe out any 
other spacetime points. In the case of CST, however, it does seem that intervening to 
wipe out a causal set element will wipe out elements further along in the growth pro-
cess. If that’s right, though, then even the fairly minimal form of dependence between 
the stages of the growth process identified here is enough to establish that CST is 
causal in the strong sense of using actual, elemental causation in the dynamics.

16 Indeed, in principle we can extend this to produce an infinitary interventionist model that captures the 
entire growth process. For this, we let the variable set be infinite, thereby allowing one variable for every 
step in the growth process all the way into the final, infinite causal set. When we do this, we can see that 
for any variable vn there is an intervention on that variable that alters the next variable in the chain vn+1.
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5.3 Objections

We anticipate five objections. First, one might argue that the dependence of causal set 
elements on one another is already implicit in the sequential growth dynamics. The 
appeal to interventionism doesn’t really add anything. We disagree. What’s perhaps 
implicit in the growth dynamics is that there’s dependence of some kind between 
causal set elements as they are added through the growth process. What the applica-
tion of interventionism shows is that the dependence at issue corresponds to a case of 
elemental causation. Thus, our analysis tells us what type of dependence is implicit 
in the growth dynamics. As discussed in §2, this is a useful thing to know about CST.

One might demur: interventionism is a flexible framework. Too flexible, one 
might argue, to reasonably conclude that the kind of dependence identified is causal 
dependence. In particular, interventionism, one might argue, can be applied to cases 
of grounding. That is, we can consider interventions on the grounds that make a 
difference to the grounded. That being so, one might worry that the application of 
interventionism in this paper underdetermines the kind of dependence identified in 
CST. Perhaps it is causation, but also it might be grounding.

If the dependence is grounding, that’s still significant. It still helps us to better 
understand the way that CST works, and the implications of taking the growth pro-
cess to be a real, physical process. It also helps us to understand the way that space-
time emergence might work, suggesting that a grounding-based account or similar 
might be appropriate. Of course, the issue here is that the use of interventionism 
might underdetermine whether it is causal or grounding dependence. Nonetheless, 
even if what we find is that there’s a metaphysically robust kind of dependence at 
work in the dynamics of CST, that’s still worth knowing.

Ultimately, however, we think that the type of dependence is not underdetermined. 
Those who take interventionism to be applicable to grounding also generally regard 
this as a reason for collapsing the distinction between causation and grounding to 
some degree, treating both kinds of dependence as a kind of causation [28, 31]. In 
that case, our application of interventionism reveals causation after all. If one is not 
inclined to collapse the distinction, then this is usually due to perceived differences 
between causation and grounding. But these differences can be used to break the 
underdetermination here as well.

Here we have in mind one prominent account of the difference between ground-
ing and causation [32].17 On this account, the difference is this: causal relations are 
governed by the physical laws of nature, whereas grounding relations are governed 
by modally broader constraints, sometimes called ‘metaphysical laws’. The inter-
ventions we have considered are based in the dynamics of CST, and in this sense 
are responsive to physical laws laid down by the theory. There is no sense that we 
can see in which any broader metaphysical laws are coming into play. We thus have 

17 This is not the only account. Another account appeals to time. Roughly: grounding happens at a time, 
whereas causation happens across time. This account is generally thought to fail, though see [3] for an 
attempt to revive it. If this account is assumed, and the growth process is considered temporal as some 
proponents of CST maintain, then this would be another way to break the underdetermination.
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good reason to suppose that the relations being identified are causal relations, and not 
grounding relations.18

Second objection: causal connectibility of the kind introduced in §2 just implies 
the presence of interventionist causation. That being so, it is quite straightforward 
that if there is causal connectibility (which in the case of CST, we can suppose there 
is) that then there is interventionist causation. But this also makes interventionist 
causation seem too easy to obtain, and thus makes our results trivial.

As briefly noted in §2, however, the presence of connectibility is not sufficient 
for the presence of actual causation. If there is causal connectibility between x and y 
then all that tells us is that it’s possible for some actual causal relation to be present 
between x and y. What it doesn’t tell us is whether, in fact, were one to make a change 
to x in the interventionist sense, there would be a change in y. It is entirely compatible 
with the presence of causal connectibility that, in fact, there is no change in x that 
would make a difference to y.

The fact that interventionism analyses causation modally makes no difference to 
this, for the kind of modal link provided by causal connectibility is different to the 
one provided by interventionism. Given the presence of causal connectibility, it is 
possible that, were a change made at x, there would be a change at y. This is differ-
ent, however, to it being actually the case that, were a change made at x, there would 
be a change at y. The difference here can be revealed in the logic of the two notions. 
If we let ‘A�→ B’ stand for an interventionist counterfactual (an intervention on A 
makes a difference to B), then what causal connectibility tells us is that ⋄(A�→ B). 
This is compatible with A�→ B being actually false, in the way that ⋄A does not 
generally imply A. What interventionism adds, is the claim that the counterfactual is 
actually true.

Third objection: it is trivial that there is actual causation in physics, given our 
analysis. The objection can be framed using general relativity. Suppose we take two 
spacetime points x and y, and add a matter field over those points, along with dynami-
cal equations concerning the way in which alterations to the matter field at x result in 
alterations to the matter field at y. Then surely this now is sufficient for actual causa-
tion. But if that’s right, then it’s straightforward to find actual causation whenever 
there’s dynamics of this type.

There are a couple of things to say here. First, there is serious disagreement about 
whether interventionism works in all such cases. Indeed, in the case of general rela-
tivity, counterfactual theories such as interventionism will not work [17]. We lack the 
space to go into the details here, but the basic idea is that the dynamical information 
fails to support the strong ‘would’ of the counterfactual. Thus, even though there are 
dynamical equations linking matter fields at points, this does not always result in 
causation. It really depends on whether the dynamics supports interventionist coun-
terfactuals, which is something that generally needs to be shown on a case-by-case 
basis.

18 As we note below, thinking through the intervention requires breaking the physical laws. But this is 
often true for interventions for causation. It doesn’t mean that the relations are not causal relations, since 
it’s compatible with the imagined intervention breaking the laws that the actual relation is governed by 
those laws.
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Second, there’s an important difference to be drawn between interventions on 
matter fields located at spacetime points, versus interventions on the points them-
selves. That is, we might have dynamical equations in general relativity, and many 
other theories, which support interventions on matter at a point, with this ramifying 
through that point’s forward light-cone (though the just-cited disagreement about 
general relativity means even this may not be straightforward). But even if we have 
that, we don’t seem to have interventions on the points themselves. The point can be 
put in terms of our distinction between elemental and material causation. That mate-
rial causation is possible does not imply that there is any elemental causation.

We thus need to be very careful to distinguish two kinds of interventions in general 
relativity: an intervention on some A located at a point x, versus an intervention on 
x itself. Likewise, we should distinguish two sorts of potential interventions in CST: 
on the CST elements, versus on things located at those elements. It is the first kind of 
intervention that we are considering here as no matter fields are available to perform 
the second kind of intervention.

One might respond, however, that the dynamical equations of a theory can link 
just the points, and indeed that such dynamical equations do link points in general 
relativity. For instance, in vacuum solutions it looks as though we have dynamical 
equations that relate spacetime points in the absence of matter.

But while this may be so, this is still not enough for elemental causation. To illus-
trate this point, imagine that we perform an intervention on a general relativistic 
spacetime to ‘remove’ a spacetime point from the manifold entirely. This is analo-
gous to the intervention on a point in CST to remove an element at a stage of the 
growth process. In the case of general relativity, it is not the case that, were we to 
remove a spacetime point, that every point in its forward light cone would be ‘wiped 
out’. Indeed, this would conflict with the way that the geometry of spacetime is deter-
mined locally by the energy-momentum tensor. Instead, it seems more likely that a 
singular spacetime would be created (roughly a spacetime with a ‘hole’ in it).

Thus, the case of general relativity shows us that having some points and some 
dynamics is not enough to get us interventions that support elemental causation. The 
dynamics needs to induce a dependence between points, such that wiping out one 
forces the removal of others. This requires a special kind of dynamics, namely the 
type of dynamics that we have when we take the growth process in CST physically 
seriously.

Thus, even granting that dynamical equations can give us interventionist causa-
tion (which, as noted, it is not obvious we should), they may not give us elemental 
causation, which is the kind of causation we are focusing on. This type of causation 
is unusual, and reveals a type of causal dependence between the elements quite unlike 
what we find in other theories, including general relativity.

Of course, one could add a growth process into a theory. For instance, one could 
take general relativity and add a physical growth process whereby spacetime points 
dynamically depend for their existence on one another through relations of actual 
causation. If one were to do this, then general relativity might admit of the same 
analysis as we have applied to CST, and so perhaps could be considered causal in the 
sense we have in mind (involving elemental causation between the points of space-
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time). But, as noted, this doesn’t seem to be a feature of general relativity as it stands, 
given the way the geometry is defined locally at a point.

Fourth objection: one might worry that the growth process is not to be treated as 
physical in any sense, even the minimal sense that we have described here. To be 
clear, we are not defending the idea that the growth process is physical. Rather, we 
are assuming it is for the sake of argument, and then demonstrating the way that the 
growth process so understood yields actual, elemental causation. In this respect, our 
approach is similar to the one taken by Wüthrich and Callender [38], who also take 
the growth process to be physical and aim to interpret CST under this assumption. 
Our conclusions, like theirs, are beholden to this assumption. We think the assump-
tion is worth making, however, since some of the physicists who developed CST 
seem to interpret the theory in this way, taking the growth process as a physical aspect 
of the theory. We take the perspective of physicists seriously in this respect, and con-
sider the implications of this interpretation of the theory.

As discussed, doing so opens up a new way to interpret that process as a real 
physical process. Rather than interpreting the process as one of temporal passage or 
becoming, we consider it as a causal process. As mentioned in §2, this is quite useful. 
For while indeterminacy is not considered a feature of passage, it does seem to be a 
feature of causation in general, and so the worries that have been raised against taking 
the growth process as physical appear to have less force. Though, of course, whether 
this new interpretation is problem-free, remains to be seen. That is not an issue we 
have space to deal with here, but hope to examine it in future work.

Still, one might claim that the only causal sets that we should take seriously are the 
ones produced in the limit, and thus it is only infinite ‘complete’ causal sets that exist. 
Even the stages of the growth process with their increasing cardinality should not be 
taken physically seriously. We admit that under this blockhead interpretation of CST, 
the application of interventionism we have identified does not seem to work. To see 
this, suppose we have just a completed causal set and consider ‘removing’ an element 
with an intervention in the way that we considered for the weakened conception of 
the growth process in §5.2. For simplicity, suppose we just imagine intervening to 
remove an element from a three-element causal set. There are two options for what 
might follow from making this change. One option is depicted in Fig. 7.

In this case, we have removed the bottom left element in the left-hand causal set. 
Doing so, however, does not wipe out the element ahead of it in the causal set order-
ing. Instead, the result is just a new anti-chain in the causal set on the right. A second 
option is that the causal set on the left is turned into a one-element causal set, since 
when we remove the bottom left element in the left-hand causal set we also wipe out 
every element that is later than it in the causal set ordering.

The difficulty is that without relying on the dynamics, there is no basis for prefer-
ring one of these outcomes of the intervention to the other. Both outcomes result in 
possible causal sets, and neither is privileged from the perspective of what would 
happen were we to remove an element.

Fig. 7 Intervening on the left-hand causal set to produce the 
one on the right
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More generally, without the dynamics, there is no obvious sense in which wiping 
out a single element results in the elimination of all causal set elements ‘ahead’ of 
the removed element in the causal set ordering. When we remove an element, one 
possible outcome is the loss of everything ahead of it, but another possible outcome 
is the loss of just that element, with everything else remaining intact. Again, both 
options are possible causal sets. Without a way to select between these, we cannot 
say that removing an element would have any particular causal outcome for other 
elements. Thus, if we set aside the growth process and its dynamics, there doesn’t 
seem to be a way to find causal dependence between causal set elements of the kind 
needed for elemental causation.

If that’s right, then perhaps our conclusion can be strengthened. We have argued 
that if the growth process is a real physical process, then causal set theory features 
elemental causation. But given what we’ve just said, it may be that causal set theory 
features elemental causation just in case the growth process is a real physical process. 
Then elemental causation is only really a core part of the theory under a specific 
interpretation.

Whether this stronger conclusion is justified remains to be seen. What we need 
to do is take a closer look at the ‘kinematics’ of a completed causal set and see what 
happens when interventions are applied there.19 It may be, for instance, that ‘deleting’ 
elements of the causal set through interventions does have a knock-on effect through-
out the rest of the causal set, despite what we’ve just said. For it may be that the 
dynamics imputes dependence between causal set elements, even if it is not consid-
ered a real physical process in the manner described in §5.2. Perhaps if we rewrite the 
dynamics in a way that doesn’t rely on stages, and then use this revamped dynamics 
as the basis for an interventionist analysis, we’ll uncover elemental causation once 
more. We note this as a potential avenue for future work.

Fifth objection: one might note that there is no possible cause in CST that can 
prevent the growth of a causal set element. Thus, there can be no intervention. Recall, 
however, that we are not using a notion of intervention that is tied to possible causes. 
Still, one might worry that even if an intervention does not correspond to a possible 
cause, it should still correspond to a physical possibility in some sense. The concern, 
then, is that there is no dynamical procedure at all for preventing the growth of the 
causal set, and so the case we are considering is one that is simply not physically 
possible by the lights of CST. But, again, there is no requirement that setting inter-
ventions should be constrained by any particular notion of possibility. So the setting 
intervention does not need to be underpinned by a possible dynamical procedure 
described by the growth dynamics.

One might still be worried. Even a setting intervention, it might be thought, should 
correspond to an operation on the models of a theory, in this sense: a setting interven-
tion should correspond to an operation that takes one from a model M of a theory to 
a model M∗ ̸= M  of the same theory. One might argue, however, that the interven-

19 We are hesitant to use the word kinematics here, as the distinction between kinematics and dynamics 
could lose its meaning in this context. If there is no physical process, but only a final complete causal set, 
then the dynamical laws simply express the internal organisation of the causal set—just as in a Humean 
approach to spatiotemporal theories, laws are seen as describing spatiotemporal regularities in the distribu-
tion of events.

1 3

Page 29 of 35    63 



Foundations of Physics           (2025) 55:63 

tions we are considering don’t amount to an operation on models of this kind. That’s 
because the intervention we have in mind is an intervention into an infinite growth 
process that halts it at some finite step, leaving us with a finite causal set. If the only 
dynamical models of causal set theory are ones where the causal set grows to infinite 
size, then our intervention does not correspond to an operation on models in the rel-
evant sense.

There are two things to say here. First, there are finite causal sets in the kinematics 
of causal set theory. So it is not clear that the intervention at issue takes us beyond the 
theory in any objectionable sense. Granted, it takes us from an infinite causal set to a 
finite one, but both are, in some sense, part of the broader ontology of the theory, and 
so we think there is still good sense to be made of the intervention. Second, it is far 
from clear that interventions ought to be operations on models in the relevant sense. 
It certainly seems that the use of the interventionist framework must be much broader 
than this kind of operation already.

For instance, suppose that we have a set of deterministic dynamical laws and we 
want to know what happens if, under those laws and for a specific set of initial condi-
tions, we intervene at a particular time t to prevent an event e from happening. Any 
such intervention takes us beyond the model space of the theory, since there is no 
model that leads from the relevant initial conditions to a situation in which e is miss-
ing via the deterministic laws. This kind of case, however, seems like a very natural 
use of the interventionist framework. It roughly corresponds to one in which a small 
‘miracle’ wipes out the event e.20

As [35] puts the point when considering the counterfactuals that correspond to 
what would happen under interventions:

... what is crucial is not whether the antecedent of the relevant counterfactual is 
nomologically or physically possible but rather whether we are in possession 
of well-grounded scientific theories and accompanying mathematics that allow 
us to reliably answer questions about what would happen under the supposition 
of such antecedents. We count interventions as “possible” as long as this is the 
case.

The interventions we have considered for CST appear to be possible in the sense 
that Woodward indicates. They are based on well-grounded scientific theories and 
accompanying mathematics that allow us to answer questions about what would hap-
pen were causal set growth to be prevented. One might challenge the idea that CST 
is well-grounded, noting that it is not empirically confirmed. But that is surely too 
narrow a definition of ‘well-grounded’. We take it that a reasonable understanding 
of ‘well-grounded’ would include sufficiently well-developed and serious scientific 
theories and associated mathematical frameworks. CST surely qualifies as well-
grounded in this sense.

20 There is, of course, a delicate question concerning how, on the one hand, we can hold the dynamics fixed 
so that we can reason through the implications of an intervention while, on the other hand, violating the 
dynamics to a certain extent. This is a general issue with counterfactuals of this kind, however, and not one 
that we can hope to resolve here.
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One might disagree: it has not yet been shown that the dynamics of causal set 
theory will produce, with high probability, manifoldlike causal sets that approximate 
spacetimes of the type found in general relativity. This is a fair point, so we ask for 
some latitude in what ‘well-grounded’ means for the application of interventionism 
for philosophical purposes. As we see it, the notion of ‘well-grounded’ is supposed to 
capture, in part, the idea that a theory is sufficiently well-developed that the applica-
tion of interventionism is coherent, and provides determinate answers. That is indeed 
the case, as our analysis shows. But this seems to be enough for our purposes, because 
we are drawing conclusions only about causal set theory itself. Matters would be dif-
ferent if we were trying to draw conclusions about the world, or about another theory 
beyond CST. But that’s not what we’re doing.

One might disagree, again, arguing that CST plus the growth process construed as 
physical is not a well-grounded scientific theory in even the weak sense just outlined: a 
theory that is sufficiently well-developed that it can admit of philosophical analysis. In 
reply, we suggest that if a theory is taken seriously by physicists, then philosophers have 
some reason to take it to be well-grounded in this sense, using it as a reasonable starting 
point for philosophical analysis. As discussed, some physicists do take seriously the 
combination of CST and the claim that the growth process is a real physical process.

Again, just to clarify, our argument here is not a straightforward argument from 
authority. We are not simply saying that because physicists take the growth process 
to be physical, we should too. Our argument is that this is a reasonable starting point 
for our analysis, and so a reasonable starting point for applying interventionism to 
CST to reveal elemental causation. Indeed, given our analysis, it may be that we 
have more reason to take the growth process physically seriously, since we now have 
another way to interpret it. In this way, the analysis justifies itself: by performing the 
interventionist analysis on CST, we can provide more support for taking the growth 
process physically seriously. Of course, it could be still that the process should not be 
taken seriously in this way. But that is a further question.

We admit that if the growth process were shown to be contradictory, then that 
would offer a defeater against what we do in this paper, but this has not been shown 
so far. One might respond that the growing block theory of time has been shown to 
be contradictory, and it is sometimes thought that CST operates just like a growing 
block theory. But no one has yet shown that the growth process in CST is just like the 
growing block theory. At best, the two processes have been shown to be somewhat 
analogous. Moreover, as we’ve been at pains to point out, what we do here shows a 
way to interpret CST without using a growing block or becoming model. That being 
so, we don’t yet see a reason to doubt that CST is a well-grounded scientific theory, 
even under the interpretation that the growth process is physical in some sense. More 
to the point: our analysis steers CST away from a temporal, growing block interpreta-
tion. Rather than viewing the growth process as a case of passage or becoming, we 
can treat it as a unique type of causal process.

One might still disagree with our claim that applying interventionism to CST is 
appropriate. Suppose that causal set theory is the correct theory of our world. Then it 
delimits the scope of physical possibility, in this sense: the only physical possibilities 
that there are, are the ones found in the dynamically acceptable models of the theory. 
The intervention described in §5.2 involves a dynamically forbidden model (namely, 
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a finite one) and in this way, the models we are considering are physically impos-
sible. So the intervention we are considering is physically impossible. But, one might 
continue, interventions ought to be physically possible, and so we have not described 
a genuine case of causation.

This line of thought trades on a misunderstanding of interventionism. As Wood-
ward makes clear, interventions need not be physically possible (though they should 
be possible in some broad sense). Here it is worth quoting Woodward at length:

... the reference to “possible” interventions in [the interventionist theory] does 
not mean “physically possible’; instead, an intervention on X with respect to Y 
will be “possible” as long as it is logically or conceptually possible for a process 
meeting the conditions for an intervention on X with respect to Y to occur. The 
sorts of counterfactuals that cannot be legitimately used to elucidate the mean-
ing of causal claims will be those for which we cannot coherently describe what 
it would be like for the relevant intervention to occur at all or for which there 
is no conceivable basis for assessing claims about what would happen under 
such interventions... we thus arrive at the following conclusion: to a manipula-
bility theory leads unavoidably to the use of counterfactuals concerning what 
would happen under conditions that may involve violations of physical law. The 
reason for this is simply that any plausible version of a manipulability theory 
must rely on something like the notion of an intervention, and it may be that, 
for some causal claims, there are no physically possible processes that are suf-
ficiently fine-grained or surgical to qualify as interventions. [33, pp. 132–133]

Thus, assuming Woodward is right, there is nothing wrong with the kind of inter-
vention we have applied to CST, at least from the perspective of interventionism. 
Granted, it is physically impossible by the lights of that theory. But it is still conceiv-
able, understandable and coherent, and that’s sufficient for the interventionist project.

Sixth objection: we have used interventionism to identify actual causation in CST. 
As noted in §2, however, CST is interpreted to be a non-spatiotemporal theory. But, 
one might argue, interventionism requires space and time, in this sense: interventions 
are to be thought of as possible events that happen in space and time that result in 
some change to a physical system. Moreover, one might argue that we ought to think 
of interventionism in this way. That’s because if we don’t, then interventionism is far 
too liberal, revealing causation where there shouldn’t be any.

For instance, one might argue that interventionism can reveal causation even in 
mathematical cases. Take, for instance, the famous seven Bridges of Königsberg. It 
is impossible to cross all seven bridges, passing over each bridge exactly once. Why? 
Because if we model the bridges as a graph with each island being a node and each 
bridge being an edge, then it is possible to prove that the resulting graph will lack 
an Euler circuit: a path that crosses every edge exactly once. But now suppose we 
intervene to alter the structure of the bridges. Then there will be such a path. But this 
intervention is not a causal one: we are considering changes to a mathematical struc-
ture, which does not allow for any actual causation to arise. The only way to prevent 
actual causation from being revealed in this case is to restrict interventions spatiotem-
porally, thereby preventing their application to pure mathematical structure.
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We offer two points in reply to this objection. First, nothing we have said in the 
paper relies on CST being a non-spatiotemporal theory. Thus, it could be that what 
the application of interventionism shows is that the theory (with the growth process 
interpreted physically) is spatiotemporal after all, since it allows for interventions 
within the dynamics. Perhaps the growth process is a temporal process, and so maybe 
this is not so surprising. This would not alter our main conclusion, however, that 
actual causation plays a role in the dynamics so interpreted.

Second, interventionism as it is standardly formulated does not place a condition of 
spatiotemporality on interventions. This is no part of the theory as Woodward formulates 
it. Moreover, there is no need to add such a restriction to prevent interventionism from 
erroneously identifying causation in pure mathematical cases. Instead, we can restrict 
interventionism in one of two ways. First, we can appeal to the fact that any application 
of interventionism to pure mathematical cases would involve impossible interventions, 
since mathematical facts are, if true, necessarily true. Thus, we can say that causation 
only arises when interventions are at least possible (though, as noted, we don’t restrict 
this to physical possibility). Second, we can appeal to the fact that only interventions on 
physical systems reveal causation, since causation is a physical notion. Thus, the notion 
of interventionism need not be so liberal as to classify any dependence between variables 
as causal: only cases that involve possible interventions in physical systems are causal, 
which are the kinds of interventions we have been considering so far in this paper.

6 Conclusion

We have argued that CST, when situated within an interventionist framework, is causal 
in a specific sense. In particular, if we assume that the dynamics of CST corresponds 
to a real physical process, then we can identify relations of actual causation whereby 
causal set elements bring one another into existence. This shows that, under this inter-
pretation, CST is not just causal in the sense of causation captured by the lightcone 
structure of general relativity (i.e., causal connectibility). The theory is causal in a 
deeper sense: there is a sense of causation operative in the dynamics of CST that goes 
beyond what we find in general relativity and beyond causal connectibility to actual, 
elemental causation.

As noted in §1, what we have argued is useful. It gives us a better sense of how 
CST works when we take the growth process physically seriously. In that situation, 
relations of elemental causal dependence underwrite the dynamics. We’ve also seen 
that if we don’t take the growth process seriously, then elemental causation may not 
be playing a role in the theory, though this remains to be seen. Regardless, the analy-
sis we’ve provided offers a way to interpret the growth process as a causal process.

We also have a sense of the tools available for developing a metaphysical picture 
of spacetime emergence for this theory. If we interpret the growth process as physi-
cal, then we have actual, elemental causation available. This means that the approach 
to grounding spacetime in causation that we have developed elsewhere is a viable 
approach to interpreting the theory. It also offers a way of thinking about spacetime 
emergence as itself a causal process, along the lines of phase transition and other 
causal cases of emergence.
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Finally, on the issue of whether causation plays a role in physics, CST emerges as 
a potential case study supporting the importance of actual causal relations to physical 
theory. Whether this case study provides a response to the scepticism about the role 
of causation in physics is not something we have pursued here, but we note this as a 
possible option for future consideration.
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