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Abstract

In contemporary philosophy of physics, there has recently been
a renewed interest in the theory of geometric objects—a programme
developed originally by geometers such as Schouten, Veblen, and
others in the 1920s and 30s. However, as yet, there has been little-
to-no systematic investigation into the history of the geometric ob-
ject concept. I discuss the early development of the geometric ob-
ject concept, and show that geometers working on the programme
in the 1920s and early 1930s had a more expansive conception of
geometric objects than that which is found in later presentations—
which, unlike the modern conception of geometric objects, included
embedded submanifolds such as points, curves, and hypersurfaces.
I reconstruct and critically evaluate their arguments for this more
expansive geometric object concept, and also locate and assess the
transition to the more restrictive modern geometric object concept.

1 Introduction

Geometrisches Gebilde und geometrisches Objekt sind also dasselbe,
von verschiedenen Gesichtspunkte aus betrachtet.1 (Schouten and
van Dantzig 1935, 46)

Philosophy of physics has recently seen a renewed interest in the theory
of geometric objects—a programme developed originally by geometers such as
Schouten, Veblen, and others in the 1920s and early 1930s, and brought to
full maturity by Nijenhuis (1952). The geometric objects programme was, to
my knowledge, first introduced into textbook general relativity in the 1960s
by Trautman (1965) and Anderson (1967), and originally made its way into
the philosophy of physics literature in connection with the Anderson-Friedman
absolute objects programme (Anderson 1967; Friedman 1983), which aimed to
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1. “Geometric figure and geometric object are therefore the same thing, considered from

different perspectives.” (All translations are my own unless otherwise stated.)
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determine a sense in which general relativity was substantively generally covari-
ant (and other theories were not). Whilst the absolute objects programme lost
much of its interest with the Geroch-Giulini volume element and Geroch-Jones
dust counterexamples (see e.g. Pitts (2006)), interest in the theory of geometric
objects has continued, and the geometric vs. non-geometric objects distinction
has recently been discussed by e.g. Pitts (2010, 2012, 2022), Read (2022), Ja-
cobs and Read (2024), and Dürr (2021) in connection with issues relating to
the definition of spinor fields and gravitational stress-energy in general relativ-
ity, whilst Dewar (2020) and March and Weatherall (2025) discuss the modern
cousin of the geometric objects programme—natural bundles—as an explication
of ‘general covariance’.

Despite the clear foundational significance of geometric objects for philoso-
phy of physics, the history of the geometric object concept remains regrettably
under-explored. Here, one can isolate a number of philosophically-interesting
questions: was the early geometric object concept the same as the later one; if
not, how did this concept change; what heuristics and principles did geometers
working on the programme employ in developing it; to what extent does the
extensive body of work on geometric objects from the mid 1930s to the advent
of the natural bundles programme (Nijenhuis 1972) carry over to that latter
programme? And so forth.

This paper aims to take some first steps towards remedying this gap in the
literature. In particular, it aims to partly address the first two questions raised
above: whether the early geometric object concept was the same as the later
one, and, if not, how this concept changed. My focus will be on the definitions
of geometric objects suggested by geometers working on the programme during
the period 1920 to 1936—a time where there was little precise consensus on how
geometric objects should be defined, and the formal theory of geometric objects
was still in its infancy. On the one hand, I will argue that geometers working on
the programme during this period in fact had a more expansive conception of
geometric objects than the modern one, which included embedded submanifolds
such as points, curves, and hypersurfaces.2 On the other hand, I will show that
this conception changed abruptly around the year 1936, when a more formal
theory of geometric objects began to be developed. The reason for this, or so I
will suggest, was simple: with a need for more formality came a need for greater
precision on the definition of components of an object, which previously had
been disambiguated in a variety of different ways, and this led precisely to a
scope restriction.

Why is this project philosophically interesting? Or, put somewhat differ-
ently, why does this episode in the historical development of the geometric
object concept belong to the history of philosophy of physics (or mathematics),
rather than just the history of mathematics? I can think of at least three (re-
lated) reasons, all of which point to slightly different ways one might situate
this episode with respect to broader history of philosophy of science discussions.

2. More generally, it also included collections of embedded submanifolds, collections of
collections, etc.
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First, because geometers such as Schouten and Veblen working on the geo-
metric objects programme saw the project of developing a geometric object con-
cept as intimately connected with—perhaps even constitutive of—the project of
conceptualising what ‘geometry’, or the ‘problem of geometry’ is. Indeed, this is
precisely the framing of Schouten and van Dantzig’s (1935) paper, “Was ist Ge-
ometrie?”3 (see also Schouten (1926), Veblen (1929), and Veblen and Whitehead
(1932)), which begins by tracing back the development of the geometric object
concept through to Klein’s Erlanger Programm, and whose final third, which I
will engage with extensively in this paper, addresses precisely the question how
and whether embedded submanifolds of a manifold such as points, curves, hy-
persurfaces, etc. (which they call “geometric figures”) are to count as geometric
objects. Schouten and van Dantzig’s motivations for addressing this question
are worth unpacking in some detail. In brief, the worry seems to have been
that in identifying ‘geometry’ with the theory of geometric objects,“die mehr
intuitive Seite der Geometrie”4—which they spell out as meaning the theory
of geometric figures, or more informally, “etwas, was man zeichnen kann”5—
has been cast aside “ist [...] in den Hintergrund gedrängt”6. Schouten and van
Dantzig give a particularly forceful statement of this worry:

Wenn es uns nicht gelänge vom geometrischen Objekte ausgehend
den Weg zur gezeichneten Figur zurückzufinden, so müssten wir
tatsächlich befürchten, dass die

”
kompetenten Leute“ aus dem Zi-

tat Veblens uns eines Tages vorwerfen würden, wir hätten überhaupt
keine Geometrie getrieben, sondern

”
Orgien des Formalismus“ gefeiert.7

(Schouten and van Dantzig 1935, 39)

In other words, Schouten and van Dantzig see the recovery of geometric fig-
ures from geometric objects, here, as an adequacy condition on the project of
conceptualising ‘geometry’, or the ‘problem of geometry’ in terms of geometric
objects.8 Just how strong an adequacy condition they had in mind is not en-
tirely clear. It is possible that Schouten and van Dantzig saw the recovery of

3. “What is geometry?”
4. “the more intuitive side of geometry”
5. “something which one can draw”
6. lit. “has been pushed into the background”
7. “If we do not succeed in finding our way back from geometric objects to drawn figures,

then we must indeed fear that the “competent people” from Veblen’s quote will one day charge
us with having not done geometry at all, but having reveled in “orgies of formalism” instead.”

8. There is a further exegetical issue, here, which is worth mentioning. In the opening re-
marks of their paper, Schouten and van Dantzig (1935, 15) caution—extensively!—against the
idea that the meaning of ‘geometry’ is an a priori question, or even one which merits a priori
considerations—“Geometrie ist nicht ein scharf gestecktes genau für alle Zeiten definierbares
Feld mathematischer Untersuchung, die Frage

”
Was ist Geometrie“ ist daher überhaupt un-

vernünftig und muss durch die vernünftige Frage
”
Was versteht man heutzutage unter Geome-

trie“ ersetzt werden, eine Frage, deren Beantwortung Aufdeckung eines Tatsachenbestandes
und nachträgliche Aufstellung einer Definition a posteriori, nicht aber Aufstellung einer Def-
inition a priori verlangt.” (emphasis in original) (“Geometry is not a sharply-demarcated,
exactly-definable for all time field of mathematical inquiry, the question “what is geometry”
is as such completely unreasonable and must be replaced by the reasonable question “what
do we understand today by geometry”, a question whose answer calls for the discovery of a
contingent fact and subsequent construction of a definition a posteriori, not construction of a
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geometric figures from geometric objects as playing an explanatory role (‘given
that geometry is the theory of geometric objects, why should we have thought
that it was something to do with geometric figures?’), or a justificatory role
(‘that one can recover geometric figures from geometric objects gives us rea-
son to think that this conception of geometry is on the right track’), or even
a semantic-constitutive role (‘necessarily, any conception of what ‘geometry’ is
must encompass geometric figures’)—though my own preferred reading is some-
where between the first and third. But in any case, the point is that whether
the geometric object concept included embedded submanifolds was once seen
as an important question for the project of conceptualising what ‘geometry’ is.
From the perspective of history of philosophy discussions of the meaning of ‘ge-
ometry’, then, the change in the geometric object concept I will identify and
assess in this paper is evidently of considerable interest.

A second reason comes from later discussions in the 1960s, when the geo-
metric objects programme began to be introduced in earnest into the general
relativity literature. Despite the fact that the definition of components of an
object, as of around the year 1936 and subsequently, ruled out embedded sub-
manifolds such as points, curves, and hypersurfaces as geometric objects, the
idea that e.g. manifold points are geometric objects persisted into at least the
work of Anderson (1967, 15), who claims that “[the] simplest example of a geo-
metrical object is just a point of the manifold.” Indeed, Anderson immediately
goes on to claim—as far as I can tell, by his own lights incorrectly—that what he
calls “local geometrical objects” (i.e. objects characterised by associating a set of
components to each point of the manifold at which the object is defined) include
manifold points as a special case. So in some sense, the question whether and
how embedded submanifolds should count as geometric objects never went away,
or perhaps went away only with the move towards coordinate-free differential-
geometric methods (Friedman (1983), in his discussion of Anderson on geomet-
ric and absolute objects, does not mention it). On the other hand, Trautman
(1965, 84–85), writing at approximately the same time as Anderson, is explicit
in his discussion of geometric objects that these are “geometric object fields”
(85)—i.e., local fields on a manifold, which do not include points, curves, etc.
But understanding why the idea that embedded submanifolds are geometric ob-
jects persisted in this way—definitions notwithstanding!—requires, in my view,
precisely an understanding of the definitional issues that geometers working on
the geometric objects programme had grappled with some three decades earlier,
and why they had grappled with them.

The third reason has a more contemporary outlook. As mentioned above,
part of the recent philosophy of physics interest in the theory of geometric ob-

definition a priori.”) But to my mind, at least, Schouten and van Dantzig’s discussion in this
last third of their paper—and in particular, the importance they attach to showing that the
notion of a geometric object can recover that of a geometric figure—suggests that they had
not liberated themselves from this a priori perspective on geometry to the extent they might
have hoped. Whether the lack of discussion of geometric figures in subsequent work on the
definition of geometric objects, e.g. Schouten and Haantjes (1936), marked the eventual point
of liberation is an interesting question to speculate on, but I will not do so here.
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jects has been as an explication of general covariance (Dewar 2020; March and
Weatherall 2025; Pitts 2012). But the fact that embedded submanifolds of a
manifold are not geometric objects, under the modern conception, has gone
(at least to my knowledge) almost entirely unappreciated in these discussions.
Moreover, this fact has non-trivial consequences for how we should understand
the general covariance, or lack thereof, of theories set on different spacetime
structures. This is nicely illustrated with the example of Earman’s (1989) Aris-
totelian spacetime. Aristotelian spacetime is a structure ⟨M, ta, h

ab,∇, ξa, γ⟩,
where ta and hab are orthogonal temporal and spatial metrics, ∇ is a flat com-
patible affine connection, ξa is a (twist-free, rigid, and geodesic) unit timelike
vector field, and γ is an integral curve of ξa. Here, the point is that, in view
of what I am going to say, the timelike curve γ which features in Aristotelian
spacetime is not a geometric object. This has the consequence that Aristotelian
spacetime, and theories set thereon, fail to be generally covariant (in even the
‘trivial’ sense) in a rather different way from theories set on weaker spacetime
structures, such as Newtonian, Galilean, or Minkowski spacetime. In the ter-
minology of Weatherall and March (2025), they are not natural, nor do they
admit a naturalization. Now, I am not claiming that the episode in the his-
torical development of the geometric object concept which I will discuss in this
paper contains all the answers as to how we should understand precisely what
this difference in failures of general covariance amounts to. Indeed it does not.
But I do think that it can assist us in thinking about just what this difference
is—both because it offers an alternative conception of geometric objects which
does include embedded submanifolds, and because it forces us to think carefully
about just what is changing with the move to the modern geometric object
concept. I will return to this issue in §4.

As such, the plan for this paper is as follows. In §2, I briefly recall some
details of the modern geometric object concept (in §2.1) as presented by e.g. Ni-
jenhuis (1952), and show that this excludes embedded submanifolds such as
points, curves, and hypersurfaces. I then, in §2.2, introduce some definitions
of geometric objects from the 1920s and early 1930s, and in §2.3, reconstruct
and assess these geometers’ arguments—in particular, an argument given by
Schouten and van Dantzig (1935); to my knowledge, the only detailed such
argument in this early literature—that embedded submanifolds of a manifold,
collections thereof, etc. count as geometric objects. In doing so, I build a picture
of this as a consensus view in the early geometric objects literature. I then, in
§3, discuss the transition to the modern geometric object concept, which I locate
in the work of Schouten and Haantjes (1936), and suggest an explanation for the
reasons why this transition—in particular, its ruling out embedded submanifolds
as geometric objects—went almost entirely unremarked. §4 concludes.
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2 The case for a more expansive historical geo-
metric object concept

2.1 The modern geometric object concept

I will begin with a self-contained outline of the modern geometric object concept—
which, despite the terminology, was well established at least by the time of
(Nijenhuis 1952), and (as we shall see) well underway by 1936. Here, and
throughout, let M be a differential n-manifold (assumed connected, Hausdorff,
and paracompact), and (U, ϕ) a coordinate system, where U ⊂ M is an open
region inM , ϕ : Rn → U is a diffeomorphism, and Rn is assumed equipped with
a (fixed) choice of basis.

In the modern theory of geometric objects, an object on U is characterised
by a set of N components Ωϕ,1, Ωϕ,2, ..., Ωϕ,N relative to each coordinate system
(U, ϕ) on U ,9 where a component Ωϕ,i is a smooth map Ωϕ,i : U → R. Let f :
Rn → Rn be a smooth analytic coordinate transformation,10 and let Ωϕ′,1, Ωϕ′,2,
..., Ωϕ′,N denote the components of the object in the coordinate system (U, ϕ′ =
ϕ◦f). The object is a geometric object iff, for each such f , for all i, and for each
p ∈ U , Ωϕ′,i(p) is an analytic function(al) of (f,Ωϕ,1(p),Ωϕ,2(p), ...,Ωϕ,N (p)).

It is straightforward to see that embedded submanifolds of U , such as points,
curves, and hypersurfaces, are not geometric objects on this definition. This is
to do with the way we have defined objects. On the above definition, an object is
specified (relative to a coordinate system (U, ϕ)) by a collection of assignments,
to each p ∈ U , of real numbers (i.e. components of the object). But embedded
submanifolds of U do not have components in this sense. For one, an embedded
submanifold of U is defined via a (smooth) injection ψ : S → U , where S is
some set (smooth manifold). Second, in general, such objects (or rather, their
images in U) may be closed subsets of U , and so one cannot always pick out such
an image by a smooth assignment of collections of real numbers to all points
in U (consider, e.g., the case dim(S) < dim(M)). And third, even in special
cases where we can use a smooth assignment of collections of real numbers to
all points in U to distinguish the image of S under ψ in U (e.g., when there
exist smooth scalar fields on U with support exactly on the image of S under ψ),
there is nothing to distinguish such components from the components associated
not with embedded submanifolds of U but with, e.g., scalar fields, tensor fields,
affine connections etc.

2.2 The early geometric object concept

Let me now begin to lay out my case that early geometers working on the theory
of geometric objects had a more expansive conception of geometric objects than
the modern one presented above, which did include embedded submanifolds

9. For simplicity, I am restricting attention to objects on U ; the generalisation to objects
on M is obvious.
10. Analytic, here, is in the sense that for any v = viei ∈ Rn, i = 1, 2, ..., n where ei denote

the (fixed) basis for Rn, f(v) = v′iei for v′i all analytic functions of (v1, v2, ..., vn)
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such as points, curves, and hypersurfaces. A clear statement of this idea is
given by Veblen and Whitehead (1932):

Anything which is unaltered by transformations of coordinates is
called an invariant [...].11 Thus a point is an invariant and so is a
curve or a system of curves. Also, strictly speaking, anything, such
as a plant or an animal, which is unrelated to the space which we
are talking about, is an invariant. For an invariant, which is related
to the space, i.e. a property of the space [...], we shall also use the
term geometric object. (46)

As Schouten and van Dantzig (1935, 19) note, Veblen and Whitehead are using
the word “property” here in a very general sense—for Veblen, “[ein] Punkt, ein
System von Punkten oder ein System von Beziehungen ist [...] eine Eigenschaft
des Raumes.”12 Indeed, immediately afterwards, Veblen and Whitehead cite
manifold points as their first example of a geometric object:

A point is an example of a geometric object which determines a
set of numbers in each allowable coordinate system in which it is
represented. (Veblen and Whitehead 1932, 46)

Of course, Veblen and Whitehead are being somewhat loose with the term “set”
here—really, a point determines an ordered n-tuple of (real) numbers in each
coordinate system in which it is represented (i.e. a set with some further struc-
ture). But setting this aside, Veblen and Whitehead are surely right that a man-
ifold point is an object which is “unaltered by transformations of coordinates”
(something which is easily seen in a modern differential-geometric setting, since
the points, i.e. base set of a manifold, are specified prior to the introduction of
coordinate charts on that manifold).

However, one might wonder if the inclusion of embedded submanifolds of M
under Veblen and Whitehead’s definition of geometric objects was an artefact of
their particular definition—in the 1920s and early 1930s, geometers had not yet
united around a “standard” definition of geometric objects. As motivation for
this, consider the following two approximately contemporaneous definitions of
geometric objects, due respectively to Veblen and Thomas (1926) and Schouten
and van Dantzig (1935):

An invariant13 [...] is an entity with definite determining components
in any coordinate system, such that the transformations of the com-
ponents from one coordinate system to another form a group isomor-

11. Note that by “unaltered by transformations of coordinates”, Veblen and Whitehead do
not mean that the coordinate components of the object (on some region) must be preserved,
i.e. fixed identically, under coordinate transformations—though that is somewhat unclear from
the language used in this passage.
12. “A point, a system of points, or a system of relations is [...] a property of the space.”
13. Here, Veblen and Thomas are adopting the earlier terminology “invariant”; the term

“geometric object” was proposed later as a substitute by Schouten and van Kampen (1930,
758), in part, to avoid the connotation that the coordinate components of such objects should
be preserved, i.e. fixed identically, under coordinate transformations, as mentioned in fn. 11.
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phic with the group of analytic transformations of the coordinates.
(Veblen and Thomas 1926, 279)

Die Punkte einer Mannigfaltigkeit sind festgelegt durch Koordinate,
die

”
Urvariablen“, die den Transformationen einer gewissen Gruppe,

der
”
Basisgruppe“ unterworfen sind. Ein geometrisches Object ist

ein System von in irgendeinem Bereiche definierten Funktionen (
”
Bes-

timmungszahlen“ genannt) der Urvariablen, das sich bei Transfor-
mationen der Basisgruppe

”
in sich“ mittransformiert, d.h. sich so

transformiert, dass die neuen Bestimmungszahlen lediglich von den
alten Bestimmungszahlen und den Transformationsfunktionen abhängen.14

(Schouten and van Dantzig 1935, 19)

In both these definitions, one sees a focus on components of an object not dissim-
ilar to the modern conception. Indeed, we saw above that part of the problem
with assimilating embedded submanifolds of M under the modern geometric
object concept was precisely this focus on components. As such, one might
worry that the geometric object concept of these authors could not have been
similarly as expansive as that of Veblen and Whitehead.

There are two reasons to be sceptical about this worry. The first is that
Veblen and Whitehead were writing after Veblen and Thomas, which gives
reason to suspect that at the very least Veblen’s conception of geometric objects
at the time included points, curves, hypersurfaces etc. (This is also suggested
by the above-quoted remark of Schouten and van Dantzig about Veblen’s views
on geometric objects.) The second is that Schouten and van Dantzig, towards
the end of their paper, supply a detailed argument—to my knowledge, the only
such argument in this early literature—that what they call “geometric figures”
(i.e. embedded submanifolds of M , collections thereof, etc.) count as geometric
objects under their definition. It is to the assessment of this argument which I
now turn.

2.3 Schouten and van Dantzig on geometric figures as ge-
ometric objects: an assessment

To understand Schouten and van Dantzig’s argument that every geometric figure
is a geometric object, we first need to understand what they mean by a geometric
figure. Here, Schouten and van Dantzig begin with the idea that constructing
a geometric figure consists of a process of “Auszeichnen gewisser Punkte des
Raumes den andern gegenüber”15 and a process of “Bezeichnen dieser Punkte”16

14. “The points of a manifold are specified via coordinates, the “urvariables”, on which the
transformations of a particular group, the “basis group”, act. A geometric object is a system
of functions of the urvariables (called “components” [of the object]) defined on some region,
which transforms with the transformations of the basis group “into itself”, i.e. transforms in
such a way that the new components depend only on the old components and the functions
of transformation.”
15. “distinguishing particular points of the space with respect to others”
16. “labelling of these points”
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(Schouten and van Dantzig 1935, 39). For our purposes, we can skip over their
discussion of the first; on the second, they then elaborate:

Was das Bezeichnen betrifft, bemerken wir, dass es sich dabei zunächst
immer handelt um eine (bei unendlichen Mengen vorzugsweise stetige)
Abbildung einer gegebenen Menge, der Urbildmenge auf irgendeine
im Raum ausgezeichnete Menge, so dass jedem Punkt der zu beze-
ichnenden Menge (oder auch nur eines Teiles derselben) ein Punkt
der Urbildmenge zugeordnet wird.17 (40, emphasis in original)

Schouten and van Dantzig then give the following inductive definition of a geo-
metric figure:

Ein geometrisches Gebilde ist erstens ein Punkt in dem mit den
gegebenen Urbildmengen erweiterten gegebenen Raume und zweit-
ens jede Menge von schon definierten geometrishen Gebilden.18 (42)

Before I discuss this definition further, let me remark on what Schouten and
van Dantzig appear to have in mind here. Immediately prior to this definition,
Schouten and van Dantzig claim that

Der Prozess der Parametrisierung kann nun, falls erwünscht, auf
den Prozess der Auszeichnung zurückgeführt werden, indem man
den Raum erweitert durch Hinzunahme aller verwendeten Urbild-
mengen. Jede feste Parametrisierung einer Menge wird dann ersetzt
durch Auszeichnen der Menge derjenigen Elementenpaare, die beste-
hen aus dem zu parametrisierenden Element der Menge und dem ihm
entsprechenden Element der verwendeten Urbildmenge.19 (41–42)

But then it immediately becomes clear that Schouten and van Dantzig’s “defini-
tion” of a geometric figure given above cannot quite be what they have in mind.
The following example will illustrate this nicely. Let M be an n-dimensional
smooth manifold with n > 0 and S a singleton set, and consider the product
space S ×M . A point in S ×M corresponds to a map from S to M ; thus,
a set of distinct such points corresponds to a set of maps from S to M . But
this is not a parameterisation of points in M , nor a parameterisation of param-
eterisations etc., because the first element in each such ordered pair (i.e., point
in S ×M) is the same. I therefore suggest that we replace Schouten and van
Dantzig’s inductive definition of “geometric figure” with the following inductive
definition:

17. “As for what the labelling [of points] is concerned with, we remark that it always is to do
with a (in the case of infinite sets preferably continuous) map from a given set, the preimage,
into any distinguished set in the space, so that to every point of the distinguished set (or of
only a part of it) there is assigned a point in the preimage.”
18. “A geometric figure is in the first instance a point in the given space extended by the

given preimages, and in the second instance any set of already defined geometric figures.”
19. “The process of parameterisation can now, if desired, be assimilated back into the process

of distinguishing [points in a manifold], in which one extends the space through the addition
of all the preimages used. Any fixed parameterisation of a set is then replaced through
distinguishing the set of respective pairs of elements, which consist of the parameterised
element of the set and the element of the relevant preimage corresponding to it.”
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• Given any smooth manifold M , any open U ⊂ M , and any set (smooth
manifold) S, any (smooth) map ψ : S → U (i.e. a parameterisation) is a
geometric figure on U .

• Given any set Ψ of geometric figures on U , any (smooth) parameterisation
of (a subset of) Ψ with respect to some set (smooth manifold) T is a
geometric figure on U .

• Nothing else is a geometric figure on U .

Note that this definition captures all the standard examples: points (where
S is a singleton set), curves (where S is diffeomorphic to (a segment of) R),
hypersurfaces etc. It also captures examples such as congruences of curves,
collections of points, etc.

There is one final component of Schouten and van Dantzig’s definition of a
geometric figure which I have not yet discussed: the notion of a parameterisation
group. Let ψ : S → U be a geometric figure (in the above sense). Then given any
(smooth, if S is a smooth manifold) map f : S → S, f ∈ Aut(S) where Aut(S)
is the automorphism group of S, the map ψ◦f : S → U is also a geometric figure
with the same image in U . A parameterisation group is a subgroup of Aut(S).
A geometric figure in the above sense, along with a choice of parameterisation
group, is Schouten and van Dantzig’s final definition of a geometric figure.

With this in hand, let us now turn to Schouten and van Dantzig’s argument
that every geometric figure is a geometric object. I will quote the relevant
passages in full:

Die angegebenen Beispiele haben zur Genüge gezeigt, wie man von
den geometrischen Objekten zu den geometrischen Gebilden gelan-
gen kann. Wie ist es nun aber umgekehrt, ist auch jedes geometrische
Gebilde ein geometrisches Objekt? Wir dürfen annehmen, dass die
als

”
Raum“ eingeführte stetiges Abbild einer Urbildmenge ist, denn

wir haben es ja in Hand die Urbildmenge diesem Zwecke entsprechend
zu wählen. Diese Abbildung ist aber, wie wir oben sahen, ein Koor-
dinatensystem (im weitesten Sinne) und jedes geometrische Gebilde,
das ja letzten Endes aus Punkten aufgebaut ist, lässt sich in Bezug
auf ein solches System irgendwie zahlenmässig festlegen. Die Parametrisierun-
gen, die eventuell in dem geometrischen Objekt enthalten sind, bilden
dabei von der Wahl des Koordinatensystems unabhängige Zahlen-
mengen. Natürlich dürfen wir nicht verlangen, dass die Menge der
erforderlichen Bestimmungszahlen immer endlich sei, ja sogar nicht
einmal abzählbar unendlich oder endlich dimensional. Jedenfalls
haben wir aber Bestimmungszahlen erhalten, die sich bei Koordi-
natentransformationen in bestimmter Weise transformieren werden,
also ein geometrisches Objekt.20 (Schouten and van Dantzig 1935,
45–46)

20. “The examples given have shown sufficiently how one can get from geometric objects
to geometric figures. But now how about the converse, is every geometric figure also a geo-
metric object? We may assume that it [the geometric figure] acts as an induced “space” of a
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Summarising, Schouten and van Dantzig continue:

Kurz gefasst ist der Sachverhalt folgender. Das geometrische Gebilde
entsteht aus dem Raume durch den Prozess der Teilmengenbildung
und den Prozess der Parametrisierung mit Hilfe der Urbildmengen
und der Parametrisierungsgruppen. Der Prozess der Parametrisierung
erzeugt aber anderseits, auf den Raum selbst (eventuell stückweise)
angewandt, die Koordinatensysteme und ihre Transformationsgrup-
pen und sobald nun das geometrische Gebilde zahlenmässig in Bezug
auf jedes dieser Koordinatensysteme festgelegt wird (was stets möglich
ist), so erhält es Bestimmungszahlen und eine Transformationsweise
und wird somit zum geometrischen Objekt.21 (Schouten and van
Dantzig 1935, 46)

In fact, there are two arguments which Schouten and van Dantzig could
be read as making in this passage, and it is important to be clear about the
difference between them. I will begin by reconstructing them both; here is the
first:

1. Let ψ : S → U ⊂ M be a geometric figure, with parameterisation group
G ⊂ Aut(S). Let the set S be the components of the geometric figure,
(S, ψ) be the coordinate system, and G the basis group.

2. Under any coordinate transformation g ∈ G, the geometric figure gets
mapped to the geometric figure ψ ◦ g : S → U .

3. Under any coordinate transformation thus defined, i.e. any g ∈ G, S is
mapped to itself (by definition).

4. Thus the components of the geometric figure under the coordinate trans-
formation are the same as the old components, and therefore depend only
on the old components.

C. Therefore, ψ : S → U is a geometric object.

continuous mapping of some preimage, because we have the freedom to choose the preimage
in accordance with this purpose. But, as we saw above, this representation is a coordinate
system (in the broadest sense), and every geometric figure, which ultimately is build out of
points, can be specified numerically with reference to such a system. The parameterisations,
which eventually are retained in the geometric object, form sets of numbers which are inde-
pendent of the choice of coordinate system. Of course, we may not demand that the sets of
the necessary components are always finite, nor even that they are denumerably infinite or
finite-dimensional. But in any case, we have obtained components, which will transform in a
determinate way with coordinate transformations, and thus a geometric object.”
21. “In brief, the situation is as follows. The geometric figure is constructed out of the

space through the process of the subset construction and the process of parameterisation
with the help of the preimages and the parameterisation groups. But on the other hand, the
process of parameterisation, which itself made use of the space (eventually piecewise), induces
the coordinate systems and their transformation groups, and as soon as the geometric figure
is specified numerically with reference to each of these coordinate systems (which is always
possible), it possesses components and ways of transforming, and as such becomes a geometric
object.”
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The second reconstruction is as follows:

1′. Let ψ : S → U ⊂M be a geometric figure, and (U, ϕ) a coordinate system.

2′. Let the components of ψ : S → U in the coordinate system (U, ϕ) be the
set Im(ϕ−1 ◦ ψ), and let the basis group be the group of smooth analytic
maps from Rn to itself.

3′. By definition, if f : Rn → Rn is an element of the basis group, then the
components of ψ : S → U under f are the set Im(f ◦ ϕ−1 ◦ ψ).

4′. By construction, the components of the geometric figure under the coor-
dinate transformation depend only on the old components and functions
of transformation (and in fact, the group of such transformations of the
components of ψ : S → U is isomorphic to the basis group).

C′. Therefore, ψ : S → U is a geometric object.

Under both reconstructions, Schouten and van Dantzig leave implicit the induc-
tive step necessary to show that every geometric figure is a geometric object;
however, this is not difficult to fill in. In the first case, the inductive step goes
through unchanged from the original argument; in the second, one only needs to
note that the new “components” of the geometric figure will be a set of subsets
(of subsets, to some finite order) of Rn.

What can be said in favour of either of these two reconstructions? On the
one hand, the first reconstruction has going for it that it is arguably more
faithful to the letter of Schouten and van Dantzig’s text. Passages such as
“[diese] Abbildung ist aber [...] ein Koordinatensystem (im weitesten Sinne)”
and “[der] Prozess der Parametrisierung erzeugt [...] die Koordinatensysteme
und ihre Transformationsgruppen” are difficult to make sense of if the coordinate
system and parameterisation are two different maps (from different spaces into
U). That said, however, there are also some passages which are more difficult
to make sense of on the first reconstruction. For example, “jedes geometrische
Gebilde [...] lässt sich in Bezug auf ein solches System irgendwie zahlenmässig
festlegen” makes little sense if ψ : S → U is the coordinate system in question,
since there is no a priori reason to take the elements of S to be numbers (and
thus it is unclear in what sense the geometric object is specified numerically,
unless “zahlenmässig” is intended here in a very loose sense).

On the other hand, the second reconstruction has going for it that it avoids a
number of important disanalogies between the components of “standard” exam-
ples of geometric objects, such as scalar fields, tensor fields, affine connections
etc. and the “components” which Schouten and van Dantzig associate with geo-
metric figures. One of these has already been alluded to: if the components of a
geometric figure are the points of S (and there will be multiple isomorphic such
S available), there is no guarantee that these “components” are anything to do
with real numbers. (Of course, the disanalogy would remain that such compo-
nents are sets (of sets, etc. to some finite order) of n-tuples of real numbers,
rather than real numbers.) A second, perhaps more pressing disanalogy has to
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do with the parameterisation group. On the first reading of Schouten and van
Dantzig, the parameterisation group is a subgroup of Aut(S), and therefore need
not have anything to do with the group of smooth analytic coordinate transfor-
mations on Rn (though it will, of course, still have its representations on Rn as a
subgroup of this group), which is the group of coordinate transformations which
are relevant for objects such as scalar fields, tensor fields, affine connections etc.
But on the second reading, this worry is avoided: the relevant automorphism
groups for any geometric object are the (subgroups) of the group of smooth
analytic coordinate transformations on Rn. I will return to these remaining dis-
analogies, especially in the definition of “components defined on some region”,
in §3.

The other point in favour of this second reading of Schouten and van Dantzig
is that it also establishes that geometric figures are geometric objects according
to the definition given by Veblen and Thomas (1926) in §2.2, and makes Veblen
and Whitehead’s (1932) argument that a manifold point is a geometric object
a special case of Schouten and van Dantzig’s more general argument. This is
related to the above point about the disanalogies between the components of
“standard” geometric objects and Schouten and van Dantzig’s “components” for
geometric figures. For the first, the group of analytic coordinate transformations
can only be defined if the space of coordinates is Rn (or any space uniquely
isomorphic to it, as exist for e.g. the case n = 1). For the second, Veblen and
Whitehead identify the “components” of a point as a “set of [real] numbers”,
which is true on the second reading of Schouten and van Dantzig’s argument, but
not necessarily the case on the first reading (on which the set S of components
could be any singleton set, which might have as its element an ordered n-tuple
of real numbers, but could also have as its element a single real number or
indeed any other object). This is a desirable consequence, since Schouten and
van Dantzig were aware of Veblen, Thomas, and Whitehead’s definitions (and
quote these extensively in the first section of their paper).

However, regardless of which reading of Schouten and van Dantzig one
adopts, it remains the case that this argument suffices to establish that geo-
metric figures, with their components thus-defined, are geometric objects in the
sense of Schouten and van Dantzig’s definition in the previous section, and,
on the second reading of their argument, also geometric objects in Veblen and
Thomas’s sense. This completes my argument that early geometers working on
the theory of geometric objects had a more expansive conception of geometric
objects than the modern one.

3 Locating the pointwise turn

Given that early work on the theory of geometric objects adopted this more
expansive conception, one might ask, when and why did the situation change?
The answer is to be found in a paper by Schouten and Haantjes, published
only a year later in 1936. Here, Schouten and Haantjes begin by noting that
there “is a certain lack of rigour” in previous definitions of the geometric object
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(Schouten and Haantjes 1936, 360), and, building on a suggestion by Wundheiler
(1934), propose an alternative formal definition of the geometric object. For
our purposes here, we will only need to focus on their definition of an “object”
(where I have changed and simplified their notation for ease of exposition):

Corresponding to every coordinate system [...] and every [...] point p
in U , let a finite set of numbers Ω1, Ω2, ... be given. We symbolise
these numbers by Ω [...]. The numbers Ω are called components of
an object.22 (Schouten and Haantjes 1936, 363)

Here, again, the region U is a “geometric region”, i.e. an open subregion of M
diffeomorphic to Rn (360).

Most important is the general shape of the construction here: an object
is specified by a finite collection of components (relative to some coordinate
system), which are real numbers defined at each p ∈ U . This is striking, because
it rules out precisely the components which Schouten and van Dantzig (1935)
associated with geometric figures (embedded submanifolds, collections thereof,
etc.) and so rules these out as “objects”.

To see that this does indeed restrict the space of objects to what might
be described as “local fields”, and thus rules out Schouten and van Dantzig’s
“geometric figures”, we just need to note that an object, on this definition, is an
assignment of a (finite) collection of components to each point in a region, i.e. a
component, relative to some coordinate system (U, ϕ), is a smooth map from U
into R. As we saw in the previous section, embedded submanifolds of U can be
associated with “components”, but not components in this sense. (Indeed, as
we saw in the above passages from Schouten and van Dantzig (1935), the fact
that the set of components must be finite already rules out extended objects
such as curves, even before we look at the definition of the components.) As
such, embedded submanifolds of U do not count as objects under Schouten and
Haantjes’s (1936) definition, by precisely the same arguments given in §2.1.

Why, then, did this transition go largely (if entirely) unremarked? I suggest
that the reason for this is that the notion of “components defined on some
region” which featured in previous definitions of geometric objects is ambiguous
between two ways of associating components, i.e. collections of real numbers,
to coordinatised regions. One way of associating components to regions is to
understand components on some U ⊂ M as a collection of smooth maps Ωϕ

from U into R. This is the notion of “components defined on some region”
which is adopted by Schouten and Haantjes (1936) and then Nijenhuis (1952).
It is also the notion of “components defined on some region” needed to capture
standard examples such as the components of scalar fields, tensor fields, affine
connections etc.

However, there is another way of understanding “components defined on
some region”, which is to notice that, if ψ : S → U is a (smooth, injective)
map, then we have the resources to consider “components defined on some

22. Note that this is almost exactly the same as the modern definition of an “object” pre-
sented in §2.1.
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region” in a quite different way—which is to take the “components defined on
U” to be the set Im(ϕ−1 ◦ ψ) ⊂ Rn. Indeed, we have already seen that this
is precisely kind of notion of “components defined on some region” adopted
by Schouten and van Dantzig (1935) in their argument that every geometric
figure is a geometric object (though recall that Schouten and van Dantzig could
also be read as countenancing the idea that the set S itself could be taken
as the “components”). It is also the notion implicitly adopted by Veblen and
Whitehead (1932) in their claim that every point is a geometric object, for
the special case where S is a singleton set. However, mathematically speaking,
these two notions of “components defined on some region” are very different—
the first is a collection of smooth assignments, to each p ∈ U , of a real number,
the second is an assignment to the region U as a whole of a collection of n-tuples
of real numbers.23 As soon as one begins to be mathematically precise about the
definition of “components”, one is naturally led to jettison this second option
in favour of the first, if one wants to capture standard examples such as the
components of scalar fields, tensor fields, affine connections etc., which are all
defined pointwise, as mentioned above. But since the first option is in fact a
plausible precisification of “components defined on some region”, it is natural
to think of it as just that—i.e. an explication of what was previously meant by
“components defined on some region”, rather than narrowing of what had gone
before.

However, there is something interesting about all this—which is that the
problem with assimilating embedded submanifolds of U under Schouten and
Haantjes’s (1936) definition of a geometric object comes at the level of their
definition of an object, and thus is, in some sense, prior to questions about
how such objects behave under coordinate transformations. Indeed, this is
to be expected, since embedded submanifolds of a differential manifold (and
(smoothly) parameterised families thereof, etc.) have well-defined lifts under
diffeomorphisms. So were early geometers working on the theory of geometric
objects simply mistaken to think that these were geometric objects? I think
that the answer to this question is “yes and no”. “Yes”, in that the sense in
which embedded submanifolds such as points, curves, and hypersurfaces can be
associated with “components” with respect to some coordinate system is very
different from the sense in which scalar fields, tensor fields, affine connections
etc. are, and discussions such as that of Schouten and van Dantzig (1935) gloss
over this difference. But—and perhaps more substantively—“no”, in that em-
bedded submanifolds can be represented relative to a coordinate system, and
these coordinate representations have well-defined transformations under trans-
formations of that coordinate system.

23. Note that this worry about the assignment of components to each point in U vs. U as a
whole remains if one understands Schouten and van Dantzig (1935) as arguing that the set S
can be taken as the components of a geometric object.
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4 Close

In this paper, I have argued that geometers working on the theory of geometric
objects in the 1920s and early 1930s held a more expansive view of geometric
objects than the modern definition. I have reconstructed and assessed their
arguments for this, and also shown how the need for greater precision in the
formal definition of geometric objects naturally leads from this early viewpoint
to the modern one.

The abrupt change in the geometric object concept around the year 1936 I
have identified in this paper raises several interesting questions. For example,
one might see the transition from the early geometric object concept to the
modern one as a potential Kuhn loss example, insofar as the former encompassed
any coordinate-independent structure with well-defined lifts under (spacetime)
diffeomorphisms, but the latter only those which are “local fields”.24

This also sheds new and interesting light on the evolution of the concept
of general covariance—in particular, the changing relationships between general
covariance, in the guise of the geometric object concept,25 and (i) “local fields”,
(ii) coordinate-independence, and (iii) the property of having well-defined lifts
under (spacetime) diffeomorphisms. As has recently been noted by March and
Weatherall (2025), these can come apart—for example, objects such as Yang-
Mills fields can be coordinate-independent but fail to be geometric objects be-
cause they lack well-defined lifts under (spacetime) diffeomorphisms. My dis-
cussion here also points to a second way in which these can come apart: objects
such as embedded submanifolds can be coordinate-independent and have well-
defined lifts under (spacetime) diffeomorphisms, but fail to be geometric objects
(under the modern conception) because they are not “local fields”.

One of the morals of this paper has been that this relationship between
general covariance and “local fields” did not always exist. From the current
perspective, then, one might be tempted to ask: just what, if anything, is
the significance of this relationship? To end this paper, I want to briefly say
something to address this question. But I would be inclined to begin with
a somewhat different question, namely: just what kind of structures was the
criterion of “general covariance” supposed to apply to?

On one version of the criterion of general covariance, it is a property of cer-
tain kinds of objects defined on a spacetime manifold. Objects of that kind
are said to be generally covariant just in case they can be characterised in a
coordinate-independent way, and have well-defined lifts under spacetime diffeo-
morphisms. And, as discussed above, on this version of general covariance, there
does not seem to be a particularly deep difference between objects which are
“local fields” (tensor fields, metrics, affine connections, etc.), and objects such
as embedded submanifolds which are not.

But when we talk about general covariance, we generally have in mind a
property not of certain kinds of objects defined on a spacetime manifold, but

24. I am grateful to Brian Pitts for suggesting this connection.
25. Misner, Thorne, and Wheeler (1973, 48) attribute the first clear statement of this con-

nection between general covariance and geometric objects to Veblen and Whitehead (1932).
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a property of spacetime theories—which are of course not spacetime manifolds
with certain kinds of objects defined thereon, but if anything, collections thereof
(i.e., the collection of models of the theory), or probably better, systems of
partial differential equations which pick out that collection of models as their
solution space (cf. Weatherall and March (2025)). For our purposes, it will
suffice simply that a spacetime theory asserts a certain relationship between
certain kinds of objects defined on a spacetime manifold. The theory is said to
be generally covariant just in case this relationship is preserved under the lift
of those objects under spacetime diffeomorphisms.26

It is here that I think the idea that embedded submanifolds of a manifold are
not geometric objects does have bite. This is perhaps clearest with the example
of points. A generally covariant spacetime theory cannot assert a relationship
between a particular point of a manifold and other objects—tensor fields, affine
connections, or whatever—defined at that point, except insofar as that point
is uniquely distinguished by its differential-topological properties, and except
insofar as that same relationship is asserted to hold equally of every other point
(with the same differential-topological properties) of the manifold. Likewise,
a generally covariant spacetime theory cannot assert a relationship between a
particular curve on a manifold and other objects defined along that curve, ex-
cept insofar as that curve is uniquely distinguished by its differential-topological
properties, and except insofar as that relationship is asserted to hold equally
of all other curves (with the same differential-topological properties)—in which
case we are really talking about congruences of curves, which are just complete
vector fields, and so we are back to geometric objects. More generally: it is
only insofar as embedded submanifolds can be thought of as corresponding to
certain kinds of local fields (complete vector fields for congruences of curves,
integrable one-forms for foliations of codimension one hypersurfaces, etc.) that
these are candidate objects to enter into the relationships asserted by a generally
covariant spacetime theory.

This is not to say that individual models of a generally covariant theory may
not pick out particular collections of embedded submanifolds—points, curves,
etc.—as distinguished in some way, e.g. by local field values there. Of course
they may. But we should be careful to separate this from the property of a
theory requiring, or specifying, distinguished embedded submanifolds as part of
its formulation. A distinguished space of embedded submanifolds of a manifold
cannot be invariant under (all) spacetime diffeomorphisms unless that space is
just the manifold itself, whereas a distinguished space of geometric object field
values on that manifold can. And that connection between “local fields” and
general covariance is precisely what the modern geometric object concept allows
us to express.

26. Note that a necessary condition for this is that these objects be “generally covariant” in
the sense described above, cf. March and Weatherall (2025).
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