
Philosophy of Science (2021), 1–8
doi:10.1017/xxxxx

RESEARCH ARTICLE

Decoding Cognitive Neuroscience: A Defence of
the Explanatory Role of Content
Johan Heemskerk1,∗

1University of Warwick
∗Corresponding author: j.heemskerk@warwick.ac.uk

(Received XX XX XXXX; revised XX XX XXXX; accepted XX XX XXXX)

Abstract
Cognitive neuroscientists typically posit representations which relate to various aspects of the
world, which philosophers call representational content. Anti-realists about representational
content argue that contents play no role in neuroscientific explanations of cognitive capacities.
In this paper, I defend realism against an anti-realist argument due to Frances Egan, who argues
that for content to be explanatory it must be both essential and naturalistic. I introduce a case
study from cognitive neuroscience in which content is both essential and naturalistic, meet-
ing Egan’s challenge. I then spell out some general principles for identifying studies in which
content plays an explanatory role.
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1. Introduction
Cognitive neuroscientists typically posit ‘representations’ which relate to various
aspects of the world. Some cell may be said to represent edges (e.g. Marr [2010]),
or some high-dimensional neural activation space may be said to represent a complex
object (e.g. DiCarlo and Cox [2007]). Philosophers term the thing in the world which a
representation represents the ‘content’ of that representation.

However, anti-realists argue that representational content does not play a role in neu-
roscientific explanation (e.g. Hutto and Myin [2014], Raja [2018]). In this paper, I focus
on a particularly compelling argument due to Frances Egan. Egan argues that the mathe-
matical function computed by a given ‘state or structure’ (read: representational vehicle)
is sufficient to explain the cognitive capacity under investigation. Content attributions,
Egan argues, merely serve various heuristic purposes, such as making the scientific
theory perspicaciously related to the presumed pre-theoretic interests of readers.

In this paper I argue, contra Egan, that representational content is a genuine explana-
tory posit in some regions of cognitive neuroscience. I specifically address Egan because
she provides helpful criteria for identifying explanatory relevance. I will argue that we
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can accept Egan’s (stringent) criteria, and show that - at least in certain studies - content
meets them.

Egan offers two considerations in favour of her position; (i) content is not “essen-
tial” and (ii) content is not “naturalistic”. However, she argues that being both essential
and naturalistic are necessary for content’s inclusion in the ‘theory proper’ of cognitive
neuroscience (i.e. for content to be explanatorily relevant). Egan argues that content is
not essential in the sense that it is not used to individuate representations in cognitive
neuroscience. Rather, she maintains, representations are individuated with respect to
the mathematical function computed by the system under investigation. Content is not
naturalistic in the sense that there is no determinate scientific principle guiding content
attribution - only the heuristic requirements of scientists.

I endorse Egan’s criteria that content, to feature in the explanations of science, must
be both essential and naturalistic. However, I introduce a case study in which content
is both essential and naturalistic. I show that, in a landmark study on face recognition
by Chang and Tsao Chang and Tsao [2017], representational states are individuated
with respect to their contents in precisely the way required by Egan (section 3.1). I then
show that content is determined by the naturalistic relations of encoding and decod-
ing, which constrain content attributions not with respect to the heuristic requirements
of researchers, but by the discriminatory and decoding capacities of the system itself
(section 3.2).

I end by considering three principles which will hopefully aid theorists in isolating
those regions of cognitive science in which content is used as part of the theory, not just
as a heuristic gloss (section 4).

2. The problem
According to Egan, attributions of content in cognitive neuroscience are a “gloss”, and
not part of the “theory proper”. She argues that content is attributed to a mental repre-
sentation1 on the basis of pragmatic choices by the scientist; she chooses, from the many
environmental items which have some degree of co-variance with the representational
state, the item2 which best serves her communicative aims.

For example, she may attribute the content ⟨face⟩ to a neural representation within
the fusiform gyrus. She may do this because we are primarily interested in the role that
the neural representation appears to play in face recognition, and choosing the content
⟨face⟩ transparently situates the investigation within that context. She could have chosen
any number of co-varying contents, including ⟨face-like-shape⟩ or ⟨two-dots-above-
a-curved-line⟩, either of which specifies something which co-varies with the neural
representation3. The only reason she chose ⟨face⟩, so Egan argues, is that it specifies

1I follow Thomson and Piccinini in treating mental representations as a case of neural representation
Thomson and Piccinini [2018]. Generally, I take neural representations to be high-level generalisations over
neural activity. Specifically, neural activity can be modelled as a mediating state which provides information
about the external environment to downstream systems.

2I follow Shea in using ‘item’ as a technical term intended to be metaphysically neutral about the things
which can be content - objects, processes, properties and so on can all be items in this sense [Shea, 2018,
p76n].

3An image of two dots above a curved line is a stimuli sometimes used in facial recognition tasks (e.g.
[Tsao and Livingstone, 2008, p10]).
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the most intuitive environmental item, helping the reader understand the broad signifi-
cance of the scientist’s research. The content-gloss is a way of marketing one’s research,
with no theoretical principles - only pragmatic principles - governing its attribution.

Egan’s argument presents a challenge to realism about representation in cognitive
neuroscience. Specifically, a tenet of realism which states that “content [...] is not sim-
ply derived from our own interpretive activities” [Ramsey, 2020, p56]. If content were
not part of the theory proper, but part of a gloss, it would be derived from our own
interpretative activities. I will show that, in certain circumstances, content is part of the
theory proper. As such, I aim to clear one hurdle in the way of representational realism.

The present defence of realism is conducted with the aim of demonstrating that
content can feature in a causal explanation of the operation of the cognitive system.
This places the current project alongside much recent literature on the realism/anti-
realism debate. For example, Lee [2021], Gładziejewski and Miłkowski [2017], and
Piccinini [2022] all argue that a realist account of content can deliver contents which
are “causally relevant to the system” [Lee, 2021, p12]. The present account makes an
advance by highlighting the precise role of encoding and decoding (see section 3.1.1).
By closely following scientific practice, I align with the methodology of Thomson and
Piccinini [2018], who argue that scientists frequently cite neural representations in their
explanations, making the anti-realist position untenable. The present paper extends and
complements such work by distinguishing between representational talk as a gloss and
as a genuine explanatory posit. This ensures that any purported evidence of scientists
employing representations can be verified as genuinely explanatory, directly addressing
the concerns of anti-realists such as Egan.

Egan’s argument also threatens contemporary psychosemantic methodology.
Psychosemanticists aim to provide a naturalistic theory of representational content. A
theory of representational content provides an account of the relation between a repre-
sentation and its content - answering the question: in virtue of what does representation
X have content Y ? Contemporary theorists pursue a methodology which involves turn-
ing to scientific practice to uncover an implicit theory of content. As expressed by
Ramsey, the methodology involves a critical examination of “the different ways cog-
nitive scientists appeal to notions of representation in their explanations of cognition”
[Ramsey, 2007, pxv]. Such theorists hold, as Burge puts it, that there are elements of a
theory of representation which cognitive science, “without being fully aware of its own
accomplishment” [Burge, 2010, p9], has discovered and which the philosopher seeks to
uncover. However, if Egan is right, there is no implicit theory of content in cognitive
science. Only heuristic principles govern content attribution. Those looking for theo-
retically informed content attributions are bound to be disappointed. So, there must be
a response to Egan if contemporary psychosemantic research is salvageable. I hope to
provide an adequate response which allows us to hold out hope for this methodology.

In the next section, I reconstruct Egan’s argument, and clarify the terms ‘content’,
‘theory proper’, and ‘gloss’. In the remainder of the paper I respond to Egan’s argument.
I will assume throughout that Egan is right both about the requirement that content
feature in the theory proper if it is to be explanatory, and Egan’s criteria for inclusion in
the theory proper. I focus on a case study from cognitive neuroscience in which, I argue,
content attributions meet Egan’s criteria for inclusion in the theory proper. I draw three
general principles from this case study. These principles should help guide us towards
those parts of cognitive science in which content attribution is part of the theory proper.
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If content attribution does not meet these principles, we are likely to find that content is
being used as a gloss.

2.1. Egan’s argument
In this section I set out a reconstruction of Egan’s argument. I then define some key
terms used within the argument.

The argument goes as follows:

(1) Content is explanatory if and only if it is part of the theory proper of cognitive
science.

(2) Content is part of the theory proper of cognitive science only if both of the following
two conditions are met:

(a) Content is treated as an essential part of the states or structures in question. This
requires that scientific theories “individuate the states and structures they posit
partly in terms of their content” [Egan, 2018, p251].

(b) Content is treated as naturalistic, meaning that it is determined by “a privileged
naturalistic relation holding between a state/structure and the object or property it
is about” [Egan, 2018, p251].

(3) However:
(c) Cognitive states and structures are not individuated in terms of content, rather

they are individuated by the mathematical functions they compute.
(d) “since pragmatic considerations typically do play a role in determining cogni-

tive contents, these contents are not determined by a naturalistic relation” [Egan,
2018, p255]. Further, the indeterminacy problems faced by naturalistic accounts
of content provide some reason to think that no single privileged naturalistic link
between a state and an environmental item exists.

(4) Therefore, content is not part of the theory proper of cognitive science.
(5) Therefore, content is not explanatory.

As Egan uses the term, content (which she refers to as cognitive content) is some
distal item or items external to the representational state itself. Cognitive content is
“domain-specific”: the distal items taken to be the content are “properties or objects
relevant to the cognitive capacity to be explained” [Egan, 2018, p253]. In other words,
cognitive content must be part of an explanation of the functioning of the system in
which the representational state which relates to that content is embedded.

Egan is a deflationist about content. As with deflationism about truth Armour-Garb
et al. [2023], Egan maintains that content does not feature in the explanatory account
provided by the cognitive scientist. Egan refers to the explanatory account as the theory
proper, a term she attributes to Chomsky [Egan, 2014, p119].

Rather than provide a general definition of the theory proper, Egan lists three com-
ponents of the theory proper, as she sees it, of computational cognitive neuroscience:

“[(i)] a specification of the function (in the mathematical sense) computed by the
mechanism, [(ii)] specification of the algorithms, structures, and processes involved in
the computation, as well as what I call [(iii)] the ecological component of the theory –
typically, facts about robust covariations between tokenings of internal states and distal
property instantiations under normal environmental conditions” [Egan, 2020, p11].
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Egan maintains that these components collectively constitute a complete explanation
of the cognitive capacity investigated by the cognitive scientist. They are “sufficient to
explain the system’s success (and occasional failure) at the cognitive task” under inves-
tigation [Egan, 2020, p11]. We can therefore minimally characterise the theory proper as
that element of the scientific theory which is sufficient to explain the cognitive capacity
under investigation. This definition is neutral on the question of how to characterise a
scientific explanation more broadly. I return to (i)-(iii) in due course.

The theory proper is to be contrasted with the gloss cognitive scientists use when
presenting their theory [Egan, 2018, p254]. The gloss plays no theoretical role beyond
its (indispensable) use as a heuristic to convey the significance that the theory has within
our ordinary understanding of the world, or to aid comprehension of otherwise difficult
technical vocabulary and concepts. The gloss serves “to illustrate, in a perspicuous and
concise way, how the computational theory addresses the intentionally characterized
phenomena with which the theorist began” [Egan, 2020, p12].

If Egan is right, we should be deflationists about representational content. Realism
should be thrown into question. In particular, the tenet that I aim to defend, that “con-
tent [...] is not simply derived from our own interpretive activities” [Ramsey, 2007, p56]
becomes untenable. Content would be a mere gloss, derived from the scientist’s purely
pragmatic attempt to intuitively articulate the theory proper. In addition, contemporary
psychosemantic methodology becomes a wild goose chase. Deriving a theory of con-
tent from cognitive science is impossible if cognitive science has no implicit theory of
content.

My response to Egan’s argument will be to demonstrate that, in an empirical case
study, cognitive content is required, along with (i)-(iii) in Egan’s characterisation of the
theory proper, for a complete explanation of the cognitive capacity under investigation.
Since I assume that the necessary conditions for inclusion in the theory proper set out in
(a) and (b) in the above argument are right, my response requires demonstrating how, in
the case study, content meets both conditions. Condition (a) is clarified in section 2.2,
and (b) in section 2.3.

Showing both conditions are met requires refuting both (c) and (d). In the remainder
of the paper, I will explicate Egan’s arguments in favour of (c) and (d), then attempt to
answer them. Of course, this will only establish that content meets the necessary condi-
tions to feature in the theory proper. Egan specifies no sufficient conditions for inclusion
in the theory proper, and I make no attempt to set out sufficient criteria. However, the
three components of the theory proper which Egan lists, plus cognitive content, appear,
upon inspection, to be the only elements of the theory provided by the scientist, sug-
gesting - absent an argument to the contrary - that they are collectively sufficient for the
explanation of the cognitive capacity under investigation.

2.2. Clarifying content as ‘essential’
The first condition for content to be essential is that cognitive scientists must “individu-
ate the states and structures they posit [...] partly in terms of their content” [Egan, 2018,
p251].

Scientists can individuate states and structures using various criteria, such as cortical
location in Talairach space. However, Egan has in mind individuation which isolates a
state or structure with respect to its explanatory role in a given cognitive capacity. That
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is, the state or structure must be individuated according to the role it plays in a given
scientific explanation.

According to Egan, the only relevant explanatory principle of individuation is the
mathematical function computed by the state or structure. For example, as Egan high-
lights, Marr’s edge detector mechanisms “compute the Lapalacean of a Gaussian” input
[Egan, 2014, p122]. Egan considers this the only explanatorily relevant individuation
due to the second condition for a property to be essential: any change in that property
(e.g. the mathematical function computed, or the content) must result in a change to the
system itself.

In the first step of her argument, Egan notes that the mathematical function computed
by a state or structure remains the same across a range of conditions under which cog-
nitive content can change [Egan, 2014, p122]. So, cognitive content appears to change
while the system remains unaffected in its mathematical processing.

In itself, change in content is not a problem for Egan. Indeed, the mathematical func-
tion computed by a cortical structure can change. Neural plasticity describes changes
in behaviour of cortical regions depending on their inputs and outputs. If we were
to remove a part of the cortex from the visual system (say, one which computes the
Laplacean of a Gaussian) and place it in an entirely different system, a different math-
ematical function may be computed. For example, if the input distribution into the new
region is no longer Gaussian, the cortical cells’ response profiles can be altered to effi-
ciently encode the new statistical distribution of their inputs (e.g. Laughlin [1981],
Friston et al. [2006]). In fact, it is not clear that it would make sense to describe the
structure as computing the Laplacean of a Gaussian embedded in the very same cor-
tical region if some environmental change leads to the input distribution becoming
non-Gaussian.

This is the crux of Ramsey’s own response to Egan; change in content does not
by itself invalidate content ascription [Ramsey, 2020, p74]. However, crucially, Egan
argues that any change in content must result in a change to the system itself. If the
mathematical function computed were to change, the system itself would be impacted
in some way. If the structure were to stop sharpening gradual luminance changes (which
is what taking the Laplacean of a Gaussian does), the system (person) would bump into
things constantly. It is precisely the restriction to changes to the system itself which
isolates individuation conditions which are explanatorily salient. What the defender of
the explanatory role of contents must show, then, is that a change in content results in a
change to the system itself.

Unfortunately, Egan provides no general criteria for assessing whether a change
constitutes a change to the system itself. So, I will attempt to provide a general charac-
terisation which is intended to capture the sense in which such change is necessary for
individuation to play a role in scientific explanation:

Change to the system itself: A change in state or structure type is a change to the
system itself iff the change affects either (i) what the the system does with respect to a
given cognitive capacity (for example, face recognition) or (ii) how the system performs
that cognitive capacity.

For example, for (i), a change in the content of some low-level representation hypoth-
esised to be involved in face recognition must either disrupt, improve, annihilate or
otherwise alter, on a behaviourally observable level, the performance of face recogni-
tion. Or, for (ii), a change in content must force the system to adopt a different strategy
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to achieve the same previous level of performance, where this means: the previous scien-
tific hypothesis regarding some contribution of a target representational state or structure
(including a hypothesis at the mathematical level of description) to a given cognitive
capacity must be invalidated or refined.

These two criteria involve changes to the system itself at various levels of grain,
depending on precisely how information processing is disrupted. A change in content
might be registered immediately by surrounding structures, might only be registered fur-
ther downstream, or may never be registered, leading to a difference in the final level of
capacity performance. They also ensure that any change is explanatorily salient within
the confines of the scientific hypothesis. So, the criteria specify the explanatory aim of
the cognitive scientist: to discover how some cognitive capacity is achieved, on vary-
ing levels of grain. This, I submit, captures Egan’s reasoning behind the restriction to
changes to the system itself.

With (a) clarified, in section 3.1 I attempt to counter (c) in Egan’s argument. There,
I present a case study in which representational states or structures are individuated in
terms of their content, in such a way that if the content of that representational state were
to change, there would be a change to the system itself (in the sense specified above).
First, in the next section, I clarify (b).

2.3. Clarifying ‘naturalistic relation’
In this section I attempt to clarify premise (b) in Egan’s argument: “since pragmatic
considerations typically do play a role in determining cognitive contents, these contents
are not determined by a naturalistic relation” [Egan, 2018, p255]. Further, the indeter-
minacy problems faced by naturalistic accounts of content provide some reason to think
that no single privileged naturalistic link between a state and an environmental item
exists.

In short, I will suggest that we understand the relevant type of determinate, natural-
istic relation to be any relation which is non-pragmatic and sufficiently determinate
to be explanatorily salient. I introduce each notion in turn.

While we lack consensus on a general notion of what it takes for something to be
naturalistic4 I will take the relevant contrast to be pragmatism in Egan’s sense. I claim
that to be part of the theory proper content must be minimally naturalistic in the sense
that it is not determined by principles which invoke communicative heuristic values. In
addition, the relation should be spelled out in terms which are generally scientifically
acceptable, such as the mathematical functions Egan herself takes to individuate the
representational states in question. As I spell out in section 3.2, understood in the right
way, the relations of encoding and decoding provide scientifically acceptable principles
for isolating sufficiently determinate contents.

I claim that, rather than require that the naturalistic relation isolate just one content,
we should insist only that content is sufficiently determinate to feature in an explanation.
I agree with Ramsey that “some degree of indeterminacy is to be expected and should
be tolerated” Ramsey [2023]. However, I do argue that content should be specified in
terms that isolate phenomena in just the same way that operationalised terms isolate

4As Papineau writes, naturalism “has no very precise meaning in contemporary philosophy” Papineau
[2021].
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phenomena for the purposes of empirical testing. General considerations of indetermi-
nacy should not place a priori constraints on scientific theorising except insofar as they
violate this requirement; content need be only as determinate as any other empirically
testable scientific posit.

For example, Egan rightly considers the mathematical function computed by a state
or structure to be part of the theory proper. However, as is well understood, multiple
mathematical functions can be used to model the behaviour of the same neural state
or structure (see Fresco et al. [2025] for discussion). Some indeterminacy is benign
provided we do not ascribe mathematical functions which mischaracterise the behaviour
of the system. The same is true of content.

We should instead take Egan’s challenge as pushing the question of whether content,
as used within the theory proper, is sufficiently determinate to serve the purposes of
the explanation on offer. In section 3.2, I argue that encoding and decoding, correctly
understood, meet this requirement. Further, in section 3.2.1, I argue that employing oper-
ationalised technical terminology to isolate content is required to achieve the appropriate
level of determinacy.

3. Case study: Chang and Tsao (2017)
In the following sections, I present a case in which two representational states share a
mathematical function but are individuated with respect to their content. This constitutes
a counterexample to Egan’s claim in (c), that cognitive states and structures are not
individuated in terms of content but by the mathematical functions they compute. I argue
that Chang and Tsao Chang and Tsao [2017] type individuate two representational states
in virtue of their content even though they both compute the dot product of two vectors.
Crucially, a change in this content results in a change to the system itself (argued for in
detail in section 3.1.1).

3.1. Content is essential
Chang and Tsao Chang and Tsao [2017] attempt to discover how faces are represented
in the primate brain. In the course of doing so, they seek to uncover two things: which
mathematical function is computed by face cells, and what those face cells represent, i.e.
their content. Both questions require an answer in order to discover how face recognition
is enacted by the system.

Chang and Tsao discover two types of cell involved in facial recognition. One type
processes “shape” content, predominantly found in the anterior medial (AM) of the
inferotemporal cortex (IT), and another type processes “appearance” content, predomi-
nantly found in the middle lateral/middle fundus (ML/MF) of the IT. As will be crucial
for the argument in section 3.2.1, Chang and Tsao provide technical terms for “shape”
and “appearance”. For simplicity, I focus on their definition of “shape”.

In order to arrive at their target phenomena, first “a set of landmarks were labelled by
hand” on images of 200 faces from “an online face database” [Chang and Tsao, 2017,
p1015], which can be seen in figure 1.

Each set of extracted landmarks forms a “set of 200 shape descriptors”. Chang and
Tsao “performed principal components analysis (PCA)” in order to “extract the feature
dimensions that accounted for the largest variability in the database, retaining the first 25



Decoding Cognitive Neuroscience 9

Figure 1. Labelling landmarks by hand. Source: Chang and Tsao [2017], Cell Press. Reprinted with
permission.

PCs for shape” [Chang and Tsao, 2017, p1015]. Principal components analysis (PCA)
answers the question: when two faces differ by some amount (with respect to shape),
which aspects of the shape contribute most to the difference? The principal components
are newly generated features which each combine various parts of the shape landmarks.
For example, the first principal component of the shape descriptor “involved changes in
hairline, face width, and height of eyes” [Chang and Tsao, 2017, p1015].

Each principal component is a complex arrangement of landmarks, defining points
in specific positions relative to one another. For example, we can understand the term
‘hairline’ to refer to a set of points forming a line positioned towards the top of a
space relative to the points which define the bottom (which we could call the ‘chin’,
for example).

Each individual cell is thought to encode, on average, “6.1 feature dimensions”
[Chang and Tsao, 2017, p1015] where each feature is a principal component. So, when
Chang and Tsao discuss the shape content of a particular cell, they have in mind a highly
constrained range of shapes within the parameters set by the feature dimensions the cell
is responsive to. In other words, it is not that any shape is encoded - the shape is a very
specific arrangement of landmarks for each principal component, and a specific set of
principal components for each range a cell encodes.

Chang and Tsao find that ML/MF cells and AM cells differentially contribute to face
recognition by independently processing different aspects of faces. This has the benefit,
Chang and Tsao hypothesise, of allowing the independently processed aspects of faces
to be used flexibly for a large number of tasks which require just one of the two types
of content, either shape or appearance. Their findings challenge accounts according to
which sparse responsivity indicates that the cells under investigation represent particular
individuals (such as ‘grandmother cell’ accounts).

Crucially, Chang and Tsao observe that “the fundamental difference between ML/MF
[middle lateral/middle fundus of inferotemporal cortex (IT)] and AM [anterior medial
of IT] lies in the axes being encoded (shape versus shape-free appearance), not in the
coding scheme” [Chang and Tsao, 2017, p1020; emphasis added]. The coding scheme
is characterised as a mathematical function - specifically, the cells “taking a dot product
between an incoming face and a specific direction in face space defined by the cell’s
STA” [Chang and Tsao, 2017, p1020] with the “incoming face” expressed as a 50-d
vector and the “face space defined by the cell’s STA” another vector which, roughly,
characterises the response profile (STA) of the cell.
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Specifically, the dot product is taken between the following vectors: the incoming
50-d vector defining the input, and the 50-d vector defining the cell’s STA. The STA,
or “spike-triggered average”, of the cell is the average stimulus that the cell responds to
[Chang and Tsao, 2017, p1015]. Before the STA is found, the stimulus range is “parame-
terized” [Chang and Tsao, 2017, p1022] along the dimensions of shape and appearance,
divided into 25 shape metrics and 25 appearance metrics. Each new stimulus is gener-
ated by software which randomly assigns values for each of these 50 parameters. It is
possible to find, by looking at the spike-rate of any given cell in response to an input,
the response profile to the parameterized stimuli, averaged over a range of inputs. We
thereby define a 50-d vector giving the axis of the cell, found by deducing the gradient
of the average tuning curve of the cell to each input parameter. The cell’s axis tells us
precisely which parts of the stimuli the cell is responding to, and how strongly. Some
cells are tuned primarily to shape properties (e.g. position of the nose relative to the
eyes), while others are tuned primarily to appearance properties (e.g. texture and hue of
the skin).

The scalar output of each cell is a result of computing, for both sets of cells (AM and
ML/MF), the same dot product function. But, while both types of cell perform the very
same mathematical function, they are individuated with respect to the input they encode.
The input they encode is distal, either the shape or features (appearance) of external
stimuli (specified using technical terminology, outlined in section 3.2.1). Simply put, the
scientists individuate the state or structure under investigation with respect to content,
not with respect to mathematical function computed, which is the same in both cases.

It is not possible to individuate the two types of representational state on a purely
mathematical basis. Both types of cell process the very same type of 50-d vector inputs
in which the vector values are determined by a quantification of the parameters of the
input values. Both types of cell perform a dot product function between their axis and
input vectors.

A prima facie mathematical difference between each cell appears to be given by
differences between the 50-d axis vectors which model the STA of each cell. Each axis
vector contains different values in each position of the vector. While this is not obviously
a difference in the mathematical function computed (which remains the computation
of a dot product), it may arguably be included in a fine-grained individuation of the
mathematical function computed (the dot product taken between specific vectors).

However, there is no mathematical principle determining which values each axis vec-
tor contains. The only principle which determines the axis vector values is the observed
response of the cell to the the corresponding content which the 50-d input vector models.

Without invoking the fact that the values within the vectors model the response profile
of the cell to externally specified input values, we leave the cognitive capacity, face
recognition, unexplained. Without specification of the input determining the axis vector
values, we appear to have an arbitrary principle of individuation, which tells us very
little about the contribution of each cell to the target cognitive capacity. But values in
the 50-d axis vector are not arbitrary, nor are they determined by any mathematical
principle. They are determined by which aspect of the external input each value within
the vector corresponds to.

Indeed, nor is it the case that the states or structures are individuated according to
cortical location. While ML/MF cells primarily represent shape, appearance representa-
tions were also found in the same location, and shape representations were found in AM
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which is otherwise dominated by appearance representations [Chang and Tsao, 2017,
p1015].

In summary, this section establishes that, as a matter of fact, Chang and Tsao indi-
viduate the states or structures under investigation with respect to content. In the next
section I outline precisely how this individuation is explanatorily relevant in virtue of
changes in content resulting in changes to the system itself.

3.1.1. A change to the system itself
In this section, I spell out how scientists ensure that their content attributions are such
that a change in content results in a change to the system itself. I introduce a worry
articulated by, among others, de-Wit et al. de Wit et al. [2016] which, I argue, aligns
with Egan’s own concern. In short, de-Wit et al. argue that experimenters typically fail to
take account of what downstream systems can access from the information purportedly
provided by neural activation. Rather, experimenters tend to focus on what they can
decode from neural activation, not what the brain itself can decode. Fortunately, they
suggest a solution: experimenters should take into account the decoding capacity of
downstream cortical regions. I argue that, if we constrain content attributions according
to the decoding capacity of the cortex, we will isolate contents a change in which results
in a change to the system itself. Thus, de-Wit et al.’s solution to their problem provides
an answer to Egan’s challenge. I show that Chang and Tsao are aware of this restriction,
and explicitly hypothesise about what the brain can decode.

As discussed by a number of researchers (e.g. Grootswagers et al. [2018], Ritchie
et al. [2019], Kriegeskorte and Diedrichsen [2019], de Wit et al. [2016], Schyns et al.
[2020], Baker et al. [2022]), what researchers can decode from neural activity may be
more than the brain can decode. For example, in one study Grootswagers et al. found
that “ only a subset of information that is decodable” to the experimenter is statisti-
cally related to eventual output, suggesting “a partial dissociation between decodable
information and information that is relevant for behaviour” [Grootswagers et al., 2018,
p258].

More generally, as de-Wit et al. write: “Much modern cognitive neuroscience implic-
itly focuses on the question of how we can interpret the activations we record in the brain
(experimenter-as-receiver), rather than on the core question of how the rest of the brain
can interpret those activations (cortex-as-receiver)” [de Wit et al., 2016, p1415].

This is a concern, according to such researchers, because unless we make the restric-
tion to decodable information, we do not actually know what information the brain itself
is using to perform behaviours thought to be supported by that information. I argue that
these researchers’ concerns closely resemble Egan’s; if they are right, cognitive neu-
roscientists often describe what we can decode from a system, rather than what the
system itself can decode. Given all our background knowledge, we can gain a great
deal of information from the firing of a single neuron. For instance, our neural scanning
machines may be capable of non-linear decoding of a cell. In a case in which down-
stream areas can only perform linear decoding, we are able to recover more information
than the system itself.

However, if we use what we can decode to isolate the content of the representation,
that content may change while the system itself fails to register it. As such, it would
mean that we could not causally relate the content to the performance of the cognitive
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capacity under investigation. To see why, consider what encoding and decoding involve.
Encoding can be summarised as follows:

X encodes Y iff there is some mathematical function f which takes inputs from Y and
converts them into outputs in X (e.g. f (yi) = xi) where X and Y are random variables
for message sequences with alphabets (ranges of values) y(1−n) and x(1−n)

5.
When decoding a sequence of codewords, the receiver essentially undoes the encod-

ing to retrieve the original message. In terms of cognitive capacities, this involves
translating the channel input into messages which enable the system to interface with
the environmental item information about which was encoded.

In telecommunications, the original message is typically known; the problem is not
to work out what was sent, the problem is how to most efficiently encode the source
string. However, in cognitive neuroscience, theorists need to find out what is encoded.
This can be found by discovering what can be decoded and reverse-engineering what is
encoded. However, if the original message is characterised by what experimenters can
decode without restriction, the message retrieved will be a message the system itself
(potentially) cannot retrieve. To be more precise: the values modelling the input may
include values not included in a model of the input when restricted to the decoding
capacity of the system.

In such cases, changing the non-cortically-retrieved values of the external item will
have no impact at all on the system’s capacity to interface with the environmental
item which its cognitive capacity involves. There will be no corresponding values in
the decoded string modelling elements of the neural response. So, a change in this
unreadable content will make no difference to the system itself, either immediately or
downstream. It cannot extract that information; it may as well not exist for the system
itself.

In order to satisfy the decoding requirement, studies must minimally demonstrate
the plausibility of the brain (being modelled as) performing mathematical operations
over values of the input. This is stressed by Ritchie et al., who suggest that simply
linking the representation to behaviour is explanatorily insufficient. As they write, while
“connection to behaviour supplies valuable evidence, we still think that it is not enough
to warrant inferences to representational content” Ritchie et al. [2019]. I agree; ideally,
the specific mathematical decoding strategy would be identified.

The focus on decoding extends the existing realist literature; while most studies do
emphasise the role of downstream systems in content determination, they typically refer
merely to behavioural ‘guidance’ (e.g. [Shagrir, 2012, p539], [Thomson and Piccinini,
2018, p195], [Millikan, 2021, p2461], [Gładziejewski and Miłkowski, 2017, p342],
[Piccinini, 2022, p5]). Guidance is a much looser notion than decoding proper, since
it merely specifies an increase in probability of success given the input Gładziejewski
and Miłkowski [2017]. However, in principle, many correlated external items can guide
an organism in this sense, even if the organism can only decode information about a
limited subset of those items. The probability that a toad successfully feeds may be
increased by the presence of flies, but it may only be able to decode the presence of
little black dots Neander [2017]. On the other hand, as I have elaborated the notion,
decoding connects most clearly to mechanistic explanation, since it provides a detailed

5See [Stone, 2015, pp26-7] for more in-depth analysis.
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picture of the “part-to-part interactions” Mougenot and Matheson [2024] between val-
ues of the external item and the cognitive operations performed over the values of the
representation.

If content attributions are constrained by decoding capacity, encoded information
from the environmental item will be decoded by the system, and any change in the
decoded values will impact either the performance of the cognitive capacity itself, or the
strategy the system uses to enact the same capacity. In other words, the source message
from the external item will be retrieved by - and used to enact those capacities by -
downstream systems. So, any change in that message will have a downstream impact. I
illustrate this with a simple thought-experiment.

Imagine the ⟨shapet⟩6 content of ML/MF cells were to change given a change in the
environment. There are two possibilities: face recognition is either (partially or wholly)
disrupted, or face recognition is not disrupted.

Imagine ⟨shapet⟩ now becomes ⟨soundt⟩. Some external change, per mirabile, takes
place such that in all cases in which shapet was present, soundt is now present (all
faces become flat like mannequins, but each emits a particular sound). Moreover, recep-
tors upstream of ML/MF are sensitive to soundt , and downstream decoders can access
soundt information. In other words, we have a genuine case of ⟨shapet⟩ content being
replaced by ⟨soundt⟩ content.

If face recognition is disrupted, this is because the system cannot use this specific
sound profile to enable face recognition (as we would expect), even if ML/MF cells
are (somehow) responsive to sound, and downstream areas can (somehow) decode the
sound (i.e. retrieve the encoded values). A change in content, in this case, has led to
a straightforward change to the system itself in the sense that the performance of the
cognitive capacity in question has been annihilated.

If face recognition is not disrupted, this is because the system can (somehow - per-
haps the specific sound cue is highly correlated with the presence of faces, allowing the
system to track whether a face is present - i.e. perform face recognition) use ⟨soundt⟩
to recognise faces. However, the way in which the system is able to perform this cogni-
tive capacity will be different from the way it performs the same capacity for ⟨shapet⟩
content. The scientific theory of the encoding and decoding strategies used would look
quite different. As we saw, Chang and Tsao hypothesise a specific linear encoding and
decoding strategy for shape content involving ““taking a dot product between an incom-
ing face and a specific direction in face space defined by the cell’s STA” [Chang and
Tsao, 2017, p1020]. This mathematical function must change if the cell’s STA is now
defined by a different external sound profile. This is a change to the system itself in
terms of the implementation of the encoding and decoding strategies, despite the fact
that performance of the cognitive capacity is not disrupted.

So, do Chang and Tsao themselves restrict content attribution to decoding capacity?
Yes and no. They are explicit in their hypothesis that the system itself linearly decodes
shape input. It is true that their study focuses primarily on what they, as researchers,
could decode from the cells. However, this is with the aim of demonstrating the feasi-
bility of such a decoding strategy for the system itself - they “show that it is possible to
decode any human face using just 200 face cells from patches ML/MF and AM” [Chang

6Underscore ‘t’ used to indicate that this is a technical concept for a particular shape profile - see section
3.2.1.
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and Tsao, 2017, p1024]. Indeed, their own results are remarkable - from reading numer-
ous single cell recordings, they were able to reverse-engineer the stimulus presented to
the macaques with a high degree of accuracy [Chang and Tsao, 2017, p1019]. Chang
and Tsao conclude that it is likely that the brain itself implements this efficient strategy.

This hypothesis, that the system itself is able to retrieve the same information that the
researchers themselves were able to retrieve, requires further testing, and must be made
explicit when attributing content. Fortunately, work is underway elsewhere in cognitive
neuroscience, as a direct result of the challenge by de-Wit et al. (e.g. Zhan et al. [2019]),
to employ information-theoretic measures to explicitly perform such tests. This work is
vital if we are to make content attributions which are essential in Egan’s sense. Where
it is already underway, at least at the level of hypothesis formation, content attributions
made in those regions of cognitive neuroscience are essential to the posited representa-
tions. Such contents meet one necessary condition for inclusion in the theory proper. In
the next section I consider the second necessary condition - that there be a sufficiently
determinate naturalistic relation between representation and content.

3.2. Content is sufficiently determinate
What is required to achieve the level of naturalistic determinacy required by Egan?
To recap, this requires a system-side constraint to be imposed, rather than a constraint
imposed by the heuristic needs of researchers. It also requires that this constraint isolate
only explanatorily relevant contents. I argue that the decoding constraint does double
work by providing such a system-side limit to the set of possible distal contents.

Egan motivates her concern by considering whether the “ecological component” of
the theory can be considered the content of a representation. As discussed in section
2.1, the ecological component of the theory is the set of “facts about robust covaria-
tions between tokenings of internal states and distal property instantiations under normal
environmental conditions” [Egan, 2020, p11]. However, robust covariations are myriad.
Given the high levels of natural redundancy in the environment, any given external item
robustly covaries with a potentially unbounded set of other items. Most of these items
will have no explanatory relation to the performance of the cognitive capacity by the
system. Faces covary with hands, but hands play no part in face recognition. So, the
ecological component cannot be considered explanatorily relevant content.

However, the external items isolated by Chang and Tsao are not the ecological com-
ponent of the theory - they are the contents of the representations and are much more
tightly constrained than robust covariance. The content of ML/MF cells is ⟨shape⟩. The
ecological component is ‘face’, or other members of a set of covarying items. Below, I
outline how the system itself provides constraints on content beyond robust covariance.

I begin by assuming that, for any given cognitive capacity, there are a number of
environmental items which covary with the neural activity, and which could, in prin-
ciple, enable that capacity. In this light, we can reframe the question about naturalistic
determinacy as: how does the system itself determine which item will be used for that
cognitive capacity?

In short, the answer is coding constraints, on both the input and output side. These
constraints on content rule out contents with no explanatory value by narrowing in on
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contents which can be processed by upstream systems, as well as decoded by down-
stream systems. This provides sufficiently determinate content, given by naturalistic
system-side constraints. I go through each constraint in turn.

What the system can process places constraints on encoding. If some channel can
only process visual information, only visual information can be encoded. Karen Neander
has argued that this limits the range of possible content ascriptions. Neander considers
a classic indeterminacy challenge associated with positing colour content. How do we
know that purportedly ⟨green⟩ content is not actually ⟨grue⟩? Grue is defined as “(i)
seen before 2040 and green or (ii) seen after 2040 and blue” [Neander, 2017, p169].
Here is one way Neander suggests that we can distinguish between these two possible
contents: “If we want to build a detector that is able to detect grue, we’d best include a
green detector and a blue detector as well as a timekeeper to monitor the date and time,
and set it to switch the G-producer’s input from green detection to blue detection once
2040 arrives” [Neander, 2017, p169].

Constraints on what the system can discriminate in the environment reduce the range
of possible environmental items which serve as content for a given representation.
Representations with either ⟨green⟩ or ⟨grue⟩ content can fulfill a number of functions
which prima facie call for ⟨green⟩ content (until 2040, at least). Nonetheless, if the
system has no way of detecting grue, grue cannot be the content of the representation.

In addition to upstream encoding constraints, what the system can decode places
constraints on representational content. What the system itself can use from the repre-
sentation limits the range of possible environmental items the representation represents.
This was discussed in section 3.1.1 with reference to de-Wit et al. de Wit et al. [2016].
As they discuss, we need to think about what the rest of the brain can decode from neural
activity in another cortical area.

Imagine a neural system which is sensitive to grue-like properties. When it is pre-
sented with green, a connected neuron fires at a rate of 50 spikes per second. When it is
presented with blue, that neuron fires at a rate of 100 spikes per second. If we were to
monitor that neuron, we could pick up this change. Imagine we observe the neuron pre-
sented with blue, and presented with green, and note down the firing rate. Imagine we
also have a timekeeper to monitor the date and time. We could use this neuron to detect
grue. We leave the neural system staring at a green-looking patch we suspect might be
grue. Given everything we know, we can see that the firing rate suddenly switches from
50 to 100 when in the presence of the same colour patch at one second past midnight on
the 1st of January, 2040.

However, imagine the system itself has downstream neurons which fire in response
to the input of the colour-sensitive neuron. Imagine also that none of these neurons can
detect a neural firing rate of above 50 spikes per second, and treat anything higher than
that as 50 spikes per second. The system cannot decode grue.

My claim is that these two conditions provide plausible naturalistic principles for lim-
iting the range of possible content ascriptions. The result is a much more strict relation
between representation and content than the relation of robust covariance.

Moreover, the constraint appears to be implicit in the study under investigation. As
I noted in section 3, Chang and Tsao hypothesise that downstream areas are able to
linearly decode the content of cells in IT. They also implicitly hypothesise that upstream
areas can discriminate the input: they do not, for example, present the macaques with
stimuli they know to be beyond the range of their sensory receptors.
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Together, these constraints limit content ascriptions to those contents a change in
which ensures a change to the system itself, and we have good reason to think that such
a limitation provides us with a range of content ascriptions which are explanatorily rele-
vant. Coding limitations, encoding and decoding, are the system’s own way of reducing
indeterminacy to within acceptable levels.

3.2.1. Technical terminology
In this section, I argue that the concepts used within cognitive science to describe content
must be technical in the sense of picking out, precisely, a set of target phenomena.
Our technical vocabulary must match the precision of the system itself, which requires
operationalised terminology which isolates an item values of which can be selectively
intervened on. Any content attribution not operationalised for study is likely not used
as part of the theory proper. We should not be mislead by offhand content attributions,
which are likely to be a gloss. The phenomena picked out by these technical concepts,
regardless of the terms we use to describe them, should perform the explanatory work.
There should be a clear link between the phenomena picked out and the performance
of the cognitive capacity under investigation. Only in this way can the theory pick out
contents which match the granularity of the system-side representation.

For the purpose of simplicity, I will focus in what follows, as I have been doing
throughout, on Chang and Tsao’s technical concept for SHAPE.

It should be clear that using the ordinary (non-technical) concept SHAPE does not
serve Chang and Tsao’s explanatory purpose very well. There are numerous types of
shape, and the concept is very broad. The system under investigation, as I have empha-
sised throughout, has as its content a very specific arrangement of shapes along very
specific dimensions. Just invoking SHAPE as a general concept does not provide us
with a clear link between the content so described and the cognitive capacity under
investigation. Moreover, the ordinary concept SHAPE is itself likely to be indetermi-
nate. Many studies suggest that ordinary concepts are highly flexible (for reviews see
Barsalou [1999], Yee and Thompson-Schill [2016]), meaning that SHAPE will not spec-
ify phenomena at a fine enough grain to be empirically tested with precise experimental
interventions.

Chang and Tsao do not use the ordinary concept SHAPE. Rather, though they use the
term ‘shape’ throughout, the concept behind it is highly technical, in such a way that it
precisely determines target phenomena with a clear link to the cognitive capacity under
investigation. In section 3.1, I set out how Chang and Tsao define ‘shape’: a very specific
arrangement of landmarks for each principal component, and a specific set of principal
components for each range a cell encodes. It is shape understood in this technical sense
which determines the precise content of the AM cells.

This clearly links to the explanation of the cognitive system under investigation.
Chang and Tsao explain the response profile of an AM cell with reference to the fact
that it is encoding values along the shape parameters which they identify. They provide
a description of the specific encoding scheme enacted by the AM cell, relative to these
parameters, which explains the behaviour of the cell.

On the other hand, Chang and Tsao do not employ an operationalised term for ‘face’.
So, we should not assert that any of the representations in question have the content
⟨face⟩. It is true that the ⟨shapet⟩ content in the theory does indeed reliably co-vary with
faces (is typically found on faces). Nonetheless, the concept FACE does not function as
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a technical concept within Chang and Tsao’s theory. It receives no specific definition,
is not operationalised, and is left at the level of an ordinary concept. Nor is there any
indication that ⟨face⟩ content is being encoded or decoded. I think we should allow,
therefore, that any talk of these representations as representing faces is merely a gloss.

It may be that the concept FACE receives a technical definition within another theory,
and that we can therefore speak of some states or structures as representing faces, though
it is questionable the extent to which this will give us faces as we ordinarily understand
them. It might be, and this is entering into highly speculative territory, that the only
representation which has the content ⟨face⟩ as we ordinarily understand it is the ordinary
concept FACE itself. Discussing the content of concepts, however, is a significant step
beyond the kind of low-level sensory representations which theorists such as Chang and
Tsao are investigating.

What is the moral of this section? The distal item which is the content of the repre-
sentation under investigation has been specified using technical terminology, isolating
relevant phenomena to a far greater degree of specificity than non-technical language
allows. As such, the indeterminacy which accompanies non-technical language has been
parsed out, and what remains is the isolation of a very specific feature of the distal world.
One could not substitute another concept, one which does not isolate the same relevant
phenomena, without loss of explanatory power.

If there is any remaining indeterminacy in the technical language used to express the
isolation of the relevant phenomena, such indeterminacy is benign provided the same
phenomena are isolated. In other words, such purported indeterminacy is a difference
which makes no difference. By employing technical language, Chang and Tsao ensure
that the content they attribute to representations is sufficiently determinate so as to be
irreplaceable within the theory, except by language which isolates just the same phe-
nomena. At this point, any difference is merely terminological, with no bearing on the
distal item which constitutes the content proper.

4. Three principles
We can draw three principles from the above. If we apply these principles to cognitive
science, we should be guided towards those studies which use content within the theory
proper.

4.1. First principle
Focus on studies which provide a hypothesis about what the system itself can
decode.

As we saw in section 3.1.1, possible decoding of content is crucial. It is required
for a change in content to make a difference to the system itself. It is also necessary
to reduce the range of indeterminacy to explanatorily salient levels, along with the
encoding relation.

4.2. Second principle
Focus on studies which describe content using technical terminology
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Technical terminology allows content to be operationalised, so amenable to empirical
testing in the same way that other key scientific posits are. It also allows for a reduction
in the kind of problematic indeterminacy associated with ordinary language. It removes
polysemy, and the rich network of associations we are immersed in when we use
everyday words. Many of these associations have no explanatory bearing on cognitive
capacities, so our technical language should clearly and unambiguously pick out just
those phenomena we take to be explanatorily relevant.

We must ignore content ascriptions which clearly lean on ordinary terms, such as
loose uses of ‘face’, since these likely reflect the pre-theoretic associations of the scien-
tists. Not everything the scientist says within the confines of a paper is strictly part of
the theory. We have Egan to thank for focusing our attention on this fact.

4.3. Third principle
Focus on studies which posit representations which serve a function for an
externally terminating cognitive capacity.

As Shea writes, an externalist explanandum delivers an externalist explanans
[Shea, 2018, p31]. Throughout, we have been considering a study in which a cognitive
capacity, face recognition, is performed. This cognitive capacity is externalist in the
sense that it allows for the performance of tasks which require some aspect of the
external world to be represented. We cannot recognise faces unless we have some rep-
resentation which enables us to interface with external things - in this case, some aspect
of faces (i.e. their particular shape profile). When discussing decoding, we explicitly
invoked the fact that the capacity must, after some internal processing, connect back
to the external world. It is this that ensures that differences in the environment make a
difference to the system.

This principle does raise the question whether cognitive neuroscience can ever move
beyond such studies7. It may be that a theory of content can be extracted from these stud-
ies which can generalise to cases in which the external item is not explicitly specified.
However, this lies beyond the scope of the current paper.

5. Conclusion
I assume that Egan is right that we have to treat content as essential, and provided by a
sufficiently determinate naturalistic principle, in order to count it as part of the theory
proper. However, I have attempted to show that content can meet these two criteria.
Given that there does not appear to be any other element of the theory proper, we can
tentatively conclude that, in meeting these two criteria, content is part of the theory
proper in our case study.

In Chang and Tsao’s study, individuation by mathematical function computed is not
sufficient to explain the cognitive capacity under investigation; they also invoke cog-
nitive content. Content is determined by the dual relations of encoding and decoding.
These relations ensure that a change in content affects a change to the system itself,

7Thanks to an anonymous reviewer for raising this question.
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either by way of altering the encoding and decoding strategy of the system or disrupting
performance of the cognitive capacity.

When it comes to reducing indeterminacy to acceptable levels, the system itself
imposes constraints on representational content by way of coding constraints. Encoding
constrains by way of discriminatory capacities, decoding constrains by way of process-
ing limitations. Scientific theories in which content is part of the theory proper will
mirror these constraints by way of technical terminology. This allows scientists to iso-
late just those environmental properties which are explanatory of the cognitive capacity
under investigation.

If content satisfies these conditions, it is likely used within the theory proper.
Otherwise, content is likely to be a gloss.

I hope this can make a contribution to the content realism debate. Such debates cite
scientific practice in order to show whether content is a genuine explanatory posit, or
an otiose way of referring to more basic processes. I hope to have highlighted that
the search for explanatorily salient content attributions should be constrained by the
role content plays within the theory proper. If Egan is right in her requirements, we
should not expect to find such contents in any offhand reference to representation. So,
philosophical arguments for or against content realism, informed by scientific prac-
tice, should be careful to discriminate carefully between studies which meet the three
principles above and those which do not.

It should also aid those looking for an implicit naturalistic theory of content in cog-
nitive science. If we isolate those studies which meet all three principles, it should be
possible to determine an implicit theory of content.
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