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Abstract

I discuss the distinction between extrinsic and intrinsic approaches to
reformulating a theory with symmetries, and offer an account of the spe-
cial value of intrinsic formalisms, drawing on a distinction between which
mathematical expressions are meaningful within an extrinsic formalism
and which are not.

1 Introduction

Caspar Jacobs (2022) has recently considered afresh the motivation vs. inter-
pretation debate about symmetries (originally due to Møller-Nielsen (2017)).
Very roughly, the interpretationalist says that it is legitimate ab initio to in-
terpret symmetry-related models (SRMs) of a theory as representing the same
physical state of affairs, even in the absence of a metaphysically perspicuous
characterisation of their common ontology, whereas the motivationalist denies
this.1 Jacobs takes up the question of what it means for a characterisation of the
common ontology of SRMs to be ‘metaphysically perspicuous.’ He argues that
this is captured by the demand for an intrinsic formalism, in the sense of Field
(2016).2 By contrast, extrinsic formalisms—in which the invariant content of
SRMs is captured using structures which do not directly represent objects in the
theory’s ontology, e.g. by using equivalence classes of symmetry-variant quanti-
ties,3 or more generally, by quotienting the theory’s space of models under the
symmetry group in question4—do not provide a similarly metaphysically per-
spicuous characterisation of a theory’s ontological commitments. Instead, they

∗Faculty of Philosophy, University of Oxford. eleanor.march@philosophy.ox.ac.uk
1. Though in light of recent work by Luc (2023), these positions are probably best under-

stood as two extremes of a more-nuanced spectrum of motivationalist vs. interpretationalist
views.

2. Note that some motivationalists may disagree here, i.e. on whether an intrinsic formalism
is necessary to give a metaphysically perspicuous characterisation of the common ontology of
SRMs. In particular, I would expect this to be the case for e.g. motivationalists who are fans
of the Kleinian approach to geometry.

3. Following Wallace (2019) and Jacobs (2021b), I take using equivalence classes to subsume
coordinate-based approaches.

4. Recall that given a space X on which a group G acts (from the left), one defines the
quotient space X/G as the space of orbits of G, i.e. the space of equivalence classes [x], x ∈ [x]
iff gx ∈ [x] for all g ∈ G, which (providing the group action of G on X is suitably well-behaved,
e.g. perhaps it is faithful) inherits the same kind of structure as the original space (i.e. if X is
a smooth manifold, or Hilbert space, or whatever, then so is X/G).
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only provide an effective decision procedure for determining whether the theory
is committed to some piece of structure or other.

Or this is the story Jacobs tells. My aim in this essay will be to tell a rather
different story about intrinsic formalisms, and why they are valuable. I have two
motivations for this, neither of which I take to be dispositive, but each of which,
to my mind at least, suggests the need for such a story. The first comes from
a recent episode in the philosophy of spacetime physics literature, concerning
how Maxwellian spacetime—which is supposed to be equipped with a standard
of rotation, but not a standard of absolute acceleration—should best be charac-
terized. Earman (1989) originally defined the rotation standard of Maxwellian
spacetime extrinsically, as an equivalence class [∇] of rotationally equivalent
flat derivative operators, and Dewar (2018) also adopted this definition when
writing down dynamics for the theory of Newtonian gravitation on Maxwellian
spacetime (Maxwell gravitation). A number of authors (Weatherall 2018; Wal-
lace 2020, 2019) then voiced concerns about the lack of an intrinsic formalism
for Maxwell gravitation, which resulted in the development of an intrinsic char-
acterization of the rotation standard (Weatherall 2018), and was then used to
express the dynamics of Maxwell gravitation (Chen 2023; March 2023).

In light of Jacobs’ discussion, one might expect the worries raised in this liter-
ature about Earman’s definition of the rotation standard to concern, primarily,
the lack of a ‘metaphysically perspicuous’ characterization of the ontology of
Maxwellian spacetime. And so it is striking that they do not. Instead, what
one finds are worries about the “mathematical impropriety” (Chen 2023, 23) of
expressing the dynamics of Maxwell gravitation in terms of an arbitrary repre-
sentative of this equivalence class; worries that the “minimalism” of Maxwellian
spacetime ought to apply to the language used to express its dynamics as well
as the structure in its models (22); worries about how to interpret interme-
diate terms in calculations on Maxwellian spacetime which do depend on the
choice of representative of this equivalence class—that “one would like to be
able to reason about quantities in Maxwellian spacetime without needing to
introduce further structure” (Weatherall 2018, 34); and worries that the “awk-
wardness” of characterizing Maxwellian spacetime in terms of equivalence classes
obscures the similarities between the dynamics of Maxwell gravitiation and those
of Newton–Cartan theory (Wallace 2020, 28). Of course, these authors also dis-
cuss something like Jacobs’ concern—e.g. Weatherall (2018), who suggests that
using equivalence classes “obscures the intrinsic geometry of Maxwellian space-
time” (35) and “makes reference to structure that one does not attribute to
spacetime” (34). But at the very least one might think, in light of this, that
there is something missing from Jacobs’ story about why intrinsic formalisms
are valuable.

The second motivation begins from a somewhat different place. At a first
pass, the concern is that it is not really clear that the Fieldian notion of intrin-
sicality is what is at issue in Jacobs’ argument that one cannot ‘read off’ the
ontology of a theory whose models are defined in terms of equivalence classes of
symmetry-variant quantities. Here is just one reason to be worried about this.
Jacobs (2022, 2) initially defines an intrinsic formalism as one in which the ‘com-
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ponents’ of the theory’s models “directly correspond to its metaphysical posits.”
Later, he defines an intrinsic formalism as one “which is formulated in terms
of mathematical entities that ‘directly’ represent physical fields” (Jacobs 2022,
5). But this is ambiguous, on two fronts.5 First, it is ambiguous whether the
criterion of ‘directly representing the theory’s metaphysical posits’ is supposed
to apply just at the level of objects in a theory’s models, or also at the level of
the objects in the dynamical equations used to pick out that class of models.
Secondly, and relatedly, it is ambiguous what the objects, or ‘components’, of
a theory’s models are supposed to be—in particular, whether an equivalence
class is supposed to count as a single ‘component’ or a (structured) collection
thereof. This second ambiguity matters because of the first. In particular, if
an equivalence class counts as a single component of a theory’s models, and the
criterion of ‘directly representing the theory’s metaphysical posits’ is supposed
to apply just at the level of objects in a theory’s models, then it does not ob-
viously follow that a theory whose models are defined in terms of equivalence
classes of symmetry-variant quantities counts as extrinsic, on Jacobs’ definition.
That is, why not say that the equivalence class itself ‘directly’ represents one of
the theory’s metaphysical posits?

At this point, one might ask: so what? For even granting that Jacobs’ defi-
nition is ambiguous in these ways, a charitable reconstruction of Jacobs would
have it that he either takes an equivalence class to be a collection of ‘compo-
nents’ of the models of a theory, or that the criterion of ‘directly representing
the theory’s metaphysical posits’ is supposed to apply also at the level of the
objects in the theory’s dynamical equations.6 I agree. But this raises a deeper
concern. To begin with, to suppose that anything significant—such as whether
a theory counts as intrinsic or extrinsic—should turn on whether an equivalence
class counts as a single ‘component’ of a theory’s models or a collection thereof
strikes me as a mistake. Indeed, Jacobs (rightly, to my mind) does not mention
this question. So suppose we bracket that, and say that what is important for
intrinsicality is that the criterion of ‘directly representing the theory’s meta-
physical posits’ applies at the level of the objects in the theory’s dynamical
equations.7 (This, I take it, would also be more in accordance with Field’s char-
acterization of intrinsicality as the requirement that all the terms in a theory
refer to physical quantities.) In that case, one might think that the problem

5. One might also worry that the distinction between what it is for a piece of mathematical
structure to represent a piece of physical structure ‘directly’ vs. ‘indirectly’ is not sufficiently
clear. I am sympathetic to this worry, but won’t discuss it here.

6. I am setting aside, here, worries about how and whether this should exclude, e.g. numer-
ical structure like the number 5, or mathematical operators like addition, etc.—which I take
to partly explain Jacobs’ decision to focus on objects in the models of a theory, rather than
its dynamics, cf. (Jacobs 2022, 14). I will return to this in §2.

7. To preface the arguments of the next section somewhat, I do not think this strategy
works particularly well either, and so will ultimately propose my own characterization of the
distinction Jacobs has in mind. My point here is just that if one wants to do Jacobs exegesis,
there is a mismatch between the kind of structures used to draw the intrinsic vs. extrinsic
distinction, on the most charitable reading of Jacobs, and the kind of structures at issue
in Jacobs’ discussion of why that distinction is salient for the motivation vs. interpretation
debate.
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with formulating a theory extrinsically would itself have something to do with
the dynamical equations of such theories—a point which is also suggested by
my discussion of the first motivation above. But the dynamical equations of ex-
trinsically formulated theories do not feature at all in Jacobs’ discussion. Again,
one is left with the sense that there is something more to be said.

Of course, these are just motivations for the story I am going to tell about
why intrinsic formalisms are valuable, not justifications for it, nor outright crit-
icisms of Jacobs’ position (though I will raise some such criticisms in §3). My
approach will be to draw out a contrast between the kinds of mathematical ex-
pressions that may be interpreted as physically meaningful in an intrinsic vs. an
extrinsic formalism: in an intrinsic, but not an extrinsic formalism, are facts
about whether some mathematical expression may be interpreted as physically
meaningful essentially trivial—decidable by inspection, as a simple matter of
the mathematical operations used to construct it themselves being well-defined.
This means that intrinsic formalisms are better suited for getting a handle on
what a theory says about the world, for two reasons. First, because to find out
which equations may be interpreted as saying something physically meaning-
ful within the theory, we need only take a cursory look at the form of those
equations. Second, because one can more easily ‘read off’ what those (physi-
cally meaningful) equations say about the world—what relationships between
physical quantities they express—without having to first identify which math-
ematical sub-expressions in those equations may be interpreted as representing
physical quantities. Along the way, I will make several points which may be of
independent philosophical interest, concerning the intrinsic vs. extrinsic distinc-
tion and its relationship to the reduction vs. internal sophistication vs. external
sophistication distinction, and the kind of mathematical expressions which may
be interpreted as physically meaningful within an extrinsic formalism.

In a little more detail, then, the structure of this essay will be as follows.
First, in §2, I introduce the distinction between intrinsic and extrinsic formalisms
(in §2.1), and explain how this fits together with the distinction between re-
duction, internal sophistication, and external sophistication (in §2.2). In §3,
I discuss Jacobs’ arguments that extrinsic formalisms are not metaphysically
perspicuous, and argue that most of them do not succeed. This takes us to §4,
where I propose my alternative story about the special value of intrinsic for-
malisms, drawing on the idea that extrinsic formalisms come with a restriction
on what mathematical expressions may be interpreted as physically meaningful.
This will allow me to say why it is that intrinsic formalisms are more perspicuous
than extrinsic formalisms. §5 concludes.
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2 Prelude: what is an intrinsic formalism, any-
way?

2.1 Intrinsic vs. extrinsic

I will begin by discussing the intrinsic vs. extrinsic distinction. As noted in §1,
Jacobs (2022, 2) defines an intrinsic formalism as one in which the ‘components’
of the theory’s models “directly correspond to its metaphysical posits,” or one
“which is formulated in terms of mathematical entities that ‘directly’ represent
physical fields” (5). But, again as noted in §1, this is ambiguous—both because
it is not clear what counts as a single ‘component’ of a theory’s models, and
because it is not clear whether the criterion of ‘directly representing the theory’s
metaphysical posits’ is supposed to apply just at the level of objects in a theory’s
models, or also at the level of the objects in the dynamical equations used to
pick out that class of models.

Prima facie, one might think that addressing these worries would involve
precisifying Jacobs’ definition of an intrinsic formalism along one of these lines.
I do not think this strategy is particularly attractive, for two reasons. First, sup-
pose that the criterion of ‘directly representing the theory’s metaphysical posits’
is supposed to apply just at the level of objects in a theory’s models. Then,
as mentioned in the introduction, whether or not e.g. Earman’s Maxwellian
spacetime—which, I take it, is supposed to be obviously extrinsic—counts as an
extrinsic formalism on Jacobs’ definition will depend on whether an equivalence
class counts as a single ‘component’ of a theory’s models or a (structured) collec-
tion thereof. But this last issue strikes me as mainly a terminological one, and
so it would seem undesirable that something substantive, like the intrinsicality
or otherwise of a theory, should turn on it.

Alternatively, suppose that the criterion of ‘directly representing the theory’s
metaphysical posits’ is supposed to apply at the level of objects in the theory’s
dynamical equations. In that case, one might worry about how and whether this
is supposed to apply to numerical structure in the dynamical equations of a the-
ory, like the number 5, which does not directly represent any physical quantity
(though if one is a mathematical platonist, perhaps it does count as a ‘meta-
physical posit’ of the theory). Now Jacobs (2022, 14) is clear that, unlike Field,
he does not want the appeal to numerical structure like the number 5 to auto-
matically classify a theory as extrinsic. But it is not immediately obvious how
to spell this out in a general, non-question begging way, in terms of a restriction
on which kinds of objects in the dynamical equations of a theory must directly
represent the theory’s metaphysical posits. At a more fundamental level, one
might worry that even if Jacobs would be happy to countenance a commitment
to mathematical platonism to get his definition off the ground, this seems to be
something of a distraction. In particular, the various authors involved in the
discussions of intrinsic vs. extrinsic formulations of Maxwell gravitation seem to
have been able to carry out these discussions without needing to mention (much
less make a commitment on) the nominalism vs. platonism debate (and likewise
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for Jacobs, in much of his discussion of the problems he sees with the extrinsic
approach).

Let’s take a step back. What kind of theories does Jacobs have in mind,
in his discussion of the extrinsic approach? Jacobs (2022, 7–8, fn. 11) gives
a clear statement of what these theories are like: they are the kind of theo-
ries which are obtained by ‘equivocating between’ (in some sense) symmetry-
variant structures in the models of some other theory—either by taking a for-
mal quotient of the space of models under the symmetry group in question,
or by ‘adding arrows’ between (non-isomorphic) SRMs of a theory understood
category-theoretically.8 The first case, in some detail, proceeds as follows. Re-
call that in general, a theory T has kinematically possible models (KPMs) of
the form ⟨V1,V2, ..., Q1, Q2, ...⟩, where the Vi are a collection of (structured)
value spaces with domains Vi, and the Qi are a collection of quantities (defined
as functions from some Vi into some Vj). The dynamically possible models
(DPMs) of T are those KPMs which satisfy the theory’s equations of motion.
A dynamical symmetry of T is a bijection on the KPMs induced by a collection
of bijections χi : Vi → Vi which preserves the space of DPMs.

Let T be a theory, as characterized above, and suppose that V = ⟨V, ϕ⟩ is the
domain (or codomain) for just one quantity Q (the generalization to the case of
multiple ϕi or Qi is straightforward), and consider a group of G of dynamical
symmetries Q→ χ∗Q, χ : V → V . Then

1. We can construct a new space of models ⟨V, ϕ, ..., [Q], ...⟩, Q ∈ [Q] iff
χ∗Q ∈ Q for all χ ∈ G. Pairs of SRMs ⟨V, ϕ, ..., Q, ...⟩, ⟨V, ϕ, ..., χ∗Q, ...⟩
now correspond to the same model ⟨V, ϕ, ..., [Q], ...⟩.

2. When χ∗ϕ ̸= ϕ for some χ ∈ G, we can also construct a new space of
models ⟨V, [ϕ], ..., Q, ...⟩, ϕ ∈ [ϕ] iff χ∗ϕ ∈ [ϕ] for all χ ∈ G. Pairs of SRMs
⟨V, ϕ, ..., Q, ...⟩, ⟨V, ϕ, ..., χ∗Q, ...⟩ now correspond to isomorphic pairs of
models ⟨V, [ϕ], ..., Q, ...⟩, ⟨V, [ϕ], ..., χ∗Q, ...⟩.

An example of 1 is the theory of electromagnetism on Minkowski spacetime,
with models ⟨M,ηab, [Aa], J

a⟩ where the Aa ∈ [Aa] are all related by closed
one-form shifts (i.e. Weatherall’s (2016) EM′

2). An example of 2 is Dewar’s
(2018) Maxwell gravitation, which has models ⟨M, ta, h

ab, [∇], T ab⟩ where [∇] is
an equivalence class of rotationally equivalent flat derivative operators.9

For the second case, again let T be a theory, as characterized above. On
the category-theoretic approach, one begins by associating T with a category
T, whose objects are the models of T , and whose arrows correspond to rela-
tionships of physical equivalence between the models of T (e.g. isomorphisms,
or symmetry transformations, etc.).10

8. Another option along these lines, which I lack the space to discuss here, would be using
‘stacky’ constructions—on which, see Teh (2024). A thorough treatment of stacks would take
us beyond the scope of this essay, so I will just note that one should feel free to add stacks as
a fourth option to my characterization of extrinsic formalisms below.

9. Recall that two flat derivative operators ∇,∇′ on a spacetime ⟨M, ta, hab⟩ are said to be
rotationally equivalent iff for all unit timelike vector fields ξa on M , ∇[aξb] = 0 iff ∇′[aξb] = 0.
10. For general background on the category-theoretic approach, see Weatherall (2016).
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Note that I am not claiming, here, that on this approach, T should be
identified with this category of models T, nor (relatedly) that the category
structure of T should be thought of as capturing all there is to the structure
of T qua theory (and hence that the objects of T should be thought of as
unstructured “black boxes”, as it were). I take the most minimal version of
the category-theoretic approach to require only that for some purposes, some
aspects of the structure of a theory can be usefully represented by associating
it with a category of models, cf. Weatherall (2021).11 In particular, and most
saliently for our purposes here, the point is that associating T with a category
of models T in this way provides an alternative way of formalizing the idea
that (non-isomorphic) SRMs of T are to be treated ‘as if’ they were isomorphic,
for the purposes of understanding the structure of the theory, without taking
formal equivalence classes of structures in the models of T . Namely, let G be a
group of dynamical symmetries of T , and suppose that

3. Elements of G act as (category-theoretic) isomorphisms in T, but are not
(all) isomorphisms of the models of T .

An example of 3 is the theory which Weatherall (2016) calls EM2, whose objects
are models of electromagnetism on Minkowski spacetime ⟨M,ηab, Aa, J

a⟩, and
whose arrows are pairs consisting of a diffeomorphism plus a closed one-form
shift.

At this point, my suggestion is that we might as well just go ahead and
define extrinsic formalisms as all and only those formalisms which are cases
of 1–3, and intrinsic formalisms as all the rest.12 First, because this precisely
captures the class of theories which Jacobs takes to exemplify the extrinsic ap-
proach. Second, because it fits very closely with Jacobs’ characterization of the
intrinsic approach as requiring that one “lay down a set of relations, functions
and operators which explicitly represent the world’s physical structure” (Jacobs
2022, 13, emphasis mine)—i.e. essentially as implementing a ban on implicit
definition in terms of symmetry-variant structures. Third, because it is a pre-
cise definition which avoids the aforementioned worries about ‘components’ of
a theory’s models, structures in the models of a theory vs. its dynamical equa-
tions, numerical structure, etc. (Anyone who is unhappy with my continuing to
use Field’s ‘intrinsic’ vs. ‘extrinsic’ terminology for this distinction should feel
free to mentally replace the terms ‘intrinsic’ and ‘extrinsic’ with ‘intrinsic*’ and
‘extrinsic*’ going forward.)

My fourth reason for adopting this definition is that this way of articulating
the intrinsic vs. extrinsic distinction also captures something like the idea that

11. Though note that this way of thinking about theories as categories does not provide much
(if any) prima facie justification for thinking e.g. that categorical equivalence is sufficient for
theoretical equivalence.
12. Does this definition of an extrinsic formalism make whether a theory counts as extrinsic

relative to a predecessor theory on which the construction is based? I think not. One can
make a judgment as to whether the models of a theory contain equivalence classes of structures
which are variant under the dynamical symmetries of the theory, or as to whether the category
of models for a theory contains arrows which are not isomorphisms of the theory’s models,
without having a ‘recovery theorem’ to hand relating that theory to some predecessor theory.
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in an extrinsic formalism, not all the terms in the dynamical equations of the
theory need ‘directly represent the theory’s metaphysical posits’—but whilst
avoiding the worries about e.g. numerical structure raised above. This will take
somewhat more work to articulate. As a way in, I want to begin with the
following question: what kind of equations is it sensible to write down, when
working with an extrinsic formalism? In particular: is it legitimate for these
equations to make use of objects in the equivalence classes of symmetry-variant
structures (or in the case of 3, structures in the models of T which are variant
under the isomorphisms of T)?

The answer which I want to suggest, and which I think captures the way in
which extrinsic formalisms have previously been thought of, is ‘yes’—so long as
satisfaction of these equations is independent of the choice of representative of
the equivalence class. For example, when Earman defined Maxwellian spacetime
as a structure ⟨M, ta, h

ab, [∇]⟩, he wrote:

Although questions about the acceleration of a body are not in gen-
eral meaningful in this setting, it is, of course, meaningful to ask
about the state of rotation of a fluid or an extended body. (Earman
1989, 32)

And when Dewar (2018) wrote down dynamics for Maxwell gravitation on Ear-
man’s Maxwellian spacetime, he went to some trouble to show that satisfaction
of these equations was independent of the choice of ∇ ∈ [∇]. Or consider: it
is often claimed that the only possible field equations for the theory of scalar
electrodynamics with models ⟨M,ηab, [⟨Aa, ψ⟩]⟩ are ones which are U(1) gauge
invariant.13

So extrinsic formalisms don’t just equivocate between symmetry-variant
structures in defining the models of the theory; they also restrict the space
of mathematical expressions involving these structures which can be ‘meaning-
fully’ written down to ones which are invariant under the relevant class of sym-
metry transformations. Conversely, mathematical expressions which are not so
invariant—like the acceleration of a fluid relative to some ∇ ∈ [∇] in Maxwellian
spacetime—are not to be regarded as ‘meaningful’. One way to spell this out is
in terms of a supervaluationist semantics, in which the supervaluation is carried
out over all objects in the relevant equivalence classes (see e.g. Dewar (2019)
and Jacobs (2021a)), or in the case of the category-theoretic approach 3, over
all objects in the isomorphism equivalence classes of T (where ‘isomorphism’,
here, means isomorphism under the arrows in T).

Why should mathematical expressions which are not invariant under these
symmetry transformations not be regarded as ‘meaningful’, in an extrinsic for-
malism? In general, the answer to this question will depend on the kind of
extrinsic formalism at issue. Consider first cases 1 and 2, in which the mod-
els of T are characterised in terms of equivalence classes of symmetry-variant
quantities [ϕ]. Then what it is for the models of T to have this kind of structure
is just is to say: facts about the models of T can be represented equally (but

13. cf. also Mundy (1986).
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redundantly) by any one of the ϕ ∈ [ϕ]. Since the models of T are supposed
to represent physical states of affairs, it follows that mathematical expressions
which are not independent of the choice of ϕ ∈ [ϕ] cannot be interpreted as
saying something physically meaningful within T (since they cannot sensibly
be thought of as about the models of T , i.e. about physical states of affairs).14

Conversely, insofar as it does make sense to talk about physical facts or quanti-
ties which are not so independent within the formalism of T , T simply fails to
have the kind of structure we have defined it to have.15 It is for this reason that
mathematical expressions which are not independent of the choice of ϕ ∈ [ϕ] are
physically meaningless.

The situation is a little different in case 3—where one does not formulate
the models of T in terms of equivalence classes of symmetry-variant quantities,
but rather imposes this structure at the level of the arrows in its category of
models of T. In some ways, this makes the situation simpler. Since the arrows
of T correspond to relationships of physical equivalence between the models of
T , any equation which is not independent of the choice of representative of the
isomorphism equivalence classes of T expresses a condition which distinguishes
between models of T which are to be regarded as physically equivalent, and
so cannot be interpreted as saying something physically meaningful. A simi-
lar point goes for other mathematical expressions (than equations). That is,
mathematical expressions which are not invariant (up to isomorphism) across
the isomorphism equivalence classes of T express quantities which vary across
models of T which are to be regarded as physically equivalent, and so cannot
be interpreted as representing physical quantities.

That said, I do want to point out that just restricting to equations which
are independent of the choice of representative of the equivalence class can’t
quite be the full story about which equations are meaningful in an extrinsic
formalism, since it too easily falls prey to what one might think of as ‘spurious’
invariances. This is nicely illustrated with the example of Earman’s Maxwellian
spacetime. Since all the ∇ ∈ [∇] are flat, the equation Ra

bcd = 0 is invariant
between objects in the equivalence class, and will come out as being true. But
this is, intuitively speaking, the wrong result: Maxwellian spacetime lacks full
affine structure, and so it is simply not sensible to speak of it as flat or non-
flat (though one can make sense of a weaker notion of rotational flatness, see
March (2024)). Probably the right thing to do in this case is to note that
one can also represent the rotation standard with a non-flat connection (any
connection satisfying Rab

cd = 0 will do), so that the equation Ra
bcd = 0 is not

invariant between all the connections which can be used to represent the rotation
standard. But it is not straightforward how to spell this out in general, at least

14. Compare Lewis (1986): “A proposition [read: equation] is about a subject matter [...] if
and only if that proposition holds at both or neither of any two worlds [read: mathematical
structures] that match perfectly with respect to that subject matter.”
15. I take this to be in the spirit of Belot’s (2000) point that writing down equations which

require for their formulation structure which the theory does not posit is “arrant knavery”—
i.e. certainly not sensible and maybe even incoherent; cf. also Wallace (2019) on coordinate-
based approaches and Myrvold (2019) on Earman’s SP2. I will discuss Earman’s principles
more in §3.
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without some intrinsic characterisation of the structure of interest already to
hand.16 In any case, I take the above arguments to show that being independent
of the choice of representative of the equivalence class is a plausible minimal
restriction on which equations are physically meaningful within an extrinsic
formalism—so going ahead, we can adopt this restriction along with the proviso
that it may need to be tightened up later.

2.2 Reduction vs. sophistication

I will now move on to discuss the distinction between reduction, internal so-
phistication, and external sophistication (see e.g. Dewar (2019) and Martens
and Read (2021) for clear expositions of these views), and how this relates to
the distinction between intrinsic and extrinsic formalisms. Reduction says that
faced with SRMs of a theory T , one should reformulate T so that SRMs all
map to the same model of the reduced theory. Importantly, this is the case
even if the SRMs in question are isomorphic. By contrast, internal and external
sophistication both say that if SRMs of T are isomorphic, one may interpret
them as physically equivalent via appeal to anti-haecceitism.17 Where these
two approaches differ is on their treatment of non-isomorphic SRMs. Accord-
ing to internal sophistication, one must first reformulate T so that SRMs map
to isomorphic models of the sophisticated theory before one can appeal to anti-
haecceitism to say that these models represent the same physical state of affairs,
whereas according to external sophistication, one can ‘stipulate’ that SRMs are
to ‘count’ as isomorphic, without reformulating the theory. External sophistica-
tion is thus very naturally articulated from the theories-as-categories standpoint,
in which one can understand stipulating isomorphisms between non-isomorphic
models as meaning that one is to add arrows between non-isomorphic models
into one’s category of models (e.g. as described in point 3 of §2.1).18

For what it’s worth, I also think that external sophistication should be un-
derstood category-theoretically, if it is not either to be altogether mysterious
or to collapse into a variant of reduction or internal sophistication (though one
might also take this to mean that the distinction between external sophisti-
cation and internal sophistication or reduction was never the relevant one to
start off with).19 For example, Dewar characterizes external sophistication as

16. The other obvious thing to do here is to point out that the equation Ra
bcd = 0 coming

out as true is not quite as bad as it sounds, since in Maxwellian spacetime, the left hand side
of this equation lacks an interpretation in terms of parallel transport of timelike vectors along
arbitrary (spacelike or timelike) curves. On this kind of view, the equation Ra

bcd = 0 might
be true in Maxwellian spacetime, but it would not follow from this that Maxwellian spacetime
is ‘flat’ in the usual sense of the word (flatness would require in addition e.g. a standard of
parallel transport for timelike vectors along timelike curves). I think this kind of response can
also probably be made to work, but again, it is not completely obvious how to spell this out
in general.
17. Or its analogue for quantities, anti-quidditism—though the difference does not really

matter, since anti-quidditism about (the determinate magnitudes of) some physical quantity
amounts to anti-haecceitism about points in the value space of that quantity.
18. cf. Dewar (2019, 2022)
19. This is how I am sometimes inclined to read Jacobs (2021b), who instead chooses to
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“declaring, by fiat, that the symmetry transformations are now going to ‘count’
as isomorphisms” (Dewar 2019, 502–3). But as Jacobs (2022) notes, this way
of putting it is “somewhat puzzling” (Martens and Read (2021, 340) go fur-
ther, saying that “[to] stipulate that qualitatively distinct, i.e. non-isomorphic
models [...] are nevertheless isomorphic reads prima facie as nothing more than
a flat-out contradiction”). It is in this vein that Jacobs (2022, 2021b) offers
his own take on external sophistication, as meaning that the invariant content
of SRMs should be captured by taking equivalence classes of symmetry-variant
structures, i.e. via one of the constructions 1 or 2 mentioned in §2.1. But if
this is what external sophistication is really about, then it becomes clear that
it is really a form of reduction or internal sophistication, since it involves math-
ematically reformulating the models of the theory in such a way that SRMs
will end up being either identical or isomorphic. Conversely, if we take Jacobs
to mean that external sophistication should be understood as a commitment
to characterizing structures in the models of a theory via their isomorphisms,
but without reformulating the theory so that SRMs are in fact isomorphic, then
we are back to the worry about how to make sense of ‘declared isomorphisms’
between non-isomorphic models, i.e. back to square one.

Now, one might worry that this threatens to make external sophistication
redundant, given that it is somewhat trivial to internally sophisticate or reduce
a theory if one is satisfied with an extrinsic formalism (one simply takes appro-
priate equivalence classes). For my own part, I do not think that we should be
worried by this. The distinction between reduction vs. internal sophistication
vs. external sophistication is about formal properties of a mapping between the
KPMs of two (not necessarily distinct) theories.20 It is not about the extent
to which it is non-trivial to arrive at such a theory. Whilst it is true that
authors such as Martens and Read (2021) suggest that in cases of successful
reduction or internal sophistication “there was no guarantee that [a reduced or
internally sophisticated formalism] was even possible”, I think we should take
this to be a slip. What is (apparently, or at least much more plausibly) true
is that there is no guarantee that an intrinsic reduced or internally sophisti-
cated theory is always possible (especially in cases of reduction for theories with
isomorphic SRMs)—but this just goes to show that the relevant distinction for
these authors was never the reduction vs. internal sophistication vs. external so-
phistication distinction to begin with. And as for the worry that this leaves no
interesting role for external sophistication, understood category-theoretically, I
think this is simply false—as witness the whole host of cases (Galilean gravita-
tion (Weatherall 2016), electromagnetism (Weatherall 2016; Nguyen, Teh, and
Wells 2020), Newton–Cartan theory (March 2024), teleparallel gravity (March,
Read, and Chen 2025; Weatherall and Meskhidze 2025), hidden symmetries
(Read 2025)) where philosophers of physics have discussed (and said, in my
view, interesting things about) precisely this strategy.

distinguish ‘structure-first’ and ‘symmetry-first’ approaches to capturing the invariant content
of SRMs.
20. A little more precisely, it is a four-place relation, between two theories, a class of symme-

try transformations of the first theory, and a mapping between the KPMs of the two theories.
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Having said this, it should be clear what I want to say about how the in-
trinsic vs. extrinsic formalisms distinction relates to the reduction vs. internal
sophistication vs. external sophistication distinction, which is that the two are
basically orthogonal. To be sure, one area of overlap remains, which is that ex-
ternally sophisticated theories will usually be extrinsic (except in special cases
where the arrows of one’s original category of models for a theory do not in-
clude all the isomorphisms of those models, see again e.g. March, Read, and
Chen (2025) and Read (2025)). But one can externally sophisticate an intrinsic
or extrinsic formalism; likewise, one can reduce a theory by moving to an intrin-
sic or extrinsic formalism, and one can also internally sophisticate by moving to
an intrinsic or extrinsic formalism.

To make this point absolutely clear, it is helpful to consider an example. Take
the theory of Newtonian point-particle mechanics with models ⟨M, ϕ,B, γ(i),R+,m(i)⟩,
where M = ⟨M, ta, h

ab,∇, ξa⟩, ϕ is a scalar field which represents the gravita-
tional potential, B is a (structured) domain of particles, the γ(i) : B ×R → M,
are a collection of (smooth, future-directed) timelike curves which represent
particle worldlines, and m(i) : B → R+ is an assignment of mass values to
each particle. Suppose that uniform mass scalings—transformations of the form
m(i) → ψ ◦ m(i), where ψ is a bijection on the domain R+ of R+ which pre-
serves the relation ≤ and the operation +21—are dynamical symmetries of this
theory. Table 1 outlines four possible approaches to reformulating the models
of the theory, in light of this symmetry.

Intrinsic Extrinsic

Reduction ⟨M, ϕ,B, γ(i),R+,m(i, j)⟩ ⟨M, ϕ,B, γ(i),R+, [m(i)]⟩

Internal sophistication ⟨M, ϕ,B, γ(i), Dm,≤, ◦,m(i)⟩ ⟨M, ϕ,B, γ(i), Dm, [f ],R+,m(i)⟩

Table 1: Different reformulations of Newtonian point-particle mechanics, organ-
ised by where they fall with respect to the intrinsic vs. extrinsic formalisms and
reduction vs. internal sophistication distinctions.

The first row of table 1 is fairly straightforward. In the intrinsic reduc-
tion corner, we replace the assignment of mass values with an assignment of
mass ratios m(i, j) : B × B → R+ to each pair of particles, subject to the con-
straints m(i, i) = 1 and m(i, j)m(j, k) = m(i, k). In the extrinsic reduction
corner, we replace m(i) with an equivalence class of mass value assignments,
i.e. m(i) ∈ [m(i)] iff ψ ◦ m(i) ∈ [m(i)] for all uniform mass scalings ψ. Both
of these count as reduced theories: the m(i, j) are invariant under uniform
mass scalings, and by construction any pair of models ⟨M, ϕ,B, γ(i),R+,m(i)⟩,
⟨M, ϕ,B, γ(i),R+, ψ ◦ m(i)⟩ related by a uniform mass scaling map to the same
model ⟨M, ϕ,B, γ(i),R+, [m(i)]⟩.

21. Note that uniform mass scalings won’t preserve the relation × on R+, i.e. they are not
automorphisms of the mass value space R+ = ⟨R+,≤,+,×⟩. In particular, this means that
models related by a uniform mass scaling are not isomorphic.
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In the second row of table 1, we have modified the definition of the mass
value space. In the intrinsic internal sophistication corner, we have replaced
R+, with an additive extensive structure ⟨Dm,≤, ◦⟩, where Dm is a domain of
cardinality 2ℵ0 , ≤ is a total order on Dm, and ◦ is an associative binary opera-
tion (representing addition of mass values), subject to certain axioms.22 Since
uniform mass scalings are automorphisms of ⟨Dm,≤, ◦⟩, models related by a
uniform mass scaling are now isomorphic. In the extrinsic internal sophistica-
tion corner, the mass value space ⟨Dm, [f ],R+⟩ is again an additive extensive
structure, but this time we have characterised it extrinsically rather than in-
trinsically. [f ] is an equivalence class of bijections f : Dm → R+ defined as
follows: f ∈ [f ] iff f ◦ ψ ∈ [f ] for any bijection ψ on R+ which preserves ≤ and
+. To see that this is indeed an instance of internal sophistication, consider
any bijection ψ : Dm → Dm which preserves [f ]. It follows immediately from
the definition of [f ] that these bijections are in one-to-one correspondence with
our original uniform mass scalings. Now, in general, ψ is not an automorphism
of ⟨M, ϕ,B, γ(i), Dm, [f ],R+,m(i)⟩, since ψ ◦ m(i) ̸= m(i) unless ψ = idDm

,
so this is not a reduced formalism. But it is an internally sophisticated for-
malism: ψ induces an isomorphism of ⟨M, ϕ,B, γ(i), Dm, [f ],R+,m(i)⟩, since it
is an automorphism of ⟨Dm, [f ],R+⟩. This makes my point: that the intrinsic
vs. extrinsic formalisms distinction is independent of the reduction vs. internal
sophistication distinction.

3 Metaphysical perspicuity

We can now return to Jacobs’ argument that only intrinsic formalisms are
metaphysically perspicuous. To reiterate, according to Jacobs, the ontological
commitments of intrinsic formalisms can simply be ‘read off’ from the formal-
ism, whereas extrinsic formalisms have only an ‘effective decision procedure’ for
whether the theory is committed to some piece of structure or other, by deter-
mining whether that structure can be invariantly defined from objects in the
equivalence classes.

The fact that the extrinsic approach has only an effective decision proce-
dure for determining a theory’s ontological commitments, Jacobs claims, means
that extrinsic formalisms are not metaphysically perspicuous. This is for three
reasons. First, extrinsic formalisms limit attempts at causal explanation, since
only symmetry-invariant structures can be dynamically efficacious. Second, it
is unclear what grounds (or explains, or justifies) the physical equivalence of
SRMs from the perspective of an extrinsic formalism. This is supposed to be
because the extrinsic approach reverses the natural order of explanation—the
theory is committed to a certain ontology because SRMs represent the same
physical state of affairs, rather than vice versa. Third, extrinsic formalisms ap-
peal to physically irrelevant (i.e. symmetry-variant) quantities to characterise
the structure of the theory’s value spaces. This does not seem to tell us what

22. See e.g. Hölder (1901) and Krantz et al. (1971) for details of these axioms. In effect, this
amounts to ‘forgetting’ the multiplication operation × on R+.

13



these value spaces are really like, even if it fixes the correct structure (this is
the constructivist complaint).23

I will begin with Jacobs’ ‘reversing the natural order of explanations’ worry.
I do not think the proponent of the extrinsic approach should find this worry
compelling. Indeed, the fact that a theory is committed to a certain ontology
because SRMs of the theory represent the same physical state of affairs—or
in other words, because certain distinctions are physically meaningless, and
others physically meaningful—strikes me as the right result, and moreover, as
one which has a long provenance in philosophy of physics. As a first example,
consider Leibniz’s famous ‘shift’ argument against the reality of absolute space:
absolute space is unreal because “[to] say that God can cause the whole universe
to move forwards in a right line, or in any other line, without making otherwise
any alteration in it; is another chimerical supposition. For two states indis-
cernible from each other, are the same state; and consequently, ’tis a change
without any change.” (Leibniz and Clarke 1998, 38). As a second example,
consider Earman’s (1989) famous symmetry principles:

SP1: Every dynamical symmetry of T is a spacetime symmetry of T .

SP2: Every spacetime symmetry of T is a dynamical symmetry of T .

In effect, SP2 says that T should posit enough spacetime structure that it can
distinguish (in the sense that they are not isomorphic) between models which
are not related by a dynamical symmetry. Conversely, SP1 says that T should
not posit so much spacetime structure that it distinguishes (again, in the sense
that they are not isomorphic) between models which are related by a dynamical
symmetry. So providing we hold the dynamical symmetries of T fixed, Earman’s
principles suggest that it is entirely appropriate to let questions of what distinc-
tions are physically meaningful underwrite questions of a theory’s ontology in
this way.24

Now, one might be tempted to respond that the sense of ‘explains’ (or
‘grounds’, or ‘justifies’) here is epistemic, or perhaps normative, in character,
whereas the sense of explanation which Jacobs is concerned with is more meta-
physical.25 Perhaps. But then it also seems to me a mistake to suppose that

23. Note that for this kind of reason, extrinsic formalisms are likely to be repugnant to fans
of Reichenbachian constructivism (see Adlam, Linnemann, and Read (2025)), though here the
issue is not so much that the quantities are ‘physically irrelevant’, but rather a problem of not
being able to help oneself to structure that one hasn’t constructed yet.
24. Other examples of this kind of reasoning abound, including e.g. the Kleinian approach

to geometry (see e.g. Wallace (2019) for a modern presentation; a similar point would go for
e.g. Cartan geometry, on which see March, Read, and Chen (2025)), the dynamical approach
to spacetime theories (at least outside of the context of general relativity) (Brown 2005),
and even some interpretations of the principal fibre bundle formulation of Yang-Mills theory
(Gomes 2024). Note, here, that I am not endorsing any of these research programmes, nor
am I claiming that the proponent of the extrinsic approach ought to be committed to any of
them—my point is just that, given this history, it is far from obvious that there is any ‘natural
order of explanation’ between a theory’s ontology and relationships of physical equivalence
between its models, and even less obvious that the extrinsic approach ‘reverses’ this natural
order.
25. I am grateful to an anonymous referee for pressing this point.
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questions of a theory’s ontology, or of the relationships of physical equivalence
between its models, can be divorced from epistemic or normative considera-
tions about how we should interpret theories in the way this kind of objection
implies. Put simply, the question ‘why is the ontology of this theory such-and-
such?’ seems to me synonymous with the question ‘why should we think that
the ontology of this theory is such-and-such?’ or ‘why should we posit such-and-
such as the ontology of this theory?’. Physical theories do not come written in
the language of ‘ontologies’ (whatever that is supposed to be); we do not have
an interpretation-independent, once-and-for-all answer as to what a theory says
the world is like; and excepting the case of a hypothetical ‘true theory of every-
thing’ (where perhaps there is a genuinely metaphysical question as to what its
ontology is), epistemic and normative considerations are all we have to go on
in furnishing a theory with such an interpretation (i.e., in terms of its ontology
and ideology).

Turning now to the causal explanations worry, I think this is misplaced.
Granted, the causal explanations which one can read off from an extrinsic for-
malism will often involve making reference to symmetry-variant quantities. But
so long as the explanations themselves are symmetry-invariant,26 it is not clear
why this should hamper attempts at causal explanation. For example, Jacobs
claims that the proponent of the extrinsic approach cannot without further ar-
gumentation explain the Aharanov–Bohm effect, in which a charged particle in
the vicinity of an impenetrable solenoid picks up a phase proportional to the
flux through that solenoid. This is supposed to be because the causal story
involved in the explanation of the Aharanov–Bohm effect must appeal to invari-
ant structures, such as the holonomies of the electromagnetic one-form. But
here is an explanation to which the extrinsicalist can perfectly well appeal: the
charged particle picks up a phase because up to U(1) gauge symmetry, the elec-
tromagentic one-form has a value such-and-such in the region surrounding the
solenoid, and the phase difference picked up by the particle follows from this
plus the dynamics of the theory. To the worry that such an explanation is not
appropriately causal I say: whatever one’s favourite account of causation is, ei-
ther this explanation counts as appropriately causal (as for e.g. counterfactual,
interventionist, or productive accounts),27 or this is a problem for causal expla-

26. Note that we do sometimes appear to give symmetry-variant explanations in physics,
e.g. the appeal to the rest frame of the rocket in the explanation of Bell’s rockets thought
experiment, though one might dispute whether this really counts as a symmetry-variant expla-
nation, given that the rest frame of the rocket can be defined invariantly from its worldline.
However, this will depend on whether or not one has an operational understanding of the
coordinate systems in question.
27. As an example, consider, e.g. a counterfactual account of causation. If the value of

the electromagnetic one-form hadn’t been such and such, up to U(1) gauge symmetry, in
the region surrounding the solenoid, then the phase picked up by the particle would have
been different. Thus the value of the electromagnetic one-form in the region surrounding the
solenoid, up to U(1) gauge symmetry, counts as a cause of the phase shift picked up by the
particle. A similar point goes for interventionist accounts. For anyone who is tempted to
respond to this that for any segment of the particle’s trajectory, one could choose a gauge in
which it picks up zero phase over that segment, this is by-the-by, as far as the explanation I am
suggesting is concerned—the point is that one cannot so choose a gauge throughout the entire
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nations of the Aharanov–Bohm effect in general, rather than the explanation
which the extrinsic approach offers in particular (as for e.g. conserved quantity
or causal mechanisms approaches), see Earman (2024).

As far as Jacobs’ more general point goes—that extrinsic formalisms don’t
tell us what a theory’s value spaces are really like—the extrinsic approach has
an answer to this too. The answer is that those value spaces have just enough
structure to capture all the invariant degrees of freedom of the symmetry-variant
quantities that are used to define them, and no more. The proponent of the
intrinsic approach will press the question: but just what structures are those?
But here I think that the extrinsicalist can simply dig their heels in. Granted, the
extrinsicalist cannot say without further argumentation just what the invariant
structures in question are, but at least by their own standards, this seems like
a perfectly acceptable answer.

With that said, I do think that Jacobs’ insight about the fact that one cannot
‘read off’ the ontological commitments of extrinsic formalisms is basically on the
right track. However, as I have argued, it it not clear why this fact by itself
should act as a barrier to metaphysical perspicuity. So let us see what kind of
consequences would act as such a barrier.

4 Triviality and non-triviality

In §2.1, I pressed the idea that within an extrinsic formalism, mathematical
expressions which are not independent of the choice of representative of the
equivalence classes of symmetry-variant structures should not be thought of as
saying or representing something physically meaningful. I also argued that from
the perspective of an extrinsic formalism, this restriction is well-motivated, and
perhaps even compulsory.

But it is also non-trivial. To see this, consider the kinds of equations that
can be interpreted as physically meaningful in an intrinsic formalism. Since
intrinsic formalisms do not equivocate between symmetry-variant structures in
defining the models of the theory, any equation which is (i) constructed out
of objects in the models of the theory, and (ii) is mathematically well-defined,
expresses a statement which can be true or false of the models of the theory,
and so can be interpreted as saying something physically meaningful. In other
words, to check whether an equation is physically meaningful within an intrinsic
formalism, one only needs to take a cursory look at the form of that equation.

Contrast this with the process of checking whether an equation is physically
meaningful within an extrinsic formalism. In this case, not only does one need
to verify that the equation is mathematically well-defined—in general, one also
needs to verify that satisfaction of that equation is independent of the choice of
representative of the relevant equivalence class (of symmetry-variant quantities
in the models of T , or models in the isomorphism equivalence classes of T). And

region surrounding the solenoid. Rather, it seems to me that this worry is not really to do with
causal explanations per se, but local explanations, or probably better, separable explanations,
or something along those lines. I am grateful to an anonymous referee for pressing this point.
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this second step is generally highly non-trivial (think e.g. of Dewar’s (2018)
dynamics for Maxwell gravitation, or of the many pages of ink that physics
undergraduates have spilled over the years verifying U(1) gauge invariance of
the Lagrangian of scalar electrodynamics).

A similar point applies at the level of interpreting those (physically mean-
ingful) equations, once we have them, i.e. saying what relationships between
physical quantities they express.28 In order to interpret such an equation, in
an extrinsic formalism, one first needs to identify which mathematical sub-
expressions of that equation have values which are independent (in case 3, at
least up to isomorphism) of the choice of representative of the relevant equiva-
lence class, and so may be interpreted as representing physical quantities (this, I
take it, is precisely where Jacobs’ insight that one cannot ‘read off’ the ontology
of an extrinsic formalism comes in). And again, this process is non-trivial. By
contrast, in an intrinsic formalism, one does not have to first parcel off which
mathematical subexpressions in an equation have values which are independent
of the choice of representative of an equivalence class in this way, and so can be
interpreted as corresponding to physical quantities—the interpretation of these
equations can simply proceed term by term.

But if this is right, we now have a handle on why it is that intrinsic for-
malisms are more perspicuous than intrinsic formalism. The issue is not just
that one cannot read off the theory’s ontology from the formalism—though that
may come into it too—but that one also cannot read off which mathematical
expressions that can be constructed in that formalism are candidates for being
interpreted as saying or representing something physically meaningful. This
means that intrinsic formalisms are better suited for getting a handle on what
a theory says the world is like. Of course, those mathematical expressions will
still need interpreting, but one does not need to do substantial mathematical
heavy lifting in order to decide which bits of uninterpreted mathematics are
candidates for being given a physical interpretation.

To illustrate this last point, I want to return to the example of Dewar’s
(2018) dynamics for Maxwell gravitation from §1. Dewar characterizes the
models of Maxwell gravitation as follows: they are tuples these are tuples
⟨M, ta, h

ab, [∇], T ab⟩, where ⟨M, ta, h
ab, [∇]⟩ is a Maxwellian spacetime, and T ab

the Newtonian mass-momentum tensor for whatever matter fields are present,
such that at all points p ∈ M where ρ := T abtatb ̸= 0, the following equations
hold at p:

ta∇nT
na = 0 (1a)

∇m(ρ−1∇nT
nm) = −4πρ (1b)

∇c(ρ−1∇nT
na)−∇a(ρ−1∇nT

nc) = 0, (1c)

where ∇ is an arbitrary member of [∇]. To illustrate my first point—that it
is non-trivial to see that the equations (1) are independent of the choice of
∇ ∈ [∇]—I will just note that this is the content of Dewar’s (2018) proposition

28. I am grateful to an anonymous referee for suggesting this to me.
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2, which takes about a page of work to show. For my second point—that it
is non-trivial to ‘read off’ the interpretation of these equations—note that the
value of the quantity ∇nT

na is not independent of the choice of ∇ ∈ [∇]. So
one cannot simply ‘read off’ e.g. the interpretation of (1a) as saying that the
quantity ∇nT

na is spacelike—for ∇nT
na is not a candidate for representing any

physical quantity at all. By contrast, in the intrinsic dynamics given for Maxwell
gravitation by Chen (2023) and March (2023), (1a) is replaced by the continuity

equation for the mass density ρ, £ξρ− 1
2ρĥmn£ξh

mn = 0, where ξa = ρ−1tnT
na

is a unit timelike vector field representing the net four-velocity of matter, ĥab is
the spatial metric relative to ξa (see Malament (2012, proposition 4.1.2)), and
£ denotes the Lie derivative. Of course, this is also the conclusion about the
interpretation of (1a) which Dewar (2018, 258) reaches; the point is not that
one cannot arrive at this interpretation, but that because Dewar’s presentation
of Maxwell gravitation is extrinsic, it requires non-trivial mathematical work to
massage (1a) into a form where one can see this. A similar point goes for (1b)
and (1c).

I also take it that this is very much in the spirit of the concerns raised
by Weatherall (2018), Chen (2023), and Wallace (2020) in their discussions of
the problems they see with Earman’s extrinsic characterization of Maxwellian
spacetime—especially Weatherall’s concern about how to interpret terms in cal-
culations on Maxwellian spacetime, and Wallace’s concern that characterizing
Maxwellian spacetime extrinsically obscures what its dynamics really look like.
Neither of these authors’ points, I take it, are that one cannot arrive at a clear
interpretation of Maxwell gravitation and calculations therewith, characterized
extrinsically, nor that one cannot say the same things about Maxwell gravitation
characterized extrinsically as one can when it is characterized intrinsically—the
point is that it requires non-trivial work to do so.

5 Close

In this essay, my aim has been to get clear on the special value of intrinsic
formalisms, in the context of reformulating a theory with SRMs. I have argued
that this value comes from the fact that which mathematical expressions may
be interpreted as physically meaningful in an intrinsic formalism is trivial in
a way in which it is not for extrinsic formalisms. The special value of an in-
trinsic formalism is just that it allows us to ‘read off’ what these mathematical
expressions are.

Of course, being able to ‘read off’ a theory’s ontology is also valuable, if one
thinks that considerations of ontology have a privileged role to play in theory
interpretation. But my focus on being able to read off what mathematical ex-
pressions may be interpreted as physically meaningful means that my argument
about the value of intrinsic formalisms is able to stand apart from this issue.
Rather than just being the purview of a certain brand of philosopher of physics,
intrinsic formalisms should be of value to everyone.
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