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Abstract

Representations appear to play a central role in cognitive science. Capacities such as

face recognition are thought to be enabled by internal states or structures representing

external items. However, despite the ubiquity of representational terminology in cogni-

tive science, there is no explicit scientific theory outlining what makes an internal state

a representation of an external item. Nonetheless, many philosophers hope to uncover

an implicit theory in the scientific literature. This is the project of the current thesis.

However, all such projects face an obstacle in the form of Frances Egan’s argument that

content plays no role in scientific theorising. I respond that, in some limited regions

of cognitive science, content is crucial for explanation. The unifying idea is that closer

attention to the application of information theory in those regions of cognitive neuro-

science enables us to uncover an implicit theory of content. I examine the conditions

which must be met for the cognitive system to be modelled using information theory,

presenting some constraints on how we apply the mathematical framework. For exam-

ple, information theory requires identifying probability distributions over measurable

outcomes, which leads us to focus specifically on neural representation. I then argue

that functions are required to make tractable measures of information, since they serve

to narrow the range of possible contents to those potentially explanatory of a cognitive

capacity. However, unlike many other teleosemanticists, I argue that we need to use a

non-etiological form of function. I consider whether non-etiological functions allow for

misrepresentation, and conclude that they do. Finally, I introduce what I argue is the

implicit theory of content in cognitive neuroscience: maxMI. The content of a represen-

tation is that item in the environment with which the representation shares maximal

mutual information.
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Chapter 1

Introduction

It is Ambition enough to be employed as an Under-Labourer in clearing Ground

a little, and removing some of the Rubbish, that lies in the way to Knowledge.

John Locke, Epistle to the Reader, An Essay Concerning Human Understanding

1.1 Background

Minds provide their users with a range of cognitive capacities - abilities which require

the exercise of mental processes. Cognitive science is an attempt to understand and ex-

plain those capacities using broadly scientific methodology. The explanations offered by

cognitive science defer to things called representations. Each representation is thought

to have a special relation to a particular thing external to itself, that thing being known

as the ‘content’ of that representation.

Explanations in cognitive science also involve the positing of computations performed

over those representations (e.g. [Friedenberg et al., 2021, p3]). These computations are
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thought to respect the content of the representations, in the sense that internal process-

ing is partly determined by the thing which the representation represents. This is how

the cognitive system is able to enact cognitive capacities which are directed upon those

external items.

For example, humans and other animals possess the capacity to recognise familiar

faces. We can do this in a range of conditions - the face can be side-on, dimly lit, partially

occluded, and so on. A leading theory in cognitive science suggests that facial recognition

is achieved, in part, by the system performing computations over perceptual represen-

tations elicited by a face. This processing results in the mapping of those perceptual

representations to an internally-stored ‘face-space’ representation (see [O’Toole, 2011]

for a review). Mapping to the face-space allows the perceived face to be represented on

a standard template, allowing comparison with stored representations of familiar faces,

despite variations in the input. This explanation relies on representational content in a

number of ways. For example, the content of the perceptual representation determines

its processing; whether the perceptual representation is mapped to a face-space or not

depends on whether its content is appropriately related to the content of the face-space.

However, there is no consensus in cognitive science about how content is to be at-

tributed to a representation. In fact, despite explanations relying on representational

content, we currently have no general theory of content which tells us, for any given

representation, what makes it the case that some item(s) is/are the content of that repre-

sentation. This also means there is no explicit procedure for determining content which

could be used across the various disciplines which make up cognitive science.

In this thesis I will argue that while there is no such explicit theory of content in
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cognitive science, there is an implicit theory which is operative in certain domains of

cognitive science. Across much of the field, the methodologies employed to discover

content - such as spike-triggered averages, conditional mutual information, maximally

informative dimensions - testify to an implicit theory of the relationship between con-

tents and representations. For those within cognitive science who find that the implicit

theory serves their explanatory needs, it can, once explicit, facilitate the systematisation

of content attributions for those projects.

1.2 Research questions

The following three questions guide the thesis:

1. Is there an implicit theory of content in cognitive science?

2. How can we discover the implicit theory of content?

3. What is the implicit theory of content?

Each question relies, at least in part, on an answer to the other two. It will be difficult

to establish that there is an implicit theory without showing what it is. It will be impos-

sible to show what the theory is without knowing how to discover it. It will be difficult

to know how to discover an implicit theory unless we know whether there is one.

In order to make some headway, in chapter three I consider an argument, due to

Frances Egan, which would have us conclude that there is no implicit theory of content

in cognitive science (e.g. [Egan, 2014]). Egan presents an argumentwhich, in effect, spells

out necessary criteria for content having an explanatory role within cognitive science.
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Egan argues that if the use of content does not meet these necessary criteria, then content

attributions are not governed by an implicit theory.

I will endorse Egan’s criteria but, conta Egan, I will show that content use can meet

them, provided we are selective about the studies we use to investigate content attri-

bution. I spell out three further criteria we should use to ensure that content plays an

explanatory role within any study we investigate (section 3.5).

Following chapter three, we will have gone some way to answering the first and

second research questions. We will know, at least, that an implicit theory of content is

possible. Wewill also have narrowed our search considerably; using our set of constraints

we will know which regions of cognitive science could harbour an implicit theory of

content, and which we can ignore. I go on to employ the methodology spelled out below

to continue the search for an implicit theory of content within the promising regions of

cognitive science.

1.3 Method

Myapproachwill be largely similar to, among others, that of both Ramsey (e.g. [Ramsey, 2007])

and Orlandi (e.g. [Orlandi, 2020]), who analyse scientific practice in order to understand

how representational explanation is used within that practice. As Orlandi writes:

I propose that we look at what mental representations are by looking at how

they have been used in these disciplines [i.e. the cognitive sciences]. In this

respect, I take philosophers interested in the notion of mental representation

to be akin to those philosophers and historians of science more generally

4



who investigate the nature of scientific posits by looking at scientific practice.

[Orlandi, 2020, p101]

As I will be understanding and employing it, the methodology outlined by Orlandi is

an application of scientific reasoning to science itself. In this sense, “looking at scientific

practice” involves, first, providing a hypothesis for the theory of content which guides

scientific practice. Second, generating predictions about how scientific practice would

proceed were the hypothesised theory operative, in contrast with predictions about how

the science would proceed were another theory operative. Finally, studying scientific

practice in order to ascertain which predictions are borne out.

When attempting to extract information - in this case, about the implicit theory of

content in cognitive science - it is crucial to have some structuring hypothesis with which

to interpret the evidence - in this case, the cognitive science literature. Of course, wemust

be careful to avoid confirmation bias, so throughout I will raise complications for the

theory which test whether the guiding hypothesis really accounts for scientific practice.

In order to generate the hypothesis, I employ insights from philosophy. In chapter

two, I provide a literature review of existing philosophical theories of content, and situate

my own project among them. I primarily develop a line of thinking, beginning with Fred

Dretske, which suggests that the content of a representation is determined by both its

informational link with some environmental item (e.g. [Dretske, 1981]) and its functional

role within a wider system (e.g. [Dretske, 1994]). I use this guiding hypothesis to specify

research question three:

1. What is the implicit theory of content?

5



i. Which type of information link is relevant for content determination?

ii. Which type of function is relevant for content determination?

To answer (i), I first show, in chapter four section 4.4, that Claude Shannon’s math-

ematical model of information theory [Shannon, 1948], specifically, provides what I call

the ‘background theoretical framework’ of content attribution in the relevant regions of

cognitive science. I then consider, in chapter seven section 7.2.1, two models of the rele-

vant information link - correlational information and mutual information - and argue, by

way of comparing how each model best fits the methodology of cognitive science, that

mutual information is the relevant information link.

To answer (ii), in chapter five I spell out precisely how information theory in Shan-

non’s sense can be properly applied to the cognitive system. If we are to do so carefully,

wemust observe a number of further restrictions (e.g. section 5.3). I will argue, in chapter

six, that the conditions for the application of Shannon’s information theory require us to

understand functions in the sense of Robert Cummins (e.g. section 6.5).

Each strand of the theory builds to make explicit an implicit theory of content as used

in certain regions of cognitive science, as evidenced by both the methodology used and

the commitments scientists must take on if they are to properly apply information theory

(which they do). The theory, which I call maxMI, will be summarised in section 1.4.

There are some general constraints I will observe. Since content is supposed to be

explanatory, I will focus on cases in which its explanatory role is most perspicacious. I

will be following Nicholas Shea’s dictum “externalist explanans, externalist explanadum”

[Shea, 2018, p31]. I will primarily investigate studies for which a cognitive capacity

clearly involves some item outside of the system itself in the external environment. I have

6



chosen to focus on two related categories of study: those pertaining to facial recognition

and those pertaining to object recognition more generally. The cognitive capacity, recog-

nition, is operationalised in various concrete ways, such as the “ability to assign labels

(e.g. nouns) to particular objects, ranging from precise labels (‘identification’) to course

[sic; coarse] labels (‘categorization’).” [DiCarlo et al., 2012, p416]. In this sense, recogni-

tion is a capacity humans, at least, have which is directed towards external items (faces

or objects). Here, the explanatory value of content is most likely to be evinced, since

the capacity involves the environment directly. So, if we hope to find an implicit theory

governing content attribution, these studies are the most likely candidates in which to

find one.

I will say more about how I understand content to be explanatory in chapter two

section 2.5.

1.4 Conclusions

I conclude that, within certain regions of cognitive science, there is an implicit theory of

content. The relevant regions are those areas of cognitive neuroscience, systems neuro-

science, psychophysics, and any other region explicitly investigating neural representa-

tions which take into consideration the downstream decoding capacities of the cortex.

More narrowly still, these areas must specify content using technical vocabulary which

is sufficiently precise to enable the modelling of the external item as a random variable

(section 5.2).

Decoding must be accounted for, since this ensures that a change in content makes
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a change for the system itself. If downstream areas are insensitive to upstream changes,

content cannot play the kind of explanatory role that other explanatory posits, such as

the description of neural behaviour in terms of mathematical function computed, play. I

spell this out in chapter three section 3.4.1 and chapter seven section 7.5.3.

Studies dealing with neural representation must be considered over those which deal

with more folk psychologically-described states such as belief or intention, since the ap-

plication of information theory requires that specifiable ranges with probabilities over

their values be identified. I spell out this argument in chapter five section 5.5.

Technical vocabulary must be used. First, this facilitates the modelling of the exter-

nal item as a random variable. Second, it ensures that content can be operationalised,

meaning that content attributions can be tested via standard empirical methods. I spell

this out in chapter three 3.4.2.

I conclude that the the implicit theory is what I callmaxMI:

maxMI: Ex is the content of R iff R shares mutual information with each of

a set of items, E1−n, of which Ex is a member, and R and Ex have maximal

mutual information relative to the rest of E1−n.

Where Ex is some item external to the representation, and R is a representation. In

broad outline, the above provides the theory of content I argue is implicit in cognitive

neuroscience. However, additional constraints must be added for reasons which will be

presented throughout the thesis:

1. R must be modelled as an iRV with outcomes constrained by values usable for

downstream systems.
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• See sections 5.3, 6.2, 7.5.3.

2. Ex must be modelled as an eRV with outcomes constrained by values discriminable

by sensory interfaces.

• See sections 2.4.1, 5.4, 5.4.1.

3. The set E1−n must be delimited by the C-function of the subsystem containing R.

• See sections 5.4.2, 6.2, 6.5.

Where “iRV” stands for “internal random variable”, “eRV” for “external random vari-

able”, and “C-function” for the type of functions introduced by Robert Cummins. I provide

these conditions here for ease of reference - I hope the reason for them will become clear

as one reads through the thesis. In short, each condition, taken together with maxMI,

delivers content attributions which ensure that the content of a representation is content

for the system itself ; content a change in which results in a change for the system.

1.4.1 Toy example

In this section I introduce a simplified example to illustrate howmaxMI picks out content

in practice. The toy example is not supposed to show how cognitive neuroscientists actu-

ally determine content. In chapter seven, section 7.4, I outline their actual methods, and

how they presuppose maxMI. Instead, the example is intended to make the theory more

intuitive by showing how it can be applied to attribute contents under very simplified

conditions.

9



Imagine we are developing a theory about how people recognise faces. Imagine that

we have isolated a single neuron, R, which we believe to be responsible for facial recogni-

tion. When active, which we can label Ron, this neuron provides us with a representation

which allows us to discriminate between faces. What we want to know is precisely what

Ron represents - what is its content? Imagine we have three hypotheses; Ron represents

either:

X : The separation between eyes (EyeSep)

Y : The separation between ears (EarSep)

Z : The width of the mouth (MouthWid)

In intuitive terms, we hypothesise that people recognise faces either according to how

far apart the eyes are, or how far apart the ears are, or how wide the mouth is (at resting)

on the target face. Of course, this won’t work in reality: multiple different people likely

have eyes (or ears) the same distance apart (or mouths of the same width). EyeSep alone

is, in actuality, a very poor way to discriminate between faces. We will simplify and

assume this is possible.

Figure 1.1: A face with possible distances between the eyes labelled a to f .

As in figure 1.1, we can assume for simplicity that there are a discrete number of

possible separation and width values. The eyes can be a distance apart, up to f distance
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apart. Similarly for the ears, which can be from g distance apart to l distance apart. The

mouth can bem units wide up to r units wide.

X Y Z
a 0.22 g 0.14 m 0.03

b 0.14 h 0.09 n 0.05

c 0.19 i 0.26 o 0.27

d 0.15 j 0.13 p 0.31

e 0.06 k 0.08 q 0.20

f 0.24 l 0.30 r 0.14

Table 1.1: Values a-f for X (EyeSep), g-l of Y (EarSep), m-r of Z (MouthWid) with

corresponding probabilities.

Table 1.1 shows the corresponding probability ranges for each possible position of

the eyes, ears, and mouth. Imagine we obtain these by performing research to discover

the probability distribution across all faces (given typical constraints on conducting such

research). In reality, this is dummy data.

Imagine that R can be in two states, Ron or Roff . The probability of Ron = 0.1 and

the probability of Roff = 0.9. We now have four random variables. X , Y , and Z are our

eRVs - the random variables which model items in the environment. In this case, they

model specific distances between each feature or the width of the mouth. R is our iRV

with Ron and Roff as outcomes.

We can now invent some conditional probabilities. For example, we can invent p(Ron|a),

p(Ron|g), and p(Ron|m). In fact, we need to invent these values for each condition a-r

for both Ron and Roff . Imagine we conduct some empirical tests to discover these condi-

tional probabilities - we find the probability thatR is active when presented with various

separation and width values. In reality, this is more dummy data. I present a snapshot to

give an indication of the type of values which are relevant in table 1.2.
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p(Ron|a) p(Ron|g) p(Ron|m)
0.545 0.357 0.667

Table 1.2: Dummy values for relevant conditional probabilities

As will become relevant later (section 7.2.1), note that Ron is correlated with each

condition. As a result, R has mutual information with each of X , Y and Z . What we

need to find now is the eRV with which the iRV has maximal mutual information. To

measure amounts of mutual information we use this formula:

I(X, Y ) =
mx∑
i=1

my∑
j=1

p(xi, yi)log
p(xi, yi)

p(xi)p(yi)
(1.1)

Using our conditional probability and marginal probability dummy data, we can use

Bayes’ theorem to derive joint probabilities, and insert them into equation 8.5 to obtain

mutual information values as given in table 1.3.

I(X,R) I(Y,R) I(Z,R)
1.147 0.230 0.451

Table 1.3: Calculated MI values

According to maxMI, provided we have correctly chosen our eRVs and iRVs,X mod-

els the content of R - which is therefore ⟨EyeSep⟩1. In terms of answering our initial

explanatory question, this means that eye separation is how we are able to recognise

faces.

1
Throughout the thesis I follow the standard practice of placing content ascriptions within chevrons.
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1.4.2 Summary of maxMI

As pointed out by Randy Gallistel, mutual information provides a measure of the precise

strength of correlation between two random variables, making it the most promising

model of the content-determining information link. I spell this out in chapter seven sec-

tion 7.2.1. Importantly, maximal mutual information provides content with its explana-

tory power in virtue of providing a model of the information “available” to the system

itself. I spell this out in chapter seven section 7.5.

Altogether, maxMI unifies the various methodological and theoretical commitments

taken on by researchers within the relevant areas of cognitive science. In chapter two,

I spell out the relations between my own approach and that of other philosophers. The

theory I propose differs significantly in several respects fromwhat has come before, most

notably by rejecting etiology and by embracing Shannon’s information theory in earnest.

In the conclusion I consider what is gained by making the implicit theory of content

explicit. I propose that it may help with projects which aim to discover representational

content in such a way that can be integrated with work in other regions of cognitive

science. For example, in comparative psychology, comparing human and non-human

cognitive capacities benefits from tracing differences in the kind of content isolated by

maxMI.

I also conclude that much of cognitive science may be using content in a way which

is not driven by an implicit theory. To use Egan’s term, in many cases content may be a

“gloss” on the explanation itself - a way of making a theory comprehensible to a reader,

but not essential to the explanation. The implicit theory may or may not be helpful in

such areas of cognitive science, but it should encourage greater engagement between
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fields if adopted where appropriate.

1.4.3 Translating the mathematical model

Information theory provides a mathematical model of the content-determining relation.

However, in chapter four I consider how we can map the mathematical model to empir-

ical reality. Described in a non-mathematical way, maxMI is the theory that content is

determined by way of the functional connectivity of a representation to initial sensory

receptors on the one side, and downstream capacities on the other.

According to the theory, ranges are established in the brain by way of functional

connections to upstream areas (receptive fields) which are connected to receptors (their

receptive fields) which pick up incoming information (see section 5.4). A range in the

environment, for example a range of electromagnetic frequencies, has a corresponding

voltage range along axons of ganglion cells - corresponding in the sense that it is a C-

function of the ganglion cell to transmit information about light frequency (see the glos-

sary for a definition of C-function). These ranges are transformed, by way of invariance

mechanisms (see section 5.4.1), into more complex internal ranges which correspond to

the more complex external ranges which produced the electromagnetic frequencies.

Information theory models the relationship between a value of the internal range

and a value of the external range. Maximal mutual information picks out that item in

the world which a value of the internal range is most informative about. From our per-

spective, focusing on the downstream areas which use the information, this means that

downstream areas will act as if that value of the external item is present.
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1.5 Definitions

A full glossary is available at the end of the thesis. Here, for the sake of intelligibility, I

highlight a few key terms and phrases which will come up frequently in the thesis.

As I will use the phrase, a ‘theory of content’ is a theorywhich allows one to specify,

once the relevant empirical facts are known, what the content of any given representation

is.

As I use the term, a ‘representation’ is a mediating state, structure or process be-

tween an input and an output (e.g. upstream receptors and downstream systems) with

content. In this definition I follow Shea, who argues that what a representation is must

be connected to a theory of content [Shea, 2018, p10].

As I use the term, ‘content’ is an item external to the representation, either in the

‘external world’ or internal to the system (i.e. a representation can represent some other

aspect of the system). I follow Neander’s use of the term ‘content’ to specify an item

itself [Neander, 2017b, p15]. This is in contrast with other uses of the term according to

which ‘content’ only specifies something mental - such as a mental image. In my sense,

calling E the content of representation R is like calling S the aunt of A: they are related

in a specific way.

I will use the term ‘item’ to refer to things in the world aiming to be neutral on their

specific properties. I follow Shea in intending this usage to be “neutral about what should

count as an item. It could be a particular object, [...] it could be a collection of objects or

a type of object [...]. It could also be a process or a type of process” [Shea, 2018, p76n].

Many types of item or items, provided they meet the criteria set out in (1) of maxMI, can

be the content of a representation.
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1.6 Scope of the thesis

The maxMI theory is not stand-alone. If the theory is to make any claim to general ve-

racity, it must be the case that I have accurately captured the relevant region of scientific

practice, and that scientific practice itself produces adequate explanations of cognitive ca-

pacities. As Neander remarks, whether the theory isolates anything “real” “is conditional

on these sciences not being on the wrong track in relevant respects” [Neander, 2017b,

p78]. It is not my aim to show that they are. If they are on the wrong track, maxMI will

be more or less useless. However, I am an optimist. To my knowledge, there is no reason

to suspect that the basic approach of these studies is fundamentally wrong. Quite the

opposite, they largely represent the most state-of-the-art and sophisticated approaches

which fix some issues with previous work (see section 4.4).

Given the focus on neural representation, maxMI is of necessity “modest” in Peter

Godfrey-Smith’s sense [Godfrey-Smith, 1998]: it aims to capture the content of relatively

low-level representations, those Neander characterises as “nonconceptual or preconcep-

tual sensory-perceptual representations (perhaps together with a relatively small set of

core concepts)” [Neander, 2017b, p10]. However, I make some comments in the conclu-

sion (section 8.3) and in chapter five 5.4.1 on the scaling-up problem faced by theories of

content, and whether maxMI has any resources to address it. As I will spell out, I think

there is some reason to be optimistic here, too.

Generally, I will not be explicitly aiming to address traditional philosophical desider-

ata on representational content, except in cases in which such a discussion is directly

relevant to the analysis (e.g see section 6.6.2). As mentioned above, the theory is primar-

ily aimed at addressing the questions of section 1.2. Whether there is an implicit theory of
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content in cognitive science, and what it is, can be detached from the question of whether

such a theory meets philosophical desiderata. Of course, if cognitive science is to be on

sure theoretical footing, it should meet such desiderata (except in cases in which we have

independent reason to question the desiderata themselves).

However, I do address what I take to be some central philosophical concerns. For

example, I consider the question of indeterminacy. I provide a way of understanding

the relevancy of determinate content for scientific theorising in chapter three (section

3.4) and chapter seven (section 7.3). I will conclude that indeterminacy ought not to

concern us except insofar as it renders content indeterminatewith respect to providing an

adequate explanation of a cognitive capacity. maxMI meets the criteria I set out for this,

so should not be seen as producing problematically indeterminate content ascriptions.

If, for example, a range of items each have the same mutual information value with a

representation, I consider these items to be in the “content profile” of the representation,

evincing a case of “natural indeterminacy”. However, in the conclusion I highlight some

outstanding questions about indeterminacy resulting from maxMI (section 8.4.2).

Additionally, I provide an answer to the question whether contents should be spelled

out in terms of “high-church” or “low-church” properties (see section 2.5). I answer that

which answer one gives will depend on the explanatory role one attributes to content.

I also consider the problem of misrepresentation. In chapter six (section 6.6), I argue

that the functions relative to which content is determined are able to malfunction or be

dysfunctional, securing the possibility that the content attributed according to maxMI

can misrepresent. I claim that this is a pressing concern due to the prevalent paradigm in

cognitive science involving using dysfunctional patients to infer facts about the cognitive
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systems of ‘normally’ functioning individuals.

I also provide a brief discussion of “swampman” cases - thought experiments in which

an individual with the very same physical structure as an existing person is created in-

stantaneously by a freak bolt of lightning in a swamp. I argue that swampman is a serious

consideration - it forces us to consider the explanatory value of our theory - but it is not

a problem for maxMI, which relies on non-etiological functions (section 6.7).

What I will explicitly not consider is whether the content attributions made accord-

ing to maxMI accord with our intuitions. I agree with Shea that “intuitions have little

probative value for our kind of project” [Shea, 2018, p21].

1.7 Conclusion

The thesis aims to establish a relatively modest claim: in some regions of cognitive sci-

ence there is an implicit theory of content. Moreover, the implicit theory of content

isolates contents which are genuinely explanatory of cognitive capacities. Nonetheless,

the road to such a claim involves more twists and turns than one may initially think. I

hope to make the path as clear as possible.

The project requires some initial guidance. So, I will first turn to existing naturalistic

accounts of content. Specifically, I will turn to what I consider to be the most promising

research project: informational teleosemantics. I start the thesis by considering the work

which has come before, and how it informs the current project.
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Chapter 2

Informational Teleosemantics

2.1 Introduction

Cognitive science frequently uses informational terminology when describing represen-

tation. The cognitive system is often understood as an information processing system. I

will argue in chapter three (section 4.2) that this is not loose talk; Shannon’s information

theory is the background theoretical framework of cognitive science. As such, a branch

of philosophy known as informational teleosemantics is a prima facie promising frame-

work to theorise about content in cognitive science. As I suggest in sections 2.4, 2.5, and

2.6.2, several informational teleosemanticists have made significant advances in devel-

oping a theory of content consistent with its use in cognitive science. Throughout the

thesis, I aim to show how the framework can capture some fundamental commitments of

the implicit theory of content in cognitive science. In this chapter, I outline informational

teleosemantics with the aim of setting out some key theoretical concepts which will be
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used in the remainder of the thesis.

Informational teleosemantics is, broadly, the view that representational content is

determined by (i) an informational link between a representation and an item in the en-

vironment and (ii) the function of the relevant representational system
1
. Theories within

the framework vary with respect to the way in which (i) and (ii) are spelled out. For

example, how we should think of the relevant environmental item
2
, the relevant type of

informational link
3
, the relevant type of functions

4
, the explanatory aims of a theory of

content
5
, and how to answer a host of problems faced by any theory of content, such as

indeterminacy, realism versus instrumentalism, pragmatism versus naturalism, the prob-

lem of misrepresentation, and more - see [Schulte and Neander, 2022] for an overview.

In this chapter I will first introduce informational teleosemantics by outlining the

views of two major contributors - Fred Dretske and Ruth Millikan. Roughly, Dretske

introduced information and Millikan functional teleology. I will then consider a crucial

recent development in teleosemantics known as the “explanatory turn” (a phrase coined

by Peter Schulte [Schulte, 2023]). In recent years, theorists have become increasingly

interested in the question whether content ascriptions have any scientific explanatory

value. I introduce a central theorist, Karen Neander, who distinguishes two types of

explanatory project - drawing on Mayr’s proximate/ultimate distinction [Mayr, 1961] -

and considers which project content ascriptions serve. Neander argues that content as-

criptions can serve proximate explanations. I agree with Neander, and intend maxMI to

1Informational: the relation between representation and content is spelled out in terms of information

as in (i); teleo: functions as in (ii); semantics: to do with a theory of content.

2
For example, section 2.6.1.

3
For example, sections 2.6.3, 7.2

4
For example, sections 2.3.1, 6.4

5
For example, section 2.5
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address the proximal explanatory project. However, I argue that Neander’s own theory

of content fails to address the proximal explanatory project she aims for.

I end by outlining how contemporary informational teleosemantic theories, such as

those of Peter Schulte, Manolo Martinez, and Marc Artiga, are typically aimed at pro-

viding content attributions which feature in ultimate explanations. I then introduce

Gualtiero Piccinini, who explicitly aims to provide content attributions for proximal ex-

planations and provides helpful guidance in doing so. However, I suggest that attending

to scientific practice complicates what might initially seem like a straightforward way

of attributing content in scientific explanations. The remainder of the thesis is an at-

tempt to outline the complex assumptions behind scientific practice, aiming to uncover

the implicit theory of content in cognitive science.

2.2 Fred Dretske and information

Fred Dretske brought information theory into the philosophical mainstream. He demon-

strated the power of Shannon’s mathematical framework for modelling the content-

determining relation between a representation and an external item. He made a num-

ber of foundational contributions to informational teleosemantics
6
. Many of his insights

stand the test of time, and are reflected in the implicit theory of contemporary cognitive

science, as we will see throughout the thesis.

6
Although functions play no explicit role in his early work, in 1994’s If You Can’t Make One, You Don’t

Know How It Works he argued that functions were required for misrepresentation.
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2.2.1 Informational content

I will focus primarily on Dretske’s notion of ‘informational content’. Dretske intends

‘informational content’ to provide the foundation for a “semantic theory of information”

[Dretske, 1981, p64], delivering the “underlying informational structure” of “intentional-

ity” - the so-called ‘aboutness’ of mental representation [Dretske, 1981, p76].

Informational content is given by:

A signal r carries the information s is F = The conditional probability of s’s

being F, given r (and k), is 1 (but, given k alone, less than 1) [Dretske, 1981,

p65]

Where r, the ‘signal’, is understood to be “any event, condition, or state of affairs the

existence (occurrence) of whichmay depend on s’s being F” [Dretske, 1981, p65]. Wemay

think of a neuron firing, or the position of a needle on a gauge. The condition ‘s being F ’

is to be understood as some item being in some state, or having some property, such as a

chair being blue, or a petrol tank being empty. There must be some “positive information

associated” with the condition, which requires that “there are possible alternatives to s’s

being F” [Dretske, 1981, p65]. The chair may have been red, or the petrol tank may have

been full.

By k Dretske means “what the receiver already knows (if anything) about the pos-

sibilities that exist at the source” [Dretske, 1981, p65]. As Dretske points out, there will

be situations in which what you learn from a signal differs from what I learn. I might

vaguely recall that a flashing red light on my phone means either it is low battery or the

hard drive is failing. You know that a flashing red light means low battery and is unre-
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lated to the hard drive. So, when you see the red light you learn something I do not - that

the battery is dying. I only know that this is one of two possibilities.

Dretske points out that the knowledge condition, k, “constitutes a relativization of

the information contained in the signal because how much information a signal contains,

and hence what information it carries, depends on what the potential receiver already

knows about the various possibilities that exist at the source” [Dretske, 1981, p79].

This relativization is consistent with classic information theory. JamesMattingly pro-

vides a non-psychological interpretation of Dretske’s theory in which he notes that, in

information theory, calculating the amount of information which is transmitted to a re-

ceiver requires an understanding of “the decoding that is yet necessary for me to discover

exactly what the content of the message is that I have received” [Mattingly, 2021, p192].

This may come as a surprise, since elsewhere Dretske famously maintains that in-

formation is “an objective commodity, a thing whose generation, transmission, and re-

ception do not require or in any way presuppose interpretive processes” [Dretske, 1981,

pvii]. However, Dretske is careful to distinguish information and informational content,

which he considers as information which is, in some sense, available to the system itself.

A representation may hold a wealth of information, but informational content is a subset

of that information which can be interpreted by the system.

This consideration is what leads Dretske to assert that the conditional probability

of the content on the representation be unity. Unity is necessary, argues Dretske, since

it ensures that the “signal carries as much information about s as would be generated

by s’s being F” [Dretske, 1981, p63]. Dretske considers this important because it allows

the system to reduce the relevant alternate possibilities to none, enabling precise spec-
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ification of content. If I want to know which side of a coin is facing up with absolute

certainty, I must be able to reduce the possibilities by half - which requires precisely the

same amount of information as generated by the source (i.e. 1 bit). Any less information

would leave equivocation, or a form of uncertainty, about the external item.

This means that, for Dretske, the system must have as much information available

to it about an item as is generated by the item itself for that item to be the content of

the representation. The representation may, according to some objective measure, carry

information about numerous other items, but unless those other items share a conditional

probability of unity with the representation, they will not be part of the informational

content of that representation.

In later parts of the thesis (for example, section 7.5) I will argue that Dretske is ba-

sically right. However, I will argue that a looser statistical measure, maximal mutual

information, ensures the kind of availability Dretske is after. I will also argue (for exam-

ple, in 6.5) that we need to add in functions. In the next section, I explore the work of

Ruth Millikan, who, along with David Papineau, first drew philosophical attention to the

importance of biological functions for a theory of content.

2.3 Ruth Millikan and functions

Ruth Millikan provided one of the first
7
, and arguably most elaborately articulated, the-

ories of representational content in terms of etiological functions. Despite apparent dif-

ferences between Millikan’s view and the informational teleosemantic framework, her

position shares a number of key features. For example, as Millikan has emphasised in

7
David Papineau [Papineau, 1984] advocated for a similar view around the same time as Millikan.
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several places (see below), her view requires “correlations” and “mappings” between rep-

resentations and contents, as with informational theories. Basic tenets of her approach

also tend to be held by contemporary informational teleosemanticists (see section 2.6.1).

As such, we can read Millikan as contributing significantly to the informational teleose-

mantic framework.

Millikan’s view is given in Language, Thought and Other Biological Categories (LToBC)

as:

P is an indicative intentional icon of whatever it maps onto that must be

mentioned in giving the most proximate Normal explanation for full proper

performance of its interpreting device as adapted to the icon. [Millikan, 1987,

p100]

The phrase ‘indicative intentional icon’ is typically glossed as ‘representation’ (en-

dorsed byMillikan, see [Millikan, 2024, p55]). A representation is an itemwith a function

in a wider system in virtue of what it indicates being “identified” and used by the system

[Millikan, 1987, p13]. To first approximation, this means that the system is “guided” in

its activities by the thing it represents. This is the content of the representation.

According to Millikan, the content of a representation is given by “the most proxi-

mate Normal explanation” of how the representation’s “interpreting device” successfully

performs a given task which relies on the representation for its success [Millikan, 1987,

p33]. The ‘most proximate Normal explanation’ explains why a behaviour (e.g. of an

organism which ‘interprets’ or ‘consumes’ the representation) was historically success-

ful for ancestors of a system (e.g. historical members of an organism’s species). Further,
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the explanation must be the “least detailed” possible explanation [Millikan, 1987, p33] of

such success.

A natural way to spell out ‘least detailed’ is as an explanation without any causally

mediating properties being mentioned. This should deliver an explanation in which the

explanans is most perspicaciously related to the explanandum. For example, a frog is suc-

cessful in acquiring food because there is an external item which its representation maps

onto: ⟨frog food⟩. That the representation maps to the item ⟨frog food⟩ provides an ex-

planation of how ancestor frogs were able to survive by using that representation: using

it allowed them to get hold of food for frogs. This leaves aside any details regarding how

this process happens, such as the transduction of light intensities at the retinal interface.

Millikan adds this condition since she maintains that the representation must func-

tion “as a sign or representation for the system itself ” [Millikan, 1989b, p284; emphasis in

original]. Millikan writes that the representation must be “true” “as the consumer reads

the language” [Millikan, 1989b, p286; emphasis in original], or that a producer “must be

designed to speak whatever language the consumer(s) of its representations can under-

stand; a representation consumer must be designed to understand whatever language the

producer(s) of its representations speak” [Millikan, 2024, p55]. For example, frogs only

understand frog food, not light intensities at retinal interfaces, so those proximal causal

steps cannot feature as the representation’s content.

In LToBC Millikan argues, not unlike Dretske, that this means that some possible

content ascriptions are untenable because they suggest that the system itself has access

to too much information: “VonFrisch knew what bee dances are about, but it is unlikely

that bees do. Bees just react to bee dances appropriately” [Millikan, 1987, p13]. So, she
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claims that the bee dance is not an instance of representation proper, since dances “do

their jobs without their interpreters of the organisms that harbor them having any grasp

of what they are about” [Millikan, 1987, p13].

In recent work, Millikan has provided her own psychologically neutral interpreta-

tion of representation for the system itself. She writes that “neural producers and neural

consumers would both be substantiated in neural networks or whatever cognitive scien-

tists and neurologists come up with next, involving multiple uses of parts of the nervous

system depending on tasks to be performed” [Millikan, 2024, p55]. Prima facie, this over-

laps significantly with the requirement that inputs be decodable by downstream neural

systems which enact cognitive capacities (see section 7.5). Further, in Neuroscience and

Teleosemantics, Millikan writes:

A representation in the brain would have to be used as such by some other

part or aspect of the brain or by something connected to the brain. If there

are representations in the brain there must also be interpreters for them.

[Millikan, 2021, p2460]

The ‘interpreters’ in question are downstream cortical areas which play some ex-

planatory role in relevant cognitive capacities, such as actions an organism might do

with an empty beer can: “stepping over it, picking it up with one’s hands, picking it up

with a stick, kicking it along the trail or into the woods [...] and so forth” [Millikan, 2021,

p2461].

Millikan writes that for an organism to “‘read’ the code” of the representation, it is

only “necessary that the creature should be guided by the signal in a way that diverts it

from activities less likely to benefit it to ones more likely [to] benefit it” [Millikan, 2001,
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p111]. Elsewhere, Millikan refers to the organism “understanding the language” of the

representation in terms of what “‘guides behaviour”’ [Millikan, 2021, p2461].

In later chapters (for example, 3.3.2, 7.5), I will agree that content attribution requires

that downstream systems be able to “read the language” of the representation, but that

there are much more stringent requirements on reading the language, in an explanatorily

salient sense, than merely being guided by the content. I will argue that downstream

systems must be able to decode the content by performing mathematical operations over

the values of the representation.

2.3.1 Functions

Millikan pioneered the use of functions in a theory of content. Millikan argues that

functions enable misrepresentation. As Millikan spells out in multiple places, misrep-

resentation, on her view, is derivative of malfunctioning (e.g. [Millikan, 2021, p2465],

[Millikan, 1990, p156], [Millikan, 2024, p56]).

Another reason Millikan introduces functions is that mapping relations alone are not

sufficient to determine content, since “mathematical mapping relations are infinitely nu-

merous and ubiquitouswhereas representation-represented relations are not” [Millikan, 1987,

p86]. Functions are thought to reduce the ubiquity of pure mapping relations by specify-

ing those mapping relations which are phylo- or ontogenetically adaptive for an organ-

ism.

Millikan relies on an etiological notion of function, “proper function” [Millikan, 1987,

p28]. Essentially, a system S has a component with a proper function F to do A, provided

that ancestors of S who performed F and achieved A thereby successfully reproduced.
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The heart has a proper function to pump blood, in this sense, because it was in virtue

of the heart pumping blood in our ancestors that we were able to survive and reproduce

(not, for example, because it made a whooshing sound - that was causally irrelevant to

our survival, probably).

In chapter six I will argue extensively for the use of a non-etiological notion of func-

tion, while maintaining the use of functions broadly. I will also argue in this chapter

(section 2.5) that etiological functions and non-etiological functions are two tools for

different explanatory projects. The explanatory project I am pursuing differs from Mil-

likan’s, and requires non-etiological functions.

2.4 Karen Neander and response functions

Karen Neander’s central contribution to informational teleosemantics is her detailed case

for the existence of response functions. Like Millikan, Neander argues that teleoseman-

tics requires a “mix” of both an input-based and output-based approach to content de-

termination (e.g. [Neander, 2017b, p125]). Neander develops the input-based element of

the account in terms of response functions, which are “functions to respond to some-

thing by doing something. Sensory-perceptual systems have functions to respond to

various changes in the environment by changing their inner states in various ways”

[Neander, 2017b, p126].

Neander elaborates on this definition by stipulating that to “respond to something (as I

use the term ‘respond’ here) is to be caused by something to do something” [Neander, 2017b,

p127]. For instance, “to say that a visual system changed into a RED-type state in re-
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sponse to an encounter with a red visual target (due to its redness) is to say that the

visual target’s instantiating red caused (i.e., causally triggered) the system to change into

a RED-state” [Neander, 2017b, p127]. Having a function to respond, meanwhile, means

that the relevant system was “selected for responding to red being instanced by changing

into RED-states” [Neander, 2017b, p127]. So, having a function to respond to something

(x) by doing something (y) requires that a system is causally triggered to do y by an ex-

ternal item x, but also that it is in virtue of doing y in the presence of x that the system

was selected.

This requirement is made explicit in Neander’s “simple causal-information version of

teleosemantics (CT)”:

CT: A sensory-perceptual representation, R, which is an (R-type) event in a

sensory-perceptual system (S), has the content there’s C if and only if S has

the function to produce R-type events in response to C-type events (in virtue

of their C-ness). [Neander, 2017b, p151]

In this formulation, ‘there’ “is used as a placeholder for the localization content of the

representation” [Neander, 2017b, p152] - i.e. the location of the relevant external item

(either relative to the visual field of the organism, or relative to a more distal measure,

depending on the localization capacities of the organism - see [Neander, 2017b, p113]).

A ‘function’ is to be understood in an etiological sense. However, as I will argue below

(section 2.4.1), non-etiological functions better serve her explanatory aims.

The phrase ‘in virtue of’ is to be read in terms of what the system S was historically

selected for. However, this itself should be understood causally; Neander argues that C

must be “a causal difference-makerwith respect to R-production by S” if it is to be selected
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for [Neander, 2017b, p152]. If some non-C but C-like itemwould also produce R in S, then,

Neander argues, C would not be the (sole) content of R. Rather, either R would have

another content altogether, or R would be indeterminate with respect to C and the C-like

item. This is because, Neander argues, an environmental item being a causal difference-

maker enables specific capacities to be enacted when certain environmental conditions

obtain. For example, “it was by responding to the dimming of light that the pineal gland

produced sleepiness at nighttime” [Neander, 2017b, p132]. In this case, Neander argues

that the pineal gland has the function of responding to dimming light.

2.4.1 Limitation to discriminatory capacities

According to Neander, the content of a representation must be constrained by the ob-

served discriminatory capacities of the representation’s sensory input systems. This is

due to the fact that the response function of the representation requires that the external

itemmust make some causal contribution to the activation of the representation. So, only

those items which sensory systems are causally responsive to can stand as the content

of a representation as determined by the response function of the relevant system.

The observed discriminatory capacities of the system are given by those environ-

mental conditions which are experimentally determined to activate certain behavioural

sequences [Neander, 2017b, p102]. Scientists discover which items induce the relevant

behaviours, and which do not. To illustrate the point, Neander cites studies which in-

vestigate which external items engage a toad’s prey-capturing behaviour. She reports

that ganglion cells in the toad’s visual system, the activation of which control its prey-

capturing behaviour, are causally sensitive to the “location, size, shape, motion, and di-
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rection of motion relative to the shape of a stimulus” but are “causally insensitive to

whether the target is nutritious for the toad” [Neander, 2017b, p116]. The toad can repre-

sent size, shape, motion etc. but not anything like things which are nutritious for toads.

So, content ascriptions such as those endorsed byMillikan - the toad is representing ⟨toad

food⟩ - premised on the content being something nutritious for toads, are considered to

be misguided.

However, Shea suggests a possible argument against limiting content to discrimina-

tory capacities. Shea states that he does not “see why longarmed etiological functions

need be tied to discriminative capacities” [Shea, 2018, p160]. Longarmed functions are

so-called because they are determined by Normal explanations (e.g. [Shea, 2018, p159]),

which provide the “least detailed” explanation [Millikan, 1987, p33] of evolutionary adap-

tiveness; they are ‘longarmed’ in the sense that they skip over intermediate explanatory

stages, such as - crucially - the specific environmental conditions the system causally

responds to. This is a problem, since Neander intends to invoke the very same notion

of function. She intends the discussion to capture the kind of functions invoked by Mil-

likan: “since the main parties to the present dispute agree on this [analysis of functions],

I shall assume the etiological theory” [Neander, 2017b, p127]. However, she also wishes

to maintain a restriction on content to what the system is causally responsive to.

Consider the pineal gland example; Neander writes that “it was by responding to the

dimming of light that the pineal gland produced sleepiness at nighttime” [Neander, 2017b,

p132]. However, strictly speaking, it was by responding to the dimming of light that the

pineal gland produced sleepiness when the light dimmed. It was the fact that dimming

light correlated with the onset of nighttime in the evolutionary history of the organism
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that sleepiness was produced at nighttime. The function was selected because of this

correlation - it reaches out, longarmed, to nighttime - not because of the way in which

nighttime was tracked. There are always a number of logically possible ways to track an

environmental item, but it is what is ultimately tracked which explains why any one of

them was replicated. From an etiological perspective, the pineal gland has the function

to - is there because it did - respond to nighttime.

This is brought out by applying the method of difference; had the item with which

dimming of light correlated with been different, some other response would have been

selected. If dimming light correlated with the onset of daytime (followed by a sudden

brightening), the pineal glandwould not have been selected for inducing sleepiness. If the

onset of nighttime had been accompanied by a sudden bright flash followed by immediate

darkness, the pineal gland would not have been selected for at all (at least, not in this

capacity), or it would have responded to a bright flash followed by darkness. Etiological

functions are not limited to discriminatory capacities; only the explanation for how the

adapative environmental item was tracked is so limited. This, I will argue, is the role of

C-functions - they explain how some cognitive capacity is enacted. Etiological functions

do not.

So, Shea rightly points out that etiological functions do not need to be tied to discrim-

inatory capacities, but Neander requires functionally-determined content to be limited to

discriminatory capacities. This is because Neander argues both that content attribution

must be constrained by scientific practice and that the relevant science limits content

attribution to discriminatory capacities (e.g. [Neander, 2017b, p137]). So, it is a serious

problem for Neander if the above argument is right, and etiological response functions
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do not need to be tied to discriminatory capacities. Something has gone wrong. In the

next section, I argue that etiological functions are not fit for the type of how-question

explanations given in the regions of cognitive science which Neander is interested in.

2.5 Different explanatory projects

In this section I argue that implicit in teleosemantics are two different but complimentary

explanatory projects. There are those which deal with how-questions and those which

deal with why-questions. Some projects aim to explain how a given cognitive capacity is

enacted. Other projects aim to explain why some representational state is present.

The distinction between how- and why-questions is due to Mayr in the context of

his discussion of the difference between functional biology and evolutionary biology.

According Mayr, the functional biologist seeks to answer the question: “How does some-

thing operate, how does it function?” whereas the evolutionary biologist seeks to answer

“the historical ‘how come?”’ [Mayr, 1961, p5102] - the historical reasons some item is the

way it is. Mayr refers to answers to how-questions as “proximal” explanations and an-

swers to why-questions as “ultimate” explanations.

As Neander states, “‘How-questions’ and ‘Why-questions’ are mnemonic tags that

name questions that are often but not invariably asked by using the words ‘how’ and

‘why.”’ [Neander, 2017b, p256]. With some linguistic ingenuity we can translate almost

any question from a ‘how’ to a ‘why’ or vice-versa. The relevant distinction is that an

ultimate explanation goes beyond what we can infer from experimental conditions and

has to do with the historical conditions of the system or its ancestors.
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How-questions, aimed at addressing proximal explanations, are concerned with what

the organism itself is able to do, including any limitations it faces. Mayr spells this out

in the case of functional versus evolutionary biology:

We can use the language of information theory to attempt still another char-

acterization of these two fields of biology. The functional biologist deals with

all aspects of the decoding of the programmed information contained in the

DNA code of the fertilized zygote. The evolutionary biologist, on the other

hand, is interested in the history of these codes of information and in the

laws that control the changes of these codes from generation to generation.

[Mayr, 1961, p5102]

There is a deep analogy between what Mayr is describing and the two projects as I

conceive them. The philosopher or scientist pursuing how-questions should, I will argue

throughout this thesis, be concerned precisely with what the system itself can decode

from its input, in a strictly information-theoretic sense. In contrast, the philosopher or

scientist pursuing why-questions can be construed as asking why it is that some envi-

ronmental item is encoded and decoded, which in turn will explain the evolution of the

cognitive system over evolutionary (and learning) history.

Confusingly, both the how-question and the why-questions are partly answered by

way of a what-question. In the case of the how-question, the what-question is “what

does the system itself pick up (encode) and use (decode) from the environment in order

to perform its cognitive function?” Studies which attempt to find answers to this question

are the type explored in the next chapter, where we will look at cognitive neuroscientific
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accounts of face recognition. Such studies attempt to discover precisely which aspects of

the environment are processed by the cognitive system.

Why-questions invoke another type of what-question: “what, in the environment,

correlated with what is encoded and decoded, is adaptive for the organism?” This in-

volves looking beyond the processing limitations of the system itself to those environ-

mental elements which we know are beneficial to that organism, but about which the

organism itself may have little to no conception. Another way of formulating the why-

question would therefore be something like “why does the system encode and decode

what it does?” For example, why does the system encode and decode dimming light?

Because dimming light correlates with nighttime, and it was adaptive for the system to

track nighttime (by way of the dimming light).

This can lead to some apparent disagreements. Wemight say that the face recognition

system represents ⟨two dots above a line⟩, or we might say it represents ⟨face⟩. In other

words, we might advocate for what is known as a “low-church” reading of content, or we

might advocate for a “high-church” reading. Karl Bergman clarifies the two concepts:

We can think of low contents as hewing closer to the perceptible features that

are directly involved in causing the representation to be tokened, whereas

high contents are concerned with the ecologically relevant features that are

involved in explaining the evolutionary success of behavior guided by the

representation [Bergman, 2021].

I claim that whether we take the content of the relevant representation in the facial

recognition to be either high or low-church depends on our explanatory project. If we

want to explain how the system performs face recognition, we should go low-church:
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this is what the system itself encodes and decodes from the environment. If we want

to explain why the system has this representational state we should go high-church,

identifying the item which the low-church content is correlated which was adaptive for

the organism. Cognitive science is a diverse discipline, encompassing a number of ap-

proaches. A full understanding of any cognitive systemwill involve answering both how-

and why-questions.

This suggests that there is no serious disagreement between teleosemanticists, just a

difference of explanatory project. Rather than consider there to be a disagreement over

what the content of a representation is, we should think of ‘content’ as a word which

describes two broadly similar but distinct environmental items. Both items have some

relation to an organism, and both items may be explanatory with respect to the same

cognitive capacity. However, which relation they have, and which aspect of the cognitive

capacity they explain is different. We are talking about different things, because we are

pursuing different projects. Maybe one of us should stop using the word ‘content’ - but

old habits die hard.

How-questions and C-functions

Neander’s project is aimed at answering how-questions. She contends that “citing the

normal-proper functions [for Neander, etiological functions] of the components of a sys-

tem can play a significant scientific role in the answers to How-questions that physi-

ologists and neurophysiologists provide” [Neander, 2017b, p60]. Given that Neander is

attempting to provide an account of content consistent with cognitive scientific answers

to how-questions, she aims to be consistent with that region of cognitive science which
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deals with those how-questions. For example, she characterises the question guiding the

study of the toad, which she uses to motivate her position, as: “How does the motivated

toad distinguish preylike from predator-like and othermoving stimuli?” [Neander, 2017b,

p105].

Like Neander, I think that scientific answers to how-questions involve the positing of

content. Unlike Neander, I do not think etiological functions are apt for answering how-

questions. As mentioned above, this is because etiological functions are not tied to the

discriminatory capacities of organisms. So, etiological functions are inconsistent with

the use of experiments to test the discriminatory capacities of organisms, performed in

order to assess how an organism performs some behaviour.

However, the non-etiological functions identified byCummins (what I call ‘C-functions’)

are tied to the processing limitations of organisms. They are restricted to what a system

can occurrently do, not with what its ancestors were adapted to. This makes my ac-

count in line with the generally-accepted position, as articulated for example by Griffiths

[Griffiths, 2006, p3] and Millikan [Millikan, 1989a, p175], that C-functions provide an-

swers to how-questions. Cummins defines functions as:

x functions as a ϕ in s (or: the function of x in s is to ϕ) relative to an an-

alytical account A of s’s capacity to ψ, just in case x’s are capable of ϕ-ing

in s and A appropriately and adequately accounts for s’s capacity to ψ by, in

part, appealing to the capacity of x to ϕ in s

For example, an we may want to know whether the system itself is capable of re-

sponding to nighttime, or whether it is only capable of responding to dimming light.

An ‘analytical account’ of how the system does this requires finding what the system
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actually, here and now, responds to. In turn, this involves analysing the system into sub-

systems, and identifying how each subsystem performs under a variety of experimental

conditions. Using this method, we will discover that what the pineal gland actually does

is respond to dimming light across a range of conditions. If the hypothesis were that the

pineal gland, here and now, responds to nighttime, we would struggle to explain experi-

mental data indicating that the pineal gland also responds to a range of other conditions,

and under a number of conditions fails to respond to nighttime. In other words, this

hypothesis accounts for far less of the evidence than the hypothesis that it responds to

dimming light. However, on an etiological account this is a good hypothesis: if we look

at the evolutionary history of the species, we will find that the activation of the pineal

gland was adaptive when it occurred at nighttime.

In summary, C-functions provide an account of what a subsystem occurently does

within a wider system, which is discovered by using experimental conditions and ob-

serving what the target component does in those conditions, then providing the best

explanation of its activity. Since what the component does is limited by its discrimina-

tory capacities, our best explanation will track those discriminatory capacities, and the

ascribed function will be limited to those discriminatory capacities.

Relation between projects

The two projects are compatible and mutually supportive. High-church content ascrip-

tions can help researchers working on how-questions narrow the range of possible low-

church contents by delimiting a region of items that the system is likely responsive to, if

it is to fulfill its etiological function. For example, if we have a hypothesis which states
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that it is adaptive for humans to respond preferentially to faces, wemight look for regions

of the cortex which activate when presented with faces. Once we find these regions, we

can increase the specificity of our search, successively narrowing the experimental con-

ditions and manipulating the environmental variables until we find what that region is

preferentially responsive to. This will allow us to isolate the particular element of the

environment which is the low-church content.

Low-church contents can help answer why-questions. As mentioned above, we can

apply a why-question to the existence of low-church content. We might ask: why does

that region of the facial recognition system respond to shape properties? We might an-

swer that in the evolutionary history of the organism, such properties tended to coincide-

With faces, allowing successful recognition.

If we use the kind of studies outlined throughout this thesis to discover low-church

content, we can open up a whole realm of theorising in the domain of why-questions.

We can essentially provide new input data to those theories. If we begin with a why-

question, pursuing the appropriate methodology, we can then apply our how-questions

and find the specific environmental items that the organism uses to fulfill its etiological

functions and thereby discover precisely how it works.

A comprehensive understanding of anything requires a number of researchers pursu-

ing various types of questions which can be asked of that thing. Understanding cognition

is no different. We can ask both how cognitive capacities work, and why they have been

historically adaptive. An answer to each question enriches our understanding of the cog-

nitive system.
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2.5.1 Section summary

Teleosemanticists working on content determination pursue different projects, and use

corresponding regions of cognitive science to support their account. Those working on

etiological theories answer why-questions concerning the existence of a given mental

representation. Thoseworking on non-etiological, often causal or informational, theories

answer how-questions concerning the occurrent operation of the system. Neander argues

that etiological functions can answer how-questions. They do this by way of supporting

response functions. I agree that response functions are crucial, but I have argued that

etiological functions are not limited to discriminative capacities. The relevant regions

of cognitive science do posit contents which are limited to discriminative capacities. So,

etiological functions cannot be used to answer how-questions (if they are to be consistent

with scientific answers to these questions, which Neander intends them to be).

Some confusion has been generated by the fact that both projects require answers

to what-questions; they each posit some external environmental item which has some

explanatory relation to the cognitive capacity under investigation. The nature of this

explanatory relation, given the difference in explanatory project, is different. The items

which are posited as content are also different. However, this does not mean the projects

are in competition. Rather, they inform and support one another to generate a full un-

derstanding of the cognitive system.
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2.6 Contemporary teleosemantics

Theorists do not always specify the explanatory project they are pursuing. However, I

have split the accounts into those which I argue are best interpreted as aimed at either

why- or how- questions. This should help clarify the state of the art relative to each type

of project.

2.6.1 Answers to why-questions

Peter Schulte

Schulte provides an account built largely on Neander’s account of response functions.

However, Schulte also incorporates constancy mechanisms as a crucial component of

the account which, he argues, allows the producer-based teleosemanticist to overcome

the “distality problem”. The problem is that it appears as though producer-based teleose-

mantic accounts struggle to isolate non-proximal contents, such as the immediate pattern

of retinal firing giving rise to ganglion cell responses.

Schulte follows Neander’s example of the toad’s visual system, in which Neander

argues that the +T5(2) neuron represents “small, elongated objects which move in the di-

rection that parallels their longest axis” which Schulte calls “SEM objects” [Schulte, 2018,

p353].

The distality problem applied to this example produces the following question: why

“is it the case that +T5(2) represents the presence of a SEM object and not the presence

of certain retinal stimulation pattern, or a certain pattern of light?” [Schulte, 2018, p355].

Each proximal item is as much of a cause of the relevant neuron firing as the more distal

42



item. Since Neander’s account of response functions is a causal notion, it looks like the

cell’s response is indeterminate between these causes.

Neander’s solution to this problem involves pointing out that “pathways in the toad’s

visual system were selected for responding to the light by producing certain tectal firings

because by that means they responded to the distal worm-likemotion, and not vice versa”

[Neander, 2013, p35]. Neander invokes an asymmetrical in-order-to relation in order to

deliver distal content. The content is the highest point of the in-order-to relation: each

proximal causal interaction is present because it allows the system to respond to the more

distal item, while the distal item is not responded to in order that the system can respond

to the more proximal items.

Schulte points out a problem with this response. Invoking another example, he sug-

gests that potassium-richness is causally relevant for producing [neural response] T, since

it is causally relevant for producing the insects’ red surface colour; so Neander can-

not deny that the toad’s visual system has the function of producing T in response to

potassium-rich objects” [Schulte, 2018, p359]. This is “in conflict with Neander’s view

that (basic) perceptual states represent the surface features of objects” [Schulte, 2018,

p359]. It looks like Neander’s solution to the distality problem produces content ascrip-

tions which are too distal.

Instead, Schulte suggests that we turn to “constancy mechanisms” to provide the ap-

propriate level of distality. For a detailed description of constancy mechanisms (some-

times also called “invariance mechanisms”) see chapter five section 5.4.1. In short, con-

stancy mechanisms allow the system to respond to the same external item across a range

of proximal conditions. Imagine a toy system with a ‘red ball’ neuron connected to some
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eyes. The ‘red ball’ neuron fires whenever there is a red ball present and visible to the

eyes. However, the red ball may project light onto very many areas of the retina. The

‘red ball’ neuron fires regardless of where on the retina the light is projected: its response

is invariant across a multitude of proximal retinal conditions.

Applied to the toad example, Schulte observes that “there is no single type of reti-

nal stimulation pattern which normally causes the toad’s visual system to produce T5(2)

activation; instead, T5(2) activation is produced in response to very different retinal stim-

ulation patterns under different circumstances. The same seems to hold for patterns of

light. Hence, the only external state that qualifies as a normal cause of T5(2) excitation,

i.e. as a cause that is always present in normal situations, is the distal state [a SEM object

is present]” [Schulte, 2018, p361]. Schulte argues that the represented item is that item

which provokes the invariant response across each proximal condition.

However, Schulte notes a possible objection: “appearances to the contrary, there is a

proximal state that qualifies as a normal cause of T5(2) activation — namely, a disjunc-

tive proximal state” [Schulte, 2018, p362]. If we could create a list of all the proximal

states which activate the relevant neuron, we could, it seems, equally well ascribe this

disjunctive proximal set as the content of the corresponding neural representation.

Schulte suggests the following solution: “we can solve the distality problem by iden-

tifying the content of a perceptual state with its most natural (least disjunctive) normal

cause” [Schulte, 2018, p363]. In this case, the most natural cause, [p], is more ‘natural’

than the disjunctive cause, [p*], just in case there is “a higher degree of objective simi-

larity between [p]-tokens than there is between [p*]-tokens” [Schulte, 2018, p364].

Setting aside a detailed investigation of this notion, I wish only to remark that the
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reliance on the more ‘natural’ cause renders Schulte’s view more suited to answering

why-questions than how-questions, at least as the theory stands. We have no indication

of how the system is able to respond to ‘natural’ rather than ‘non-natural’ items. Instead,

positing that the system does respond to ‘natural’ items can be used to explain why the

system tends to be successful: if the ‘natural’ item is present, the system will be able

to access whatever the item provides (e.g. nutrition). If a member of the disjunctive set

of retinal activation patterns is present only, the system may nonetheless not be in a

position to acquire nutrition (e.g. due to random activation of the same neural pattern) -

hence the system will fail to gain sustenance.

Schulte’s invocation of constancy, on the other hand, provides an invaluable contri-

bution to informational teleosemantic accounts aimed at determining contents which can

be used to answer how-questions. I go into detail about how these mechanisms allow the

system to define an external random variable over which mutual information quantities

can be calculated in chapter five. In chapter seven, I will suggest that, rather than invoke

‘naturalness’ to solve Schulte’s disjunction concern, we can instead defer to what the

system itself can use (decode) to perform its tasks.

Manolo Martinez and Marc Artiga

Martinez and Artiga each provide accounts which make an explicit attempt to provide

ultimate explanations. High-church content is taken to be explanatory of the evolution-

ary persistence of so-called “indicator” states. As Artiga puts it, content ascriptions on

these accounts are intended to “explain why the representational system was selected

for” [Artiga, 2021, p473]. I quote an example of his in full:
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Dragonflies possess a set of neurons called “target-selective descending neu-

rons” (TSDN), which are completely silent unless the dragonfly is presented

with a target within the adequate receptive field, with a certain size (about

1–2
◦
) and moving in a determined direction (Olberg, 2012; Sathe & Bhus-

nar, 2010). Activity in TSDN causes dragonflies to quickly move in a certain

trajectory, which in an astonishing 95% of cases allows them to catch prey

(Combes, Salcedo, Pandit & Iwasaki, 2013; Gonzalez-Bellido, Peng, Yang,

Georgopoulos & Olberg, 2013, p. 699; Olberg, Worthington & Venator, 2000,

p. 155). If for the time being we make the simplifying assumption that drag-

onflies only prey on mosquitoes [...] teleosemantics would entail that activa-

tion in TSDN is a representation of something like a mosquito being around

[Artiga, 2021, p472].

The content ascription, roughly ⟨mosquito⟩, is made on the basis that it explains why

a dragonfly has TSDN neurons. Generally, such contents are intended to answer why-

questions of this sort. The content ascription also explainswhy the dragonfly is successful

as often as it is - for example, perhaps the low-church contents of TSDN neurons are very

highly correlated with mosquitoes (for example, TSDN neurons may have as low-church

content a highly specific shape profile). As Martinez writes: “the simplest contentful

states do exploit (and exist because they exploit) a correlation between detectable (low)

properties (Being shiny and black, say) and useful (high) properties (e.g., Being nutritious,

or Being dangerous)” [Martinez, 2013, p441]. However, I argue that if we want to know

how the dragonfly performs this cognitive feat, we must have some theory which can

determine precisely what its TSDN neurons represent in the ‘low’ sense.
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Martinez also considers etiological content-ascriptions to be aimed at answeringwhy-

questions: “To provide a content attribution for a representation type R is to provide a

compressed explanation of the existence of R in a sufficient number of cases.” [Martinez, 2013,

p450]. Martinez also considers any etiological-function-based theory of content to be de-

signed to address why-questions: “at least under the etiological understanding of what

functions are, to say that something is whatever a representation has the function to in-

dicate (i.e., its content) is to say that it figures in an important way in an explanation of

the existence of the representation” [Martinez, 2013, p451]. This is to say it answers why

the representation is present - or why the system discriminates what it does. As I use the

terminology, this type of high-church content is used to answer why the representation

has the (low-church) content the science attributes to it - which it attributes in order to

answer how-questions.

The question both Martinez and Artiga set out to answer is how to make a principled

attribution of an item, correlatedwith the low-church content, as the high-church content

of a representation. Given that many environmental items are correlated with the low-

church content the system has, which item should be selected?

According to Martinez, “something similar to Boyd’s HPCs solves the indeterminacy

problem for naturalistic accounts of content” [Martinez, 2013, p443]. HPCs are ‘homeo-

static property clusters’, which “are individuated by property clusters that are afforded

imperfect yet homeostatic integrity by underlying causalmechanisms” [Wilson et al., 2007,

p190]. Martinez also stipulates that “the clustering must be causally important for the

existence of the indicator m” [Martinez, 2013, p444]. The correlated item is given by the

cluster of properties that what is represented (in the low-church sense) is causally related
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to, by way of mechanisms which support the homeostatic integrity of the cluster.

Artiga argues that Martinez’s account fails, since we can in principle discover a num-

ber of nested HPCs. A wing, for example, may be an HPCmade up of all the properties of

a wing which allow it to keep its integrity. The wing may also be causally related to the

low-church content of representations such as those enacted by TSDN neurons, making

Martinez’s account indeterminate between the contents ⟨mosquito⟩ and ⟨wing⟩.

Artiga proposes that “the [high-church] content of a given representation is the prop-

erty F1 that best explains why the other properties in P tend to co-occur” [Artiga, 2021,

p481]. Artiga provides an example: “the presence of a mosquito involves a collection

of well-established mechanisms that strongly tends toward the production of wings and

the subsequent ability of fly. In contrast, note that no mechanism has been found leading

from wings to the production of mosquitoes” [Artiga, 2021, p484]. In this case, being a

mosquito is the property F1, and this explains why wings are there, and why specific low-

church properties are represented by the system. The reverse does not hold. So, Artiga’s

account is argued to produce the content ⟨mosquito⟩ for TSDN neurons.

Both approaches look promising for answering why-questions. However, they also

demonstrate the need for a systematic account of low-church content. We need to be able

to provide a principled specification of the precise environmental items that the TSDN is

representing in our sense if we are to discover the best candidate property cluster - either

homeostatic or explanatory. To know which set of items to look for, we need to be able

to identify precisely some of the items in that set - the environmental items picked up by

the system itself. I believe that maxMI can provide just such an account.
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2.6.2 Answers to how-questions

Typically, answers to how-questions are sought by those interested in structural repre-

sentation. This is the area of research most aligned with the project of this thesis. In

order to illustrate the approach, I will highlight a significant contributor to this research

area, Gualtiero Piccinini.

Piccinini defines structural representations roughly as “a model of a target that can

guide behavior with respect to its target” [Piccinini, 2022, p4]. Piccinini glosses this using

the analogy of amap: mostmaps represent their ‘target’ (the terrain) by being structurally

similar to the target; spatial properties of the environment are reproduced on the map: if

the river is to the left of the hill, a mapwill typically show a diagram of a river to the left of

a diagram of the hill. In technical terms, structure-preserving maps are “homomorphic to

the systems they represent” [Morgan and Piccinini, 2018, p15]. A change in an external

item, given a homomorphism, leads to a change in a representing system.

Importantly for structural theorists, content features in an explanation of how the sys-

tem’s behaviour is guided. As such, it must be the case that “the information content of

those states is explanatorily relevant towhat the system does” [Morgan and Piccinini, 2018,

p15].

How is the explanatorily relevant content determined? According to Piccinini, the

best account of “the semantic content of structural representations is informational teleose-

mantics, which says, roughly, that the semantic content of a structural representation is

the information it has the function of carrying about its target” [Piccinini, 2022, p5]. This

is surprising, since structural representation is often thought to be at odds with teleose-

mantics. However, Piccinini notes that “it’s a basic corollary of communication theory
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that if one system encodes information about another, a homomorphism holds between

them. Thus anything that qualifies as a receptor ipso facto qualifies as a structural repre-

sentation, and vice versa” [Morgan and Piccinini, 2018, p15]. So, informational teleose-

mantics - at least a version which uses information theory proper - aligns with work in

structural representation.

In order to see how content is explanatorily relevant for how-questions, Piccinini

suggests that we must find an account “that sheds light on explanatory practice in the

cognitive sciences, notably cognitive neuroscience” [Morgan and Piccinini, 2018, p15].

We can find such an account by observing the fact that the cognitive neuroscientists’

methodology involves “investigating the response properties of neurons and neuronal

populations”, allowing them to “determine what such neurons or populations are most

responsive to under relatively good sensory conditions”. According to Piccinini, “that is

their semantic content” [Piccinini, 2022, p10]. This means that “the content of individual

neural representations is for neuroscientists to investigate empirically, not for philoso-

phers to intuit about” [Piccinini, 2022, p10]. In this respect, the current project is in

complete agreement.

An independent argument for Piccinini’s position, that cognitive neuroscience is the

place to look for content featuring in explanations for how-questions, is provided in

chapter five section 5.5. In short, taking information theory seriously requires finding

brain structures which can be modelled as mathematical entities called ‘random vari-

ables’. Psychologically-characterised mental states cannot provide the requisite precision

in terms of identifiable outcome values and the probabilities of those values which are

used for random variable modelling.
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However, as we will see over the course of this thesis, content determination in cog-

nitive neuroscience is more complex than it initially appears. In order to be truly ex-

planatory, content must be decoded by downstream systems. Simply looking at the item

that “neurons or populations are most responsive to” does not guarantee that the system

itself can decode the same information which we, with all our experimental background

knowledge, can decode. This is why a significant proportion of cognitive neuroscien-

tists are now explicitly attempting to use empirical methods to discover the information

which is decoded, rather than information which is available from the neuron’s response

profile for the experimenter.

Cognitive neuroscientists do occasionally look for the item that the neuron is “most

responsive to”. For example, classic studies on visual object recognition such as those

by Tanaka and colleagues (e.g. [Tanaka, 1992], [Tanaka, 1997]). However, many con-

temporary cognitive neuroscientists use more sophisticated measures, such as the spike-

triggered average (STA) of the cell, dimensionality-reduction, or conditional mutual in-

formation. When we look at these methods, we see that they implicitly rely on the con-

tent of a neural representation being that item with which the representation maximises

mutual information. The use of functions and the implicit commitment to maximal mu-

tual information suggests that the implicit theory of content operative in cognitive neu-

roscience is maxMI.

2.6.3 Information theory

Cognitive neuroscience, as I argue in chapter 4 section 4.4, relies on Shannon’s informa-

tion theory - either implicitly or explicitly - in order to characterise the external item
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which is explanatorily relevant to how-questions. However, many theorists
8
contend

that Shannon’s information theory is an inappropriate tool for a theory of content. They

argue that information theory is not concerned with the content of signals, merely with

the quantity of information contained within them. So, it cannot be used to deliver con-

tent. However, recent work attempts to show that information theory is an appropriate

tool for a theory of content.

Stephen Mann

Stephen Mann answers the above challenge head-on by arguing that Shannon has been

misinterpreted in his famous ‘warning’ that information theory has nothing to do with

content. Mann writes: “I demonstrate that Shannon’s warning pertains to sources, not

signals. When Shannon did turn to signals, he called them representations and explicitly

referred to them as contentful” [Mann, 2023, p9]. Shannon’s warning, in this context, is:

The fundamental problem of communication is that of reproducing at one

point either exactly or approximately a message selected at an- other point.

Frequently the messages havemeaning; that is they refer to or are correlated

according to some system with certain physical or conceptual entities. These

semantic aspects of communication are irrelevant to the engineering problem

[Shannon, 1948, p379; emphasis added].

Mann argues that philosophers have routinely misread Shannon’s warning. He con-

tends that Shannon was referring to the source message rather than the code string.

Whether the source string is meaningful or nonsense does not matter for how much

8
e.g. [Dretske, 1981, p41], [Neander, 2017b, p7], [Lombardi et al., 2016, p1989].
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information is available from the source - this just relies on there being the some num-

ber of possible states with some probability distribution over each state. However, this

does not mean that measures such as mutual information do not involve content. As

Mann writes, Shannon’s warning does not pertain to “a correlation between signals and

signifieds” [Mann, 2023, p13].

The positive case that mutual information, as a measure, does import content is given

by Mann’s demonstration that information theorists themselves implicitly assume that

codedmessages are contentful in their theoretical work. He argues that Shannon’s ‘source

coding theorem’ (a theorem about how many symbols are required to encode a source)

“assume[s] that the code symbols are being used to record the symbols of the source

string” [Mann, 2023, p14]. Absent the assumption that the symbols received at the re-

ceiver are ‘about’ the source, the source coding theorem makes little sense. To determine

how efficiently a source has been encoded, we need to be able to compare the code string

to the source string - which it is about.

While Mann does not attempt to show howwe can use information theory in theories

of content, he does clear a significant hurdle: he shows that “the idea that formal tools are

conceptually and technically distinct from the philosophical question of semantic content

is becoming untenable” [Mann, 2023, p23]. Mutual information, in particular, is a notion

which can in principle be deployed in search of a theory of content. Nothing in the formal

model prohibits this. As I will show throughout the thesis, but especially in chapter

seven (section 7.4), we can use amount of mutual information to provide a principle for

content determination: maximal mutual information provides an item about which the

system has ‘available’ information, isolating the item which provides explanations for
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how-questions.

Oliver Lean

Lean aims to show that information theory is an appropriate tool to answerwhy-questions.

He argues that “selectionwould produce organisms that respond adaptively to causes that

carrymutual information about selectively relevant states of the environment” [Lean, 2014,

p401]. When considering why some system within an organism is selected for, we need

to consider the amount of mutual information it provided, historically, about the input.

The more information carried by a representational structure about some item beneficial

to the organism the more selection pressure there will be on that structure.

While information relations in Shannon’s sense are ubiquitous, Lean argues that there

is a role for Shannon information in “distinguishing processes on the basis of the quantity

and fitness value of the information being discussed” [Lean, 2014, p404]. This limits the

range of cases in which Shannon information provides a guide to content attribution. It

is only when a system is selected for in virtue of its Shannon information that the system

can be said to have the ‘function’ to deliver that information. Once this function has

been established, we are able to determinemisrepresentation. So, Lean argues, “Shannon

information, in concert with function and fitness, can do the same explanatory work as

richer informational concepts” [Lean, 2014, p406]. Specifically, it allows us to limit rep-

resentation to explanatorily relevant items, and allows us to see how misrepresentation

is possible.
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Rosa Cao

Mann and Lean attempt to show that information theory, pace significant philosophical

pressure to the contrary, is an appropriate tool for a theory of content. Rosa Cao con-

siders how information theory can be applied to the cognitive system under a broadly

informational teleosemantic approach. I will focus on her discussion of what it takes for

some part of the cognitive system to be a ‘receiver’ of information. Specifically, Cao is

interested in the properties a potential receiver must have in order to receive information

from the external world

Referring to structural accounts such as those offered by Piccinini, Cao writes: “Some

causal accounts of representation require that the signal correlate with or show isomor-

phism to a state of the world. I would argue that correlation by itself is not sufficient

to give a signal its content” [Cao, 2012, p53]. As I alluded to above (section 2.5), what

downstream systems do with the incoming information is crucial to determining repre-

sentational content. Cao argues for this position and therefore focuses on the information

which reaches the receiver. However, Cao notes that there is some ambiguity in attempt-

ing to characterise what counts as a receiver within the brain. Cao states the problem as

follows:

Are receivers pre-synaptic terminals or post-synaptic densities? Are they

whole post-synaptic cells, or groups of neurons defined by common inputs?

What about groups of neurons defined by projections onto common targets,

groups of neurons defined by functional role, or groups of neurons defined by

cell type? The grouping can also be vertical, in the sense that maybe the right

way to think of a receiver in the brain is as the post-synaptic density—and
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everything it’s attached to and has any effect on further downstream, all the

way out to the neuromuscular junction andmotor actuators. But then, down-

stream itself is a problematic concept in a brain full of feedback connections.

[Cao, 2012, p60]

Cao highlights the fact that only some downstream systems can be said to truly re-

ceive information in the sense that they can use it. Many of the possible receiver systems

she highlights are unable to use the information they receive as she conceives of ‘use’.

She argues that receivers must meet the requirement that they can “act” on the input.

Her characterisation of this requirement is that anything which is a receiver must be an

“agent”, which she spells out as follows:

the receiver needs to be an agent, again, not necessarily in the sense of having

intentions, but at least in the sense of being able to act in the world to affect

its own outcomes. An incoming signal will only carry semantic information

for its receiver if the receiver has the ability to act on the information in a

consequential way, even if that ability is not exercised often, or even perhaps

has never been exercised. [Cao, 2012, p53]

Cao eventually argues that the only true receiver is the whole organism - that entity

which is able to act on the environment. So, any sub-component of the organism, taken

by itself, is unable to act on the environment in the requisite way. According to Cao,

this means that we must “give up the common interpretation that a single neuron is

doing something like representing ‘a very small piece of the world outside the organism,’

though indeed its activity may be well correlated with the structure of that small piece

of the world” [Cao, 2012, p66].
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Cao argues for this position due to familiar considerations about the fact that content

must contribute to an explanation of the persistence of the representational structure

(i.e. answers why-questions of the sort we explored above). This means that the puta-

tive receiver must be able to act on the item which is the content of its representational

states, and receive a reward for doing so, thereby resulting in the stabilisation of the rep-

resentation - its persistence over time. Any receiver which can thereby act on the world

and receive a reward has access to the relevant information. However, single cells have

no such access. She provides an example: “the V1 cell has no access to contour edges.

What it does have access to is whether the cells that project to it are firing, and how

much inhibitory vs. excitatory transmitter it is experiencing” [Cao, 2012, p66]. The V1

cell cannot act on contour edges or receive a reward from them. All it does is reliably

respond to such edges, and transmit that information by way of ‘acting’ on its proximal

input.

In essence, Cao is emphasising the role of the consumer for informational theories.

According to her view, the content of any representation is given by its ultimate relation

to some cognitive capacity. However, there is an alternate way to think about the con-

tent of sub-systems within the whole system, given this requirement. Some sub-systems

contribute very specific environmental information to the operation of the whole ca-

pacity. For example, some cognitive tasks require recognising an object within a larger

picture. When cognitive neuroscientists investigate this capacity, they find that some

very specific elements of the picture contribute to the recognition of the whole object

(e.g. [Zhan et al., 2019] - investigated in depth in chapter four section 4.4.3).

If we drop the requirement that content must feature in an answer to a why-question,
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thus removing the need for a reward, we can attribute specific contents to subsystems in

virtue of what they can be experimentally discovered to contribute to the whole capacity.

On such a picture, what a receiver has access to will be spelled out in terms of what it

can decode and transmit to other sub-systems (as spelled out in detail in chapter seven

section 7.5).

2.7 Conclusion

Drestke introduced information theory to the content naturalisation project, providing

fecund ground for a research project aimed at understanding representational content

in terms of informational relations. Ruth Millikan emphasised the importance not only

of informational relations, but “usable” information relations - limiting content to items

serving some function of the system. Karen Neander further limited content by introduc-

ing response functions, in which content is tied to discriminatory capacities. However,

perhaps Neander’s most important contribution is noting the divergence of explanatory

projects within teleosemantics, arguing that content can contribute to how-question an-

swers, not just the why-question answers sought by many.

Contemporary researchers within the teleosemantic tradition have built on this foun-

dational work in a number of ways. Schulte, Martinez, and Artiga each attempt to pro-

vide a way to systematically determine the item in the environment, correlated with what

the system can discriminate, which is explanatory relevant to the why-question project.

Those who answer how-questions, such as Piccinini, emphasise the role of multi-level

componential explanations in cognitive neuroscience as a guide for content determina-
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tion. Piccinini recommends observing how neuroscientists measure response profiles of

neurons in order to determine representational content. While this is true, it undersells

the complexity of the methodologies and implicit theorising which support content at-

tributions in contemporary cognitive neuroscience.

Picking up fromDrestke’s employment of information theory, contemporary researchers

attempt to answer outstanding questions about the suitability of information-theoretic

methods for theories of content. Mann answers the criticism that information theory is

irrelevant for the purposes of determining content. He suggests that information theory

is concerned with content in the sense that signals encode a message, where this relation

is spelled out in representational terms within information theory proper. Lean then ar-

gues that information theory can be used to answer why-questions, demonstrating the

power of the model.

Cao investigates the applicability of information theory to the cognitive system, at-

tempting to isolate mechanisms which can count as receivers within the information-

theoretic sender-receiver model. She argues that receivers must be able to act on their

content directly. However, another possible model involves discovering what a receiver

is able to decode from its input in order to contribute to a wider cognitive capacity.

Generally, theorists acknowledge that structural representations play an important

part in answers to both how- and why-questions. However, no theorist other than Nean-

der has yet provided a systematic treatment of how content is ascribed to such represen-

tations. To speculate a little, perhaps theorists do not consider such content ascriptions

theoretically interesting, since they appear to be able to be given by a relatively simple

correlational relation. As Ramsey says, “functional theories of content typically presup-
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pose that neural states function as representations; they do not explain how this happens”

[Ramsey, 2016, p6]. In this thesis, I attempt to spell out precisely how content attribu-

tions - the type which are geared towards answering how-questions - are made-Within

cognitive neuroscience. Rather thanmere correlation, content ascriptions are highly con-

strained. As I argue, they must meet the requirements of maxMI.
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Chapter 3

Content Naturalism

3.1 Introduction

Neander and Piccini, along with most contemporary informational teleosemanticists,

turn to scientific practice to discover an implicit theory of content. This is also the

methodology I pursue in this thesis. However, the philosopher Frances Egan argues that

content ascriptions in cognitive science are determined by the pragmatic interests of re-

searchers, and that content is not strictly part of scientific explanation. Content attribu-

tions, Egan argues, only serve various heuristic purposes, such as making the scientific

theory perspicaciously related to the presumed pre-theoretic interests of readers. In this

sense, contents are not naturalistic - they are determined only by pragmatic consider-

ations. If so, there is no implicit theory of content in cognitive science which isolates

contents which are explanatory of cognitive capacities, contrary to what we have been

assuming so far.
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Egan offers two considerations in favour of her position. First, that content is not

“essential” and second that content is not “naturalistic”. Egan argues that content is not

essential in the sense that it is not used to individuate representations in cognitive science.

Rather, she maintains, representations are individuated with respect to the mathematical

function computed by the system under investigation. Content is not naturalistic in the

sense that there is no determinate scientific principle guiding content attribution - only

the heuristic requirements of scientists.

I endorse Egan’s criteria that content, to feature in the explanations of science, must

be both essential and naturalistic. However, I introduce a case study in which content is

both essential and naturalistic. I show that, in a landmark study on face recognition by

Chang and Tsao [Chang and Tsao, 2017], representational states are individuated with

respect to their contents precisely in the way required by Egan (section 3.3.1). I then

show that content is determined by the naturalistic relation of encoding, which constrains

content attributions not with respect to the heuristic requirements of researchers, but by

the discriminatory and decoding capacities of the system itself (sections 3.3.2, 3.3.3). I

then argue that such content attributions are sufficiently determinate so as to count as

explanatorily relevant contents (section 3.4).

I end by considering three principles which will hopefully aid theorists in isolating

those regions of cognitive science in which content is used as part of the theory, not just

as a heuristic gloss (section 3.5).
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3.2 The problem

Many contemporary philosophers who attempt to provide a naturalistic theory of rep-

resentational content (i.e. a theory which specifies how the content of any given repre-

sentation is determined consistent with scientific practice) employ a methodology, ex-

pressed by William Ramsey as follows: “to critically examine the different ways cog-

nitive scientists appeal to notions of representation in their explanations of cognition”

[Ramsey, 2007, pxv]. As Tyler Burge puts it, there may be elements of a theory of rep-

resentation which cognitive science, “without being fully aware of its own accomplish-

ment” [Burge, 2010, p9], has discovered, and which the philosopher seeks to uncover.

Nico Orlandi provides the following characterisation:

I propose that we look at what mental representations are by looking at how

they have been used in these disciplines [i.e. cognitive science, broadly con-

strued]. In this respect, I take philosophers interested in the notion of men-

tal representation to be akin to those philosophers and historians of science

more generally who investigate the nature of scientific posits by looking at

scientific practice. [Orlandi, 2020, p101]

This methodology rests on the assumption that there is an implicit theory of rep-

resentational content operative within cognitive science. Frances Egan argues that the

assumption is false; cognitive science rests on no implicit theory of representational con-

tent. According to Egan, attributions of content in cognitive science are a “gloss”, not

part of the “theory proper”. Content is attributed to a mental representation on the basis

of pragmatic choices by the scientist; she chooses, from the many environmental items
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which have some degree of co-variance with the representational state, the item which

best serves her communicative aims.

For example, she may attribute the content ⟨face⟩ to a neural representation within

the fusiform gyrus. She may do this because we are primarily interested in the role the

neural representation appears to play in face recognition, and choosing the content ⟨face⟩

transparently situates the investigation within that context. She could have chosen any

number of co-varying contents, including ⟨face-like-shape⟩ or ⟨two-dots-above-a-curved-

line⟩, either of which specifies something which co-varies with the neural representa-

tion
1
. The only reason she chose ⟨face⟩, so Egan argues, is that it specifies the most

intuitive environmental item, helping the reader understand the broad significance of

the scientist’s research. The content-gloss is a way of marketing one’s research, with no

theoretical principles - only pragmatic principles - governing its attribution.

In the next section, 3.2.1, I reconstruct Egan’s argument, and clarify the terms ‘con-

tent’, ‘theory proper’, and ‘gloss’. In the remainder of the paper I respond to Egan’s

argument. I focus on a case study from cognitive neuroscience in which, I argue, content

attributions meet Egan’s criteria for inclusion in the theory proper. I draw three gen-

eral principles from this case study. These principles should help guide us towards those

parts of cognitive science in which content attribution is guided by an implicit theory.

If a scientific paper fails to meet these principles, we are likely to find that content is a

gloss.

1
An image of two dots above a curved line is a stimuli sometimes used in facial recognition tasks (e.g.

[Tsao and Livingstone, 2008, p10]).
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3.2.1 Egan’s argument

In this section I set out a reconstruction of Egan’s argument. I then define some key terms

used within the argument.

The argument goes as follows:

1. We can derive a non-deflationary theory of content from cognitive science only if

content plays a role in the theory proper.

2. Content is part of the theory proper only if both of the following two conditions

are met:

(a) Content is treated as an essential part of the states or structures in question.

This requires that scientific theories “individuate the states and structures

they posit partly in terms of their content” [Egan, 2018, p251].

(b) Content is treated as naturalistic, meaning that it is determined by “a privi-

leged naturalistic relation holding between a state/structure and the object or

property it is about” [Egan, 2018, p251].

3. Content is not part of the theory proper because:

(c) Cognitive states and structures are not individuated in terms of content, rather

they are individuated by the mathematical functions they compute.

(d) “since pragmatic considerations typically do play a role in determining cog-

nitive contents, these contents are not determined by a naturalistic relation”

[Egan, 2018, p255]. Further, the indeterminacy problems faced by naturalistic
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accounts of content provide some reason to think that no single privileged

naturalistic link between a state and an environmental item exists.

4. Since content does not play a role in the theory proper, we cannot derive a non-

deflationary theory of content from cognitive science.

As Egan uses the term, content (which she refers to as cognitive content) is some distal

item or items external to the representational state itself. Cognitive content is “domain-

specific”: the distal items taken to be the content are “properties or objects relevant to

the cognitive capacity to be explained” [Egan, 2018, p253]. So, cognitive content must

be part of an explanation of the functioning of the system in which the representational

state which relates to that content is embedded.

Egan characterises cognitive content as the kind of content that “theories of content

developed by philosophers” [Egan, 2018, 250] are aimed at. Certainly, for our purposes,

this is the kind of content aimed at: the methodology under investigation is employed

by those philosophers who are attempting to provide a theory of content consistent with

the practices of cognitive science. Each adherent to the “explanatory turn” [Schulte, 2023,

p55] is committed to cognitive content in Egan’s sense. So, for the theorists we are target-

ing, contentmust play some explanatory role for the system inwhich its related represen-

tation is embedded. Going forward, all references to content specify cognitive content.

A non-deflationary account of content is an account in which content plays an

explanatory role. As the argument suggests, Egan is a deflationist about content. As

with deflationism about truth [Armour-Garb et al., 2023], Egan maintains that content

does not feature in the explanatory account provided by the cognitive scientist. Egan

refers to the explanatory account as the theory proper, a term she attributes to Chomsky
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[Egan, 2014, p119].

Rather than provide a general definition of the theory proper, Egan lists three com-

ponents of the theory proper, as she sees it, of computational cognitive neuroscience:

a specification of the function (in the mathematical sense) computed by the

mechanism, specification of the algorithms, structures, and processes in-

volved in the computation, as well as what I call the ecological component of

the theory – typically, facts about robust covariations between tokenings of

internal states and distal property instantiations under normal environmen-

tal conditions. [Egan, 2020, p11]

Egan maintains that these components together constitute a complete explanation

of the cognitive capacity investigated by the cognitive scientist. They are “sufficient to

explain the system’s success (and occasional failure) at the cognitive task” under investi-

gation [Egan, 2020, p11]. We can therefore minimally characterise the theory proper as

that element of the scientific theory which is sufficient to explain the cognitive capacity

under investigation. This definition is neutral on the question of how to characterise a

scientific explanation.

The theory proper is to be contrasted with the gloss cognitive scientists use when

presenting their theory [Egan, 2018, p254]. The gloss plays no theoretical role beyond its

(indispensable) use as a heuristic to convey the significance that the theory has within

our ordinary understanding of the world, or to aid comprehension of otherwise difficult

technical vocabulary and concepts. The gloss serves “to illustrate, in a perspicuous and

concise way, how the computational theory addresses the intentionally characterized

phenomena with which the theorist began” [Egan, 2020, p12].
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When looking to recover a naturalistic theory of content from cognitive science, the

philosopher should hope that content is used within the theory proper. Otherwise, we

will not be tapping into some theoretically informed usage, the principles of which we

hope to uncover. Rather, if the cognitive scientist chooses from a plethora of possible

content attributions based on optimising various heuristic values, we have a pragmatic,

not naturalistic theory of content.

My response to Egan’s argument will be to demonstrate that, in the case study I

introduce, cognitive content is also required for a complete explanation of the cognitive

capacity under investigation. Since this is the case, it can also be shown how the use

of content in the case study meets the necessary conditions for inclusion in the theory

proper set out in (a) and (b) in the above argument. Condition (a) is clarified in section

3.3, and (b) in section 3.4.

If we are to respond to Egan, we need to refute both (c) and (d). In what follows, I

will explicate Egan’s arguments in favour of (c) and (d), then attempt to answer them.

Of course, this will only establish that content meets the necessary conditions to feature

in the theory proper. Egan specifies no sufficient conditions for inclusion in the theory

proper, and I make no attempt to set out sufficient criteria. However, the three compo-

nents of the theory proper which Egan lists, plus cognitive content, appear, upon inspec-

tion, to be the only elements of the theory provided by the scientist, suggesting - absent

an argument to the contrary - that they are collectively sufficient for the explanation of

the cognitive capacity under investigation.
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3.3 Is content essential?

To be essential, cognitive scientistsmust “individuate the states and structures they posit[...]

partly in terms of their content” [Egan, 2018, p251]. This entails that the content cannot

change while the representation remains of the same type. Egan argues that mathemat-

ical content is essential, whereas cognitive content is not. The mathematical function

might remain constant, while the cognitive content changes:

If the mechanism characterized in mathematical terms by the theory were

embedded differently in the organism, perhaps allowing it to sub-serve a

different cognitive capacity, then the posited structures would be assigned

different cognitive contents.[Egan, 2018, p255]

In contrast, the mathematical function computed remains the same regardless of ex-

ternal (or internal) changes. Discussing Marr’s work on early visual processing, Egan

writes:

The mechanism described by Marr would compute the Laplacean of a Gaus-

sian even if it were to appear (per mirabile) in an environment where light

behaves very differently than it does on earth, or as part of an envatted brain.

It would compute this function whether it is part of a visual system or an au-

ditory system, in other words, independently of the environment—even the

internal environment— inwhich it is normally embedded. [Egan, 2014, p122]

While the content of a state might change depending on external factors, the mathe-

matical function it computes does not.
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This calls for some clarification. It is not the case that the mathematical function com-

puted by a cortical area remains the same no matter what. Neural plasticity describes the

change in behaviour of cortical regions depending on their inputs and outputs. If we

were to remove a part of the cortex from the visual system (say, one which processes the

Laplacean of a Gaussian) and place it in an entirely different system, a different math-

ematical function may in fact be computed. For example, if the input distribution is no

longer Gaussian, the cortical cells’ response profiles can be altered to efficiently encode

the new statistical distribution of their inputs (e.g. [Laughlin, 1981], [Friston et al., 2006]).

However, Egan’s point is, more precisely, that were the mathematical function com-

puted to change the state itself would change, since the state is type-individuated with

respect to the mathematical function it computes. Computing a mathematical function

is constitutive of that state being that state. This suggests a flat-footed response to Egan:

if the representation’s content changes, we simply stipulate that the state has changed.

We may follow Burge in maintaining that “the natures of many mental states are con-

stitutively dependent on relations to the environment” ([Burge, 2010, p63]). Under this

construal, the type of state something is depends on its relations to the external environ-

ment.

However, crucially, Egan argues that states can be constitutively dependent on x only

if a change in x results in a change for the system itself. What constitutes a change for

the system itself, and why does Egan argue that this is required for constitutive depen-

dence?

Unfortunately, Egan provides no general criteria for assessing whether a change con-

stitutes a change for the system itself. It is also unclear how we should understand the
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system for which there is a change. There are a number of possibilities. We may define

the system as the whole system of which the subsystem is a part. We may define the

system as the subsystem itself. We can also think of subsystems themselves at various

levels of grain. We might take the cortex, or the visual system, or V1, or specific path-

ways within V1, or the immediate surrounding structure of the representational state or

structure under investigation.

It is also unclear whether a change in a fine-grained subsystem must lead to a change

in the system as a whole. If there is some degree of redundancy in determining down-

stream processing or eventual behaviour, some local change may fail to produce a change

at a higher level.

To remove ambiguity, I propose that we adopt the following characterisation of what

it means for there to be a change for the system itself. In order for a change to be a

change for the system itself, the change must affect either (a) what the the system does

with respect to a given cognitive capacity (for example, face recognition) or (b) how the

system performs that cognitive capacity. A change in the content of some low-level rep-

resentation hypothesised to be involved in face recognition must either disrupt, improve,

annihilate or otherwise alter, on a behaviourally observable level, the performance of face

recognition. Or, a change in content must force the system to adopt a different strategy to

achieve the same previous level of performance, where this means: the previous scientific

hypothesis for the contribution to the cognitive capacity of the target representational

state or structure (including a hypothesis at the mathematical level of description) must

be invalidated or refined.

These two criteria involve changes for the system itself at various levels of grain,
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depending on precisely how information processing is disrupted. A change in content

might be registered immediately by surrounding structures, might only be registered

further downstream, or may never be registered, leading to a difference in the final level

of capacity performance. They also ensure that any change is explanatorily salient within

the confines of the scientific hypothesis. So, the criteria specify the explanatory aim of

the cognitive scientist: to discover how some cognitive capacity is achieved, on varying

levels of grain.

With (a) clarified, in the next section I attempt to counter (c) in Egan’s argument.

I present a case study in which representational states or structures are individuated in

terms of their content, in such a way that if the content of that representational state were

to change, there would be a change in the system itself (in the sense specified above).

3.3.1 Case study: Chang and Tsao (2017)

In this section I present a case in which two representational states share a mathematical

function, but are individuated with respect to their content. I claim that the researchers

treat content as essential: they type individuate the two representational states partly in

virtue of their differing content. Crucially, a change in this content results in a change in

the system itself (argued for in detail in section 3.3.3).

Chang and Tsao [Chang and Tsao, 2017] attempt to discover how faces are repre-

sented in the primate brain. In the course of doing so, they seek to uncover two things:

which mathematical function is computed by face cells, and what those face cells repre-

sent, i.e. their content.

Chang and Tsao discover two types on cell involved in facial recognition. One type
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processes “shape” content, predominantly found in the anterior medial (AM) of the infer-

otemporal cortex (IT), and another type processes “appearance” content, predominantly

found in the middle lateral/middle fundus (ML/MF) of the IT
2
.

They suggest that each type of cell contributes to face recognition by independently

processing different aspects of faces. This has the benefit, Chang and Tsao hypothesise,

of allowing the independently processed aspects of faces to be used flexibly for a large

number of tasks which require just one of the two types of content.

Chang and Tsao observe that “the fundamental difference between ML/MF [middle

lateral/middle fundus of inferotemporal cortex (IT)] and AM [anterior medial of IT] lies

in the axes being encoded (shape versus shape-free appearance), not in the coding scheme”

[Chang and Tsao, 2017, p1020; emphasis added]. The coding scheme is characterised as a

mathematical function - specifically, the cells “taking a dot product between an incoming

face and a specific direction in face space defined by the cell’s STA” [Chang and Tsao, 2017,

p1020] with the “incoming face” expressed as a 50-d vector and the “face space defined by

the cell’s STA” another vector which, roughly, characterises the response profile (STA) of

the cell (for a detailed description of STA see section 7.4.2).

Specifically, the dot product is taken between the following vectors: the incoming

50-d vector defining the input, and the 50-d vector defining the cell’s STA. The STA,

or “spike-triggered average”, of the cell is the average stimulus that the cell responds to

[Chang and Tsao, 2017, p1015]. Before the STA is found, the stimulus range is “param-

eterized” [Chang and Tsao, 2017, p1022] along the dimensions of shape and appearance,

divided into 25 shape metrics and 25 appearance metrics. Each new stimulus is generated

2
We will investigate precisely how these terms are defined in section 3.4.2.
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by software which randomly assigns values for each of these 50 parameters. We can find,

by looking at the spike-rate of any given cell in response to an input, the response profile

to the parameterized stimuli, averaged over a range of inputs. We thereby define a 50-d

vector giving the axis of the cell, found by deducing the gradient of the average tuning

curve of the cell to each input parameter. The cell’s axis tells us precisely which parts of

the stimuli the cell is responding to, and how strongly. Some cells are tuned primarily

to shape properties (e.g. position of the nose relative to the eyes), while others are tuned

primarily to appearance properties (e.g. texture and hue of the skin).

The scalar output of each cell is a result of computing, for both sets of cells (AM

and ML/MF), the same dot product function. But, while both types of cell perform the

very same mathematical function, they are type-identified with respect to the input they

encode. The input they encode is distal, either the shape or features (appearance) of

external stimuli (specified using technical terminology, outlined in section 3.4.2).

It is not possible to individuate the two types of representational state on a purely

mathematical basis. Both types of cell process the very same type of 50-d vector inputs

in which the vector values are determined by a quantification of the parameters of the

input values. Both types of cell perform a dot product function between their axis and

input vectors.

A prima facie mathematical difference between each cell appears to be given by dif-

ferences between the 50-d axis vectors whichmodel the STA of each cell. Each axis vector

contains different values in each position of the vector. While this is not obviously a dif-

ference in the mathematical function computed (which remains the computation of a dot

product), it may arguably be included in a fine-grained individuation of the mathematical
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function computed (the dot product taken between specific vectors).

However, there is nomathematical principle determining which values each axis vec-

tor contains. The only principle which determines the axis vector values is the observed

response of the cell to the the corresponding content which the 50-d input vector models.

Without invoking the fact that the values within the vectors model the response pro-

file of the cell to externally specified input values, we leave the cognitive capacity, face

recognition, unexplained. Without specification of the input determining the axis vector

values, we appear to have an arbitrary principle of individuation, which tells us very little

about the contribution of each cell to the target cognitive capacity. But values in the 50-

d axis vector are not arbitrary, nor are they determined by any mathematical principle.

They are determined by which aspect of the external input each value within the vector

corresponds to.

Throughout the following sections I argue that we should consider this study to be a

case in which cognitive content features in the theory proper.

3.3.2 Ecological component versus encoding

Egan allows what she calls the “ecological component” of the theory [Egan, 2018, p253]

into the theory proper. The ecological component is an external item which the states or

structures under investigation “typically correspond to” [Egan, 2018, p253]. The ecologi-

cal component is given by “facts about robust covariations between tokenings of internal

states and distal property instantiations under normal environmental conditions” where

these covariations “constrain, but do not fully determine, the attribution of cognitive

content” [Egan, 2020, 33].
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The ecological component of the theory, given that it is specified by covariation, does

not succeed in picking out just that aspect of the environment a change in which makes

a difference for the system itself. Some aspect of the environment which covaries with

a state may change, while another aspect of the environment, a change in which would

affect a change in the system itself, remains the same. For example, a certain complex

shape profile covaries with faces. However, some systems, such as AM cells in IT, respond

to those complex shapes if they appear on toast, clouds in the sky, or a crude drawing.

For the purposes of isolating just those properties which make a difference to the system

itself, some relation other than covariance must be specified within the theory.

In what follows, I argue that Chang and Tsao do not rely on covariance relations to

establish the content of a representation. Rather, they invoke, as is familiar in cogni-

tive neuroscience, the relation of encoding. Multiple references to encoding are used

throughout the study. The study itself is an investigation into what particular cells en-

code. Evidence that Chang and Tsao use encoding in the technical, information-theoretic,

sense (i.e. not as a gloss on covariance) is given by their discussion of the particular en-

coding function used by the system, discussed below.

I first define encoding, then spell out two implications of the encoding relation which

enable specification of content beyond covariance. First, the encoding relation requires

a function3 on the side of the system, relating upstream areas to downstream capacities

(section 3.3.2). Second, the encoding relation requires that the system be able to decode

the encoded input, placing constraints on the representation’s surrounding architecture

3
Not to be confused with mathematical function. When used without qualification, I use ‘function’

to specify the cognitive function of a representation - very broadly: the role performed, within a wider

system, by a subsystem which enables the cognitive capacity which the subsystem serves.
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(section 3.3.2). In section 3.3.3 I specify how, in virtue of these two features of encoding,

a change in encoded content affects a change for the system itself.

Encoding and functional relations

Encoding, in essence, is the process of converting symbols. Here is a textbook definition

of an encoder:

Before being transmitted, eachmessage s is transformed by an encoder, which

we can represent as a generic function g, into the channel input x = g(s),

which is a sequence of codewords. [Stone, 2015, pp26-7]

A message is modelled as a value of a random variable
4
. We can generalise the defi-

nition of an encoder to produce the following definition of encoding:

X encodes Y only iff there is some mathematical function f which takes in-

puts from Y and converts them into outputs in X (e.g. f(yi) = xi) where X

and Y are random variables for message sequences with alphabets (ranges of

values) y(1−n) and x(1−n).

In order for some system to encode an input, we must specify the values of the in-

put to be encoded. In information theory as originally conceived by Claude Shannon,

what is encoded is clear. Encoding was a notion intended for use in telecommunications

[Shannon, 1948]. In telecommunications, we know what is being encoded given that we

have designed the system ourselves. In telephones, strings of sounds from a person must

4
A set of values with a probability distribution over them, denoted with a capital letter, e.g. X - see

section 5.3.
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be encoded as electrical signals, before being decoded as strings of sounds at the receiver.

However, in natural systems we must construct theories about what is encoded. So, how

do we specify precisely which values, or ‘messages’, have been encoded? I maintain that

we must defer to the function of the system within which we find the encoder.

The role of an encoder as described by communication theory is to allow a sender-

receiver mechanism to reproduce “at one point either exactly or approximately amessage

selected at another point” [Shannon, 1948, p379; emphasis added]. Determining which

message has been ‘selected’ requires knowing the function of the encoder within the

wider sender-receiver system. In simple terms, we need to think of the use of the encoded

content
5
. It depends on the message which is meant to be reproduced at the receiver,

which constrains which content is selected for encoding. In our terms, this means that

what the downstream cognitive systems, which receive input from AM cells, do with

the input from the content they receive matters for the characterisation of the encoding

performed by the AM cells. It is not the scientist who selects a content from a range of

covarying states; the system itself selects the content based on what it needs in order to

perform its cognitive task.

Chang and Tsao hypothesise that ⟨shape⟩ and ⟨appearance⟩ are encoded, since “one

can linearly decode [these] features and use these decoded features flexibly for any pur-

pose, not only for face identification”. They have in mind, specifically “tasks such as gen-

der discrimination or recognition of daily changes in a familiar face” [Chang and Tsao, 2017,

p1024]. When they say “one” can decode these features, they mean downstream systems;

5
Speaking of encoded content avoids the circumlocution of referring to the messages which can be

traced back to the source item. What is encoded, strictly speaking, is a set of signals which the content

(source item) outputs (e.g. the light signals which bounce off the content proper, the shape).
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“downstream areas [read] out the activity of AM with greater flexibility to discriminate

along a variety of different dimensions” [Chang and Tsao, 2017, p1024].

The content of Am cells is characterised as ⟨shape⟩, understood in the technical sense

to be outlined in 3.4.2, since this is the content which is suited to be used, generally, by

the myriad downstream systems which perform a number of tasks.

Encoding and decoding

Chang and Tsao aim to uncover the specific encoding strategy used by the cognitive sys-

tem under consideration. They develop the following theory: AM cells use a linear coding

strategy to encode shape information. That is, AM cells respond in a linear fashion to

shapes, with a higher firing rate as the shape deviates from the average shape stimulus

which triggers the cell in one direction, and a lower firing rate as it deviates from the

average in the opposite direction (e.g. when two points on a shape move further apart

or closer together). The linear encoding strategy is posited in virtue of the fact that it

provides a “simple” strategy for, as Chang and Tsao put it, projecting shape information

onto the axis of the cell as defined by its STA [Chang and Tsao, 2017, p1022]. This is im-

plemented, as we saw in section 3.3.1, by the cell (acting in such a way as can be modelled

as) taking the dot product of two vectors, a relatively straightforward calculation.

Linear decoding is not a given. A non-linear encoding strategy can be more efficient,

in the information-theoretic sense of preserving the most information possible between

sender and receiver. If the distribution of the relevant features in the environment is

Gaussian (as is the case in Chang and Tsao’s study), the optimally efficient encoding of

this information is achieved by using a cumulative density function (CDF). A CDF results
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in an S-shape response profile; the cell has a greater sensitivity to differences among the

most common inputs, and a lesser degree of sensitivity to inputs at the extremes of the

Gaussian distribution. The cell ‘cares’ more about the most common inputs, distinguish-

ing between them carefully, while treating less common inputs as more or less alike.

A non-linear decoding strategy is computationally demanding. A linear decoding

strategy, while computationally simple, is lossy. Which decoding strategy is employed by

downstream areas reflects a trade-off between information loss and processing simplicity.

When positing the content of a representation, we must consider what can be de-

coded from that representation. The decoding strategy is a an important aspect of this

consideration, since it constrains the amount of information about the input available to

downstream areas. This is a point emphasised by de-Wit et al. (2016) [de Wit et al., 2016].

They write:

Much modern cognitive neuroscience implicitly focuses on the question of

how we can interpret the activations we record in the brain (experimenter-

as-receiver), rather than on the core question of how the rest of the brain can

interpret those activations (cortex-as-receiver). [de Wit et al., 2016, p1415]

de-Wit et al.’s concern closely resembles Egan’s; if de-Wit et al. are right, cognitive

neuroscientists often describe what we can decode from a system, rather than what the

system itself can decode. Given all our background knowledge, we can gain a great deal

of information from the firing of a single neuron. For instance, our neural scanning

machines may be capable of non-linear decoding of a cell, recovering more information

about the input than the system itself, which can only perform linear decoding.
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If we are interested in content as essential to the representational state under inves-

tigation, we must be concerned with what the system itself can decode. Otherwise, we

attribute to the system representational content which it is incapable of using for the

performance of downstream cognitive capacities. So, a change in this unreadable con-

tent will make no difference to the system itself, either immediately or downstream. It

cannot extract that information; it may as well not exist for the system itself.

Chang and Tsao are explicit in their hypothesis that the system itself linearly decodes

the input. Their study primarily focuses on what they, as researchers, could decode from

the cells, but with the aim of demonstrating the feasibility of such a decoding strategy for

the system itself - they “show that it is possible to decode any human face using just 200

face cells from patches ML/MF and AM” [Chang and Tsao, 2017, p1024]. Indeed, their

own results are remarkable - from reading numerous single cell recordings, they were

able to reverse-engineer the stimulus presented to the macaques with a high degree of

accuracy [Chang and Tsao, 2017, p1019].

The hypothesis, that the system itself is able to retrieve the same information that the

researchers themselves were able to retrieve, requires further testing. Work is underway

elsewhere in cognitive neuroscience, in the work of Philippe Schyns and colleagues (e.g.

[Zhan et al., 2019]), to employ information-theoretic measures to perform such tests (see

section 4.4.3).

For our purposes, the relevant point is that the input which is encoded should be

considered hand-in-handwith what the system itself is hypothesised to be able to decode.

We need to think of encoding and decoding as a coupled system, such that if some system

encodes some input, that encoding is of input which is for the system itself, in the sense
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of being retrievable. This is the case if we want to consider content as essential, and is

precisely what Chang and Tsao, along with other cognitive neuroscientists, implicitly or

explicitly practice.

3.3.3 A difference to the system itself

We have been considering the question whether content is essential to the representa-

tional states posited by Chang and Tsao. Essential content has two components: first,

the states in question must be individuated with respect to that content, which is the

case (section 3.3.1); second, individuation must be such that if the content with respect to

which the states in question are individuated were to change, a change would result for

the system itself. In section 3.3.2 we argued that the ecological component of the theory

is not sufficient to isolate a content which meets this criterion. However, in section 3.3.2,

we argued that Chang and Tsao do not invoke the ecological component, since they iden-

tify a relation other than covariance - encoding. In this section, I spell out how the two

features of encoding detailed above ensure that a change in content results in a change

to the system itself.

Let us remind ourselves of Egan’s Marrian example:

The mechanism described by Marr would compute the Laplacean of a Gaus-

sian even if it were to appear (per mirabile) in an environment where light

behaves very differently than it does on earth, or as part of an envatted brain.

It would compute this function whether it is part of a visual system or an

auditory system, in other words, independently of the environment —even

the internal environment — in which it is normally embedded. [Egan, 2014,
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p122]

Marr describes the content of the representational state which computes the Lalacean

of a Gaussian as ⟨edge⟩. Generally, the system in question allows us to detect the edges

of objects. Luminance changes typically occur at the edges of objects (i.e. between the

object and its background), and the Laplacean function ‘sharpens’ the relatively gradual

(Gaussian) change in luminance.

Under certain conditions, the content, ⟨edge⟩, changes while the mathematical func-

tion computed, i.e. taking the Laplacian of a Guassian distribution (in this case, of lu-

minance levels), remains the same. For example, imagine that light is now reflected by

objects in a very peculiar way: sharp changes in luminance are now found across physi-

cally continuous objects. Imagine a square table, all made of the same material. On one

half, light behaves as it does in our universe and reflects as usual. On the other half, light,

suddenly sensitive to the behaviour of the light to its left, decreases the intensity with

which it is reflected. The overall effect is that luminance levels drop suddenly halfway

across the table.

Similarly, at the edges of objects, there is now an effect whereby luminance levels

remain constant. Again, now sensitive to its surrounding conditions, the light now in-

creases intensity to match nearby light levels. We now have the following situation:

sharp changes in luminance no longer correspond to edges of objects, but to their cen-

tres. Nothing has changed for the visual system: the same area computes the Laplacian

of a Gaussian as though nothing has happened (or so Egan maintains).

There are a few possible situations we can imagine for the study we are considering.

In all of them, a change in content either requires or affects a change in the system itself.
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Below, I consider these imaginary situations. I describe how the two elements of encoding

identified above ensure a change in the system itself in those situations, either a change

in functions or a change in decoding.

Content change and function

Not any change in the environment relevant to the target content requires a change in

content, even if content is explanatory. It is possible that the system comes tomisrepresent

some content as present at some location where it is not. This will be the case in which

some representation still has the function to present some information to a downstream

area, but the environmental itemwhich activates the representation has changed in away

which is inconsistent with the performance of that function (see section 6.6.2). Imagine

a situation in which a sound starts beaming intermittently from space, targeted at spe-

cific individuals, uncorrelated with the presence of faces. When this sound is beamed

at a person, shape-sensitive AM cells are triggered in the hearer. Imagine also that, in a

completely unrelated series of events, all faces lose their shapes, leading everyone on the

planet to look like a smooth mannequin.

What has become of the content of the target AM cell representations? In the short

term, downstream face recognition systems still use shape input, and they will continue

to respond to whatever input they get as though it picks out shapes. In this case, the con-

tent remains ⟨shape⟩. The target representations will now systematically misrepresent

the space-sounds as shapes. There has been no content change at all.

So, how might the content change? There are two possibilities, one internal and one

external. First, the function of the system containing the representation changes. We can
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imagine that in our scenario, AM cells undergo a plastic neural wiring update and begin

transmitting information to downstream areas which process sound for the purposes of

some further cognitive task involving space-sound identification. Now, the content has

changed, but this requires a change in the system itself, both in the cognitive capacity

served, and in the local connectivity of the system containing the representation.

Alternatively, the content can change given a change in the environment, but one

which is consistent with the performance of the function the system serves. Consider,

instead of the space-sound being unrelated to faces, space-sounds now occur every time

there is a face present. Specifically, we have a one-to-one mapping of space-sounds to the

shape properties which previously existed on each face. Now, space-sounds can be used

to recognise faces. In this scenario, wemay have a case in which the content has changed,

since the source item is now ⟨space-sound⟩. The function of the system - to enable myriad

tasks, which we previously (section 3.3.1) saw required the positing of shape content - is

now consistent with space-sound content. This is a case in which the new content falls

within the functional profile of the subsystem containing the representation (see section

6.5).

Is this a change in content in which there is no change for the system itself? In the

next section I argue that it either is not, or if it is, is precisely the same situation in which

we might change the mathematical function computed without a change for the system

itself.
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Content change and decoding

If space-sounds enable face recognition, we can provide a theory for precisely how that

happens. We can investigate which decoding strategy is used, and how the space-sound

properties can serve downstream areas just as well as the previous shape properties. It

is no small thing that space-sounds can (a) trigger responsivity in AM cells and (b) do

so in precisely the way in which shape properties used to, enabling facial recognition.

Specifically, we need to know precisely how nearby downstream systems can decode the

very information they need to perform the myriad recognition tasks AM cells previously

engaged in. We also need to know precisely what the encoding scheme is for this new

information. Both encoding and decoding are likely to drastically change, leading to a

difference in the system itself at various levels of analysis - including the level of the

ascription of mathematical function computed.

Alternatively, the surrounding systems remain the same, and no new encoding or

decoding strategy is required. However, this is only possible given that (aside from the

fact sound would have to, magically, perfectly manipulate the AM cells directly, circum-

venting auditory processing channels) the space-sound profile perfectly overlaps with

the shape profile, such that the former is isomorphic to the latter. If we can apply exactly

the same encoding scheme, with the same values in each of the same vector positions,

and the same linear decoding scheme with no loss of information relative to shape pro-

cessing, with the same level of performance of the cognitive capacity under investigation,

the change in content affects no change in the system itself.

However, in the case of perfect isomorphism, a change inmathematical function com-

puted also makes no difference to the system itself. If we take a mathematical function
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isomorphic to taking the dot product of two vectors, of which there are potentially an

infinite number, we can ascribe any one of those mathematical functions, differences

between which make no difference to the system itself. So, we might amend our origi-

nal definition from section 3.3: a representational state is constitutively dependent on x

only if a change in x results in a change for the system itself up to perfect isomorphism.

This reflects an argument we will pick up in the next section: for some range of external

items, natural indeterminacy is to be expected. If a change in content makes absolutely

no difference to internal processing, or the cognitive capacity under investigation, the

representation may be truly indeterminate with respect to a range of contents, or with

respect to a range of mathematical functions.

In summary, I have argued that encoding and decoding ensure that a change in con-

tent reflects a change in the system itself, since the decoding scheme must change to

accommodate new inputs, even if the same capacity is realised in the same way. If the

same capacity is not realised in the same way, this is a clear case of content leading to

a change in the system itself (given the definition in section 3.3). If the same capacity is

realised in the same way, and no new decoding scheme needs to be enacted, the content

is isomorphic with the previous content - but then change in content makes no differ-

ence for the system itself in precisely the same way that change in mathematical function

computed results in no difference for the system itself. This is a case of natural indeter-

minacy, and perfectly scientifically acceptable. In the next section I will explore how the

system reduces indeterminacy to this acceptable level, and how scientists reflect that in

their theories by using technical vocabulary to isolate content.

87



3.4 Is content sufficiently determinate?

This section offers an argument against premise (d) in Egan’s argument:

“since pragmatic considerations typically do play a role in determining cog-

nitive contents, these contents are not determined by a naturalistic relation”

[Egan, 2018, p255]. Further, the indeterminacy problems faced by naturalis-

tic accounts of content provide some reason to think that no single privileged

naturalistic link between a state and an environmental item exists.

While we lack consensus on a general notion of what it takes for something to be

naturalistic
6
the relevant comparison for our purposes is pragmatism in Egan’s sense.

So, to be part of the theory proper content must be determined by principles which do

not invoke communicative heuristic values. Indeed, the relation should be spelled out in

terms which are generally scientifically acceptable, such as the mathematical functions

Egan herself takes to individuate the representational states in question. As I spell out

in section 3.4.1, decoding provides a scientifically acceptable way in which a sufficiently

determinate content is selected by the system itself.

I claim that, rather than require that the naturalistic relation isolate just one content,

we should insist only that content is sufficiently determinate to feature in an explanation.

Content should be specified in terms that isolate phenomena in just the same way that

operationalised terms isolate phenomena for the purposes of empirical testing. General

considerations of indeterminacy should not place a priori constraints on scientific theoris-

6
As Papineau writes, naturalism “has no very precise meaning in contemporary philosophy”

[Papineau, 2021].
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ing except insofar as they violate this requirement. Content need be only as determinate

as any other scientific posit.

I will not enter into a debate about whether content must be determinate in an abso-

lute sense in order to be properly considered content. Perhaps indeterminacy is a natural

property of representational content. Indeed, Karl Bergman argues for precisely this

point [Bergman, 2023]. Minimally, we should allow for the possibility that some repre-

sentations fail to specify just one item under just one description.

Rather, we should take Egan’s challenge as pushing the question of whether content,

as used within the theory proper, is sufficiently determinate to serve the purposes of the

explanation on offer. What is required to achieve this level of determinacy? I first argue

that, on the side of the system, the decoding constraint provides a system-side limit to

the set of possible distal contents. I then argue that, for the purposes of informational

teleosemantic methodology, we must find studies which use technical terminology to

isolate content, rather than rely on intuitively grasped ordinary terms.

3.4.1 Constraints due to coding

For any given function, there are a number of environmental items which could, in prin-

ciple, fulfill that function. We saw an example in section 3.3.3. So, how does the system

itself determine which item will fulfill that function? In short, the answer is coding

constraints, on both the input and output side. Chang and Tsao’s use of the encoding

relation implicitly imports these constraints on content. In doing so, they are able to rule

out contents which have no explanatory value.

I hope to show that the constraints implicitly imposed by the encoding relation allow
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us to rule out a swathe of indeterminacy, narrowing in on contents which can be detected

by the system itself, as well as utilised by downstream systems. This points towards

sufficiently determinate content, given by naturalistic system-side constraints.

What the system can encode places constraints on representational content. For ex-

ample, if some channel can only process visual information, only visual information can

be encoded. As we saw in section 2.4.1, Neander argues that this limits the range of pos-

sible content ascriptions. Neander considers a classic indeterminacy challenge associated

with positing colour content. How do we know that purportedly ⟨green⟩ content is not

actually ⟨grue⟩? Grue is defined as “(i) seen before 2040 and green or (ii) seen after 2040

and blue” [?, p169]. Here is one way Neander suggests that we can distinguish between

these two possible contents:

If we want to build a detector that is able to detect grue, we’d best include a

green detector and a blue detector as well as a timekeeper to monitor the date

and time, and set it to switch the G-producer’s input from green detection to

blue detection once 2040 arrives. [Neander, 2017b, p169]

Constraints on what the system can discriminate in the environment help us reduce

the range of possible environmental items which serve as content for a given representa-

tion. Representations with either ⟨green⟩ or ⟨grue⟩ content can fulfill a number of func-

tions which prima facie call for ⟨green⟩ content (until 2040, at least). Nonetheless, if the

system has no way of detecting grue, grue cannot be the content of the representation. I

consider this point in more detail in section 5.3.1.

In addition to upstream encoding constraints, what the system can decode places con-

straints on representational content. What the system itself can use from the representa-
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tion limits the range of possible environmental items the representation represents. This

was discussed in section 3.3.2 with reference to de-Wit et al. [de Wit et al., 2016]. As they

discuss, we need to think about what the rest of the brain can decode from neural activity

in another cortical area.

Imagine a neural system which is sensitive to grue-like properties. When it is pre-

sented with green, a connected neuron fires at a rate of 50 spikes per second. When it

is presented with blue, that neuron fires at a rate of 100 spikes per second. If we were to

monitor that neuron, we could pick up this change. Imagine we observe the neuron pre-

sented with blue, and presented with green, and note down the firing rate. Imagine we

also have a timekeeper to monitor the date and time. We could use this neuron to detect

grue. We leave the neural system staring at a green-looking patch we suspect might be

grue. Given everything we know, we can see that the firing rate suddenly switches from

50 to 100 when in the presence of the same colour patch at one second past midnight on

the 1st of January, 2040.

However, imagine the system itself has downstream neurons which fire in response

to the input of the colour-sensitive neuron. Imagine also that not a single one of these

neurons can detect a neural firing rate of above 50 spikes per second, and treat anything

higher than that as 50 spikes per second. The system cannot decode grue.

My claim is that this provides a plausible naturalistic principle for limiting the range

of possible content ascriptions. Moreover, the constraint appears to be implicit in the

study under investigation. As I argued in section 3.3.2, Chang and Tsao hypothesise

that downstream areas are able to linearly decode the content of cells in IT. They also

implicitly hypothesise that upstream areas can discriminate the input: they do not, for
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example, present the macaques with stimuli they know to be beyond the range of their

sensory receptors.

Together, these constraints limit content ascriptions to those contents a change in

which ensures a change in the system itself, and we have good reason to think that such

a limitation provides us with a range of content ascriptions which are explanatorily rele-

vant. Coding limitations, encoding and decoding, are the system’s own way of reducing

indeterminacy to within acceptable levels.

3.4.2 The use of technical terminology

In this section I argue that the concepts used within cognitive science to describe con-

tent must be technical in the sense of picking out, precisely, a set of target phenomena.

The phenomena picked out by these technical concepts, regardless of the terms we use

to describe them, should perform the explanatory work. There should be a clear link

between the phenomena picked out and the performance of the cognitive capacity under

investigation.

For the purposes of simplicity, I will focus in what follows, as I have been doing

throughout, on Chang and Tsao’s technical concept for shape.

It should be clear that using the ordinary (non-technical) concept shape does not

serve Chang and Tsao’s explanatory purpose very well. There are numerous types of

shape, and the concept is very broad. The system under investigation, as I have empha-

sised throughout, has as its content a very specific arrangement of shapes along very

specific dimensions. Just invoking shape as a general concept does not provide us with

a clear link between the content so described and the cognitive capacity under investi-
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gation.

Chang and Tsao do not use the ordinary concept shape. Rather, though they use the

term ‘shape’ throughout, the concept behind it is highly technical, in such a way that it

precisely determines target phenomena with a clear link to the cognitive capacity under

investigation. Below, I begin by setting out the process by which Chang and Tsao design

their target phenomena, which they identify with the term ‘shape’. It is shape understood

in this technical sense which determines the precise content of the AM cells.

In order to arrive at their target phenomena, first “a set of landmarks were labeled

by hand” on images of 200 faces from “an online face database” [Chang and Tsao, 2017,

p1015], which can be seen in figure 3.1.

Figure 3.1: Labelling landmarks by hand.

Each set of extracted landmarks forms a “set of 200 shape descriptors”. Chang and

Tsao “performed principal components analysis (PCA)” in order to “extract the feature

dimensions that accounted for the largest variability in the database, retaining the first

25 PCs for shape” [Chang and Tsao, 2017, p1015]. Principal components analysis (PCA)

answers the question: when two faces differ by some amount (with respect to shape),

which aspects of the shape contribute most to the difference? The principal components

are newly generated features which each combine various parts of the shape landmarks.
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For example, the first principal component of the shape descriptor “involved changes in

hairline, face width, and height of eyes” [Chang and Tsao, 2017, p1015].

In terms specific to shape, each principal component is a complex arrangement of

landmarks, defining points in specific positions relative to one another. For example, we

can understand the term ‘hairline’ to refer to a set of points forming a line positioned

towards the top of a space relative to the points which define the bottom (which we

could call the ‘chin’, for example). I will attempt to justify this deflationary description

below, but for now it should help us to clarify how the shape content can be minimally

characterised.

Each individual cell is thought to encode, on average, “6.1 feature dimensions”

[Chang and Tsao, 2017, p1015] where each feature is a principal component. So, when

Chang and Tsao discuss the shape content of a particular cell, they have in mind a highly

constrained range of shapes within the parameters set by the feature dimensions the cell

is responsive to. In other words, it is not that any shape is encoded - the shape is a very

specific arrangement of landmarks for each principal component, and a specific set of

principal components for each range a cell encodes.

This clearly links to the explanation of the cognitive system under investigation.

Chang and Tsao explain the response profile of an AM cell with reference to the fact

that it is encoding values along the shape parameters which they identify. They provide

a description of the specific encoding scheme enacted by the AM cell, relative to these

parameters, which explains the behaviour of the cell.

As may be apparent, throughout I have resisted the temptation to assert that any of

the representations in question have contents such as ⟨face⟩. I have persistently asserted

94



that the ⟨shape⟩ content in the theory does indeed reliably co-vary with faces (is typically

found on faces). Nonetheless, the concept face does not function as a technical concept

within Chang and Tsao’s theory. It receives no specific definition, and is left at the level

of an ordinary concept. Nor is there any indication that ⟨face⟩ content is being encoded

or decoded. I think we should allow, therefore, that any talk of these representations as

representing faces is merely a gloss.

It may be that the concept face receives a technical definition within another theory,

and that we can therefore speak of some states or structures as representing faces, though

it is questionable the extent to which this will give us faces as we ordinarily understand

them. It might be, and this is entering into highly speculative territory, that the only

representation which has the content ⟨face⟩ as we ordinarily understand it is the ordinary

concept face itself. Discussing the content of concepts, however, is a significant step

beyond the kind of low-level sensory representations which theorists such as Chang and

Tsao are investigating.

What is the moral of this section? The distal item which is the content of the repre-

sentations under investigation has been specified using technical terminology, isolating

relevant phenomena to a far greater degree of specificity than non-technical language

allows. Further, the phenomena isolated are explanatorily relevant to the cognitive ca-

pacity under investigation. As such, the indeterminacywhich accompanies non-technical

language has been parsed out, and what remains is the isolation of a very specific feature

of the distal world. One could not substitute another concept, one which does not isolate

the same relevant phenomena, without loss of explanatory power.

It will help to bring out the distinction between technical and non-technical language
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by considering how edge as used in cognitive science differs from how the term ‘edge’ is

used in non-technical language. It is debateable, when considering intuitions regarding

non-technical language, whether perfectly round cylinders have edges along their curved

sides. Can something which is smoothly round have an edge? However, the technical

concept edge as used by Marr is not susceptible to such debates. The limit of the cylinder

from one’s perspective constitutes an edge, within the technical language of the theory.

As used in this theory, the technical concept edge isolates limits of objects, whether

or not those limits correspond to a sharp edge. The technical use also eliminates the

polysemous nature of the non-technical term - one can be ‘edgy’ or have an ‘edge’ in the

non-technical use of the term, but it is obvious that the technical concept does not isolate

whatever phenomena make one ‘edgy’.

If there is any remaining indeterminacy in the technical language used to express the

isolation of the relevant phenomena, such indeterminacy is benign. Provided the same

phenomena are isolated, we have the same representational content. In other words, such

purported indeterminacy is a difference which makes no difference. By employing their

technical language, Chang and Tsao ensure that the content they attribute to represen-

tations is sufficiently determinate so as to be irreplaceable within the theory, except by

language which isolates just the same phenomena. At this point, any difference is merely

terminological, with no bearing on the distal item which constitutes the content proper.
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3.5 Three principles

We can draw three principles from the above. If we apply these principles to cognitive

science, we should be guided towards those studies which use content within the theory

proper.

3.5.1 First principle

Focus on studies which posit representations which serve a function for an ex-

ternally terminating cognitive capacity.

As Shea writes, if we have an externalist explanandum, we will have an externalist ex-

planans [Shea, 2018, p31]. As we saw in section 3.3.3, if some representation has a func-

tion to serve a cognitive capacity which requires interaction with the external environ-

ment, the external item which is required for that capacity to be realised will be the

content of the representation even in cases of misrepresentation. A change in content re-

quires that the function changes, provided the new content does not also suffice to enable

the successful functioning which the original content enabled.

A function can be either explicit or implicit, entailed by the positing of the encoding

relation. However, encoding must be used in a transparently technical sense in order for

us to be sure that there is an implicit theory behind its use.
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3.5.2 Second principle

Focus on studies which provide a hypothesis about what the system itself can

decode, or otherwise access.

As we saw in sections 3.3.3 and 3.4.1, positing a possible decoding of content is cru-

cial. It is required for a function-sustaining change in content to make a difference to the

system itself. It is also necessary to reduce the range of indeterminacy to explanatorily

salient levels, along with the encoding relation.

3.5.3 Third principle

Focus on studies which describe content using technical terminology

Technical terminology allows content to be operationalised, so amenable to empirical

testing in the same way that other key scientific posits are. It also allows for a reduction

in the kind of problematic indeterminacy associated with ordinary language. It removes

polysemy, and the rich network of associations we are immersed in when we use ev-

eryday words. Many of these associations have no explanatory bearing on cognitive ca-

pacities, so our technical language should clearly and unambiguously pick out just those

phenomena we take to be explanatorily relevant.

We must ignore content ascriptions which clearly lean on ordinary terms, such as

loose uses of ‘face’, since these likely reflect the pre-theoretic associations of the scien-

tists. Not everything the scientist says within the confines of a paper is strictly part of

the theory. We have Egan to thank for focusing our attention on this fact.
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3.6 Conclusion

Wemust be vigilant when approaching cognitive science looking for a theory of content.

Our methodology is secure, but wemust be careful in those studies we apply it to. Egan is

right that we have to treat content as essential, and provided by a sufficiently determinate

naturalistic principle.

In Chang and Tsao’s study, individuation by mathematical function computed is not

sufficient to explain the cognitive capacity under investigation; they also invoke cogni-

tive content. Content is determined by the relation of encoding. Encoding ensures that

there is a function served by the content, and that downstream systems can decode that

content. A change in the distal item, triggering the representation, which does not serve

the function, does not lead to a change in content. Instead, we get systematic misrepre-

sentation, likely with disastrous effects for the whole organism. A change in the distal

item which is consistent with performing the same function can lead to a change in con-

tent. However, this change in content either affects a change in the system itself - by way

of altering the encoding and decoding strategy of the system - or it is perfectly isomor-

phic and is equivalent to changing between isomorphic mathematical functions, which

also results in no change for the system itself. For good reason - some degree of natural

indeterminacy is perfectly possible and should not be ruled out a priori.

When it comes to reducing indeterminacy to acceptable levels, the system itself im-

poses constraints on representational content by way of coding constraints. In our the-

ory, we must use technical terminology to isolate content in order to ensure that we

remove indeterminacy resulting from natural language, and isolate just those properties

which are explanatory of the cognitive capacity under investigation.
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If content satisfies these conditions, it is used within the theory proper. Otherwise,

content is likely to be a gloss.

In the next chapter, I look at some contemporary studies which meet the three princi-

ples outlined above. They seek to explicitly address the kind of concern Egan raises with

respect to content being for the system itself. I argue that, in those studies, information

theory provides the background theoretical framework. I provide some examples of how

information theory can be used to isolate contents which feature in the theory proper.
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Chapter 4

Background Theoretical Framework

4.1 Introduction

In this chapter, I argue that information theory provides the background theoretical

framework for content attribution in those regions of cognitive science which meet the

requirements identified in the previous chapter. Rather than cite mere correlations, infor-

mation theory provides a model of the precise interactions between the cognitive system

and the environment which deliver essential and naturalistic content attributions.

I begin in section 4.3 by outlining what a background theoretical framework is in

general. I describe some common background theoretical frameworks from multiple do-

mains within cognitive science.

Then, in section 4.4, I show how information theory is used in the types of studies

identified in the previous chapter. I argue that, in those areas of cognitive science which

explicitly address the kind of concerns raised by Egan, information theory provides the
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background theoretical framework for identifying contents. In essence, information the-

ory allows one to trace information flows between the environment and the system (sec-

tion 4.4.3), as well as within the system itself (section 4.4.4). Information theory provides

a precise, mathematical model of the specific element of the environment which makes

a difference to the system itself.

The chapter also serves as an explication of the power and complexity of information

theory as applied to the cognitive system, in contrast to what I considered to be the pre-

sumed simplicity of content attributions in cognitive science in chapter two (section 2.7).

I also prepare the way for later chapters by showing how the relation of maximal mutual

information is taken to be the relevant informational relation in determining content.

4.2 Information in cognitive science

One may consider it a truism that information theory provides the background theo-

retical framework of cognitive science, since the language of information theory is rife

within the field. For instance, a foundational text such as Marr’s Vision invokes com-

munication channels [Marr, 2010, p10], information processing [Marr, 2010, 19], efficient

encoding [Marr, 2010, p262], noise reduction [Marr, 2010, p71] and so on. In general,

since the cognitive revolution, cognitive scientists have generally considered the mind in

information-processing terms.

However, we saw in the previous chapter that an appeal to cognitive science must

involve more than observing linguistic practices. We cannot guarantee that the language

used is due to any theoretical commitments, either implicit or explicit. It might be a
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gloss. We have to be sure that the concepts used are doing some genuine theoretical

work. By showing information theory in action, I demonstrate that information theory

can be genuinely explanatory for modelling cognitive system/world relations.

4.3 What is a background theoretical framework?

As I will use the the phrase, a background theoretical framework for any domain

consists in a model of the properties and processes in that domain, which generalise

across lower-level properties and processes which underlie that domain (e.g. physical

interactions, chemical synthesis, etc.) using a set of concepts and principles which are

independently well understood.

Generally, cognitive science seeks to explain some phenomena by means of an inde-

pendently well-understood set of principles forming a conceptual scheme. For example,

at a very general level one may seek to explain behaviour in terms of intentions and

desires (e.g. [Davidson, 2001]). One may further explain the connection between inten-

tions and action in plan-theoretic terms (e.g. [Bratman, 1993]). In this case, theories of

planning form the background theoretical framework for the account.

In a different cognitive domain, one may wish to explain the function of the vi-

sual system in terms of high-dimensional object manifolds (e.g. [DiCarlo and Cox, 2007],

[DiCarlo et al., 2012]). Mathematical tools associated with this formalism form the back-

ground theoretical framework for the explanation of the behaviour of the visual system.

Alternatively, one may wish to explain the structure of stored knowledge in terms

of neural networks, employing the background theoretical framework of connectionism
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(e.g. [Hinton, 1990]).

Studies on face recognition and related capacities (tracking changes in faces, inter-

preting emotions using faces, identifying general features such as gender) employ the

background theoretical framework of the face-space model (e.g. [O’Toole, 2011]).

A background theoretical framework provides multi-purpose tools, often mathemat-

ical or geometrical, to specify some aspect of the system under investigation (e.g. oper-

ations in terms of computations performed) or otherwise make claims about the system

in virtue of how it is constrained by the framework employed (e.g. for Bratman, if plan

theoretic tools can be used to model intentions, intentions must conform to, and be able

to implement, rational constraints on planning as understood within that framework).

I argue that information theory provides the background theoretical framework of

content attribution (at least for those regions which meet Egan’s constraints). This is

initially motivated by our guiding hypothesis based on previous work in informational

teleosemantics, as set out in chapter two. However, the real argument for the position

is provided just by looking at scientific practice and noting how information theory is

actually used.

In the next section I introduce information theory and provide examples in which it

supplies the background theoretical framework for content determination in cognitive

science.
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4.4 Examples of information theory

4.4.1 Outline of information theory

Information theory, broadly, is a mathematical tool which models relations between en-

tities. It provides a measure of the statistical relationship between two or more entities,

modelled as ‘random variables’ (see section 5.3). Information theory describes howmany

symbols (such as the symbols 1 and 0) are required to reduce a set amount of probabilistic

uncertainty about some random variable, where each symbol reduces the number of pos-

sible states by half. For example, if you flip a coin behind a barrier I am uncertain about

the result. However, since there are only two possible outcomes, information theory tells

me that I only need one symbol in order to know which outcome obtained. The amount

of information which one can obtain from a source is given by its entropy:

H(X) = −
n∑

i=1

p(xi)logp(xi) (4.1)

Where the log is taken to base 2 in order to measure the entropy in bits. One bit of

information, given the use of log2, reduces uncertainty about the source by half.

Informationmeasured between two randomvariableswith entropiesH(X) andH(Y )

is calledmutual information. An example definition, in information-theoretic formal-

ism, is:

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (4.2)

Intuitively, the mutual information between two random variables involves the un-
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certainty we have about each variable once we have rid ourselves of the uncertainty

surrounding both variables together. Alternatively, it is quantitatively equivalent to the

remaining uncertainty we have about a variable once we know about another variable.

4.4.2 Information theory in practice

In this section I primarily focus onworkwithin psychophysics and related neuroscientific

literature. Psychophysics deals with the interaction between external stimuli and internal

sensory processing. At the most fundamental, psychophysics covers transduction - the

conversion of one signal into another. This concerns, for instance, the behaviour of pho-

toreceptors in the presence of electromagnetic energy, or chains of neurons connected

via synapses. However, psychophysics also concerns macro-level interactions between

sensory systems and the wider cognitive system.

I have chosen to focus on this work precisely because it concerns the interface be-

tween the cognitive system and the external stimulus. As we saw in our response to

Egan, it is crucial to find work which explicitly looks at this interface, and which is care-

ful about precisifying exactly which components of the stimulus are thought to serve as

content. Additionally, as we shall see, the psychophysics literature increasingly empha-

sises the role of downstream systems in information processing. This was another crucial

component in our response to Egan. As such, this work meets the criteria I set out in the

previous chapter for finding a role for content within the theory proper.

We will see that there are many statistical models which can be employed to de-

scribe internal (e.g. between systems) and external (e.g. between an environmental item

and sensory system) relations. However, I will follow the authors I cite in arguing for
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the utility of information theory as a framework. Information theory has proved to be

highly valuable in a number of ways, including in precise specification of environmental

variables, discovering close relationships between internal systems, and discovering the

brain locations of information integration.

It is true that other statistical methods are equally as powerful. Arguments for the

application of information theory are therefore often pragmatic in nature; for example,

information theory provides equations which are easier to compute than equivalent sta-

tistical methods. However, we are looking for a naturalistic theory of content determi-

nation - one which is not dictated by pragmatic considerations. In the next chapter I will

attempt to show how, despite information theory being selected (partly) for pragmatic

reasons, it can in any case be given a non-pragmatic interpretation based on features of

the cognitive system.

The aim of the present chapter is more modest: we aim to understand whether and (if

so) how information theory is (or can be) deployed to model links between distal items

and the cognitive system, and between elements of the cognitive system.

4.4.3 Interface between stimuli and sensory systems

Studies which focus on the relation between the distal environment and sensory systems

typically ask: which stimulus drives a neuronal response? In this section we see how

information theory is used to model this relationship to a high degree of specificity.

As Fodor emphasises [Fodor, 1987], naturalism minimally involves using theoretical

constructs which do not presuppose representational content (on pain of circularity). So,

when attempting to see how information theory can be used in a naturalistic model repre-
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sentational content, we should look for relations which are not already representational

in nature. Causal interactions involved in driving a neuronal response provide a basic

relation from which we can build a theory of content.

I will further break this section into two related areas dealing with the link between

the cognitive system and the distal environment. First, I will describe how information

theory can be used to model the precise elements of a stimulus which are responsible

for driving a neuronal response - using the measure of conditional mutual informa-

tion. Given its usefulness in this context, information theory can be deployed to tackle

the difficulties which arise when studying relations to natural stimuli (i.e. those stimuli

not explicitly designed by experimenters using controlled parameters). Second, I will de-

scribe how information theory can be used to model sensory adaptation (i.e. changes in

sensory systems as a response to changes in external states of affairs).

Conditional mutual information

As described by Ince et al., conditional mutual information (CMI) “quantifies the relation-

ship between two variableswhile removing any effect of a third variable” [Ince et al., 2017,

p1549]. It is typically expressed as I(X;Y |Z) where Z is the variable one is condition-

ing out, or removing the effect of. Ince et al. describe the potential application of this

measure as follows:

Withmany types of naturalistic stimuli, extracted stimulus features are highly

correlated (for example, luminance of neighboring pixels of a natural image

or the acoustic features of speech). Given an analysis of each feature alone,

it is difficult to determine whether a specific feature is genuinely encoded in
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a neural response, or whether the response is actually modulated by a differ-

ent correlated stimulus feature. CMI provides a rigorous way to address this

issue. (p1549)

We can think about conditional mutual information as the information still available

about X from Y once we already know Z . If Z ‘fully explains’ X , we will receive no

more information aboutX by looking at Y . We can see this from one definition of CMI
1
:

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) (4.3)

Where H(X|Z) and H(X|Y, Z) are the conditional entropy of X on Z and the condi-

tional entropy of X on Y and Z , respectively. When we say that Z fully explains X we

mean that H(X|Z) = 0, such that the entropy of X is completely reduced given Z . In

other words, there is no more information left to be extracted from X once Z is known.

When this is the case, it is also true that H(X|Y, Z) = 0, but in this case the addition of

Y is redundant.

So, in the situation whereH(X|Z) = 0, I(X;Y |Z) = 0. Of course, this is an extreme

case in which Z entirely reduces the entropy ofX . Other situations will appear in which

either of the following hold:

I(X;Y |Z) < I(X;Y ) (4.4)

I(X;Y |Z) > I(X;Y ) (4.5)

1
A very useful guide to this topic is provided in [Cover and Thomas, 1999]. Further information (and

an example of an application of the measure) can be found in [Renner and Maurer, 2002].
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Which is used to define interaction information (the mutual information between

three variables) as:

I(X;Y ;Z) = I(X;Y )− I(X;Y |Z) (4.6)

This allows us to describe some situations in which CMI can be very helpful in discov-

ering the explanatory relationship between X , Y and Z . For instance, in a situation in

which equation (4.4) holds, the interaction information in equation (4.6) will be positive.

This is true except in the case in which I(X;Y |Z) = I(X;Y ) when H(X|Z) = 0 and

so I(X;Y ;Z) = 0, which, since we know I(X;Z) > 0, indicates that there is no further

information shared between the three variables over and above what is shared by two of

them. Otherwise, if we have an inequality as in (4.4) we know that Z partly accounts for

X over and above the involvement of Y .

Imagine that I want to explain the fact that I spilled my coffee. I can cite the fact that

I very rapidly moved my arm to the left while holding my cup filled to the brim with

coffee. If you learn that fact, (and based on your intuitive understanding of physics) you

gain information that I spilled my coffee. However, imagine that someone pushed my left

arm forcefully. This partially accounts for why I spilled my coffee. Perhaps if someone

forcefully pushed my arm I could hold firm and not spill my coffee, so the explanation

is not full. Nonetheless, one has at least some information about my spilling coffee from

this third fact.

If, however, equation (4.5) holds, the interaction information in (4.6) will be negative.

This can be described as a situation in which adding a third variable actually increases

the amount of information one has about X from an observation of Y .

Imagine you know that I will only phone you under two circumstances: either I find
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your missing cat or (I have insider info) I know you have secured a promotion. Assume

that your missing cat being found and your promotion are statistically independent, such

that if you knowyour cat has been found, you still have no information at all about getting

a promotion (and vice versa). The phone is ringing, and you see it is me calling. Before

you answer, an email appears telling you that you have failed to get the promotion. You

are now in possession of the information that your cat has been found! In this case,

conditioning on my call has increased the information available from knowledge about

getting a promotion.

Why is this important? When applied to elements of a stimulus which drive neu-

ronal responses, we can begin to tease apart exactly which elements are responsible. The

world is a mess of statistically related elements, and redundancy abounds. If we wish to

pinpoint just those features which drive a neuronal response, we can see if conditioning

out other variables produces a lower CMI than MI. If so, that conditioned response has

some influence on driving the neuronal response. If, however, the CMI score is the same

as the MI score, we know the variable we condition on is statistically ‘screened off’ from

driving the neuronal response.

This is helpful when experimenting with natural stimuli. However, the measure also

has some surprising applications which (informally) look closer to something like pin-

pointing content. I provide an example to illustrate how we can begin to use these mea-

sures more broadly. Bröhl et al. (2022) [Bröhl et al., 2022] set out to investigate infor-

mation gained in lip reading. Specifically, they attempt to answer whether “temporal

and occipital cortices represent auditory and visual speech features during lip reading”

[Bröhl et al., 2022, p7].
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In order to answer this, Bröhl et al. first define the features they are looking for

representation of. They define three auditory features (AudFeat): the signal envelope of

the sound of a spoken word (i.e. the range of frequencies which that signal occupies), the

slope of the sound (whether it rises or falls), and the dominant pitch of the sound. They

define three physical features of the lips (LipFeat): the area of the lip opening, the slope

of the lip, and the width of the lip opening. The question they ask is: which feature is

represented within the given regions of interest (ROIs)?

Participants are shown either a silent video of speech (which included thewhole face),

or an auditory recording of speech without visual input. We will narrow our focus on

just the results from the video-only trials, since they are perhaps the most surprising and

demonstrate the potential of CMI. Using ameasure of mutual information with activation

of the region of interest, Bröhl et al. found that mutual information between AudFeat

and the temporal ROI was present. More importantly, using CMI, they found that “the

temporal ROI tracks the unheard AudFeat to a similar degree as when discounting the

actually presented visual signal” since “there were no significant differences between MI

and CMI values” [Bröhl et al., 2022, p8].

As we saw above, in a case when I(X;Y |Z) = I(X;Y ) we can say that there is no

additional information which is gained from Y aboutX which is not already included in

Z . If we take activation in temporal ROI as X , LipFeat as Y and AudFeat as Z , we can

say that the features one is representing are AudFeats, even when one only has access to

silent video. That is, there is no more information gained about the neuronal response

given the LipFeats versus the information one already has given the AudFeats. Here is

what the experimenters conclude:
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the auditory and visual pathways are also capable of apparent ‘restoring’ in-

formation about an absentmodality-specific speech component; while seeing

a silent speaker, both auditory and visual cortices track the temporal dynam-

ics of the speech envelope and the pitch contour respectively, in a manner

that is independent of the physically visible lipmovements. [Bröhl et al., 2022,

p11]

In summary, when dealing with the interface between the distal environment and the

cognitive system, information theoretic tools allow close specification of the element of

the distal item that drives a neuronal response. This can have surprising consequences,

as it can demonstrate that some non-perceived features of the environmental item can

be decoded by internal mechanisms ‘filling in the gaps’ and providing the otherwise lost

information.

Modelling a neuronal response profile is just one way to use information-theoretic

tools. In the next section we will look at interfacing between internal systems. Here, we

find work on tracing the flow of information through a system. Ultimately, through an

exploration of these topics, we will flesh out the specifics of the information-theoretic

framework we hypothesise to be present behind content attributions. We will also dis-

cover vital resources for providing a theory of content using information theory.

4.4.4 Interface between internal systems

In section 4.4.3 we investigated how information theory can be used to model the specific

element of a stimulus which is responsible for driving a neuronal response. We saw that

CMI is a measure which provides such a model. In this section, we will pursue the flow
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of information further into the cognitive system. We can formulate the topic of this

section as a question: once responsivity, modelled using information theoretic resources,

has been established between some aspect of an environmental item and some neural

activity, can we use information theory to model the downstream processes driven by

that neuronal activity?

We would like to be able to do this. As mentioned in the previous chapter, we are

interested in the constraints imposed on information processing by downstream sys-

tems. We have argued that the content of a representation must be determined by the

information which can be extracted by the system itself, since this provides answers to

how-questions. This requires knowing the internal connectivity of the system: we need

to know which later systems use the information provided in order to know what they

decode from it.

I will continue to rely on the work of Schyns and colleagues. To my knowledge, the

work coming from Schyns’ lab represents the most thorough application of information

theoretic models to the cognitive system to date. The implicit theory of content determi-

nation I hypothesise to be behind content attributions in cognitive sciencemore generally

is most explicit in this work.

The paper I will focus on from Schyns’ lab by Zhan et al. [Zhan et al., 2019], has

the additional benefit of being an explicit response to worries which are very similar to

those of Egan. Zhan et al. describe the worry [Zhan et al., 2019, p324], presented by de-

Wit et al. [de Wit et al., 2016], that when employing information theory, neuroscientists

do so without regard for whether the information attributed to some neuronal activity is

a measure of what the cognitive system itself uses or what we as external observers are
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able to measure. As de-Wit et al. write, experimenters discuss what is encoded “without

ever providing evidence that those recorded responses reflect differences in activity that

can actually be used (received or decoded) by other areas of the brain” [de Wit et al., 2016,

p1415].

What experimenters can decode from neural firing can, at least in principle, differ

from what that cognitive system itself can decode. When experimenters see a neuron

firing in the presence of some stimulus, it is natural to assume the cognitive system itself

receives information from that neuron about the stimulus. However, without tracing the

internal causal or probabilistic interactions, it is not possible to conclusively determine

whether this is the case.

We can re-cast this in terms of our response to Egan: we suggested that one key

to ensuring that content plays a role in the theory proper is to discover internal con-

straints which (a) make a difference to the system itself, and (b) place naturalistic (i.e.

non-pragmatic or interest-relative) limits on the range of possible co-varying entities

which could serve as content. If we are able to trace internal connections and find which

information is actually used by the system, we can provide support for (a). By limiting

the range of possible items to those which are explanatory of output we can also build

support for (b). As de-Wit et al. aptly put it: “for information to truly be information, it

has to be a difference that makes a difference to a receiver” [de Wit et al., 2016, p1416].

The parallels between Egan’s concern and the challenge from de-Wit et al. can be

pushed further. They argue that early studies in edge-detection (e.g. [Hubel and Wiesel, 1959]),

the mechanism targeted by Egan as an example (e.g. in [Egan, 2020], [Egan, 2018]),

should be read as finding a mere correlation between “cells that would fire” and “stim-
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uli that we would call edges” [de Wit et al., 2016, 1417]. This maps to Egan’s concern

that the underlying relationship is merely one of co-variance. As a result, de-Wit et al.

issue a challenge to neuroscience: “we need to focus on the ‘cortex-as-receiver’ to track

the causal dynamics from one area to the next to establish whether a measured response

is indeed information used by the rest of the brain” [de Wit et al., 2016, p1418].

In order to respond to de-Wit et al.’s challenge, Zhan et al. set out to find the specific

information which drives a behavioural response to some input, given some neuronal

activity. Specifically, they trace the “causal dynamics from one area to the next” using

information-theoretic measures. In this way, the experimenters hope to provide a hy-

pothesis for the information which is used by the system itself.

It should be noted that it may be that there is some information which can be used

to support the same behaviour which we have failed to account for. This would be to

question the information the researchers hypothesise to be used by the system itself.

The hypothesis about the information used to generate the behaviour might be wrong.

This should not worry us too much. As an empirical research program, the specifics of

the information processed by the system itself will always be open to these concerns. It

is my hope that we will be in a better position to adjudicate such questions once we have

an explicit theory of content determination on the table.

Redundancy and useful information

Zhan et al. performed a study with five participants. Participants were shown stimuli

constructed from a painting by Dali, an ambiguous image in which one can either see

two nuns or the face of Voltaire (see figure 4.1).
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Figure 4.1: Dali’s Slave Market with Disappearing Bust of Voltaire.

The painting was broken down into various ‘information samples’: areas of the origi-

nal painting were isolated using a ‘bubble’ technique, and then separated into high or low

spatial frequency ranges. Participants were then shown images composed of a number

of bubbles of varying spatial frequencies.

Upon seeing each image, participants were asked to respond with either “nuns”,

“Voltaire” or “don’t know”. During the task, Zhan and colleagues recorded brain ac-

tivity using MEG imaging. By taking an average over each image composed of various

spatial frequencies and image segments, it was possible to correlate MEG activity with

specific regions and spatial frequency bands for the original image. It was also possible

to correlate MEG activity with each ‘perceptual decision’ (i.e. which of the three options

the participant selected). In other words, specific parts of the image which elicited MEG

activity was found, and the specific MEG activity which contributed to a decision was

found.
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Using these measures, Zhan et al. calculated the amount of Mutual Information (MI)

between each “voxel” (i.e. a three-dimensional unit square of the brain) of MEG activity

and the “information sample” (i.e. part of the image). They also calculated theMI between

each voxel and decision (i.e. either “nuns”, “Voltaire”, or “don’t know”). Each voxel was

recorded over 400ms, every 2ms, in order to provide a measure of MI per voxel over

time. The measure of MI for each voxel and sample was taken to show the “strength of

feature representation” where the maximumMI value was taken to show the “maximum

representation curve” over time [Zhan et al., 2019, e4].
2
Similarly, maximum MI values

were found between voxels and decisions over time.

Readings over time were taken to assess the variation in voxel activity as downstream

areas became increasingly engaged. As activity propagated throughout the cortex (along

both the ventral and occipital pathways) measures of MI were taken for each voxel, and

it was found that MI increased successively over time for voxels along each pathway.

To anticipate the results, voxels which had information about the image (i.e. maxi-

mumMI with some sample or “feature”) and which contributed to the decision (i.e. maxi-

mumMI with a decision) appeared to propagate along the ventral stream, whereas voxels

with only information about the image (i.e. only maximum MI with some “feature”) ap-

pear to propagate along the occipital stream and then “die out”. As the experimenters

put it: “a spatio-temporal junction exists between the occipital and occipito-ventral cor-

tex around 170 ms, after which only behaviorally relevant features flow into the temporal

cortex, with the processing of irrelevant features ending in the occipital cortex” (p321).

This analysis was built on information theoretic measures which are not quite as

2
A full treatment of why maximum MI was taken to be the relevant measure - apparently defining the

representational content (the “feature” of the image represented) - will be given in chapter seven.
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straightforward as taking MI values (although MI is a component unit of measurement).

Rather, a measure which the experimenters called “redundancy” was used. In intuitive

terms, redundancy measures the amount of information in a voxel which is about image

features, and which tells us (as observers) nothing over and above what we can know

about the decisionmade given the presence of image features alone. If we were to analyse

the features contained in an image, and measure decisions based on those images, we

would be able to correlate the presence of image features with the decision. We could

then predict which decision was made given some image features, and vice versa. Up to a

point, wewould get nomore information from looking atMEG recordings about an image

given that we know the decision, and no more information about the decision by looking

at theMEG recordings given that we know the features. The thought is that “redundancy”

specifies the information about the image which the decision making process uses to

reach a decision.

Of course, redundancy is just one way of describing this measure, one which does

not appear to help our ultimate case for realism; it looks as though the measurement is

relative to what we as experimenters can observe. Nonetheless, there are interpretations

which demonstrate the way in which what is being measured is intrinsic to the object

of study. As the experimenters describe it, the measure provides the “set-theoretic re-

lationship between three entropies” [Zhan et al., 2019, pe4]. However, the point will be

much clearer if we use familiar measures to describe the redundancy relationship. Doing

so should show how the measure of ‘used’ information is experimenter-independent. In

order to do so, we need to look at the mathematical formulation of redundancy (RED):

RED =MI(Feature;PerceptualDecision)+
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MI(Feature;MEGV oxelActivity)−

MI(Feature;MEGV oxelActivity, PerceptualDecision)

or schematically, in familiar notation:

RED = I(X;Y ) + I(X;Z)− I(X;Z, Y ) (4.7)

This measure bears a few relations to our previously-introduced measure of CMI. For

example, if we look at the conditional mutual information between a feature, MEG voxel

activity, and a perceptual decision, we see that:

CMI = I(X;Y |Z) (4.8)

Since it is the case that

I(X;Z, Y ) = I(X;Y |Z) + I(X;Z) (4.9)

We can substitute in order to derive

RED = I(X;Y ) + I(X;Z)− (I(X;Y |Z) + I(X;Z)) (4.10)

Such that

RED = I(X;Y )− I(X;Y |Z) (4.11)

Leaving us with a demonstration that RED is the mutual information between X and

Y minus the conditional mutual information between X and Y given Z. This is just our
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interaction information from equation (4.6) above!

Based on our interpretation above, this is a measure of the MI between the feature

of the image and the perceptual decision, minus the conditional mutual information be-

tween the feature of the image and the perceptual decision, given the MEG voxel activity.

This demonstrates that we need not think in terms which refer to our own perception of

what is ‘redundant’. We can think of RED in terms of removing all that information which

is not contained between all three variables. As we saw in section 4.4.3, CMI provides a

measure of the information shared between two variables over and above what is shared

between three variables. Now we are removing that “over and above” information to get

at just what is shared between all three variables.
3

As Zhan et al. describe their methodology: “Our results thus highlight how SIR [Stim-

ulus Information Representation] can be used to investigate the component processes

of the brain by considering interactions between three variables (stimulus information,

brain activity, behavior), rather than just two, as is the current norm” [Zhan et al., 2019,

p319]. This is how they aim to address similar concerns to those of Egan: to look at how

information flows from the stimulus to the behaviour, thereby licensing the conclusion

that this information is in fact being processed by the system, and is not an artefact of

experimentation. Directed specifically at Egan, we might say that this gives a component

of the meaning of our talk of constraints imposed by the system itself: downstream areas

‘shear off’ information and narrow the possible range of content ascriptions.

The results of Zhan et al. are not especially pertinent for our concerns, but we should

3
See also the relation between redundancy and information transfer over time (“Directed Feature Infor-

mation”) if variables at differing times are compared: [Ince et al., 2017, p1552] and [Ince et al., 2015, p13].

The latter, in particular, treats redundancy measures over time as a relation between CMI measures over

time.
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note them both for the sake of completeness and because they provide an intuitive under-

standing of the theoretical framework. The experimenters hypothesise that if a region is

involved in supporting decision-making behaviour, we should see a convergence of “di-

agnostic” feature “representations” (i.e. voxels with RED relative to both the image and

the perceptual decision) within that region. Such a region was found in the right fusiform

gyrus (previously predicted to support object recognition). Over time, voxels with high

RED scores converged on this area, while voxels with low scores diverged and the activity

of these voxels decreased in strength through the occipital cortex. So, over time, features

which we might interpret as transmitting specific information used in decision-making

behaviour are increasingly ‘represented’ in one specific area of the brain. For further

applications of this framework see a review by Sychns et al. (2020) [Schyns et al., 2020].

We should be careful at this point to remember that we are not yet, ourselves, com-

mitting to the representational status of these voxel regions, nor are we making concrete

suggestions as to the content. Indeed, the authors themselves note their loose represen-

tational talk. For example, when discussing the ‘nun’ features (features which, when we

overlay them on the original image, are focused on what we can see to be the faces of the

nuns), they remark that “it would be naive to assume that the nun’s face is represented

as such in any of these regions, but we need a broad view of the information-processing,

which this model affords.” [Zhan et al., 2019, p324]. What has not been done, and what

we still need to do, is to extract an explicit theory of representational content from the

theoretical framework employed.
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4.5 Objection: over-generalisation?

I have stated that I wish to unlock the implicit theory of content determination in cog-

nitive science. I have argued in this chapter that there is a theoretical framework behind

the implicit theory, and that the theoretical framework is information theory. A question

I have not engaged with is whether this implicit theory, and its information-theoretic

framework, are representative of cognitive science as a whole.

In many ways it does not matter whether every researcher and every paper in cog-

nitive science uses this implicit theory. It does not even matter if some researchers have,

consciously, an explicit theory which is nothing like the type I have outlined or indeed is

in conflict with it. What matters is whether an implicit theory of content is available from

within cognitive science, and whether that implicit theory has the contours outlined. I

have set out some restrictions I take to be key for overcoming Egan’s concerns, andwithin

those restrictions it looks as though there is an implicit theory and it does have the con-

tours I outline. Only by providing evidence of this view in the form of examples and by

(hopefully) providing a sensible reconstruction can I make that case compelling. If there

are other views one could in principle extract from other areas of cognitive science, this

does not detract from my own project. If cognitive scientists frequently use content talk

as a gloss (as may well be the case) this does not mean that within the parameters I have

outlined, one cannot extract an implicit theory from other sources within the discipline.

Given this possibility, one has two options. One can either be a pluralist or a revision-

ist. If one is inclined to be a pluralist, this involves allowing that content talk throughout

cognitive science is liable to differ, and that no one view on content should predomi-

nate. Even in cases where content is a gloss, we may allow that - in those areas - we
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need no theory of content. We might then quibble over word use (what gets to be called

‘content’), but the pluralist would see nothing much hanging on such debates. Pluralism

might be motivated by noting that different regions of cognitive science pursue different

explanatory projects (answering either how- or why-questions, for example), and that

some content ascriptions are relevant for some projects, but not for others.

If one is inclined towards revisionism, this involves arguing that just one theory of

content should win out. If it is the case that other areas of cognitive science differ in their

implicit theory of content, the revisionist might think that we have something better to

offer them. If there is no implicit theory of content and it is being used as a gloss, we

might think that we could add something to that work by supplementing the gloss with a

theory-guided content attribution. Indeed, one might think that progress can be made in

cognitive science as a whole with a unified, explicit, theory of content determination. Re-

visionism might be motivated by noting that some areas of cognitive science are pursing

an explanatory project using an unsuitable theory of content.

4.6 Conclusion

This chapter provided an example of the use of information theory in two areas pertinent

to content determination: it can model both what the cognitive system picks up from the

environment, and what it uses to perform a cognitive task. Information theory, far from

being a simplistic account of the correlation between two variables, provides the means

to generate incredibly precise content ascriptions constrained both by inputs which cause

neurons to respond, and downstream processing.
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The studies used in this chapter identify the item with which the underlying neural

mechanism has maximal mutual information as the content of the neural representation

supported by that mechanism. This is what maxMI claims to be the representational

content of all neural representations: that item with which the representational state has

maximal mutual information. So, the assumption must be shown to generalise, and must

be shown to be justified. In the final chapter I argue that maximal mutual information

provides the item in the environment about which the system has “available” information

(section 7.5). This is what allows content to play a role in proximate explanations.

However, before we can generalise the account, we need to understand how infor-

mation theory can be used to model the cognitive system more broadly. So, in the next

two chapters I discuss the constraints on applying information theory to the cognitive

system. In chapter five, I outline how to specify random variables within the cognitive

system and in the external environment. This provides us with the formal apparatus to

apply information theory to the cognitive system. In chapter six, I introduce functions

as a way of overcoming the “reference class problem” - a problem concerning how to

limit the range of possible external items relevant for comparison of maximal mutual

information values. In Finally, in chapter seven, I outline maxMI in full.
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Chapter 5

iRVs and eRVs

5.1 Introduction

In the previous chapter, I argued that, for those regions of cognitive sciencewhich address

Egan’s concerns, the background theoretical framework is Shannon’s information theory.

Later, in chapter seven, I will spell out the implicit theory of content within those regions

of cognitive science in information-theoretic terms.

However, before setting out the implicit theory of content, we need to reflect on the

conditions under which information theory can be applied to the cognitive system. This

will prove to be crucial, since it will lead us to provide some relatively severe constraints

on what we take to be the relevant features of the cognitive system and the external

environment for the purposes of a theory of content.

Reflection on the application of information theory is prompted by Shannon’s warn-

ing, set out in section 5.2. Shannon warns that the application of information theory
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must be made carefully, with due consideration to the specific mathematical posits of the

theory.

In this chapter, I will highlight a mathematical model central to information theory

- the random variable. Random variables form the basic building blocks of information

theory. Without specification of what we model as random variables, we are unable to

apply Shannon’s information theory proper to the cognitive system. However, I will

argue that specifying random variables relevant to content determination requires con-

straining what can serve as both representation and content. We must identify specific

outcomes and probabilities over those outcomes.

First, I deal with applying the random variable model to the system. I introduce the

term “iRV” to stand for the “internal random variable” which models a representation.

In general, random variables require a range of specifiable outcomes, with a probability

distribution or density over those outcomes, which collectively sum to unity. I argue that

the iRV must be constrained to include only those values which downstream systems

are causally sensitive to (sections 5.3 and 5.6) and that the probabilities of the outcomes

are determined by the response profile of the physical cell which we apply the model

to, in conjunction with the probability distribution of the items in its receptive field (e.g.

section 5.3.1).

Second, I consider applying the random variable model to items outside of the rep-

resentation itself. I introduce the term “eRV” to stand for the “external random variable”

which models content. I argue that the eRV must be limited to those outcomes which

are detectable by the sensory interfaces of the system (section 5.4). This does not entail

that eRVs can only be used to model very basic contents detectable by, say, photorecep-
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tors; I show how invariance mechanisms determine the complex discriminatory profiles

of downstream neurons, allowing us to model complex external items in terms of the

outcome values which can be detected by the system (section 5.4.1).

I end (section 5.6) by considering whether stipulating a random variable relies on

pragmatic considerations. Given the degree of flexibility regarding which aspects of the

system and environment could, in principle, be modelled as a random variable, I raise

the concern that we may be guided by what is pragmatically beneficial. I answer that

we specify random variables following constraints provided by those elements of the

system which are actually relevant for performing cognitive capacities, rather than our

own independent aims and interests.

5.2 Shannon’s warning

Following the 1948 publication of Shannon’s A Mathematical Theory of Communication,

information theory became a framework favoured by theorists working in a range of

disciplines dealing broadly in signal transmission. This adoption quickly spread to those

working in fields with no obvious relation to the original home of information theory,

telecommunications. In economics, for example, information theory has been used to

model a myriad of phenomena, such as the behaviour of agents with limited access to

information (e.g. see [Yang, 2018]). As we have explored in previous chapters, in the

case of cognitive neuroscience this trend is still going strong.

Noting the rise in popularity of information theory, in 1956 Shannon sought to quell

the enthusiasm which, at times, led to a hasty, unsystematic application of its key con-
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cepts. Shannon published a short bulletin, The Bandwagon, urging theorists to maintain

“a thoroughly scientific attitude”. He warned that they should not be enticed by “a few

exciting words like information, entropy, redundancy” into thinking that information the-

ory can “solve all our problems” [Shannon, 1956].

Shannon notes that information theory was initially “aimed in a very specific direc-

tion”, intended as “a technical tool for the communication engineer”. Information theory,

we are reminded, is “essentially a branch of mathematics, a strictly deductive system”.

While excited theorists assumed the explanatory potential of information theory across

a wide variety of domains, they did not always stop to consider whether this techni-

cal mathematical tool, with its roots in telecommunications, was “relevant to such fields

as psychology, economics, and other social sciences”. Shannon goes on to suggest that

if information theory is applicable to these domains, it must be shown experimentally.

For example, if we think that neural assemblies transmit information in the information-

theoretic sense, we must identify some testable hypotheses in support of the proposal -

then test them.

Much progress has been made since the 50s, and many empirical questions are being

settled. A substantial body of work exists in the domain of neural information theory to

make such predictions and test them in the case of applying information theory to the

brain (for an overview, see [Stone, 2018]).

In the domain of informational teleosemantics, however, we not only, in the main,

lack testable empirical hypotheses - we lack somethingmuchmore fundamental; we have

no understanding of how the mathematical model of information theory is supposed to

relate to the thing we are trying to model - the cognitive system and its way of deter-
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mining content. It is not even clear, that is, that there are any properties of the cognitive

system which sensibly correspond to properties of the mathematical model. For exam-

ple, when we discuss the amount of mutual information between some representation

and the external environment, what is it, exactly, that we are taking to be modelled by

the random variables, what are the relevant probability ranges, what defines the corre-

sponding entropy, where are the channels? and so on. Are we simply getting carried

away with exciting terms, hoping information theory can provide a black-box solution

to our representational problems?

This is not a problem for theorists who do not use Shannon information proper. Con-

sider Neander’s work, often considered to be the leading elaboration of informational

teleosemantics, as described in chapter two. According to Neander, there is a need to de-

fine our own concept of information based on “desiderata [which]must bemet by an anal-

ysis of the notion of information for particular theoretical purposes” [Neander, 2017b,

p145]. For Neander, this leads to an analysis which is much more lightweight than Shan-

non’smathematical notion, invoking loose historical statistical regularities [Neander, 2017b,

p146].

More recently, however, informational teleosemantics has taken on more explicit

commitments to Shannon’s mathematical framework. Recent theorists such as Marc Ar-

tiga [Artiga et al., 2020], ManoloMartinez [Martinez, 2013], and StephenMann [Mann, 2018],

rely heavily on information theory proper. So does the current proposal, taking our cue

from cognitive neuroscience and the background theoretical framework which we in-

vestigated in the previous chapter. For us and for other contemporary teleosemanticists

working within Shannon’s framework, spelling out exactly how information theory is
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applicable to the cognitive system is essential if our work is to be set on sure theoretical

foundations.

5.3 Internal random variables (iRVs)

What is a random variable?
1
Interestingly, the textbook definition has a form of realism

written in. Here is an example: “A random variable X is a function that maps each

outcome x of an experiment (e.g. a coin flip) to a number X(x), which is the outcome

value of x.” [Stone, 2015, p26]. Imagine you are watching a coin being flipped, notebook

in hand. Each time you see that heads is showing, you jot down the number ‘1’. Each time

you see that tails is showing, you jot down the number ‘0’. You have, in effect, created a

random variable modelling the coin flip with the definition given by

X =


1, if the outcome is heads,

0, if the outcome is tales.

(5.1)

What the random variable models is a coin flip, and is constrained by the properties

of flipping coins. Imagine that this coin cannot land on its side. There are, therefore,

only two possible states of affairs following a flip: heads or tails. We can label heads xh

and tails xt. This provides us with our alphabet for our random variable: the outcomes

which we then map to (typically numerical) values. So, our definition above tells us that

for the random variable X the mapping rules are X(xh) = 1 and X(xt) = 0.

We know that, given our observations of the coin flip, each outcome has some given

1
The following exposition is taken primarily from James V. Stone, Information Theory: A Tutorial Intro-

duction [Stone, 2015].
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probability of obtaining. This allows us to define the probability distribution2
of the

random variable. This tells us how the probabilities of obtaining an outcome are dis-

tributed across the outcomes. We write the probability that we will get heads as p(X =

xh) and tails as p(X = xt). This represents the probability that the outcome of X (the

random variable used to model the coin flip) will be either heads or tails
3
. The proba-

bility distribution is written as p(X) = {(p(X = xh), p(X = xt)}. This is typically

abbreviated to p(X) = {(p(xh), p(xt)} [Stone, 2015, p24].

This is a fair coin, so on average we get heads half the time and tails half the time. In

this case, we have p(X = xh) = 0.5 and p(X = xt) = 0.5. So the probability distribution

for X is p(X) = {0.5, 0.5}.

So, for anything we aim to model as a random variable, we need to identify some

outcomes and we need to identify a probability distribution over those outcomes where

the probability sums to unity (which can be the result of normalisation). Specifying items

to be modelled as random variables is crucial to applying information theory, since the

key information-theoretic concept, entropy, is determined by the properties of the ran-

dom variable used to model the entity. The entropy of a random variable is given by the

average surprisal of each outcome obtaining, which is defined as 1/p(X = x).

Mutual information - which, as we saw in the previous chapter, the theoretical frame-

work of content attribution in cognitive science relies on - involves the relation between

two random variables: one modelling ‘internal’ items - the representational states within

2
This random variable is discretemeaning that the values are distinct. For a continuous random variable

in which each value cannot be separated individually (think of continuous amounts of water filling a jug)

the equivalent concept is the probability density.
3
Note that this implicitly relies on the fact that heads and tails exhaust the possible options. Formally,

it is assumed that p(X) = 1 (the sum of all marginal probabilities is 1).
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the system - one modelling ‘external’ items - the items in the world which serve as con-

tent.

So, we can now refine our initial realist objective; we have to find something which is

modelled by a random variable on the side of the cognitive system, and a corresponding

random variable on the side of the external environment. I will call, for short, the former

an iRV for ‘internal random variable’ and the latter eRV for ‘external random variable’.

5.3.1 Initial outcome ranges and probability distributions

Where to begin? In the previous chapter I argued that the best place to look for an implicit

theory of content is in those studies which deal with the interface between the organism

and the environment. This is due to the fact that these experimenters are explicitly inter-

ested in specifying the precise environmental features which drive an internal response,

so external items feature explicitly in their explanations. When attempting to provide

the features of the system which map onto the mathematical model, we would do well

to continue this trend for a few reasons.

First, we will begin our exposition with a relatively simple example. Early perceptual

systems very quickly increase in complexity, so starting at the most basic level (which is

far from basic) will help us get a grip on how the mathematical model applies.

Second, the studies in psychophysics and cognitive neuroscience we have been look-

ing at are concerned with this basic relation, so our general methodology encourages us

to follow them.

Third, if we find we cannot show how the model applies in the most basic case, we

will probably struggle with more complex cases, so it is best to start here as a proof of
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concept.

Photoreceptors and transduction

I will begin with a brief overview of how photoreceptors work
4
. I will then attempt to

show how photoreceptors can be modelled as random variables, and try to present a

plausible suggestion for corresponding environmental random variables. I will go into

a little of the biological detail. This is important to get an idea of the specifics which

the random variable model generalises over. We need to provide some details in order to

achieve the model-to-system mapping required for a realist interpretation.

Photoreceptors are cells in the retina which respond to light. As is well known, the

retina contains two types of photoreceptor, rods and cones. Rods respond to monochro-

matic features of light, while cones are responsive to differences in light which determine

colour. Wewill focus on rods for simplicity. There are about 120million rods in the retina.

At the back of the cell, embedded in the retinal wall, they each contain “thin membrane

plates” known as “lamellae” [Tovée, 2008, p29]. In rods, the lamellae are individual disc-

like structures suspended in the rod. Bound to the lamellae are “photopigmentmolecules”

known as “rhodopsin”. Rhodopsin is constituted by opsin and retinal. Retinal can exist in

the “straight” chain form (all-trans retinal) or the “bent” form (11-cis retinal). Only the

11-cis form of retinal can bind to opsin. When a photon hits the lamellae, the 11-cis form

of retinal is caused to transform into the all-trans form, which can no longer bind to the

opsin. So, the rhodopsin breaks down and the lamellae is “bleached”.

When this happens, the rod becomes hyperpolarised. Unlike many cortical neurons,

4
The exposition here is mostly taken from Martin J. Tovèe’s An Introduction to the Visual System

[Tovée, 2008].
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photoreceptors, when inactive, have open ion channels. The channels are kept open by

a chemical called cGMP
5
. The breakdown of rhodopsin causes levels of cGMP to drop,

which in turn leads to the closure of the ion channels within the cell. This creates an

increase in the resistance between the inside and outside of the cell, lowering the cell

membrane potential (measured in millivolts, mV). This ultimately leads to a reduction

in the amount of neurotransmitter (glutamate) sent to the post-synapse ganglion cells as

the decrease in voltage propagates along the axon of the photoreceptor.

Unlike cortical neurons, photoreceptors do not emit action potentials - which are

all-or-nothing - they emit graded potentials [Purves et al., 2001]. We can think of the

reduction in glutamate resulting from hyperpolarisation as continuous. The degree of

hyperpolarisation depends on (ignoring the effect of noise due to heat) the number of

photons absorbed. There is an upper limit to the degree to which the the voltage can

decrease, and there are upper and lower bounds on the intensity levels of photons that

particular photoreceptors are sensitive to. Sensitivity to intensity is unlikely to be linear,

since an S-shaped response profile ismuchmore efficient (see [Tovée, 2008, p37]). Greater

responsiveness is to be expected at the middle range of intensity. In other words, changes

in the number of photons absorbed will lead to greater changes in membrane potential

at the middle of the intensity range than at the extremes. In information-theoretic terms:

for bounded random variables, which the photoreceptor can be modelled as, maximum

efficiency of information transfer is achieved when the probability density is uniform,

which the S-shaped sensitivity profile ensures, provided Gaussian inputs.

What does all this mean for modelling the rods as random variables? Recall that

5
Cytoplasmic cyclic guanosine 30–50-monophosphate, [Tovée, 2008, p30]
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we need some aspect of the modelled that corresponds to its ‘outcomes’ which, in the

model, are its values. At this point we should also note that the rods should be modelled

as continuous random variables. This is because whatever we model as the outcomes -

the decrease in voltage, the decrease in glutamate production or whatever - they will be

continuous due to the graded nature of the cell’s response. So, we need to identify the

probability density function of the outcomes of the cell. More on this below.

5.3.2 Subsequent outcome ranges

We have investigated how to model the initial interface as a random variable. In this

section I provide a little detail about how we can stipulate an iRV for slightly further

downstream neurons. Information theory is not just a useful tool for measuring initial

sensory systems. Provided we can identify outcomes and a probability distribution over

those outcomes, we can stipulate an iRV which is relevant to content determination.

In this section, I use ganglion cells and simple cells as examples demonstrating how to

extend the iRV model generally.

Ganglion cells

Photoreceptors connect to retinal ganglion cells. A large number of photoreceptors con-

nect to each ganglion cell (at a ratio of about 126:1 on average). The photoreceptors which

connect to a given ganglion cell define that cell’s receptive field. In general, moving up

the visual hierarchy, the receptive fields of post-synaptic cells tend to increase, incorpo-

rating a greater number of inputs.

Ganglion cells do not respond on the basis of a simple threshold of active photorecep-
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Figure 5.1: Reprinted from Tovèe (2008)

tors in the cell’s receptive field. Instead, photoreceptors are structured in what is known

as a “centre-surround” organisation [Tovée, 2008, p34].

Photoreceptors are arranged in concentric circular patterns within the retina. Gan-

glion cells are connected to circles of photoreceptors with a centre and a surround cir-

cle (as in figure 5.1). Each ganglion cell is preferentially activated with either an ON-

centre, OFF-surround activation pattern (ON-field), or an OFF-centre, ON-surround ac-

tivation pattern (OFF-field). For ON-field ganglion cells, optimal responsivity of the cell

is achieved when all photoreceptors in the centre of the circular arrangement are active
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(i.e. hyperpolarised) and all photoreceptors in the surround are inactive. Conversely,

OFF-field ganglion cells are optimally activated when the surround photoreceptors are

all active, and the centre photoreceptors are inactive.

This is known as an opponent channel since the centre and surround are in ‘oppo-

sition’ - for example, in ON-field ganglion cells the centre of the receptive field activates

the cell, while the surround inhibits the cell. So, if both the centre and surround are ON,

the activation field will cancel out and the ganglion cell will default to its average firing

rate.

Ganglion cells, unlike photoreceptors, emit action potentials rather than graded po-

tentials. An action potential “is a rapid sequence of changes in the voltage across a mem-

brane” [Grider et al., 2019]. This rapid change in voltage is propagated down the cell’s

axon. When an action potential is emitted, a sudden, sharp change in voltage is trans-

mitted.

Since action potentials do not vary in voltage, voltage level cannot be what we model

as our outcome value for the purpose of modelling the random variable. More precisely,

we could model the voltage level as a random variable with a single outcome and a prob-

ability of recording that voltage (with the relevant comparison set being other possible

voltage levels, as in the photoreceptor case) at unity. However, this would not allow us

to model the content-determining-relevant aspect of the cognitive system. Since there

is no change in voltage, the post-synaptic cell has no way of differentially responding

to differing voltage levels - the post-synaptic cell is insensitive to the voltage level as a

means of changing its response profile.

As is well known, the relevant aspect of the ganglion cell’s output which the post-
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synaptic cell responds to is a temporal characteristic of the ganglion cell’s action poten-

tials. There are typically two temporal profiles which are thought to be relevant
6
and

which define two ‘codes’: the rate code and the timing code.

The rate code essentially involves the mean firing rate of the neuron. If the post-

synaptic cell is responsive to the rate code, it will demonstrate differential activity based

on how rapidly the cell is firing. A cell may send out an action potential at either a low

or high rate measured in spikes per second. A spike refers to the rapid change in voltage.

The timing code is more complex, and involves the position of each spike. Imagine

that a neuron fires rapidly for a second, then slowly for a second, then rapidly for a

second. Imagine that another neuron fires rapidly for two seconds, then slowly for a

second. The mean firing rate of the two neurons may be the same, but the post-synaptic

neuron will respond differently to each cell, since the patterns of firing rates vary.

There is ongoing debate about the type of code used by the ganglion cell’s post-

synaptic cells. Often, considerations of information transmission efficiency are used to

adjudicate between different hypotheses [Van Rullen and Thorpe, 2001]. The empirical

facts change the aspect of the cell which we model as outcome values. However, at the

most general level, we can say that the outcomes will be given by the relevant temporal

profile of the ganglion cell’s action potentials. In the simplest case, with the rate code,

our highly idealised7
random variable would look something like:

6
Although there are many more (infinite?) logically possible profiles which post-synaptic cells could

be responsive to. See Gallistel (2017) [Gallistel, 2017] for an investigation into some alternative candidates

for the output of a cell.

7
In reality, we would see much larger spikes per second, since action potentials are emitted on a very

small time scale. It is also not clear if the post-synaptic cell is responsive in either a continuous or discrete

way to changes in firing rate. For simplicity, I have chosen discrete.
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X =


0, if the outcome is 1 spike/s,

1, if the outcome is 2 spikes/s,

2, if the outcome is 3 spikes/s.

(5.2)

To reiterate, the key point here is that what outcomewe use in ourmodel is dependent

on what the post-synaptic cell is sensitive to, specific empirical details aside.

The probability distribution of the firing rate of the cell will be determined by two

things. First, the receptive field of the cell and its status as an ON-field or OFF-field cell.

Second, by a corresponding function of the the probability ranges of the photoreceptors

in the ganglion cell’s receptive field. As we know, these are determined by the probability

of photons hitting the lamellae and the photoreceptor’s response profile. So, ultimately,

the probabilities of some distribution of photons hitting the lamellae contribute to the

determination of the probability range of the ganglion cell. However, unlike photore-

ceptors, it is not the probability of a photon hitting the lamellae which determines the

probability distribution of the ganglion cell - it is a particular distribution of photons

hitting several lamellae together which determines the probability range.

Simple cells

Neuroscientists mark a distinction between ‘simple’ and ‘complex’ neurons. Simple neu-

rons are defined as those which have OFF and ON regions, and for which there is a “push-

pull” response profile; the cells either hyperpolarise or depolarise depending on the ‘con-

trast’ of the input stimuli (the value of themetric they are responsive to) [Martinez et al., 2005].

In the visual system, simple neurons take input directly from the lateral geniculate nu-

140



Figure 5.2: How orientation selectivity is thought to build from opponent channels.

cleus (LGN). Complex neurons take input from simple neurons.

Consider the so-called orientation selective cell, as seen in figure 5.2. This is a cell

which is hypothesised to respond to bars of varying orientation within the visual field.

The responsivity of the orientation selective cell is a product of outputs from multiple

input ganglion cells in its receptive field, via the LGN. Specifically, optimal response is

found when the stimulus is positioned such that its projection on the retina fits within

the inner circle of the centre-surround structure of the photoreceptors within the recep-

tive field of the ganglion cells. Results of a classic study by Hubel and Wiesel show that

the response of the orientation cell appears to diminish when the stimulus deviates from

a given orientation in either direction [Hubel and Wiesel, 1962]. In addition, the orienta-

tion selective cell appears to be inhibited by activity at the edges of its inputs, suggesting
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that the optimum response is found by a stimulus with a specific, finite length.

The application of the random variable model should be familiar by now. We have

pointed out the various inputs which define the responsivity of the cell, and the applica-

tion of the model relies on taking the output of the cell which the post-synaptic neuron

is responsive to as the outcome. This depends on things like the ‘code’ used by the cell,

which we understand as that aspect of the cell’s firing which the post-synaptic neuron is

sensitive to. If we assume a rate code, the random variable will be as in equation 5.2.

As before, the probability range will be determined by both the features of the tar-

get cell and the features of its pre-synaptic inputs. Ultimately, this will depend on the

probabilities of an increasingly complex pattern of photons on the surface of the retina.

5.4 External random variables (eRVs)

In principle, there are a vast number of ways to model any item as a random variable.

What we need is a principled way to model external items relevant for determining con-

tent. In this section, I expand on Neander’s insight
8
that the external items relevant for

content are those which are constrained by the discriminatory capacities of the organism.

As Neander puts it, each external item has a “determinate” value along a range of pos-

sible values known as “determinables” [Neander, 2017b, p128]. For example, the distance

between eyes varies across individuals. We can describe the specific distance between

the eyes of a specific person as a determinate value relative to the determinable range

of possible distances. Neander suggests that each determinable range corresponds to an

internal range: for each “range of values C1 ... Cn of an environmental determinable C”

8
As discussed in chapter two section 2.4.1.

142



there is “a range of values R1 ... Rn of an inner determinable R” [Neander, 2017b, p128].

A range of possible distances between eyes is, according to Neander, associated with a

range of possible states of an internal representation.

I argue that we should view this as a constraint on what we specify as the outcomes

of the external item. In order to specify an eRV a change in which results in a change in

the system itself, the system must be causally responsive to the values of the eRV. The

best, perhaps only, way to ensure this is to include in our eRV model a range of outcomes

C1 to Cn only if there is a range of values R1 to Rn which are causally sensitive to the

values of C. In short, the values of the iRV used to model R determine the values of the

eRV used to model C.

Consider the orientation selective cell. Let us assume that it is the function of the

orientation selective cell to detect lines. This provides us with a space of entities to model

as external random variables - i.e. anything which is a line
9
. However, how do we apply

the random variable model? What are the parameters within which we vary the lines in

order to take down outcomes and attribute probability ranges?

To take the most basic case: for photoreceptors, we saw that the probability range

of their outcome values are determined by the tuning curve of the photoreceptor (its

sensitivity profile) and the probability distribution of the obtaining of photons on the

surface of the cell’s lamellae. This relation between the probabilities gives us an obvious

constraint on the elements to be modelled as outcomes in the eRV in this simple case:

the presence or absence of a given number of photons on the surface of the lamellae. It is

the probability range of the values of the eRV so construed which determines (via either

9
See chapter six for a full explanation of how functions enable this.
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phylogeny or ontogeny) the response profile of the photoreceptor.

Moving further downstream, orientation selective cells, as we saw in section 5.3.2,

have a centre-surround structure built on the centre-surround structure of ganglion cells

in the receptive field of the orientation-selective cell. Activation of ganglion cells in the

surround of the orientation cell inhibits responsivity of the orientation cell, meaning that

orientation cells respond optimally to lines of a certain length. This provides one param-

eter (with an upper and lower bound) which we can model as an outcome: line length.

However, we need only consider those line lengths which the cell is responsive to: line

lengths above the sensitivity threshold of the cell are irrelevant for content determina-

tion. The cell contains no information which could differentiate between those lengths,

so we do not include them in our eRV since this would create an eRV a change in which

does not result in a change for the system itself.

5.4.1 Scaling: determining eRVs for complex items

If eRVs are to be determined by constraints on discrimination, does the model only work

for relatively non-complex cells with straightforward environmental inputs, such as pho-

toreceptors, ganglion cells and simple cells? I argue that we can apply discrimination

constraints throughout the system. This is because downstream areas are connected to

upstream areas via perceptual invariance mechanisms. Initial iRV values determine

complex eRV values in virtue of the corresponding complex iRVs being connected to

initial sensory surfaces.

Cohen provides the “textbook definition” of perceptual invariance as “stability in per-

ceptual response across a range of perceptual conditions” [Cohen, 2015, p2]. In neural
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terms, invariance mechanisms underlie the invariant response of a neuron to variation

in the inputs to that neuron. The (in)famous grandmother cell, a hypothetical cell which

responds only to one’s grandmother, is a prototypical example. Grandmother cells are

hypothesised to exhibit extremely sparse responsivity - the cells rarely respond to input,

only doing so under highly specific conditions (e.g. the conditions which are present

only when one’s grandmother is present). There may really be such cells; Quiroga et al.

report that, in the hippocampus of one individual, a cell was found which responded to

all and only Halle Berry input, invariant across different pictorial presentations. It even

responded, it seems, to the written name ‘Halle Berry’ [Quiroga et al., 2005].

Grandmother cell examples are an extreme case of invariance. However, even cells in

early sensory systems exhibit invariance. For an intuitive idea, consider the vast variabil-

ity of retinal activation caused by any given object, nomatter how apparently basic. Light

from a smooth rock can be projected to any position on the retina, it can be viewed from

multiple angles, under various lighting conditions, through various media of varying vis-

cosity. In order to allow us to recognise the rock across all these conditions, the brainmust

take what DiCarlo et al. call the high-dimensional “object manifold” [DiCarlo et al., 2012]

(the profile of the object encompassing all possible retinal activation patterns) and pro-

duce a single, invariant response.

Invariancemechanisms build sparsity of response by performing operations over sev-

eral inputs. Downstream cells preferentially respond to patterns of earlier responses.

Here is a toy example to highlight the idea. Imagine two cells, A and B. Cell A has possi-

ble response states A1, A2, A3 (or ‘off’). Cell B has possible response states B1, B2, B3 (or

‘off’). We can imagine a third cell, C, which responds only when A is in A2 and B is in
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B1 or when A is in A1 and B is in B3. Otherwise, C is ‘off’. C’s response profile evinces

invariance: C is stable across a range of conditions, and does not respond to another

range of conditions in the same inputs. If we assume that the combinations C responds

to are rare, but A or B being in any one of their respective states is common, C’s response

profile is sparse relative to its inputs.

Invariance mechanisms enable the system to detect such complex items as the incline

of a plane. Degree of incline is calculated via the pattern on the surface of the plane. Sta-

tistically speaking, surface patterns tend to be uniformly distributed. Imagine a surface

made up of uniformly distributed circles. If the circles are increasingly elliptical and

densely distributed towards one end, the system interprets that as an inclined plane. To

do this, the system must also be able to produce an invariant response to the texture - to

build a complex response profile which does not vary according to density of distribution

or eccentricity of the texture-relevant shapes [Burge, 2010, pp355-359]. It then compares

this representation to the skewered input and produces a representation of an inclined

plane.

Invariancemechanisms scale to enable increasingly complex capacities. Object recog-

nition - typically operationalised as the ability of participants to apply labels in expected

ways to stimuli - is thought to be facilitated by invariance. Leading classic and con-

temporary theories of object recognition both rely on invariance as a mechanism. The

classic theory, due to theorists such as Tanaka (e.g. [Tanaka, 1997]) and Stryker (e.g.

[Stryker, 1992]), suggests that there is a “visual alphabet” which composes to form com-

plex representations of visual objects. In these theories, the building blocks of object

recognition are early visual representations of shapes, patterns, colours and so on. Neu-
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ral implementations of these representations are thought to be built from cells such as the

orientation-selective cells we have been considering. These building blocks are processed

together in order to produce complex representations.

The building blocks themselves are developed from combinations of inputs from sim-

ple cells. In the same way that simple cell response is built from insensitivity to aspects of

the input, and sparse responsivity to other aspects (e.g. to activation of the centres of the

receptive fields of the input ganglion cells), object recognition involves sparse responsiv-

ity to a collection of the neural inputs comprising the building blocks, but insensitivity

to the isolated activation of any one of them.

For contemporary theorists DiCarlo et al., the “‘invariance problem’ is the computa-

tional crux of recognition” [DiCarlo et al., 2012, p17]. Invariance, as they understand it,

involves producing a single neuronal response to each object category given an extremely

high-dimensional retinal input. Sparse responsivity must be developed in such away that

objects which have similar retinal profiles can be neatly distinguished by the system. El-

ements of the input profile must be grouped, with downstream systems demonstrating

insensitivity to isolated members of those groups.

The key claim I am making is this: invariance mechanisms within the system provide

parameters according to which complex external items are to be modelled as random

variables. The system essentially chunks environmental items in such a way that allows

the parameterisation of the input. The response of downstream neurons is constrained

by highly disjunctive upstream discrimination profiles, allowing us to discover which as-

pects of complex external items drive a system-side response. These aspects are candidate

outcomes for modelling an eRV.
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5.4.2 Limits of invariance

However, even once we parameterise the input, there is no guaranteeing which of the

many possible related eRVs model the content of the target neural representation.

The number of photons present on the surface of the lamellae, lines in the environ-

ment, and tilted planes, each correspond to other items which can also in principle be

modelled as external-side environmental variables. For example, the number of photons

present on the surface of the lamellae typically corresponds to the light intensity in the

vicinity of the receptor. Given the constraints imposed by the number of photons present,

we can model light intensity as a random variable. Furthermore, light intensity level will

correspond to more distal environmental variables which cause fluctuations in light in-

tensity. The presence of lines will correspond to edges of objects, inclined planes will

correspond to depth and size and so on, which can be modelled using random variables

provided the values of each map to the values of each lower-level eRV.

As such, we have a potentially unbounded range of eRVs, each of which prima facie

could be the content of a representation, since mappings from the values of higher-level

eRVs to lower-levels are cheap.

In the next chapter I argue that we must limit the range of possible eRVs which could

serve as content by way of the function of the subsystem containing the neural repre-

sentation. This will limit the possible eRVs which could be content to those which can, in

principle, provide an explanation for the cognitive capacity under investigation. In the fi-

nal chapter, I argue that we pick representational content from among those eRVs within

the set, delineated by both discriminatory capacities and system function, according to

which eRV maximises mutual information with a target iRV.
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5.5 Information theory requires the brain

In the above sections, I have afforded a significant role to the brain within what I have

been calling the cognitive system. One may object that there must be other ways to apply

information theory to the system. Surely, there are other aspects of the system which

could provide the relevant outcome ranges, and over which we can define a probability

distribution.

For example, we might think that we can take a state defined using more recognisably

psychological terminology as an output. For example, perhaps we could consider enter-

taining one concept rather than another. Wemay take a particular concept as an outcome,

and define the probability range over the potential concepts I could have entertained.

There are three significant problems with defining outcomes in these terms. First,

what I call the relevance issue. We need to know the relevant set of psychologically

identified entities over which we could define the probability range (which sum to unity).

However, concepts have myriad possible connections to each other, each of which could

define alternatives one may have chosen. Cars might be contrasted with other possible

vehicles, but they may also be contrasted to things with wheels, things with engines,

and so on. The choice will be highly contextually constrained, as well as dependent on

individual differences in what one takes to be relevant. When calculating probabilities for

random variables onemust define a “reference class” of other outcomes with probabilities

which collectively sum to unity (I discuss the reference class problem for maxMI in detail

in section 6.2). Given the huge variability, flexibility, and individual differences in the

range of possible concepts one could have entertained, it seems incredibly difficult to

solve the reference class problem for concepts. So, specifying a random variable seems,
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at this stage of understanding at least, hopeless.

Second, what I call the probability issue. We need to calculate the probability of a

given concept being entertained in general (notwithstanding the relevance issue). How-

ever, we are infinitely creative creatures, with no obvious a priori constraints on our

ability to apply concepts to anything. There will of course be situations in which the to-

kening of a given concept is more or less likely, but individual differences in application,

and the multitude of factors which go into making concept ascriptions, make any precise

calculation of probability currently intractable.

Third, what I call the scaling issue. If we start with concepts, how could we scale

down tomore basic states? This is the inverse of the scaling-up problem usually attributed

to the informational teleosemantic approach (see section 8.3). Could we apply the same

theory of content to states which cannot be picked out using a psychological framework?

It might be that our theory stipulates that representations do not occur at such a level.

This is a difficult position to maintain within the current explanatory framework: rep-

resentation appears, as we have extensively covered, to be explanatory even in contexts

where more traditional psychological models, such as concepts, do not apply.

These issues are solved by invoking the brain. The set of relevant alternatives is

clear: the alternative possible firing rates or voltage levels output by the cell. How to

determine the probability has been the topic of this chapter: distal probabilities, along

with response profiles of pre-synaptic cells and the response profile of the target cell

define the probability of a given outcome. Likewise with scaling down: we have applied

our model to photoreceptors, and it does not get much more basic than that.

Instead, we should afford the brain a central role in content determination. Indeed,
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reflection on the requirement of the systematic application of information theory to the

cognitive system suggests a novel way of interpreting the relation between the brain and

the mind; the brain provides the mind with a quantity of information, the mind takes that

information and produces representations with content. The mind here is understood as

the totality of the functional relations between brain regions. Without a function, the

information amount provided by a neuronal response fails to be ‘about’ anything: there

is no distal content which it specifies. There is only a bare quantity of information. Once

we add in the functions, the mind, we have something which consumes information to

make distal representations which serve its various needs. Together, the brain and the

mind comprise the whole of the cognitive system.

So, I argue that the relevant part of cognitive science, for our purposes, will be branches

of neuroscience. Specifically, that part which deals with cognitive functions: cognitive

neuroscience. If we want a systematic theory of content with foundations in information

theory, we must turn to those areas of science which invoke the brain.

5.6 Problematic pragmatism?

I end with a worry about pragmatism. For the purposes of stipulating a random variable,

what is to be considered the outcome is a matter of choice. As we saw in section 5.3.1,

even in our simplified story, there are many elements in the causal chain which result in

post-synaptic changes for the ganglion cell. There is an increase in the all-trans form of

retinal, a decrease of cGMP, a closure of ion channels (about 2% of a cell’s open channels

per photon absorbed), an increase in resistance over the cell membrane, a decrease in
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membrane potential propagating along the axon, and a reduction in neurotransmitter

(glutamate) production. All of these aspects of what the cell does could, in principle, be

modelled as the cell’s outcome.

It seems like we are plunged into Egan’s worry, since the application of the model

now looks to be sensitive to pragmatic concerns. Which aspect we choose to consider

the outcome, it might be thought, is going to be sensitive to our own interests.

This is the point at which we should draw a vital distinction. I will call any form of

choice resulting from maximising various helpful heuristic values - such as easy com-

municability of the theory, or emphasising a link to pretheoretic interests - problematic

pragmatism. This variety of pragmatic choice is constrained only by the reception of

the theory - how the theory will be received by the public, or how it is intuitively grasped

by experimenters.

Another form of pragmatism I will call unproblematic pragmatism. This variety

of pragmatic choice is constrained only by the initial orientation of the theory; it is an

inherent part of theory construction with essentially the same status as hypothesis con-

struction. In this sense, ‘choosing’ which elements of the system to model as outcome

values, for example, amounts to a hypothesis about which elements of the system are

relevant to the phenomenon under investigation. In other words, it is a hypothesis about

which part of the system does in fact perform the role of the outcome within the system

itself.

Wemay be wrong in our choice: wemight decide to model the reduction in glutamate

as the outcome value. It might turn out that, in doing so, we miscalculate the amount of

information available to downstream systems. If realism is indeed right, then changes in
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the amount of information available to downstream systems will make a huge amount of

difference. It will impact, for example, discrimination abilities (see e.g. [Stone, 2018, p38]

for an example). Or, it might not matter whether we model the reduction in glutamate

or the reduction in voltage as the outcome. In which case, there will be some story to

tell about how these two things are so tightly related as to make no difference to the

system itself - they both serve equally well as the outcome in reality since they actually

have a very tight relation. Either way, there will always be a corresponding story to tell

about the modelled if the model is wrong (or indeed if it is right). We might have failed

to correctly map the model to the system, but it does not follow that there is no correct

mapping of the model to the system.

Whatever the case, unproblematic pragmatism results from a choice which is con-

strained by the features of the system itself. If I am right, and choosing which element

in the causal chain of the photoreceptor is an unproblematic pragmatic choice, we evade

Egan’s worry and canmaintain a form of realism. Realism requires pointing to an element

of the modelled and providing a justification for placing that element of the modelled in

correspondence with an element of the model. This just means that we need to provide

a justification, constrained by the features of the system itself, for which elements of the

system we place in correspondence.

Which element of some internal component should be modelled as the outcome value

is an empirical question; it is that aspect of the cell which differentially
10
drives the re-

sponse of the post-synaptic neuron. Let us turn to existing practice. James Stone writes

that it is the voltage differential of the photoreceptor which tends to be modelled as the

10
i.e. if we apply Mill’s method of difference.
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outcome, but that “transmitter quantity and voltage are related by some (simple?) func-

tion (probably a sigmoid), so I would think this is not a vital detail unless you are mod-

elling a very fine granularity” (personal correspondence).

How can we justify this last comment while avoiding pragmatism? Well, as we men-

tioned above, since there is a very tight relation between the two quantities, there will

likely (an empirical matter) be no difference at the level of the system itself in its content-

determining capacity11
regardless of which choice is made. The constraints at the level of

the system under-determine the choice at the level of the model. So, the outcomes may

either be the decrease in voltage levels or the decrease in glutamate release.

So, an author such as Egan may say the following: the under-determination of the

model relative to the system it models shows that the only choice of outcome left is one

which is problematically pragmatic. We decide between voltage levels and glutamate

levels on the basis of a choice totally unconstrained by the system itself, which suggests

the choice is constrained only by heuristic values.

I suggest the following line of response: we do not have to choose between the two.

One of the benefits of using a model is that we can generalise over specifics. In this case,

the outcome can just be considered as the voltage-transmitter subsystem of the photore-

ceptor. If it is true that there is no difference between the two at a grain detectable to

downstream systems (again, I must stress, an empirical hypothesis which may be incor-

rect) we simply generalise over the whole subsystem which includes the voltage change

and the inhibition of glutamate as the outcome value. When it comes to taking an out-

come to convert into our variable value, we can, for practical purposes, choose from any

11
There may be some difference at a level which is not registered by the system in all the aspects of that

system which we explain by appeal to content.
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measurable quantity from this overall subsystem. We can, for example, just take a voltage

reading. This looks like a problematically pragmatic choice of outcomes, but this is just

an ordinary pragmatic choice of what reading we take from within the outcome system.

It is like using either fMRI or EEG.

So, for example, the random variable would look something like this (note that the

values are continuous, as are the outcomes):

X =



0, if the outcome is -40mV,

...

0.01, if the outcome is -41mV,

...

1, if the outcome is -60mV.

(5.3)

For theoretical purposes, the outcome maps onto the voltage/transmitter inhibition

subsystem. For practical purposes, we take whatever sensible reading we can from this

system.

The probability density function is, thankfully, significantly easier to determine. This

will simply be given by the probability of getting our outcome. Again, for practical pur-

poses, we may wish to measure the probability of the voltage. Since there is (probably) a

straightforward function between voltage level and glutamate inhibition, we could very

easily translate this into probability of a given reduction in glutamate. The probabil-

ity will be determined by two things: the response profile of the photoreceptor and the

probability of a photon hitting the receptor. As we mentioned above, the response profile
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of the photoreceptor will likely be a non-linear cumulative distribution function of the

Gaussian probability distribution of photons hitting the receptor. If this is true, then there

should be, more or less, an equal density of probabilities across all values. The empirical

details may vary, but the probability density function will always be determined by these

factors.

5.7 Conclusion

In this chapter, we investigated how to provide a non-pragmatic application of informa-

tion theory to the cognitive system.

I argued that those elements of the system which we should model as iRVs are con-

strained by those elements of the system which downstream systems are causally re-

sponsive to. I aimed to show how, from very early sensory receptors, we can stipulate

increasingly complex iRVs throughout the cognitive system.

I argued that external random variables are constrained by parameters given to them

by the invariance mechanisms of the system. Essentially, the system parameterises its

inputs. Constraining external items in this way allows the application of the random

variable model in such a way that the modelled is relevant to the system itself. In general

terms, this analysis suggests that high-level representational states can be given in terms

of compositional arrangements of low-level states: low-level iRVs plus rules of compo-

sition given by invariance mechanisms define complex iRVs, and allow the modelling of

complex external items as eRVs, given their relation to the low-level iRVs.

The above emphasises that content must be given in terms of the internal connectivity
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of the system. We need to know both what the upstream inputs are which determine an

iRV, and what downstream systems are responsive to in order to model elements of the

system and environment as outcome values.

Finally, I argued that the constraints imposed by carefully applying information the-

ory to the cognitive system, at least given our current level of understanding of psycho-

logical states, confine our search for an implicit theory of content to cognitive neuro-

science.

This chapter, hopefully, sets out how to apply information theory in a systematic

way to the cognitive system and external environment. Random variable specification

provides us with the minimal requirements of the formal model of information theory.

However, maxMI also involves a comparison of mutual information values of multiple

eRVs for a given iRV. In the next chapter, I outline a concern about applying maxMI in

this way - the “reference class problem” - and suggest that focusing on functions can help

us overcome the concern.
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Chapter 6

Functions

6.1 Introduction

In the previous chapter we explored how to stipulate random variables for the cogni-

tive system. Specifically, we looked at the outcomes to be modelled as values and how

to model probabilities across those values, with an eye to doing so constrained by the

requirements of a theory of content. Stipulating random variables is necessary for ap-

plying information theory to the cognitive system. This is crucial for maxMI, according

to which the content of a representation is the item with which the representation has

maximal mutual information.

I argued that values of an eRV should be limited to those outcomes which can be

discriminated by sensory interfaces of the cognitive system. However, this limitation

leaves a wide range of possible eRVs which any given representation may be related to.

Lots of things a system can detect might be relevant to performing a given cognitive
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capacity. For example, some subsystem may be connected to upstream areas capable of

discriminating both eyes and ears, but only one may actually be used for face recognition

(see the toy example in 1.4.1). Indeed, there may be innumerable things which the system

could in principle discriminate, but which play no role whatsoever in enabling some

particular cognitive capacity. So how do we determine the relevant set of eRVs?

This is a version of the reference class problem, explored in section 6.2. This problem

concerns the fact that maximal mutual information is determined by the range of eRVs

which we are comparing against - the reference class of eRVs related to the iRV.

I answer (section 6.3) that the relevant class of eRVs is given by the function of the

subsystem containing the target representation. This limits the eRVs to those which are,

in principle, able to be used by the system to perform a given cognitive capacity.

I consider two leading theories of function, proposed by Larry Wright and Robert

Cummins, respectively (section 6.3.1). Wright functions are etiological and concern the

evolutionary or learning history of the organism, while Cummins functions are non-

etiological, concerning only what the system currently does.

I argue that the relevant notion of function used to delimit the eRV set is Cummins’. I

call these C-functions, after Cummins. The argument consists in arguing that functional

ascriptions in cognitive neuroscience - which is the region of cognitive science we limited

our search to in the previous chapter (section 5.5) - are made using C-functions. This

is because functional ascriptions are made even in cases of extreme pluripotency - the

highly flexible transmission of information across the cognitive system. I then outline in

some detail how C-functions provide the requisite delimitation of the eRV set (section

6.5).
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I then consider some objections to the use of C-functions for a theory of content.

Primarily, I consider Neander’s objection that C-functions do not allow malfunction or

dysfunction (section 6.6.2). I argue that C-functions must allow for dysfunction given the

prevailing research paradigm of using dysfunctional patients to infer facts about well-

functioning individuals. However, I argue that if we type-identify components of a sys-

tem with respect to their phenotypic structure, we can assess what that same component

contributes to the capacities of another system. If a component in the system under inves-

tigation does not enable the same capacity as the same type of component does in another

system, we can conclude that the component under investigation is dysfunctional, even

on Cummins’ account.

I end with a brief discussion of swampman cases (section 6.7). I argue that while

swampman should be a concern for teleosemantic theories aimed at providing proximal

explanations, the use of C-functions avoids the concern in our case.

6.2 The reference class problem

Applying information theory to the cognitive system requires us to address what is

known as the “reference class problem” (for an overview, see [Hájek, 2007]). The ref-

erence class problem is that there are an infinite number of outcomes against which we

could, in theory, compare any given outcome when attempting to determine conditional

probabilities involving that outcome, and which outcomes we compare against will alter

the conditional probability measure.

As Millikan points out, the reference class problem is an issue for informational the-
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ories of content. Her description of the problem is as follows:

It could of course be that given all space-time as the reference class, the boil-

ing ofwater does raise the probability that it is at 212 °F. But boiling is likely to

raise the probability more that water is one or another of various other tem-

peratures, there being no reason to think that one Earth-atmosphere is an es-

pecially common pressure. Similarly, we have no evidence that an elephant-

like head at one end raises the probability of an elephant-like tail at the other

throughout all space-time, and it is quite certain that the direction of the

North Star does not raise the probability of that direction being geographic

north universe-wide. [Millikan, 2013, p136]

The basic point is that when we calculate conditional probabilities, we implicitly limit

the range of comparisons. For our purposes, consider neural representations: the firing

of a neuron is compared against various external states obtaining in order to calculate

conditional probability values. But we cannot possibly compare against everything in the

universe. Even if we could, we would find that the measure we make varies with the

‘reference class’ - everything else we deide to use for the comparison.

So, our question is whether there is a way to provide a reference class which fixes the

comparisons we make while not being arbitrarily or pragmatically chosen.

In the last chapter, we essentially proposed a way to solve this for the values of exter-

nal items related to neural representations: we limited the eRV outcome values to those

which can be detected by sensory receptors within the receptive field of the relevant neu-

ral population. This, indeed, is similar to Millikan’s proposed solution: “I suggest that
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the only relevant or non-arbitrary reference class is the class of (candidate) signs that [...]

the animal must be able to distinguish” [Millikan, 2013, p138]. So far, so good.

However, maxMI features another version of the reference class problem. Not only

must we be able to limit the values within an eRV, we must be able to compare between

eRVs. A given neural representation will typically have a very wide receptive field, es-

pecially so the further downstream the representation is. The wide receptive field means

that the upstream discriminatory capacities of the organism fail to delimit just one eRV.

Many possible eRVs, albeit each with outcome values limited by the discriminatory ca-

pacities of sensory systems, will be candidates for modelling the representation’s content.

If a representation is limited to certain sensory inputs, this does not yet tell you the

arrangement of those inputs, or the frequency of a given input, or whether the repre-

sentation is limited to some subset of the inputs it has, in principle, in its receptive field.

The collections of all the possible outcomes the representation could have in its receptive

field is still potentially infinitely large. These define the space of all possible eRVs which

could model the content of the neural representation.

The theory maxMI tells us that the relevant eRV is that eRV with which the rep-

resentation, modelled as an iRV, has maximal mutual information. However, we need

to compare values of mutual information between the potentially infinite set of eRVs.

Which eRV the iRV has maximal mutual information with will vary depending on the

reference classwe choose and unlesswe choose a reference class, we canmake no sense of

comparing mutual information values with a potentially infinite set. We need to choose

a reference class non-arbitrarily and non-pragmatically in order to find a scientifically

acceptable representational content.

162



In this chapter, I argue that taking the ‘C-function’ of the subsystem to which the

target representation belongs provides the relevant reference class of eRVs for compar-

ing levels of mutual information. In short, we must limit the range of possible eRVs to

those which could, in principle, meet the downstream information requirements for the

fulfilment of a given cognitive function. Specifically, they must be those eRVs which

could be processed by the system, which is served by the function of the system as un-

derstood according to Cummins’ analysis of functions (hence C-function). I summarise

the argument in section 6.5.

6.3 Functions

To characterise the information which initial systems provide to downstream systems,

we can make use of an existing theoretical framework, that of functions. Functions

provide a way of associating some subsystem to some external part of the world by way

of identifying the role that the subsystem plays in enabling some capacity, of a wider

system, which has to do with the world (e.g. recognising faces). We will be particularly

interested in Neander’s sense of information-carrying functions (see chapter two 2.4).

Information-carrying functions tell us which environmental item the system must be

related to such that it is able to provide downstream areas with the information they need

to fulfil some capacity. Without a function to carry information, a system may co-vary,

however strongly, with some stimulus, but that co-variation will never be used by the

system itself. If the system itself does not use the information, we fail to have any ex-

planatorily relevant content. Functions bridge the gap between co-variation and content
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proper. As argued in chapter three 3.3.2, we need functions in order to substantiate the

idea that information is encoded within a system; only if there is something downstream

which decodes the information is that information part of an encoding-decoding codex.

6.3.1 C-functions and W-functions

In the philosophical literature, we typically find two notions of function: an etiologi-

cal notion, primarily defended by Wright - I will call these W-functions; and a non-

etiological notion, primarily defended by Cummins - I will call these C-functions.

An etiological explanation is an explanation of the presence of something in terms

of its history. This typically involves invoking either evolutionary or learning processes.

For Wright, to ascribe a function to some part of a system is to explain the presence of

that part of the system with respect to past adaptive contributions of that part to the

wider system. Wright’s formulation of W-functions is:

The function of X is Z means

(a) X is there because it does Z

(b) Z is a consequence (or result) of X’s being there. [Wright, 1973, p161]

Where (a) expresses the etiological character of function ascription. For example, we

might elaborate onX being there “because” it does Z by way of providing an evolution-

ary explanation in terms of the adaptiveness of Z for a species, and, (b), the fact that

members of the species having feature X enabled them to perform Z . It is adaptive for

pigeons to fly (to escape predators, to scout for food, etc.), and having wings allows pi-

geons to fly. So, the W-function of wings is to enable flight (we might say: wings are
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flight-enablers).

Cummins’ non-etiological account prioritisesWright’s condition (b) and ignores con-

dition (a). As Cummins understands the term function, functional ascription serves to

answer the question: how does the system perform Z? Cummins writes of functional

analysis: “a what-is-it-for question is construed as a question about the contribution ‘it’

[the state or structure in question] makes to the capacities of some containing system”

[Cummins, , p164]. Cummins also characterises this as a “how-does-it-work question”

[Cummins, , p165]. Here is the definition:

x functions as a ϕ in s (or: the function of x in s is to ϕ) relative to an an-

alytical account A of s’s capacity to ψ just in case x is capable of ϕ-ing in

s and A appropriately and adequately accounts for s’s capacity to ψ by, in

part, appealing to the capacity of x to ϕ in s [Cummins, 1975, p762]

For some pigeon, take x as wings, ϕ as flight enabler, ψ as fly, s as pigeon, and A

as an explanation of pigeon flying. The function of wings in pigeons is to enable flight

relative to an explanation of the pigeon’s capacity to fly, just in case wings are capable

of enabling flight in pigeons, and the explanation of pigeon flying appropriately and

adequately accounts for the pigeon’s capacity to fly by, in part, appealing to the capacity

of wings to enable flight in the pigeon.

This definition looks, prima facie, like a dormitive virtue account of flying. However,

a fully developed explanation of how wings act as flight enablers overcomes this issue.

The main point is that the C-function of some part of a wider system is the role that part

plays in realising the capacity of the system as a whole. Cummins notes that, given this

definition:
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If, for some reason, flying ceased to contribute to the capacity of pigeons to

maintain their species, or even undermined that capacity to some extent, we

would still say that a function of the wings in pigeons is to enable them to

fly. [Cummins, 1975, p755]

So, the account is non-etiological: we can ascribe a C-function without regard to the

adaptive evolutionary or learning history behind its presence.

Below, I will argue that the cognitive functions which are attributed to brain regions

in cognitive neuroscience are C-functions. In section 6.6.2 I will also argue that, in virtue

of being capable of dysfunction, C-functions provide the basis for misrepresentation.

6.4 The argument for C-functions

In this section, I argue that C-functions are the relevant type of function for the implicit

theory of content in cognitive neuroscience, given extreme cases of pluripotency.

Peter Godfrey-Smith argues [Godfrey-Smith, 1993] thatW-functions and C-functions

are not in direct conflict - they speak to different explanatory aims. Godfrey-Smith is

therefore a function pluralist; he argues that some component of a system can have both

aW-function and a C-function. Each type of function can be invoked relative to an appro-

priate explanation. As Godfrey-Smith writes: “components of the system [can] have both

Wright functions and Cummins functions, and some of the Cummins functions [can be]

opposed to theWright functions.” [Godfrey-Smith, 1993, p15]. C-functions are invoked in

explanations of how a system operates, while W-functions are invoked in explanations

of why a system functions that way rather than another. We covered this extensively
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in chapter two (section 2.5), in which we made the distinction between proximate and

ultimate explanations. In those terms, Godfrey-Smith argues that C-functions are appro-

priate for proximate explanations, andW-functions for ultimate explanations. In chapter

two I endorsed, and argued for, this claim.

W-functions are predominantly accepted as the relevant functions for teleosemantics.

Typically, the reason given is that W-functions, by contributing to explanations of why

some state or structure is there, provide a way in which we can demarcate dysfunction
1
.

If the state is active in a context in which it was not historically adaptive, the state is

misrepresenting, since the state is dysfunctional. Were the state W-functioning, it would

only be active in contexts in which it was historically adaptive. It is not as clear, the

thought goes, that C-functions can define a content in such a way as to allow for mis-

representation. Some state will be C-functioning even in cases in which the realisation

of the capacity afforded by the C-function is detrimental to the system. I will address

this in section 6.6.2. Before that, I want to present an argument for why we, with all

our constraints, and against the teleosemantic tradition, should take C-functions as the

relevant type of function involved in content determination.

It is not a novel view that function ascriptions in cognitive neuroscience are based

on C-functions: Godfrey-Smith notes that “functional claims in these fields often appear

to make no reference to evolution or selection” and that in these fields “the attractive

account of functions has always been that of Robert Cummins” [Godfrey-Smith, 1993,

1
There is some terminological nuance between malfunction and dysfunction; malfunction often sug-

gests complete breakdown of functioning whereas dysfunction often suggests continuing but impaired

functioning relative to some standard. However, this difference tends to be glossed over. The term ‘mal-

function’ is typically used in the philosophical literature, whereas ‘dysfunction’ is typically used in the

scientific and medical literature. I will use dysfunction throughout with its conventional associations, and

if ‘malfunction’ is meant I will indicate as much in the text.
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p7]. Sincewe are using cognitive neuroscience as our explanatory framework, for reasons

spelled out in section 5.5, we will be following the practice of cognitive neuroscience. So,

Godfrey-Smith claims, we should follow them in using C-functions. Indeed we will.

However, we can motivate Godfrey-Smith’s claim beyond noting, as he does, that

there is often no reference to evolution or selection in neuroscience. As we know, (prob-

lematically) pragmatic factors may influence linguistic choices which do not reflect im-

plicit theoretical commitments.

I will argue that neither informational teleosemanticists nor the cognitive scientists

upon whose work we build can make use of W-functions. Accepting for now that func-

tions play a role in isolating content, there are instances in which content plays an ex-

planatory role, and in which scientists ascribe functions, but no W-function ascriptions

can be made. C-functions, on the other hand, can be ascribed. Indeed, this is likely to be

a widespread phenomenon. The reason for this is the ‘pluripotency’ of the cortex.

The cortex being pluripotent means that areas of the cortex are “capable of assuming

a wide range of cognitive functions” [Bedny, 2017]. This claim means more than that

one component of the cortex can simultaneously support multiple functions (although

this is true): it is also the claim that one component of the cortex can, over time, acquire

new functions. Note that this time span can be very short. Pluripotency is not limited to

phylogeny - flexible acquisition of new functions for a given region can happen within

the lifespan of an individual.

An example of pluripotency is given by Bedny [Bedny, 2017]. Bedny reports that in

blind individuals, areas of the visual system appear to be activated during mathemati-

cal reasoning, spatial reasoning, and language-related processing. For example, Bedny
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reports that “visual cortices of blind but not sighted individuals are active while solving

auditory math equations and activity increases parametrically as the equations become

more difficult” [Bedny, 2017, p641]. Similarly for language-related processing, response

profiles usually seen in areas associated with language processing in sighted individuals

(frontotemporal cortex) are found in the visual cortex of blind individuals. In particular,

in blind individuals but not in sighted individuals (even those in blindfolded controls),

“visual cortices are sensitive to subtle manipulations of grammatical structure. For two

sentences with nearly identical meanings and words, the sentence that is more grammat-

ically complex (i.e., has a syntactic movement dependency) produces larger responses”

[Bedny, 2017, p641].

It should be immediately apparent that functional ascriptions in such cases cannot

be made on the basis of what is adaptive in evolutionary terms. The frontotemporal cor-

tex in blind individuals supports linguistic and mathematical functions, suggesting that

areas can be flexibly recruited for numerous functions depending on occurent require-

ments. Generally, the cortex can support functions acquired during ontogeny, meaning

that an evolutionary explanation is simply false. Nonetheless, functions are ascribed in

these cases, despite no evolutionary selection. This immediately rules out W-function

ascription based on evolutionary history. However, functional ascription in these cases

is entirely consistent with C-function ascription.

However, W-functions are not limited to evolutionary history. Wright’s definition

stipulates that W-functions can be acquired through learning history. If some function

was produced by learning to enable the performance of y, and y is beneficial for the

system as a whole, the W-function of the component is to do y.
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It is not always clear which notion of learning is supposed to be relevant for the at-

tribution of W-functions. However, I argue that we should use the model of learning

employed by Shea - a form of reinforcement learning. This is because Shea uses it pre-

cisely as an example of how he considers learning in relation to W-function ascription,

and Shea’s account is arguably the most well-elaborated and well-motivated account of

W-function ascription in the contemporary literature.

For Shea, a W-function can be ascribed to a process within a system if that process

has been “stabilized” [Shea, 2018, p56]. For a process to be stabilised is for it to be re-

produced in virtue of the fact that the process led to a beneficial outcome in the past.

Shea pinpoints learning with feedback as one relatively low-level mechanism respon-

sible for stabilisation [Shea, 2018, p59]. The most basic variety of learning involved in

learning with feedback is reinforcement learning. This learning can be achieved with

either positive or negative reinforcement [Shea, 2018, p62]. Some behaviour which pro-

duces a reward, where failure to repeat that behaviour produces a punishment, increases

the probability that the behaviour will be repeated. This is the most basic sense of learn-

ing relevant for the ascription of W-functions (specifically, as functions to produce that

behaviour).

The type of pluripotency described in blind individuals by Bedny could be considered

the result of reinforcement learning. Bedny describes the mechanism responsible for this

form of pluripotency as follows: “in the sighted, MT [a region of the visual system] re-

ceives low-level sensory input from primary visual cortices, whereas by hypothesis MT

of blind individuals receives highly processed motion-related information from parietal

cortices” [Bedny, 2017, p643]. It is this spatial information which is thought to enable
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to recruitment of the visual system for mathematical reasoning and language process-

ing. Potentially, feedback in the form of successful navigation, for example, may have

reinforced the connection of spatial information to MT.

However, this is not a given. Bedny suggests a model according to which, during

development, cortical areas are constantly fought over for information processing from

numerous inputs. Bedny explains the idea with the following metaphor: functional spe-

cialisation is “a self-organizing process, where different inputs of information compete

for cortical real estate” [Bedny, 2017, p645]. In this highly competitive environment, it is

simply deprivation of one input which leads to the take-over of the region by another in-

put. Nothing is reinforced: an obstacle is removed and an alternative input intrudes. So,

in such cases, MT has the function to process spatial information, but has not acquired

this function through learning in Shea’s sense.

Another highly influential and much-cited model of pluripotency, due to M-Marsel

Mesulam [Mesulam, 1990], suggests that cortical functions can change rapidly, with in-

formation channels directed to multiple higher regions on the fly. According to Mesulam,

each low-level region, such as the regions we have been considering in the visual system,

can be recruited quickly for myriad and veriegated downstream applications. Numer-

ous feedback and feedforward connections found between regions support this process.

Mesulam suggests that “retrieval can be initiated from any point” [Mesulam, 1990, p607]

of the processing hierarchy we have been considering: connections to the frontal lobe

throughout the system allow for contributions to be made to downstream areas at “all

levels of complex processing” [Mesulam, 1990, p608]. Mesulam suggests that this pro-

cess can be “spontaneous” [Mesulam, 1990, p597], requiring no reinforcement. To be
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fully transparent, Mesulam says “spontaneous learning”: however, whatever model of

learning Mesulam has in mind, it is not one which fits with W-functions: there has been

no previous instance of the connection with a specifiable benefit in virtue of which the

connection is strengthened (it may never be repeated, in fact). The connection is made

rapidly to serve an occurrent need, and there may be no stabilisation at all - the recruit-

ment of the lower area may never be repeated. We cannot ascribe a W-function, but we

can ascribe changing and constantly updating C-functions.
2

Although one may suggest that the connection is made in anticipation of a future

reward, Shea specifically rules out future-directed benefit in W-function learning. He

argues that this over-generates, since “it is a very open-ended matter whether an output

would contribute to the persistence of an organism, or would be stabilized by feedback-

based learning, or would promote reproductive fitness” [Shea, 2018, p63]. Too many

things could have some future benefit. On such a view, W-functions would be ascribed to

near enough anything. Additionally, Shea notes that future-oriented W-function ascrip-

tion undermines the role that W-functions have in causal explanations, since something

that has not yet happened cannot causally explain why something has happened now

[Shea, 2018, p63].

I maintain that the things components occurently contribute to the system as a whole,

its C-functions, are what matters when it comes to cognitive neuroscience. If one were

to plug sensory inputs into a part of the cortex, and that part of the cortex afforded the

same capacities as the part of the cortex that the input was previously plugged into,

cognitive neuroscientists would ascribe to that new part of the cortex the corresponding

2
One curious result of this is that, very possibly, the content of both the higher- and lower-level repre-

sentations may be in near-constant flux, depending on the relative levels of stability of the C-functions.
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C-functions of the previous part of the cortex. In fact, this is very near to actual empirical

cases. For example, in von Melchner et al. [Von Melchner et al., 2000], axons from the

ganglion cells of ferret eyes were induced to connect to the ferret’s auditory system.

The ferrets were able to perform visual tasks requiring visual responsivity, with activity

registered in the auditory system. von Melchner et al. therefore ascribe visual functions

to the ferret’s auditory system. This case is complicated by the fact that the connections

had to be made during ontogeny for practical reasons: nonetheless, the specific learning

history is entirely irrelevant to the study: what matters is what is connected to what.

This latter point is made emphatically by Hagoort and Indefrey, who write that“the

basic principle of brain organization for higher cognitive functions proposes that these

functions are based on the interaction between numerous neuronal circuits and brain re-

gions that support the various contributing functional components” [Hagoort and Indefrey, 2014,

p359]. According to Hagoort and Indefrey, there is simply no need to consider what hap-

pened in the past in order to ascribe functions. What matters is what cortical regions do

now.

To conclude the argument: W-functions cannot be the relevant functions for our

brand of informational teleosemantics. A systematic application of information theory

requires that we attend to the functions of cortical brain regions to specify external-

side random variables. The functions of cortical brain regions which have explanatory

purchase are C-functions: W-functions have no explanatory purchase, since the down-

stream capacities thought to be enabled by functions can be enabled when there are no

W-function ascriptions and only C-function ascriptions.
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6.5 C-functions and initial eRVs

Given that C-functions are the relevant type of function for characterising the role a

cortical region has in enabling a cognitive capacity, in this section I spell out exactly how

C-function ascriptions delineate the range of relevant eRVs for comparison of mutual

information values between candidate contents.

C-function ascriptions are made on the basis of how a component features in expla-

nations of downstream capacities. One may explain a downstream capacity in a number

of ways, at varying levels of grain, with various ways of describing the environmental

entity which contributes to the capacity. This means that it is indeterminate precisely

which phenomenon is picked out by such explanations. As in life more generally, there

are always a number of ways to achieve the same result.

There are many aspects of the environment which might be sampled by the system

to enable a capacity. To take a very simplified example, there are levels of visual acuity

which are all consistent with enabling the capacity of picking up a mug. I can pick up a

mug with my glasses on or off. Given a high level of visual acuity perhaps I am able to

represent ⟨mug handle⟩. With a low level of visual acuity I may only be able to represent

⟨vaguely handle-like-thing⟩. Depending on which representation I recruit, my capacity

is better or worse. However, if the mug is close enough, I can pick it up using either

representation. In this example, two different contents have enabled the same cognitive

capacity.

Nonetheless, explanations of my capacity to lift mugs constrain the range of external

entities which are relevant. This provides us with a way of limiting the range of possible

external entities which can serve as content. A range of possible external random vari-

174



ables is established, with each random variable modelling an entity which is a candidate

for the content of a target neural structure. This range of eRVs models all those entities

which are potentially explanatorily relevant to the system itself, where indeterminacy

results from the fact that multiple items could, theoretically, support the same capacity.

Of course, we then need some further constraint to isolate the itemwhich is actually used

by the system. This is precisely what the relation of maximal mutual information offers

- the content of the representation - the item actually used to perform a given cognitive

capacity - is that item modelled by the eRV which has maximal mutual information with

the iRV used to model the representation.

The parameters of the eRV will be determined, as we saw in the previous chapter, by

the parameters of the sensory systemswhich have the information-carrying functions we

are ascribing and the probable distribution of outcomes in the environment. Functions

allow us to limit the potentially infinite range of possible eRVs to just those potentially

explanatorily relevant for the capacity under investigation - those which are content-

candidates.

C-functions - as opposed to W-functions - serve this role particularly well. They re-

quire us to isolate usable information (see section 7.5.3). I claim that, in order for an

account which uses representation to “appropriately and adequately account” for a ca-

pacity (as described in the definition of C-function - section 6.3.1), where this involves the

fact that the representation is capable of doing something (ϕ-ing) within the system, the

representation ought to have some identifiable means of doing that thing. There needs

to be some way in which the representation interacts with the downstream structures

which enact the capacity.
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With the focus firmly on what the component can occurrently do within the system,

C-functions require us to find which information values are actually processed by the

system itself. This is crucial for maxMI, since it requires that content contain informa-

tion available to the system itself to be explanatorily relevant. The next chapter is an

investigation of maxMI, and how it secures availability, relying heavily on C-functions

to do so.

6.6 Objections to C-functions

In this section I consider why C-functions have been thought inadequate for an account

of content. Two concerns are particularly important for us to address. The first is that

C-functions a problematically pragmatic - they are based on the arbitrary aims and inter-

ests of researchers. Given our generally naturalistic and realist project, this would be a

problem, as it would delimit a range of eRVs based on problematically pragmatic features.

Thus, our content ascription would be problematically pragmatic.

Second, C-functions are thought to rule out the possibility of dysfunction. This is

a problem due to the fact that we are attempting to find an implicit theory of content

in cognitive neuroscience, while cognitive neuroscience - including those regions which

meet the criteria set out in chapter three (section 3.5) - implicitly invokes dysfunction.

A common experimental paradigm involves generalising from dysfunction in lesion pa-

tients to functioning in healthy individuals.

So, we need to answer each criticism to be sure that C-functions can serve the role

we have argued they have. I take each in turn.
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6.6.1 Pragmatism revisited

Neander argues that, since the definition of C-function directly appeals to “a researcher’s

explanatory aims” [Neander, 2017b, p54], C-function ascription is sensitive to a “prag-

matic determination of the boundaries of the system” [Neander, 2017b, p55]. How we

break up the system into parts is thought to be pragmatically determined. This would

contravene the no-pragmatism requirement we are working with. The basic problem is

that the content of a given representation would change depending on what we, as ob-

servers, choose to use it to explain. This would be a change in content which does not

result in a change for the system itself. This is the main concern facing us with respect

to pragmatism.

Thankfully, we can appeal to the distinction between problematic and non-problematic

pragmatism introduced in the previous chapter (section 5.6). Non-problematic pragma-

tism amounts to developing a hypothesis about which elements of the system are relevant

to the capacity under investigation. So, if our interest is in explaining flight, we will se-

lect wings for analysis, under the hypothesis that they are relevant for flight. In this case,

selecting wings as our unit of analysis is not pragmatic except in the sense that isolat-

ing any phenomenon for the purposes of any explanation is pragmatic. Selection is not

guided arbitrarily, but by a hypothesis about what is relevant for a given capacity.

However, a further worry is that there is a choice to bemade betweenwhat we happen

to be interested in explaining - which capacity we choose to study. If we want to explain

the contribution of wings to flying, we would have to ascribe a different C-function to

wings from the C-function we would have to ascribe if we want to explain the contribu-

tion of wings to egg warming, for example.
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Ori Hacohen makes this very point. Hacohen supports the view, outlined in sec-

tion 6.4, that C-functions are the relevant functions for cognitive neuroscience, but bites

the bullet; representations as used in neuroscientific explanations are constitutively de-

pendent on the mental states of the scientists performing those experiments. Hacohen

writes:

CFA [Cummins Functions Approach] violates the naturalistic constraint by

defining representations relative to a given explanation and with respect to

scientists’ explanatory aims. [Hacohen, 2022, p715]

What this means, specifically, is spelled out in a quote from Neander which Hacohen

endorses:

There are explanatory aims when anyone tries to explain complex or, for

that matter, simple capacities. And which causal contributions ought to be

mentioned in a given explanatory context will depend on one’s aims. But,

on Cummins’ account, if there are no relevant explanatory aims, then there

are no functions. Explanatory aims are constitutive for Cummins functions.

[Neander, 2017a, p710]

Neander is suggesting that there are no C-functions without actual, existing explana-

tions. And if there are no C-functions without explanations, and content is determined

in part by C-functions, there is no content without an explanation. But if explanations

are driven by pragmatic conerns (such as what we are merely interested in), we have

a pragmatic account of functions, plunging us back into Egan’s concern that content is
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determined pragmatically. Content would therefore fail to be part of the theory proper

of cognitive science, contrary to what we have been trying to establish.

So, how should we respond to Hacohen and Neander’s charge? The obvious route is

to point out that explanations, insofar as they are accurate, pick out genuine phenomena

which exist independently of those explanations. When Cummins suggests that “the

function of x in s is to ϕ relative to an analytical account A” we need not read this as

suggesting that A must actually have been committed to paper, or have been dreamt

up by any particular scientist. The analytical account in question is an explanation of a

capacity. If x does ϕ in s this is so independently of whether we choose to explain it: the

relevance of citing the explanation lies in pointing out that x actually ‘does something’

in s, and that the explanation A cites this phenomenon.

This is why Cummins notes that A must “appropriately and adequately account” for

a capacity ψ of s by citing x’s capacity to ϕ. While a full story about what makes an

‘appropriate’ or ‘adequate’ explanation is elusive - and we lack the space to consider it

- what should be clear is that Cummins’ qualification should be understood as requir-

ing that the explanation has the same force as any other scientific explanation, and such

explanations are not intended to rely on the very explanation being given for the expla-

nation of the phenomenon they are trying to explain. Or, if they are, non-naturalism is

rampant in science and not a unique concern for content theorists.

Hacohen is alert to this line of response. However, while he agrees that the explana-

tions in question do specify actual phenomena, he argues that the phenomena themselves

are not specifiable in terms of their representational contributions to higher capacities ex-

cept in relation to an explanation. As he puts it:

179



In other words, the neuroscientific phenomenon, while objectively real, isn’t

objectively given. Nothing objectively singles out this particular phenomenon

from others, at least not to the extent that is necessary to define a determinate

neural representation. [Hacohen, 2022, p711]

The idea is that, depending on which capacity we choose to explain, the very same

component will have different C-functions, and so different content attributions. Haco-

hen elaborates on the point by way of raising two indeterminacy challenges. The first

involves suggesting that the same structure can contribute to two or more very different

capacities. This would mean that the very same system could have multiple C-functions.

This certainly is a problem if we are committed to the idea that a component can

only have one C-function. I see no reason to assume this principle. Provided we ascribe

C-functions non-problematically pragmatically, one component can surely have multiple

real C-functions. It is in principle possible that we could pursue the explanatory question:

how do pigeons manage to keep eggs in the nest warm? It is in principle possible that

lowering the wings in the nest contributes to warming the eggs. So pigeon wings might

have two C-functions: to enable flight, and to keep eggs warm. Which one we choose to

focus on will depend on our explanatory aims, but which C-function the wings actually

have is just dependent on their role in enabling either capacity, independently of whether

we notice the function or not.

Hacohen’s further point is that if we attribute C-functions “relative to a specific phe-

nomenon, we define it in amanner that is dependent on our explanatory aims” [Hacohen, 2022,

p712], we render content (not just functional ascription) dependent on our explanatory

aims. However, we can respond in the same way as above: we allow that a single repre-
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sentation can havemultiple contents, where those contents are real aspects of the system,

and not dependent on our interests - we only uncover the contents when we investigate

the role the representation plays in enabling multiple capacities.

Take Hacohen’s helpful example of the orientation-selective cell: “the same neurons

in V1 that enable orientation detection also enable contrast discrimination, and are si-

multaneously sensitive to both orientation and contrast” [Hacohen, 2022, p711n]. If this

is true, then it is possible that these cells have at least two contents, something like ⟨line⟩

(with certain orientations, as we have discussed previously), and ⟨light contrast⟩3. But,

pace Hacohen, these are not contextually defined by what we choose to explain: they are

both contents which can be accessed by the system itself 4. The relevant context for fixing

content is not our explanatory aim, but which content is being accessed by which down-

stream systems. Probably, these states are indeterminate with respect to each content,

with different downstream systems consuming different contents from the same state at

the same time.

Scientists may talk about ‘the’ content of the state when we advance a theory which

focuses on just one downstream capacity. This is loose talk - we have no reason to at-

tribute it to part of the theory proper. What they presumably mean is something like

“the content which is relevant to our current explanatory aims”. This does not mean

that the state fails, in general, to specify any other content. This is a standard case of

highlighting just one aspect of a complex system for the purposes of explanation, while

abstracting other aspects. This is a perfectly standard scientific practice, not unique to

3
Of course, if we were seriously positing contents we would be doing empirical work and using oper-

ationalised terminology. These are just toy examples.

4
See chapter seven section 7.5 for more on availability of information.
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cognitive neuroscience. It has no bearing on the reality of either the attended to nor the

neglected aspects of the system.

Hacohen’s second charge of indeterminacy is that, even relative to one capacity, the

content is indeterminate between the various aspects along the causal chain. Hacohen

suggests that we invoke explanations to determine which part of the causal chain is rel-

evant, since which aspect of the causal chain we are interested in is picked out by the

explanation. However, Hacohen argues, this renders content relative to our explanatory

aims. The content the state has is fixed by whatever part of the causal chain we take to

be relevant in our explanation.

There are two responses to be made: first, the content may genuinely be indetermi-

nate between aspects of the causal chain if the explanation of the cognitive capacity in

question could be made given only proximal regions. However, the explanations we are

looking at in this thesis, do call on just the distal part of the explanatory chain since, by

design, they involve external items as part of the explanation (e.g. face recognition). But,

I argue, if that explanation is accurate, the system itself will actually be using informa-

tion about just one part of that chain. Take as an intuitive example the following: we

understand the sense in which there are limitations on what content from lower levels

is available to higher levels
5
just by reflection on our own higher-level representations;

I cannot now call to mind the precise angles of the edges of my keyboard in front of me

relative to my retina. However, some part of the causal chain which gets that information

to me ‘has’ that information. I, whatever I am, cannot access it - not directly, at least.

More formally, citing some content in an explanation of a capacity must commit one

5
Provided that the hypothesis that higher-level representations depend on lower-level representations

for their content
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to the fact that the information about more proximal states is not, as matter of fact (not

as a matter of interest), used by the system. We must be committed to the fact that infor-

mation specifying a distal element is used. According to maxMI, the distal element used

by the system is within the range of eRVs delimited by the C-function of the subsystem

containing the representation.

Spurious functions

Another worry is that we may frivolously ascribe spurious C-functions. For example,

based on pigeons’ capacity to make a whooshing sound as they fly, we may ascribe the C-

function of ‘making a whooshing sound’ to wings. We can make two possible responses.

First, we allow such C-functions (alongside the other C-functions), and chalk it up to

various components of the universe having some potential to do something. Such C-

functions are currently entirely uninteresting, but who knows, perhaps some change

in the pigeon’s environment in the future will mean that making a whooshing sound

becomes very important - perhaps some new predator is scared of that whooshing sound

and the C-function comes in handy.

Alternatively, the response I favour, we could invoke Cummins’ notion of the in-

order-to relation: C-functions have their place in a hierarchy of embedded capacities.

Everything we are typically interested in has some terminus in serving some primitive

requirement of the organism: each capacity serves wants, needs (hopes, dreams). If we

can find a theoretically principled way to find a terminus for the in-order-to-relation, we

might be able to limit the ascription of C-functions to non-frivolous capacities on the

basis that things like whooshing have no place in the hierarchy of embedded capacities.
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On this account, whooshing could become a C-function of wings if it suddenly warded

off predators, but only once it actually did so.

Invoking the in-order-to-relation has the benefit that we isolate just those C-functions

which make a difference for the system itself. If whooshing serves no need of the pigeon,

then if wings were to cease to make a whooshing sound, it would make no difference for

the pigeon. However, since flying serves several needs of the pigeon, it makes a big differ-

ence if wings cease to be flight-enablers. The C-function of enabling flight is a function

the possession or absence of which makes a difference for the organism itself, while the

C-function of whooshing is not. Given that we are looking for content ascriptions which

make a difference to the system itself, we are motivated to limit C-function attributions

to those which serve some need of the possessor of the cognitive system.

However, I do not see any particular difficulty in accommodating either tactic, on

the assumption that components can have multiple C-functions, even those which are

explanatory for frivolous capacities. The point would be that only some C-functions are

involved in content determination within the system, so no unacceptable proliferation of

content would result.

6.6.2 Is there C-dysfunction?

In section 6.4, I posed the question whether components with C-functions can be dys-

functional or malfunction. Malfunction is understood to be a complete failure to function

and dysfunction is understood to be partial, impaired
6
functioning. In this section I will

6
For C-functions, we should understand ‘impaired’ relative to enabling the capacity in the context of

which we attribute the function. In principle, an impaired C-function may enable a different capacity and

may even generally ‘improve’ the system as a whole with respect to some other set of capacities. A bad

flight-enabler may make a fantastic egg warmer.
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answer in the affirmative.

Why are dysfunction and malfunction important? One answer, typically given in

the literature, is that dysfunction grounds error. We know all too well that we are often

wrong. We have many false beliefs which generate false expectations, cause us to utter

false sentences, and generally make us look foolish. We would like to have a naturalistic

account of this ability to be wrong. Being wrong is not a given: it is an achievement.

Rocks are never wrong. Arguably, basic organisms and plants are never wrong. Some

plants might be said to be wrong: a fly-catcher might be wrong when it catches a falling

leaf rather than a fly, but without a theory of dysfunction we cannot say for certain

whether it is wrong or just doing something we know not to be in its best interests.

Further, since the gift of inaccuracy is often taken to be the mark of a non-naturalistic

component of representation, wewill only complete the naturalistic project once we have

given it a proper account. Malfunction and dysfunction are often thought to fulfill this

role; they are ways, as Dretske puts it, for nature to be wrong.

However, on the face of it, if some component does not allow for some capacity to be

realised, that component simply has no relevant C-function. However, dysfunction and

malfunction require that the component have the relevant C-function, but fail to perform

its role in realising the capacity (or do so in an impaired way). As an intuitive example:

it makes very little sense to speak about my eyeball malfunctioning because it does not

allow me to fly. It is true that my eyeball does not do that, but my eyeball never had the

function to do that in the first place. So, it looks like C-function cannot ground error

because they cannot be dysfunctional.

Whatever our intuitions, it is important to know whether C-functions can dysfunc-
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tion, since error can play a vital role in scientific explanations. A widely used paradigm

in neuroscience involves taking a patient with some cognitive dysfunction and making

inferences about non-dysfunctional individuals. For example, Almeida et al.

[Almeida et al., 2020] investigate the nature of face-space representations by conducting

a study involving a patient with Hemi-prosopometamorphopsia (hemi-PMO), a condition

in which “brain-damaged patients perceive one side of the face as distorted, with features

that appear out of proportion, drooping, or swollen” [Almeida et al., 2020, p4071].

Almeida et al. use hemi-PMO to discover whether the “reference frame” of the face-

space in healthy patients is “retino-centered”, “stimulus-centered” or “face-centered”.

Retino-centered distortions appear on the face depending on where on the retina the

face is projected.

Stimulus-centered distortions always appear on the same side of the stimulus, re-

gardless of where on the retina it is projected and regardless of the orientation of the

stimulus (e.g. if the stimulus is upside-down, the distortion appears on the same side of

the stimulus relative to the viewer).

Face-centered distortions, however, always appear on the same side of the stimulus

except if the stimulus is oriented in a different direction, in which case the distortion

moves with the stimulus (e.g. an upside-down face originally distorted on the left relative

to the viewer is now distorted on the right relative to the viewer).

Almeida et al. found that hemi-PMO appears to be face-centered; the distortions track

the orientation of the face.

Since it is hypothesised that “Hemi-PMO results from disruptions to representations

coded within a particular reference frame” [Almeida et al., 2020, p4071], Almeida et al.
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conclude that “the human visual system contains procedures that encode faces in a face-

centered frame of reference” [Almeida et al., 2020, p4073]. This means that “representa-

tions of different in-depth rotations are aligned to a common template” [Almeida et al., 2020,

p4073] in those suffering from hemi-PMO and those not alike.

The important point for current purposes is that hemi-PMO is understood as a dis-

ruption of ordinary functioning. Almeida et al. hypothesise that hemi-PMO results from

“a disruption to information transmission from one hemisphere to the other”

[Almeida et al., 2020, p4074], suggesting that the information transmission in hemi-PMO

patients does not function as it does in healthy individuals. The explanatory value of dys-

function in this case rests in the fact thatwe canmake inferences about non-dysfunctional

information transmission. Given that hemi-PMO results from dysfunction, we are in a

position to know what proper functioning involves, since there is a function that the

information-transmission serves - it is simply not serving its function in patients with

hemi-PMO. If hemi-PMO did not involve dysfunction, it would not be informative with

respect to non-hemi-PMO cases.

Thankfully, despite appearances, C-function attribution can bemade sensibly in cases

in which the component with the C-function is currently failing to realise the capacity in

virtue ofwhichwe attribute the C-function. Godfrey-Smith points out [Godfrey-Smith, 1993,

p7] that this requires the invocation of a type/token distinction. C-functions pick out the

role that the type of component has within the type of system we have before us. This

token component in this token system is not fulfilling its C-function, but in virtue of hav-

ing that C-function in other systems of the same type, it still has the C-function. So, it is

dysfunctional or malfunctioning.
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As Ori Hacohen highlights, this has raised the worry that “Cummins functions will

run into trouble once we try to describe how the function of a type is determined”

[Hacohen, 2022, p15]. For instance, as an example of how we attribute C-functions to a

type rather than a token, Justin Garson [Garson, 2019] suggests that the statistical preva-

lence of the causal role of a component within other systems provides the relevant type.

If, in a statistically significant number of cases, hearts pump blood, then hearts have the

C-function of pumping blood. A token heart failing to pump blood still has the C-function

of pumping blood, because most other hearts pump blood.

Garson goes on to dismiss the idea, since “if everyone’s heart seized up at once, no-

body’s heart would have a function anymore, so nobody’s heart would be dysfunctional”

[Garson, 2019, p7].

Hacohen replies that Garson misses the fact that C-functions rely on the explanatory

role that components play in virtue ofwhich they have functions attributed. He notes that

such explanations are “not necessarily dependent on the percentage of tokens that exhibit

this effect” [Hacohen, 2022, p15]. Hacohen’s suggestion is that we individuate types with

respect to the explanatory role that this type of component plays in other systems to enable

the same capacity. For example, information transmission between hemispheres, enabled

by “the fibers that traverse the splenium” [Almeida et al., 2020, p4074], in those without

hemi-PMO, enable mapping to a face-centered frame of reference, as they do in patients

with hemi-PMO - albeit in a dysfunctional way.

However, Garson’s counterexample involves no hearts pumping blood. Hacohen

should require that at least one heart features in an explanation of pumping blood if

we are typing hearts with respect to the role the heart plays in that explanation; if the
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heart plays no role in any explanation of blood-pumping, there simply is no explanation

involving that type of component for any other system, so we fail to identify the relevant

type.

Instead, I argue that we should invoke a counterfactual.
7
We should maintain that,

given an analysis of a system, the component would play the relevant role were it so

embedded in a system which did have the relevant capacity. Imagine being an alien

scientist visiting Earth following a global heart seizure. The alien scientist would be able

to work out the C-function of the heart by running various analyses: electrocuting the

heart does cause blood to pump around the system, so the heart sufficiently supplied

with energy would pump blood around the system. So, this must be the C-function of the

heart.

This is not an idle thought experiment. It is how neurophysiologists actually work out

the C-function of a component. In order to discover the C-function of ganglion cells, sci-

entists construct experimental conditions which involve “subjecting the retina to known

intensities of light,” following which “an electrical response can be elicited and recorded”

[Mead and Tomarev, 2016, p10]. In fact, most methods involve this basic try-it-and-see

approach (see [Mead and Tomarev, 2016] for a review); if the organismwere in such-and-

such a situation, what would this component do?

This method involves identifying a component independently of its function. How-

ever, Bence Nanay argues that there is circularity inherent in identifying a type of com-

ponent for non-etiological theories of function [Nanay, 2014, p803]. We cannot type-

identify the component in terms of its function. For example, if we type-identify hearts

7
Neander makes this suggestion on behalf of the C-function advocate [Neander, 2017a, p11].
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as blood-pumpers and this thing before us is not currently pumping blood, then it is not

a heart, since - so the argument goes - it does not have the non-etiological function of

pumping blood, since it cannot do it. However, if we say that it has the function but is

not currently performing it, then we need some independent account of what makes this

the same type of thing.

Here we can appeal to neurophysiological practice, which involves finding the phe-

notypic structure of a component and type-identifying it with respect to that structure.

The same physical structure, resulting from the genetic code, across components, groups

those components into the same type. For example, type-identifying ganglion cells in-

volves a battery of tests which assess sameness of phenotypic structure. As Mead and

Tomarev write, they are looking for “good phenotypic markers” which “leave no doubt

to the identity of the cell in question” [Mead and Tomarev, 2016, p2]. The tests involved

are highly technical, but essentially involve finding which compounds stain the target

cells, and how much those compounds stain those cells. These factors tell researchers

whether the cell is a ganglion cell based on the known absorption profile of the ganglion

cell (due to its phenotypic structure). So, neurophysiologists can independently assess

which type of cell they are dealing with, then find how that cell responds under various

conditions in order to attribute a C-function to that cell type.

We can overcome the circularity Nanay points to if we individuate cells with respect

to their phenotypic structure, and attribute a C-function on the basis of what that cell

does when embedded in a system of a given type, in response to various experimental

conditions. The system itself is to be identified, as Hacohen suggests, in virtue of meeting

the same explanatory criteria as some target system, such as a system performing the
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same cognitive capacity with the same hardware.

6.6.3 Section summary

To summarise, we can re-interpret Cummins’ original definition:

x functions as a ϕ in s (or: the function of x in s is to ϕ) relative to an an-

alytical account A of s’s capacity to ψ, just in case x’s are capable of ϕ-ing

in s and A appropriately and adequately accounts for s’s capacity to ψ by, in

part, appealing to the capacity of x to ϕ in s

Such that in “an analytical accountA of s’s capacity to ψ” s refers to relevant systems,

either the specific system under investigation, or those in which something sharing a

phenotype with x contributes to the type of capacity which is ϕ-ing. The explanatory

value of this amendment is that it allows inferences to be made from dysfunctional cases

to non-dysfunctional cases.

6.7 Swamp-people evaded

A benefit of using C-functions is that our brand of informational teleosemantics com-

pletely evades classic Swamp-person counterexamples. If a being, atomically identical

in every way to an existing human, were created immediately by a flash of lightning in

a swamp, it would have all the same C-functions as the existing human; all of its neu-

ral circuitry would be the same and its components would share the same phenotypic

structure
8
. As Nanay writes:

8
If swamp-people have no genes, they are not atomically identical. That is, unless we identify genes

according to their history, which would not be in the spirit of a non-etiological account to begin with. I
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the swampman problem (if it is indeed a problem) is a direct consequence of

the etiological account of function that teleosemantics tends to use. If we can

use a different account of function in teleosemantics, this problem (again, if

it is indeed a problem) would just go away [Nanay, 2014, p801]

Nanay hedges, but swampman is a problem for any account which attempts to an-

swer how-questions. If we want to explain a cognitive capacity in terms of content, and

swampman has the very same cognitive capacity (e.g. swampman can recognise faces),

then we need to ascribe content to swampman. Otherwise, content does not in fact do

the explanatory work we thought it did: we could explain the same cognitive capacity,

in physically identical systems, without it. Luckily, we evade the problem completely by

using C-functions.

I also maintain that explanations aimed at answering why-questions do not face the

swampman counter-example. As Millikan writes [Millikan, 2017], if we want to explain

why swampman shows some behaviour, there is just no good answer. Swampman is a bit

of a fluke himself, and does things for no historical reason. Swampman is only a problem

for accounts of content aiming to provide answers to how-questions. But, I argue, those

accounts should use C-functions, hence evade the problem.

6.8 Conclusion

Functions are required to narrow the range of possible eRVs in order to make sense of

comparisons of amounts of mutual information. They also provide the basis for misrep-

understand, in this context, a gene as a physical structure within the DNA of the organism.
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resentation.

In the previous chapter (section 5.5), we argued that we need to follow cognitive

neuroscience in our search for an implicit theory of content. In this chapter, we argued

that cognitive neuroscience uses C-functions; function ascriptions in cases of pluripo-

tency are not committed to a model of learning which is consistent with W-function

ascription. So, cognitive neruoscientists ascribe functions in cases in which W-function

ascriptions cannot be made. Instead, they make functional ascriptions which are not only

consistent with C-functions, but which mirror the ascription on the basis of contribution

to downstream capacities. We therefore took C-functions as the relevant function for

content-determination.

We then responded to the worry that C-function ascriptions render content consti-

tutively dependent on the explanatory aims of scientists. We argued that scientific ex-

planations pick out phenomena, and it is those phenomena which are picked out as C-

functions, independently of whether any explanation is in the head of any scientist. We

discussed Hacohen’s response that this leads to indeterminacy.

In section 6.6.2, we considered whether components with C-functions can dysfunc-

tion or malfunction. We introduced Godfrey-Smith’s point that C-function ascriptions

are made using a type-token distinction. We then discussed the worry that there is no

principled way of determining which other systems, or which counterfactual situations,

are relevant to determining the type of the function. We followed Hacohen in arguing

that the relevant systems are those in which the same component contributes to an ex-

planation of the same capacity. We noted that there is a worry about how to type-identify

the component itself. We saw that neurophysiological practice involves identifying com-
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ponents in terms of their phenotypic structure.

In section 6.5, I argued that C-functions allow the delineation of a range of eRVswhich

are candidates for content. C-functions result in some indeterminacy: a host of possible

items could in principle provide an explanation for some cognitive capacity. However,

they are limited to those items which actually interact with the system itself. So, they

isolate a range of possible eRVs which are potentially explanatorily relevant for content,

allowing a meaningful comparison of mutual information values. We thereby avoid the

reference class problem.

In the next chapter, armed with the constraints we have picked up along the way,

I finally introduce maxMI and the main argument in its favour: it is presupposed by

contemporary neuroscientific methodology (and is thought to be aimed at by classical

neuroscientific practice).
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Chapter 7

maxMI

7.1 Introduction

In previous chapters, we sought to discover the constraints on finding and providing the

implicit theory of content in cognitive science.

In chapter three, we introduced three guiding principles to help narrow the search

for an implicit theory of content to those regions of cognitive science in which content

features in the theory proper (section 3.5). Broadly, these principles aim to discover stud-

ies in which content attributions pick out items changes in which result in changes for

the system itself.

Then, in chapter four, we saw that contemporary studies, consistent with the three

principles, use Shannon’s information theory as their background theoretical framework

(e.g. section 4.4). We saw how information theory provides a powerful tool for isolat-

ing the precise elements of the environment which are used by the system to perform
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cognitive tasks.

We then paused, in chapter five, to consider how to carefully and systematically ap-

ply information theory to the cognitive system in light of Shannon’s warning. Shannon

points out that information theory, as a branch of mathematics, places certain constraints

on the system to be modelled (section 5.2). Specifically, we saw that applying the random

variable model requires isolating specifiable outcomes and calculating probabilities over

those outcomes (summing to unity) (section 5.3). I argued that internal random variables,

iRVs, can be specified by taking those outputs of a cell - in terms of its rate of firing, for

example - which downstream regions are causally sensitive to (section 5.3.1). I argued

that external random variables, eRVs, can be specified by taking those outputs of external

items which the system’s sensory interfaces are causally sensitive to (section 5.4).

However, I then argued that causal sensitivity to specific outcomes does not by itself

isolate the relevant range of eRVs which model candidate contents of the target repre-

sentation (section 6.2). There are potentially infinite possible ways to arrange the basic

building blocks of things systems upstream of the target representation are causally re-

sponsive to - such as colours, lines, shapes, and so on - which each define a unique eRV.

This set is potentially infinite. We need some way to limit the set of eRVs which are at

least potentially content candidates - i.e. which could be used by the system for enacting

a cognitive capacity. I argued that the C-function of the system containing the represen-

tation provides the requisite delimitation of the space of eRVs (section 6.5). Focusing on

the role the representation actually plays in the system with respect to a given cogni-

tive capacity limits the range of possible eRVs to those which can, in principle, serve the

requisite function.
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Now, in this final chapter, I set out maxMI. I argue that - according to the implicit

theory in cognitive neuroscience - the content of a representation is the item in the en-

vironment which, modelled as an eRV, shares maximal mutual information with the rep-

resentation, modelled as an iRV, relative to the other items in the eRV set delinated by

the function of the system containing the representation.

I begin by considering existing information-based accounts which use “correlational

information” - information the system has just in virtue of some representational state

raising the probability of the presence of an item. I consider why theorists, such as Shea

and Martinez, use correlational information rather than mutual information. I conclude

that correlational information is a measure aimed at providing ultimate, rather than prox-

imate, explanations (section 7.2.1). I also distinguish maxMI from a complimentary, but

crucially distinct, theory, infomax (section 7.2.2).

I then provide an overview of mutual information as such, and spell out maxMI again

7.3.1.

Following this, I present themain argument in favour ofmaxMI being the implicit the-

ory of content in cognitive science. I argue that the methodologies used in contemporary

cognitive neuroscience to discover what a cell represents - namely, the spike-triggered

average, maximally informative dimensions, and CMI - presuppose that the content of

the representation is given by the item with which the representation has maximal mu-

tual information (section 7.4). I also argue that the C-function of the system is used to

initially limit the search range of candidate contents (section 7.4.4).

Finally, I set out howmaxMI succeeds in providing content attributions for the system

itself. We have placed this constraint on a theory of content throughout, and in section
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7.5 I argue that maxMI isolates items about which the system has “available” information.

Items about which the system has available information are those items outcome values

of which receive processing by internal mechanisms (section 7.5.3). So, given the various

constraints set out throughout the thesis, maxMI gives us a theory of content which can

be used in the theory proper of cognitive science.

7.2 What measure of information?

Mutual information (MI) is the prima facie best tool to model the informational re-

lationship between an iRV and eRV. Mutual information is a measure of the statistical

dependence between two random variables, providing “an exact value for the strength of

the association, measured in bits” [Stone, 2015, p134]. In intuitive terms, it tells us how

much information about some entity is carried by a representation.

This looks incredibly helpful for working out the content of a representation; if a rep-

resentational state contains a huge amount of information about milk, and a really really

tiny amount of information about glass (say, becausemilk - very rarely nowadays - comes

in glass bottles), that seems at least relevant for working out whether the representation

has the content ⟨milk⟩ or ⟨glass⟩ - whatever one ends up saying.

So why is mutual information almost universally neglected by content theorists? Be-

fore I make the positive case for using mutual information (specifically, maximal mutual

information) it will help to see the case in favour of a looser metric. Partly, because it

means applying some familiar distinctions from chapter two (2.5) regarding differing ex-

planatory projects. Also, from the outset I can distinguish maxMI from a similar-looking
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theory called ‘infomax’, which maxMI is apt to be confused with. This should help set

the ground for introducing maxMI proper.

7.2.1 Correlational information versus MI

In order to describe the informational relation between content and representation, Shea

uses a measure he terms “correlational information” [Shea, 2020, p407], defined as:

p(Gb|Fa) ̸= p(Gb) (7.1)

In which G is some state of the environment, b, and F is a state of the cognitive

system, a. The relation of correlational information thus holds between a representation

and a state of the world provided the probability of the representation being present is

not independent of the probability of the state of the world being present.

Neuroscientist Randy Gallistel suggests that Shea use mutual information instead.

Gallistel argues that mutual information provides a “clearer, more intuitive, quantitative,

and scientifically useful theory” [Gallistel, 2020, p3] than the model Shea uses. However,

Shea maintains that he does “not want or need a stronger notion of correlation” than

correlational information.

Shea’s characterisation of correlational information is equivalent to Manolo Mar-

tinez’s characterisation of “indication” [Martinez, 2013, p6], formalised as:

P (F |on) > P (F ) (7.2)

where F stands for the presence of some environmental item, and ‘on’ (versus ‘off’)
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indicates the state of an internal mechanism (a representational vehicle, such as an acti-

vated neuron)
1
.

So why do these authors, and others in the informational teleosemantic literature, use

correlational information when a stronger measure of information is available (mutual

information - see section 7.3)? To answer, we first need to go into a little detail on Shea’s

positive proposal:

Contents are fixed relative to task functions. Task functions arise as a result

of some stabilizing process. Learning is a key case. I argued that outcomes

that are the target of stabilizing processes are often stabilized and robustly

produced as a result of internal mechanisms, mechanisms that make use of

exploitable relations between internal components and theworld. [Shea, 2018,

p217]

“Exploitable relations” refer to the correlational informational links between states

of the cognitive system and the external environment. A task function is defined as

some outcome that the system produces which has been “stabilised” by some process,

such as evolution or learning [Shea, 2018, p65]. A mechanism with a given task function

“exploits” a correlation between an internal state (to which the mechanism is connected)

and the external environment.

Imagine some state is correlated (however loosely) with the presence of a predator.

When the state is active, the organism engages in evasive behaviour. Thus, the correla-

1
Superficially, Martinez’s focus on the ‘on’ state appears to neglect the role inhibition can have for indi-

cating some environmental item. Shea’s formulation explicitly includes inhibition, since any dependence

- in either direction - provides correlational information. This apparent difference does not run very deep:

being ‘on’ indicates a ‘hit’, which can be spelled out however one likes in physiological terms, including

activation and inhibition. This renders the two accounts equivalent.
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tion has been exploited to enable the organism to, ultimately, stay alive. For Shea, the

content of the internal state is the predator with which it is correlated, since this pro-

vides an “unmediated explanation” of the organism’s behaviour [Shea, 2018, p84]: the

least mediate explanation for how the outcome the correlation is exploited by was sta-

bilised is that it was avoiding a predator
2
. We needn’t mention any further correlations

between predators and another item in the explanation.

Based on his positive proposal, there are two reasons why Shea rejects mutual infor-

mation. First, such a notion may rule out the most immediate explanatory item. For

example, an organism may have more mutual information with proximal properties.

However, as Shea says, he aims to “explain how outputs were produced robustly and

stabilized by interactions with the environment” [Shea, 2018, p90]. As covered in chap-

ter two (section 2.5), this aligns with Mayr’s conception of an ultimate explanation. Shea

is addressing the question, roughly, why a given representation is present within the

system.

In this sense, mutual information is not a helpful tool for answering such questions.

It will produce content ascriptions which are not obviously related to adaptive benefit,

except in a mediated way - we would need to offer additional environmental correlations

to explain why an organism represents contents picked out bymutual information. How-

ever, given the explanatory role cognitive neuroscientists ascribe to content, i.e. aimed

at answering proximal how-questions, this reason to reject mutual information is not

relevant to the current project which aims to uncover the implicit theory of content in

cognitive neuroscience.

2
See also the discussion in chapter two section 2.4.1.
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Second, Shea requires that there be an informational link which can be, but may not

currently be, exploited. In other words, Shea’s account emphasises what Cummins calls

“unexploited content” [Cummins, 2010, p124], which is “information or content carried

by or present in a representation that its harbouring system is, for one reason or another,

unable to use or exploit” [Cummins, 2010, p122]. For Shea, some environmental item is

not in fact content before it becomes exploited by some downstream process.

Mutual information, especially if we take maximal mutual information as the rele-

vant measure, which I outline in section 7.3, significantly limits the amount of informa-

tion we can attribute to the system relative to correlational information. Correlational

information therefore allows for a greater range of relations to be exploited, providing

the grounds for an account of content acquisition via learning. However, in section 7.5,

I will argue that maximal mutual information does allow for unexploited content, since

it captures all information available to the system, including information only implicitly

available, which may not currently be processed by any given system.

7.2.2 Distinction between maxMI and infomax

Shea provides a third reason to reject mutual information. He argues that it is “an impor-

tant tool for a different project, that of working out why information processing in the

brain has been configured in a particular way” [Shea, 2020, p407]. He goes on to point

out that “it is not the task of a theory of content to explain why a representational system

is configured a certain way” [Shea, 2020, p408]. Rather, theories “of content just need to

tell us what a system represents, given the way it is configured” [Shea, 2020, p408]. Shea

is correct on every count.
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However, I argue that it is also true that mutual information is an important tool for a

theory of content. Specifically, in section 7.4, I will argue that the content of a represen-

tation is the item in the external environment with respect to which the representation

has maximal mutual information. Finding the item which maximises mutual information

is independent of an explanation of why the system is configured the way it is.

The “different project” Shea has in mind is captured by the theory known as “info-

max” [Atick and Redlich, 1990]. Infomax provides an explanation of the constitution of

sensory systems in terms of maximally efficient processing (elimination of redundancy).

For example, the sum-difference encoding used by the ganglion cell in virtue of its op-

ponent channel processing ensures that inputs from photoreceptors in its receptive field

are decorrelated [Stone, 2018]. This has the consequence that mutual information be-

tween each part of the system is maximised, resulting in minimal energy expenditure

processing redundant input.

Since maxMI and infomax are closely related, though importantly different, it is cru-

cial to separate them in order to show that mutual information can be used in order to

isolate content, not just explain the constitution of sensory systems.

MaxMI and infomax are aimed towards separate explanatory questions. Infomax an-

swers the questions: does the system achieve maximal levels of mutual information be-

tween system components, and if so, how? Our theory answers the question: which items

in the environment are explanatorily relevant for the realisation of downstream capac-

ities?
3
We answer this, in part, by invoking mutual information. They are manifestly

different projects; infomax hypothesises that two internal components are constituted

3
Note that maxMI aims to answer this question, while the content it thereby isolates is used to answer

how those capacities are realised.
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so as to maximise the amount of mutual information between them; the current project

aims to discover the object in the environment with which some state or structure shares

maximal mutual information.

In intuitive terms, the difference in the use of mutual information can be captured by

the following two questions:

1. How closely related are these two things? (maxMI)

2. How can I make these two things as closely related as possible? (infomax)

Our theory concerns (1), infomax concerns (2). Infomax is a theory which suggests

there is some kind of ‘target’ which is approached by the system in virtue of the adjust-

ment of internal parameters until there is a match with external parameters (i.e. prop-

erties of the statistical distribution of values). It therefore shares many properties in

common with Karl Friston’s free energy principle [Friston et al., 2006]. Infomax does not

necessarily identify what currently maximises mutual information with the content of

the state, nor does there appear to be any theory about what the content of a state might

be within infomax
4
.

In comparison, maxMI makes no claims about how the content was historically ar-

rived at. There is no theory of the process which is undergone by the system in order to

fix content; that is given by infomax. Instead, maxMI states that, at any given period of

time, the content of a representation is the itemwith which the state has maximal mutual

information. Infomax and maxMI are clearly compatible. Indeed, one might suggest that

if the content of a state is what it currently maximises mutual information with, where

4
See [Wiese, 2017] for discussion about whether predictive processing theories include a theory of

content - he argues they do not.
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this is not the most efficient item for the purposes of reducing energy expenditure, then

adjusting parameters such that the system maximises mutual information with a new

item which is the most efficient, captures how the system updates content in order to

maximise efficiency. This process is, however, not a requirement of maxMI. Infomax is a

model for a process within the system; maxMI is a model of the relation between internal

and external items.

7.2.3 Summary

Shea is right that mutual information serves a different explanatory aim to correlational

information. Correlational information is “the type of correlation which natural selection

can make use of” [Shea, 2007, p240, emphasis added]. Such a notion of information is

helpful for a project which aims to identify those items in the environment which best

explain why a particular representational structure was reproduced. In this sense, such a

project may explain why the organism has the content maxMI attributes to it: we might

hypothesise that the content, as we understand it, correlated with some item which en-

abled an evolutionary advantage
5
.

However, I will argue in the rest of this chapter that those interested in providing a

theory of content which features in the proximal explanations of cognitive neuroscience

must invoke mutual information (or a mathematically equivalent measure).

5
See chapter two section 2.5.
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7.3 Overview of maximal mutual information

Mutual information is a relation between random variables. We can express the relation

in a few ways. MI is the average of the statistical interdependence of the values of two

random variables given by:

I(X, Y ) =
mx∑
i=1

my∑
j=1

p(xi, yi)log
p(xi, yi)

p(xi)p(yi)
(7.3)

Where I(X, Y ) is the mutual information betweenX and Y , xi−mx are the values of

X , and yi−my the values of Y .

This formulation is helpful for grasping the intuition behind the concept: a high prob-

ability of xi and yi together, where the marginal probabilities of xi and of yi are low, will

yield a high amount of mutual information. The opposite case, where the probability of

both is low but the marginal probabilities are high, will yield a low amount of mutual

information.

Imagine the probability that I write with a pen is low, and the probability of me having

ink on my hands is low, but the probability of me having ink on my hands given I have

been writing with a pen is high. If you see that I have ink on my hands, you have a

lot of information to the effect that I have been writing. However, if I write with a pen

an average amount, but very often have ink on my hands (don’t ask), seeing ink on my

hands will give you very little information about whether I have been writing.

Another, simpler, formulation, explicitly stated in terms of random variables, is given

by:
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I(X, Y ) = H(X) +H(Y )−H(X, Y ) (7.4)

Where we can takeX as an eRV, and Y as an iRV,H(X) the entropy of the eRV and

H(Y ) the entropy of the iRV (which defines the total amount of information available

from a random variable, or the uncertainty of the random variable), andH(X, Y ) as the

joint entropy of the eRV and iRV. If the random variables are independent, H(X, Y ) =

H(X) +H(Y ). Any dependencies between the two random variables will be ‘squeezed

out’ of the joint entropy in the form of mutual information, hence equation 7.4.

Assuming we can get by with an intuitive understanding of these equations, I want to

consider how we should model the relationship ofmaximal mutual information between

eRVs and iRVs.

There are a range of eRVs we can take as related to a given iRV. In chapter six (section

6.5) I argued that the range of relevant eRVs is given by the range of corresponding en-

vironmental items which the C-function of the system housing the representation corre-

sponding to the iRV is indeterminate with respect to. This generates a set of external-side

random variables X1−n.

Each eRV, X1−n, has a set of measurable values, with a probability distribution (or

density) over them, provided by their relation to the system-side invariance mechanism

generating the related iRV (Y ) (see chapter five section 5.4.1).

We can calculate values of mutual information with Y for each of X1−n using each

value of the random variable via equation 7.3. Or we can calculate entropy values and

use equation 7.4
6
.

6
Or indeed any of the equations for mutual information.
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7.3.1 The implicit theory: maxMI

With a list of all mutual information values between the iRV, Y , and each eRV,X1−n, we

can identify those eRVs with the greatest mutual information with the iRV. There may be

just one eRV with the greatest MI value, or there may be several. On the current theory,

if there is one random variable with maximal mutual information, this is the content of

the representation corresponding to Y . If there are several, the representation evinces

natural indeterminacy, such that each of the external items modelled by each eRV is

included inwhatwemight call, following Bergman [Bergman, 2023], the content profile

of the representation.

The iRV itself should be modelled according to the information usable to downstream

areas, based on the restriction to the C-function of the relevant subsystem. More on this

in section 7.5.3.

This is what I will argue is the implicit theory of cognitive neuroscience, maxMI.

Again, from chapter one (section 1.4):

maxMI: Ex is the content of R iff R shares mutual information with each of

a set of items, E1−n, of which Ex is a member, and R and Ex have maximal

mutual information relative to the rest of E1−n.

Where Ex is some item external to the representation, and R is a representation, given

that:

1. R must be modelled as an iRV with outcomes constrained by values usable for

downstream systems.

208



2. Ex must be modelled as an eRV with outcomes constrained by values discriminable

by sensory interfaces.

3. The set E1−n must be delimited by the C-function of the subsystem containing R.

I hope that, following each previous chapter, conditions 1-3 appear relatively clear and

well-motivated. Collectively, these conditions, alongwith the relation of maximal mutual

information, provides the implicit theory of content in cognitive science. At least, that

is what I will now argue. The argument primarily involves pointing out how maxMI is

assumed by the methodology of cognitive neuroscience. Sections 7.4.2 to 7.4.3 argue pri-

marily for the claim that the relation of maximal mutual information is assumed. Section

7.4.4 argues that the eRV space is delimited by the C-function of the system containing

the representation.

7.4 Arguments from cognitive neuroscience

In this section I will demonstrate that cognitive neuroscience, either explicitly or implic-

itly, models the relation between a representation and its content in terms of maximal

mutual information. I will begin by arguing that the most prominent methods for es-

tablishing representational content implicitly assume that the content is that item which

shares maximal mutual information with the neural representation. I will then explain

why cognitive neuroscience implicitly assumes maxMI: it provides a measure of the in-

formation available to the system, thus ensuring the explanatory value of content for

answering how-questions of the sort we have identified.
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7.4.1 Prediction for cognitive science

I begin with the truism about cognitive neuroscience - as expressed, for example, by

Paulin and Hoffman - that practitioners “often describe the behavior of spiking neurons

in terms of firing rate” [Paulin and Hoffman, 2001, p877]. That is, researchers will test

the firing rates of neurons in the presence of various stimuli and make inferences about

which stimuli are ‘preferred’ by the neural representation based on the strength of the

neural response.

Why does ‘preference’ matter? Using firing rate is intuitively relevant to finding the

content of a representation: if some neuron responds explosively when presented with

some stimulus, we cannot help but assume that that neuron and the stimulus are some-

how importantly related. But why?

Probability-raising must play an important part, as captured by the definition of cor-

relational information in equation 7.1: the probability of the stimulus being present is

raised when the neuron fires, providing an exploitable relation for performing various ac-

tions the success of which requires the presence of the stimulus. However, if researchers

were only interested in correlational information, they would be content with finding

any level of activity of the neuron in the presence of a stimulus. Provided the inequality

in equation 7.1 were to hold, the stimulus presented to the neuron would be a candidate

for the representational content of that neuron.

This is not what we typically find when we examine the cognitive neuroscience lit-

erature. Researchers are interested in much tighter statistical relations than that of cor-

relational information. I argue that the methodology implicitly assumes maxMI. This in-

volves two claims: first, that the methodologies involved are attempts to find the external
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item with which some neural state or structure has maximal mutual information (within

the range of items given by the relevant subsystem’s C-function). Second, that this item

is the content of the representation supported by that state or structure in the sense that

it provides that item which is represented for the system itself. Sections 7.4.2-7.4.4 mainly

deal with the first claim, section 7.5 deals with the second.

The aim of the following sections is not to provide a detailed formal demonstration

that the methodological tools of cognitive neuroscience are mathematically equivalent to

maximising mutual information. Such work exists, and is referenced throughout the text.

The aim is merely to draw the reader’s attention to such equivalences where they exist,

and to make various connections between existing methodologies and maxMI explicit in

relatively transparent language.

7.4.2 Spike-triggered average

The spike-triggered average (STA) of a neuron is the average stimulus which triggers the

neuron to spike. The STA is used to discover both which elements of stimuli presented

to neurons are encoded, and the specific code employed. As expressed by Paninski, STA

is one crucial method used to answer “the most prominent” question in systems-level

neuroscience: “the “what” part of the neural coding problem: what makes a given neuron

in a particular part of the brain fire?” [Paninski, 2002].

In order to discover the STA of a neuron,
7
it is presented with with a range of stimuli.

Stimuli are separated into those which trigger a spike, and those which do not. A novel

stimulus (e.g. an image) is then composed by averaging the features of the stimuli which

7
Note that multiple neurons can also be modelled in this way by taking a function of the spiking of

each individual neuron.
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Figure 7.1: Building ‘faces’ from white noise from [Schyns et al., 2020].

caused the neuron to spike (see e.g. [Schwartz et al., 2006, p487]).

Imagine that some subset of a set of white noise images, presented to a neuron, ac-

tivate that neuron. Each image is broken down into a number of pixels, with a value

corresponding to its colour (1 = white, 0 = black). If we overlap each stimulus which

triggered the neuron, we can find an average value for each pixel. This produces a new

image. This image is the STA of the neuron.

Though different in important respects, the method is similar to that employed by

Schyns and colleagues [Schyns et al., 2020] when probing the memory contents used

for face recognition. Figure 7.1 shows images built from an average layering of white-

noise images. Participants were shown white-noise images like those on the left and

told (falsely) that some images contained hidden faces. They then answered ‘face’ or ‘no

face’ for each separate image. Despite the random nature of the white noise, layering the

white-noise images which elicited the ‘face’ response produces an eerily face-like image.

This suggests that participants tended to answer ‘face’ when the pixels were suffi-

ciently close to a stored ‘face’ representation, which Schyns and colleagues took them-

selves to decode. This comes out when the images are averaged, even if any given single

image is very unlike a face.

The STA of a cell is like this. The difference is that in Schyn et al.’s study, images
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were averaged across verbal ‘face’ responses. The STA is the same except that the images

would have been averaged across those which triggered a response from a neuron.

The average stimulus can be modelled formally, for instance as a vector comprising

the various parameterised values the stimulus occupies. This allows for the construction

of a mathematical model for of the specific code used by the brain to encode the stimulus.

It also allows very precise specification of the external item represented.

We discussed one application of the STA method used by Chang and Tsao

[Chang and Tsao, 2017] in chapter three (section 3.3.1), but finding the STA of a neuron is

an increasingly commonmethod in cognitive neuroscience (see [Pillow and Simoncelli, 2006]

for an overview). According to Schwartz et al. the method has “become quite widely used

experimentally” [Schwartz et al., 2006, p486] across neuroscience. The method is prop-

erly viewed as a subset of those methods which aim to discover the subspace of a stimuli

which a neuron responds to, given a high-dimensional stimulus. The method allows ex-

perimenters to find the specific aspect of the stimulus which is represented. A cell may

appear to respond to all and only faces, but on closer inspection may respond to a highly

specific set of shape features, which could, in principle, appear on objects other than

faces.

STA and maximal MI

The STA method isolates an external stimuli with which a representational state has

maximalmutual information, given a few conditions. As Stone puts it
8
, given some “fairly

mild conditions, the average of a set of measured values is also the least-squares estimate

8
The following is taken from Stone’s textbook on neural information theory [Stone, 2018].
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of a true (but unknown) parameter value (i.e. the true mean)” [Stone, 2018, p94]. Given

some other “equally mild conditions” this provides a “maximum likelihood estimate of the

true parameter value” [Stone, 2018, p95]. In intuitive terms, the STA method provides

a good estimate (with some assumptions about the data which are likely to be met or

approximated) of the probability distribution of the parameterised input.

Stone then points out that “for Gaussian variables” the maximum likelihood estimate

“maximises the mutual information between those variables” [Stone, 2018, p95]. In other

words, when the input distribution is Gaussian, finding the STA of the cell in response

to those inputs provides you with the item in the external environment with which the

cell has maximal mutual information. So, for Gaussian inputs, using the STA method

implicitly identifies the item which maximises mutual information.

What about non-Gaussian inputs? There are multiple studies which do use STA for

non-Gaussian inputs (see [Schwartz et al., 2006, p501]). Are these theorists not implicitly

invoking maxMI? Not so; the itemwith maximal mutual information is still considered to

be the content of the representation, albeit difficult to determine given the non-Guassian

nature of the inputs. In such cases, theorists write that they simply need to deal with

“artifacts” which can “bias” away from the “real subspace” [Schwartz et al., 2006, p501;

emphasis added]. In other words, in such situations, any deviation from the item with

which there is maximal mutual information is seen as an error to be corrected.

Indeed, in such cases, the textbook recommendation is that a more general method be

used: researchers can “compare the mutual information between a set of filter responses

and the probability of a spike occurring” to find the maximally informative dimensions

(see section 7.4.3) [Schwartz et al., 2006, p502]. The drawback of this method is that it “is
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significantly more complicated” - a pragmatic concern [Schwartz et al., 2006, p502]. So,

it seems that purely pragmatic reasons may be stopping researchers comparing mutual

information levels directly.

Whatever explicit reasons may be employed by scientists when deciding on their

methodology, the fact that the STAmethod ends up picking out ameasurewhich provides

maximal mutual information is not a fluke. Maximal mutual information has likely been

implicitly sought by previous practitioners. Pillow and Simoncelli [Pillow and Simoncelli, 2006]

maintain that the methodology is approximated in previous work: “Note that ‘classical’

experiments can also be viewed within this framework: Characterization with dots, bars,

or grating stimuli implicitly assumes that a neuron’s behavior is determined by its re-

sponse to a set of canonical features.” [Pillow and Simoncelli, 2006, p414]. So, if STA

implicitly assumes maxMI, and classical studies, such as those by Marr, implicitly as-

sume the framework, we have good reason to expect maxMI to be implicitly assumed

by a great number of cognitive neuroscience studies, and perhaps even many cognitive

scientific theories developed in light of those studies.

In the next section we consider explicitly information-theoretic approaches to an-

swering the what-question. We will see that in these approaches, maximal mutual infor-

mation is either implicitly or explicitly employed.

7.4.3 Information-theoretic approaches

Information-theoretic methods involve explicit use of formal models derived from Shan-

non’s work
9
to describe stimuli and neuronal responses to stimuli. We will cover two

9
Almost universally Shannon’s information theory, however some instances using Kolmogorov com-

plexity can be found.
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examples of information-theoretic methodology in this section - dimensionality reduc-

tion by way of maximally informative dimensions, and the use of conditional mutual

information to discover represented elements of the stimulus.

First, maximally informative dimensions allow dimensionality reduction for non-

Gaussian stimuli, better approximating natural stimuli and overcoming the limitations of

STA. It also provides a way to reduce the dimensions of the input data when the dataset

is highly correlated. For example, in natural images in which the light intensity values

of one area of the image are good predictors of the light intensity values of adjacent

areas. As such, it is employed by those who wish to extend the basic principles of the

STA approach to a wider range of inputs
10
. It is a very general tool for a widely used

methodology.

Second, conditional mutual information (CMI) as a way to discover the represented

stimulus is not as ubiquitous, but is used in precisely those studies which explicitly seek

to address concerns similar to Egan’s, as we discussed in chapter four (section 4.4.3).

For example, it is used in this way throughout the work of Schyns and colleagues in

order to isolate just that element of the stimulus which is explanatorily relevant for

the operation of various cognitive capacities (e.g. [Liu et al., 2022], [Schyns et al., 2020],

[Ince et al., 2015]). Given this, the fact that (as I will show) CMI implicity assumes maxMI

suggests that maxMI is the implicit theory of content guiding content attributions for

those studies which meet Egan’s criteria.

Both methods either implicitly or explicitly invoke the relation of maximal mutual

information between neuronal response and that element of the stimulus which is rep-

10
see [Pillow and Simoncelli, 2006, p415] for a discussion of the uses and practical drawbacks of the

technique
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resented. I will go through both in turn.

Maximally informative dimensions

Dimensionality reduction, generally, rests on the assumption that neurons in early sen-

sory processing respond ”to a small number of stimulus features” within otherwise very

feature-heavy stimuli [Sharpee et al., 2004, p3]. A picture of a house might be presented

to a participant and trigger a response from one of their neurons. However, it may be

unclear why the neuron is firing - it might be because of the colour of the house (the

neuron may be colour-selective), the square windows of the house (the neuron may be

shape-selective), the orientation of the lines describing the edge of the house (the neuron

may be orientation-selective), or any number of the component parts of the image, in any

possible combination - maybe the cell is responsive to orange lines oriented horizontally.

Maximally informative dimensions are those elements of the image, modelled using

vectors, with which the neuronal response has maximal mutual information. As Sharpee

et al., the originators of the method, describe: “we maximize the mutual information

between the neural responses and projections of the stimulus onto low dimensional sub-

spaces” [Sharpee et al., 2004, p1]. The low dimensional subspace is given by taking vec-

tors describing the various features of the stimulus (e.g. illumination values, orientation

values, colour values), then transforming those vectors into those which have minimal

redundancy. This means constructing vectors whose values are composed from a num-

ber of values of the initial feature vectors, but now with minimal correlation between the

features described by the new vectors. This is a similar approach to taking the principal

components of a data set.
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Then, levels of mutual information are found between these new vectors and the re-

sponse of the neuron. The set of vectors with the maximal amount of mutual information

with the neural response is considered to describe what the neuron represents.

The assumption that low-level dimensions are represented is thought to be implicitly

reflected in classical work:

the general idea of searching for low dimensional structure in high dimen-

sional data is very old, our motivation here comes from work on the fly vi-

sual systemwhere it was shown explicitly that patterns of action potentials in

identified motion sensitive neurons are correlated with low dimensional pro-

jections of the high dimensional visual input ([de Ruyter van Steveninck et al., 1997],

[Brenner et al., 2000], [Bialek and van Steveninck, 2005]). [Sharpee et al., 2004,

p3]

Maximal mutual information is explicitly taken to be the relation which determines

the content of the representation in the maximally informative dimensions approach.

Additionally, it is thought to be implicitly assumed by classical studies in the field.

The representational content which comes out of such a view is very unlike the kind

of content we might intuitively presuppose: as with previous studies we have covered,

the relevant features turn out to be highly specific structural elements of the input. In

particular, they are, as in Chang and Tsao’s study, essentially amalgamated features based

on principle components analysis. However, as I said in chapter one (section 1.6), we

are not constraining ourselves to intuitions. The explanatory value of the content takes

precedence.
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Conditional mutual information

The conditional mutual information (CMI) approach provides an example which does not

initially appear to fit with maxMI. The CMI approach does search for the aspect of the

stimulus which is represented, but does not straightforwardly do so by finding the item

(or aspect thereof) with which neuronal firing has maximal mutual information.

Instead, CMI, as we saw in chapter four (section 4.4.3), involves finding the mutual

information between two randomvariables conditioned on a third randomvariable, given

by:

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) (7.5)

As we also saw in chapter four, CMI can tell us whether the variable Z partly (or

perhaps fully) accounts for the interaction between X and Y . So, CMI appears to look

for at least three variables, not two, in order to determine what is represented. Rather

than find two variables, an iRV and an eRV, which share maximal mutual information,

it looks for a third eRV upon which to condition the response between the iRV and eRV,

then determines whether this second eRV is controlling the iRV.

Does the CMI approach use a different implicit theory from maxMI? It does not. If

we look at how CMI is used in studies which attempt to find what is represented, it

becomes clear that CMI does not deviate from the implicit theory of maxMI. In fact, the

CMI approach provides just another route to finding the variable with which the iRV has

maximal mutual information. This is clear once we reconceptualise the relation between

the variables. I will provide a theoretical reconceptualisaton before providing examples
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of how this works in practice.

CMI can be used to find the eRV, Z with which the iRV, X , has maximal mutual

information if we can discover an eRV, Z , for which I(X;Y1−n|Z) = 0 for a range of

eRVs given by Y1−n, for all values of n, within the given stimulus space (defined by the

C-function of the relevant subsystem). This is just to say that Z has maximal mutual

information with X . In such a case, there is no other eRV the addition of which to Z

reduces the uncertainty of X any more than the uncertainty reduction achieved by Z

alone. H(X|Yn, Z) is no larger or smaller than H(X|Z) - so, Yn is effectively ‘screened

off’ from any statistical relationship with X .

If we found that I(X;Yn|Z) ̸= 0 for some n, we would have located some eRV which

accounts for some aspect of X over and above Z . In this case, we can work to discover

some combined feature which can be re-modelled as its own eRVwhich takes as its values

some combination of values ofZ and Yn. Or, wemaymodel a number of complex features

as a set of eRVs with respect to which the iRV has maximal mutual information taken as

a whole, which would therefore define the content profile of the representation.

This is not the only way to discover what maximises mutual information using CMI,

but it may be the most intuitive example. Other approaches use various techniques, using

various aspects of CMI in order to generate algorithms for dimensionality reduction,

which involves finding those features of the stimulus which are represented by the neural

response (e.g. [Souza et al., 2022], [Liang et al., 2019]).

On this interpretation, we can use the CMI approach to find increasingly complex

assemblies of eRVs, or a new eRV constructed from values of other eRVs, with respect to

which mutual information with the iRV is maximised, over and above the level of mutual
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information shared between the iRV and just one of the original eRVs. An example of

this approach is found in Liu et al. [Liu et al., 2022]. Liu et al. found, using CMI, that cer-

tain facial expressions ‘multiplex’ both emotion category (e.g. sadness, happiness) and

dimension (e.g. intensity, valence). CMI revealed that some facial expression components

measured in AUs (action units) carry information about both the emotion category and

its strength, (e.g. a furrowed brow represents both disgust and the intensity of the dis-

gust). The experimenters constructed new feature sets which collectively have maximal

mutual information with the relevant AU
11
. In other words, their methodology is based

on the assumption that the standalone represented categories are found by discovering

those categories and dimensions, separately, which maximise mutual information with

the response of participants. The combined, or ‘multiplexed’ features are those which

together fully reduce the uncertainty of the response, and therefore which provide the

complex feature which maximises mutual information with the response.

In essence, using CMI uncovers more complex eRVs by way of discovering relations

between environmental items and responses, providing a new environmental item with

respect to which the response maximises mutual information, exhausting the possible

stimulus space by combining existing, independent elements. It can be used to overcome

limitations of taking mutual information between pre-determined environmental items

and responses, and instead comparing levels of mutual information when conditioning

on other eRVs.

Rather than being inconsistent with maxMI, the CMI method instead provides a way

11
It should be noted that this study flips the content and representation: in this study, facial expressions

are taken as representations and emotion categories and intensities of the perceiver of the face are taken

as their contents. The experimenters are interested in what the face encodes in this instance, rather than

what a neuron encodes. However, the analysis is otherwise the same.
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to discover the relevant eRV, or set of eRVs, with respect to which the iRV has maximal

mutual information. In sum, we should conceive of CMI as a way of searching for an

eRV (or set therof) with maximal mutual information with the iRV. As a gold standard

method of answering the concerns of Egan and de-Wit et al., the fact that CMI presup-

poses maxMI provides good evidence that maxMI is the implicit theory used by those

regions of cognitive neuroscience in which content forms part of the theory proper.

7.4.4 maxMI: eRV space restricted by C-function

So far, I have argued that the above methodologies assume that the relation of maximal

mutual information is the relevant content-determining relation. However, maxMI in-

cludes a commitment to not only the relation of maximal mutual information, but the

relation of maximal mutual information within the range of possible eRVs determined by

the C-function of the subsystem containing the representation. Is this supported by the

methodology of cognitive neuroscience? The argument here is thankfully quite short.

As I argued in chapter six (section 6.4), functions in cognitive neuroscience are C-

functions. So, if any function constrains content attribution in cognitive neuroscience it

is C-function rather than W-function. But why think that C-function constrains content

attribution?

First, studies almost always begin from a hypothesis about the content of a represen-

tation based on existing theories about the function of the representation’s subsystem

(isolated typically in terms of cortical region). For example, Chang and Tsao initiate their

2017 study by observing that “A central challenge of visual neuroscience is to understand

how the brain represents the identity of a complex object. This process is thought to hap-
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pen in inferotemporal (IT) cortex” [Chang and Tsao, 2017, p1013]. So, their search for the

specific content of cells within IT is restricted to those items which they think are able

to support the function of IT.

Generally, there is back and forth. Functions are initially attributed to cortical regions

based on the general set of stimuli found to trigger neurons in those regions. More com-

plex theories of function develop, such as those initially proposed by Marr for the visual

system [Marr, 2010]. Then, based on these theories, more specific searches for content

are enabled. At this point, content can be isolated which plays a genuine explanatory

role in how cognitive capacities are enabled.

Second, studies which look for content typically involve relating that content to

downstream cognitive capacities. For example, DiCarlo et al. note that object recognition

must be evaluated relative to “defined tasks that can be measured in behavior, neuronal

populations, and bio-inspired algorithms” [DiCarlo et al., 2012, p429]. Content is discov-

ered relative to its role in driving behaviours which correspond to tasks. C-functions

capture this relationship, since they are ascribed relative to the role of some subsystem

in an explanation of the performance of some downstream capacity.

If the above is correct, maxMI is the implicit theory of content in cognitive neuro-

science.

7.4.5 Scope of maxMI

The above statement needs a little nuance. While many studies do implicitly rely on C-

functions, this does not always translate into practice in the right way. The now-familiar

challenge from de-Wit et al. [de Wit et al., 2016] attests to this. Even if researchers look
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for the relationship of maximal mutual information, and implicitly recognise the role of

C-functions, this will not always result in theorists limiting content attributions by de-

codable information. That is, C-function ascription will not place the right kind of limits

on content attribution.

We have seen in previous chapters how researchers such as Schyns and colleagues

explicitly address this issue. Researchers such as Chang and Tsao at least include a hy-

pothesis about what can be decoded by the system. However, it is unlikely that every

researcher makes this restriction. Instead, they will take the neuron or neural assembly

as such and find what it maximises mutual information with, rather than taking as an

iRV just that element of the neuron which is readable by downstream systems.

In many cases, this will likely be an unproblematic simplification. This is Neander’s

view:

We can (to a first approximation) trust that a creature’s sensory-perceptual

systems have been adapted to provide information that its other cognitive

systems can use, and that a creature’s other cognitive systems will have been

adapted to exploit the information that its sensory-perceptual systems can

provide. [Neander, 2017b, p144]

Neander justifies this by noting that information which could be extracted from a

neuron probably will be, since the neuron providing that information to begin with “is

not cheap; it is costly” [Neander, 2017b, p144]. However, we can just as well respond that

further processing that information is also very expensive, energy-wise, so we cannot

just assume that all information-transmission inside the system will be non-lossy.
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So, what to make of those studies which currently do not adhere to the strictures

of maxMI? On the extreme end of the spectrum, where no implicit theory is governing

content-attribution, content will be a gloss. I think we will tend to find this gloss in the

opening and closing remarks of a study, in which the scientists are attempting to broaden

the scope of their findings in an intuitive way, as a prelude to more theoretical work. As

content attributions move along the spectrum, and start to mirror the requirements of

maxMI, we should see them as helpful first passes, which oversimplify, but which can

feed into more nuanced future studies by suggesting paths of investigation.

7.5 Availability

I close this chapter by considering how maxMI secures content attributions which are

explanatorily relevant for answering how-questions in cognitive neuroscience. I argue

that maxMI isolates content about which the system has available information. Infor-

mally, available information is the information which the system itself can retrieve from

its own states. It defines an upper limit on the complexity of the content which the sys-

tem is able to represent. This distinguishes maxMI from etiological teleosemantic views,

in which content is limited by external correlations, but faces no limit based on internal

processing capacity.

Availability of information secures the explanatory value of maxMI content in virtue

of isolating content which, when modelled as an eRV, possesses values all of which are

able to undergo processing by the system itself. This allows for amechanistic explanation

of how the external item is processed and used for cognitive tasks.
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I begin by elucidating availability as understood in the neuroscience literature. I then

show how maxMI provides content about which the system has available information. I

then argue that availability, hence maxMI, secures explanatorily relevant content.

7.5.1 Implicit and explicit availability

Discussions around availability centre on the distinction between information which is

either implicitly or explicitly available to the system.

Two typical definitions of explicit availability are given by Kriegeskorte and Diedrich-

sen [Kriegeskorte and Diedrichsen, 2019] and Kirsh [Kirsh, 2006].

Kriegeskorte and Diedrichsen define an “explicit representation” as “a representation

of content in a format that enables it to be decoded in a single step by biological neurons”

[Kriegeskorte and Diedrichsen, 2019, p411]. “A single step” means no further mathemati-

cal operations have to be applied for information about the representation’s content to be

used in some further downstream process. A typical case is one in which the representa-

tion contains “information accessible to linear decoders” [Kriegeskorte and Diedrichsen, 2019,

p411; emphasis added]. Linear decoding, in terms of the physical implementation of the

decoder, involves a step change in firing rate of an input neuron that is related linearly

to a step change in the post-synaptic neuron.

Similarly, Kirsh outlines the distinction between implicit and explicit availability in

terms of “the computational effort required to extract, use, or interpret the information

encoded in a representation” [Kirsh, 2006, p479]. The emphasis on the extraction or use

of the information is reflected by Kriegeskorte and Diedrichsen: they stipulate that a “de-

coding model” should “take brain responses as input and predict downstream brain or
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behavioral responses” [Kriegeskorte and Diedrichsen, 2019, p409], since decoding of in-

puts requires downstream uptake of the encoded information for use in further cognitive

capacities.

Unlike Kriegeskorte and Diedrichsen, Kirsh views explicit and implicit availability

as a spectrum in which the “computational complexity of the process of interpretation

determines where on the continuum of explicit to implicit a given representation lies”

[Kirsh, 2006, p479]. In order to determine how explicit or implicit the information con-

tained in a representation is, Kirsh points out that we must assume that “it is possible to

use techniques of computational complexity theory to measure the computational effort

involved in recovering the information” [Kirsh, 2006, p480]. This ensures that explicit-

ness is well-defined and tractably quantifiable.

We need not be concerned, at this stage, with arbitrating between Kriegeskorte and

Diedrichsen’s binary linear/non-linear distinction between explicit and implicit
12
, and

Kirsh’s continuum-based computational complexity approach. Instead, I wish to focus on

an implication common to both characterisations of availability: information is available

to a system, implicitly or explicitly, only if there is some downstream process which

can decode the values of the input at all. So, information about some random variable

is available to a system only if some mathematical function can be performed, by the

system, over the values of that random variable.

A consequence of this definition, Kirsh highlights, is that it makes available infor-

mation system-relative. Whether downstream areas are able to decode the input will

12
Kriegeskorte and Diedrichsen also acknowledge ‘degrees’ of explicit availability - from information

linearly decodable by to a single, immediately downstream neuron to information linearly decodable by a

set of long-range, distributed neurons [Kriegeskorte and Diedrichsen, 2019, p423].
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vary according to the computational capacities of those downstream areas. Comment-

ing on sophisticated representational contents, Kirsh notes that “individual capacities for

memory, learning and other cognitive skills can affect how explicit a representation is”

[Kirsh, 2006, p480]. Kirsh notes that if there are “no connections or accessing procedures

that can reliablymake use of the information” in a representation, then information about

its content is not available. Differences in neural connectivity and the existence or lack

of complex non-linear decoders can change which information is available to the system.

To anticipate, this means that on the maxMI view, the content of a given representation

can vary depending on the properties of the system housing the representation.

7.5.2 Availability and explanatory value

Throughout the thesis, we have accepted Egan’s criteria for inclusion in a theory proper

in cognitive neuroscience. According to Egan’s characterisation, the mathematical func-

tion computed by the system is part of the theory proper. We can now see the specific

role it plays; information is available to downstream systems only if there is a mathemat-

ical function performed which translates values of the input into values of the output. So,

the mathematical function computed enables us to determine the available information,

and how that information is encoded and decoded.

The theory proper also includes environmental items which the externalised cogni-

tive capacity has an explanatory relation to, or so I have argued throughout the the-

sis. I argue that, to be explanatory of external-directed capacities, there must be an

information-processing chain which runs from the item in the external environment, and

is such that we can trace operations over eRVs, through iRVs, all the way to the mecha-
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nisms controlling the eventual output. In order for information about an external item to

be available, there must be a mathematical function computed which performs part of the

explanation for how the information related to the input is transferred throughout the

cognitive system. In order for some information about some input to be available to the

system itself, either implicitly or explicitly, we must be able to specify precisely which

input values are taken in from the environment, into the system for further processing.

We must trace the information flows from the content, through each part of the internal

sender-receiver relay, to the terminal receiver.

I argue for this claim in a familiar way: it is implicitly assumed by neursocientific

practice. In systems neuroscience the what- and how-questions are related: researchers

want to know both what is processed and how it is processed - with the tacit assumption

being that the information over which operations are performed can be traced back to

the input, which terminates in the external environment. More specifically, researchers

wish to know “what information is discarded in the neural code, and what features are

most important” [Paninski, 2002, p1]. That is: from the input, what is retained for further

processing?

This is most clearly the case in psychophysics, which is why we chose to focus on

the discipline in chapter four (section 4.4.2). In psychophysics, information flows are

traced from sensory interfaces to higher cognitive areas (see section 4.4.4). A redundancy

measure, RED, is used to trace the information involved in perceptual decision-making,

beginning from the stimulus, tracing the informational path to sensory interfaces, then

to downstream regions of the cognitive system. This tacitly assumes that the relevant

information is available to the system. The values of the input are taken to be computed
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over by the rest of the system; the assumption behind the RED measure, for example,

is that the values of the stimulus which share mutual information with a response are

redundant with respect to the values that the behavioural decision shares with the re-

sponse. The system receives no more information from the stimulus than it does about

the upstream response: all the relevant information about the stimulus is available in the

response.

The general principle which explains why these disciplines assume availability is

provided by Kirsh: an assumption across cognitive science is that “a representation is

a well-defined state, structure or process, in a causal system; that it encodes a specifiable

informational content that can be harnessed by the causal system of which it is a part”

[Kirsh, 2006, p479-80].

I attempt to remain non-committal on the question of the particular kind of explana-

tion offered in cognitive science, so will not comment on whether scientific explanations

are causal in any strong sense. However, if there exists an assumption that represen-

tational content features in a causal explanation, there must be an implicitly assumed

causal mechanism. Whatever one’s view on causality, there must surely be some way of

transmitting causal influence (such as Salmon’s causal marks [Salmon, 1984]). If some

item in the world is to be causally relevant for internal processing, we must hypothesise

how that causal influence is affected. This must be the case for the informational con-

tent which is harnessed by the system. For any value of the eRV we take to have some

causal influence on the system, we must be able to show how some part of the system

relevantly corresponds to that value, such that that part of the system can causally in-

teract in such a way as if the value of the eRV itself were providing direct stimulation.
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This captures the philosophical description of representations as “stand-ins” for external

items (e.g. [Cao and Warren, 2023]) This requires that the information be available to the

system - that we can trace a processing link back to the original external value.

If this is correct, the explanatory value of content is secured only if information about

that content is available to the system itself. In the next section I show how maxMI

delivers contents about which the system has available information.

7.5.3 maxMI and availability

The relation of maximal mutual information between an iRV and eRV provides, given

some conditions spelled out below, a measure of the implicit information about some

environmental item conveyed by a representation.

According to Kriegeskorte and Diedrichsen, the total available information or “all en-

coded information” about a stimulus feature is given by the “mutual information between

any stimulus feature (graded or categorical property of each stimulus) and the response

pattern.” [Kriegeskorte and Diedrichsen, 2019, p410]. Mutual information provides the

“total information that the representation contains about the stimuli”

[Kriegeskorte and Diedrichsen, 2019, p418]. Looking beyond the information readable

by linear decoders, mutual information supplies the “information about any other fea-

tures that may be present in the code, as well as information that would require a more

sophisticated (e.g., nonlinear) decoder” [Kriegeskorte and Diedrichsen, 2019, p419].

If we define some iRV, and measure the mutual information between that iRV and our

eRV, we will find how much information the eRV contains about the iRV. However, the

amount of information the eRV contains may be quite low. There may be many values of
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Figure 7.2: Visual representation of mutual information

the eRV which are not processed by the system. In figure 7.2 we see an example in which

an eRV, X , has mutual information with an iRV, Y , but in which X has significantly

higher entropy than X , denoted by H(X|Y ) - the entropy (or uncertainty) left in X

given a value of Y .

Another formula for mutual information is given by:

I(X, Y ) = H(X)−H(X|Y ) (7.6)

However, minimising H(X|Y ) - the uncertainty left in X given a value of Y - max-

imises mutual information. If we find a value of mutual information between two RVs for

which there is a large amount of residual uncertainty about the eRV, we can define a new

eRV (for example, using CMI - section 7.4.3) for which H(X|Y ) is smaller and mutual

information is therefore larger. Iterating this process, maximising mutual information,

ultimately provides us with an eRV in which uncertainty is minimised. Uncertainty will

never be entirely reduced - see below - but maximising mutual information in this way

provides us with an external item no value of which (outside of noise - again, see below)

fails to be processed by the system itself.
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Noise

In reality, there will always be some amount of noise between an eRV and iRV. Some

value is due to noise if that value does not reduce uncertainty about a source. Noise mod-

els phenomena such as inefficiencies in encoding (for example, redundancy) or physical

properties of the system (for example, voltage degradation over axonal channels).

Inefficiencies can be measured. As Borst and Theunissen write, since “H(R) repre-

sents the maximal information that could be carried by the neuron being studied, com-

paring H(R|S) to H(R) gives an estimate of the neural code’s efficiency”

[Borst and Theunissen, 1999, p949]. H(R) provides the output entropy of the neuron,

while H(R|S) provides the conditional entropy of the neuron given the stimulus - it

reflects how much is left uncertain about the neural output once everything is known

about the stimulus. This is the noise due to inefficiency. However, note that this variety

of noise does not suggest that there are values of the eRV which are not computed by

the system. Rather, it means that there are values within the system which are redundant

with respect to the values strictly needed to encode the content.

Noise due to physical properties of the system such as voltage degradation are more

troubling. For this kind of noise, there typically are values of the eRV which are not

operated over by downstream systems. Some values are lost during processing. How

do we square this with the explanatory value of content according to maxMI? Note that

noise, on this account, is given by features of the occurrent functioning of the state,

but maximal mutual information provides values which can be decoded by downstream

systems, even if they, on a given occasion, are not. Borst and Theunissen compare the

relation provided by mutual information as supplying that which “an ideal observer”
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could use to “discriminate between the stimulus conditions” [Borst and Theunissen, 1999,

p948].

If everything in the system were running perfectly, there would be no noise of this

variety, and every value of the stimulus would be transferred throughout the cognitive

system. However, in nature, things rarely work so efficiently. Even at the basic photore-

ceptor level, random heat fluctuations can lead to the hyperpolarisation of a cell, intro-

ducing noise. This does not preclude the explanatory value of a model which explains

the performance of photoreceptors in terms of interactions with photons - the operation

of the cell under ideal conditions. The same is true for content picked out by maxMI.

It is true that maxMI would not isolate content about which the system has implicitly

available information if we make no restriction on what we model as the iRV. Consider

again an implication of the computational definition of availability: what is available is

relative to the downstream systems and what they can decode. If we neglect this when

we calculate the mutual information between an iRV and an eRV, we will, in all like-

lihood, come up with an eRV which has values which are not decodable by the system.

Whatwe can retrieve from neural activity, given everythingwe know, is likely to outstrip

with the system itself can retrieve from that activity. This is a reiteration of the worry

expressed by de-Wit et al. - we would be discovering the available information taking

the “experimenter-as-receiver” rather than the “cortex-as-receiver” [de Wit et al., 2016,

p1415].
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Usable information

In order to overcome this we need to restrict the iRV such that the values we include

are picked up by the system. Imagine that we have a neuron which spikes 0.1 times a

second, but the immediately downstream neuron only responds to every other spike. In

this case, if no other neuron is responsive to the missed spikes, our iRV should model as

values only every other spike of the neuron.

This is to limit the iRV to the usable information. As Martin Elliffe writes, “not all

measurable information may be usable information” [Elliffe, 2000, p180] since we need to

be clear about “the precise nature of that which is being measured - information is only

usable information when the form of the decoder is appropriate” [Elliffe, 2000, p198].

We must understand which values of the neural code are picked up by any downstream

systems - ideally, with a theory about the format of the code and the decoding capacities

of the rest of the system.

Once we have made the restriction that the iRV bemodelled according to those values

which are usable, maximal mutual information between that iRV and some eRV provides

us with the values of the eRV which are implicitly available in the neural representation,

thus, I argue, providing us with a model of the content of that representation.

Usable information is a notion which can be given independently of the question of

what that information is about. Usable information is that information, considered purely

in terms of the symbols of the code, which can be processed - mathematically operated

over - by downstream areas. Available information goes beyond what is usable: it isolates

the content of the usable information. Available information tells us which environmental

items are thosewhich are relevantly related to those symbols which receivemathematical
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processing by the brain.

maxMI restricts the iRV to usable information given the use of C-functions as a way

of restricting the space of possible eRVs. Recall that a C-function is defined as follows:

x functions as a ϕ in s (or: the function of x in s is to ϕ) relative to an an-

alytical account A of s’s capacity to ψ just in case x is capable of ϕ-ing in

s and A appropriately and adequately accounts for s’s capacity to ψ by, in

part, appealing to the capacity of x to ϕ in s [Cummins, 1975, p762]

I claim that in order for an account which uses representation to “appropriately and

adequately account” for a capacity, where this involves the fact that the representation is

capable of doing something (ϕ-ing) within the system, the representation ought to have

some identifiable means of doing that thing. There needs to be some way in which the

representation interacts with the downstream structures which enact the capacity.

To summarise, maxMI isolates content which is explanatorily relevant for the system.

It limits the iRV to those values which are usable by downstream systems (without yet

taking into account what that information is about). It limits the range of possible eRVs

to those which are within the indeterminacy profile of the C-function of the relevant sub-

system. It then picks out an eRV with which the system has maximal mutual information

which, given the iRV restriction, ensures that all values of the eRV are available to the

system itself, providing the grounds for a mechanistic explanation of the contribution of

the content to the relevant cognitive capacity.
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7.6 Conclusion

Cognitive neuroscience attempts to find items which are explanatory relative to how a

system enacts cognitive capacities. They implicitly rely on maxMI, isolating that content

with respect to which the representational state maximises mutual information, given

restrictions based on the C-function of the system housing the representation. Not all

scientific theories rely on the entirety of maxMI, but those which do completely fulfill

the requirements set out by Egan for content to be included in the theory proper. Those

which don’t either use content as a helpful gloss, or approximate genuinely explanatory

content - for example, classical studies which use maximal responsivity of a cell which

approximate the item with which mutual information is maximised.

I claim that neuroscientists implicitly rely on maxMI because it provides the item

about which the system has available information. By maximising mutual information,

we are able to find the item relative to which the system minimises noise, allowing -

given some relatively idealised circumstances, as is common to all scientific practice - all

values of the eRV to be processed by the system. In this way, maxMI allows contents to be

isolated which are contents for the system itself. A change in the content leads to a change

for the system itself. If some per mirabile change occurs in the environment, resulting

in a change in the item modelled by the eRV, the system itself will notice; any outcome

change makes a difference to the system, since all values are processed and used to enact

some cognitive capacity. So, we have found an implicit theory of content in cognitive

science which meets Egan’s criteria for inclusion in the theory proper.

Theories which set out to answer ultimate why-questions do not abide by maxMI,

and they need not. However, maxMI can be of use to such theorists. I hope that it can
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isolate items - those which I am calling content - which further environmental items are

themselves correlated with, those which can be used to answer why-questions. Some

representations may maximise mutual information with dimming light; if so, we may

explainwhy we have such representations by invoking the correlation between dimming

light and night-time.

I hope that by making the implicit theory explicit, cognitive scientists and philoso-

phers alike will have a tool to clarify which content attributions serve which projects. I

also hope that we will be able to enrich projects in which content features by providing

a fully-costed set of justifications for content attribution.
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Chapter 8

Conclusion

8.1 Introduction

In this thesis, I set out to answer the following questions:

1. Is there an implicit theory of content in cognitive science?

2. How can we discover the implicit theory of content?

3. What is the implicit theory of content?

i. Which type of information link is relevant for content determination?

ii. Which type of function is relevant for content determination?

To attempt to answer these questions, first, in chapter two, I took guidance from ex-

isting naturalistic theories of content. I provided a brief history of informational teleose-

mantics and presented some of the key concepts developed which would, hopefully, aid
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our search for the implicit theory of content in cognitive science, if such a thing was to

be found. From Dretske, we saw the power of Shannon’s information theory to model

the relation between representation and content. From Millikan we saw the importance

of functions to provide content with an impact for the system itself. From Neander we

took response and information-transmitting functions, as well as saw the importance of

clarifying and distinguishing possible explanatory projects. From contemporary authors

we took much, such as clarity on the role of information theory, insights into how to

approach proximal explanations, and an understanding of the role of the receiver in our

model.

In chapter three, I argued that there is, in fact, an implicit theory of content in certain

regions of cognitive science. I introduced a study on face recognition by Chang and Tsao

[Chang and Tsao, 2017] in which content features in the theory proper. So, it appeared

that we should be optimistic about a positive answer to question (1). However, we took

seriously Egan’s criteria on content being part of the theory proper, and so narrowed our

search to those studies which treat content as essential and determined by a naturalistic,

sufficiently determinate, relation.

In that chapter, I also set out three principles to guide us towards studies in which

we might find the implicit theory of content. I suggested that we must, first, focus on

studies which posit representations which serve a function for an externally terminating

cognitive capacity. Second, focus on studies which provide a hypothesis about what the

system itself can decode, or otherwise access. Third, focus on studies which describe

content using technical terminology. So, we began to answer question (2).

In further pursuit of the implicit theory, I introduced, in chapter four, the background
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theoretical framework of content attribution in the relevant regions of cognitive science.

I argued that Shannon’s mathematical framework of information theory is used in con-

temporary studies which explicitly seek to address the kinds of worries raised by Egan.

I raised the worry presented by de-Wit et al. [de Wit et al., 2016] that many studies only

take the “experimenter-as-receiver” rather than the “cortex-as-receiver”. However, I out-

lined how information theory, which is not limited to simple correlations, is used to

pinpoint precisely the element of the environment which is picked up by the system

and used by downstream systems to perform a cognitive task. We also saw in chapter

four that the information link of maximal mutual information appears to be assumed by

practitioners.

In chapter five, I raised Shannon’s warning. If information theory is the background

theoretical framework of content attribution, we need to be clear and careful about how to

apply information theory to the cognitive system. Indeed, the application of information

theory presents constraints on what we can model. We must be able to specify aspects

of the world to model as random variables. Moreover, we must do so in a way which

is relevant to content determination. We need to find measurable outcome values with

corresponding probabilities, summing to unity. I argued that we should model the iRV

according to those elements of neural firing which are causally detectable by downstream

systems. I also argued that we should model the eRV according to those elements of

the environment which are causally detectable by sensory interfaces. I provided some

detail on precisely how we might do this by using response profiles, receptive fields, and

invariance mechanisms.

In chapter six, I introduced a further worry specific to maxMI. If we are to compare
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levels of mutual information, we need to be able to specify a relevant reference class

against which to make comparisons. I argued that the function of the system containing

the iRV provides the requisite limitation. Moreover, I argued that we should consider the

function as Cummins’ does - which I called the C-function. Chapter five encouraged us to

limit our search for an implicit theory to cognitive neuroscience. The relevant function

ascriptions, due to the possibility of extreme pluripotency, are made without recourse

to learning. Functions are ascribed, rather, consistently with Cummins’ analysis. As

such, we should use C-functions. I then spelled out how C-functions are able to limit

the range of eRVs to those which can, in principle, explain the cognitive capacity under

consideration. C-functions limit eRVs to those which can, in principle, be used by the

system itself.

Finally, in chapter seven, I outlined the central argument for maxMI. The relation of

maximal mutual information is implicitly taken to isolate the content of a representation,

since it is implicit in the methods used in cognitive neuroscience to discover what a

representation represents. C-functions determine the relevant range of eRVs: it is within

this domain that neuroscientists search for content. Given the restrictions on the iRV and

eRV we set out in previous chapters, maximal mutual information provides the item in

the environment about which the system has available information. Noise is reduced to

the extent that, given certain idealised conditions, the system processes each value of the

content. So, I argued, we discovered the implicit theory of content in cognitive science

which isolates contents which feature in the theory proper - contents a change in which

results in a change for the system itself.

In summary:
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1. Yes, in certain regions of cognitive neuroscience.

2. By attending to the methodologies of those regions of cognitive science which ad-

dress the kinds of concerns raised by theorists such as Egan and de-Wit et al..

3. The implicit theory of content is maxMI.

i. The information link of maximal mutual information is relevant for content

determination.

ii. C-functions are the relevant kind of function for content determination.

8.2 Some implications of maxMI

In this section, I briefly explore some implications and applications of maxMI.

8.2.1 Representation for the system itself

As stressed at various points throughout the thesis, maxMI isolates content which makes

a difference for the system itself. This was specified as content a change in which results

in a change for the system. Given that, under certain conditions, each value of the con-

tent is processed by the system, a change in the values of the eRV will lead to a change

in processing, with implications for the cognitive capacity enabled by that processing.

If our putative ⟨shape⟩ representations in AM IT suddenly maximise mutual informa-

tion with tree branches, thus changing the content to ⟨branch⟩ (given that ‘branch’ is

operationalised), we may start greeting trees as old friends.
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In this section Iwish to put representation for the system itself inmore intuitive terms,

indicating, somewhat vaguely, the wider value I believe maxMI has. Representation for

the system itself captures what is going on for an organism (for example). It tells us how

the organism itself views the world around it - the information the organism takes in

and processes. We may look at an ant and know that it is responding to the sun, since

we can represent the sun (necessarily - the word ‘sun’ picks out our own way of viewing

the world). The ant presumably, with its limited processing capacity relative to our own,

picks up far less information than is required to represent the sun as such. It probably

represents some far more proximal input, which makes sense of the fact that we can

observe the very same behaviours when we place a giant UV lightbulb near the ant.

Why the ant represents this proximal input is very likely to be explained by the fact

that the direction of UV light in the ant’s environment typically corresponds to the lo-

cation of the sun, and following the sun is adaptive for the ant. This is a type of (high-

church) content relevant for ultimate explanations, but should be distinguished from the

type of (low-church) content relevant for proximal explanations.

I suggest that maxMI is useful for non-human animal psychology and comparative

psychology. Since maxMI picks out representation for the system itself, we stand to learn

a lot about the differences between animals in terms of the content of their representa-

tions. It should also be useful for studies in animal communication. Using maxMI, we

can grasp the information available to the organism which it is able to transmit to other

organisms who are able to decode it. Theories of animal communication which build

on information theory, such as Mitch Green’s signalling view (e.g. [Green, 2017]), are a

natural fit.

244



8.2.2 Empirical considerations

A benefit of maxMI, and the distinctions made between proximal and ultimate projects, is

that content attribution becomes an empirical project, rather than a purely philosophical

one. We cannot attribute contents from the armchair. Generally, intuitions play little role

in content determination. Rather, content is specified by technical terminology which

picks out phenomena in the environment in ways we may struggle to conceptualise in-

tuitively. For example, taking the 6 most informative dimensions of shape (as in Chang

and Tsao [Chang and Tsao, 2017]) involves amalgamating various shape properties into

novel features for which we have no existing concepts.

maxMI specifies the kind of empirical data we must have about organisms and the

environment in order to make such content attributions. We need to know about inter-

nal connectivity - which subsystems connect to which other subsystems both upstream

and downstream. We need to know about decoding capacity, processing limitations, dis-

criminatory limitations and capacities, as well as facts about the environment used to

determine the outcomes and probability distributions of eRVs.

With respect to the empirical facts required, I take it that maxMI straddles, and in

some way reconciles, internalism and externalism about representation. It is an exter-

nalist view in some respects - contents are external items, and changes in facts about the

environment alone can lead to changes in representational content. It is an internalist

view in other respects - contents are limited by discriminatory capacities and internal

processing constraints. This is because maxMI is aimed at proximal explanations, but

proximal explanations which inherently involve the external environment. It is aimed at

explaining how a system performs cognitive capacities which involve things external to
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it - such as faces or objects. But being aimed at how a system does this requires attending

to what the system is capable of doing and its limitations.

8.2.3 The value of noise

Dretske requires that informational content is specified by that item with which a repre-

sentation has conditional information of unity (see section 2.2.1). However, maxMI tol-

erates noise between representation and content. What maximises mutual information

is what is relevant, but that is consistent with some things activating the representation

which are not the item which is its content. As such, this allows activation of the rep-

resentation by internal systems, providing use of the content offline. In other words, it

allows that the representation can be decoupled from its input.

For example, top-down processing may activate lower-level sensory representations

for recruitment in linguistic interpretation. Authors such as Lawrence Barsalou (e.g.

[Barsalou, 1999]) and Diane Pecher (e.g. [Pecher et al., 2003]) provide evidence that this

is the case, and maxMI is consistent with their results. If we include this top-down acti-

vation in the mutual information profile of the representation, provided that it does not

maximise mutual information with the representation, it does not risk the content of the

representation changing from its external item.

8.3 Scalability of maxMI

I said in the introduction thatmaxMI is amodest theory of representation in Peter Godfrey-

Smith’s sense [Godfrey-Smith, 1998]: it aims to capture the content of relatively low-
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level representations, those Neander characterises as “nonconceptual or preconceptual

sensory-perceptual representations (perhaps together with a relatively small set of core

concepts)” [Neander, 2017b, p10].

However modest I might try to be, I struggle to constrain my ambitions. I think that

maxMI might scale, and would like, in the safety of the conclusion, to speculate a little.

According to maxMI, content is limited by decodability and processing constraints.

So, as the complexity of downstream systems increases, along with the information stor-

age of those systems, facilitating greater information retrieval from upstream areas, the

limitations on content are increasingly lifted. The higher the limit on the information

available to the system, the greater the entropy of the eRV with maximal mutual infor-

mation with a given iRV, and so the more complex the content.

Content is also limited by the discriminatory capacities of upstream sensory systems.

So, the greater the complexity of sensory systems, and the wider the range of upstream

inputs to a given representation - including multimodal inputs - the more complex the

discrimination profile and, again, the more complex the content can be.

If it is possible for a representation to be recruited by multiple downstream areas for

a given cognitive capacity, with a corresponding increase in the amount of information

which can be decoded from that representation, along with greater input variability, then

contents could be incredibly complex and sophisticated - perhaps reaching the level of

richness possessed by concepts.

However, many high-level representations may not feature in the same kind of ex-

planations as lower-level representations. For example, while ⟨shape⟩ representations in

AM IT feed directly into face recognition a high-level conceptual representation, such
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as the concept cat specifying ⟨cat⟩, may not obviously feed directly into any specific

cognitive capacity. As such, conceptual contents may not need to be limited by the re-

quirement that all their values be processed by the system. This requirement ensures that

a mechanistic explanation of how the capacity is enacted can be given. If concepts do not

need to meet this requirement, it may mean that they could represent their contents far

more noisily. So, while catmay maximise mutual information with cats, thus having the

content ⟨cat⟩, it could be that there is a lot of information about cats that the system does

not have available to it.

However, this would notmean that this content would not feature in any explanations

at all. We may explain the searching, investigating, questioning, explaining nature of

human beings, for example, in virtue of the fact that we are attempting to gain more

available information about the content of our conceptual representations. We would

explain this by pointing out that by our own lights we do not know everything about the

thingswe can represent. In fact, wemay havemetacognitive processes whichmonitor the

level of noise of our concepts andmotivate us to reduce the noise to levels which enable us

to use our conceptual representations as precisely as we can lower-level representations.

Maybe.

8.4 Future areas of investigation

In this section I list some questions which are not addressed in the thesis, but which are

of interest to future investigation.
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8.4.1 Types of representation

Does maxMI capture all types of representation? We have looked almost exclusively at

response-based neurons, but is maxMI of use to characterise the content of representa-

tions such as those recruited in memory, thought to be stored in either engrams or the

chemical structure of cells (see e.g. [Gallistel, 2017])?

8.4.2 More indeterminacy

How should we respond to some of the varieties of indeterminacy not covered in this

thesis already (in sections 3.4, 6.6.1, 7.3.1)? For example, what about the problem of

disjunction? Is it the case that an iRV will always maximise mutual information with a

disjunctive set of eRVs relative to any given single eRV? That is, will it always be the case

that:

I(X, Yx) < I(X, Y1 ∪ Y2 ∪ Y3... ∪ Yn) (8.1)

If so, how could the theory handle this? Are there further restrictions we must intro-

duce?

The data processing inequality

There is one type of indeterminacy challenge we can meet given the resources of the

thesis. In section 6.6.1, I argued that indeterminacy of content between items in a causal

chain - from most distal environmental item to most proximal state (i.e. the firing of the

neurons immediately prior to the representation under investigation) - is not a problem
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if we allow that the part of the chain accessed by the system itself is a random variable

modelling a distal item, not a proximal item. In one sense, this provides an answer to

what we might call the distal indeterminacy problem. In another sense, it is somewhat

mysterious how the system itself manages to perform this feat of selecting from the distal

end of the chain. This is especially true in light of the data processing inequality, raised

by theorists as a problem for an informational theory of content (e.g. [Martínez, 2019]).

The data processing inequality, an information-theoretic concept, suggests that, in a

Markov chain of random variables, X → Y → Z , Z cannot contain more information

aboutX than Y . Information is only lost over channels but can never be gained. So, how

does the system ensure that it gains information aboutX fromZ , rather than information

about Y ?

The short answer is that perception is almost certainly not a Markov chain. AMarkov

chain is a stochastic process describing a sequence of events where the probability of an

event later in the chain occurring is dependent only on the obtaining of an event earlier

in the chain. This is almost certainly not the case for even basic perceptual systems,

which have myriad feedforward and feedback connections from higher cortical regions

(e.g. [Friston, 2003]). Stored information can be fed into the channel at various stages in

order to allow a later stages, such as Z , to provide more information about more distal

stages in the sequence, such as X , than proximal stages such as Y .

The brain, in essence, has its own way of solving the distal indeterminacy problem.
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8.4.3 Translation into other models

Is maxMI compatible with other formal models, such as Kolmogorov complexity? In

general, this is a question about how sui generis Shannon’s information theory is, and

whether other models can be used instead. Are those models better or worse in any

sense?

8.4.4 Philosophical desiderata

How well does maxMI deal with various philosophical desiderata on representation? For

example, canmaxMI provide an account ofwhat JonathanCohen calls “grain” [Cohen, 2004],

or “format”? Does maxMI provide an account of the various ways in which content is

represented? Is encoding scheme the same kind of thing as philosophers mean by format?

Generally, there are a plethora of possible philosophical questions wemight ask about

maxMI and its status as representational content in a rich philosophical sense.

8.5 Summary

The impilict theory of content in some regions of cognitive neuroscience is maxMI. The

content of a representation is that item in the environment with which the representation

has maximal mutual information, within the set delineated by the C-function of the sub-

system housing the representation. The implicit theory captures the information about

the environment available to the system itself, and provides a type of content which can

feature in the theory proper of science.

I hope that this thesis can bring to the attention of some philosophers the sophisti-
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cation of information theory, beyond the limits some have assumed it to have. I hope it

highlights the complexity of the properly scientific use of content, and settles questions

about the role that content plays in science, as well as the type of content and functions

which can be used in proximal explanations.

I hope it can bring to the attention of cognitive scientists a way to systematise content

ascription for particular projects, and to alert scientists to when content is used as a gloss.

It may provide some helpful reflection on the discipline.

Content can be specified with a high degree of accuracy, with explanatory value, once

we attend to the limitations of the system itself. The rest is noise.
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Glossary

availability Information about an item is available if processing can be conducted over

the values of the eRV used to model the item.

background theoretical framework a model of the properties and processes in that

domain, which generalise across lower-level properties and processes which un-

derlie that domain (e.g. physical interactions, chemical synthesis, etc.) using a set

of concepts and principles which are independently well understood.

C-function Named after Robert Cummins, C-function is a non-etiological form of func-

tion. Defined by Cummins as follows:

x functions as a ϕ in s (or: the function of x in s is to ϕ) relative to an

analytical account A of s’s capacity to ψ just in case x is capable of ϕ-

ing in s and A appropriately and adequately accounts for s’s capacity to

ψ by, in part, appealing to the capacity of x to ϕ in s [Cummins, 1975,

p762]

channel The physical medium of transmission of messages from sender to receiver. For

example, the axon of a neuron or electromagmetic waves in the environment.
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content An item external to a representation. Specifically, the source item of the re-

ceiver. In context, the item which is used in proximal explanations of a system’s

cognitive capacities. According to maxMI, the item with which the representation

maximises .

encoding X encodes Y only iff there is some mathematical function f which takes inputs

from Y and converts them into outputs in X (e.g. f(yi) = xi) where X and Y are

random variables for message sequences with alphabets (ranges of values) y(1−n)

and x(1−n).

entropy The average surprisal of a random variable, expressed as H(X). Given by the

formula

H(X) = −
n∑

i=1

p(xi)logp(xi)

eRV Abbreviation for external random variable: the random variable which models

the content of a representation.

function The role performed, within a wider system, by a subsystem to enable the cog-

nitive capacity which the subsystem serves.

informational teleosemantics A branch of teleosemantics emphasising an input con-

dition on content. Defined by the use of information-relations between represen-

tations and contents in a theory of content.

iRV Abbreviation for internal random variable: the random variable which models

the system-side representation.
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item A term which is metaphysically neutral with respect to the properties of some

aspect of reality. Loosely, a “thing” which exists.

maxMI The theory that the content of a representation is that item in the environ-

ment, modelled as an eRV, which maximises mutual information with a represen-

tation, modelled as an iRV, relative to other eRVs within the set delineated by the

C-function of the subsystem housing the representation.

mutual information The amount of information in X which is about Y. Expressed as

I(X, Y ) or I(Y,X). Given by the formula

I(X, Y ) =
mx∑
i=1

my∑
j=1

p(xi, yi)log
p(xi, yi)

p(xi)p(yi)

naturalism Contrasted with pragmatic. Determined by scientific principles.

neural representation A representation for which the outcome values of its corre-

sponding iRV are specified as states of single or multiple neurons, such as firing

rate or voltage output.

noise A random channel value which interferes with the transmission of a signal from

source to receiver.

pragmatic Determined by heuristic considerations. For example, communicability, ar-

bitrary preference of explanatory project, perspicacity of relation to pre-theoretic

interests.
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proximal explanation An explanation of the system in terms of non-historical condi-

tions. Aimed at answering how-questions. For example “how is face recognition

performed?”

random variable “A random variable X is a function that maps each outcome x of an

experiment (e.g. a coin flip) to a number X(x), which is the outcome value of x.”

[Stone, 2015, p26]

realism The view that the formal language of a theory accurately describes some phe-

nomena outside of that language. For example, the view that information theory

accurately describes the interaction between the brain and the external world.

receiver The end of the communication channel, which processes decoded information.

The downstream subsystem which decodes information from a representation.

representation A state, structure, or processmediating between an input and an output,

and which has content.

source The item from which an eRV is modelled.

teleosemantics A branch of philosophy dealing with representational content. Defined

by the use of functions in theories of content.

theory of content A theory which allows one to specify, once the relevant empirical

facts are known, what the content of any given representation is.

theory proper That element of a scientific theory which is sufficient to explain the cog-

nitive capacity under investigation.
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ultimate explanation An explanation of the system in terms of historical conditions.

Aimed at answering why-questions. For example “why does AM in IT represent

⟨shape⟩?”

W-function Named after Larry Wright, W-function is an etiological form of function.

Defined by Wright as follows:

The function of X is Z means

(a) X is there because it does Z

(b) Z is a consequence (or result) of X’s being there. [Wright, 1973,

p161]
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