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Abstract

Chronogeometry is often conceived as a necessary condition for spatiotemporal-
ity, yet many theories of quantum gravity (QG) seem to challenge it. Applications
of noncommutative geometry (NCG) to QG propose that spacetime exhibits
noncommutative features at or beyond the Planck scale, thereby replacing rel-
ativistic symmetries with their deformations, known as quantum groups. This
leads to an algebraic formulation of noncommutative structure that postulates
a minimal length scale and deforms relativistic (commutative) physics, raising
questions about whether noncommutative theories preserve spatiotemporal con-
tent, and specifically, chronogeometry. I argue that noncommutative approaches
can satisfy an appropriate definition of chronogeometry, thus attaining physical
significance within QG. In particular, I contend that noncommutativity is com-
patible with chronogeometricity, using κ-Minkowski spacetime as case study in
NCG. In this algebraic setting, physical interpretation hinges on two crucial ele-
ments: a representation of the noncommutative algebra and a corresponding set
of observers. I show how this framework enables the algebra to encode localisation
procedures for events in noncommutative spacetime, relative to a noncommuta-
tive reference frame, with frame transformations governed by the quantum group
structure. By enriching the theory with noncommutative reference frames, NCG
can satisfy the necessary representational principles to support chronogeometric
content.

Keywords: Noncommutative geometry, Chronogeometry, Noncommutative reference
frames, Interpretation, Quantum gravity
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1 Introduction

Quantum gravity (QG) offers a new perspective on numerous key aspects of physical
reality. In an attempt to describe physics at or beyond the Planck scale, candidate the-
ories of QG postulate new fundamental degrees of freedom that challenge the physical
picture described by quantum and relativistic theories. A significant number of these
proposals, including loop quantum gravity, group field theory, and causal set theory,
conjecture that the spacetime geometry, as described successfully by general relativity
(GR), breaks down at extremely high energy due to quantum effects. Consequently, a
new non-spatiotemporal description of this regime is warranted.

Noncommutative geometry (NCG) instantiates this novel approach to fundamental
physics by conjecturing that spacetime has a non-classical, noncommutative structure
at the Planck scale. This new structure, termed noncommutative spacetime (NCST),
challenges key relativistic structures and properties, including the ability to sharply
localise events, the distinction between timelike and spacelike distances, and the local-
ity of fields. While NCG emerges from different theories of QG, it has often been
neglected by philosophers of physics interested in the epistemology and metaphysics
of QG.

In this context, Huggett, Lizzi, and Menon [1] argue that the noncommutative
parameter, introduced as a fundamental scale of the new theory, interacts with the
localisability of events in interesting ways. Specifically, they contend that operational
criteria of localisation become meaningless due to severe limitations in the definition
of a point-based spacetime structure. Similarly, many geometrical notions must be
reformulated due to the impossibility of reconstructing a differential geometric picture
out of the algebraic description of NCST models. These features raise crucial concerns
regarding the spatiotemporality of said models.

Much of the philosophical literature has argued that, alongside arbitrary localisabil-
ity, chronogeometricity is a necessary condition for spatiotemporality (see, e.g., [2–5]).
Chronogeometricity refers to a geometry’s capacity to have chronogeometric content,
that is, to represent temporal and spatial distances. It has been extensively argued
that only a chronogeometric structure can meaningfully make contact with empirical
contexts, thereby enabling an appropriate physical interpretation of the mathematical
structure. In this paper, the phrase “physical interpretation” refers to the identifi-
cation of a semantic framework for the mathematical formalism, one that facilitates
understanding of the theory’s content in potential applications to physical contexts.
Correspondingly, the term “physical geometry” denotes a mathematically defined geo-
metric structure that is endowed with a physical interpretation, as informed by our
best physical theories, and that is suitable for representing spacetime structure in
specific investigative contexts.

Nevertheless, the chronogeometricity of mathematical structures raises important
conceptual challenges, concerning the status of spatiotemporal probes, the interplay
between special relativity (SR) and GR, and the relationship between spacetime
and matter fields. In light of this, the absence of chronogeometricity can indicate
disappearance of spacetime. In the context of NCST theories, one must therefore
demonstrate that these possess chronogeometric structure. As I will argue, however,
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there is no universal consensus about which conditions a theory must satisfy to quality
as chronogeometric.

This paper has three main goals. First, to discuss the problem of chronogeometry
in QG through a case study: κ-Minkowski spacetime. In particular, the paper examines
the viability of operational versus representational chronogeometry within the context
of quantum gravitational phenomena.

Second, the paper aims to offer an overview of the quantum group approach to
NCST. Not only this approach introduces a precise implementation of noncommuta-
tivity within standard algebraic structures, thereby modifying the perspective offered
by relativistic physics. More in general, it also indicates a new perspective on the
spatiotemporal interpretation of algebraic physical theories.

Finally, the paper aims to discuss the overall problem of the interaction between
algebra, physical interpretation, and spatiotemporality. Specifically, it indicates the
necessary representation relations and conditions that an algebraic theory should
satisfy in order to be spatiotemporal within a given domain.

I argue that, contrary to expectations, noncommutativity is perfectly compatible
with chronogeometry: the two features are not contradictory. Specifically, I indicate κ-
Minkowski spacetime as a suitable model that can satisfy appropriate chronogeometric
criteria, and thereby provide a chronogeometric noncommutative theory. To this end,
a necessary condition is the definition of an appropriate interpretation for the relevant
algebraic structures, one that includes noncommutative reference frames.

In this regard, this paper is structured as follows. In Section 2, I introduce the
notion of chronogeometry in relativistic theories and illustrate how QG theories chal-
lenge it. In particular, I argue that, while QG theories cannot satisfy operational
chronogeometry, they can still satisfy representational chronogeometry upon provision
of suitable representational principles.

In Section 3, I introduce the algebraic approach to NCST theories outlining
their connection with the underlying quantum group structures. κ-Minkowski space-
time serves as a key case study, with particular emphasis placed on the role of
representations in defining concrete algebraic models.1

In Section 4, I formulate the problem of chronogeometry within the context of
algebraic QG theories. I specify the criteria that a NCST theory must meet to be
considered chronogeometric, and underscore the need for a physical interpretation of
it to evaluate this property.

In Section 5, I provide a physical interpretation of κ-Minkowski spacetime, arguing
that it must incorporate the concept of a noncommutative reference frame. Here, I
demonstrate how this concept is essential in ensuring compatibility among different
noncommutative structures derived from the abstract NCST theory: they must all
implement noncommutative structures in a consistent manner, governed by the same
noncommutative parameter.2

1A concrete algebraic model of an algebraic theory is a pair (H,End(H)), where H is an appropriate
space and End(H) is a family of operators on H that realise the elements of the theory as transformations
of H. This model arises from the theory via an algebraic representation, and satisfies the theory’s axioms
by virtue of homomorphism conditions that preserve the algebraic structure.

2More precisely, this requires the adoption of a noncommutativisation protocol: a quantisation procedure
that deforms the commutative structures by introducing a noncommutativity parameter. Such a protocol
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Finally, in Section 6, I demonstrate that κ-Minkowski spacetime, when inter-
preted through the notion of noncommutative reference frame, satisfies the appropriate
criteria for chronogeometricity.

A final note of clarification: throughout this paper, I refer to the geometry described
by these theories as NCST. This usage is primarily historical: many of these theories
were originally intended to describe spatiotemproal structure in terms of NCG at high-
energy scales. I maintain that this terminology does not introduce confusion regarding
the evaluation of chronogeometric features. Specifically, “NCST” is employed here
as a label without any presupposed spatiotemporal interpretation, until and unless
chronogeometry is established.

2 The Problem of Chronogeometry in QG

Spatiotemporal models are often exhibit chronogeometry. This term refers to a geom-
etry’s capacity to represent spatial and temporal distances. It has been claimed (e.g.,
in [2–5]) that not only chronogeometricity is a necessary condition for spatiotempo-
rality; also, that only chronogeometric structures can meaningfully make contact with
empirical contexts, thereby enabling an appropriate physical interpretation of relevant
mathematical structures.

SR and GR are both expected to be chronogeometric theories. Most of the debate
between dynamicists and geometricists has focused on identifying a suitable justi-
fication for the claim that, in both cases, the metric field receives chronogeometric
content. The former contend that chronogeometry derives from the symmetries of the
laws of matter fields, which are encoded by the Lorentz-invariant structure of the met-
ric. Conversely, the latter contend that spacetime chronogeometricity is prior to the
identification of rods and clocks: matter fields are Lorentz-invariant because of the
underlying metric structure, and so are insufficient to explain its chronogeometricity.

Several theories of QG, including loop quantum gravity, causal set theory, group
field theory, and NCG, challenge the strong interrelationship between chronogeometry
and spatiotemporality. The standard implication drawn from the extant philosophical
literature is that a theory of QG that lacks chronogeometric structure also fails to
be properly spatiotemporal (e.g., [3]). While chronogeometry is often acknowledged
as a problematic or absent feature in many QG approaches, due to disappearance of
spacetime, it is also important to note that the presence of chronogeometric structure
alone is insufficient to ensure that a theory is spatiotemporal.

A key motivation for examining chronogeometric properties within QG theo-
ries stems from the following consideration: if a given QG theory can be shown
to possess chronogeometric models, provided a specific definition of chronogeome-
try, then the common argument from the absence of chronogeometric structure to
non-spatiotemporality can be blocked. Any further claim that such a model is non-
spatiotemporal would then require a different line of argumentation, thus shifting the
burden of proof to the adversary.

specifies how the new structures depend on this parameter and provides a method for calculating the commu-
tative limit. Compatibility among structures, in this context, means that their respective noncommutative
formulations arise from the same noncommutativisation protocol.
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In order to identify the specific notion of chronogeometry involved in relevant QG
theories, in Section 2.1, I discuss two possible characterisations, namely, operational
and representational chronogeometry, and examine their viability in the context of
QG. Then, in Section 2.2, I illustrate the metatheoretic function of representational
principles for representational chronogeometry, and identify specific conditions that a
QG theory, if chronogeometric, must satisfy.

2.1 Spatiotemporality and Chronogeometry

Recent trends in the philosophy of space and time advocate caution in accepting novel
mathematical structures as legitimate representations of possible spacetime geome-
tries (see, e.g., [6]). This cautious stance arises from two sources: (i) the increasing
proliferation of alternative theories of gravity and spacetime, many of which employ
highly abstract mathematical frameworks; and (ii) renewed interest in the historical
development of SR and, in particular, GR as spatiotemporal theories. These develop-
ments have emphasised the need to clarify what conditions a mathematical structure
must meet to count as “spatiotemporal.” While this latter notion often includes an
array of structures and properties that the models of the theory must satisfy, the
present section focuses more narrowly on a specific aspect of spatiotemporality, namely,
chronogeometricity.

Broadly speaking, chronogeometricity refers to the capacity of a geometric struc-
ture to measure distances, temporal durations, and angles. In a weaker sense, it entails
its ability, within a physical theory, to account for, or represent, such measurements.
This property is commonly taken as a demarcation criterion between genuinely spa-
tiotemporal theories and mere mathematical spaces. For instance, Brown [2] repeatedly
emphasises the importance of deriving the chronogeometric content of the metric ten-
sor in GR by locally reducing it to the structure of SR; this is motivated by the ability
to define sets of measuring rods and clocks in the latter. Similarly, Knox [3] stresses the
need for the operational significance of chronogeometry to be grounded in the deriv-
ability of inertial frames from the underlying geometry, under suitable approximation
conditions. Furthermore, Einstein’s aim of reformulating SR as a constructive theory
has often been interpreted (particularly by dynamicists like Brown) as rediscovering
the central role of operations with rods and clocks in the foundations of relativity on
an axiomatic basis.

Chronogeometricity is primarily a property of the models of the concerned theory.
If the theory under investigation admits chronogeometric models, then it is chronogeo-
metric. Two distinct notions of chronogeometricity can be identified. The first, which
I call operational chronogeometricity, requires that the model include, in its domain,
identifiable dynamical fields that serve as clocks and rulers, along with appropriate
measurement protocols for distances, durations, and angles (see, e.g., [2, 3, 5]). In
this view, a model of physical geometry is chronogeometric if and only if it describes
the behaviour of material clocks and rods.3 Specifically, these are characterised by
protocols for the measurement of distances and durations that can be implemented

3Constructive approaches to spacetime physics may propose alternative targets for chronogeometric struc-
ture, including light rays and test particles. The problem of chronogeometry within these approaches, and
specifically its relationship with the clock hypothesis, has been examined in [7].
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in practical situations, up to idealisations and approximations. The latter typically
include, for instance, conventions for synchronising clocks associated to different refer-
ence frames. The identification of these protocols is a demanding requirement, rooted
in the dynamicist thesis that spacetime geometry is simply a codification of the dynam-
ics and symmetries of matter fields: a “glorious non-entity” [5]. On this view, dynamical
matter fields instantiate physical geometry, which is thereby termed “spatiotemporal:”
they do not survey any prior underlying structure.4

According to this operational definition, many QG theories face significant obsta-
cles in demonstrating the spatiotemporality of the postulated structures. Gravitational
fluctuations, for instance, may preclude the identification of suitable dynamical fields.
It may be impossible to define reliable clocks for measuring the lengths of timelike
worldlines, assuming the theory even preserves a sharp distinction between timelike
and spacelike directions (see Section 5.3). Violations of the clock hypothesis, or the
failure of other standard constructions of physical clocks (such as those described in
[8, ch. 3]), can thus be leveraged as arguments against the spatiotemporality of such
theories (see, e.g., [9]).

A second, alternative notion, which I term representational chronogeometricity,
requires only that the model of the theory represent distances, durations, and angles
(see, e.g., [10]). Unlike its operational counterpart, this weaker notion does not demand
the model to supply concrete implementations or measurement protocols. Instead, it
requires that certain components of the model be interpretable in empirical terms.
That is, chronogeometricity is achieved when representational links between model
and empirical context can be established. In this sense, the emphasis shifts from
experimental realisability to the modelling itself.

Notably, this distinction is often blurred in the literature. For example, Fletcher’s
[10, 7–12] critique of the dynamicist account highlights the latter’s conflation of the two
notions. He argues that operational chronogeometry pertains to metrology, the science
of actual measuring instruments, and should be clearly separated from theoretical
considerations about spatiotemporal structure.

This distinction does not, however, preclude the construction of idealised models
of clocks and rods. The familiar picture of an ideal clock, such as a photon bouncing
between two mirrors (a light clock), remains a legitimate part of certain spacetime
models (e.g., in the case of Minkowski spacetime). Yet, the ability to define such an
idealised clock does not, in itself, justify the chronogeometricity of the model. Rather,
it is a consequence of it satisfying deeper representational principles that mediate
between the model and empirical, albeit idealised, practices.5 These principles not only
authorise the model’s use in representing spatiotemporal features of a target system,

4In particular, this use of dynamical fields is guaranteed by the local coincidence of their groups of
dynamical symmetries with the group of spacetime symmetries. Consequently, the dynamicist argues, the
structure of spacetime is explained by the symmetries of the equations of motion of matter fields. I also
emphasise that operational chronogeometry can only be exhibited by those spacetime models that ensure
the causal isolation of local measurements. If the selected dynamical fields are nonlocal, then the outcomes
of measurement protocols will be influenced by physics outside the scope of the measurement, thereby
making any procedure unreliable.

5For instance, in the case of GR, Fletcher indicates the existence of test matter, the geodesic principle,
the association of photon propagation with null geodesics, and the clock hypothesis as representational
principles that secure representational chronogeometricity of the relevant models.
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but also justify the construction of idealised probes, such as light clocks, as models of
real-world instruments and procedures.

In contrast to operational chronogeometry, representational chronogeometry
requires a precise articulation of the representational relations that link the model
to its target. As mentioned above, these relations are codified in a set of representa-
tional principles that the model must satisfy in order to qualify as chronogeometric.
This model-based perspective shifts the focus of the problem of assessing chronogeo-
metricity and opens the possibility for QG theories to meet the necessary conditions.
This is particularly important, given the lack of direct empirical access to the high-
energy regimes they describe. Consequently, such theories may plausibly satisfy
representational, though not necessarily operational, chronogeometricity.

2.2 Representational Principles

The explication of the function of representational principles in the context of chrono-
geometry requires the definition of a suitable conceptual framework. Specifically, it
requires the identification of the precise relationship between these principles and the
representation relation discussed in the philosophy of scientific modelling (see, e.g.,
[11]).

A representation relation, ormodel representation, is a relation between the domain
of a theory and the intended target. This relation is a concrete interpretation of a
theory when it provides a semantics for the formal theory.6

Interpretations of individual elements of the theory are rarely made in isolation.
Typically, the interpretation of a designated structure depends on the presence and
interpretation of other elements within the theory, forming what I call a represen-
tational system. This system provides the necessary background to assign empirical
significance to the structure, and may include both interpreted structures and math-
ematically meaningful elements that lack direct physical targets (e.g., a symplectic
geometrical structure). Without such a background, isolated structures may yield
ambiguous, conflicting, or incorrect interpretations.

A crucial feature of model representations is that they must be defeasible. That
is, interpretations should remain open to revision in light of new theoretical devel-
opments or conflicting intuitions (or, outside the scope of current QG, conflicting
evidence). Following [10, 11–12], a successful interpretation should support a wide
range of predictions, accommodate representations from empirically successful prior
theories, and furnish new paradigmatic cases. In the context of specific theories, this
entails: (i) offering an intelligible theoretical framework (e.g., in the sense of [13]); (ii)
maintaining compatibility with interpretations of other theories (e.g., with relativistic
theories in the case of QG); and (iii) producing physically meaningful case studies as

6In philosophy of science there is a vast debate concerning the specification of this representation relation,
often with heterogeneous answers. In this work, I remain neutral with respect to specific accounts. As
discussed below, the analysis of NCST approaches only requires a local definition of this relation, in the
sense of being intended to provide a background for an appropriate explication of chronogeometry in this
specific context. It thus has no ambition of generality. Nevertheless, it is important to note that the model
representation relation is expected to be extremely complicated: naive accounts of the representation relation
as direct designation of the target may be inappropriate. Indeed, theories of QG are still far from being “used
in practice” like other standard theories. Furthermore, we can expect the target to be a model system itself
(in the sense, e.g., of [12]), due to both idealisation from known physics and impossibility to experimentally
access the relevant regimes.
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applications. Moreover, model representations must remain responsive to theoretical
refinement, conceptual change, and evolution of in fieri theories.

The interpretation of elements within a representational system can be guided and
constrained by representational principles. These are metatheoretical principles that
connect abstract structures of a theory to empirical content. In standard physics, such
principles include: identifying (q, p) as position and momentum in classical mechanics;
assigning inertial frames to freely falling systems; interpreting the length of timelike
worldlines as proper time; and applying the Born rule to compute measurement prob-
abilities in quantum theory. Each metatheoretical property of the models of a theory is
thus governed by an associated set of representational principles, and failure to satisfy
these principles indicates that the model lacks that property.

In the context of this paper, the focus is specifically representational chronogeom-
etry. Since this is a property of models (and, by extension, of the corresponding
theories), it must be associated with a specific set of representational principles. These
principles serve to identify, within the domain of each model, those elements that can
be meaningfully interpreted as representing durations, distances, or angles in appro-
priate representational systems. Accordingly, a model is chronogeometric if it contains
elements that satisfy (or “saturate”) chronogeometric representational principles. A
theory, in turn, is chronogeometric if it admits at least one such model.

To illustrate, consider the following representational principle in the context of GR:

(CH) γ is a timelike curve if and only if |γ|, i.e., the length of γ, represents the duration
of the events in γ[I], for I ⊆ R, i.e., the proper time elapsed between two such events.
[10, 3]

From an operationalist perspective, (CH) can be substantiated by indicating certain
configurations of dynamical fields, used as reliable clocks for measuring intervals of
proper time along worldlines. In other words, satisfaction of the so-called clock hypoth-
esis guarantees that (CH) serve as a chronogeometric principle. The specific realisation
of this clock, however, is debated (see, e.g., [14]).

On the other hand, representational chronogeometry can introduce (CH) as a suit-
able representational principle without specifying any further justification for it. In
other words, (CH) can indicate a constraint on timelike curves that brings them in
contact with empirical contexts. At the same time, satisfaction of (CH) requires for
the concerned model to possess sufficient structures that can be interpreted according
to the appropriate representational system, including timelike-ness, worldlines, length,
and events. In other words, (CH), if adopted as a chronogeometric principle, can only
be satisfied by those models that contain suitable structures to be interpreted as time-
like worldlines, lengths of these worldlines, and events. Absence of such structures
implies that the model cannot be chronogeometric.

3 NCST from Quantum Groups

NCST theories are always formulated in algebraic terms. This primacy of an alge-
braic over a geometric formulation is often motivated by their construction process. To
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illustrate, consider an algebraic description of a relativistic structure. Its noncommuta-
tive deformation prevents any classical differential geometric structure from encoding
the same algebraic content. Instead, NCST theories raise the issue of identifying new
kinds of geometric structures that can serve as duals to NCST algebras. This difficulty
arises because commutative dualities between algebraic and geometric model (includ-
ing Gelfand duality), central to classical scenarios, break down due to the introduction
of noncommutativity, and so new duality relations must be identified.

Algebraic theories raise important questions when they are intended to describe
the quantum gravitational regime. Certain approaches to QG incorporate algebraic
methods through combinatorial reasoning. For instance, groups field theory relies on
the identification of simplexes as fundamental building blocks in the constitution (or
emergence) of spacetime structure at the appropriate scale. Each simplex is described
by a state in a Hilbert space, and gluing of simplexes corresponds to tensoring the
associated Hilbert spaces to describe the collective state of these atoms of spacetime.

In contrast, NCST theories directly associate an algebra to the quantum gravita-
tional structure they aim to describe. These theories are not combinatorial in nature.
The algebra itself encodes all the relevant relativistic structure (affine, differential, pro-
jective, and so on) and, in the commutative limit, enables the reconstruction of smooth
differentiable manifolds. In the noncommutative regime, however, the manifold struc-
ture is replaced by more complicated geometries. As a result, the connection between
the mathematical geometry described by a NCST theory and the standard spatiotem-
poral picture becomes subtle. This complexity brings forth a central question: in what
sense can an algebraic theory be considered spatiotemporal?

This section frames the question within the context of NCST theories. Specifi-
cally, in Section 3.1, I introduce the notion of strict algebraicism, which characterises
the fundamental stance underlying NCST approaches. In Section 3.2, I present the
κ-Poincaré quantum group as a paradigmatic case study of strict algebraicism. In
Section 3.3, I outline how the corresponding NCST structure is reconstructed from
this algebraic structure. Finally, in Section 3.4, I argue that quantum groups can be
interpreted as algebras of (deformed) symmetries of the underlying NCST geometry.
Emphasis is placed on the importance of algebraic representations, which are essential
for assigning representational content to the abstract algebraic theory.

3.1 Strict Algebraicism and Representations

Of course, algebraic approaches are not used exclusively in QG (see, e.g., [15, 16]).
Varied instances of this practice share a core insight: algebraic methods can offer sig-
nificant conceptual and practical advantages over more conventional frameworks. Not
only do they preserve many of the essential features typically expressed in differential
geometric terms (e.g., using tensor fields); they can also provide alternative research
strategies that are equally, if not more, effective.

The viability of an algebraic approach hinges on whether physicists can address
each of the following three questions [17]:

1. Which structures are relevant to the formulation of the physical theory?
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2. Which algebraic structures can be defined within this theory, that is, which
structures are supported by the underlying theory?

3. Among all possible algebraic structures, which ones are physically meaningful, and
which are purely mathematical?

To illustrate, consider a field theory formulated in the language of differential
geometry. In response to question 1., one might list a number of relevant features, such
as having the structure of a topological manifold or an affine connection. Question 2.
then concerns identifying algebraic structures that are well-defined on these geometric
foundations. For instance, every open region of the manifold supports a C∗-algebra of
complex-valued smooth functions. Similarly, the affine structure permits the definition
of an affine connection as a derivation operator acting on the algebra.

Finally, question 3. requires singling out those algerbraic structures that bear
physical interpretation. Local C∗-algebras of smooth functions can be interpreted as
local fields, that is, observables, while the affine connection operator defines geodesic
motion, representing curves along which generating vector fields are parallel trans-
ported. By contrast, inner automorphisms of the C∗-algebra may be considered formal
redundancies rather than physical structures.

A more radical position, which I term strict algebraicism or algebra-first approach,
asserts that algebraic methods are not only advantageous but fundamentally neces-
sary: they are “the only game in town” [1, 4697]. This is primarily a methodological
claim: certain problems can only be adequately addressed through algebraic means,
either because algebraic tools are uniquely effective or because no viable alternatives
exist.7 Consequently, strict algebraicism does not necessarily deny the definability
of non-algebraic frameworks; rather, it prioritises the algebraic approach due to
either practical convenience (pragmatic strict algebraicism) or conceptual necessity
(theoretical strict algebraicism).

Pragmatic strict algebraicism is provisional: new non-algebraic methods may even-
tually match or surpass the utility of current algebraic ones. In contrast, theoretical
strict algebraicism demands a principled argument that no alternative non-algebraic
framework is possible. In other words, it indicates a foundational limitation.

Support for strict algebraicism can be found in algebraic geometry. It is commonly
accepted that all the information contained in a differentiable manifold can be encoded
in a ∗-algebra C∞(M) of smooth, complex-valued functions on the manifold M with
pointwise commutative multiplication. Conversely, any commutative C∗-algebra can
be realised as the algebra of smooth, complex-valued functions on some smooth man-
ifold. This correspondence is formalised by Gelfand duality. Geroch’s [16] proposal to
model physical fields directly via the elements of these algebras (modulo inner auto-
morphisms) reflects this insight: the algebraic fields admit direct representation as
physical fields.

To illustrate, one can encode the full structure of Minkowski spacetime in a suitably
defined Minkowski algebra M. It suffices to associate self-adjoint operators Xµ to

7The emphasis on methodology is pivotal. Indeed, strict algebraicism has no direct bearing on the question
of the status of the algebraic structures it uses. One is free to take them as real (algebraic substantivalism)
or as proxies for solving problems (algebraic anti-realism). These metaphysical claims are independent of
the usage of algebraic methods in scientific and mathematical practice.
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physical events in Minkowski spacetime.8 These operators, acting on a suitable Hilbert
space (e.g., L2(R3), the space of square-integrable functions on R3), can be interpreted
as localisation procedures relative to a chosen reference frame. The action of spacetime
coordinate operators on states in L2(R3) determines the spatiotemporal location of
the corresponding physical events. The mutual independence of spacetime coordinates
is expressed via the commutation relations [Xµ,Xν ] = 0, ensuring that the uncertainty
in measuring coordinates vanishes:

∆Xµ∆Xν =
1

2
|⟨[Xµ,Xν ]⟩| = 0. (1)

Therefore, events can in principle be sharply localised in spacetime.
Both cases of a differentiable manifold and Minkowski spacetime indicate how

algebraic elements can be realised on specific structures: in one case as functions on
the manifold, in the other as operators on a Hilbert space. However, these concrete
realisations potentially limit the generality sought by strict algebraicism. Indeed, a key
strength of the algebraic approach lies in its abstraction. Algebraic elements possess
mathematical meaning independently of the structures that realise them. They are not
reducible to their action on a particular space or support structure. For this reason,
the strict algebraicist must clearly distinguish the abstract algebra and its various
representations, such as sets of transformations acting on a manifold.

For instance, Menon [19, 5] characterises an algebraic field as a “non-manifold-based
representation of matter” (my emphasis). He writes:

If the abstract algebra out of which the dynamically possible algebraic fields are constructed
admits a realisation as a set of material scalar fields, then all of the information about
the underlying manifold–its topological and smooth structure–is already contained in the
abstract algebra. (ivi)

Consequently, the algebraic and manifold-based formulations are not only formally
equivalent; the algebraic description may be considered more fundamental, or privi-
leged, dispensing with the manifold entirely: “[o]n the algebraic field view, all we are
doing is taking the field to be primitive.”

While the abstract algebra may encode geometric information, this is only evi-
dent when a representation on a manifold is available: strict algebraicism depends
on representations. This is not necessarily problematic, unless the algebraicist seeks
to eliminate the manifold altogether.9 In doing so, she risks undermining the inter-
pretability of an algebra in contexts where no such manifold can be defined: the algebra
may lack a clear physical interpretation.

The issue is especially pressing in NCG. Here, the algebraic approach has been
advocated as not only useful but indispensable, a claim that aligns with both pragmatic

8Although the definition of a time operator is complicated: see, e.g., [18].
9Compare with the case of algebraic structuralism: see [20]. In that case, no ontological commitment

should be attached to the concrete representations of a given algebra; rather, the representational content
of the algebra is entirely associated to the underlying abstract structure that is common to all different
representations. Moreover, it is interesting to note that the same issues arise outside the context of QG.
It could be argued that strict algebraicism also applies to quantum theories in general, particularly to
algebraic QFT. However, as discussed below, NCG differs from these other theories in that it only admits
an algebraic formulation. Whether strict algebraicism in NCG is merely pragmatic or also theoretic remains
an open issue.
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and theoretical strict algebraicism (see, e.g., [1]). NCG thus provides a privileged case
study for evaluating the viability of strict algebraicism in the absence of manifold-
based representations. To assess this, one must first define NCST models in properly
algebraic terms. This task requires a preliminary analysis of the underlying quantum
group structure.

3.2 Quantum Groups

Quantum groups lie at the core of the eponymous approach to NCG. In this section, I
present a technical treatment of their construction, whereas for an informal overview
of their main features and historical reconstruction of their development, see [21]. Such
a reconstruction is motivated by the aim of examining the algebraic structures under-
lying NCST models and clarifying how these structures are related to one another.
To maintain independence from specific spatiotemporal realisations, I first define the
relevant algebraic framework in an abstract form, postponing interpretational issues
to Section 3.3.

To begin, recall that an algebra A over a field K is a vector space equipped with
an appropriate product. Dually, a coalgebra C over a field K is a vector space with a
coproduct ∆ : C → C ⊗C and a counit ϵ : C → K, satisfying coassociativity and counit
conditions. The coproduct is essential for defining representations of the coalgebra. In
fact, it allows to define a representation of C on a tensor of vector spaces, while ensuring
that the representation is linear, coassociative, and homomorphic. A coproduct is said
to be cocommutative if ∆(a) = a1 ⊗ a2 = a2 ⊗ a1.

A and C form a categorical-dual pair: their structures can be expressed using
commutative diagrams where the morphisms (arrows) are reversed between the two.
This duality implies that the algebraic structure of a coalgebra C can be derived from
a corresponding algebra A, and vice versa, without loss of information. Accordingly,
any deformation applied to one structure induces a corresponding deformation in the
other. This leads to the concept of a bialgebra, a structure (B, µ, η,∆, ϵ) where B is
simultaneously an algebra, with product µ and unit η, and a coalgebra, with coproduct
∆ and counit ϵ.10 The coproduct and counit of a bialgebra must satisfy suitable
homomorphisms compatibility conditions.

A Hopf algebra over K is a bialgebra (H, µ, η,∆, ϵ) equipped with an additional
map, called the antipode S : H → H, with appropriate axioms. The antipode acts as
an anti-homomorphism on the elements of the algebra. Furthermore, the composition
of product, antipode, and coproduct must satisfy the Hopf identity, which codifies
the relationship between group inverse and identity and implies that the antipode
generalises the notion of group inverse with respect to ∆.

Many familiar algebraic structures can be trivially promoted to Hopf algebras by
appropriately enriching their structure. For instance, the space C(G) of continuous
functions on a finite group G becomes a Hopf algebra by defining product and unit
in a natural way, coproduct and counit as actions of the functions on elements of
G, and the antipode as the action of functions on inverse group elements.11 In this

10By construction, µ is the opposite map of ∆, and η the opposite of ϵ. This inversion of the arrows of the
commutative diagrams ensures the compatibility of the two structures due to the category-theoretic duality.

11Similarly, the universal enveloping algebra of a Lie algebra g can be extended to a Hopf algebra U(g).
Here, ∆ defines the actions of elements of U(g) on tensor products and codifies the Leibniz rule. If g is a
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construction, ∆ induces a group multiplication law, ϵ defines the identify element of
G, and S defines the group inversion.

Given this framework, a quantum group is defined as a deformation of Hopf alge-
bras.12 This means that, given a Hopf algebra H, the elements of the quantum group
Hq are required to reduce to elements of H modulo q (i.e., x ∼ y mod q if and only if
x− y ∝ qn for some n). Similarly, the product on Hq is a deformation of the product
on H that trivialises in the quasiclassical limit, i.e., as q → 0.

3.3 From Deformed Symmetries to Spacetime Models

The commutative case indicates a clear and well-established relationship between
groups and manifolds. The construction of a manifold as the support for a group of
symmetries relies on the decomposition of the latter into a semi-direct product of sub-
groups. Here, the manifold is reconstructed as the quotient of the group with one of
its isotropy subgroups.

A classical example of this construction is the derivation of the Minkowski algebra
from the Poincaré group P4. In this case, P4 can be written as a semi-direct product of
the translation group T4 (a normal subgroup) and the Lorentz group SO(1, 3), which
is the isotropy group at the origin: P4 = SO(1, 3) ⋉ T4. The resulting homogeneous
space, Minkowski spacetime, is then identified with the quotient: M is isomorphic to
T4 = P4/SO(1, 3).

A natural question arises: can this construction be extended to quantum groups?
The answer is yes. To show this, first define a right-action of a Hopf algebra H on an
algebra A. This is a linear map ◁ : A⊗H → A, a⊗x 7→ a◁x, such that a◁xy = (a◁y)◁x
and a ◁ 1 = a for x, y ∈ H, a ∈ A. It codifies the effect of applying elements of H on
the elements of A. This action is covariant if it preserves the structure of A, i.e., if
it is an algebra homomorphism. Similarly, a left-coaction is a linear map A → C ⊗A,
where C is a coalgebra, specifying how elements of the algebra transform under the
coalgebraic sector.

A bicrossproduct algebra Q ▷◀ A is constructed as a tensor product of Hopf
algebras, Q ⊗ A, equipped with compatible left-coaction and right-action. In such a
structure, both the algebraic and the coalgebraic sectors are allowed to act on each
other under appropriate compatibility conditions. This bicrossproduct structure is the
base for reconstructing an underlying space. To illustrate this, the κ-Poincaré alge-
bra serves as a paradigmatic example of derivation of a NCST model, namely the
κ-Minkowski algebra Mκ:

13

[X0,Xj ] =
i

κ
Xj , [Xi,Xj ] = 0 (2)

Lie algebra and G its corresponding Lie group, then the Hopf algebras U(g) and C(G) are dual. Note that
any Lie algebra can be extended to a Lie bialgebra, whose structure is characterised by the introduction of
a tensor, called the classical r-matrix r. Moreover, a Lie bialgebra can be further equipped with a Poisson
structure. For instance, the smooth functions of a Poisson-Lie group define a Poisson-Hopf algebra that
serves as base for the extension of classical symmetry groups to the quantum group framework: see Section
3.3.

12For each classical case, there are typically two Hopf algebras that can be quantised. One can either
quantise the Hopf algebra of smooth functions on a Poisson group, or the universal enveloping of the Poisson
algebra. These are two possible ways to characterise the resulting quantum group.

13Roman indices indicate spatial dimensions: i, j = 1, 2, 3.
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Mκ can be characterised as a structure that supports the κ-Poincaré Hopf alge-
bra as its symmetry quantum group. This implies identifying κ-Poincaré as a Hopf
algebra of continuous functions on the Poincaré group P4, write Cκ(P4), with the con-
dition that the quantum group preserves the κ-Minkowski commutation relations (2).
Here, κ refers to the noncommutative parameter that governs the deformation of the
commutative structures.14

Let this quantum group be generated by the self-adjoint operators Λµ
ν and aρ

acting on a suitable Hilbert space, e.g., L2(SO(1, 3)× R3). These operators indicate,
respectively, the generators of Lorentz transformations and translations. The problem
of describing the κ-Poincaré algebra reduces to that of studying the conditions under
which a map:

Mκ → Cκ(P4)⊗Mκ , Xµ 7→ X′µ = Λµ
ν ⊗Xν + aµ ⊗ 1, (3)

on the generators Xµ of the κ-Minkowski algebra, leaves the commutation relations
invariant.

This occurs if the Lorentz sector remains undeformed,

[Λµ
ν ,Λ

α
β ] = 0, (4)

whereas both translation sector and cross-relations are deformed:

[aµ, aν ] = − i

κ
(aµδν0 − aνδµ0 )

[Λµ
ν , a

α] = − i

κ
((Λµ

0 − δµ0 )Λ
α
ν + (Λ0ν − g0ν)g

µα) (5)

In other words, while the noncommutativity is entirely encoded by the translation
sector and its cross-relations with the Lorentz sector, rotations and boosts are classical.

The effects of Cκ(P4) on Mκ can be specified by an appropriate left-action. This
requires the definition of the Hopf algebra structure of Cκ(P4).

15 In particular, one
can define coproducts, counits, and antipodes as follows:

∆(aµ) = Λµ
ν ⊗ aµ ϵ(aµ) = 0 S(aµ) = −aν(Λ−1)µν

14Alternatively, the κ-Poincaré algebra can be defined as the deformation of the Hopf universal envelop-
ing algebra U(p) of the Poincaré algebra. This construction quantises the universal enveloping of the de
Sitter algebra, and then derives U(p) by contraction, i.e., by sending the de Sitter radius R → ∞ while

iR log q → κ−1, The resulting algebra differs from Cκ(P4): translation and rotation sectors are undeformed,
whereas boosts and boost-momentum cross-relations are highly deformed. Similarly, the coproducts of spa-
tial translations and boosts exhibit noncommutative features that introduce non-classical correlations when
acting on pairs of states. This algebra is not in a nice bicrossproduct basis, as the Lorentz sector does not
form a subalgebra. The derivation of Mκ can only be obtained by a nonlinear transformation into the Maid-
Ruegg basis. Here, the Lorentz sector is not deformed, whereas the cross-relations between translations
and Lorentz transformations are. The resulting bicrossproduct Hopf algebra is Uκ(p) = U(so(1, 3)) ▷◀ T4,
where so(1, 3) is the Lorentz algebra and Uκ(p) is dual to Cκ(P4). The quantum group is the semidirect
product of an undeformed Lorentz algebra, with a deformed action on translations as algebraic sector, and
the translation algebra, with the coaction of the Lorentz algebra as coalgebraic sector. The standard coset
procedure then derives Mκ as the algebra on which Uκ(p) acts covariantly.

15Note that C(P4) is a Poisson-Lie algebra, and so the group laws must be compatible with the Poisson
structure as well as the undeformed Leibniz rule. These constrain the possible quantum group laws, as
expressed by coproduct and antipode.
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∆(Λµ
ν ) = Λµ

α ⊗ Λα
ν ϵ(Λµ

ν ) = δµν S(Λµ
ν ) = (Λ−q)µν . (6)

The structure (6) completes the κ-Poincaré algebra.16

In an appropriate basis (the so-called Majid-Ruegg basis), Cκ(P4) can be written
as a bicrossproduct of two algebras:

Cκ(P4) = T ∗
4 ▷◀ C(SO(1, 3)). (7)

C(SO(1, 3)) is the commutative algebra of continuous functions on SO(1, 3), whereas
T ∗
4 is the dual of the noncommutative translation sector. By means of the classical

construction, one obtains that M4 ∼ T ∗
4 is the coset of Cκ(P4) in this basis.

In conclusion, the correspondence between the noncommutative structure of the
NCST algebra and the quantum group is mediated by the cross-actions defined by
an appropriate choice of bicrossproduct basis. Specifically, the construction of Mκ

as a coset of the κ-Poincaré algebra supports the interpretation of the latter as the
algebra of quantum symmetries associated with this NCST model. These quantum
symmetries preserve the commutation relations of the spacetime coordinate operators
by construction. This invariance is ensured by the covariance condition imposed on
both right-action and left-coaction, as encoded in the bicrossproduct structure.

3.4 Quantum Groups and NCST: What relation?

The characterisation of NCST models as cosets of the corresponding quantum groups
in a suitable basis is crucial for the algebra-first approach. However, this characterisa-
tion remains purely algebraic. This raises a crucial question: can such a NCST algebra
exhibit any spatiotemporal feature at all? If not, its inability to satisfy even some weak
notion of spatiotemporality would represent a serious limitation to the strict algebraic
approach. The issue is further compounded by the fact that, in the current formulation
of NCST theories via quantum groups, only algebraic methods are available.17

One possible resolution is to extend the construction beyond its purely algebraic
setting. As discussed in Section 3.1, representation theory plays a pivotal role in apply-
ing algebraic structures. More precisely, the introduction of a representation theory
allows one to build concrete models of the concerned theory, being essential to guar-
antee the success of strict algebraicism. In the case of NCST, the algebraic theory is
initially defined via commutators between the generators of the coordinate algebra. To
obtain a concrete model, the theory must be equipped with a suitable representation
of algebras, typically in the form of a triple (A, ρ,H), where ρ is a representation of
the algebra A as operators on a support space H. In particular, H is the Hilbert space

16Alternatively, I will refer to this as the κ-Poincaré group, with the understanding that it is a quantum
group.

17Notably, alternative approaches to NCG, such as Connes’ spectral triple approach, also employ geo-
metric methods ranging from algebraic geometry to functional analysis. This is because spectral triples, the
fundamental structures used to characterise different models, comprise a Hilbert space along with a rep-
resentation of the relevant algebra as a family of operators acting upon it. Further geometric information
is encoded by the Dirac operator, an unbounded differential operator that acts on the algebra and enables
the definition of a topological metric. For more details, see [22, ch. 1, §10].
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containing the states on which the representations of elements of A act. The homo-
morphism condition ensures that the representation of the algebraic theory preserve
the invariant algebraic structures and carry them over into the NCST models.

Importantly, this representation is generally non-unique, so specifying it is neces-
sary for constructing a specific algebraic model.18 It is this model, not the abstract
algebraic theory, that represents a NCST structure. While the commutation rela-
tions define the core structural features of NCST, a concrete model (potentially)
with spatiotemporal features requires well-defined states for events. Crucially, these
states encode the salient properties of events, including, for example, their localisation
properties, but cannot be extracted from the bare abstract theory alone.

A specific example of this construction is provided by the representation of κ-
Minkowski and its associated quantum symmetries. For simplicity, the following
presentation focuses on the kinematical aspects of the model, leaving out momentum
space considerations.

Recall that the κ-Minkowski algebra Mκ has the following commutator structure:

[X0,Xj ] =
i

κ
Xj , [Xi,Xj ] = 0, (8)

where κ is the noncommutative parameter. Mκ has a Lie-algebra-type noncommuta-
tivity between the time coordinate operator and the spatial coordinate operators. By
a suitable substitution of the generators with a polar basis of self-adjoint operators
(R, cos(θ), eiϕ), one obtains:

[X0, cos(θ)] = [X0, eiϕ] = 0 , [X0,R] =
i

κ
R. (9)

This indicates that Mκ is equivalently characterised by noncommutativity between
the time coordinate operator and the radial coordinate operator R.

Drawing an analogy with quantum mechanics, we can represent the algebra Mκ

as a set of self-adjoint operators acting on a Hilbert space. One such representation
assigns:

ρ(Xi)ψ(x) = xiψ(x)

ρ(X0)ψ(x) =
i

κ

(
xi∂i +

3

2

)
ψ(x) =

i

κ

(
r∂r +

3

2

)
ψ(r), (10)

acting on normalised wavefunctions ψ ∈ L2(R3
x).

19 When the action of ρ(X0) is
expressed in polar coordinates, it can be shown that the time operator commutes with
all spherical harmonics, but not with functions depending on the radial coordinate r.

18This is the case unless proved otherwise. For instance, the definition of the GNS representation of a
finite-dimensional C∗-algebra offers a case of unitary equivalence between all irreducible representations.
In the more general context, such specification modifies the concrete model. This has been emphasised not
only in the case of field theories from a more philosophical perspective (see, e.g., [23]), but also in the
specific case of κ-Poincaré: see, e.g., [24].

19The subscript x indicates the basis for the integral representation of the wavefunctions. Note that the
term 3/2 is added for symmetrisation reasons.
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The operators must form a complete basis. In the case at hand, there are two possibil-
ities: (R, cos(θ), eiϕ) or (X0, cos(θ), eiϕ). Here, (improper) states can be represented in
either basis and related via integral transforms, ensuring no information is lost when
translating between them.20

Given a basis, localised states can be constructed as limits of normalised vectors in
L2(R3

x) by saturating the generalised uncertainty relations implied by Mκ. In particu-
lar, it is possible to achieve sharp localisation of a state in both space and time by using
a family of approximating functions, the log-Gaussians, provided that they are either
centered at the origin, or peaked at another point with null variance. Consequently,
the model allows the complete localisation of a state at the origin; this is allowed by
the construction of this state as the limit of normalised elements of the Hilbert space.
However, localisation at the origin cannot be extended to other arbitrary states.

Furthermore, the time evolution of such a localised state at the origin can then
be precisely tracked, for instance via a one-parameter family of states representing
its evolution through time. However, sharp localisation is restricted for states away
from the origin: in such cases, spatial localisation necessarily introduces temporal
uncertainty. This limitation is imposed by the intrinsic noncommutative structure of
the spacetime model.

Up to this point, the construction of an algebraic model has relied solely on a
representation of Mκ. However, any viable model for a description of NCST must also
exhibit invariance under the relevant group of quantum symmetries. This requirement
arises not only from the abstract definition definition of Mκ as a coset of the κ-
Poincaré group, but also from the need for consistency at the level of concrete models.

A realisation of the κ-Poincaré algebra is a representation of its generators on a
suitable Hilbert space. As illustrated in Section 3.3, the algebra Cκ(P4) contains an
undeformed Lorentz sector, whose representation theory is well understood. Specifi-
cally, the Lorentz sector can be realised by multiplication operators ρ(Λ) acting on
wavefunctions in L2(SO(1, 3)), whereas the representation of translation sector carries
the noncommutative deformation over to the state space.

To obtain a faithful representation,21 it is necessary to extend both the action of the
translations and the Hilbert space to include a representation of Mκ. In other words,
the representation of Cκ(P4) must be constructed as a direct sum of two representations
on L2(SO(1, 3)×R3×R3), subject to the condition that it also satisfies the nontrivial
commutation relations characterising the translation sector.

This construction ensures that the representation of Cκ(P4) is sufficiently rich:
any vector in L2(R3) (i.e., the support space of the representation of Mκ) can be
approximated as a limit of vectors in L2(SO(1, 3) × R3) (i.e., the partial support of
the representation of Cκ(P4)), under suitable conditions. Accordingly, the algebraic
relationship between Cκ(P4) and Mκ is preserved in the concrete model through a
judicious choice of representations. In other words, a concrete model of κ-Minkowski

20Similarly, in quantum mechanics states can be expressed in either position or momentum basis via
the Fourier transform. In the case of κ-Minkowski, [25] suggests the use of the Mellin transform in order
to transform a basis of observables in the radial coordinate r to a basis of observables in the temporal
coordinate τ .

21Faithfulness guarantees that distinct algebraic elements are represented as distinct linear maps.

17



can be recovered by selecting particular states in the representation of the κ-Poincaré
algebra, provided these states are localised around the origin.

4 The Problem of Chronogeometry in NCG

As emphasised, an algebraic theory, such as Mκ, can give rise to multiple inequiva-
lent concrete models, depending on the chosen algebraic representation. Accordingly,
inequivalent representations yield different families of concrete models. Within this
context, one can ask whether at least one such family of concrete models can
adequately represent a spatiotemporal structure.

Chronogeometry is often considered a necessary condition for spatiotemporality
(Section 2), and so NCST approaches share with other QG approaches the challenge of
demonstrating the chronogeometricity of their models. In addition, strict algebraicism
requires the identification of a precise relationship between the algebraic structures and
the elements of the domain of each concrete model, so that the algebraic representation
of the former facilitates the ascription of empirical content.

The examination of the representational chronogeometric content of NCST models,
therefore, requires a suitable conceptual framework that accounts for their algebraic
foundations.22 Here, the distinction between the algebraic representation of a theory,
and the model representation relation (central to the philosophy of scientific modelling
and discussed in Section 2.2) becomes crucial.

An algebraic representation provides a mathematical realisation of the elements
of a structure: in this case, an algebra. These elements are typically represented as
operators on a Hilbert space. This realisation concerns the formalism of the NCST
theory: it does not, in itself, establish a direct link to any intended physical tar-
get, beyond the mathematical interpretation of the algebraic elements. Crucially, any
finite-dimensional C∗-algebra is a direct sum of matrix algebras, and its algebraic
representations are determined (up to unitary equivalence) by the multiplicities with
which each irreducible component appears; changing the multiplicities thus results
in inequivalent representations of the same algebra, some of which may have even
different dimensions. If each of these algebraic representations were treated as a dis-
tinct model representation, the algebra would then designate different physical targets,
contrary to expectations.

Nonetheless, an algebraic representation remains a necessary step for identifying a
concrete model that can be compared with a physical system. Let us denote a concrete
model of the algebraic theory T , under a chosen representation πi, as Modπi . Similarly,
{Modπi}i∈I denotes a family of concrete models, each one associated with a different
indexed representation. For each concrete model, the domain dom(Modπi) consists of
all transformations that realise the elements of T . Then, a model representation assigns
a physical target to each element of this domain, under the constraints imposed by
the algebraic structure of Modπi : let this be a concrete interpretation ι of the model.
Therefore, an interpretation of T is given by the pair (ι, πi), where πi is an algebraic
representation of T , and ι is a model representation compatible with it.23

22Comparable analyses have been undertaken, for example, in the philosophy of QFT: see [23].
23Compare this definition with [26, ch. 1].
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To illustrate, consider the concrete model introduced in equation (10). This model
admits an interpretation in terms of localisation procedures. Each operator ρ(Xµ) can
be interpreted as a measurement on a state in a Hilbert space, yielding the spatiotem-
poral position of the corresponding event along the xµ-axis. Due to the idealised nature
of the model, this interpretation does not necessarily involve physical interaction with
the localised system. However, the interpretation is incomplete without the specifi-
cation of a reference frame and an observer situated at its origin: these constitute
the representational system that supports the present interpretation. Representa-
tional adequacy further requires that the reference frame accommodate uncertainty in
position when the system is localised along an axis xν , given that [ρ(Xµ), ρ(Xν)] ̸= 0.

While this interpretation is a necessary step towards spatiotemporality, it is still
insufficient to ground chronogeometricity. Specifically, the peculiar localisation proper-
ties of the NCST model raise concerns regarding the definability of local measurements
of distances and durations. It is expected that chronogeometric representations of
NCST models will face limitations, particularly due to the presence of a noncommu-
tativity parameter, which constrains their regime of applicability. This limitation also
affects the identification of candidate physical targets. Moreover, given a specified fam-
ily of chronogeometric representational principles, it is necessary to identify additional
model representations to complete the representational system needed to satisfy them.
These additional interpretations provide the background required to assign chrono-
geometric content to salient elements within the designated concrete model. In the
following section, I explicitly formulate these model representations and outline the
associated representational system.

5 Noncommutative Observers

The problem of providing a comprehensive interpretation of NCST algebras can be
traced back to the 1940s. In those years, original works in noncommutative approaches
defined the relevant structure of NCST models as an algebra of spacetime coordinate
operations, naturally yielding an interpretation in which these operators represent
possible localisation procedures for high-energy events in NCST. This interpretation,
further substantiated by operationalist assumptions, accounted for both a minimal
length scale characteristic to the NCST structure and an intrinsic uncertainty in
localisation procedures [27, 28].

This operationalist interpretation found resonance in later applications of NCG to
QG, particularly in interpreting the commutative limit as a coarse-graining over mea-
surements of noncommutative spatiotemporal effects. However, it proves ultimately
unsatisfactory for two key reasons. First, the representational system underpinning
the interpretation of the noncommutative algebra as a set of spacetime coordinate
operators is incomplete. While it offers some initial understanding of the formal-
ism, it ultimately fails to attain empirical significance without presupposing a more
refined model representation relation. Second, the operationalist conception clashes
with applications to the quantum gravitational regime and, as such, ought to be
bracketed.
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In light of this shortcomings, in this section I propose a way to refine the origi-
nal interpretation, showing how it allows NCST theories to exhibit representational
chronogeometry. In doing so, I develop a complete representational system that sup-
ports the interpretation of NCST without committing to a strongly operationalist
stance. A central role is played by the κ-Poincaré algebra: as suggested by Lizzi and col-
laborators [25], quantum symmetries should be interpreted through a suitably defined
notion of “quantum observer.”

The section is thus structured as follows. In Section 5.1, I develop the proposal of
[25], articulating a representational system based on noncommutative observers. This
includes characterising noncommutative observers and clarifying their role in inter-
preting NCST theories. In Section 5.2, I extend the interpretation by analysing the
non-localisation effects induced by noncommutativity and their compatibility with the
representational system. Specifically, I highlight the connection between noncommu-
tative observers and spatiotemporal structure. Finally, in Section 5.3, I illustrate how
this interpretation allows one to use the algebraic theory of NCST for reconstructing
the notion of a timelike worldline.

5.1 Observers and Reference Frames for NCST

As discussed in Section 3.4, a concrete model of κ-Minkowski spacetime can be con-
structed through specific states arising from a representation of the κ-Poincaré algebra.
Lizzi and collaborators motivate this result by introducing the notion of an “observer”
associated with the origin of the Hilbert space that supports the representation. They
point out that, for κ-Poincaré states to be perfectly localised at the origin, one must
specifically indicate “the observer making the observation” ([25, 23], emphasis in the
original). Accordingly, the operators Xµ are interpreted as localisation procedures
relative to a reference frame associated to a designated observer, located at its ori-
gin. The action of elements of the κ-Poincaré group is then understood as a passive
transformation between reference frames that respects the NCST structure. Lizzi and
collaborators describe this transformation in the following terms:

A spacetime event (i.e. the clicking of a particle detector) seen by Alice will be described
by the expectation value of its coordinates ⟨xµ⟩, their variance ⟨(xµ − ⟨xµ⟩)2⟩, which
measures how localized it is, the skewness ⟨(xµ − ⟨xµ⟩)3⟩ measuring how asymmetric it is
around the expectation value, and all higher moments ⟨(xµ − ⟨xµ⟩)n⟩ which describe in
increasingly finer details the distribution of probability of where the event can be localized.
The same event, seen by Bob, will be described by a tower of moments of the transformed
coordinate operators: ⟨(x′µ − ⟨x′µ⟩)n⟩, which are in general different from Alice’s, unless
the transformation that connects Alice and Bob is the identity [...]. (pp. 24-25)

Notably, Lizzi and collaborators introduce these “quantum observers” without
fully characterising them. Here, I further develop their interpretation by specifying an
appropriate definition of “observer” for the NCST context. While such observers differ
from those defined in relativistic settings, I argue that they share important affinities
with the recently developed notion of a quantum reference frame (QRF; see fn. 27).

In physics, the notion of observer is theory-dependent. In orthodox non-relativistic
quantum mechanics, observers are typically macroscopic systems capable of interacting
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with a quantum system during a measurement, thereby inducing state collapse. These
observers select measurement settings and record outcomes.

By contrast, in relativistic frameworks, observers are closely tied to reference
frames: collections of physical degrees of freedom dynamically coupled to the observer’s
state. An observer may be idealised as a point-like particle affected by the spacetime
geometry, but not contributing to the stress-energy tensor nor exerting gravitational
attraction on nearby systems. Alternatively, one can define an observer as a timelike
worldline within a reference frame equipped with a clock.24

In NCST approaches, an adequate notion of observer must incorporate both rel-
ativistic and quantum features. On the one hand, the relativistic association of an
observer with a reference frame promises to account for the noncommutative effects
of the underlying geometry. Moreover, it contributes to the definition of the Xµ’s as
localisation operators. On the other hand, the noncommutative geometric structure
can only be surveyed by a system that is, in some sense, quantum in nature. This
necessity is supported by two main arguments.

First, several localisation arguments produced over the last century reveal a crucial
incompatibility that transcends the specific context of NCG: general relativistic black
holes and the infinite-mass limit of quantum probes, required to eliminate quantum
gravitational uncertainties, cannot coexist.25 This result rules out the viability of using
classical probes, i.e., infinitely massive quantum probes, to minimise the uncertainties
characterising quantum spacetime models, since such probes would induce black hole
formation before yielding sharp results. In contrast, appropriate probes for detecting
quantum spacetime structure must operate at specific quantum gravitational scales.
This imposes stringent constraints on the choice of dynamical fields: they must be suf-
ficiently sensitive to quantum gravitational effects, while also bounded by the minimal
uncertainties predicted by the theory.

Second, the structure of the observer must be compatible with the representation
theory of the underlying quantum group. This is because the observer must be repre-
sented by a certain structure within the concrete model under examination. In the case
at hand, the translation sector exhibits nontrivial commutators, as shown in equation
(5). The composite structure formed by the observer and reference frame must pro-
vide a suitable representational system for a physical interpretation of the underlying
noncommutativity.

In this framework, I introduce a notion of noncommutative reference frame (here-
after, NCRF). A NCRF is defined as a family of physical degrees of freedom that are
dynamically coupled to a noncommutative (or “quantum”) observer. The observer is
modelled as an idealised physical system with no gravitational effect and a negligible
contribution to the stress-energy tensor. It possesses a state space that supports the
action of a noncommutative algebra, compatible with the geometry of the NCST model

24See [29, 30] for this coordinate-free construction. Interestingly, they define a reference frame as a (1,1)-
tensor field R of rank 1 on the space of events. Each frame is decomposed into a vector field Γ and a 1-form
α, i.e., R = α ⊗ Γ. Γ generates a family of worldlines as integral curves, whereas α defines a family of
three-dimensional hyperplanes that foliate the space of events transversally to the curves defined by Γ. The
condition R2 = R on the reference frame is equivalent to saying that α(Γ) = 1. In particular, a vector vp

at point p is timelike if αp(vp) ̸= 0. The pair (Γ, α) defines a family of observers that evolve along Γ, each
having a rest frame defined by α(Γ) = 0.

25See, e.g., [31–33]. For a discussion of the interrelationship between these arguments and the development
of NCG as an approach to QG, see [21].
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in which the observer is embedded. The NCRF is able to “detect the noncommuta-
tivity” of the underlying geometry: it has a characteristic energy scale that coincides
with the domain of applicability of the NCST theory. The degrees of freedom of the
reference frame are therefore coupled to, i.e., dependent on, the state of the observer.

The compatibility between the states of the noncommutative observer and the
NCST structure warrants further elaboration. The κ-Poincaré algebra can be inter-
preted as the family of transformations between different observers. As such, the
Hilbert space L2(SO(1, 3)×R3) supporting its representation is interpreted as the state
space of the observer. This space carries an algebraic representation of the κ-Poincaré
algebra interpreted as the family of transformations between NCRFs.

In the representation adopted in Section 3.4, only translations of the origin of
the NCRF are deformed (subject to a minimal scale), whereas Lorentzian boosts and
rotations remain undeformed. This is important because, in SR, the notion of an
inertial reference frame is deeply linked to the structure of the Lorentz group. Indeed,
the latter is the set of transformations between inertial reference frames. Similarly, in
NCST, the preservation of the Lorentz sector allows to identify inertial NCRFs among
all possible ones. In particular, we can refine the interpretation of the κ-Poincaré
algebra as the family of transformations between such inertial NCRFs.26

At this juncture, one might argue that the introduction of reference frames is, at
best, a “toy construction” within the context of QG. In particular, quantum gravi-
tational effects might obstruct the identification of suitable degrees of freedom that
realise a NCRF at the relevant energy scales. While such concerns are valid and depend
on the specifics of each algebraic theory, the preservation of the Lorentz sector in the
construction of the κ-Poincaré algebra used here alleviates this issue. The construction
remains compatible with a (potentially enriched) notion of relativistic reference frame.

However, this preservation is not a general feature: it depends on the chosen basis
of the quantum group. Therefore, a natural question arises: what is the extension of the
family of NCST models that admit NCRFs? The limitation of the number of instances
would not preclude the interpretation of successful cases, such as the one presented in
this section. Rather, it suggests that one should look at the collection of all different
instances and define local interpretations piecewise. A thorough investigation of such
exceptional cases lies beyond the scope of this paper and is left for future work.

The concept of a NCRF becomes clearer when compared to the closely related
idea of a QRF.27 A QRF is a quantum system that is associated with a reference
frame. The composite system, consisting of a quantum particle and a reference frame,
is described by a collective quantum state and associated extended symmetries. The
state of the target system is defined relative to the QRF, and the description of a
multi-particle quantum system becomes relational: any particle can serve as a QRF,
eliminating the need for absolute, external frames. As a result, quantum features, such

26It is important to remark that this interpretation crucially relies on the definability of inertial frames,
and thus on the preservation of the Lorentz sector. If this sector were not preserved, it would be necessary
to prove that such a notion is still well-defined.

27The literature on QRFs is extensive. Early proposals include [34–36], and, in quantum information
theory, [37]. Applications to spacetime are discussed, e.g., in [38]. For a discussion of the generalised sym-
metries between QRFs, see, e.g., [39–42]. More philosophically oriented examinations have been conducted,
e.g., in [43], building on [44].
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as superposition and entanglement, become frame-dependent: they can, in principle,
be removed via a suitable transformation of QRF.

NCRFs exhibit a similar relational structure: the state of a target system is defined
in terms of the state of the NCRF. However, the relationship between QRFs and space-
time is inverted in comparison to that between NCRFs and NCST. In the case of QRFs,
the reference frame is defined internally, via the relation between the frame and the
quantum system; the spacetime structure is reconstructed from frame-dependent con-
structions and their mutual transformations. In contrast, NCST geometry is defined
independently of any reference frame. Rather, NCRFs instantiate specific structures
of this geometry through the κ-Poincaré symmetry: they realise, in physical terms, the
algebraic transformations that characterise the NCST. In this way, NCRFs allow us
to interpret the algebraic elements of the theory as physical transformations between
the states of noncommutative observers.

Let us now consider an arbitrary system in NCST. Suppose we want to determine
its position. Let |o⟩ be the state of a noncommutative observer at the origin of its
NCRF. A coordinate system is defined by choosing a parametrisation of the timelike
and spacelike directions associated with this frame.28 Let |ψ⟩ represent the state of
the system relative to the NCRF. Since |ψ⟩ lies in the support of a representation
of the κ-Minkowski algebra Mκ, the operators Xµ can be interpreted as localisation
operators, defining the position of the system with respect to the NCRF and the
chosen coordinate system.29 In other words, interpreting (Xµ) as NCST coordinate
operators requires the specification of a NCRF as part of the representational system.

Moreover, one can consider a second NCRF with state |o′⟩, and ask where the
same target system is localised relative to this new frame. This implies a comparison
between Xµ |ψ⟩ and X′µ |ψ⟩, where (X′µ) is the algebra of NCST coordinate operators
defined by the new NCRF. Because the geometry is noncommutative, the comparison
between these two localisations must also involve the frame states |o⟩ and |o′⟩. Indeed,
we expect the localisability of the target system to depend on each frame state.

Formally, one must specify a transformation from the composite state |o⟩ ⊗ |ψ⟩
to |o′⟩ ⊗ |ψ⟩. Notably, |o⟩ ⊗ |ψ⟩ lies in the support of a faithful representation of
the κ-Poincaré algebra. Consequently, the latter can be interpreted as a family of
transformations of the state of an event, relative to the coordinate system (Xµ) of the
first NCRF, to the state of that same event relative to the coordinates (X′µ) of the
second NCRF.

5.2 The Function of NCRFs

The introduction of NCRFs contributes to the interpretation of the generalised uncer-
tainty relations that characterise the NCST algebraic theory. The first step in this
analysis is to characterise the state |o⟩ of a noncommutative observer in relation to
the action of the κ-Poincaré algebra within concrete models.

28Since the framework of this paper is a flat, albeit noncommutative geometric structure, I will not be
concerned with the locality of the coordinate chart. Instead, I will suppose that there is always a global
coordinate chart for each NCRF. This assumption must be dropped in the context of noncommutative
gravity: there, curved NCST models are accepted as solutions to the deformed Einstein field equations.

29For the sake of simplicity, I will omit explicit reference to the representation ρ in the notation throughout
the rest of the paper. The distinction between abstract algebraic elements and their concrete representations
will be evident from the context.
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Let g be an arbitrary element of the κ-Poincaré algebra in a given representation.
The observer’s state |o⟩ is characterised by the condition ⟨o| g |o⟩ = ϵ(g), where ϵ is
the counit map. This means that the expected effect of applying a transformation g to
the observer’s own state is trivial: it acts as the identify. In other words, an observer
associated with a NCRF can perfectly localise itself at the origin of its own frame. A
noncommutative observer has thus complete information about its own location in its
own frame.

Uncertainty, however, arises when the observer considers an event displaced from
the origin. Suppose this observer, call her Alice, is associated with the state |o⟩. Alice
can determine the expected position of a distant event by computing the expectation
value ⟨Xµ⟩, where Xµ’s are the coordinate operators. Higher statistical distributions
refine this information: ⟨(Xµ − ⟨Xµ⟩)2⟩ is interpreted as the variance of the event
relative to Alice’s NCRF and measures its position uncertainty; ⟨(Xµ−⟨Xµ⟩)3⟩ is inter-
preted as the skewness measured by Alice and reflects asymmetry in the probability
distribution; and so on. The introduction of NCRFs in the representational system of
the Xµ operators allows these statistical distributions to be interpreted relationally,
i.e., in terms of the state of the observer.

The scenario becomes more intricate with the introduction of a second observer,
Bob, associated with a distinct NCRF. Two key points follow. First, Bob can, just like
Alice, compute and interpret the statistical distributions of the same event relative
to his own frame. Second, if Bob is located at the origin of Alice’s NCRF, then the
transformation between their states is trivial. In this special case, both observers can
perfectly localise one another, and their calculated statistical distributions coincide.

In general, however, Bob and Alice can occupy different positions, and the relation
between their frames is nontrivial. In such cases, additional uncertainty arises.

To illustrate, as discussed in the previous section, the state of an event relative to
Alice’s NCRF can be written as |o⟩⊗|ψ⟩, where |o⟩ is Alice’s state and |ψ⟩ is the state
of the event. This tensor product belongs to the support of a representation of the κ-
Poincaré algebra. A transformation from Alice’s frame to Bob’s frame, associated with
observer state |o′⟩, maps this to |o′⟩ ⊗ |ψ⟩. Such transformations realise the elements
of the κ-Poincaré algebra as operators acting on a suitable collective Hilbert space,
e.g., L2(SO(1, 3)×R3×R3). While these transformations produce changes of reference
frame for the state of the event, they also actively map the initial tensor state |o⟩⊗|ψ⟩
to a new one.

A crucial observation is that κ-Poincaré transformations do not act “sharply”
on NCRFs. Each element of the representation is accompanied by a corresponding
uncertainty. The NCRF framework provides a natural interpretation of this effect:
transformations on tensor states |o⟩ ⊗ |ψ⟩ result in uncertainties in localisation. For
example, a translation with nonzero uncertainty implies that the origin of the NCRF
is shifted to an indeterminate location. From the perspective of the original frame,
the origin of the translated NCRF appears delocalised, reflecting the noncommutative
structure of spacetime.

As an illustration, Bob cannot sharply localise Alice unless he is situated exactly
at the origin of her NCRF. In that unique case, the translation is trivial. Otherwise,
localising Bob from Alice’s frame amounts to translating Alice with respect to Bob in
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NCST, and this process introduces an additional uncertainty. In essence, the uncer-
tainty in Bob’s location relative to Alice’s frame is equivalent to the uncertainty of
translating Bob from the origin of Alice’s NCRF.

The study of the localisation of events also requires a symmetrisation of the relation
between event and NCRF. The symmetrisation allows to treat the event as a third
noncommutative observer, call him Charles, with its own NCRF. As with Alice and
Bob, Charles can self-localise precisely at the origin of his own frame. Similarly, Charles
can sharply localise any event that coincides with the origin of his NCRF. However,
from Charles’s perspective, Alice is no longer sharply localised. The symmetry in the
construction ensures that all observers and events can self-localise, but cannot perfectly
localise others unless they coincide.

Within this framework, different sectors of the κ-Poincaré algebra act distinctly
on the composite states |o⟩ ⊗ |ψ⟩.30 First, the Lorentz sector is undeformed in the
chosen representation. These transformations act on tensor states in the standard
way, and they do not alter the expectation value of the event’s position from Bob’s
point of view. This is due to the fact that the target event can be treated as a third
noncommutative observer, with sharp localisation in its own NCRF: its contribution
to the expectation value is zero. Higher statistical distributions (variance, skewness,
etc.) also remain invariant under pure Lorentz transformations.

Second, pure temporal translations also leave expectation values invariant. A tem-
poral shift of Bob with respect to Alice (i.e., a static displacement along her time
direction) introduces no additional uncertainty.

Finally, arbitrary translations behave differently. When Bob is translated along
both spatial and temporal directions relative to Alice, the uncertainty in the locali-
sation of an event (say, Charles) with respect to Bob increases compared to Alice’s
measurement. This increase is due to the nontrivial uncertainty introduced by the κ-
deformed translation acting on Bob’s reference frame. Only when the transformation
is trivial (i.e., an identity map) does the localisation remain invariant.

To summarise, the introduction of NCRFs provides a representational system for
the action of concrete representations of the κ-Poincaré algebra. These transforma-
tions act on composite states involving both the noncommutative observer and the
event. The noncommutative structure of the κ-Poincaré algebra introduces additional,
frame-dependent uncertainties. Specifically, while κ-deformed translations contribute
to delocalisation, pure Lorentz transformations and pure temporal translations leave
the expectation values invariant. This framework also explains why an observer can
only perfectly localise themselves: other observers can only be sharply localised if they
are located at the origin of the reference frame in question.

5.3 NCRFs and Worldlines

NCRFs are essential for defining NCSTmodels as chronogeometric structures, yet their
specification alone is still insufficient to establish representational chronogeometricity.
What is missing is an appropriate family of worldlines. This request is motivated by the
standard treatment of chronogeometry in the SR literature: see Section 2.2, and specif-
ically (CH). There, a structure exhibits chronogeometricity only if notions of proper

30The action of the identify has already been discussed in the case of self-localisation.
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time and length can be defined for timelike and spacelike worldlines, respectively.31

Consequently, any chronogeometric theory must preliminarily allow the definition of
a suitable structure of worldlines in order to saturate the required representational
principles.

Similarly, in the context of NCST theories, we must ensure that worldlines are
suitably defined. Such a definition is proper if it (i) allows a distinction between time-
like and spacelike curves, and (ii) is compatible with the underlying noncommutative
structure. As discussed in the preceding sections, this also requires specifying the
relationship between worldlines in NCST and a chosen NCRF.

In the standard framework, events are regarded as point-like, sharply localised
coincidences of worldlines. However, as previously discussed, in κ-Minkowski space-
time, the localisation of events is nontrivial. The variance of the location depends on
the specification of the NCRF. We expect that worldlines should also be compatible
with this result and somehow depend on the choice of observer, up to a κ-Poincaré
transformation.

To illustrate the structure of worldlines, Ballesteros, Gutierrez-Sagredo, and Her-
ranz [45] have proposed defining them as elements of a space of worldlines. In the
classical case, this construction employs the group properties of P4 to identify world-
lines by their invariant features. The isotropy group H of timelike worldlines is
generated by temporal translations and spatial rotations. By suitably parametrising
P4 and H, one can form the quotient P4/H, which corresponds to the space of time-
like worldlines in Minkowski spacetime. The elements of this quotient are equivalence
classes representing timelike curves, and their position in the space of worldlines coin-
cides with their position in Minkowski spacetime only when the associated system is
at rest. In this construction, P4 acts nonlinearly on the space of timelike worldlines.

A similar approach can be used to define the space of noncommutative timelike
worldlines in κ-Minkowski spacetime.32 The resulting elements are parametrised by
two coordinates: the position ya and the rapidity ηa. While the rapidities commute
with each other, both the position-position and position-rapidity brackets are nonzero.
In particular, the brackets between positions and rapidities depend explicitly on the
latter.

As Ballesteros, Gutierrez-Sagredo, and Herranz observe,

the noncommutative spaces of worldlines seem to provide a privileged arena in order to
explore the physical role of the κ-deformation. In particular, once the canonical coordi-
nates have been found, noncommutativity in the space of worldlines could be rephrased in
more physical terms as the impossibility of determining simultaneously and with infinite
precision the six (q, p) coordinates of a given worldline.33 (p. 180)

The construction of timelike worldlines as invariant structures of a subalgebra of
Cκ(P4) implies that the space of worldlines and Mκ are different realisations of the
same noncommutative structure, as reconstructed by a NCRF. In this sense, their
noncommutative structures are said to be compatible.

31This is implied by the satisfaction of the clock hypothesis in SR.
32Here H is replaced by the subalgebra h of Cκ(P4). One can show that Cκ(P4) in a suitable bialgebra

basis is coisotropic with respect to h. This guarantees that the space of timelike worldlines inherits a
homogeneous Poisson structure from Cκ(P4) by a suitable canonical projection.

33Where (q, p) are obtained from position and rapidity operators (Y,H) by a suitable change of basis.
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Once this compatibility is established, we can ask how noncommutativity affects
worldlines. As previously discussed, distant events appear fuzzy to a noncommutative
observer, i.e., they exhibit non-zero position uncertainty. Consequently, worldlines that
intersect such events are also expected to be fuzzy.

The construction of the timelike worldlines can be extended to define a space Wκ

of arbitrary noncommutative worldlines [46]. Here, timelike worldlines are those with
speeds less than one, and spacelike worldlines those with speeds greater than one. This
distinction arises not from a conventional light-cone structure, which may be deformed
by noncommutative effects, but rather from the characterisation of worldlines via their
invariant properties under NCST symmetries.

Moreover, the algebra Cκ(P4) naturally endows Wκ with a noncommutative struc-
ture governed by κ−1. As discussed in Section 3.4, we can represent Wκ on a suitable
Hilbert space L2(R3). For example:

Qiψ(p) =
i

κ

∂ψ(p)

∂pi
, P iψ(p) = piψ(p). (11)

Here, (Qi, P i) are generators of Wκ and define a Heisenberg-Weyl algebra with
noncommutative parameter κ−1. The standard coordinates (yi, ηi) can be recovered
through a suitable change of basis. In general, optimal localisation of worldlines is
achieved via a special family of states (known as squeezed states) that minimise the
uncertainty relations of Wκ. Perfect localisation is only attained in the limit of such
states. Notably, the origin w0 of the space of worldlines is sharply localisable and can
be interpreted as the worldline of a particle at rest at the origin of its own NCRF.

The noncommutativity of Wκ becomes evident when we associate a probability
distribution to each worldline. The physical interpretation of this distribution remains
somewhat unclear; nevertheless, it is mathematically well-defined and understood.
This distribution smears the location of the worldline, preventing sharp localisation.
We thus obtain a bundle of possible worldlines centered around a given qi in Wκ, with
the spread growing proportionally to the distance from the NCRF origin. This uncer-
tainty or fuzziness, governed by κ−1, is compatible with expectations that sequences of
distant events (respectively, worldlines) become highly delocalised due to noncommu-
tativity. The compatibility between noncommutative structures guarantees that the
spread in worldline distributions within a region be consistent with the variance of the
associated events.

To further illustrate these effects, note that the probability distributions associ-
ated with noncommutative worldlines can have non-overlapping tails. For any pair of
worldlines, an impact factor β measures their minimal spatial separation at equal coor-
dinate time. This is defined only with respect to a reference frame that provides such
a coordinate chart. If β = 0, the worldlines intersect with certainty. Due to fuzziness,
however, there is a nonzero probability that both β = 0 and β ̸= 0. Specifically, to an
observer at the origin of the NCRF, distant worldlines appear increasingly blurred,
with larger variance: the observer assigns a nonzero probability that a given worldline
intersects its own.

In conclusion, the space of noncommutative worldlines inherits a noncommutative
structure compatible with that of Mκ. The fuzziness of worldlines mirrors the position
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uncertainty assigned by a noncommutative observer to distant events. The only sharply
localised worldline is that of the observer at the NCRF origin. Consequently, the
structure of NCRFs extends the interpretation of the NCST theory from single events
to worldlines in NCST.

6 Representational Chronogeometry in NCST
Approaches

In Section 3, I examined the relationship between quantum groups and NCST the-
ories. The resulting algebraic theory lacks a direct physical interpretation unless a
suitable representational system is introduced. In Section 5, I argued that this system
must include a notion of NCRF. This representational system thus enables the inter-
pretation of concrete NCST models as families of localisation operations for events,
each relative to a corresponding observer. Moreover, it allows one to interpret the alge-
braic representations of the quantum group as transformations between these NCRFs.
Finally, the structure of worldlines in NCST is shown to be compatible with the NCRF
framework: it shares the same noncommutative deformation and exhibits uncertainty
effects proportional to those assigned by the observer to distant events.

At this juncture, a crucial question arises: can this construction and interpreta-
tion satisfy the representational principles for representational chronogeometricity, as
indicated in Section 2?

On the one hand, satisfaction of these principles is expected to depend on the
specific NCST model under consideration. While κ-Minkowski spacetime appears
promising in this regard, the same may not hold for other flat NCST models. For
example, ρ-Minkowski spacetime, i.e., a different NCST model with polar noncommu-
tativity, shares sufficient structural similarities with κ-Minkowski spacetime to allow
interpretation in terms of NCRFs: the polar noncommutativity introduced by the
deformation of the Minkowski algebra produces a similar Lie-algebra-type NCG.34 In
contrast, θ-Minkowski spacetime presents additional interpretational challenges: the
introduction of a deformation, mediated, in this case, by the use of a Drinfel’d twist,
diverges from the κ-Minkowski construction in significant ways.

Nonetheless, the need to specify one NCST model among many does not under-
mine the viability of the interpretation. Ultimately, only one model is expected to be
empirically adequate. If even one NCST model can be shown to exhibit chronogeo-
metric features, then this is sufficient to counter arguments against NCST approaches
in this context: this provides motivation for further exploring these approaches, rather
than serving as a reason to dismiss the possibility that they may be chronogeometric.

On the other hand, demanding strict adherence to standard representational prin-
ciples may be inappropriate in the context of QG. It is indisputable that relativistic
principles will not fully apply here: QG describes structures and phenomena essentially
different from those in classical relativistic theories. Hence, I do not take the trivial
and unsurprising failure of QG to conform to standard chronogeometric principles as
evidence of its non-chronogeometricity. In fact, the opposite would be more surprising.

34However, also note the differences: see, e.g., [47].
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Instead, I submit that in the context of QG, the core problem of chronogeometricity
should be the formulation of new representational principles that are compatible with
the distinctive features of the quantum gravitational target domain. For instance, if
a theory quantises gravitational phenomena, the corresponding criteria of chronogeo-
metricity must account for quantum effects on distance and duration measurements.35

Similarly, a NCST theory should be evaluated against criteria that reflect the presence
of uncertainty effects in the measurement of spatiotemporal quantities.

I contend that representational chronogeometricity in NCST theories requires three
conditions. First, it requires a suitably developed algebraic structure. The algebra must
support additional structures (e.g., affine, projective, etc.) and admit a geometric coun-
terpart. NCST satisfies these requirements in virtue of generalised algebraic-geometric
dualities that replace the standard Gelfand duality (see, e.g., [50–52]).

Notably, NCST theories can also define a metric structure by introducing a dif-
ferential calculus that is compatible with the underlying quantum symmetries. This
calculus is often non-unique due to noncommutativity; nonetheless, the definability of
this structure in a purely algebraic setting implies that the NCST theory can yield all
the structures necessary to saturate chronogeometric principles. Moreover, the met-
ric is compatible with the NCRF framework: it measures distances between events as
localised by the noncommutative observer positioned at the origin of the frame, while
being affected by noncommutative effects compatible with the underlying quantum
group structure.

Second, representational chronogeometricity requires a spatiotemporal interpreta-
tion. As argued above, such interpretation is only possible when appropriate notions
of noncommutative observers and NCRFs are introduced. These arise naturally from
the representation theory of the algebra and its symmetries. They complete the
representational system and enable the interpretation of the NCST theory as a frame-
work for localising events. They also allow to understand the action of quantum
group representations as transformations between NCRFs, thereby accounting for the
observer-dependent uncertainty of events.

Finally, representational chronogeometricity requires the compatibility between the
algebraic structures and their interpretation. Differently put, the noncommutative
structure of a NCRF must align with the noncommutativity found in other structures
derived from the NCST theory. This includes uncertainties and quantum symmetries,
as well as the structure of noncommutative worldlines and the aforementioned metric
field. By construction, these are already compatible with the definition of NCRFs.

These three requirements are necessary for representational chronogeometricity.
To demonstrate this, suppose that a theory is chronogeometric. By definition, it must
enable the representation of durations and distances. Thus, it must possess a complete
representational system to facilitate it. Conversely, the absence or incompleteness of
such a representational system implies that the theory cannot be interpreted in terms
of measurable durations and distances. For instance, Maxwell’s electromagnetic theory
is not chronogeometric: its entities represent fields and sources, not spatiotemporal
measurements.

35To illustrate, see the discussion about the measurement of time in quantum regimes, e.g., in [48, 49].

29



Similarly, if a theory is chronogeometric, then it must possess a suitable geometric
structure to be interpreted. This geometry is typically reconstructed via measurements
of durations and distances, as in constructive approaches. The converse situation,
namely an ill-defined geometry, trivially results in the failure of chronogeometricity..

Finally, formalism and interpretation must be mutually compatible: the latter must
facilitate understanding of the specific geometry under consideration. Without such
compatibility, measurements could not correspond to the underlying geometry, and
the theory would fail to be chronogeometric. Indeed, in this case, a representational
system (e.g., for observers or apparatuses) would exist, but the results it yields would
not be grounded in the theory’s geometry. An example of such a pathological scenario
would be discrepancies between observed quantum uncertainties and those predicted
by the theory’s geometric structure, signaling incompatibility.

To illustrate the link between representational chronogeometry and these three
requirements, consider the following principle, which extends (CH):

(NC-CH) A curve γ is a timelike worldline in NCST if there exists a NCRF such that
|γ| represents the duration of the events in γ[I], for some I ⊆ R, as measured by the
associated noncommutative observer.

As discussed, κ-Minkowski spacetime supports the definition of NCRFs. These
frames encode the noncommutativity ofMκ, inheriting it from the associated quantum
group. In this setting, Mκ represents the geometry reconstructed by the noncommuta-
tive observer. Furthermore, the noncommutative features of a worldline align with the
uncertainties attributed to it by the observer. A NCRF also provides a characterisa-
tion of timelike worldlines through their invariant properties, and allows the definition
of a differential calculus and, subsequently, of a noncommutative metric.

Therefore, (NC-CH), if introduced, provides chronogeometric meaning by estab-
lishing a link between compatible mathematical structures and interpretations. This
link is expressed by a conditional statement. κ-Minkowski algebraic theory possesses
both the formal and interpretative tools required to satisfy this principle. In other
words, it is compatible with the introduction of (NC-CH) in order to endow the theory
of chronogeometric meaning.

An objection might be raised concerning the definition of |γ|, which denotes an
integral of the metric and is interpreted, according to (NC-GR), as the proper time
measured along γ. As discussed in Section 2.2, in relativistic theories this relies on the
application of the clock hypothesis to Minkowski spacetime. In κ-Minkowski, instead,
the metric need not be identical to that of Minkowski spacetime: it is in fact non-
unique. Therefore, one might argue that |γ| lacks meaning without an explicitly defined
metric field.

In response, I emphasise that a suitable differential calculus can be chosen, and
with it, a metric field that defines proper time for timelike worldlines. A good choice
of calculus must be covariant, ensuring that the resulting noncommutative metric
remains compatible with both the underlying geometry and the worldline’s intrinsic
fuzziness. Put simply, the computation of |γ| based on a quantum metric yields results
compatible with the observer-relative indeterminacy of γ.
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A second objection might assert that duration cannot be represented due to the
lack of a proper clock in the noncommutative context. The cause would be the minimal
uncertainty that affects duration, as well as position, measurements. Yet, by definition,
a noncommutative observer carries a clock structure that is special relativistic at the
origin of the NCRF. Its dynamics can be extended across the NCRF via an active κ-
Poincaré transformation, incorporating quantum effects into the clock’s operations. In
this sense, the complications posed by NCG are not greater than those encountered
in SR.

Finally, one might object that even if noncommutative observers were equipped
with appropriate clocks, representational chronogeometry alone would still be insuf-
ficient for the NCST theory to be genuinely chronogeometric. In other words, an
opponent might insist that, for the NCST theory to be properly chronogeometric and
spatiotemporal, one must also specify a convention for synchronising clocks between
NCRFs, thereby requiring full operational chronogeometricity.

In this regard, two points deserve emphasis. First, representational chronogeome-
try, as presented here, is not incompatible with operational chronogeometry. Rather
than standing in opposition, the former constitutes a weaker or more preliminary
condition relative to the latter. Consequently, the identification of a chronogeometric
model representation does not preclude the possibility of developing a richer, opera-
tional interpretation of the NCST theory, despite being a demanding task (see Section
2.1).

Second, following Fletcher [10, 9], I consider the formulation of such operational
protocols to be a distinct endeavour from the interpretation of the theory’s concrete
models. Specifically, the former requires making explicit an operational interpreta-
tion of the NCST theory, which need not coincide with its physical interpretation.
Here, I understand a physical interpretation of the theory as any ascription of model
representational principles that enables a coherent understanding (both informal
and technical) of the theory’s content; that is, how the theory describes its target
domain. Any proposed operational implementation goes beyond the minimal criteria
of physical interpretability and will necessarily be, at best, controversial, owing to the
inaccessibility of the relevant domain of applicability.

For these reasons, while I simpathise with the concerns raised by proponents
of operational chronogeometry, I maintain that the issue they highlight is, strictly
speaking, distinct from the one addressed in this paper. Nevertheless, I concede that
candidate operational implementations, albeit controversial, may be proposed. One
can reasonably expect these implementations to diverge from standard relativistic pro-
tocols, due to the need to incorporate characteristic noncommutative effects within
the proposed synchronisation procedures.36

36To illustrate, one possibility for an operational implementation involves shifting the focus from rulers
and clocks to measurements of energy and momentum. The latter quantities are arguably more appropriate
for probing Planckian and sub-Planckian regimes. Moreover, standard chronogeometric approaches implic-
itly assume that measurements with rulers and clocks are reliable because such instruments are causally
isolated from their surroundings: a premise ultimately supported by the particular geometry of the asso-
ciated momentum space. NCG, in contrast, aligns naturally with an energy-momentum-based approach to
operational chronogeometry, yet challenges standard constructions in specific contexts: see, for example,
discussions of momentum space curvature and relative locality in [53]. A detailed examination of these
issues is left to future work.
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In conclusion, κ-Minkowski spacetime, equipped with NCRFs, is sufficient to sat-
urate (NC-CH): the theory possesses the formal and interpretational resources needed
to satisfy it. The introduction of NCRFs imposes no privileged structure: all are related
by κ-Poincaré transformations. Each NCRF reconstructs its own model of the NCST
geometry, constrained only by the requirement of mutual compatibility with others.

7 Conclusion

Chronogeometry is frequently discussed as a necessary condition for a mathemati-
cal geometry to be considered physical. Standard definitions are typically formulated
within the framework of classical relativistic theories and identify core criteria that
a theory should satisfy to be deemed chronogeometric. However, these definitions
often exclude many theories of QG from fulfilling the specified conditions. As a result,
such theories are said to exhibit disappearance of spacetime due to their lack of
chronogeometricity.

NCST theories may fall into this category, given the complicated relationship
between operational assumptions and the absence of localisability of events within
arbitrarily small regions. As such, they raise the challenge of indicating an appropri-
ate definition of chronogeometry that, if satisfied by these theories, would guarantee
the spatiotemporality of the postulated noncommutative structures.

In this paper, I argued that noncommutativity, in general, does not constitute a
direct obstacle to chronogeometry: the two are not incompatible. This is illustrated
through the example of κ-Minkowski spacetime. I argued that κ-Minkowski serves as
a successful case of noncommutative geometric theory that remains compatible with
appropriate chronogeometric conditions. This implies that, with the right interpreta-
tion of its mathematical structure, the geometry can indeed be chronogeometric and
thus capable of representing the intended physical target, namely, physics at or near
the Planck scale.

According to strict algebraicism, the theory of κ-Minkowski spacetime is identified
with an abstract algebra intended to describe the underlying NCST geometry. The
foundamental algebraic structure is provided by the associated quantum group, κ-
Poincaré. The NCST algebra emerges as a coset of the κ-Poincaré algebra and can
be realised as a concrete NCST model via an appropriate algebraic representation.
This relationship underpins the interpretation of a quantum group as encoding the
symmetries of a NCST structure.

However, strict algebraicism may raise concerns regarding the chronogeometric-
ity of these concrete models. Accordingly, it becomes necessary to specify a set of
conditions that a theory (especially an algebraic one) must satisfy in order to sup-
port representational chronogeometricity. While QG theories may be incompatible
with operational chronogeometricity, they may still satisfy representational principles,
provided that the models can support the interpretation of geometrical quantities as
physically meaningful spatiotemporal structures.

To this end, I argued that a viable interpretation of the κ-Minkowski algebra
requires the introduction of new structures within the designated representational
system. These structures, termed noncommutative reference frames, are inspired by
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the literature on quantum reference frames. They enable an interpretation of both
κ-Minkowski and κ-Poincaré algebras: the former describes the space of events from
the perspective of a noncommutative observer, while the latter encodes the trans-
formations between distinct NCRFs. It is demonstrated that NCRFs accommodate
the uncertainties in event localisation induced by noncommutativity, as well as the
“fuzziness” of worldlines in κ-Minkowski spacetime. Moreover, the delineated frame-
work outlines a concrete interpretation for κ-Minkowski spacetime theories, as well as
similar NCST theories.

Finally, I argued that concrete models of κ-Minkowski spacetime can indeed sat-
urate representational chronogeometric principles when equipped with the NCRF
interpretation. More generally, a QG theory can be interpreted as chronogeometric
only if the following three conditions are met: (i) it possesses an appropriate mathe-
matical geometry; (ii) it includes a representational system that accounts for observers
or experimental contexts; (iii) the structures of the representational system exhibit
behaviour consistent with the predictions derived from the mathematical geometry. In
the κ-Minkowski case, chronogeometricity is illustrated by the satisfaction of a stan-
dard representational principle for flat NCST theories: a noncommutative analogue to
the clock hypothesis.

In conclusion, while the key aim of this paper has been to pave the way to the
exploration of chronogeometry in algebraic theories of QG, the specific case of NCST
also opens new issues. First, the identification of suitable rods and clocks, or structures
that can represent distances and durations within the concrete models of the theory,
would corroborate the argument for chronogeometry not only on a representational
basis, but also on operationalist grounds; nevertheless, it proves insufficient unless one
can demonstrate that said rods and clocks are reliable. A suitable notion of reliability
would amount to their causal isolation from neighbouring fields: the result of any such
measurement cannot be affected by spacelike separated measurements.

Second, SR is supposed to be recovered in the commutative limit of any NCST
theory, that is, when the noncommutative effects are neglected. The chronogeometric-
ity of both theories at different energy scales requires us to tell a story about how the
two chronogeometric structures connect in the limit. Specifically, a deep philosophical
question can be raised as to how the reducibility of the NCST theory to SR in the com-
mutative limit can inform the chronogeometric interpretation of the noncommutative
structures, based on their relativistic counterparts.

Third, the full extent of the analogy between NCRFs and QRFs remains unex-
plored. While NCRFs exhibit non-classical features arising from their underlying
noncommutative structures, it is still unclear whether they can also exhibit the full
spectrum of quantum behaviours captured by QRFs, such as superposition and entan-
glement. In this regard, the analogy serves as a valuable heuristic tool for guiding
further investigations into NCRFs, but it is equally important to delineate its precise
limits.

Finally, a pivotal step for establishing the chronogeometricity of NCST theories is
to assess the scope of the interpretation presented in this paper. While κ-Minkowski
is a fortuitous case, nothing proves that other significant NCST theories can saturate
relevant chronogeometric principles. This is especially interesting when considering
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theories of curved NCST. However, the examination of these proposals is currently
hindered by the difficulty of building an entire field theory on curved NCST. This
theory is still in the making, and thus any analysis of its chronogeometricity would
ultimately be premature.
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