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Abstract

This paper contends with the notion that the methods of machine learn-
ing (ML) are unique among the tools of science in enabling a form of
theory-free inductive inference. I contest these assertions of epistemic
distinctness, attributing the prevalence of these views to an untenable
conception of scientific objectivity: what I term a theory-free ideal, in
homage to its normative counterpart. ML, as a formal method of induc-
tion, must rely on conceptual or theoretical resources to get inference off
the ground. By means of two case studies, I argue that the theory-free
ideal has a deleterious effect on the epistemic standing of ML-involving
science.

1 Introduction

In the decade elapsed since the deep learning revolution, machine-learning (ML)
techniques have established a firm foothold throughout the sciences. Successes
of such methods have ranged from real-time particle-event sortation at the Large
Hadron Collider (Duarte et al., 2018) to DeepMind’s Nobel prize-winning ac-
complishments with its AlphaFold 2.0 system for protein-structure prediction
(Jumper et al., 2021). According to certain spokespeople from science and engi-
neering communities, however, these achievements are trivial in comparison to
the potential such methods hold for scientific advancement.

Various commentators have asserted with some frequency that ML will insti-
gate profound—even “revolutionary”—changes to the nature of science and the
knowledge it produces (Anderson, 2008; Boge, 2022; Hey et al., 2009; Mayer-
Schonberger & Cukier, 2013; Society & Institute., 2019; Spinney, 2022; Sreckovié
et al., 2022). The people behind such claims see ML methods as holding the
potential to retire or else displace the role of theorizing in science (Anderson,
2008; Mayer-Schénberger & Cukier, 2013; Spinney, 2022; Srec¢kovié et al., 2022).
Desai et al. (2022) refer to this conception of an MIL-enabled scientific paradigm
as “the epistemically revolutionary new frontier raised by data science: the so-
called ‘theory-free’ paradigm in scientific methodology” (p.469). Some of these
statements regarding the scientific usage of ML echo proclamations that were



once made of domain-generic statistical analyses: Levins and Lewontin (1985)
write of the motivation behind principle component analysis (PCA) and regres-
sion techniques that researcher’s “assumption is that they are approaching the
data in a theory-free manner and that data will ‘speak to them’ through the
correlation analysis” (Levins & Lewontin, 1985, 156). We see this sentiment
echoed today in the assertion that big data analytic tools promise to allow the
raw data to “speak for themselves” (Anderson, 2008, 1).

This theory-freedom is intended as a negation of theory-mediation, theory-
drivenness, theory-involvement, and theory-ladeness. It is also, we will see from
an examination of the source literature, a denial that methods rest essentially
on domain-knowledge or prior conceptualization of the target phenomena, or
that they should be understood as representing features of target systems in
any inference-licensing respect. “Theory” is hence to be understood in a broad
and colloquial sense, as incorporating domain knowledge or conceptualization
of target phenomena. Subscribers to the theory-free ideal seek to purge science
of what they see as epistemically compromising arbitrariness and subjectivity.
This subjective element is brought on board when human critical thinking or
conceptualization of target phenomena play an essential role in shaping an em-
pirical research program.

Taken at face value, the claim that ML could enable a form of theory-free
inductive inference—or even inductive inference that differs qualitatively in its
degree of theoretical support—does not withstand scrutiny. That inductive
inference rests on pregiven conceptual infrastructure is, I take it, an effective
premise of all discussions of the subject since Hume. Neither does inductive
inference move along a sliding scale between theoretically and empirically driven:
induction is, definitionally, a form of inference that requires both theoretical and
empirical support. These are neither quantifiable nor scalar.

Ample scholarship in epistemology dating back centuries has characterized
induction. The present paper is not a thesis in epistemology, nor is it intended
as a revision to philosophical conceptions of induction, of which I take Hume’s
characterization to be adequate. My aim in this paper is, instead, to analyze
claims regarding the use of ML in science, its epistemic status, and its transfor-
mative potential. My engagement with these questions seeks to improve upon
prior philosophical treatment in distinguishing between normative and descrip-
tive agendas. Claims of the epistemic distinctness of ML, I contend, latch onto
real novelty in some instances of ML deployed toward scientific ends: potential
for misuse and lack of methodological standards. Instead of identifying this
as the epistemic problem it represents, however, claims of epistemic distinct-
ness and theory-freedom function to reify the (potential) misuse of ML-based
tools into an account of how these tools normally function, how they necessarily
function, or even how they normatively ought to function.

In the course of this paper, I will characterize the misdirected conception
of scientific objectivity implied by these claims. I refer to the meta-narrative
that endorses this notion of objectivity as a theory-free ideal, paralleling the
value-free ideal, which is its normative counterpart. This meta-narrative, I will
show, is detrimental to the epistemic soundness of science conducted with ML.



My argument proceeds as follows. Claims of the epistemic novelty of ML-
involving methods concerning their reliance on theory have been alleged by
both scientists and philosophers. I furnish exemplars of these in 2.2. Successful
inductive inference, however, requires background assumptions; this is one of
the defining characteristics of inductive inference, according to known formal
and epistemological accounts, as I show in section 2.4. This presents us with
a dilemma: either revise our understanding of induction, or conclude that ML
only enables inductive inference in virtue of theoretical input. I urge that the
effects of such beliefs on scientific practice with ML should be the most salient
consideration; we should accept the second horn for pragmatic reasons, which
I endeavor to motivate via case study. In Section 2.5.1, I show that when ML
is incorporated into scientific pipelines to epistemic success, it is in virtue of
working explicitly with theoretical resources. These come in at the junctures of
problem formulation, data collection and curation, model design, model train-
ing, and model evaluation. When, in contrast, investigators ignore or suppress
theoretical assumptions in pursuit of an ideal of theory-freedom, methodologi-
cal pathologies emerge: statistical artifacts are mistaken for structure, arbitrary
modeling choices or starting assumptions are mistaken for empirical discover-
ies, and downstream inference is rendered unreliable. A case study explored
in Section 2.5.2 illustrates this contrast class. I attribute the prevalence of the
theory-free conception of ML to a meta-narrative concerning ideals of scientific
objectivity: the theory-free ideal. 1 conclude with recommendations for scien-
tists in working explicitly with theoretical resources, and recommendations for
philosophers in their engagement with ML and the claims surrounding it.

2 Distinctness

2.1 The beliefs of working scientists

A monograph titled “The AI revolution in scientific research,” released jointly
by The Royal Society and the Alan Turing institute, offers scientists’ own assess-
ments of anticipated changes to scientific practice spurred by the involvement
of ML (Society & Institute., 2019). Summarizing the opinions of the assembled
scientists, the authors write that “AI” is set to have “a disruptive influence on
the conduct of science” (Society & Institute., 2019, p.10). Such pronouncements
appear to be underpinned by a conception of the workings of ML in science as
a theory-free enterprise, given the authors’ description of the normal function
of ML and data scientific methods. The standard way to apply ML in science,
they write, is “to start from a large data set, and then apply machine learning
methods to try to discover patterns that are hidden in the data—without taking
into account anything about where the data came from, or current knowledge
of the system” (Society & Institute., 2019, p.9). The authors explicitly contrast
this use case with the potential for more theory-driven research techniques, a la
PINNs (physics-informed neural networks). However, it is clear from the expo-
sition that a theory-agnostic conception of the typical function of ML models



informs the authors’ predictions of disruption.

Chubb, Cowling, and Reed (2022) conducted a survey of identified leaders
across various scientific fields concerning the adoption of AI/ML based methods
within their research practices. A consistent theme amongst the researchers
surveyed was the sentiment that “Al could prompt ‘unforeseen’ outcomes, po-
tentially leading to a reframing of disciplines, modes and methods of knowledge
production” (Chubb et al., 2022, 1442), and that “AI could be used in the
near future to bypass traditional means of knowledge production” (Chubb et
al., 2022, 1445). One interviewee explained the difference between “traditional”
and Al-based methods as follows: “[n]ormally the scientific progress goes like
this, so you have a hypothesis and then you collect data and try to verify or
falsify the hypothesis, and now you have the data and the data, so to say, dic-
tates you what hypothesis you can find. So, this is how methodologies, scientific
methods are changing” (Chubb et al., 2022, 1446).

These overviews of scientists’ perceptions of the place of Al in science, and
its potentially transformative role, paint a relatively coherent picture. Machine
learning, or “Al” enables scientists to carry out their work in a far more data-
driven, and far less theory-driven capacity. Certainly, some research paradigms
(or stages within a research pipeline) are more exploratory than others. A dis-
tinction between exploratory (broadly, data-driven) and explanatory (broadly,
theory-driven or theory-involving) research strategies is popularly held by work-
ing scientists. The picture these assembled voices paint, however, seems to point
to a lessened overall need for theoretical input within scientific discovery.

Articulations of the distinctness of ML emanating from science journalists &
la Anderson (2008), (Hey et al., 2009), Mayer-Schénberger & Cukier (2013), and
(Spinney, 2022) no doubt represent far more sensationalist visions for the role of
ML in science than most working scientists would assent to. The average scien-
tist would likely deny that AI/ML will soon altogether obviate the need for the-
ory, preconception, or domain-expertise within scientific knowledge-production.
Nevertheless, the overarching perception that the methods of science can or
should be rendered free from theory exerts a force on the research practices of
working scientists. Funding for grants and for institutes and centers, as well as
industry sponsorship for conferences, awards, and the like often hinges on sci-
entists conveying the novelty and disruptive potential of their methods which,
increasingly, is tied to an ideal of theory-freedom.

2.2 A philosophical defense

Philosophers have been quick to respond to assertions that the rising tide of ML-
adoption will enable a “post-theory science” (Spinney, 2022, 1). Some philoso-
phers have critiqued this vision of ML-infused science, some endorsed it, while
others have simply acknowledged its ubiquity (Alvarado & Humphreys, 2017;
Beisbart & Réz, 2022; Boge et al., 2022; Boon, 2020; Creel, 2020; Desai et al.,
2022; Duede, 2023; Hansen & Quinon, 2023; Kawamleh, 2021; Kitchin, 2014;
Leonelli & Zalta, 2020; Pietsch, 2021, 2022; Pigliucci, 2009; Rowbottom et al.,
2024, 2023; Sullivan, 2022; Sreckovi¢ et al., 2022).



Alvarado and Humphreys (2017) take stock of observations on ML and big
data from scholars hailing from a range of disciplinary backgrounds. These
scholars describe the widespread adoption of ML and “big data” analytic meth-
ods resulting in “a common epistemological effect” (Alvarado & Humphreys,
2017, 739). The primary manifestation of this “epistemological shift” being
that “[tJheory...at the level of how knowledge is produced and structured...[has]
been replaced by information stored in databases too large to read and processed
by algorithms too complex to understand” (Alvarado & Humphreys, 2017, 739).
If ML or big data analytic methods are indeed “interpretation-free,” Alvarado
and Humphreys write, this will entail “a permanent change in the way that
science is pursued” (Alvarado & Humphreys, 2017, 744). In a treatment of the
representational status of ML in science and its relation to the scientific realism
debate, Rowbottom, Curtis-Trudel, and Peden (2023) begin from the premise
that scientific ML “contrasts with traditional scientific modeling, where explicit
theories and models are used” (Rowbottom et al., 2024, 172).

In a 2021 paper, Duede writes that philosophers and scientists alike have
widely made claims of the epistemic distinctness of ML and its disruptive poten-
tial. Duede observes that “to scientists and science funding agencies alike, artifi-
cial intelligence both promises and has already begun to revolutionize...science”
and that “nearly every empirical discipline has already undergone some form
of transformation as a result of developments in and implementation of deep
learning and artificial intelligence” (Duede, 2023, 1089). But, as Duede notes,
philosophers and scientists, while agreeing on the revolutionary potential (or ac-
tuality) of AT/ML in science, have made separate meaning of it. Duede sets out
to address these discrepancies, attributing what he perceives as philosophical
pessimism concerning the role of ML in science, in large part, to “a failure on
the part of philosophers to attend to the full range of ways that deep learning
is actually used in science” (Duede, 2023, 1090). In his critique of philosophical
reactions to claims of the novelty of ML, however, Duede leaves these theses
unchallenged. I will argue that the failure Duede documents on the part of
philosophers to account for how ML might actually be implemented in scien-
tific practice is ultimately responsible for philosophical endorsement of claims
of ML’s distinctness.

Sreékovié, Berber, and Filipovié (2022) differentiate machine learning tech-
niques from standard practices in statistical modeling, arguing that statisticians
employ theoretical assumptions, while machine learning practitioners do not.
“ML models,” the authors write, “are constructed based on data instead of
theoretical assumptions about the target system.(Sreckovié et al., 2022, 166).

Sreékovié, Berber, and Filipovié¢ (2022) evaluate what they hold to be the
key differences between traditional modeling approaches and machine learn-
ing methods in terms of the explanatory capacity of both and their ability to
elucidate causal relationships. Sreckovi¢ et al. diagnose the methods of ma-
chine learning as uninterpretable, and not resting on theoretical considerations.
This, according to the authors, prevents the practice from getting at underlying
causes and furnishing explanations of natural phenomena. The ability of ML
techniques to provide prediction in the absence of explanation is projected by



the authors to alter the landscape of how we conduct science.

“In contrast to explanatory-focused statistical models,” Sreckovié et al. ar-
gue, “ML models reach predictions without the theoretical backup that supple-
ments the correlations found in the data with a potential causal interpretation”
(Sreckovié et al., 2022, 160). Machine learning, they argue, is “theory-agnostic”
in that “there are no a priori assumptions concerning the mechanism of the tar-
get phenomenon” (Sreckovié et al., 2022, 165). While the authors acknowledge
a sort of disappearing line between ML and traditional statistical techniques,
their emphasis is on drawing out broad characterizations of the two disciplines
and what separates them. Whereas for “traditional statistics, standard models
rely on the representation of underlying causal mechanisms, and they are used
for retrospective testing of an already existing set of causal hypotheses...ML
models are constructed based on data instead of theoretical assumptions about
the target system. The purpose of such models is primarily forward-looking, i.e.
to predict new observations” (Sreckovié et al., 2022, 166). Here, the contrast
the authors draw between broadly “data-driven” and “theoretically-motivated”
methods is telling. This distinction is not one the authors have introduced: such
a divide between theory-driven or hypothesis-driven research and data-driven
research is held widely among engineers and scientists. Sreckovi¢ et al. merely
provision a philosophical exposition and justification thereof.

In a similar vein, Boge (2022) speculates that a revolution in either scien-
tific practice or its epistemic footing may be in store owing to the adoption of
machine learning—specifically deep learning—methods. Boge’s argument rests
on the idea that deep learning is both instrumental in an idiosyncratic sense
among modeling approaches in the sciences, and that it exhibits a novel kind
of epistemic opacity to its deployers. These identifying facets of deep learning
pose an impediment to understanding and explanation (in the scientific sense),
especially when deployed in exploratory settings where the successful results
of scientific enquiry will require novel concept-formation. Owing to their di-
vergence from standard mathematical modeling practices in the sciences, Boge
claims, ML modeling techniques “have the potential to profoundly ‘change the
face of science” (Boge et al., 2022, p.71).

Boge urges that the distinction between the procedure of classical mathemat-
ical modeling or computer simulation in science and the application of machine
learning methods is that the former procedure begins with a conceptualization
of the target phenomenon under investigation, while this step is absent in the
use of ML. “The difference,” Boge writes, “between CS [computer simulation]
and DL [deep learning] may be summarized as follows: The former begins with
a conceptualization of the target, and from that predicts ‘hypothetical data’.
The latter begins with a conceptualization of data” (Boge et al., 2022, p.59).

Especially in exploratory modeling contexts, the lack of background theory
or conceptualization of the target phenomena is taken, by Boge, as a poten-
tially serious impediment to understanding. While Boge grants that DL models
might represent, he holds that they fail to be explanatory for lack of theoretical
context and conceptual content, writing that a “DL model...is conceptually too
poor to provide an understanding of underlying mechanisms” (Boge, 2022, 57).



Boge takes after de Regt in his stance on the relation between representational
status and explanatory status: “for representational models to explain, they
must also be constructed under the principles of an intelligible theory, where
a theory is intelligible if it has certain qualities that ‘provide conceptual tools
for achieving understanding’ (de Regt, 2017, p. 118)”(Boge, 2022, 54). Boge
predicts profound changes to the practice and epistemic products of science be-
cause ML-based tools will fail to provide understanding or explanations due to
their lack of theoretical or conceptual motivation and content.

Boge and Sreckovi¢ et al. both appear to sign onto the thesis that ML
methods are theory-free or devoid of some essential variety of conceptual con-
tent which enables them to serve classical explanatory or inferential roles in
science. The methods of ML are, hence, understood as distinct from canonical
modeling methods in science and traditional statistics. Boge and Srec¢kovié et
al. further contend that the widespread adoption of ML methods will catalyze
disruptive change in science, while Boon argues that the theory-freeness of ML
methods rules them out as viable tools for science. These scholars take the per-
ceived differences between “normal science” or even “real science” and machine
learning to amount to the degree to which they are theory-laden, theory-driven,
or conceptually rich. As I will demonstrate in the subsequent sections, no use of
ML in science is “theory-free,” and those that aspire to this ideal tend to result
in poor scientific practice.

Boon (2020) signs onto the distinctness thesis, maintaining that machine
learning methods are in a category apart from classical statistical or scientific
methods owing to their theory-agnosticism. “Machine learning,” Boon writes,
“is different from computer simulations, which utilize scientific knowledge to
build mathematical models...[t|]he machine-learning process does not draw on
scientific models that are constructed by means of theories, laws, mechanisms
and so forth. No theory or mechanism or law needs to be fed to the machine-
learning process” (Boon, 2020, 47). Interestingly, she diverges from the norm in
taking the distinctness thesis as a reason to reject the notion that ML will have
a transformative influence on the conduct of science. Boon denies that machine
learning methods will obviate the need for human conceptual apparatus in the
generation of scientific knowledge, arguing science to be an essentially theory-
involving activity. “[S]cience,” Boon writes, “...cannot be replaced by machine
learning technologies whatsoever since incomprehensive, opaque data-models do
not tell us anything meaningful about the world. Therefore, ‘real science’ and
machine learning technologies operate in very different domains and must not
be regarded as competing” (Boon, 2020, 58).

Boon, Boge, and Srec¢kovié¢ et al. each sign onto the idea that ML meth-
ods are in some sense theory-free or devoid of conceptual content, and hence
distinct from canonical modeling methods in science and traditional statistics.
Boge and Srec¢kovié et al. further contend that the widespread adoption of ML
methods will catalyse disruptive changes to science, while Boon argues that it is
precisely the theory-freeness of ML methods which rules them out as capable of
unseating existing modes of knowledge-production in the sciences. These schol-
ars take the perceived differences between “normal science” (or “real science,”



as Boon puts it) and machine learning to amount to the degree to which they
are theory-laden, theory-driven, or conceptually rich. As I will demonstrate
in the subsequent sections, no use of ML in science is “theory-free.” Scientific
applications of ML that aspire to this ideal of theory-freedom tend to result in
poor scientific practice.

3 Conceptions of scientific objectivity

The concept of objectivity is central to modern science, both as abstract ideal
and as a set of human practices. What variety of objectivity scientists ought to
strive for has been contested territory for centuries. One thread of this debate
concerns the extent to which scientific practices and the knowledge that they
produce are ineliminably structured by human values. Another concerns the
extent to which such practices and outputs are necessarily structured by theory,
in the sense of conceptual content, or prior commitment to the nature of the
subject-matter.

Philosophical conceptions of objectivity are rooted in accounts of the na-
ture and possibility of empirical knowledge. They are highly abstracted from
on-the-ground empirical practices and have little direct influence on them. But
scientists in modernity have operated with their own, albeit often implicit, con-
ceptions of scientific objectivity. These have permeated public conceptions of
science which, in turn, feed back into scientists’ self-conceptions of their work
and its epistemic foundations. Thus philosophical conceptions of scientific ob-
jectivity and meta-narratives of scientific objectivity come apart.

A recent literature on values in science has offered an extensive treatment of
the philosophical conception of objectivity as freedom from normative influence
and its corollary meta-narrative: the value-free ideal. Few historical interlocu-
tors have put forward explicit defense of objectivity as total value-agnosticism.
Instead, it has been argued that science strives to minimize the impact of human
values or to constrain their influence to appropriate venues and junctures. A
mostly implicit ideal of total value-freedom, however, is widespread and influ-
ential. Its influence extends to scientific practice, to public reception of science,
science education, and to the interplay of science and public policy (Douglas,
2009). Philosophers of science have argued that the end goal of total freedom
from normative influence is unachievable on both practical and in-principle,
epistemic grounds (Douglas, 2009; Elliott & McKaughan, 2014; Longino, 1990).
Denying the necessary influence of values on science, it is argued, merely ce-
ments them, lends them an air of objectivity, and renders them unavailable to
critical scrutiny.

So then, there is a broadly philosophical doctrine which conceives of scientific
objectivity as a minimization of the undue influence of normative values on
science. This doctrine comes apart from a scientific meta-narrative which pushes
for the total elimination of values in science. This meta-narrative, according to
feminist philosophers of science, is neither achievable nor desirable. I take it to
be important to make the distinction here between the well-reasoned doctrine



which has had actual historical proponents' and the harmful meta-narrative.
Strains of the values in science literature have had a habit of slurring these
together.

For our purposes, we can remain agnostic as to the truth of either the philo-
sophical doctrine on values in science or its parallel metanarrative. Here we are
concerned, instead, with a conception of scientific objectivity centered on the
appropriate purview of theory. Much like the value-centered conception, there
is both a reasonable doctrine and an extremefied meta-narrative. The doctrine
calls for scientists to constrain the influence of theory to appropriate venues. Af-
ter all, we do not want our research efforts to be artificially constrained by what
we think we know about the phenomena, what we have conjectured about the
phenomena, or simply the limitations of our theoretical apparatus. Essentially,
this doctrine calls for our research practices to be non question-begging.

What I am calling the theory-free ideal is the corresponding meta-narrative.
According to the theory-free ideal, science should strive to minimize, or even
eliminate theoretical input from empirical research. With the advent of ML-
assisted science, belief in the narrative of theory-freedom has become common-
place. Leonelli (2020) observes that one of the dominant responses to the rise
of ML and big data analytic methods in science is to see it as a championing
of what I have here dubbed the theory-free ideal: “[one] way to interpret the
rise of big data is as a vindication of inductivism in the face of the barrage of
philosophical criticism leveled against theory-free reasoning over the centuries”
(Leonelli & Zalta, 2020, Sec.6, Par.4). The meta-narrative that tells us that sci-
ence can be rendered theory-free is not innocuous: it effectively serves to conceal
loci of theoretical input and reifies the implicit beliefs of uncritical scientists.

No doubt, the deep incorporation of ML methods into empirical research
pipelines brings about changes to where domain knowledge and theoretical con-
siderations come to bear on the scientific process and its outputs. The case
studies reviewed in Section 2.5 are revelatory of some of these differences. Fun-
damental changes to the nature and loci of theory-impingement, however, have
occurred continuously throughout the history of science. The development of
computer simulation, sampling methods, or the formal apparatus for statistical
analyses essentially shifted where theoretical considerations came into play in
the inferential process. So, too, for that matter, did the Newtonian style of
mathematical thought-experimentation and his method of fluxions. Novel con-
ceptual tools entail novelty to the nature of conceptual influence on the brute
work of empirical inference. None can obviate the need for conceptual infras-
tructure, nor can they open up novel pathways to knowledge of the world.

I For instance, Max Weber.



4 The necessity of theory

4.1 In induction

Inductive inference is a form of inference grounded in empirical observation.
Induction is contrasted against deduction, and lacks the guarantees of deduc-
tive inference. The 18th century philosopher David Hume’s several treatises on
the subject lend us our modern philosophical conception of induction through
a skeptical appraisal—what has come to be known as the problem of induc-
tion. As Hume motivated the puzzle, there is no frequency of occurrences of
an identical phenomenon that would justify inference to an inductive general-
ization with certitude. No matter on how many occasions we have seen the
sun rise, we are not licensed to the certain knowledge that it will rise again
tomorrow. Inductive generalization, then, is a means of arriving at knowledge
requiring infrastructure that goes beyond a mere spate of observations. Induc-
tive generalization requires background conceptual infrastructure, or theory, to
get off the ground. Indeed, the very ability to categorize several experiences
as “instances of the same phenomenon” requires a concept or “theory” of the
phenomenon. Such classifications are, of course, essential to inductive gener-
alization. That conceptual or theoretical resources must be brought to bear
on an inference procedure to license inductive generalization is essential to our
modern philosophical understanding of induction.

4.2 In science

The work of science produces empirical knowledge by means of inductive in-
ference.? Induction, in turn, rests on theoretical resources. Sellars (1956)’s
characterization of the “myth of the given” offers an account of the necessity of
conceptual frameworks in the act of observation and inductive generalization,
without which science could not generate empirical knowledge. Norton (2003)’s
“material theory of induction” describes how successful inductive inference is
never licensed by universal, domain-generic formal rules, but always proceeds
by the application of local rules warranted by hard-won empirical—in Norton’s
words, “material”’—facts tied to a specific scientific research context (Norton,
2003).

Turning to scientific practice, even simplistic experimental designs reveal
the nature and extent to which scientific observation and inference are theory-
inflected. The very act of investigation involves commitment to the existence
and in-principle measureability of some phenomenon. If we are making measure-
ments and performing quantitative analyses thereon, we are further committed
to the phenomenon being amenable to quantitative representation and analysis.

2While certain 20th century philosophers of science, including Hempel and Popper, made
cases for the role of deductive reasoning in scientific inference, these projects are generally
considered to have failed by their own lights. E.g., Popper’s admission that some hypotheses
could receive greater or lesser evidential corroboration pushes him to an inductive view of
scientific inference.
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How we choose to measure and analyze records of a phenomenon generally in-
cludes a commitment to its quantitative ontology, e.g., is it categorical, ordinal,
or cardinal? Measurement cannot be total, and therefore there is always a com-
mitment as to what to look at experimentally and what to exclude. The very
design of our instruments of measure and their calibration includes various com-
mitments to the nature of the worldly phenomena under investigation. There
is always, for instance, a commitment to the appropriate level of abstraction at
which to study the phenomenon in question, which manifests in settings on in-
struments of measure, such as degree of magnification or periodicity of sampling.
In fundamental physics, when we cool our instruments to reduce the contami-
nation of our measurements by thermal noise, it is our prior theoretical grasp
on the target phenomena, the physical systems under study, that motivates us
to do so.

Crucially, “data” does not refer to physical phenomena.®> “Data” refers
to abstract, formalized representation of the results of direct observation or
measurement. Data must be capable of serving an evidential role in licensing
inferences about natural phenomena. Given that data is a form of mathemat-
ical representation, it does not intrinsically hold semantic meaning or refer to
empirical phenomenon. The meaning that data holds for scientific inference ex-
ists in virtue of human interpretation and empirical grounding. For the use of
any mathematical analysis—including the modes of analysis enabled by ML—
to ground any scientific inference, it must be given conceptual content. This is
already an essential form of theory-ladenness. The parameters of any machine
learning model and its outputs are a step removed from input data, but are
likewise mathematical representations. The data-derived parameter weights of
a neural network, for instance, capture salient statistical patterns in the training
data which are then leveraged to regress or classify the data on which they are
tested or deployed. They represent abstract features of the training data. The
representational status of neural network models is derivative of the represen-
tational status of the data on which they are parameterized.

A number of philosophers have provided strong rationales for rejecting the
possibility of theory-free science. Leonelli (2012, 2018, 2020) stresses the essen-
tial theory-ladenness of data, decrying the popular conception of data as “raw”
and “objective.” Leonelli (2018) investigates “the different extents to which
theory—understood broadly as a set of theoretical commitments and goals—
impinges on inferential processes from data” (Leonelli, 2019b, 22). In several
book-length treatments of the use and interpretation of data in scientific prac-
tice (e.g., (Leonelli, 2018, 2019a; Leonelli & Tempini, 2020; Leonelli & Beaulieu,
2021)), Leonelli concludes that there is no place in scientific practice in which we
have data that is not already, to some degree, shaped by our existing conceptual
or theoretical grasp on the phenomenon, commitments to epistemic goals and
questions to be answered, idealizations, and auxiliary assumptions.

This view is a rejection of “[t]he naive fantasy that data have an immediate
relation to phenomena of the world, that they are ‘objective’ in some strong,

3

3See Sections 3.3.2 and 3.3.3
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ontological sense of that term, that they are the facts of the world directly
speaking to us” (Longino, 2020, 391). Bogen (2016) argues that it is the very
fact that data is not raw, that it is, in a sense, “impure” that makes it able to
serve the meaningful epistemic role it does. Boyd (2018); Boyd & Bogen (2009)
argues further that it is not in spite of, but owing to the theory-ladenness of
data that empirical science garners us its epistemic results.

4.3 In machine learning

Inductive inference is the procedure of gaining knowledge by extrapolating from
a limited number of observations to a more general class. The fundamental task
of ML is the extraction of statistical patterns from a training dataset and the
extrapolation of this pattern to prediction or classification tasks on unseen in-
stances. ML is therefore, straightforwardly, a class of formal methods for induc-
tive inference (Bergadano, 1993; Harman et al., 2007; Sterkenburg & Griinwald,
2021). It is worth noting here that this position is not altogether uncontested.
Buchholz & Raidl (2025) argue that, while general consensus holds that “ML
algorithms inductively infer general prediction rules from observations,” a fal-
sificationist appraisal of statistical learning theory reveals that ML “combines
the methodological approaches of deduction and induction” (Buchholz & Raidl,
2025, p.2). Even a Popperian perspective, however, must admit to an essential
inductive component to ML enabled inference.

If inductive generalization writ large cannot be accomplished without theo-
retical input, then no specific formal inference scheme can accomplish inductive
generalization without theoretical input. Any ML-enabled inference, therefore,
requires theoretical input—whether explicit or implicit. One of the primary
places this theoretical input comes into play is in problem formulation,, which
includes the articulation of an inference task, the conceptualization of input
data and learning objectives, and the election of success criteria.

We have discussed that inductive inference is data-driven, that scientific
inference is data-driven, and that data, in these contexts, must be shaped by
human concepts or theoretical resources in order to scaffold these inferences.
The data that serves to support inference in ML is no different. Several accounts
detail the role of theory in the variety of data on which ML is trained and
deployed—often referred to as “big data.”

Kitchin (2014) echoes that features of data collection and processing render
data essentially theory-laden, in light of culturally-shared and ubiquitous back-
ground theoretical understanding of phenomena. Further, as Kitchin argues,
data deprived of all semantic meaning would be uninformative, that is, unable
to serve their essential epistemic role of scaffolding inference. In a similar spirit,
Frické (2015) argues that theory must guide the selection of data to scaffold
algorithm-assisted inference. Hansen & Quinon (2023) argue that ML-assisted
science can never be made theory-free, as theoretical considerations necessarily
enter in at the junctures of problem-formulation, data collection and curation,
data pre-processing, and model-selection and validation. Desai et al. (2022)
note that the theory-ladenness of observation makes it impossible to make ob-
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servations or take measurements without the guidance of background theory.
Desai et al. echo common sentiments among philosophers about the prospects
of a wholly predictive science: such a view of the process of arriving at empirical
knowledge is a naive one, and ignores that one of the primary aims of science is
explanation or understanding of the world.

Interestingly, it is not only philosophical considerations that lead us to the
conclusion that ML-guided inferences cannot be rendered free from theory. For-
mal results from statistics and ML independently reveal the reliance of such
methods on inductive biases or a priori constraints on the hypothesis spaces
through which they search. Statistical learning theory (SLT) is the branch of
theoretical computer science that looks to supply a theoretical basis (and for-
mal guarantees) for inference with ML. The relation between ML/SLT as formal
inductive method and the philosophical study of induction has not gone unno-
ticed: a number of scholarly works have treated the intersection of these subjects
(Bergadano, 1993; Harman et al., 2007; Sterkenburg & Griinwald, 2021). These
texts have drawn out the philosophical relevance of learning theoretic results for
both the study of induction and the practice of ML. The most salient results
for our purposes are the no free lunch (NFL) theorems (Wolpert, 1996).

The no free lunch theorems are a set of results in statistical learning theory
demonstrating the impossibility of a universally valid and purely data-driven
inference rule. Though the philosophical implications of the theorems are vexed
(see (Sterkenburg & Griinwald, 2021)), with some artistic license, we may think
of the no free lunch theorems of supervised learning as a formalization of the
idea that inductive inference would be impossible if the reality we inhabited
(and, hence, the data we learn from) did not exhibit some (learnable) regularity
(Wolpert, 1996).# In learning from data we must, therefore, make assumptions
about the friendliness of that data to our epistemic intentions; empirical data
alone is not enough to get induction off the ground (Sterkenburg & Griinwald,
2021). Learning from data is possible only with the incorporation of theoretical
assumptions, in the form of prior selection of a model class, hypothesis class,
or priors. As Gillies writes in Artificial Intelligence and Scientific Method, “in-
ductive rules of inference. ..do not generate hypotheses from data alone. .. but
from data together with some background knowledge (or assumptions)” (Gillies,
1996, p.39).

5 The role of theory in scientific ML

I have argued that the notion that widespread adoption of the methods of ML
in science will obviate the need for theorizing is 1. widespread, 2. symptomatic
of a theory-free ideal in science, and 3. untenable. In the final section of

4 More technically, the NFL theorems are an impossibility result for the existence of any
learning algorithm that outperforms others on generalization to all learning environments,
given the assumption of a uniform probability distribution over all possible learning envi-
ronments. This uniformity assumption is, in a sense, an inversion of Hume’s “uniformity of
nature,” which is the stipulation of structuredness to reality /experience/data.
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this paper, I will attempt to illustrate its perniciousness by means of two case
studies, which concern instances of actual application of modern ML methods
in scientific practice. The first case study concerns a use case for ML in science
that is deeply theory-laden and self-aware in its theory-ladenness. This use of
ML in science has marked a scientific breakthrough, and been a resounding
epistemic success. The second study concerns a use case for ML in science that
is marketed as bypassing the need for theory. This application of ML has been
decried as statistical malpractice, its results at best uninformative, at worst,
dangerously misleading. With these cases I aim to show the unavoidability of
theoretical work in scientific applications of ML, and the deleterious effects of
the ideal of theory-freedom on scientific practice.

5.1 The unreasonable effectiveness of AlphaFold

AlphaFold 2.0 is heralded as the most impressive result that ML methods have
achieved for science to date. To appreciate the unprecedentedness of the Al-
phaFold results, we must first appreciate the scientific problem it is confronted
with. The problem of protein folding is notoriously difficult. There is very little
that we can say from the genotypic specification of a particular protein about
how it will fold. Mapping from sequences of adenines, cytosine, guanines, and
thymines to a menagerie of amino acids is relatively straightforward, as bio-
logical problems go; so is predicting the polypeptide chains these amino acid
sequences will form. What mess of three-dimensional spaghetti those amino
acid chains will assume once synthesized, however, is another matter entirely.
This is an essential problem for the biomedical sciences. The three-dimensional
anatomy of protein structure determines its function and is thus a crucial object
of scientific inference.

To truly comprehend the difficulty of the protein folding problem—and how
the methods of machine learning were able to get around it—we first have to rec-
ognize that protein structure is understood at four levels. DNA is a string com-
posed of four alternating base pairs. It encodes information in sequence. When
proteins are assembled, that DNA is read, codon by codon, and a polypeptide
chain is built up from twenty amino acids on the basis of these instructions.
These amino acid sequences are dubbed the “primary structure” of a protein.
All amino acids are composed of the same base molecular structure, which will
bond together to form the backbone of the polypeptide chain, containing an
a-carbon, an amino group, a carboxyl group, and a hydrogen. From this molec-
ular backbone extends the R-group or side chain, the determinant of the amino
acid’s “flavor.” The secondary structure of a protein refers to the morphology
that polypeptide chains take on on their own, owing to bonding patterns in
the backbone. The morphology of these peptide chains results from local inter-
actions between adjacent and semi-adjacent molecules in the backbone of the
peptide chain. Owing to the periodicity of the placement of amino acids with
certain valences (and other molecular-bond determining features) in the chain,
they will typically either form what are known as « helices or 5 sheets. Up until
this point things have remained relatively straightforward, as biological prob-
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lems go: we have a basic, repeated molecular structure and its self-interaction
in the form of hydrogen bonding.

The tertiary structure of a protein is determined by the R-groups of the
amino acids. Recall that these come in twenty flavors. Recall that virtually all
forms of non-covalent bonding are available to these molecules now. Recall that
amino acids can exhibit hydrophobic and hydrophilic proclivities. If a protein
is composed of more than one polypeptide chain, it will have a quaternary
structure as well. At the tertiary and quaternary levels of protein structure, we
have advanced from assembling text from bit strings to attempting to predict all
of the ways in which many distinct kinds of spaghetti thrown together in a pot
can cohabitate, given six dimensions along which spaghetti substructures may
or may not like to interact. Also, the spaghetti exhibits quantum behaviors.

At first blush, this seems like an unsolvable problem. The initial trick—the
trick that gets existing bioinformatic solutions off the ground—Ilies in noting that
when we have a variant in one amino-acid we can see what non-local variants
tend to co-vary along with it. This begins to tell us something about what
might be touching what in the tertiary and quaternary protein structures. Still
a difficult problem, but more manageable.

The AlphaFold team began by creating their own sequence database—mnow
the largest existing database of its kind—by large-scale clustering of existing
sequence repositories. DeepMind’s AlphaFold 2.0 takes an amino acid sequence
as input in its pre-processing stage and derives a multiple sequence alignment
(MSA). An MSA encodes evolutionary information, usually highlighting rela-
tionships of homology. In addition to the primary amino acid sequence and
MSA, AlphaFold is also supplied as input database-derived templates—three-
dimensional atomic maps—for a small number of sufficiently similar homologous
protein structures. Distance and orientation features and sequence features are
derived from preexisting template representations to form what the AlphaFold
team dubs a pair representation, encoding relationships between pairs of amino
acid residues.

AlphaFold treats the prediction of 3-dimensional protein structure from these
pair representations and MSAs as a graphical problem, rendering the represen-
tations in the primary trunk of the model architecture into gradated bitmaps.
The problem formulation for the DeepMind team was to “view the prediction
of protein structures as a graph inference problem in 3D space in which the
edges of the graph are defined by residues in proximity” (Jumper et al., 2021,
585). The core structure of AlphaFold 2.0 is a transformer: a form of DNN
which exploits parallelization and attention mechanisms to incorporate contex-
tual factors in the data at multiple levels of abstraction simultaneously—and,
importantly, enabling information from these levels to ‘talk to’ each other. Al-
phaFold passes both the MSA and the pair representation (separately) back and
forth through the trunk of the model for a set number of iterations (48 blocks)
per recycle, progressively refining the representations, and allowing the two dis-
tinct representations (MSA and pair representation) to influence one another
as each is refined. The output of this refinement procedure is then, in the final
stage, fed to a structure module that uses Invariant Point Attention to output
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atom coordinates. The predicted coordinate map is then passed, with MSA
and pair-representations, back through the trunk. This is repeated for three
iterations until a final predicted 3D protein structure is achieved.

Let us draw out what is salient about this scientific procedure for our anal-
ysis, the aim being to examine the role played by theoretical considerations.
The AlphaFold team explicitly incorporate theoretical resources at the stage
of data provenance and engineering, the stage of architecture design, hyperpa-
rameter selection and model training, and at the stage of model evaluation and
interpretation.

In the first place, theory integration comes in at the level of the data in
terms of what the data ultimately represents and how it is imbued with that
representational content. The data on which AlphaFold is trained is richly
structured by existing empirical knowledge of the target domain (the molecular
structure of proteins and their evolutionary trajectories) and our theoretical
understanding thereof. AlphaFold sits atop a wealth of domain knowledge about
the form and function of proteins. Theory also comes into play in how the data
is handled for the specific task in question and how it is made to serve as
evidence in this task. AlphaFold is, at its core, an instance of (semi-)supervised
learning. The exercise is premised on the idea that the rules of association
between amino acid sequences and three dimensional protein structure lie latent
in cross-taxa protein structure data. It is further premised on the supposition
that the systematic breakdown in protein structure and function resultant from
certain amino acid substitutions can be leveraged to learn the complex bonding
affinities governing 3-dimensional protein structure. Part of what is noteworthy
in this case study is the insight to take the publicly available data and turn it into
novel representational forms in multiple places: combining MSAs and templates
to create pair representations, and projecting those into effective heatmaps of
sequence-structure associations so that the inference task could be treated like
a graphical problem.

The architecting of the various model components utilized in AlphaFold 2.0
was similarly bound to theoretical considerations. AlphaFold is not a domain-
generic model; the model architecture is hand-tailored to the specific task of
learning to predict three dimensional protein structure from MSAs and pair
representations—a novel representational form for the task. AlphaFold 2.0 em-
ploys a transformer network that is designed to iteratively refine progressively
more accurate guesses at the true protein structure. The transformer trunk
utilized in AlphaFold was created to combine and refine representations of the
specific form it is fed in a novel training and deployment procedure. Perhaps
the most strikingly theory-laden aspect of AlphaFold 2.0 is the engineering of
specially tailored loss functions. In training a DNN, a loss function governs how
the distance metric is calculated between present output and desired output of
the model. In a typical neural network training regime, the error term is then

5Supervised learning methods train a model to approximate a human categorization or
decision, known, in ML, as a label. Unsupervised learning methods, by contrast, work to
discover patterns from unlabelled data. Semi-supervised learning incorporates both labelled
and unlabelled data.
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backpropagated through the network, layer by layer, updating the weighting of
the model’s parameters so as to minimize the gradient of the loss. In specifying
the loss function, machine learners are able to express precisely what it is that
they are interested in learning for a particular task. In AlphaFold 2.0, the loss
function is heavily tailored to the problem of predicting folded protein structure
from amino acid sequences. The researchers employed “a loss term that places
substantial weight on the orientational correctness of the residues” (Jumper et
al., 2021, 585). Loss terms specific to the learning of various structural features
of protein folding along a number of dimensions were employed at all stages of
training and fine-tuning: “satisfaction of the peptide bond geometry is encour-
aged during fine-tuning by a violation loss term” (Jumper et al., 2021, 586-587).

Finally, model-evaluation, that is, judging the success of the trained model
and interpreting its results requires integrating the resulting predictions of Al-
phaFold into existing biological knowledge. We can only judge the success of
such a model when it is understood against the backdrop of our prevailing scien-
tific accounts. AlphaFold 2.0’s success was only legible in the CASP14 (Critical
Assessment of Structure Prediction) experiment in achieving at or near the per-
formance of theory-guided and experimentally-obtained protein structures. We
can likewise only put the results of such modeling efforts to use when we have
accommodated them within a theoretical framework.

5.2 Transcriptomics

A new research pipeline involving the application of multiple dimensionality
reduction transformations in sequence to transcriptomics data has become pop-
ular in recent years. These methods take datasets originally expressing hun-
dreds of thousands of dimensions and successively transpose them down to
lower and lower manifolds, ultimately outputting a colorful 2-dimensional plot
which researchers interpret both visually and via quantitative metrics. These
plots are taken to represent meaningful groupings of samples according to gene-
expression. Computational biologists Tara Chiari and Lior Pachter investigated
the credentials of these methods, finding them to fall short of good scientific
and statistical practice in key respects (Chari & Pachter, 2021). These dimen-
sionality reduction methods are motivated over more traditional techniques in
transcriptomics by appeal to their data-driven nature and their relative lack of
human input. As the critical review by Chari & Pachter (2021) reveal, this way
of selling the methods and their capabilities obscures 1. How they distort or
discard data and the informative patterns it is intended to reveal, 2. Aspects
of the methods under a researcher’s control, 3. The human role in interpreting
(or misinterpreting) exploratory visualizations of this nature.

Single-cell transcriptomics offers an approach to inferring cellular-level gene
expression. The technique is utilized for identifying cell populations, modeling
transcription dynamics, inferring the developmental trajectories of cellular pop-
ulations, and monitoring changes in cell populations relative to health status.
Single-cell transcriptomics emerged with the availability of mass quantities of
high throughput RNA sequencing and expression data. It is typical in such
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exercises to be working with datasets which possess hundreds of thousands of
feature dimensions; expression data for thousands of genes across millions of
cells (Kobak & Berens, 2019). For this reason, researchers typically employ
dimensionality reduction techniques. Dimensionality reduction is a method of
mapping a high-dimensional dataset to a lower-dimensional space—or embedding
higher-dimensional data within a lower-dimensional embedding space. Dimen-
sionality reduction techniques are used to distill essential patterns from large
datasets, make analyses tractable, and isolate signal from noise. Dimensionality
reduction is a method of unsupervized ML, meaning it works by extracting the
contours of data, rather than working to extrapolate predefined success criteria
encoded in labeled data as in supervised learning.

A now established workflow in single-cell transcriptomics involves apply-
ing dimensionality reduction techniques sequentially to high-throughput RNA
expression data; first linear methods which reduce the dataset to tens of di-
mensions using principle component analysis (PCA) or analogous techniques of
dimensionality reduction, followed by one of two purpose-built two-dimensional
nonlinear reductions: t-distributed stochastic neighbor embedding (t-SNE) and
Uniform Manifold Approximation and Projection (UMAP). These methods pro-
duce visualizations for both qualitative and quantitative exploratory data anal-
ysis.

The intuition behind using dimensionality reduction techniques in this way
is as follows. The data on which analyses are run has a certain number of
features, which determine the dimensionality of the dataset. The data we
are looking at can then be thought of as points lying within a space of that
many (n-)dimensions. The specific datapoints we are seeking to characterize lie
along a (likewise n-dimensional) manifold within that space. Advanced statis-
tical methods like t-SNE and UMAP are designed to be capable of transposing
very high-D data down to low-D embedding spaces while preserving informative
structure and discarding irrelevant dimensionality. These methods try to distill
the relationships between datapoints and their neighbors and preserve these in
projecting the data down to lower-D spaces.

In the transcriptomics workflow under critique, PCA is first run on the
original data, creating a linear transformation down to a space with tens of
dimensions. This is followed by one of two nonlinear reductions: t-SNE or
UMAP. The t-SNE method works within the high-D embedding to calculate
pairwise similarities using a t-distribution and then runs a distance-preserving
embedding into a lower-D space. UMAP works according to the same general
principle, but has more advanced mathematical underpinnings and stronger
theoretical guarantees. UMAP first builds what is called a fuzzy simplicial
complex and from this constructs a low-D graph optimized to express the salient
distances represented therein. UMAP outperforms t-SNE in preservation of
global structure.

In order to be useful tools for the kinds of inferences transcriptomics aims
for, these methods must faithfully preserve both local and global structure.
It can be difficult to independently verify the success of such methods when
used in exploratory data analyses with complex data, where ground truth is
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unavailable. One available means of validating these methods is to draw a
very simple shape in high-D, replicate the dimensionality reduction workflow,
and determine whether the original structure can be recovered. In their 2021
probe of this now-standard transcriptomics workflow, Chari and Pachter do
just this: using UMAP to produce a 2-dimensional representation of a manifold
whose structure is already known. The researchers found that not only was
the original structure so obscured as to not be inferrable from the resultant
embedding, but erroneous groupings of the original structure were introduced
in the transformation.

This procedure was one among a series of analyses carried out by Chari &
Pachter (2021). Taken together, their assessments demonstrated that the prac-
tice of repeated application of dimensionality reduction techniques introduced
heavy distortions to the original manifold representation. Critically, Chari and
Pachter’s analyses reveal that the now-standardized PCA plus t-SNE or UMAP
workflow is incapable of preserving the interpretively salient features of the
datasets under investigation: local structure, global structure, distance, and
continuousness (Chari & Pachter, 2021). What is more, interpretive practices
surrounding the resulting visualizations led to erroneous or conflicting conclu-
sions.

Exploratory, data-driven methods like the transcriptomics workflow under
scrutiny are motivated on the grounds of their supposed empiricism; they are
claimed to be untainted by human bias and unconstrained by existing hypothe-
ses. These applications of dimensionality reduction techniques, in particular, are
lauded as handling “all data and all relationships;” however, this common prac-
tice “distorts data in obscure ways, attempts to pack the capabilities of many
different analyses into one space, and is easily manipulated” (Chari & Pachter,
2021, p.15). Chari & Pachter (2021) refer to the use of dimensionality reduction
techniques in transcriptomics as a “blind application” of “heuristic procedures”
(p.13), arguing that “there is little theoretical support for this practice” (p.1).
As substitute for such (supposed) atheoretical practices, Chari and Pachter en-
dorse “targeted analyses” and “hypothesis-driven biological discovery” (p.15).

While the heart of Chari and Pachter’s critique is a demonstration of poor
practice involving the combined t-SNE/UMAP workflow, they point clearly to
alternative approaches, including semi-supervized learning methods and tar-
geted embeddings for specific featural dimensions. The ambitions of such anal-
yses are, necessarily, more constrained than those of sequential embedding
pipelines. They require specifying in advance what features of the data are
under investigation. They also require making explicit what assumptions go
into the analysis: “it is possible to construct embedding spaces which more
explicitly control and improve nearest-neighbor structure and retention,” write
Chari and Pachter, “[hJowever, such optimizations require making an assump-
tion regarding the appropriate distance/similarity metric, as is generally the
case with the neighborhood-based analysis methods ubiquitous across the tasks
[on which t-SNE/UMAP are applied]” (p. 14).

The authors of the critique endorse the methods of dimensionality reduc-
tion in more limited, principled, and theory-informed applications to transcrip-
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tomics: “By targeting the objective of an embedding...one can take advantage of
prior knowledge/annotations and more directly determine the necessary dimen-
sionality for a given question” (Chari & Pachter, 2021, 15). Such alternatives re-
quire incorporation of domain expertise, critical thinking, and the ability to both
identify and (statistically) articulate what you are looking for—characteristics
markedly absent from the t-SNE/UMAP workflows under scrutiny.

5.3 Takeaways for ML in scientific practice

The vast majority of applications of the tools of ML to science have been run of
the mill: automating laborious processes, achieving minor gains in efficiency or
accuracy over human classification or “analogue” statistical techniques without
notable breakthroughs in the variety of knowledge gained by their use. The
accomplishments of AlphaFold 2.0 are a striking departure from these more
quotidian uses. The scientific community has acknowledged AlphaFold as a
resounding success; perhaps the greatest win for ML in science to date, if the
Nobel Prize is any measure. No other application of ML to science has achieved
quite so stark an advantage over pre-existing techniques.

Paralleling the mounting successes of ML in scientific application are a grow-
ing number of instances of scientific ML gone wrong: ML-involving research
practices deemed deficient by the scientific communities in which they are em-
bedded, e.g., (Goddard et al., 2018; Andrews et al., 2024; Bowers et al., 2023).
Some of these replicate the same pattern of errors observed in our transcrip-
tomics case study, and can be traced to the same root cause.

Goddard et al. (2018), for example, offer a critique of a strikingly similar mis-
use of dimensionality reduction techniques in neuroscience. These are, like the
use of PCA, t-SNE, and UMAP in transcriptomics, unsupervised, exploratory
uses of dimensionality reduction techniques. Like the transcriptomics case, these
are ML methods typically reserved for rote data transformation that have been
ambitiously repurposed for inference to the structure of the target system; in
this case, not gene expression dynamics, but the neural representation of visual
features. Goddard et al. (2018) reveal the inadequacies of these methods by
an approach similar to that employed by Chari & Pachter (2021): applying the
methods to areas with known ground truth, revealing, in the process, that the
methods are incapable of recovering the most basic features of encoding.

The methods of ML are increasingly saddled with more and more ambitious
tasks in science: extending far beyond mere signal processing to playing a fun-
damental role in inferring the structure of our natural world. When ambitious
scientific applications of ML, like AlphaFold, have succeeded, it is in virtue of
the conceptual resources they have incorporated. In this sense, the conclusion
I reach aligns with reasoning expressed in Boge, Srec¢kovi¢ et al., and Boon:
theory-involvement is a requisite feature of our conceptual instruments in sci-
ence for them to be capable of elucidating previously unknown truths of our
natural world from data. The issue is that the perfectly theory-free vision of
ML in science, the primary object of these scholars’ concerns, is neither the nor-
mal nor necessary operation of these methods. It singles out either a strawman
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or a failure case.

6 Conclusion

It has been alleged by representatives from science and engineering communities
as well as philosophers of science—reflected in the texts handled in this paper—
that the methods of ML, loosed on sufficient data, are capable of discovering
meaningful patterns, natural joints, or mind-independent truths of their own
accord. This is believed to be possible in the absence of input from human
theorizing or conceptualization of the target system. Inductive inference, how-
ever, is understood by philosophers to rest essentially on theory. A dilemma
emerges, forcing us to elect between a refutation of the thesis of theory-freedom
or a revision to our standing conception of induction. As I have argued in this
text, the ideal of theory-free learning via ML from “raw data” is a confused
one. Incorporation of domain expertise is crucial for epistemically responsible
deployments of ML, within and without science proper.

Advancing the state of the discourse away from false dichotomies and mis-
directed concerns is essential, for there is both much that is interesting and
potentially novel about ML—DL in particular—and much at stake in its appro-
priate use. Where to localize theoretical considerations in DL-based scientific
workflows appear to differ substantively, along various dimensions, from various
canonical modes of scientific or statistical modeling.

On a conventional view of experimental science—one held widely by modern
scientists across disciplines—we are typically formulating hypotheses and going
out to collect data capable of adjudicating between our hypotheses. Thus the
ways in which our conceptual grasp on the target phenomena come into play
in how the data represent the target are specific to the epistemic concerns of a
particular scientific or modeling exercise. In applied ML, we are often handed
data corpora or else construct them from amalgamations of preexisting datasets.
This means that a significant amount of the interpretive work—the work of
mapping the data onto target phenomena, imbuing it with representational
status and content—is work done before the modeler ever comes in contact
with the data. This practice seems to defy Bogen and Woodward’s (1988) claim
that data are intrinsically limited to serving an evidentiary role in a particular
experimental context (Bogen & Woodward, 1988).

Theoretical or interpretive work typically comes in again in the problem
formulation, in the engineering or choice of model architecture, and in model
training regimes, including choice of hyperparameters and loss or cost functions,
as seen in the case of AlphaFold. Theoretical considerations further come in at
the level of model evaluation, in our formal assessments of the success of the
modeling exercise. Finally, such considerations come into play in what we take
ourselves to have learned from the model output and, effectively, in how the
model is wielded, or the interventions predicated thereon. Undoubtedly, the
accelerating adoption of ML-based methods will bring about changes to on-
the-ground research practices, including changes to the loci of theoretical input
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thereon. Such changes, however, will have to be not only domain-specific, but
specific to the role with which ML methods are saddled in particular applica-
tions.

The landscape of science is also undergoing significant changes today, which
are worthy of philosophical scrutiny in their own right. Changes to the social,
institutional, governmental, and economic infrastructures that support science,
and to the knowledge economies it results in, are a rich philosophical subject.
These include the fragmentation and specialization of science, the procedural-
ization of science, its automation, the progressive increase in the distribution of
intellectual labor it involves, the extraction of the knowledge of domain experts
and its mechanization and codification into operational formulae. Reactions
to the adoption of ML in science have largely framed ML as catalyst to these
changes. I wish to counter that we can instead view ML as symptomatic of a
much older and deeper trend in the development of scientific practice, one which
often replicates the form of the society in which scientific practice is embedded
in its social structure, its economic model, and its governance. The causal ar-
row, therefore, may run as much from the automation of scientific practice and
the balkanization of scientific expertise to the adoption of the tools of ML as it
does in the reverse.

Acknowledgments

The author is indebted to the following scholars for detailed feedback, criti-
cal engagement, and illuminating discussion without which this paper would
never have come to fruition: Colin Allen, Robert Batterman, Zvi Biener, Daniel
Burnston, Tony Chemero, Rachel Childers, Nic Fishman, Clark Glymour, Joyce
Havstad, Leif Hancox-Li, Zachary C. Lipton, John D. Norton, Angela Po-
tochnik, Jan-Willem Romeijn, and Jennifer L. Whyte.

7 Compliance with Ethical Standards

The author discloses no conflicts of interest and the research conducted for this
manuscript was not empirical in nature.

References

Alvarado, R., & Humphreys, P. (2017). Big data, thick mediation, and repre-
sentational opacity. New Literary History, 48(4), 729-749.

Anderson, C. (2008). The end of theory: The data deluge makes the scientific
method obsolete. Wired magazine, 16(7), 16-07.

Andrews, M., Smart, A., & Birhane, A. (2024). The reanimation of pseudo-
science in machine learning and its ethical repercussions. Patterns, 5(9).

22



Beisbart, C., & Réz, T. (2022). Philosophy of science at sea: Clarifying the
interpretability of machine learning. Philosophy Compass, 17(6), e12830.

Bergadano, F. (1993). Machine learning and the foundations of inductive infer-
ence. Minds and Machines, 3, 31-51.

Boge, F. J. (2022). Two dimensions of opacity and the deep learning predica-
ment. Minds and Machines, 32(1), 43-75.

Boge, F. J., Griinke, P., & Hillerbrand, R. (2022). Minds and machines special
issue: Machine learning: Prediction without explanation? Springer.

Bogen, J. (2016). Empiricism and after. Oxford University Press.

Bogen, J., & Woodward, J. (1988). Saving the phenomena. The philosophical
review, 97(3), 303-352.

Boon, M. (2020). How scientists are brought back into science—the error of
empiricism. A Critical Reflection on Automated Science: Will Science Remain
Human?, 43-65.

Bowers, J. S., Malhotra, G., Dujmovi¢, M., Montero, M. L., Tsvetkov, C.,
Biscione, V., ... Blything, R. (2023). Deep problems with neural network
models of human vision. Behavioral and Brain Sciences, 46, €385.

Boyd, N. M. (2018). Evidence enriched. Philosophy of Science, 85(3), 403-421.

Boyd, N. M., & Bogen, J. (2009). Theory and observation in science. Stanford
Encyclopedia of Philosophy.

Buchholz, O., & Raidl, E. (2025). A falsificationist account of artificial neural
networks. The British Journal for the Philosophy of Science.

Chari, T., & Pachter, L. (2021). The specious art of single-cell genomics.
BioRziv, 2021-08.

Chubb, J., Cowling, P., & Reed, D. (2022). Speeding up to keep up: exploring
the use of ai in the research process. Al & society, 37(4), 1439-1457.

Creel, K. A. (2020). Transparency in complex computational systems. Philos-
ophy of Science, 87(4), 568-589.

Desai, J., Watson, D., Wang, V., Taddeo, M., & Floridi, L. (2022). The epis-
temological foundations of data science: a critical review. Synthese, 200(6),
469.

Douglas, H. (2009). Science, policy, and the value-free ideal. University of
Pittsburgh Pre.

Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E., Kreis, B., ... others
(2018). Fast inference of deep neural networks in fpgas for particle physics.
Journal of Instrumentation, 13(07), P07027.

23



Duede, E. (2023). Deep learning opacity in scientific discovery. Philosophy of
Science, 90(5), 1089-1099.

Elliott, K. C., & McKaughan, D. J. (2014). Nonepistemic values and the
multiple goals of science. Philosophy of Science, 81(1), 1-21.

Frické, M. (2015). Big data and its epistemology. Journal of the association for
information science and technology, 66(4), 651-661.

Gillies, D. (1996). Artificial intelligence and scientific method. Oxford University
Press.

Goddard, E., Klein, C., Solomon, S. G., Hogendoorn, H., & Carlson, T. A.
(2018). Interpreting the dimensions of neural feature representations revealed
by dimensionality reduction. Neurolmage, 180, 41-67.

Hansen, J. U., & Quinon, P. (2023). The importance of expert knowledge in
big data and machine learning. Synthese, 201(2), 35.

Harman, G., Kulkarni, S., & Roeper, T. (2007). Reliable reasoning: Induction
and statistical learning theory. Bradford Books.

Hey, A. J., Tansley, S., Tolle, K. M., et al. (2009). The fourth paradigm: data-
intensive scientific discovery (Vol. 1). Microsoft research Redmond, WA.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
. others (2021). Highly accurate protein structure prediction with alphafold.
Nature, 596(7873), 583-589.

Kawamleh, S. (2021). Can machines learn how clouds work? the epistemic
implications of machine learning methods in climate science. Philosophy of
Science, 88(5), 1008-1020.

Kitchin, R. (2014). Big data, new epistemologies and paradigm shifts. Big data
& society, 1(1), 2053951714528481.

Kobak, D., & Berens, P. (2019). The art of using t-sne for single-cell transcrip-
tomics. Nature communications, 10(1), 5416.

Leonelli, S. (2018). La ricerca scientifica nell’era dei big data.

Leonelli, S. (2019a). Data-centric biology: A philosophical study. University of
Chicago Press.

Leonelli, S. (2019b). What distinguishes data from models? Furopean journal
for philosophy of science, 9(2), 22.

Leonelli, S., & Beaulieu, A. (2021). Data and society: A critical introduction.
Data and Society, 1-100.

Leonelli, S., & Tempini, N. (2020). Data journeys in the sciences. Springer
Nature.

24



Leonelli, S., & Zalta, E. N. (2020). Scientific research and big data. The Stanford
Encyclopedia of Philosophy (Summer 2020 Edition,).

Levins, R., & Lewontin, R. (1985). The dialectical biologist. Harvard University
Press.

Longino, H. E. (1990). Science as social knowledge: Values and objectivity in
scientific inquiry. Princeton University Press Princeton, NJ.

Longino, H. E. (2020). Afterword: Data in transit. Data journeys in the
sciences, 391-399.

Mayer-Schonberger, V., & Cukier, K. (2013). Big data: A revolution that will
transform how we live, work, and think. Houghton Mifflin Harcourt.

Norton, J. D. (2003). A material theory of induction. Philosophy of Science,
70(4), 647-670.

Pietsch, W. (2021). Big data. Cambridge University Press.
Pietsch, W. (2022). On the epistemology of data science. Springer.

Pigliucci, M. (2009). The end of theory in science? EMBO reports, 10(6),
534-534.

Rowbottom, D. P., Curtis-Trudel, A., & Peden, W. (2023). Evidence, com-
putation and ai: why evidence is not just in the head. Asian Journal of
Philosophy, 2(1), 11.

Rowbottom, D. P., Peden, W., & Curtis-Trudel, A. (2024). Does the no miracles
argument apply to ai? Synthese, 203(5), 1-20.

Sellars, W. (1956). Empiricism and the philosophy of mind.

Society, T. R., & Institute., T. A. T. (2019). The ai revolution in scientific
research.

Spinney, L. (2022). Are we witnessing the dawn of post-theory science. The
Guardian, 9, 2022.

Sreckovié, S., Berber, A., & Filipovi¢, N. (2022). The automated laplacean
demon: How ml challenges our views on prediction and explanation. Minds
and Machines, 32(1), 159-183.

Sterkenburg, T. F., & Griinwald, P. D. (2021). The no-free-lunch theorems of
supervised learning. Synthese, 199(3), 9979-10015.

Sullivan, E. (2022). Understanding from machine learning models. The British
Journal for the Philosophy of Science.

Wolpert, D. H. (1996). The lack of a priori distinctions between learning
algorithms. Neural computation, 8(7), 1341-1390.

25



