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Abstract

Inertia has long been treated as the paradigm of natural motion. This paper challenges
this identification through the lens of General Relativity. By refining Norton (2012)’s dis-
tinction between idealisation and approximation and drawing on key insights from Tamir
(2012) regarding the theorems and proofs of Einstein and Grommer (1927), Geroch and Jang
(1975), Geroch and Traschen (1987) and Ehlers and Geroch (2004), I argue that geodesic mo-
tion—commonly taken as the relativistic counterpart of inertial motion—qualifies as neither
an approximation nor an idealisation. Rather, geodesic motion is best understood as a useful
construct—a formal artefact of the theory’s geometric structure, lacking both real and ficti-
tious instantiation, and ultimately excluded by the dynamical structure of General Relativity.
In place of inertial motion, I develop a layered account of natural motion, which is not encoded
in a single ‘master equation of motion’. Extended, structured, and backreacting bodies require
dynamical formalisms of increasing refinement that systematically depart from geodesic mo-
tion. This pluralist framework displaces inertial motion as the privileged expression of pure



gravitational motion, replacing it with a dynamically grounded hierarchy of approximations

fully consistent with the Einstein field equations.
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1 Introduction

It is 1666, and England is in the grip of the Great Plague. That year, Cambridge University was
closed because of the epidemic, and Newton, then a young student, retired to his family estate at
Woolsthorpe Manor. Beneath an apple tree, immersed in solitary thought, he contemplated the
puzzles of optics and infinitesimal calculus. An apple fell. Eureka!—he exclaimed. The force that
draws the apple earthward is the same as that which holds the Moon in its orbit, Newton thought.
And that’s not all—he continued—the tendency of a body to resist changes in its state of motion
explains why the surface of water in a rotating bucket becomes concave when the bucket rotates
with respect to absolute space. In that moment, the qualitative insights of Galileo and Descartes
crystallised in rigorous form in his mind, and the three laws of dynamics manifested, including the
first: the law (or principle) of inertia.

This, of course, is just a tale rather than a literal report of historical events. Newton stands
in continuity with a long tradition of thinkers in the West, known as natural philosophers, who
questioned Nature and its laws. Among these questions is that pertaining to the motion of bodies:
a topic that have occupied natural philosophers for over two millennia.

Beyond the descriptive query—how do bodies move?—Iies a perhaps more profound concern:
why do bodies move as they do? What is the nature of their motion?

Notably, these questions were often posed in terms of a dichotomy between motions caused
by agents external to the bodies and motions that arise intrinsically when no external cause acts.
Reformulated, these inquiries become: how do bodies behave in the absence of external influences,
and what governs their motion when such influences are present? And why do they assume a given
configuration of motion?

Aristotle was the first to investigate what we now call inertia with his distinction between nat-
ural motions, characteristic of bodies ‘left to themselves’, and violent motions, which result from
external influences (Sachs, 1995). In the late Middle Ages, John Buridan advanced the impetus
theory, positing that a body in motion carries an internal impetus that sustains its motion even in
the absence of external causes (Jung, 2011). This is the first known historical articulation of a con-
cept recognisably akin to inertia, later refined by Galileo and Descartes, and rigorously formalised
by Newton in his ‘first law’.!

In the twentieth century, Einstein extended the trajectory begun by Galileo and Newton. Within
General Relativity (GR), he introduced the geodesic principle as a relativistic analogue of Newton’s
first law: free bodies move along geodesics of a curved spacetime. GR thereby seemed to answer

elegantly not only the question of how free bodies move, but also—at least to some degree—why

"For an analysis on the origin and role of the Law of Inertia in Newton’s thinking see Earman and Friedman (1973).



they do so (Weatherall, 2011, 2016).2

This paper revisits the concept of inertia through the lens of GR, tracing its development from
Galileo to Einstein, with a particular focus on the status of inertial motion in the relativistic frame-
work. I argue that inertia is best understood not as a universal feature of natural motion, but as a
useful construct: a formal artefact that masks the more complex dynamical regimes governing the
motion of free bodies.

At the heart of this investigation lies a conceptual impasse: the impossibility of formulating
a non-circular and physically substantive Principle of Inertia within either classical or relativistic
dynamics. Whether framed in terms of privileged frames, dynamics, geometry, or symmetries,
all known formulations collapse into either tautology or triviality. Building on this critique, I
propose a new framework centred on the notion of natural motion, which allows for a non-trivial
formulation of principles for the motion of free bodies. This shift is enabled by a re-evaluation of
what it means, within a dynamical theory, to approximate or idealise motion.

To make this case, I take as my starting point the distinction introduced by Norton (2012)
between idealisation and approximation.

An approximation is an inexact description of a target system. It is propositional. An ide-
alisation is a real or fictitious system, distinct from the target system, some of whose properties
provide an inexact description of certain aspects of the target system The key distinction Norton
proposes is that idealisations carry a novel semantic import not carried by approximations. While
approximations merely describe a target system inexactly and are propositional, idealisations refer
to new systems.

In this study, I opt to elaborate on Norton’s conceptualisation of approximation. In brief, I
treat approximation as both propositional and referentially anchored in a viable solution space. An
approximation must not only yield near-correct properties, but must do so by describing a target
system that is either real or idealised but still dynamically admissible by the theory. This condition
is not intended to contradict Norton’s account, but it specifies a narrower class of approxima-
tions with additional physical justification. According to my re-definitions, both idealisations and

approximations require referents: approximations presuppose a real target system; idealisations

>The question of whether—and in what sense—GR explains inertial motion has received renewed attention in
recent literature, beginning with Brown (2005). Brown does not commit to any specific philosophical theory of
explanation; rather, he adopts a liberal usage in which ‘explanation’ may involve offering sufficient conditions for a
phenomenon, providing conceptual insight, or showing how it can be formally derived. For a broader overview of
philosophical accounts of scientific explanation, see Woodward and Ross (2021). Weatherall (2016) advocates the so-
called Puzzle-ball conjecture, which proposes that the explanatory structure of GR should not be understood in terms of
asymmetric derivation from more fundamental axioms. Instead, explanation is viewed in terms of interconnectedness
among the theory’s core principles. On this view, Einstein Field Equations (EFEs) and the geodesic principle are
interdependent: GR explains geodesic motion by appeal to Einstein’s equations, but one could just as well maintain
that the geodesic principle explains Einstein’s equations. As Weatherall puts it: ‘‘[G]eneral relativity explains inertial
[i.e. geodesic] motion by appeal to Einstein’s equations, but it may equally well explain Einstein’s equations by appeal
to the geodesic principle’” (ibid., p.38).



presuppose a (real or) fictitious new one.

With this distinction in hand, I argue that geodesic motion in GR qualifies as neither. It is
not an approximation, because it fails to provide even an inexact description of the behaviour of
any admissible system within GR dynamical framework. Nor is it an idealisation, since there
is no consistent limit system—real or fictitious—within the theory that instantiates the geodesic
property.® As I will show, geodesic motion is defined off-shell: it is not derived from the EFEs.
Moreover, the associated trajectories lie outside the manifold. In both respects, geodesic motion
lacks a referent that instantiates it. This disqualifies it not only as an approximation (which requires
a real target system), but also as an idealisation (which requires a coherent surrogate system that
bears the relevant property). The failure is twofold: either the geodesic system violates the theory’s
dynamics, or it is not a system at all.

To support this claim, I draw selectively on Tamir (2012)’s analysis of attempts to derive the
geodesic principle. Among the many strategies he surveys, I focus on four paradigmatic cases:
the Geroch—Jang theorem, the Ehlers-Geroch theorem, the Einstein—Grommer derivation and the
Geroch—Traschen theorem. Taken together, these cases demonstrate that geodesic motion is neither
the limiting behaviour of any real system governed by GR, nor a property of any coherent idealised
system within its scope.

Accordingly, I propose that geodesic motion be reclassified as a third category: a useful con-
struct. It is a geometrically defined property intrinsic to the theory’s geometrical formalism, but
not instantiated—nor ‘instantiable’—by any dynamically allowed model, whether real or fictitious.
Its usefulness lies not in its capacity to approximate physical motion, but in its role as a structural
scaffold within the theory. Geodesics articulate the affine structure of spacetime: they govern the
parallel transport defined by the Levi-Civita connection, and as I will argue in §5.2 and §6.1 they
serve as the formal background over which physically meaningful approximations of target sys-
tems are constructed. Despite this foundational role, geodesic motion itself is never instantiated by
any solution of the EFEs that represents a material body. Crucially, as I will argue in §4, this does
not mean that it cannot serve as a basis for empirical inference. This third category helps clarify
why geodesic motion, despite its instrumental value, fails to describe, approximate, or idealise the
natural motion of free bodies.

By contrast, I argue that natural motion should be understood as a layered concept: a hier-
archy of increasingly refined dynamical regimes, grounded in physically admissible solutions to
Einstein’s equations. Depending on their internal structure, spatial extension, and gravitational
self-interaction, bodies require distinct formalisms. In the simplest case, a spinning test body ex-

periences deviations from geodesic motion, reflecting sensitivity to curvature gradients governed

3Frequently throughout the rest of this paper, with a deliberate abuse of terminology, I will say that ‘geodesic
motion is not an allowed idealisation’, rather than saying that ‘a body that follows geodesic motion is not an acceptable
idealisation’, effectively attributing the idealisation to the property of motion and not to the system that instantiates
that property.



by the Mathisson—Papapetrou—Dixon (MPD) equations (§5.1). These effects are complemented
by the geodesic deviation equation, which models tidal forces across a congruence of worldlines
composing the body (§5.2). When backreaction is included, further deviations arise: first in the
perturbative regime—via formalisms like MiSaTaQuWa (§6.1)—and ultimately in the nonlinear
regime, where the body’s stress-energy acts as the source of the spacetime metric.

These are not successive refinements of geodesic motion, but systematic replacements. Unlike
the geodesic principle, they describe bodies that exist within spacetime and respect the theory’s
dynamical constraints.

Natural motion is not inertial motion ‘de-approximated’ or ‘de-idealised’, but a fundamentally
plural framework, stratified by structural complexity and dynamical interaction. Each level in
this hierarchy defines a physically grounded regime of approximation. Geodesic motion does not
appear at any level of this hierarchy, but it stands apart from this hierarchy.

This interpretive shift preserves the representational power of GR while reframing the geodesic
principle itself: not as a fundamental principle of motion, but as a mathematical artefact—elegant
and illuminating, but ultimately unrealised and belonging to the theory’s formalism rather than its
ontology.

Roadmap. The paper proceeds in three main stages.

In §2-3, I examine classical and relativistic formulations of the Principle of Inertia, showing
that they reduce to circularity or triviality.

In §4, I assess whether the geodesic principle can be derived from within GR itself. I be-
gin with the Geroch—Jang theorem, which shows that geodesic motion can be assigned to certain
matter distributions under highly restricted assumptions. As Tamir argues, however, this result pre-
supposes a test-body regime that is not dynamically justified within the field equations. In addition,
I consider the more recent proposal by Geroch and Weatherall (2018), who seek to generalise the
Geroch—Jang strategy. I then turn to the Ehlers—Geroch theorem, which constructs a well-defined
limit system by considering a sequence of spacetimes whose matter content becomes increasingly
concentrated. Yet in the limit, the matter content vanishes or the field equations are violated. In the
Einstein—Grommer strategy, geodesic motion is attributed to a singularity excised from the mani-
fold. Since the trajectory lies outside spacetime, there is no real system that it could approximate.
The Geroch—Traschen theorem complements this conclusion, demonstrating that the limit system
associated with a massive point particle does not belong to the space of admissible solutions to
Einstein’s equations.

In §5 and 6, I turn to the natural motion of free bodies, albeit approximate. In §5, I consider
structured, spatially extended but non-backreacting systems—true test bodies—and show, using
the MPD formalism and geodesic deviation, that geodesic motion already fails in this regime. In

§6, I examine backreacting bodies. Perturbative treatments such as MiSaTaQuWa formalism cap-



ture self-interaction, while the cosmological case of FLRW dust—though fully non-linear—illustrates
the limits of geodesic motion in backreacting regimes.

Finally, in §7 I synthesise these layers into a unified interpretative framework. Natural motion
is a stratified concept: a sequence of approximated dynamical regimes, each valid for a class of
bodies with specific structural features. Geodesic motion is not the base layer of this hierarchy. It

is excluded from it.

2 Inertial Motion and the Principle of Inertia: The Classical

Story

The concept of inertial motion has long served as a cornerstone of classical mechanics and con-
tinues to hold foundational significance in modern physics. A widely cited formulation, often

retrospectively associated with Galileo, states:

Definition 1. Inertial Motion (Version 1): A body undergoes inertial motion if and only if it is
either in uniform motion and continues to move uniformly, or it is at rest and continues to remain
at rest.

Although Galileo never articulated a formal definition of inertia in the modern sense, in Two
New Sciences (1638), he argued—through thought experiments and observations, notably involv-
ing inclined planes—that in the absence of resistance, a moving body would continue to move at
constant speed in a straight line. These insights laid the foundation for what Newton would later
formalise as the Principle of Inertia (PIN) in the Principia (1687), which seeks to capture the reg-
ularity in the motion of bodies when not subject to external influences. This principle has been

formulated in two distinct ways:

Definition 2. PIN (v.1): Bodies maintain inertial motion if and only if no net external force acts
upon them.

Definition 3. PIN (v.2): Bodies sufficiently distant from other bodies retain their state of inertial
motion (Einstein et al., 2015).

Both versions, however, face conceptual difficulties that compromise the foundational clarity
of the notion of inertia.

In Definition (2), the term ‘force’ is itself defined via deviation from inertial motion—making
the formulation circular: ‘‘Bodies maintain inertial motion if they do not deviate from inertial
motion’’. Similarly, Definition (3) invokes sufficient distance, but sufficiency here is implicitly
defined as ‘enough to move inertially’, rendering the definition equivalent to: ‘‘Bodies which

move inertially retain their state of inertial motion.”’
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A natural refinement of these definitions introduces the notion of inertial reference frames. This
requires first specifying what constitutes a reference frame, and then what qualifies as inertial.

Adopting an operational perspective following Bamonti (2023), a (spatiotemporal) reference
frame may be defined as a set of four degrees of freedom {x'} I=1,...4 instantiated by a physical
system (typically three rods and one clock), which yields a local diffeomorphism U C .# — R,
where U C ./ is an open region of a differentiable manifold .#. Each point p € U is thereby
uniquely assigned four real numbers.

This definition does not require necessarily the domain of the diffeomorphism to be a subset
of the bare manifold alone. The region U can also be equipped with additional geometric structure
appropriate to the physical theory under consideration. Therefore, depending on the theory con-
sidered, a reference frame could be understood as a map whose domain is a structured space.

For instance, in theories with fixed spatiotemporal bsackground, such as special relativistic
ones, a reference frame acts as a global Poincaré map that preserves the structure (.#, 1), where

Nap denotes the flat Lorentzian metric:
£ (M M) — R (1)
Analogously, in covariant Newtonian theory, the reference frame acts as a global Galilean map:*
X (M1, hP V) SRR — R, )

Here, spacetime is equipped with classical structure (z,5,h45,V): defining a classical space-
time with absolute time (encoded via the degenerate temporal metric 7,,), absolute space (en-
coded via the spatial metric h,;), and a compatible flat, torsion-free connection V satisfying
Vatpe = 0;Vohpe = 0.0

In all such cases, the reference frame must preserve the symmetries of the geometric structure:
Poincaré symmetry in special relativity, Galilean symmetry in Newtonian mechanics. It must also
be adapted to the flat affine structure that, in the classical setting, provides the background for
defining inertial motion.°

Given this structured background, an inertial reference frame may now be defined as follows:’

42, denotes an isomorphic mapping between spaces.

3t has signature (1,0,0,0) and 4% has signature (0, 1,1,1). The flat connection V satisfies RG _,=0and is one
of the infinitely many compatible flat connections.

®In formal terms, any reference frame is physically significant only insofar as it preserves the automorphisms of
the structured spacetime. In Newtonian theory, for example, only inertial frames preserve Galilean symmetries, which
are also dynamical symmetries of the theory, as per Earman’s SP principles (Earman, 1992). As Gomes (2023) notes:
“‘reference frames, spacetime symmetries and dynamical symmetries are given together as a package-deal”’.

"The INRF {x'} may also be considered ‘attached’ to the body undergoing inertial motion. This point will be
relevant in §3, where inertial frames in GR are shown to be only locally defined and necessarily comoving with the
body.



Definition 4. INRF (v.1): An inertial reference frame provides a standard for measuring space and

time, relative to which:

dxi=123
dt

(i) Bodies not subject to net external forces move uniformly ( = const., with r = x4) 8

d?i

(i1) Accelerated motion obeys Newton’s second law: F = mr;

(iii) No fictitious forces (e.g., centrifugal, Coriolis) are present.

On this basis, one can restate the principle of inertia as follows:

Definition 5. PIN. (v.3): Relative to an inertial reference frame (as defined above in Def. (4)),
bodies either maintain inertial motion (uniform velocity or rest) or accelerate in accordance with
Newton’s second law.

However, this reformulation still hinges on the very notion it purports to clarify, namely, inertia,
thereby reintroducing the original circularity. The definition of an inertial frame appeals to the
behaviour of unforced bodies, but what counts as unforced depends once again on whether the
motion is inertial. If we already know which bodies are unforced, we already know which bodies
are inertial. A more fundamental reconsideration of both inertial motion and inertial frames is

therefore required.

2.1 Principle or Law?

Inertia has led a curious double life in the history of physics. On one hand, it has been treated
as an empirical law describing observed regularities in motion; on the other, as a principle that
accounts for or constrains those regularities. This duality warrants scrutiny. To treat inertia as a
law of motion is to misrepresent its foundational role; yet to regard it as a purely a priori principle,
immune to empirical revision, is to obscure its empirical origin.

Thus far, I have referred to the ‘principle of inertia’ rather than the ‘law of inertia’. It is
now necessary to clarify this distinction. I introduce two interpretive modes: what I call a law-
like terminology, which treats inertia as a descriptive regularity (whether grounded in forces or
geometry), and a principle-like terminology, which treats inertia as a constitutive constraint on
admissible dynamics.

8In Newtonian framework, time is absolute and global. Hence the temporal parameter is the same in all inertial
frames.
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The Law of Inertia: Law-like Terminology. In Newtonian mechanics the ‘law of inertia’ is
traditionally articulated as Newton’s first law: that free (i.e. force-free) bodies continue in uniform
straight-line motion (cf. Def. (2)).

This formulation belongs to the standard three-dimensional framework, in which inertial frames
are those relative to which Newton’s laws take their simplest form: free particles exhibit uniform
motion (v = const), while forced particles obey F = ma. As Weatherall (2020) notes, however, the
appeal to simplicity as a criterion for frame selection is methodologically ambiguous.

This setting falls within the category that I call the law-like interpretation of inertia: the idea
that inertia is a contingent, descriptive law.

Within this broad category, Jacobs (2024) identifies a more specific law-based approach, in
which Newton’s first law serves to define inertial frames. This approach is found also in DiSalle
(2020), where an inertial frame is defined as a spatial reference frame and a timekeeping device,
so that uniform motion can be distinguished from accelerated motion. In this view, an observer in
an inertial frame sees non-inertial bodies moving according to F = ma. ‘‘[...] An inertial frame
is a reference-frame with a time-scale, relative to which the motion of a body not subject to forces
is always rectilinear and uniform, accelerations are always proportional to and in the direction of
applied forces, and applied forces are always met with equal and opposite reactions [...] in accord
with Newton’s laws of motion. (ibid., p.1)’’.

This view aims to understand inertia as an empirical law, on a par with Newton’s Second and
Third Laws. It describes the motion of free bodies as uniform and rectilinear.’

However, Jacobs’ law-based approach is problematic. First, as also Jacobs argues, it risks
circularity: inertial frames are identified by the very behaviour (inertial motion) that the law is
supposed to explain. This undermines the status of Newton’s first law as an empirical law on par
with the others.!” Second, since frame transformations can always be chosen to recover formal
simplicity, the definition of inertial frames becomes overly liberal and lacks theoretical discipline.

An alternative, also analysed and ultimately rejected by Jacobs, is the structure-based ap-
proach, which operates within a four-dimensional framework. Here, inertial frames are not de-
fined by particle dynamics, but by their adaptation to a fixed background structure—specifically,
Galilean spacetime equipped with a flat affine connection, an absolute time function, and a degen-
erate spatial metric. A reference frame is said to be inertial if it is adapted to this structure, in the

sense that the affine connection has vanishing coefficients and the temporal and spatial metrics take

9Whether the Law of inertia constitutes an independent law or a corollary of Newton’s second law depends on the
formulation of Newtonian mechanics. In the four-dimensional covariant framework, once inertial frames are defined
via the flat affine structure, the First Law follows trivially from the Second: force-free particles follow geodesics (i.e.
‘straight lines’ in space—time). By contrast, in the traditional three-dimensional formulation, ‘the first law asserts that
there exist certain frames with respect to which the second law is supposed to hold. The second law thus does not even
make sense without the first law to define those frames’” (Jacobs, 2024, p.7).

10This problem did not afflict Newton himself, who formulated the first law relative to Absolute Space, thereby
circumventing any need for a dynamical definition of inertial frames.
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their standard Pythagorean form. In such frames, free bodies follow geodesics of the connection,
and their motion appears as uniform and rectilinear.

On this view, the law of inertia is thereby grounded not in particle motion, but in spacetime
geometry: it presupposes, rather than defines inertial frames. Inertial motion then simply coincides
with the statement that free bodies follow geodesics of the flat affine structure (cf. Earman and
Friedman, 1973). Newton’s Second Law then acquires its standard form, F' = ma, in those frames
that faithfully represent the background metric and in which force-free bodies move with constant
coordinate velocity.

More precisely, the structure-based account proceeds as follows: (i) It stipulates a background
spatiotemporal structure; (ii) It identifies certain frames that preserve this structure; (iii) It restricts
the label ‘inertial’ to those privileged frames, selected in (ii).

Nota Bene: despite this geometric emphasis, the structure-based approach still belongs to the
law-like interpretation: it seeks to articulate a law of inertia, albeit one grounded in geometry rather
than particle dynamics. It is important not to conflate Jacobs’ law-based approach with the broader

law-like mode of interpretation I employ here.

The Principle of Inertia: Principle-like Terminology. A promising alternative to the law- or
structure-based interpretations of inertia is offered by the symmetry-based approach to inertia,
also developed by Jacobs (2024). Rather than grounding inertia in particle motion or background
geometrical structures, this approach defines inertial frames as those that ‘ ‘mesh with the dynamical
symmetries of Newton theory (ibid., p.2)’’. This marks a significant interpretive shift: inertia is
no longer a descriptive law of motion, nor a geometrical consequence of a stipulated spacetime
structure, but a constitutive feature of the theory’s dynamical symmetry group (cf. fn.6).

On this account, an INRF is one in which Newton’s laws retain their form under the relevant
symmetry transformations, specifically, the Newton group, comprising time-independent transla-
tions, rotations, and Galilean boosts.

Although Jacobs refers to these as form-preserving transformations, the underlying motivation
is clearly solution-theoretic: the requirement is not merely that the laws ‘look the same’ across
frames, but that the Newton group relates entire families of dynamically admissible models. In
this sense, Jacobs’ proposal aligns with the broader interpretation of symmetry as preserving solu-
tionhood—even if he does not frame it in those terms explicitly (cf. Bamonti and Gomes, 2024).
Thus, the theory’s symmetries constrain both its dynamics and its class of admissible frames.

Jacobs’ formal definition is as follows:'!

Inertial [reference frame] (symmetry-based): a [reference frame] that is adapted

to a symmetry-invariant metric, and in which force-free bodies move with constant

Jacobs does not sharply distinguish between reference frames and coordinate systems—a conflation I avoid here.
For a careful analysis of this distinction, see Bamonti (2023). I have accordingly reformulated his definition.

12



velocity. [my italics] (ibid., p. 22).

Three clarificatory remarks are in order.

First, while Jacobs is explicit in identifying the circularity of the law-based approach—wherein
one defines inertial frames via laws that themselves require inertiality—he does not extend this
concern to his own symmetry-based formulation. Yet the potential problem remains: the notion of
force is itself defined as the cause of deviation from inertial motion. It cannot therefore figure in a
non-circular definition of inertial frames. Jacobs does not explicitly address this concern, but his
derivation of the metric from symmetry constraints suggests a more principled basis for identifying
the appropriate frames, thereby partially defusing the objection.

Second, Jacobs’ definition, while insightful, offers at most a necessary condition for a reference
frame to count as inertial, not a sufficient one. An inertial reference frame that is dynamically
uncoupled from the system it describes may still satisfy the symmetry-based definition, yet fail to
‘mesh’ with the dynamical symmetries of the theory. That is because, in the case of uncoupled
frames, spacetime and dynamical symmetries fail to coincide (see Bamonti and Gomes, 2024 for
details).'? As such, Jacobs’ proposal more accurately captures the notion of dynamical coupling
rather than inertiality.

Third, I maintain that Jacobs’ symmetry-based definition naturally supports a principle-like
interpretation of inertia. Unlike the law-based or structure-based accounts, which treat inertia as
an empirical regularity or a geometrical fact, the symmetry-based approach reframes inertia as a
constitutive principle: a constraint specifying which frames are admissible, and under what condi-
tions the solutionhood of dynamical laws is preserved. The principle of inertia, thus understood,
emerges not as a contingent fact, but as a constraint on both the theory’s geometrical and dynami-
cal structure.

Notice that Jacobs himself does not explicitly frame his proposal in these terms. He does
not present his symmetry-based definition as a new principle of inertia, nor does he invoke the
distinction between ’law-like’ and ’principle-like’ terminologies. His aim is primarily diagnostic:
to resolve the failure of standard accounts of inertial frames to distinguish Newtonian from non-
Newtonian models. It is a proposal about frame individuation, not about the epistemic status of
inertia.

Nevertheless, I argue that it supports a more ambitious reinterpretation, namely, that inertia
is a structural principle embedded in the symmetries of the theory. In this respect, it aligns with
Earman (1992)’s SP principle framework, which emphasises the interdependence of dynamical
and spacetime symmetries.

This reconceptualisation becomes particularly significant in the transition from Newtonian me-

2Briefly, in frameworks where both the reference frame and the target system are modelled as dynamical fields, a
frame is dynamically uncoupled if one can apply a dynamical symmetry transformation to either component indepen-
dently, while preserving solutionhood.
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chanics to GR, where Newton’s First Law is often said to be subsumed by the geodesic principle.
As I will argue, however, this move is problematic: geodesic motion fails to represent the actual
motion of bodies, and thus cannot recover the conceptual role played by the classical principle of
inertia in this principled fashion.

What this classical discussion already reveals is that any attempt to define a principled notion
of inertial motion—whether through dynamical laws, background structures, or symmetry prin-
ciples—ultimately depends on assumptions that either reintroduce the notion of inertia implicitly
or lack physical justification. The Principle of Inertia remains conceptually elusive. I argue that
this persistent failure calls not for a refinement of inertial motion, but for its replacement. In the
remainder of the paper, I contend that the notion of natural motion—unlike inertial motion—can
be articulated in a non-circular and dynamically grounded way.

The next section explores how this challenge reappears, and is deepened, in the relativistic

context

3 The Einstein’s Law of Inertia: The Geodesic Principle

This section turns to the relativistic setting of GR. The transition does not resolve the conceptual
difficulties identified in the classical framework; instead, GR offers a generalisation, while further
complicating the status of inertia. What emerges is not a clearer understanding of inertia, but the
growing suspicion that even within relativistic physics no non-circular, non-trivial formulation of
the Principle of Inertia is available. Thus, this section sets the stage for the interpretive shift I will
propose in subsequent sections.

In GR, gravity is not described as a force but is represented by the curvature of spacetime.
Accordingly, departures from inertial motion are no longer attributed to gravitational forces, as in
Newtonian mechanics, but to the geometry of the spacetime manifold. This geometric picture is
not unique to GR; it is also present in Newton—Cartan theory (NCT), where gravity is likewise
geometrised and free-falling bodies follow geodesics of an affine connection compatible with de-
generate spatial and temporal metrics. '

The standard relativistic counterpart to Definition (1) is as follows:

Definition 6. Inertial Motion (v.2): A body undergoes inertial motion if and only if it moves
along a geodesic of the unigue Levi—Civita connection associated with the spacetime metric, i.e. it
is in free fall in a gravitational field.

Definition (6) makes explicit what is already implicit in standard relativistic practice: an ob-

ject at rest on Earth’s surface is not in inertial motion, even if it would be so classified under

B3For detailed expositions of NCT, see Earman and Friedman (1973, §3), Trautman (1965, 1967), and James Read
(2023, §4).
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the classical Definition (1). For example, a rock resting on the ground remains at rest in the ab-
sence of external net forces. Yet such an object experiences a normal force opposing gravity. An
accelerometer placed at rest on the ground registers a non-zero acceleration—precisely because
the ground prevents the object from following its free-fall trajectory. By contrast, a freely falling
object, subject only to gravitation, exhibits no such acceleration and is deemed inertial in the rela-
tivistic sense.'*

This formulation expresses the familiar claim that freely falling bodies trace geodesics, which
are often regarded as the natural trajectories of motion—though I will challenge that designation
in the next sections.

Einstein explicitly endorsed this view when he introduced ‘the law of motion of General Rela-

tivity’ as follows:

[...] a gravitating particle moves in a geodesic line. This constitutes a hypothetical
translation of Galileo’s law of inertia to the case of the existence of ‘genuine’ gravita-
tional fields (Einstein, 1922, p.113).

Significantly, Einstein did not restrict this claim to infinitesimal bodies. He applied it to ex-
tended systems, including Mercury, whose perihelion precession he famously explained by mod-
elling the planet as a point mass moving along a geodesic in curved spacetime.'> This use of the
geodesic principle for a spatially extended, backreacting system raises non-trivial conceptual and
mathematical difficulties, which I will revisit in §4.

Contemporary formulations typically elevate this idea to the status of a geodesic principle:
freely falling bodies move along geodesics of the spacetime metric. The geodesic principle is thus
widely taken to express the relativistic analogue of inertia (Misner et al., 2017; Wald, 1984).1¢

Importantly, Definition (6) reflects a crucial conceptual shift. In GR, inertial motion—now
identified with geodesic motion—is inherently local, applying only along a given geodesic. More
precisely, inertial motion corresponds to the local flatness of the Levi—Civita connection—that is,
the ability to choose a reference frame such that the connection coefficients I'}, vanish locally.!”
However, due to spacetime curvature, these frames cannot in general be extended beyond infinites-
imal neighbourhoods. Inertial motion thus characterises the local experience of a freely falling
body.

Yet this interpretation demands care. Definition (6) identifies inertial motion with geodesic

motion relative to the Levi—Civita connection. But this connection can be non-zero even in the

14This point is well established in the physics literature; see, for example, Wald, 1993, p.67.

15See Einstein (1916, 1922).

16Geodesic motion is also the standard characterisation of inertial motion in NCT. In that setting, the affine connec-
tion VNCT is compatible with a temporal one-form field and a degenerate spatial metric. Freely falling particles follow
geodesics of Vycr defined by: V%CTM“ = 0. For discussion on the geodesic principle in NCT see Weatherall (2011).

17Strictly speaking, it is an abuse of notation to write I}, in abstract index notation, as these components only
become meaningful once a coordinate basis is fixed. One should distinguish these coefficients from the abstract
covariant connection operator V.
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absence of curvature. That is, the geometry may be curvilinear but not curved. In such cases,
the Riemann tensor vanishes R%,.; = 0, yet the connection coefficients I'; . do not. The result-
ing inertial effects—so-called fictitious forces—arise not from spacetime curvature, but from the
observer’s choice of a non-inertial frame. Accordingly, the identification of inertial motion with
geodesic motion does not presuppose curvature, but only the presence of a spacetime connection.

The distinction is crucial. In flat spacetime, inertial motion is globally definable, and deviations
from it—when not due to real forces—reflect only the observer’s frame. These fictitious forces can
be removed globally by transforming to an appropriate inertial frame.

By contrast, in curved spacetime, curvature itself imposes limits on the extension of inertial
frames: no global transformation can eliminate tidal effects encoded in the Riemann tensor. Inertial
motion becomes an inherently local phenomenon, defined only in infinitesimal neighbourhoods
where the connection can be flattened.

From Definition (6), one may now formulate a relativistic counterpart to (2):

Definition 7. PIN. v.4: A body maintains inertial motion if and only if the only possible interaction

(if present) determining its motion is the gravitational one.

The phrase ‘the only possible interaction (if present) determining its motion is the gravita-
tional one * must be interpreted with care. It does not assert that gravitational interaction must
be present—that is, it does not require spacetime curvature (i.e., a non-vanishing Riemann ten-
sor)—but rather that no other interaction contributes to the dynamics. The condition is satisfied
either when gravity is the only interaction, or when no interaction is present at all and the body’s
dynamics is governed solely by the spacetime metric and its associated Levi—Civita connection.
In other words, the body’s Lagrangian contains no additional coupling terms—no electromagnetic
fields, no internal propulsion, no interaction beyond gravity understood as what is encoded in the
connection.

Under this interpretation, the biconditional in Definition 7 is justified.

* If only gravitational interaction determines a body’s motion, then the general relativistic

equations of motion entail that it follows a geodesic.

* Conversely, if a body follows a geodesic, then no external interaction is acting on it: it

evolves freely under the influence of the connection alone, whether curved or flat.

This accommodates both curved and flat spacetimes. In Minkowski space, a body might move
geodesically not because gravity is the only interaction, but because there is no interaction at all—
not even gravity in the sense of curvature. In fact, the biconditional does not imply that geodesic
motion requires spacetime curvature: the geodesic equation is well-defined even in flat spacetimes,
where R}, = 0. What matters is not the curvature tensor, but the affine structure provided by the

connection. Geodesic motion, in this view, does not require the presence of gravitational curvature:
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it is defined purely in terms of the affine structure encoded in the connection. What it reflects is the
absence of non-gravitational couplings in the body’s dynamics, not the presence of a gravitational
field.

Although this formulation removes the circularity of earlier classical definitions, it veers toward
triviality. Since geodesics are defined as the curves traced by free-falling bodies, the assertion that
bodies move inertially when acted upon only by gravity simply reiterates the definitional content of
GR’s geometry. It does not explain why free bodies move as they do. More significantly, as I will
argue in §4, this apparent definitional clarity masks a deeper conceptual tension. While geodesic
motion is geometrically well-defined, it lacks any clear referent. There is, properly speaking, no
such thing as a body that moves geodesically in the full dynamical context of GR.

Following the rationale adopted in the classical setting, one may introduce the notion of an
inertial reference frame. Importantly, in GR we can only introduce a local inertial reference frame.

Analogously to Definition (4), we may state:

Definition 8. (Local) INRF (v.2): A local inertial reference frame provides a local standard of

space and time measurement, defined by parameters {x}, in which the geodesic equation

D*x4 B d*x“ dx? dx¢ _0

st 3
dt? dt? e dt dt )
reduces to - 5
D“x d“x .
P 0 (with FgK = 0 locally). 4)

In such a frame, any deviation from this equation arises solely from non-gravitational causes.

This definition underscores the above mentioned central insight of GR: inertiality is fundamen-
tally local. It holds only where the connection can be rendered locally flat. As I will argue in §3.1,
no physically realisable inertial frames exist over infinitesimal regions of spacetime. This under-
mines the viability of local inertial frames in the operational sense—whether understood weakly,
as empirically anchored, or strongly, in the sense of Bridgman (1936), where operational meaning
depends on explicit measurement procedures.'®

It is also essential to note that a local INRF is not necessarily a synchronous frame (Landau
and Lifshitz, 1987; Bamonti and Thébault, 2025). That is, the proper time T measured by a freely

falling observer does not need to coincide with the clock parameter x* of the frame adapted to that

18 An alternative, non-operational definition of a global inertial reference frame in GR is given in Earman and
Friedman (1973), where it is defined by a timelike vector field X satisfying: (i) X is a Killing field, (ii) its integral curves
are hypersurface orthogonal, and (iii) the proper time between hypersurfaces along X is constant. As a consequence,
in this frame the metric takes the ultrastatic form ds*> = —df* +g; jdxidx/ , with lapse function (relating coordinate time
to proper time) equal to unity (Wald, 1984). However, such global inertial frames exist only in ultrastatic spacetimes,
where geodesic observers are globally synchronisable and both gravitational time dilation and frame-dragging are
absent. This excludes, for instance, all rotating observers (Landau and Lifshitz, 1987). The rarity of such spacetimes
reinforces the point that inertial frames in GR are, in general, only locally definable.
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observer. This reflects the general fact that geodesics may be parametrised by an arbitrary affine
parameter A = ot + f3, (a # 0, B € R), which has no direct interpretation as proper time measured
by some clock (see the clock hypothesis in Malament, 2012).

Crucially, Definition (8) does not entail that every reference frame in a purely gravitational
setting is inertial. To illustrate this, consider three observers situated in the exterior region of a
Schwarzschild black hole of mass M:

* Alice is in radial free fall. Along her worldline, the geodesic equation reduces to ‘57’;1 =0,

and the connection coefficients vanish: I, = 0 . Alice’s frame {x} is a local inertial frame
adapted to her geodesic.

* Bob hovers at a fixed Schwarzschild radius rg (as measured by an observer at infinity, named
Carl), sustained by a rocket. His proper 4-acceleration, whose spatial magnitude is measur-
able via an onboard accelerometer, counteracts the black hole’s pull. In this respect, Bob
resembles a body resting on the Earth’s surface. His frame {y’} is non-inertial, and this is
revealed in the geodesic equation he assigns fo Alice’s motion:

ﬁ ! ﬁﬁ:o
dt? K dr drt

&)

Here, the non-vanishing connection coefficients I} 0 encode fictitious forces in Bob’s
frame—reflections of his own proper acceleration. The non-inertial character of his frame
stems not from spacetime curvature per se, but from the internal interaction (the rocket) that

maintains his stationary position.

» Carl is situated at spatial infinity, where spacetime is asymptotically flat. He defines a global
inertial frame {7'} = {tc,rc,0c, ¢c}, corresponding to standard Schwarzschild frames.'” In
Carl’s frame, Alice’s radial free-fall satisfies:

d 2M 2M
£=—<1——) =, (©)
dtc rc rc

while Bob’s trajectory is simply dr¢/dtc = 0, since his position is fixed at r¢ = ry.

This example underscores a key conceptual point: non-inertial effects persist even in pure
gravity scenarios, provided the observer’s own dynamics is sustained also by interactions that
are not gravitational in nature. Bob’s situation is a case in point. Although he is subject only

19In most presentations, Schwarzschild coordinates are not conceived as reference frames. Since Carl is an asymp-
totic observer, his physical role is idealised. So, {7’} should be interpreted as a (global) idealised reference frame in
the sense of Bamonti (2023). As Bamonti observes (§4), such idealised frames are often conflated with coordinate
systems because they serve functionally similar roles.
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to the gravitational field of the black hole, his motion is not governed solely by that field. The
rocket’s thrust constitutes a non-gravitational interaction which introduces additional terms in the
Lagrangian beyond the purely gravitational one.

In detail, Bob’s dynamics cannot be derived from the minimal coupling of a free particle to the

spacetime metric. Let’s consider Carl’s frame for the sake of simplicity. While Alice’s trajectory

Sa z/v —gulZdA, (7N

Bob’s trajectory must be derived from the action

SB:/[\/—guz'lz'1+A1(l)z'l]d7L, ®)

where A;(A) represents a non-gravitational force term from controlled propulsion. This term has no

extremises the action

geometric origin and encodes the thrust direction and magnitude along Bob’s path. Bob’s resulting

Euler-Lagrange equations take the form

Du!
dr

d'(7), 9)

where u! is Bob’s 4-velocity and ' is Bob’s proper 4-acceleration.

This contrasts with Alice’s case, for whom @/ = 0 and Du! /dt = 0. Accordingly, even though
Bob’s trajectory can be described within GR using a non-inertial coordinate system and non-
vanishing Christoffel symbols, his actual motion cannot be attributed solely to the gravitational
interaction encoded in the Levi—Civita connection.

Consequently, Bob’s motion does not falsify PIN (v.4) precisely because his dynamics include
such a non-gravitational interaction. The fact that the rocket’s thrust can be geometrised, i.e.
absorbed into non-zero Christoffel symbols, does not render it gravitational in the relevant sense.
The key diagnostic is the Riemann tensor: while Christoffel symbols can appear in both inertial
and non-inertial frames, true gravitational interaction is inseparable from spacetime curvature.
Bob’s trajectory, maintained by a rocket in a centrally curved geometry, mimics the effects of a
homogeneous field, but it is not gravitationally determined (see also below §3.1).

Accordingly, Definition 7 remains valid: a body moves inertially if and only if its motion is
determined solely by no interaction other than gravity, that is if and only if there are no additional
couplings in the Lagrangian.

In analogy with Definition (5), Definition 7 may be restated in terms of INRFs (but here, local):

Definition 9. PIN. v.5: Relative to a local inertial reference frame (as defined in 8), a body main-

tains its geodesic motion: d?x! /dt? = 0.

Despite its formal clarity, Definition 9 brings back the problem we encountered in the classic
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case: circularity. It defines inertial motion by reference to local inertial frames—yet those frames,
in Definition 8, are themselves defined as the ones in which bodies move inertially. This mutual
dependence empties the principle of its explanatory force: it tells us that a body moves inertially
when its motion matches the behaviour that defines the very frame being used.

A further conceptual vulnerability of Definition 9 lies in its reliance on locality. The very pos-
sibility of defining inertial frames depends on the capacity to render the connection coefficients
locally zero, typically justified by appeal to the Equivalence Principle, which asserts that grav-
itational effects can be cancelled in sufficiently small, local neighbourhoods. But what exactly
does local mean in this context and what does this reliance imply for the physical significance of
geodesic motion?

These concerns are not merely semantic. As I will argue, if inertial motion is definable only
within vanishingly small regions, then it ceases to be a physically realisable mode of motion. It
becomes instead a formal artefact of differential geometry. As such, the physical content of the
geodesic principle grows increasingly obscure—particularly when applied to bodies with finite
extension, internal structure, or non-negligible backreaction. The next subsection turns to these

questions.

3.1 A First Challenge From the Equivalence Principle: What is Local?

According to Definition (6), inertial motion is identified with the geodesic motion of a curved
Levi-Civita connection V,, compatible with a curved spacetime metric g,,. This connection is
said to be locally flat, in the sense that its coefficients can always be made to vanish at a point
by an appropriate choice of frame. This reflects the standard claim that ‘spacetime is locally flat’
and that ‘special relativity holds locally’.?’ In practice, this local inertial structure is often taken
to mean that gravitational effects vanish locally, as typically justified by the Equivalence Principle
(EP) (Ferrari et al., 2020, §1.4).%

Earman and Friedman once remarked, with some irony, that ‘‘there are almost as many in-
terpretations of this principle as there are authors of books on relativity theory’” (Earman and
Friedman, 1973, p. 329). Among the most influential of these is the so-called infinitesimal or local
equivalence principle, often attributed to Pauli (2013) and discussed in detail by Norton (1985). It
asserts that gravitational motion is locally indistinguishable from inertial motion, and gravitational
effects can always be cancelled at a point.

20See Brown and Read, 2016; Read et al., 2018; Gomes, 2022; Fletcher and Weatherall, 2023; Teh et al., 2024 for
discussions on the validity and scope of these claims.

2IThis paper refers specifically to the Strong Equivalent Principle. This must be distinguished from the Weak
Equivalence Principle (WEP), which concerns the equivalence of inertial and gravitational mass, and from the Einstein
Equivalence Principle (EEP), which addresses the identity of gravity and inertia as an ontological claim. The SEP
asserts the local validity of special relativity—i.e., the existence of local frames in which freely falling bodies behave
as if no gravity were present. See Lehmkuhl (2022) for a thorough analysis.
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Steven Weinberg offers a standard expression of this idea:

Locally, the effects of a gravitational field are equivalent to those experienced in a non-
inertial reference frame. Thus, gravity can be cancelled locally and this possibility
defines local inertial frames where FZ . = 0. (Weinberg, 1972, p.68)

The Equivalence Principle (EP) is not an incidental feature of geodesic motion—it is constitutive.
As shown in standard derivations (cf. Ferrari et al., 2020, §1.6), the geodesic equation arises
precisely from the demand that, in a locally inertial frame—guaranteed by the EP—the equations of
motion reduce to their special relativistic form. When transforming to a general frame, derivatives
of the metric introduce non-null connection terms, leading to the familiar geodesic equation. In
this sense, the geodesic principle is a formal consequence of the Equivalence Principle.

It is important to recall, however, that the EP was not originally cast in such local terms. In its
earliest formulation—Einstein’s famous ‘happiest thought’—the emphasis was global rather than
infinitesimal. Einstein considered the equivalence between a homogeneous gravitational field and
the uniform acceleration in flat spacetime. This insight later gave rise to what might be termed the
vulgata of the EP: that gravity and fictitious, non-inertial forces are ‘two sides of the same coin,’
and that the gravitational field has only a relative existence, since in some reference frame it can
be transformed away, restoring the condition for inertial motion % =0.

Historically, this transition from a global to a local EP was cemented by Pauli, who generalised
Einstein’s reasoning to arbitrary gravitational fields and arbitrary accelerations. Pauli argued that
any gravitational field could be nullified at a point by a suitable diffeomorphism—just as any
fictitious force could. This yields the modern infinitesimal form of the EP: gravity can always be
‘transformed away’ in an infinitesimal region of spacetime, just as the components of the Levi-
Civita connection can be made to vanish locally, rendering gravity locally equivalent to a non-
inertial force.””

Beneath the rhetorical power of the EP lies a conceptual ambiguity. The very notion of local-

ity—central to its formulation—admits at least two distinct interpretations:

* Local at a point: This refers to an infinitesimal neighbourhood around a single manifold
point on the manifold—conceptually treated as shrinking to the point itself, and which has
zero Lebesgue measure in the ambient spacetime. In coordinate-based terms, this notion

underlies the use of Riemann normal coordinates (adapted to a point).

22As a historical aside, a rough precursor to Einstein’s original global EP appears in Newton’s Newton (1687)’s
Principia, Corollary VI. Here, Newton introduces accelerated systems that behave, for practical purposes, as if they
were at rest or in uniform motion. These ‘quasi-inertial’ systems prefigure the idea that certain forms of acceleration
may be physically indistinguishable from gravitational effects.

Corollary VI to the laws of motion: If bodies are moved in any way among themselves, and are urged
by equal accelerative forces along parallel lines, they will all continue to move among themselves in the
same way as if they were not acted on by those forces (ibid., p. 20.)
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* Local along a geodesic: This refers to an infinitesimal ‘tubular’ neighbourhood surrounding
a timelike geodesic (also referred to as a world-tube). While also of zero Lebesgue measure,
the geodesic itself admits an affine parametrisation, resulting in a finite or even unbounded
proper length. In coordinate-based terms, this notion underlies the use of Fermi normal

coordinates (adapted to a geodesic) (Fermi, 1922).

Both notions of locality are mathematically well-defined, but neither accommodates physically
possible systems. Thus, the EP, on either reading, is demoted to a useful construct masquerading
as an empirical one. In fact, no actual measurement is local in this strict mathematical sense: every
experimental apparatus occupies a finite region of spacetime. It expresses a mathematical property
of the connection, but cannot be instantiated by any admissible matter configuration in GR.>

The geodesic principle inherits this same limitation. The problem is not merely technical—it
is ontological. Any adequate account of inertial motion in GR must address the status of geodesics
themselves. But geodesics are defined only in infinitesimal domains, and satisfied only by bodies
with no extension, no structure, and no backreaction.

As the next section (§4) will make clear, geodesics are not even legitimate idealisations. They
are, at best, formal markers of how motion would proceed given the structure of the connec-
tion—markers that fail to correspond to any real or fictitious system compatible with Einstein’s

equations.

3.2 Summary: Circularity, Triviality, and the Fate of Inertial Motion

The analysis of the Equivalence Principle lays bare what the classical case already foreshad-
owed: the definitional landscape of inertial motion—across both classical and relativistic frame-
works—turns out to be deeply problematic.

In the classical case, most formulations of the Principle of Inertia tend to collapse into circu-
larity: they presuppose inertial motion in the very concepts they invoke to define it, whether force,
inertial reference frames, or isolation.

In the relativistic setting, the problem shifts: some formulations, such as PIN (v.4), avoid
circularity but collapse into triviality—reducing the Principle of Inertia to a restatement of geodesic
structure. Others, such as PIN (v.5), are no better than their classical counterparts: they reintroduce
circularity by defining geodesic motion in terms of a local inertial reference frame—one which is
itself defined in terms of geodesic motion. Once again, the explanatory ambition of the principle
collapses. What was meant to be a physical criterion for distinguishing types of motion dissolves
into either circularity or definitional vacuity. This diagnosis is reinforced by the analysis of the idea

23 This is the infinitesimal counterpart of Hilbert (1984)’s remark that *‘the infinite is nowhere to be found in reality,
no matter what experiences, observations, and knowledge are appealed to.”’. Just as the infinitely large is a mathemat-
ical construct, so too is the infinitely small.
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that gravity can be ‘cancelled’ in a local inertial frame and that geodesic motion thereby counts
as locally inertial. This rests on a mathematically valid but physically fragile notion of locality.
Although the Levi-Civita connection can always be made to vanish at a point or along a geodesic,
this does not entail that gravitational effects, encoded in the Riemann tensor, are absent, even
locally. The inference from geometric locality to physical inertiality breaks down.

This failure is not merely technical. It indicates a deeper disconnect between the formalism
of GR and the empirical content that a principle of inertia is meant to provide. Geodesic motion,
while often taken to define inertial motion in GR, cannot model the motion of actual bodies. As I
will show in the next section, it cannot even be recovered as a valid limit of dynamical solutions
representing matter configurations. So, strictly speaking, inertial motion is not only empirically
insignificant, it is also not derivable within GR. The principle that once codified the structure of
the free motion of bodies of in GR now seems to be nothing more than a geometric detail.

This sets the stage for the central interpretive move of the paper, thoroughly developed in
the next section: geodesic motion is neither an approximation to the behaviour of real bodies,
nor a property of an idealised surrogate, since no system in GR, real or fictitious, can possess
its defining properties. The result is a subtle but decisive shift in interpretational status: inertial
motion, understood as geodesic motion, is not the motion of any real or even idealised body (§4).
It is a property of the Levi—Civita connection itself, not of anything that could instantiate it. Inertial

motion, so defined, becomes a useful construct

a geometrical artefact unmoored from the space
of dynamically possible systems (whether real, possibly real, or fictitious).

In its place, I propose a different organising concept: the natural motion of bodies. Unlike
inertial motion, natural motion is grounded in dynamically admissible regimes. It admits a lay-
ered structure of approximations, each valid for a class of systems with particular physical fea-
tures—internal structure, spatial extension, or gravitational feedback. In each regime, the equa-
tions of motion arise from consistent applications of GR’s dynamical laws. As such, they form a
hierarchy of genuine approximation schemes. Geodesic motion belongs to none of them.

Since antiquity, natural and inertial motion have often been treated as coextensive: to move
naturally is to move inertially, and vice versa. What follows challenges this equivalence. The two
notions should be carefully distinguished. Natural motion is dynamically grounded and admits
physical referents; inertial motion, as geodesic motion, does not.

In the next section, I turn to the various attempts to derive the geodesic principle from within
general relativity itself. These derivations—ranging from the Geroch—Jang and Ehlers—Geroch
theorems to the Einstein—-Grommer and Geroch—Traschen approaches—clarify why geodesic mo-
tion fails to serve even as a consistent idealisation. Each case illustrates a different kind of failure.
Together, they support the reclassification of inertial motion as a formal artefact, lacking both ex-
planatory and representational power. This will mark the transition to the second half of the paper

(§5-7), where 1 develop the layered account of natural motion as a dynamically grounded alterna-

23



tive.

The following Table 1 summarises the status of each definition introduced thus far:

Definition | Description Circular? Trivial?
Def. 1 Inertial motion = uniform No No (but vague): uniform
motion or rest motion presupposes a
privileged class of frames
Def. 2 PIN (v.1): no external force Yes No
acts
Def. 3 PIN (v.2): sufficient distance | Yes No
from other bodies
Def. 4 INREF (v.1): defined via Yes No
Newton’s laws
Def. 5 PIN (v.3): Newton’s laws Yes (inherited No
hold in INRF (v.1) from Def. 4)
Def. 6 Inertial motion (v.2): No Yes: no explanation of why
geodesic motion in GR geodesics count as inertial
Def. 7 PIN (v.4): a body is inertial if | No Yes (inherited from Def. 6)
it follows a geodesic
Def. 8 Local INRF (v.2): where Yes. The frame is | Yes (similar to Def. 1): no
geodesic motion appears as defined by appeal | explanation of why the frame
uniform to geodesic is inertial
motion (Def. 6).
Def. 9 PIN (v.5): inertial motion is Yes (inherited Yes (inherited from Def. 8)

geodesic motion in a local
INRF (v.2)

from Def. 8)

Table 1: Definitions of inertial motion and the Principle of Inertia and their shortcomings.

4 The Limits of the Geodesic Principle

If you wish to learn from the theoretical physicist anything about the methods which

he uses, I would give you the following piece of advice: Don’t listen to his words,

examine his achievements. For to the discoverer in that field, the constructions of his

imagination appear so necessary and so natural that he is apt to treat them not as the

creations of his thoughts but as given realities.
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The preceding analysis has already cast doubt on the conceptual integrity of the geodesic principle.
Although its formal definition—motion along Levi-Civita geodesics of a Lorentzian metric— is
clear, it lacks empirical content. Definitions that equate inertial motion with geodesic motion were
shown to suffer from circularity or triviality. Moreover, the very concept of geodesic motion relies
on a notion of locality that collapses when extended to physically realistic, spatially extended
systems.

This section advances the critique. I argue that geodesic motion cannot serve as an exact or
approximated description of how real, free bodies move, nor can it be justified as a dynamically
consistent limiting case. It neither approximates the dynamics of any admissible system in GR,
nor represents the behaviour of any idealised surrogate compatible with EFEs. The kinds of bodies
to which the geodesic principle might apply—infinitesimal, structureless, non-backreacting—are
not merely unrealistic: in many cases, they are dynamically inconsistent with the theory itself.
Where they can be formally constructed, they either violate the field equations or fail to exhibit
the defining property of geodesic motion. No real target system can be approximated by them;
no consistent idealisation can instantiate them. Geodesic motion, although geometrically well-
defined, has no referent whatsoever. What is at stake is not merely its empirical applicability, but
its theoretical legitimacy.

This diagnosis is anticipated in Tamir (2012)’s three-pronged critique of the geodesic principle:

Specifically, I argue for the following three claims. First, [...] massive bodies are
[n]ever guaranteed to follow geodesic paths. Second, [...] extended massive bod-
ies generically deviate from uniformly geodesic paths. [...] Third, thanks to certain
mathematical theorems concerning distribution theory, alternative representations of
massive bodies as unextended point” particles must result either in precluding the
possibility of coupling the particle to the spacetime metric in a way that is coherent
with Einstein’s field equations or in having to excise the particle (and its would-be
path) from spacetime entirely. This three-pronged argument reveals that [...] the
geodesic principle in such a way requires that either the gravitating body is not mas-
sive, its existence violates Einstein’s field equations, or it does not exist within the

spacetime manifold at all (let alone along a geodesic) (ibid., p.137-138).

Tamir’s analysis is physical: the geodesic principle fails to describe the motion of any body
whose dynamics are governed by GR. Either the body must violate the EFEs, vanish entirely, or
lie outside the manifold itself.

I now develop a diagnostic framework that integrates Tamir’s classification of failure modes
with a refined distinction between approximation and idealisation. As outlined in the introduction,
I slightly depart from Norton (2012)’s purely propositional definition of approximations. To recap,
according to Norton, an approximation is simply an inexact description of a target system. As such,

it is purely propositional. By contrast, I impose a stricter condition: that an approximation track
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the behaviour of a target system that lies within the space of solutions permitted by the theory’s
field equations. It is not enough for an approximation to be propositional, it must be grounded
in the dynamics of the theory. Approximation, on this view, is not merely a matter of syntactic
tolerance but of representational legitimacy.

My goal in what follows is to show that geodesic motion is neither an approximation nor an
idealisation. 1t is a geometrically well-defined artefact of the connection with no dynamically
admissible referent: a useful construct.

Before proceeding, it would be beneficial to pause briefly for some critical reflection on my
goal. Two comments are in order.

First, if geodesic motion is merely a formal, non-referential construct, how can it yield accurate
predictions like the ~ 43 arcseconds per century in Mercury’s perihelion advance? Doesn’t this
success suggest that geodesic motion approximates Mercury’s real trajectory?

Not in the sense defended here. When we compute that precession using the Schwarzschild
metric plus test-particle model, we obtain a value that matches observations with high precision.
But this model is not dynamically admissible within GR: there exists no solution to the Einstein
field equations in which a finite-mass planet moves along a geodesic in a fixed Schwarzschild back-
ground. As such, the geodesic motion involved lacks a physical referent, and does not approximate
Mercury’s motion in the strict, representational sense I require—namely, as a description of a real
system governed by the full field equations. Still, this does not preclude it from serving as a basis
for empirical inference.

It is worth noting, however, that under the broader conception of approximation defended by
Norton, geodesic motion may indeed qualify. Norton holds that the properties of a geodesic tra-
jectory (such as Mercury’s perihelion advance) can serve as good approximations to the behaviour
of more realistic solutions, even if no sequence of such solutions converges to the geodesic path
itself. On this view, approximation is grounded in the successful attribution of limiting properties,
not in representational fidelity to a dynamically admissible target system. My own account, by
contrast, demands the latter: it treats approximation as a relation between a simplified model and
a physically admissible, on-shell solution of the theory—not as the attribution of properties from a
formally defined but dynamically invalid construction.”* Thus, while geodesic motion may count
as an approximation in Norton’s broader sense, it does not qualify under the stricter, ‘dynamical’
criterion of approximation I adopt.”

Second, one might ask how my notion of approximation differs from Norton’s notion of ideal-

24In this context, on shell refers to systems or models that satisfy the Einstein field equations. An approximation, to
qualify as dynamically legitimate, must track the behaviour of such (on-shell) solutions.

25As Norton states (private correspondence): ‘“We can compute a geodesic for something like [Mercury] in a
Schwarzschild spacetime, unperturbed by any planetary masses. From that computation, we can figure out how the
properties of more realistic models will behave, even if none yield a mass point propagating along that geodesic in the
limit. The properties of that geodesic—such as the advance of its perihelion—can be attributed in good approximation
to the more realistic solutions that give Mercury mass. [...] That is what I call approximation.”
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isation, since both are ‘referential’. The distinction, however, is sharp.

The first difference is the sense of referentiality itself. An idealisation is a system, real or ficti-
tious. In contrast, my notion of approximation retains a quality of propositionality: it is a procedure
that aims to describe, however inaccurately, the behaviour of a real, dynamically admissible target
system, without positing any distinct system. It is referential only insofar as it presupposes the ex-
istence of a viable target within the theory’s solution space. One cannot step outside the dynamical
constraints of the theory and still claim to approximate a physically valid system from within.

Moreover, while idealisations possess the limit property exactly, approximations, in my sense,
yield properties that only approximate those of the target system. This latter point aligns with
Norton’s own distinction between approximation and idealisation.

Now that the methodological apparatus has been clarified, to best address my analysis, it is
necessary to define accurately in which cases idealisations and approximations may fail.

Norton identifies two main modes of failure of an idealisation:
* Type I Failure: the limit system does not exist.

* Type II Failure: the limit system exists but does not bear the limit property (e.g. geodesic
motion)

The argument that follows is structured explicitly around these two modes of failure of a body
following geodesic motion.

Following this modus operandi, 1 present below several ways an approximation may fail. This
happens when the mathematical procedure that generates the approximation produces a description
of the target system that is ill-defined or prohibited within the theory under consideration. In

particular, I identify two main ways approximations can fail:

1. Tolerance Violation: This occurs when the approximation error exceeds the acceptable
threshold for the specific context, which can vary greatly depending on the situation. For
example, a 10% error might be acceptable in one context, but not in another. This renders

the approximation too inaccurate to be useful.

2. Pathological Tracking: This occurs when the method used to generate the approximation
fails to produce an adequately representative description of the target system. In such case,
the inaccurate propositional description ceases to reliably track the behaviour of the target

system.

2.1 Off-Shell Failure: This occurs when the mathematical procedure constituting the ap-
proximation violates the theory’s own dynamical equations—ceasing to be even an
approximate solution within the theory, and thus structurally invalid. Importantly, this

should not be confused with the case where a system cannot bear the approximated
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property, even if the procedure is valid. The failure here concerns the approximation
procedure itself.

Following Tamir, I divide derivations of the geodesic principle into two broad classes:

* Limit proofs, which consider sequences of stress—energy tensors supported in increasingly
small spatial neighborhoods surrounding a timelike curve. These proofs aim to show that
if such a sequence converges appropriately, the limiting curve must be a geodesic. The

conclusion is that arbitrarily small bodies follow geodesics.

* Singularity proofs, which invoke singularities—typically bodies that lie outside the space-
time manifold, or are replaced with curvature divergences. These do not involve limiting

procedures and rely instead on pathological constructions.

While Tamir uses this classification to argue that no derivation justifies geodesic motion for
real, massive bodies, my aim is to show something stronger: that geodesic motion is neither an
approximation nor an idealisation. It is a formal artefact of the connection, not a representational
or dynamical feature of any body, real or ideal.

To make this case, I examine four canonical derivations of the geodesic principle:

1. The Geroch—Jang theorem, which is widely regarded as the most influential attempt to derive
the geodesic principle from within the theory. It purports to show that bodies with smooth,
conserved, compactly supported stress—energy must move along geodesics. But the result
applies only in a fixed background geometry: the matter distribution is allowed to have non-
zero stress—energy while being prevented from perturbing the geometry. This amounts to
assuming the test-body limit without justification. That is, the assumption of zero backreac-
tion is introduced ad hoc and not justified by any dynamical argument from the EFEs. The
geodesic principle here is not derived, but presupposed. As such, the theorem functions not
as a limit proof, but as a constraint on admissibility and, as such, does not suggest anything
about whether geodesic motion is an idealised motion or not. However, it does suggest that

geodesic motion cannot be used to approximate the motion of a real system in GR.

2. The Ehlers—Geroch theorem, a true limit proof, attempts to recover geodesic motion from a
sequence of matter-filled spacetimes whose metrics converge to a background geometry. But
in the limit, either the stress—energy vanishes or the field equations are violated. The limit
system exists, but it does not bear the geodesic (limit) property—an instance of Norton’s
type Il failure mode: limit property and limit system disagree. Also, geodesic motion fails
as an approximation because at no stage of the limit proof does geodesic motion serve as an

even approximately valid description of target bodies’ dynamics.
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3. The Einstein-Grommer strategy, a singularity proof, seeks to derive geodesic motion by ex-
cising the body from the manifold. This is not a limiting procedure; the body and its world-
line are simply removed from the beginning. Hence, no target system can be approximated

by this strategy—excluding approximation altogether.

4. Finally, the Geroch—Traschen theorem, also a singularity result, proves that no distributional
stress—energy source supported on a curve can satisfy the EFEs. This blocks from the outset
the construction of a consistent limit system altogether, instantiating Norton’s type I failure

mode: there is no limit system.

The conclusion is stark: geodesic motion is not the trajectory of any body—real or idealised—but
rather a useful yet uninstantiable construct. It is a formal property of the Levi—Civita connection,
not a dynamically realisable trajectory.

4.1 The Geroch-Jang Theorem.

The Geroch—Jang theorem is often presented as a major justification for the geodesic principle
within GR (Geroch and Jang, 1975). Its conclusion is commonly interpreted to support the idea
that free-falling bodies of positive mass must follow geodesics, and that this behaviour is not
postulated but derived from the structure of the theory itself. Some authors have extended this line
of reasoning beyond GR (e.g. in Newton-Cartan theory), treating the result as a theorem about the
motion of matter in any relativistic theory with appropriate geometric structures. >

But this interpretive tradition overstates what the theorem delivers. As Tamir has convincingly
argued, the Geroch—Jang result does not establish geodesic motion as a consequence of Einsteinian
dynamics, nor does it show that real or test bodies follow geodesics. What it proves is more lim-
ited: that geodesic motion may be attributed to a curve, provided certain restrictive conditions are
satisfied—conditions whose physical significance is unclear and whose dynamical status remains
ungrounded. In short, the theorem presupposes, rather than derives, the test-body regime for which
geodesic motion is valid.

To clarify the structure of the result, it is useful to state the theorem in formal terms (see
Weatherall, 2016, p.22, Theorem 3.1; see also Malament, 2012, p.146):

Theorem 4.1. Let (.#, g,) be a relativistic spacetime, and suppose .# is oriented. Let y: [ — .#
be a smooth embedded curve. Suppose that given any open subset O of .# containing y[[], there

exists a smooth symmetric field 7% with the following properties.

Z6Weatherall (2019) argues that the EFEs play no essential role in the geodesic theorem. The principle counts as a
theorem insofar as it follows, under suitable assumptions, from the geometric structure itself—regardless of the specific
gravitational field equations. This perspective allows for analogous derivations in Newton—Cartan theory (Weatherall,
2011) and other relativistic frameworks. For a contrasting view, which insists on the special role of GR in explaining
geodesic motion dynamically, see Brown (2005); see also Sus (2014) and Samaroo (2018).
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1. T satisfies the strengthened dominant energy condition, i.e., given any timelike covector
&, at any point in .#, T®E,&, > 0 and either T% = 0 or T% &, is timelike;

2. T satisfies the conservation condition, i.e., V,T% = 0;
3. supp(T“) C 0; and
4. there is at least one point in O at which 7% # 0.
Then 7 is a timelike curve that can be reparametrised as a geodesic.

This theorem has often been interpreted to prove that arbitrarily small bodies of positive mass
must follow geodesics. This interpretation is, however, misleading. It rests on a reading that clashes
with the dynamical structure of GR. Three conceptual tensions emerge from the assumptions and

consequences of the theorem.

(T1) Stress-energy without backreaction. The key assumption of the theorem is that for any
open neighbourhood O around the curve 7y, however small, one can construct a smooth sym-
metric stress-energy field 7% supported entirely within O. By choosing a nested sequence
of such neighbourhoods (O;);cn that shrink around y as i — oo, one obtains a sequence of
stress-energy tensors T?b whose spatial support becomes arbitrarily small and converges to
the curve. These are the so-called Geroch-Jang particles (GJ-particles): smooth compactly

supported distributions of non-zero energy—momentum, increasingly localised near 7.

At first glance, the use of a sequence 7% suggests a limiting procedure: the curve y acquires
geodesic status as the limiting trajectorly of shrinking matter configurations. But this impres-
sion is mistaken. While a limit property (geodesicity of ) is defined, there is no attempt
to construct a limit system that includes the shrinking matter as a dynamically consistent
source. The failure here is not of Norton’s first or second type, but of a different sort: the

construction does not even engage the dynamical content of the theory.

The core tension is this: if each GJ-particle represents real matter—however localised—then
it ought to source a metric perturbation via the Einstein equations. Since the support of each
Tf’b shrinks but never vanishes, the associated perturbation never vanishes, no matter how
small the support becomes. The theorem, however, proceeds by ignoring this effect: the
background geometry remains fixed throughout. This is not a well-constructed test-body
limit—it is a formal artefact. The stress—energy tensor is present but dynamically inert,
violating the dynamical core of GR. In this sense, the theorem proves only that geodesic
motion can be assigned to a curve in a fixed background—rnot that it emerges dynamically

from the theory’s equations.
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These limitations motivated the refinement offered by the Ehlers—Geroch theorem, which
attempts to recover geodesic motion while accounting for the backreaction of the matter
fields. That result will be the focus of the next subsection.

(T2) Conservation and the Bianchi identities. One might attempt to defend the theorem’s con-
clusion by appealing to the conservation condition V,T% = 0, which is assumed as a premise
in the theorem. This condition is sometimes interpreted as implying geodesic motion. How-
ever, this inference is flawed. In GR, VaT“b = 0 is indeed guaranteed if T arises as the
source of a metric via the EFEs, by virtue of the Bianchi identities V,G* = 0. But in Ge-
roch—Jang, conservation is simply assumed. Moreover, conservation does not entail geodesic
motion except under further assumptions—chiefly the absence of internal stresses or inter-
actions. In realistic systems with pressure, viscosity, or internal structure, conserved matter
distributions fail to follow geodesic motion. This is why the theorem includes the strength-

ened dominant energy condition (1) to ensure that the resulting curve is timelike.

Only in special cases—such as a homogeneous, pressureless dust—does conservation alone
imply geodesic motion. There, internal forces vanish by construction, and the dust elements
evolve along geodesics even while collectively sourcing the spacetime metric.”’ A paradig-
matic instance is provided by the FLRW cosmological model, where non-relativistic matter

is modelled as a dust:*® In this case, the energy—momentum tensor takes the form
7% = puu?, (10)

where p > 0 is the energy density and u“ is the four-velocity field of the fluid. Here, the
conservation condition entails:

VT =0 = uVu=0, (11)

which is precisely the geodesic equation.”’

But this case is finely tuned: even small departures from these assumptions destroy the

?TThe pressureless dust model represents a continuous, uniform distribution of matter rather than a realistic extended
body. In reality, every body described by rigorous physical theories possesses angular momentum, internal stresses,
or additional structure (e.g. electromagnetic fields) that typically cause deviations from geodesic motion. For further
discussion, see §5.

2The FLRW framework is not limited to a single dust component. The total cosmic fluid may comprise several
components, each with its own equation of state, including non-relativistic matter (e.g., cold dark matter or baryonic
matter), radiation, and dark energy. Geodesic motion of fluid elements applies only to the pressureless dust component.
(non-relativistic matter). Relativistic components, such as radiation, possess stress terms in their energy—momentum
tensors that lead to deviations from geodesic flow. Individual photons, however, always follow null geodesics in GR,
regardless of the fluid description.

2 Conversely, assuming geodesic motion for the dust fluid implies that 79 is divergence-free and satisfies the
strengthened dominant energy condition (1).
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geodesic flow. In fact, even slightly more general cases, such as perfect fluids with non-zero
pressure, already fail to follow geodesic motion. The equation of motion is given by the
Euler equation:

ubVyut = —I%)(g“b + uub)V,P,
where VP represents the pressure gradient. In the most general case of an imperfect,
charged fluid, additional terms—bulk and shear viscosity, heat flux, electromagnetic forces,
etc.—appear on the right-hand side as non-gravitational forces arising from internal struc-

ture, leading to deviations from geodesic motion.

(T3) Extension without meaningful extension. Finally, the theorem assumes that each T is
compactly supported in arbitrarily small neighbourhoods around the curve y. This imlplies
that the bodies in question are spatially extended, however slightly. But any actual extended
body in curved spacetime is subject to tidal effects due to the varying curvature of spacetime
across the body’s spatial extent. These effects typically deflect such bodies from geodesic
motion. The point is not that the theorem makes a mistake, but that it deliberately sidesteps
this by assuming that the matter fields are smooth, structureless, and free of internal degrees
of freedom. In doing so, it constructs extended bodies devoid of internal physical structure.

In this sense, the construction undermines its own interpretive basis.

These three tensions expose the central limitation of the Geroch—Jang theorem. It does not
derive the geodesic principle from the dynamical content of GR. It assumes conditions under which
geodesic motion may be assigned to a curve—but those conditions amount to presupposing that the
motion is geodesic. Thus, the theorem shows only that geodesity can be assigned fo a curve. The
background metric supports geodesic motion, but the matter distribution that should instantiate
it—namely, a shrinking matter distribution with non-zero 7% —cannot coexist with that metric.

The motion is not explained; it is imposed.

No claim on Idealisation. The Geroch—Jang theorem makes no claim—positive or negative—about
idealisation. It is not a limit proof: no limiting procedure is invoked, and no attempt is made to
construct a limit system that might instantiate a limit property. As such, the theorem does not fall
within either of Norton’s two failure modes for idealisation. The result is entirely silent on whether
geodesic motion could emerge as the property of a fictitious, idealised system constructed via some

asymptotic or structural procedure.

No Approximation. What the theorem does reveal, however, is a decisive failure of geodesic
motion to serve as an approximation. The curve to which geodesicity is attributed exists in a fixed
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background spacetime that is not sourced by the matter it contains. This artificial decoupling be-
tween the stress—energy tensor and the geometry violates the core structure of general relativity,
which requires that matter and geometry co-determine one another through the Einstein field equa-
tions. As such, the construction is dynamically incoherent: it violates the theory’s equations. This
constitutes a paradigmatic off-shell failure: the approximation never enters the theory’s solution
space—it is structurally invalid.

In sum, the Geroch—Jang theorem operates entirely off-shell, and its attribution of geodesic
motion lacks both referent and justification.

The Geroch-Weatherall Generalisation. Geroch and Weatherall (2018) recently offered an im-
provement of the Geroch—Jang approach, aiming to clarify in what sense small bodies follow
geodesics.’” Their Theorem 3 shows that any collection of conserved stress—energy tensors satis-
fying a suitable energy condition and ‘tracking’ a timelike curve includes a sequence converging,
in the distributional sense, to a point-mass source. The curve must then be a geodesic. On this ba-
sis, they conclude that geodesic motion is a reliable indicator of how real, sufficiently small bodies
behave—effectively grounding the point-particle limit.

As I will show in §4.4, the Geroch—Traschen theorem establishes that the Einstein equations
do not admit stress—energy distributions supported on curves. Geroch and Weatherall explicitly
acknowledge the limitation of Geroch-Traschen theorem (see §4.4), accordingly they argue that
the relevant sense of geodesic motion retains validity only in linearised gravity, or as an emergent
approximation within perturbative frameworks, such as the Gralla—Wald formalism (see §6.1).

Their position is not incompatible with the technical analysis presented in this paper. I fully
acknowledge that Geroch and Weatherall are correct about geodesic motion appearing in perturba-
tive regimes, without contradiction. The disagreement lies not in whether geodesic motion appears,
but in what status it ought to be granted. In particular, in §6.1 I will accept that geodesic motion
reappears in perturbative regimes as a zeroth-order term in linear expansions. But this role must
not be confused with genuine approximation or idealisation. The disagreement is not technical, but
ontological: whether the presence of geodesic motion within a perturbative series suffices to grant
it physical significance. Geodesic’s role in Geroch and Weatherall’s work is representational; in

my work it is merely formal.

4.2 The Ehlers-Geroch Theorem

Whereas the Geroch—Jang theorem approaches the Einstein field equations from the side of the
source—constructing a sequence of matter distributions with shrinking support—the Ehlers—Geroch

theorem focuses instead on the geometry (Ehlers and Geroch, 2004). It constructs a sequence of

307 thank Jim Weatherall for pushing me to confront my work with theirs.
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Lorentzian metrics (g45) jen converging for j — oo to a fixed background metric g,5. The idea is

J
to show that, in the limit, the influence of matter on the geometry becomes arbitrarily small in a
controlled way, and the limiting curve 7y exhibits geodesic behaviour.

The theorem is stated as follows:

Theorem 4.2. Let v: I — ./ be a smooth timelike curve in Lorentzian spacetime (.#,gp). Sup-
pose that for any sufficiently small closed neighborhood %" C . of y[I] there exists a sequence

of smooth Lorentzian metrics g,;, defined on %" such that for all points p € J¢":
J

1. for all j: G, has non-vanishing support contained in the interior of ¢,
J

2. for all j and all timelike £%: G;,E?EP > 0 and if G, # 0, then g2¢(GpE@) (Gey&€) > 0,
j j i J

3. the gup — gap as metrics in €1 (J#) as j — oo,
J

where G, is the Einstein curvature tensor determined by g.5, then y[I] is the image of a gg-
J
geodesic.

This result improves upon the Geroch—Jang theorem in one crucial respect: it takes into account
the backreaction of the matter source—so long as its effect becomes negligible in the limit. Thus,

the stress—energy configurations are not placed in a fixed background but each 7, sources the
J
corresponding g,,. The Ehlers—Geroch particles (EG-particles), as they are sometimes called,

are localised, bajckreacting bodies whose influence becomes negligible in the limit. That is, the
geodesic behaviour of y persists even when backreaction is accounted for—provided it is made
vanishingly small in the limit.

In this way, the Ehlers—Geroch theorem directly addresses the primary limitation of Geroch—Jang
(see (T1) above): it ensures that geodesicity is not merely a property of the background metric, but

that the limiting curve ¥ asymptotically approaches a geodesic with respect to the metrics g,; gen-

erated by the matter itself. That is, not only does the limiting metric admit 7y as a geodesic, ]but the
metrics sourced by the EG-particles approximate the geodesic character of y arbitrarily well. The
backreaction problem is explicitly controlled.

Yet this improvement comes at a cost. The matter configuration vanishes at the limit. Since the
stress-energy tensor associated with the EG-particles must disappear entirely in the limit j — oo

(and so does each G‘fb ), the limiting spacetime for which the geodesic motion is defined contains
J

no massive body at all. The geodesic property of ¥ is thus recovered only by excising the body that
was supposed to justify it.
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This implication is philosophically revealing. Geodesic motion as a limit property is preserved
only at the cost of erasing its material referent. The EG-particles approach geodesic motion, only
by ceasing to exist.

No Idealisation. This constitutes a type II failure of idealisations: the limit system exists, but it
does not bear the limit property. The Ehlers—Geroch theorem constructs a well-defined limiting
system—(g,5,0)—to which the sequence of matter-filled spacetimes converges. But that limit
system contains no matter at all. The stress—energy tensor vanishes, and thus the limit system
describes pure vacuum. The geodesic property of Yy remains, but it is no longer associated with the

motion of a massive body. There is no idealised system that instantiates the property in question.

No Approximation. One might still ask whether the result justifies geodesic motion as an ap-
proximation. But approximation requires that the property in question—in this case, motion along
a geodesic—be an inaccurate but meaningful description of a real target system governed by the
full theory. That condition is not met. At each finite stage of the sequence, the body is present, its
stress—energy is non-zero, and it backreacts on the geometry, so its motion is well-defined, but it is
not geodesic. In the limit, the body disappears altogether. Therefore, at no stage in the construc-
tion—neither in the sequence nor in the limit—the body follows a geodesic, even approximately.
This is a failure of approximation because, at any stage, the entire approximating sequence loses
the referent it is meant to approximate. This is a case of pathological tracking: the approximation
tracks a target system (a small backreacting body at each finite stage), but the approximated prop-
erty (geodesic motion) is never instantiated at any stage. Worse, in the limit, the referent vanishes
entirely: the approximated property survives, but its bearer is lost.

In short: although the Ehlers—Geroch theorem offers a more refined account of how geodesic
motion might emerge, it ultimately fails to justify the geodesic principle either as an idealisation
or as an approximation. It confirms, rather than refutes, the suspicion that geodesic motion is not
the behaviour of any physically admissible system in GR. It is a formal artefact of the geometric
framework—well-defined mathematically, but without any referent in the space of dynamically

admissible systems.

4.3 The Einstein-Grommer Proof.

In their 1927 collaboration, Einstein and Grommer (1927) explicitly rejected the strategy of rep-

resenting matter through smooth stress—energy fields.'

As Tamir notes, they viewed the field-
theoretic treatment of matter as conceptually inadequate. Einstein in particular considered such

representations a ‘low-grade’ approximation (Einstein, 1954), ill-suited to capture the discrete,

31 As Weatherall (2016, p-22) notes:
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particle-like character of gravitating bodies.’” Their goal was to eliminate altogether the dualism
between field and matter.

This led to what they termed the ‘third way’: an attempt to derive the motion of massive bod-
ies directly from the vacuum Einstein equations, without ever introducing a stress—energy tensor.
Rather than model matter using 7%, they proposed to confine the entire material content of a body
to a singular worldline, which is excised from the manifold. The resulting strategy—what Tamir
classifies as a singularity proof—aims to deduce geodesic motion as a consequence of the vacuum

Einstein equations alone. The logic proceeds as follows:

A material body is ‘confined’ to a singular, i.e. one-dimensional, worldline.

* The singular worldline 7 is excised from the spacetime manifold .#. As a result, the field

equations are solved in the domain .# \ y, where the EFEs reduce to vacuum form R, = 0.

* A vacuum solution is obtained in the domain .# \ y, with appropriate boundary conditions
imposed near the excised curve Y. This solution is interpreted as encoding the gravitational
field generated by the absent body.

* The singular worldline ¥ is then reinserted and interpreted as a geodesic of the surrounding

vacuum spacetime.

Like the Geroch—Jang theorem, this strategy avoids backreaction. But it does so in a more
radical way: not by neglecting the metric response to matter, but by eliminating matter altogether.
No stress—energy tensor is introduced. The motion of the body is supposed to emerge from the
vacuum spacetime alone.

At first glance, this may seem more consistent than the unjustified test-body regime of Ge-
roch—Jang: no contradiction arises between the presence of stress—energy and the assumption of a
fixed background. But this consistency is achieved at a profound cost. The singular worldline y
lies outside the manifold, so the metric is undefined on 7, rendering the geodesic equation—being
a differential relation involving the metric and its derivatives—inapplicable. As Earman observes,
“‘to speak of singularities in g, as geodesics of the spacetime is to speak in oxymorons’’ (Earman,
1995b, p.12).

A principal difficulty in trying to derive the geodesic principle as a theorem [that is, as a consequence
of dynamics and not as an independent postulate] concerns a kind of ontological mismatch between the
geodesic principle and the rest of general relativity: namely, general relativity is a field theory, whereas
the geodesic principle is a statement concerning point particles.”” (my insertion).

32The broader metaphysical debate over whether physics should be interpreted in terms of particles or fields remains

unresolved, particularly in the ontological interpretation of quantum field theory. For contrasting perspectives, see
Kuhlmann et al. (2002); Glick (2016); Jia (2022).
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The conceptual incoherence is thus clear. The very move that removes the need for a stress—energy
source also removes the locus of motion.*? What remains is a formal artefact: a curve a posteriori

interpreted as the trajectory of a body.

No Claim on Idealisation. Like the Geroch—Jang theorem, this strategy does not construct a
sequence of systems and involves no limiting procedure. It does not define neither a limit system
nor a limit property. Accordingly, it does not fall within the scope of constructing idealisations.
Like the Geroch—Jang theorem, the Einstein—-Grommer strategy makes no claim—positive or neg-
ative—about whether geodesic motion arises as the limit property of an ideal system constructed

from a converging sequence of systems. It simply bypasses the question.

No Approximation. However, in the case of approximation, the theorem delivers a conclusive
verdict: approximation is ruled out. The issue is not whether a real target system exists—of course
it does: real bodies, with mass and internal structure, are everywhere in GR. The failure lies in the
fact that the Einstein—-Grommer proof removes the body from the manifold entirely. There is no
‘geodesic body’ and no consistent justification for interpreting geodesic motion as an approxima-
tion to the motion of a real target body. The geodesic curve refers to nothing.

This diagnostic closely parallels the failure seen in the Ehlers—Geroch construction: there, too,
the geodesic trajectory persists while the material system vanishes in the limit. But the two failures
differ in structure. Ehlers—Geroch begins with a sequence of fully dynamical systems—each with
well-defined matter and backreaction—and recovers a vacuum geodesic as the limiting case, with
the body disappearing in the limit. Einstein—Grommer, by contrast, never introduces any material
system at all: the body is excised from the start, and the vacuum equations are solved in its absence.
There is no candidate system whose behaviour is even approximately captured by the geodesic.

The Einstein-Grommer construction is a textbook case of what I termed a pathological track-
ing: the geodesic approximation is a formal construction that tracks nothing.

However, as the next subsection will make clear, the failure may also be interpreted more
strongly as a case of off-shell failure of the approximation procedure. For while vacuum geodesics
are consistent with the Einstein field equations, attributing (even if approximately) a posteriori
the geodesic motion along ¥ to a massive body explicitly violates EFEs. The body can be light,
but its stress—energy would need to be supported on a one-dimensional curve. That possibility is
explicitly ruled out by the Geroch—Traschen theorem.

In this respect, the Einstein—Grommer strategy offers a particularly stark philosophical lesson.
It reveals that geodesic motion in GR cannot even be inaccurately attributed to real bodies, because

it is not the motion of any body at all. It is a property of vacuum geometry near a hole in the

33This is analogous to the treatment of black hole singularities. See Curiel (2019). Earman (1995a, p.12) observes
that ‘‘to speak of singularities in g, as geodesics of the spacetime is to speak in oxymorons.”’.
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manifold—a mathematical residue without a referent. This conclusion reinforces the broader claim
advanced throughout this section: geodesic motion in GR is not an approximation in any legitimate

sense.

4.4 The Geroch-Traschen Theorem

The final and most decisive challenge to the geodesic principle as a physically grounded statement
comes from a theorem by Geroch and Traschen (1987) which proves that the EFEs admit no
solutions in which the stress—energy is supported on a one-dimensional timelike curve.**

This result is not a limit proof, as it does not construct a sequence of systems. Instead, it plays
a ‘blocking role’: it shows that the very endpoint of any limit strategy involving point-particles
1s inadmissible. As such, it also blocks the Einstein—~Grommer strategy discussed in the previous
subsection, and any other attempt to model massive point particles via distributional stress—energy
supported on a singular curve. In fact, although the Einstein—-Grommer proof does not involve a
limiting construction, it nevertheless assumes that a massive point source—albeit excised—can be
meaningfully considered a geodesic body.

In this sense, the Geroch—Traschen theorem belongs to the same class as Einstein—-Grommer: it
is a singularity result, in that it establishes the incompatibility between GR and a class of singular
source models, that is, one-dimensional distributional sources. But unlike Einstein—Grommer,
which relies on excising the singularity from the manifold and retroactively assigning geodesicity,

Geroch—Traschen proves a more general no-go theorem.

No Idealisation. This is a paradigmatic case of a type I failed idealisation: the limit system
does not exist. To be precise, it is an even stronger case: the limit system cannot exist. Even
if the geodesic trajectory is well-defined as a mathematical limit, the limit system to which it
is supposed to apply cannot be constructed within the theory. The nonlinearity of the Einstein
field equations plays a decisive role here. In linear theories, or in the linearised approximation
to GR, such singular constructions can often be handled safely, as we will stress in §6.1. But
in full GR, highly concentrated energy—momentum distributions generate curvature singularities
incompatible with the field equations. The theory resists the representation of one-dimensional
mass distributions.

The upshot is clear. No dynamically admissible solution within full GR can represent a massive

34Geroch and Traschen introduce a class of metrics now known as GT-regular metrics: Lorentzian metrics whose
components and inverses are locally integrable, and whose weak derivatives are locally square-integrable. These
regularity conditions ensure that the stress-energy tensor is well-defined as a tensorial distribution. This allows the
use of objects like the Dirac delta to model highly concentrated mass-energy sources. The hope behind singular
derivations of the geodesic principle is that the stress—energy of a massive body could be represented by such a
distribution supported on a timelike curve. The Geroch—Traschen theorem rules this out: no such distributional source
is compatible with the EFEs under GT-regularity.
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point particle moving along a geodesic. As such, no sequence of extended stress—energy configu-
rations can converge to a geodesically moving point-mass. The limit object simply lies outside
the space of admissible solutions. GR, in its full non-linear form, cannot accommodate one-
dimensional distributions of mass-energy. There is no admissible way to concentrate stress—energy
onto a worldline without violating the field equations.

This renders the familiar physical reasoning—according to which geodesic motion emerges in
the limit as small bodies shrink and internal structure vanishes—questionable. If the field equations
rule out the limit system, then the limit property is empty. Geodesic motion is not the behaviour
of an ideal system,; it is the formal ‘residue’ of a failed construction. It is a limit property with no
admissible limit system—a purely formal artefact, disconnected from the representational structure

of the theory.

No Approximation. At first glance, the Geroch—Traschen theorem might seem irrelevant to ap-
proximation, since geodesic motion concerns test bodies—systems that do not source the met-
ric—whereas the theorem blocks massive point particles viewed as singular sources. But this
appearance is misleading. To approximate the motion of a real, extended, backreacting body by a
test body following geodesic motion requires more than ‘smallness and lightness’. It requires the
existence of a consistent procedure according to which the target body becomes point-like (that is
supported on a 1D curve), becomes very light (so that backreaction becomes negligible) and yet
retains sufficient mass to follow a timelike trajectory, all while existing within the representational
structure of the theory.

The Geroch—Traschen theorem renders any such limiting procedure inadmissible. It prohibits
any attempt to represent a target body as a massive body whose motion is both geodesic and con-
centrated on a worldline. Therefore it precludes the geodesic property from serving as a physically
grounded approximation. The failure is not because the endpoint of the process (geodesic motion)
is inadmissible, but because the procedure itself—concentrating a backreacting body to a 1D mas-
sive source—cannot be carried out in a way that remains consistent with the EFEs. The familiar
practice of modelling such bodies as test particles moving on geodesics is not an approximation in
the technical sense; it is a formal artefact disconnected from the theory’s space of physically ad-

missible behaviours. As should now be clear, this constitutes an off-shell failure of approximation.

4.5 Philosophical Synthesis.

The preceding analysis has shown that each of the four canonical strategies to derive the geodesic
principle within GR fails in a distinct but revealing way when evaluated against the epistemic
framework, which distinguishes between my refined notion of approximation and Norton’s concept
of idealisation.

Table 2 summarises the outcome of this analysis.
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These failures support a unified philosophical conclusion: geodesic motion in GR is not the
behaviour of any real, approximated, or idealised body. Rather, it functions as a formal artefact of
the differential-geometric structure of the theory—mathematically precise but physically empty. It
represents what I have called a useful fiction: a referent-free construct that plays a calculational
and heuristic role.

This reclassification carries methodological consequences. If geodesic motion is not physically
instantiated—even approximately—then the geodesic principle cannot serve as the foundation for
the relativistic account of natural motion.

The remainder of this paper undertakes that reconstructive task: to develop a stratified account
of motion in GR grounded in physically admissible approximations, from structured test bodies to
backreacting sources. Within this framework, the geodesic principle is demoted from a principle
of motion to a zeroth-order formal limit within a layered dynamical hierarchy.
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5 Extended Test Bodies

This section considers test bodies that retain internal structure and finite spatial extension, but are
assumed not to generate curvature—that is, they do not backreact on the spacetime geometry. They
represent an intermediate stage in the analysis of free motion: complex enough to register system-
atic departures from geodesic behaviour, yet simple enough to avoid the dynamical complications
introduced by backreaction. The goal is no longer to test the limits of geodesic motion—which has
already been shown to fail as either an approximation or an idealisation—but to articulate the first
steps in the layered structure of natural motion.

This section also marks a philosophical transition. If geodesic motion is taken to define in-
ertial motion, then spatially extended bodies—even in the test-body regime—do not move iner-
tially. Their internal structure interacts with background curvature in ways that deflect them from
geodesic paths. This undermines any attempt to ground a physically meaningful notion of natural
motion in geodesic motion or in a principle of inertia. The actual trajectories of extended test bod-
ies in free fall must be described using more refined frameworks, which remain consistent with the
EFEs, despite the absence of backreaction.

This raises a more precise question: how should one model the motion of such extended test
bodies, whose internal structure induces systematic deviations from geodesic motion, even in the
absence of backreaction? Two complementary formalisms provide leading-order approximations
within the broader hierarchy of natural motion:

(1) The Mathisson—Papapetrou—Dixon (MPD) equations, which govern the motion of the body’s
centre of mass, taking into account spin and higher multipole moments. These equations are
derived from a multipole expansion of the body’s stress—energy tensor about its centre-of-mass
worldline and encode how internal structure couples to background curvature (§5.1). In this con-
text, the stress—energy tensor 7" is not interpreted as a source of curvature, but as a formal device
used to represent internal structure—just as it functioned as a formal device in the derivation of
the geodesic principle via the Geroch—Jang theorem. However, the philosophical posture is cru-
cially different. In the MPD framework, the equations of motion are not claimed to follow from
EFEs. They provide a well-defined approximate model to isolate and analyse the effect of internal
structure alone. In contrast, the Geroch—Jang theorem purports to derive geodesic motion from
constraints on matter fields satisfying the EFEs even though that derivation systematically ignores
backreaction. This makes the derivation conceptually inconsistent, if interpreted as giving rise to
physically valid motion.

(i1) The geodesic deviation equation, which captures the relative acceleration between neigh-
bouring geodesics due to spacetime curvature in a congruence that models the extended body. This
framework describes the influence of curvature gradients across the body’s inferior, including tidal
effects and structural deformations (§5.2 ).
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The remainder of this section analyses these two frameworks. Together, they illustrate how
natural motion can be reconceptualised beyond the geodesic artefact. In doing so, they begin to
reveal the layered structure that supplants the geodesic principle in GR.

As a further analysis, I will also investigate bodies propagating in spacetimes with torsion.
Although torsion is not part of standard GR, it arises naturally in theories intrinsic spin acts as a
source of torsion. I include it here for two reasons. First, it offers a principled generalisation of
spin—geometry coupling beyond the MPD approximation. Second, it exemplifies how the concept
of natural motion can be extended into regimes where the geodesic principle is no longer mean-

ingful or even definable.

5.1 A First Step Beyond Geodesics: Spin and Torsion

Both the presence of spin and the influence of forsion reflect distinct mechanism by which internal
structure or geometry determine the path of a body, underscoring the inadequacy of the geodesic
principle as a general description of free fall.

Spin—curvature coupling represents the leading-order contributions to the motion of spatially
extended test bodies with internal angular momentum. At dipole order, this interaction captures
the effects of spin, while higher multipole terms account for more detailed aspects of the internal
configuration, such as quadrupole moments. While differing in detail, both imply that geodesic
motion is not even the starting point of the approximation hierarchy of natural motion, since the
motion of extended test bodies, e.g. governed by the MPD equations, is a first physically meaning-
ful approximation to real motion within GR.

Torsion presents a complementary case. Rather than modifying the motion through internal
structure, it modifies the affine structure that underlies the notion of free fall. In theories such as
Einstein—Cartan gravity, torsion contributes to the affine connection and thereby modifies the paths
of structureless bodies. While such models extend beyond standard GR, they offer a powerful il-
lustration of how small alterations to the geometrical structure can yield physically consistent—but

non-geodesic—forms of free fall.

5.1.1 Spin.

Dipole Expansion. Consider test bodies with internal angular momentum, or spinning bodies,
moving in a curved but torsion-free spacetime. Even in the absence of external forces, such
bodies do not follow geodesics. Their motion is governed by the Mathisson—Papapetrou—Dixon
(MPD) equations, which encode how spin couples to background curvature and induces sys-
tematic deviations from geodesic motion (Papapetrou, 1951; Dixon, 1970):

Dp* 1

dt _ERadeu

[a

DS
=2

b ccd
S
’ dt

u?), (12)
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where % is the usual covariant derivative along the representative worldline of the centre of
mass, parametrised by proper time 7; p“ is the 4-momentum; u¢ is its four-velocity; and S

is the antisymmetric spin tensor.

The spin tensor represents the dipole moment of the body’s angular momentum, defined
relative to a representative worldline associated with the centre of mass. While the body is
modelled as spatially extended, these quantities are defined along this representative trajec-
tory, which serves as a proxy for the entire body. The body’s internal structure is encoded via
multipole moments, which are projected onto the representative worldline.?> In particular,
S should be interpreted as an effective spin tensor: it encodes the dipole moment of the
body’s angular momentum about the centre-of-mass worldline, without resolving the full in-
ternal dynamics or non-rigid rotation. In the MPD formalism, this marks the first physically
admissible level of structural complexity in the motion of test bodies—beyond which further
contributions, such as quadrupole terms, refine the description.

Quadrupole Expansion. At quadrupole order, the MPD formalism incorporates contributions
that depend on how curvature varies across the finite spatial extent of the body. Although the
body is still represented by a single worldline (that of the centre of mass), the quadrupole
moment captures how its internal structure couples to curvature gradients in the background
spacetime. These effects arise because different regions of the body interact with slightly dif-
ferent ambient curvature, and their net influence modifies the motion of the centre of mass.
In this sense, the formalism reflects spatial extension more finely than at dipole order, where

only the integrated angular momentum contributes.

The quadrupole tensor J%¢¢, which satisfies the same algebraic symmetries as the Riemann

tensor,
Jabed _ jlablfed] _ chab, Jlabeld _ 0, (13)

encodes this quadrupole structure. No particular assumption is made here about the origin
of Jab<d. jt may include contributions from the mass distribution, internal stresses, or other

structural features Dixon, 1970, §6.

The MPD equations at this order read:

Dp*
art

= _%Rabcd I/tb SCd _ éjbcdevaRbcde. (14)

The second term represent the curvature gradients-quadrupole coupling.

33The system must be closed by imposing a supplementary condition, such as the Tulczyjew—Dixon constraint
(8% p, = 0) or the Mathisson—Pirani constraint (S1;, = 0) to determine how to define the centre of mass worldline.
See Dixon (1970).
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This term remains consistent with the test-body approximation: TabTab enters kinematically
to define structure, while the background metric remains fixed. Quadrupole terms thus mark
the upper bound of internal complexity compatible with a non-backreacting body. Beyond

this, further contributions typically require the inclusion of backreaction.

At first glance, such quadrupole effects might appear ‘tidal’ in nature, since both arise from
curvature gradients But their domains differ. In the MPD formalism, quadrupole terms deter-
mine how the body’s internal structure influences the motion of its centre of mass, projected
onto a single worldline. They govern the overall acceleration of the body’s centre of mass.
They are sometimes called tidal effects, but this can cause confusion, because in GR tidal
effects typically refer to how curvature gradients induce relative acceleration of infinitesi-
mally nearby worldlines within the body’s extended configuration. These approaches serve

complementary functions in the broader theory of natural motion.

While both arise from curvature gradients, the MPD quadrupole terms govern the accel-
eration of the body’s centre of mass in response to curvature, whereas geodesic deviation
captures the internal relative acceleration within an extended configuration. Their domains
differ, but both represent leading-order curvature-sensitive contributions consistent with the
test-body regime. The formal and conceptual relationship between these two approaches is

examined in detail in §5.2, where their complementarity is clarified.

5.1.2 Torsion

A further perspective on the limitations of geodesic motion arises not from the internal structure of
bodies, but from a generalisation of spacetime geometry itself. In gravitational theories that extend
GR to include torsion—such as Einstein—Cartan theory—the identification of inertial motion with
Levi—Civita geodesics fails in a more structural way (Cartan, 1922; Penrose, 1983; Hehl et al.,
1995). These theories employ a general affine connection that need not be symmetric; its antisym-
metric part defines the forsion tensor, which modifies both parallel transport and the equations of
motion for test bodies.

This generalisation has immediate implications. In spacetimes with torsion, the two standard
characterisations of a geodesic diverge: extremals of the spacetime interval no longer coincide with
self-parallel curves.

The Levi—Civita connection, which is uniquely defined as both metric-compatible and torsion-

free (symmetric), defines the extremals.’’

36The MPD formalism typically becomes intractable beyond quadrupole order and generally require incorporating
backreaction.

3The metric compatibility condition is Vg, = 0 and is also referred to as the Ricci Theorem in tensor anal-
ysis. The Levi-Civita connection coefficients (given a basis), also called Christoffell’s symbols, are given by
Iy, = % 8 (Opgac + Aegpa — Aagne). These define extremal curves but do not apply in spacetimes with non-vanishing
torsion.
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By contrast, the general affine connection that governs parallel transport is defined indepen-
dently of the metric and need not be symmetric.*® Its antisymmetric part defines the torsion tensor.
In the absence of torsion, the general affine connection reduces to the Levi—Civita connection. As
a result, in spacetimes with torsion, extremal curves and self-parallels no longer coincide.

This geometric divergence has direct dynamical consequences for how test bodies move in
torsional spacetimes. In particular, free motion is governed by dynamical laws that account for
torsion—matter coupling. Crucially, torsion couples only to spin, not to mass-energy alone. This
implies that a scalar or spinless (hence, point-like) test body experiences no influence from torsion,
while a spinning body—those with non-vanishing antisymmetric dipole moment—experiences ad-
ditional forces and torques due to torsion.

To model these effects, one must appeal to a generalised (torsion-inclusive) version of the MPD
equations at the dipole order. In this framework, the motion of spinning test bodies is governed
jointly by curvature and torsion, with the contortion tensor governing the spin—torsion interaction.

The generalised MPD equations in a torsionful spacetime take the form (Hehl et al., 1995;
Blagojevic et al., 2011):

Dp*° 1 - DS DS
= — = R%equ’ $“ — K%y

dt 2 dt ’ drt

where R, is the general curvature tensor associated with the torsionful connection, and

=2playt +2Kle,, SPH e (15)

K is the contorsion tensor. The torsion tensor is defined by I, = (9 —T4,) (with
I['%,; the usual symmetric Levi-Civita connection), while the contorsion is related to the torsion via
K4 = (F“ led] — I lad)8cb +1? lac] gdb), with square brackets indicating antisymmetrisation over
the enclosed indices.

These equations illustrate that free motion is not determined solely by the intrinsic properties
of bodies, such as mass or spin, but arises from their dynamical interaction with the geometric
structure of spacetime. In torsional spacetimes, no universal equation of inertial motion exists.

For spinning test bodies, the generalised MPD equations—incorporating curvature and torsion
via the contortion tensor—constitute the most basic dynamical law of free fall. Geodesic-based
descriptions, whether with extremals or self-parallels, are not applicable in this regime. In fact,
as Weatherall (2016) emphasises, in the presence of torsion, extremals and self-parallels no longer
coincide, and neither provides a general criterion for identifying inertial trajectories.

In contrast, spinless bodies—such as scalar particles—do not couple to torsion and are typically
assumed to follow the extremals of the Levi—Civita connection.

The appropriate dynamical equation of free fall must be determined contextually, depending

on the internal constitution of the body and the geometric framework adopted. This reinforces the

38 An affine connection can be introduced via the covariant derivative acting on basis vectors along tangent direc-
tions. No metric structure is required for its definition. Christoffell symbols, by contrast, are defined from the metric
structure of the manifold.
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broader methodological point: what qualifies as ‘inertial’ motion varies with the representational
framework—there is no unique geometrical account.
Torsion, like spin, therefore exemplifies the breakdown of any universal account of inertial

motion and affirms the need for a stratified, framework-sensitive definition of natural motion.

5.2 Geodesic Deviation: Tidal Effects

The geodesic deviation formalism models how spacetime curvature induces relative acceleration
between nearby geodesics. Within the test-body regime, it provides a natural way to account
for tidal deformation in spatially extended test bodies, which experience differential gravitational
influence across their structure.

In this setting, the extended body is modelled as a congruence of infinitesimally nearby, non-
intersecting timelike geodesics: each obeys its own geodesic equation, while the congruence as a
whole undergoes curvature-induced distortion.*

This formalism complements the MPD framework of §5.1. While the MPD equations govern
the motion of the centre of mass, geodesic deviation characterises the internal dynamics of an
extended body, capturing effects due to spatial extension without requiring multipole expansions
or backreaction.

Importantly, although the formalism of geodesic deviation is built upon a congruence of geodesics,
it does not rely on interpreting individual geodesics as physically meaningful trajectories. Rather,
it captures the leading-order internal deformation of an extended test body in a fixed background.
In particular, geodesic deviation is formulated relative to a reference geodesic, which serves as
a benchmark for detecting tidal effects. This might seem to reintroduce an apparent privileged
role for geodesic motion. But that role is merely methodological: the geodesic functions as a
counterfactual scaffold: the path the body would follow in the absence of curvature gradients. It
corresponds to no real or idealised body, and carries no ontological commitment. In this sense,
the formalism avoids the ontological pitfalls of attributing geodesic motion to possible bodies, and
remains valid as a physically meaningful and operationally grounded approximation within the
test-body regime.

Formally, let a two-parameter family of curves
Y:IxJ— A, (16)

represent a smooth map from the product of real intervals / and J into a differentiable manifold .Z,

where 7T € [ parametrises proper time along each geodesic, and s € J labels individual geodesics

1n relativity, perfect rigidity is physically inadmissible, as it implies superluminal propagation of internal forces.
Special relativity allows only Born rigidity, a much more restrictive condition requiring no deformation in the body’s
own instantaneous rest frame. In curved spacetime, even Born rigidity is typically unsustainable due to the presence
of tidal effects. See Giulini (2006) for discussion.
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within the congruence. For fixed s, the map (1) := y(7,s) traces out a timelike geodesic in .Z .
Thus, the image of ¥ defines a smooth congruence of neighbouring geodesics.*"

Associated with this congruence are two key vector fields:

a_ (7Y
u —(af>, (a7
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* The tangent vector field

representing the four-velocity along each geodesic;

a_ (7Y
5—(as>, (18)

which connects neighbouring points lying on different geodesics but at the same affine pa-

¢ The deviation vector field

rameter 7.

The evolution of £ is governed by the geodesic deviation equation (or Jacobi equation) (Wilkins,
2005):
VuViu& = —Rpqu’ §ul, (19)

where V, := uV, denotes the covariant derivative along the vector field u?, and R}, , is the Rie-
mann curvature tensor acting on the pair (14, £4).*?

This equation describes how curvature induces relative acceleration between nearby geodesics.
Consider two point-like test bodies freely falling along neighbouring geodesics, each carrying an
test, point-like accelerometer. Each pzarticle has zero proper acceleration individually, but they
b
via the geodesic deviation equation (19). Such relative acceleration, which is a tidal effect, is

exhibit a relative acceleration A* := which is determined by the Riemann curvature tensor

frame-independent: it cannot be removed by a change of frame—it is an intrinsic consequence of

40Some texts write the image of 7 as x(t,s), where the superscript @ does not denote a vector in the sense of x*
being an element of a tangent space. Rather, x*(7,s) represents the abstract ‘position’ of a point on the geodesic of

M

#'Technically, % is the pushforward d y(%) induced by y which maps the basis vector % defined in the parameter
space I x J to vectors in the tangent space Ty(; ).# at the point ¥(7,s) = x“(,s).

“1n coordinate-dependent formulation, one writes the geodesics as x*(t,s), with u# = % and EH = % The
geodesic deviation equation thentakes the form:

D+
D72

H \2 c
:*Rvpcu ép“ )

1 D _
with 57 = utvy,.
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spacetime curvature.*?

More broadly, geodesic deviation reveals the limits of local flatness. Since Riemann curvature
tensor cannot be eliminated even at a point or along a geodesic, the tidal effects it generates per-
sist even in locally inertial frames (Brown and Read, 2016). Thus, the popular slogan that ‘local
validity of special relativity’ must be interpreted with care: it holds only in an infinitesimal neigh-
bourhood around a point, and even there, only to first order in curvature.

Tidal effects can be neglected only in regions small enough that nearby geodesics remain arbi-
trarily close. In such cases, in a Fermi local inertial frame, the geodesic deviation vector £ may be
assigned arbitrarily small components £/ < &'(1). Then, even in a region with non-zero curvature,

the relative acceleration becomes negligible:

DZ&I

W:_RIJKLujéK”L<<ﬁ(1)- (20)

Rigorously, only in the limit of £/ — 0 do tidal effects vanish completely—an abstraction cor-
responding to the body’s extension shrinking to a mathematical point. This (useful) abstraction
eliminates all curvature-induced relative motion and is often invoked to justify the equivalence
principle. But, as noted in §4, it presupposes an object that cannot be realised within GR.

The geodesic deviation formalism is also valuable to assess the status of geodesic motion.
When |£¢] lies below the threshold of experimental resolution, a freely falling body is often said to
‘follow a geodesic’. But this does not correspond to a physically admissible approximation within
GR, in my refined sense. Its role can be at most formal, not representational. This brings us back
to the philosophical core of the paper: both geodesic motion and the equivalence principle are best
understood as formal constructs, expressive of the geometry of the Levi—Civita connection, but
without physical referents—neither real nor ideal—and therefore excluded from the hierarchy of
legitimate approximations that constitutes natural motion.

By contrast, the geodesic deviation formalism captures a genuine physical approximation: it
offers a curvature-sensitive description of relative acceleration in extended test bodies. It com-
plements the MPD formalism by addressing not the centre-of-mass trajectory, but the internal
structure of the body as modelled by a congruence of free-falling constituents. Both formalisms
remain dynamically consistent within the bounds of GR.

Geodesic deviation also offers a precise and geometrically grounded account of how curvature

manifests operationally via tidal effects. For instance, the formalism underpins the interpretation

4 As discussed in §3.1, the equivalence principle guarantees that at any point, one can construct a locally inertial
frame in which the Levi—Civita components vanish and the metric is the flat Minkowski space. Conversely, in flat
spacetime, one may introduce an accelerating frame that mimics the presence of a gravitational field. However, to
distinguish genuine gravitational effects from mere frame artefacts, one must examine the relative motion of free-
falling bodies. It is the behaviour of nearby geodesics—and their deviation under curvature—that reveals the true
geometric structure of spacetime.
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of gravitational wave experiments. Interferometric detectors like (Abbott et al., 2016) function
by monitoring the varying separation between freely suspended mirrors, treated as point-like test
bodies in free fall. The oscillatory strain pattern induced by a passing gravitational wave cor-
responds precisely to the relative acceleration predicted by geodesic deviation, and thus directly
encodes curvature information (more precisely, components of the Weyl tensor in transverse trace-

less gauge).*

The Kinematical Picture. This analysis can be extended kinematically, in the sense that one
can describe how nearby observers move relative to one another, not why they move that way. The

covariant derivative of the velocity field u* can be decomposed into three parts:

1
Vau, = wab+6ab+§6habu (21)

where hg, = g + uqup is the projection tensor onto spatial hypersurfaces orthogonal to u* and

Vaup = kgyp 1s sometimes called the extrinsic curvature. The terms on the r.h.s. represent:

* 0 : the expansion scalar, indicating isotropic divergence or convergence of the volume ele-

ment defined by the congruence;

* Oy : the shear tensor, encoding anisotropic shape deformation without volume change;

* oy, : the vorticity tensor , characterising the twist of neighbouring geodesics.*’

This decomposition provides the ‘instantaneous’ kinematical state of the congruence. Nonethe-
less, these quantities also satisfy well-defined evolution equations, derived from the Ricci identity

and EFEs. These equations reveal the dynamical role of spacetime curvature in shaping the con-

gruence’s behaviour over proper time.*°

Each of the three kinematical quantities satisfies its own evolution equation. The set of the

equations is often called the Raychaudhuri equations (Hensh and Liberati, 2021).

1. The equation governing the evolution of 0 is:

a6 _ 1o 0?6, + 0% @y, — Rypuul. (22)
drt 3
4LIGO mirrors are suspended in vacuum by multi-stage pendula, designed to isolate them from terrestrial vibrations
and non-gravitational forces. Over the timescales and amplitudes relevant for gravitational wave detection, they realise
the test-body regime: backreaction is negligible, and tidal effects dominate. While they are often said to ‘approximate
free fall’, this should not be taken to imply an actual motion along geodesics—which, as argued in §4, corresponds to
no physically admissible configuration. Rather, their mutual separation encodes the relative acceleration predicted by
geodesic deviation.
#Vorticity corresponds to distance-preserving rigid rotation in the Born sense only in the absence of expansion and
shear. More generally, it signals the failure of hypersurface orthogonality.
4The Ricci identity expresses the non-commutativity of covariant derivatives on a vector field: V,Vyu® —V,V, u¢ =
where R¢ is the Riemann curvature tensor. When applied to the congruence’s velocity field u?, this identity

C
Rdabud ’ dabud . . -
generates evolution equations for the expansion, shear, and vorticity tensors.
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Here, expansion is damped by shear, enhanced by vorticity, and sourced by the Ricci tensor

R.p, which encodes the local matter content via the EFEs.

2. The equation governing the evolution of o is:

DG b 2 C C
" = =500 — 0c0%, — e} + Eap. (23)

Here, E,;, denotes the so-called electric part of the Weyl tensor, which encodes the tidal
component of curvature not determined by local matter.*” This equation shows that shear is
dynamically sourced by the tidal component of the curvature and is coupled to both expan-

sion and vorticity.
3. The equation governing the evolution of @, is:

Daw,y, 2

d—Ta = —§9 (Oab—ZG[ac(Db]c. 24)
Notably, vorticity evolves independently of curvature and is sourced purely by shear and
expansion and remains dynamically decoupled from curvature unless additional structures,

such as torsion, are present.

Together, these three evolution equations provide a full dynamical characterisation of the con-
gruence’s local behaviour under gravity. They describe how the spacetime curvature—not just
from local matter via the Ricci tensor, but also from tidal structure via the Weyl tensor—governs
the distortion, rotation, and divergence of extended test bodies modelled as congruences of free-
falling worldlines.

In highly symmetric spacetimes like FLRW cosmology, homogeneity and isotropy impose
W, = 0,4, = 0, while the expansion scalar is proportional to the Hubble parameter 8 «< H, en-
coding the rate of expansion of the Universe (Weinberg, 1972).*® But in perturbed or anisotropic
settings—such as Bianchi models, gravitational waves, or inhomogeneous collapse—shear and

vorticity re-emerge as key signatures of deviation from geodesic uniformity.

4TThe Weyl tensor Ceq encodes the trace-free part of the Riemann tensor, representing the tidal and radiative
degrees of freedom of the gravitational field that are not locally determined by matter. Relative to a unit timelike
vector field u¢, it can be decomposed into two symmetric, trace-free, spatial tensors: the electric part E,, := Cabcdu"ud s
which governs tidal deformation; and the magnetic part Hy, := %eaedeCd/ffucuf , which encodes frame-dragging and
gravitational-wave-like effects. In the evolution of a geodesic congruence, only the electric part appears explicitly in
the shear propagation equation.

“8Furthermore, in FLRW spacetime, the synchronous frame selects u* = (1,0,0,0) and goo = 1,g0; = 0. Conse-
quently, the projection tensor coincides with spatial metric /;; adapted to constant-cosmic time hypersurfaces. Devi-
ations from perfect FLRW symmetry—such as anisotropies or gravitational waves—reintroduce shear and vorticity.
However, for a hypersurface orthogonal congruence of timelike geodesics satisfying u(,Vyu = 0 , the vorticity tensor
necessarily vanishes. This condition is automatically satisfied in globally hyperbolic spacetimes.
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Taken together, the MPD and geodesic deviation formalisms demonstrate that even in the ab-
sence of backreaction, spatial extension and internal structure lead to systematic departures from
geodesic motion. These frameworks constitute the first physically meaningful levels in the ap-
proximation hierarchy of natural motion. They supplant the untenable idea of an universal inertial
motion for free bodies with a dynamically grounded and layered conception of free motion.

The next section turns, even if not exhaustively from a technical-formal point of view (this
will be a task for future work), to the case of backreacting systems. There, the concept of natural
motion must be extended to accommodate the mutual interaction between matter and spacetime

geometry.

6 Extended and Backreacting Bodies

In this section, I turn to the more general case of bodies whose stress—energy contributes to the
spacetime geometry—that is, bodies that backreact. It is useful to distinguish two conceptually
and mathematically distinct regimes, depending on whether backreaction is treated perturbatively

or within the full non-linear regime:

* Perturbative backreaction: The metric is decomposed as g,; = ggb + hgp, Where ggb is
a fixed background metric and A, a small, linear perturbation sourced by the body’s own
stress-energy. This regime captures gravitational self-interaction effects without requiring
the full non-linear EFEs to be solved. Although the body may be represented as a sharply
localised source—often using a delta-function stress—energy tensor—such a representation
is introduced only at the level of the linearised theory, where it can be justified as the limit-
ing behaviour of an extended, smooth configuration. In fact, as shown by Gralla and Wald
(2008), this point-particle description can be derived, not merely assumed, as a mathemat-
ically well-posed on-shell approximation to a compact body in a consistent perturbative
framework. The resulting formalism avoids the conceptual failures that undermine geodesic
motion as either an approximation or idealisation (as analysed in §4). This regime therefore
occupies a physically meaningful intermediate position, between test bodies and fully non-

linear systems, in the dynamically admissible hierarchy of approximations to natural motion.

* Non-perturbative backreaction: In this regime, the body’s stress—energy non-linearly af-
fects the spacetime geometry via the full EFEs. The geometry is entirely dynamical, and
no fixed background metric is specified a priori. Because of the non-linearity of the field
equations, analytic solutions in this regime are rare. Nonetheless, important classes of ex-
act solutions—including some cosmological models—fall into this category. But as will be
shown, the motion exhibited by the matter sources in these models is not derived from real-

istic or dynamically consistent matter configurations: it is stipulated as part of the model’s
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construction, rather than deduced from the dynamics.

6.1 Gravitational Self-Interaction in a Perturbed Background

This subsection addresses the motion of small but extended bodies whose self-gravitational field is
sufficiently weak to admit a perturbative treatment. The central challenge is to describe how such
bodies move under the influence of their own gravity without violating the dynamical structure of
GR.

Two major formalisms approach this problem: the MiSaTlaQuWa formalism and the related
approach developed by Gralla and Wald (2008). Both aim to describe the motion of spatially
compact, yet extended bodies under gravitational self-interaction. However, they differ crucially
in how they treat the notion of a point particle.

The MiSaTaQuWa formalism assumes from the outset a delta-function source, representing the
body as point-like within the linearised Einstein equations. Although the referent is intended to
be a compact extended body, the formalism postulates, rather than derives, its representation as a
structureless point-particle moving along a timelike worldline.

By contrast, the Gralla—Wald approach treats the body as extended throughout the derivation
and derives the point-particle description as a perturbative output. At first order in the perturbative
expansion, the metric perturbation approximates the field generated by a point mass. The worldline
along which this field is supported is geodesic at zeroth order in the perturbative expansion, but
is not a geodesic at higher orders due to self-force effects. The point-particle representation thus
emerges as a derived approximation of the perturbative regime.

The distinction between assuming and deriving the point-particle representation is central, both
mathematically and epistemologically, to understanding the validity and limitations of each formal-

ism.

MiSaTaQuWa Formalism. The MiSaTaQuWa formalism, developed by Mino et al. (1997) and
independently by Quinn and Wald (1997), computes the motion of a small mass moving through
curved spacetime under the influence of its own gravitational field. While the body is physically
understood to be compact and extended, it is represented by a Dirac delta-function stress—energy
supported on a timelike worldline. This representation is introduced only within the linearised
Einstein equations, where such distributional sources are mathematically well-defined. Since no
delta function source is inserted into the full non-linear Einstein equations, the formalism does not
violate the Geroch—Traschen theorem (§4.4). However, the delta-function representation remains
a modelling assumption rather than a dynamically derived result; the point-particle limit is not
dynamically justified within full GR.

Despite this limitation, the MiSaTaQuWa formalism successfully captures a key physical fea-

ture of self-interaction in curved spacetimes: the presence of tail effects (Caldwell, 1993). In
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curved spacetimes, field propagation violates Huygens’ principle and gravitational perturbations
propagate not only on the light cone, but also inside it, due to curvature-induced backscattering.
Formally, this is a consequence of the fact that the Green’s function of the wave operator has sup-
port inside the light cone. As a result, the gravitational field can influence its own source at later
times. These history-dependent contributions—known as tail effects—mean that the body experi-
ences delayed echoes of its own past gravitational field. First rigorously analysed in electrodynam-
ics by DeWitt and Brehme (1960), and later extended to gravity in the MiSaTaQuWa framework,
tail terms play an essential role in modelling dissipative dynamics, including gravitational-wave
emission observable by experiments such as LISA.

In this setting, since the source is sharply localised being modelled by a delta-function stress-
energy, the corresponding retarded perturbation hg};l diverges on the worldline, rendering the self-
force ill-defined.** This makes it impossible to directly substitute the raw perturbation into the
equations of motion.

To address this, the retarded perturbation is decomposed into:

. tailsi . . .
« asingular field /;, """, which carries the divergence but exerts no net force on the source;

 aregular field hg}il’R, which is smooth and governs the physically meaningful self-interaction.

This decomposition preserves causal consistency: the self-force at a given event is influenced only
by past configurations of the source.

The resulting self-force, formalised in eq. (121) of Gralla and Wald (2008), is given by the
MiSaTaQuWa equation of motion:

#vwhzng—@”+MW)@W$m;évmﬂfpm{ (25)
which governs the leading-order deviation from geodesic behaviour of the body’s motion,
within the linearised theory.

This equation of motion is coupled to a linearised Einstein equation (ibid., eq. 120), which
governs the dynamics of the metric perturbation sourced by a body of mass M. While the technical
details may be set aside for present purposes, the stress-energy source is represented schematically
by a Dirac delta distribution supported on the actual non-geodesic worldline £ of the body that

includes the self-force effects. Using a symbolic shorthand:
T~ M 98" (26)

(4)

where with some abuse of notation 5§ denotes the four-dimensional Dirac delta distribution sup-

ported on the worldline &; T denotes the proper time along &, and u“ denotes the unit tangent vector

49 Analogous to how the Coulomb field of a point charge diverges at the charge’s location, so too does the linearised
gravitational field become singular at the curve along which the delta source is concentrated.
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to £.°Y The crucial insight is that the worldline is not geodesic but includes first-order deviations
due to self-interaction, making the system fully self-consistent to leading perturbative order (see
below to a clarification of what self-consistent means in this context).

Importantly, from the perspective developed in this paper, it would be misleading to treat equa-
tion (25) as a correction to an otherwise valid approximation. Geodesic motion, as shown in §4 and
§5, is not an approximation to be ‘corrected’ but a formal artefact excluded by the full dynamics
of GR. The MiSaTaQuWa equation does not correct geodesic motion; rather, it inaugurates a valid
approximation framework for small, extended, backreacting bodies. It thus constitutes a valid and

dynamically justified layer in the hierarchy of natural motion.

Gralla and Wald Refinement. The original MiSaTaQuWa derivation relies on heuristic proce-
dures which are open to criticism for being ad hoc and mathematically inconsistent. The delta-
function source is postulated, not derived, and formal consistency is maintained by invoking the
so-called Lorenz gauge relaxation, i.e., using the Lorenz-gauge form of the linearised Einstein
equations without enforcing the gauge condition strictly. This approach is adopted to allow for
non-geodesic motion, as a strict adherence to the full gauged linearised Einstein equation would
otherwise enforce only geodesic paths. However, this technique raises legitimate concerns regard-
ing the formal consistency of the derivation.

These shortcomings are addressed by Gralla and Wald (2008), who construct a more rigor-
ous framework for deriving the MiSaTaQuWa equation of motion. Instead of assuming a delta-
function source within the linearised theory—as in the MiSaTaQuWa case—they begin with a
smooth stress—energy configurations Ta(; ) in the full EFEs modelling a compact distribution of
matter with a dimensionless parameter A controlling both mass and size. They then show that,
in the appropriate limit, the resulting linearised field equations are sourced by an effective delta-
function localised on a timelike curve.

In particular, they consider the limit of a one-parameter family of extended, smooth solutions
(A, gap(A)) sourced by Ta(; ). Forall A > 0, these are exact solutions of EFEs. They analyse the
limiting behaviour of this family of smooth metrics and stress—energies as A — 0 in two comple-

mentary ways:

Ordinary Limit: As A — 0, the body vanishes entirely, and g,,(A) — gg%), a smooth vacuum
background. In this limit, the worldline collapses to a geodesic of gfl(z). This limit mirrors the

Ehlers—Geroch construction and inherits its pathological features: the limit recovers geodesic

0The energy-momentum tensor distribution is defined via an arbitrary smooth symmetric test tensor field @, as
follows: T, [ @] =M fg @, utu’ dt. In coordinates:

FW (et —EK(1)))
V-8

THY (x) = M/dr ut (x, T)u’ (x, T) see eq. (2.19) in Mino et al. (1997)
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motion at zeroth order, and does so only by removing the material referent entirely from the
limiting system. Within my framework, this is a Type II failure of idealisation (limit system
exists but lacks the limit property) and constitutes a pathological tracking approximation.
In summary, the ordinary limit describes the overall behaviour of spacetime that ‘remains’

when the body disappears, allowing the basic geodesic motion to be derived within full GR.

Scaled Limit: To address the limitations of the ordinary limit, Gralla and Wald define a scaled
limit which permits the derivation of a valid first-order approximation for the motion of a
small, compact bodies due to gravitational self-interaction. As A — 0, the resulting geometry
converges to a Schwarzschild solution with finite mass M. This shows that the shrinking
body does not vanish, but becomes a small black hole in the limit—a globally well-defined
solution to the full non-linear EFEs.>! The point-particle approximation thus emerges not
as a heuristic assumption but as a controlled limit of an extended, physically admissible
configuration. Also, this makes it possible to define the physical properties of the body in a
rigorous way—such as mass (via Arnowitt et al. (1960) or Komar (1963) methods), spin, and

).>2 These properties are crucial for establishing the

higher multipole moments (if considered
body’s internal structure and for identifying the worldline that best represents its motion. In
particular, Gralla and Wald choose a frame in which the mass dipole moment vanishes, which
enables the identification of a unique centre-of-mass worldline. The timelike worldline does
not coincide with the background geodesic: its displacement encodes the first-order self-

interaction effects.””

In summary, the scaled limit provides a framework for defining the internal structure and physical
parameters of the shrinking body.

When combined with the ordinary limit, the scaled limit yields an effective first-order linearised
description in which the body behaves like a structureless point mass, whose equation of motion is
€q.(25). Gralla and Wald’s analysis explicitly highlights that MiSaTaQuWa equations constitute a
cpupled integro-differential system that self-consistently describes the body’s motion and its own
gravitational field. This ‘self-consistent’ nature of the system (25)-(26), means that the linearised

>1The Schwarzschild geometry that emerges in the scaled limit of Gralla—Wald is not imposed by hand, but emerges
from the vanishingly small size of an extended body. In Einstein-Grommer proof, the singularity is a primitive: it is
not derived from a limiting procedure on smooth bodies and does not lie within the manifold. The curve along which
motion is attributed has no well-defined source, and thus no physical referent. This is what makes it conceptually
problematic .This distinction is what allows the Gralla—Wald framework to justify the point-particle approximation
dynamically and consistently—precisely what is missing in Einstein-Grommer case.

2The motion of an extended body can be approximated as governed by both its internal multipolar struc-
ture—arising from its finite size—and by the way its own stress—energy perturbs the geometry through which it moves.

3These effects are especially significant in contexts like extreme mass-ratio inspirals (EMRIs), where the body’s
motion deviates from a background geodesic and such effect is measurable via the emission of gravitational waves
(Barack, 2009; Amaro-Seoane, 2018).
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EFEs is a nonlinear system where the source itself depends on the solution.>* In essence, eq. (25)
describes a worldline that account for accumulated self-force effects.

Importantly, the delta-function stress—energy in eq.(26) that sources the perturbation is derived
as an emergent approximation, not assumed as a fundamental input. This makes the framework
dynamically consistent and free from the contradictions identified by the Geroch—Traschen theo-
rem. The self-force effects derived in this way belongs strictly to the perturbative regime of GR: it
is meaningful only where a fixed background can be defined and deviations can be treated order by
order. In the full non-linear theory, such an expansion is not possible, and the concept of self-force
loses its validity.

In summary, Gralla-Wald approach provides the mathematical setting in which the internal
structure of the shrinking body can be preserved, physical properties can be defined, and gravita-
tional self-force effects can be derived in a consistent and controlled way.

The intermediate regime presented in this subsection—perturbative self-interaction in a fixed
background—marks a further erosion of the geodesic principle. Unlike geodesic motion, which
cannot be derived from any admissible dynamical model and lacks a valid target system, the MiS-
aTaQuWa equations, refined by Gralla and Wald, yield a physically meaningful approximation.
They describe motion that is dynamically consistent with the Einstein equations, provided the
body is sufficiently small and compact. As such, the motion of eq.(25) represents a valid layer

within the hierarchy of natural motion developed in this paper.

6.2 Full Backreaction: The Cosmological Case

Cosmology provides a final and conceptually instructive case the natural motion. Unlike the MiS-
aTaQuWa formalism, which models small, backreacting bodies in a perturbative regime, cosmo-
logical modelling typically concerns fully backreacting matter configurations whose stress—energy
determines the large-scale geometry. In this context, the geodesic principle loses not merely its
justification, but even its definitional coherence. In the absence of a fixed background connection
to define curvature or parallel transport, the very notion of geodesic motion becomes ill-defined.
This is issue becomes most evident in the interpretation of the Hubble flow in FLRW space-
times, which is widely taken to represent a physically realised geodesic motion of cosmic matter.”

On this reading, the flow lines of pressureless dust in FLRW provide a textbook example of inertial

>4This is not a contradiction, but a subtle distinction between linearity in the operator and nonlinearity in the system’s
functional dependence. The term ‘linearised’ describes the algebraic form of the differential operator acting on the
metric perturbation. However, the ”self-consistent” framework of the MiSaTaQuWa equations introduces a functional
dependence of the source on the evolving solution, which makes the overall system of equations effectively non-linear,
despite the linearszed appearance of the individual field equation.

>The Hubble flow describes the large-scale motion of matter driven by the expansion of spacetime itself. More
formally, it isolates the component of a body’s recessional velocity due to cosmic expansion, as distinct from peculiar
motion due to local gravitational interactions (Ryden, 2016).
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motion: they are geodesics of a spacetime that solves the Einstein equations. The geodesic princi-
ple appears not only to survive, but to be dynamically vindicated.

However, this appearance is deceptive. I will show that the FLRW dust model does not arise
as a legitimate approximation (in my refined sense) to the actual motion of matter in the universe,
nor does it represent a legitimate idealisation (in Norton’s sense).

To see this clearly, one must first clarify what is being modelled. The universe we observe ex-
hibits inhomogeneity and anisotropy across all observable scales. Structure formation proceeded
through the amplification of tiny initial perturbations, giving rise to the cosmic web of filaments,
clusters, and voids. While the cosmological principle asserts that the universe is approximately
homogeneous and isotropic at large scales, the corresponding FLRW model is not dynamically
derived from the inhomogeneous matter distribution, but it is imposed as a simplifying modelling
assumption.

According to the framework adopted in this paper, geodesic motion qualifies as an approx-
imation only if it captures, even imperfectly, the behaviour of a real target system. and as an
idealisation only if it emerges as a limit property instantiated by a dynamically allowed limit sys-
tem within the theory.

In both respects, the FLRW model fails.

In a series of work (Buchert and Ehlers, 1995; Buchert, 2001; Buchert et al., 2020) Buchert
and collaborators show that the process of ‘averaging’ an inhomogeneous matter distribution does
not yield the FLRW dynamics, even in the large-scale limit. The averaging procedure is a formal
method designed to derive an effective dynamics for an inhomogeneous universe by performing a
spatial averaging of dynamical quantities over specific domains.’® Instead, new terms—known as
backreaction terms—appear in the effective ‘coarse-grained’ dynamical equations, reflecting the
influence of shear, expansion rate fluctuations, and local curvature.”’ These terms measure the
departure from a standard FLRW cosmology, and they do not generically cancel. Their vanishing
on large scales, called the cosmological conspiracy, while often adopted in practice, is not dynami-
cally derived from the theory but introduced as a modelling assumption, essentially amounting to a
presupposition of the desired result rather than its derivation. It is a strong restriction of generality
which is not dynamically justified. As Buchert and collaborators stress, the standard FLRW models
are often presupposed rather than emerging from dynamical considerations, and many simulations
enforce FLRW behaviour by construction, rather than obtaining it as an emergent feature.

These results have significant epistemological consequences. The geodesic motion of FLRW

dust does not approximate the behaviour of any real, inhomogeneous matter distribution. There

6This approach aims to bridge the gap between complex, realistic inhomogeneous models and the simpler, homo-
geneous and isotropic FLRW models traditionally used in cosmology.

>"Buchert and collaborators emphasise that even if these backreaction terms are assumed to be negligible or to
cancel out for some reason, the averaged model is still different from the standard homogeneous-isotropic models
because averaged energy and momentum conservation laws do not generally reduce to those of the homogeneous
case.
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exist no physically admissible target system—no solution to the EFEs with realistic matter con-
tent—whose motion is well approximated by the FLRW dust flow. The model therefore fails to
qualify as an approximation within the epistemological framework developed here.

Nor can it be defended as an idealisation. In fact, this would require the geodesic property of
FLRW dust to emerge as a well-defined limit of a family of solutions with increasing inhomogene-
ity resolution. But Buchert et al.’s results indicate that such a limiting process fails to preserve the
geodesic character of the flow: the terms that emerge from the averaging procedure do not vanish
in the appropriate limit, and the effective motion deviates from geodesic flow. This constitutes
a type II failure in Norton’s taxonomy: no consistent limit system exists within GR that realises
FLRW geodesic motion. The FLRW dust geodesics are not the idealised motion of any real body
or family of systems—they are formal artefacts, imposed rather than dynamically derived.

It might be objected at this point that the FLRW model is not merely a geometric construction,
but a physical solution of GR. This is correct. The FLRW spacetime with pressureless dust is
sourced by the stress—energy tensor in eq. (10). When substituted into the full, non-linear EFEs,
this leads to the standard Friedmann equations governing homogeneous cosmologies:

) T3P aTs &7
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where a(z) is the scale factor; ¢ is the cosmological time; p(7) and p(¢) are the density and

(d)2 831G k2 Ac?

pressure of the matter; k = 0,£1 denotes the spatial curvature parameter; A is the cosmological
constant (Weinberg, 1972), and the constants have their usual meaning.’® These equations govern
the evolution of the spacetime geometry under the influence of a dust source. In this setting,
as anticipated in §4.1, the worldlines of the dust fluid are geodesics of the evolving metric by
construction (see eq.(11)). In this sense, the geodesic motion of the dust is not postulated, but
rather follows dynamically from the EFEs.

At first glance, this may appear to undermine my argument. But the geodesic flow of FLRW
solution is a formal artefact of symmetry, not a feature of realistic backreaction. In generic back-
reacting systems, the absence of a fixed background geometry renders the geodesic equation ill-
defined as a general dynamical principle. The issue is not whether geodesic motion can be derived
in highly symmetrical models—it clearly can. The issue is whether such motion can be recovered
from any realistic matter configuration through a process of approximation or idealisation, and in-

cidentally, it cannot.

33The value of k does not determine the overall topology. For example, both open and closed topologies are possible
for k=0.
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From Buchert et al.’s work is clear that even the averaged dynamics include non-zero back-
reaction terms, and the effective fluid flow is non-geodesic. The FLRW solution assumes exact
homogeneity and isotropy at all scales. It excludes shear, vorticity, anisotropic stresses, and local
density inhomogeneities. Its geodesic motion is valid only because the model assumes away every
feature that might disturb it.

This limitation does not undermine the analytical utility of FLRW cosmology. It remains a
powerful framework for parameter estimation, perturbative analysis, and the construction of large-
scale structure surveys. But its geodesic motion must be understood in a different light. It is not a
limiting behaviour of real matter, nor a coarse-grained approximation of inhomogeneous dynamics.
In the terms developed throughout this paper, it is a useful formal construction—mathematically
consistent, physically ungrounded.

7 Natural Motion: A Layered Notion

The preceding sections have shown that the geodesic principle—the idea that free bodies follow
geodesics of a background metric—fails to represent a meaningful principle of motion within GR.
As we have seen, geodesic motion is neither an approximation (it lacks a target system) nor an
idealisation (no consistent limit system exists). What it offers is not a law of physical motion but
a referent-free useful construct—a formally elegant artefact that simplifies calculations, but lacks
any admissible referent within the space of solutions of the EFEs.

The problem, however, runs deeper than geodesic motion alone. As shown in earlier sections,
all attempts to define a non-trivial or non-circular Principle of Inertia—both in classical mechanics
and in GR via the geodesic principle—fail. The task, then, is not merely to refine the inertial
paradigm of free motion, but to replace it altogether.

What GR offers is not a single principle, but a plurality of context-dependent motions: a hi-
erarchy of representational regimes, each governed by its own approximation scheme for matter
and geometry. This motivates a conceptual shift—from inertial motion to natural motion—which
I now articulate.

Definition 10. Natural Motion: the motion of a material body as determined by the most ap-
propriate approximation scheme for its physical properties, including internal structure, spatial
extension, coupling to curvature, and self-interaction. It is governed not by a single law, but by a
structured plurality of formalisms, each valid within a specific physical domain.

The shift from inertial to natural motion thus marks a shift not merely in terminology, but in
the ontological and representational understanding of motion.
Rather than seeking a single universal equation of motion, we accept that what qualifies as a

‘natural trajectory’ depends on the body in question and the regime of approximation employed. A

60



spinning test body, a test body with quadrupole structure, a perturbatively self-interacting object,
and a fully backreacting configuration all demand distinct formalisms. Natural motion is, in this
sense, irreducibly pluralistic.

Importantly, my framework does not deny the existence of a most complete regime of natural
motion—namely, the motion a body undergoes under gravity alone, accounting for both its in-
ternal structure and dynamical interaction with spacetime. This is indeed the most complete and
physically significant regime. But even in this regime, there exist no single ‘master equation of
motion’ valid for all bodies.

Rather, what qualifies as natural motion depends on the structural properties of the system—its
symmetries, spin, stress—energy profiles, and constitutive fields. I therefore speak of classes of
bodies: sets of material systems that share these dynamical features and, as such, require a com-
mon—but class-specific—formalism. Each class demands its own dynamical model to describe
motion under gravity alone. The equations may be fully non-linear and exact, but their form and
solutions are tailored to the particular kind of matter involved.

Natural motion resists unification into a single formalism. This resistance to unification re-
flects a structural fact about GR: motion emerges from the specific coupling between geometry
and matter. The layered structure I propose is thus not merely a hierarchy of approximations—it
encodes a deeper plurality intrinsic to the theory. Even when backreaction is included, the Einstein
field equations do not yield a unique trajectory-formalism valid across all systems. They generate
instead a spectrum of dynamically consistent models, each indexed to a particular class of physical
body.

The plurality of natural motion is therefore not a by-product of approximation alone; it is a
structural feature of general relativistic dynamics. GR admits no single privileged trajectory-type
that defines free motion across all regimes. Instead, it yields multiple, physically inequivalent
forms of motion—each appropriate to a particular class of system and a corresponding regime of
representation.

Assuming a given class of bodies, each layer in the hierarchy of approximations corresponds
to a physically consistent regime within GR. These regimes are not successive corrections to an
underlying geodesic motion; they replace it entirely. Indeed, as shown in §6: geodesic motion is
not a valid base point for any physically grounded expansion scheme. The language of ‘correc-
tions’ obscures the fact that geodesic motion lies outside the physically meaningful hierarchy of
approximations. Each regime in the hierarchy constitutes a self-contained dynamical framework,
not a ‘deformation’ of some deeper inertial substrate.

What unifies these regimes is not a common mathematical structure, but a shared epistemolog-
ical role: each captures how bodies move under gravity alone, in a way that remains dynamically
consistent with the EFEs. Natural motion is defined by physical admissibility, not by geometric
simplicity.
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In the standard relativistic picture, inertial motion is defined by geodesic trajectories and rel-
ative to local INRFs. But since no real or even idealised body can ever follow such a trajectory,
the referential structure collapses. But as shown in §3 and §3.1, such frames refer to no possible
measurement apparatus. They are mathematically well defined as a description of vanishing con-
nection coefficients, but ‘devoid of instances in the theory’s space of admissible systems’.

As such, the local INRF must be understood as a purely formal construct, serving to encode
local geometric properties—not the behaviour of physical systems. It serves as a formal tool, not a
physical frame. Again, this does not imply that the concept of a local inertial frame is ill-formed,
only that it lacks any physical realisation.

Natural motion, by contrast, requires no privileged frame or trajectory, but a layered hierarchy
of physically meaningful regimes, each describing the motion of bodies under gravity alone. As
already stated in §5.2, one may still introduce local INRF structures to aid interpretation or cal-
culation, as shown in the geodesic deviation formalism. However, this introduction is a matter of
methodological convenience, not an physical statement.

This conceptual shift culminates in a new foundational principle, one that supersedes the Prin-
ciple of Inertia as defined in the relativistic framework via definitions PIN (v.4)-(v.5) ((7)-(9)):

Definition 11. Principle of Natural Motion (PNM) (v.1): A body maintains natural motion if
and only if its motion is determined by no interaction other than gravity. The notion of natural

motion is not unique, but varies across body types and regimes of approximation.

Definition 12. PNM (v.2): Natural motion is not defined relative to any privileged class of frames,
but relative to a physically justified approximation regime. References to geodesic motion within
such formal schemes play only a counterfactual role: they provide formal scaffolding, not physi-

cally meaningful standards of motion.

Unlike PIN (v.4)-(v.5), PNM (v.1)-(v,2) is not anchored in any preferred trajectory type, nor
does it presuppose the existence of local INRFs. It expresses a different kind of commitment: that
the motion of bodies under gravity is to be described by approximation regimes consistent with
EFEs, and that no such regime yields geodesic motion as a valid limit.””

This principle does not identify a new kind of motion. It articulates the only dynamically
admissible form of motion within GR. This is not merely a conceptual rebranding. It reflects
a deeper epistemic transformation. What was once thought to be the purest expression of natu-
ral motion—the geodesic trajectory—is now revealed as a formal artefact. It is not merely that
geodesic motion is not instantiated by any real body; it is that the dynamical structure of GR pre-

cludes any admissible system from instantiating geodesic motion.

This also suggest that the unification that GR achieves is not one of gravity and inertia, as traditionally understood
(see Lehmkuhl, 2014), but of gravity and natural motion—a concept with physical content, layered structure, and
dynamic validity. This will be the focus of future work.
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What replaces it is not a new, superior and universally valid trajectory law, but a layered struc-
ture of regimes each tailored to describe the motion of systems within a precise domain of validity.
For any given class of body, its most accurate description of natural motion arises within the regime
that includes both its internal structure and its backreaction on the metric.

As such, natural motion replaces the search for a universal trajectory law with a pluralistic
model of dynamical representation. This reflects a deeper epistemic stance: motion in GR is not
anchored in a formal, a priori preferred construction, but derived from the dynamical structure of
the theory. The PNM inherits the role once aspired to by the geodesic principle and the PIN—while
jettisoning the assumptions that made that aspiration untenable.

The layered hierarchy of motion in GR can now be schematically summarised in Table 3. The

upshot is clear. Natural motion is not a refinement of the geodesic principle. It is its systematic

displacement.
Body Type Applicable Framework Key Features of Motion
— Excluded from the Natural Motion Hierarchy —
Point-like, Geodesic equation Formal construct only. No real or

non-backreacting, spinless idealised body moves in this way. Not

a valid approximation or idealisation.

— Natural Motion Regimes —

Extended,

non-backreacting, spinning

MPD equations

Spin—curvature coupling &
Quadrupole—curvature coupling; fixed
background.

Extended, non-backreacting

Geodesic deviation

Internal tidal effects; fixed

background.
Extended, backreacting MiSaTaQuWa formalism Self-interaction: tail terms from
(perturbative) perturbation field
Extended, backreacting Non-linear, Full coupling to spacetime geometry

(non-perturbative) general-relativistic via the EFEs
models, often simplified

in Cosmological cases

Table 3: Hierarchy of physically admissible regimes of motion in GR. Geodesic motion is shown
above the horizontal break to emphasise its exclusion from the hierarchy of natural motion: it is
neither an approximation nor an idealisation. Below the break, natural motion emerges in layered
regimes of consistent dynamical representations, each tied to specific physical assumptions about
the body’s structure and backreaction.
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8 Conclusion

My inquiry ends here, provisionally. On the 2,000-year road from Aristotle to Einstein, I have
revisited familiar landmarks and begun to chart a less-travelled route: one in which inertial motion
and natural motion—Ilong treated as coextensive—are systematically disentangled. At the heart of
this inquiry lies a foundational impasse: the impossibility of formulating a non-circular or non-
trivial Principle of Inertia. This failure reverberates through classical mechanics and into GR,
where the geodesic principle inherits the same foundational vacuity. It emerges not as a physical
law, but as a formal construct devoid of realisation.

The investigation began in §2, which traced the historical and conceptual evolution of the Prin-
ciple of Inertia from its classical roots to its pre-relativistic reformulations, revealing deep instabil-
ities in both its content and its foundational role. I showed that traditional formulations of inertial
motion—via uniform motion, absence of force, or privileged reference frames—remain trapped
in definitional loops. §2.1 clarified inertia’s epistemic status—specifically, whether it should be
understood as an empirical law or as a structural principle. Two major interpretive approaches
were introduced: the law-like and the principle-like. Under the law-like reading, inertia is treated
as a descriptive regularity—either in terms of unforced motion (law-based approach) or as the
consequence of a fixed geometric background (structure-based approach). Both variants seek to
define inertial frames either empirically or geometrically, but ultimately fail to offer a non-circular
characterisation. In contrast, the principle-like reading reconceives inertia as a constitutive feature
of the theory, encoded in its dynamical symmetries. I proposed that Jacobs’ symmetry-based ap-
proach naturally supports this principle-like understanding of inertia.

§3, examined the relativistic generalisation of inertia through the geodesic principle. While
this principle avoids the circularities of classical definitions by identifying inertial motion with
geodesic motion of the Levi—Civita connection, it collapses into triviality: geodesic motion merely
restates the structure of the connection, offering no genuine explanation of how bodies move. This
triviality is made explicit in the formal definitions introduced—PIN (v.4) and PIN (v.5)—which
define inertial motion either as the absence of non-gravitational couplings in the Lagrangian or
as geodesic motion within a local inertial frame. The reliance on local inertial frames, which is
supported by the Equivalence Principle, further complicates the picture. As §3.1 argued, the very
notion of locality invoked—whether pointwise or along a geodesic—is physically impractical. It
licences only mathematical constructs, not empirically realisable systems.

§4 clarified the central philosophical thesis of the paper: that geodesic motion in GR is neither
an approximation to, nor an idealisation of, the motion of real bodies. Drawing on Tamir’s distinc-
tion between limit proofs and singularity proofs, and on Norton’s framework for diagnosing fail-
ures of idealisation, I examined four canonical derivations of the geodesic principle: Geroch-Jang,
Ehlers—Geroch, Einstein—-Grommer, and Geroch—Traschen. Each of these strategies was shown to
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fail not only as a derivation of the geodesic principle—Tamir’s original claim—but also as a jus-
tification for treating geodesic motion as a valid idealisation or, strengthening Norton’s definition,
approximation within GR.

The Geroch—Jang theorem presupposes the test-body regime by inserting non-zero stress—energy
into a fixed background without any dynamical justification, violating the Einstein equations and
producing what I termed an off-shell failure of approximation (§4.1).

The Ehlers—Geroch theorem introduces a converging sequence of spacetimes, but in the limit
the stress—energy vanishes: the limit system is a vacuum spacetime that contains no body at all and
therefore cannot bear the geodesic property—an instance of Norton’s Type Il failure of idealisation
(§4.2).

The Einstein—~Grommer strategy removes the body from the manifold altogether and attributes
geodesic motion to a curve lying outside the spacetime. This is a paradigmatic case of pathological
tracking: the motion of the body is not approximated but erased (§4.3).

Finally, the Geroch—Traschen theorem proves that no distributional stress—energy supported on
a curve can satisfy the field equations: the limit system needed to realise geodesic motion simply
does not exist—an instance of Norton’s Type I failure (§4.4).

Across all four cases, geodesic motion emerges as a well-defined mathematical construct, yet
one that corresponds to no admissible system, whether real, approximated, or idealised. Even the
refined proposals of Geroch-Weatherall, while formally precise, ultimately confirm this diagnosis:
geodesic motion does not describe any physically admissible system, not even in perturbative
regimes. Its role is formal, not representational. Its physical bite is thus illusory.

In §5 I examined the motion of spatially extended test bodies in GR, whose internal structure
induces systematic departures from geodesic motion even in the absence of backreaction. These
systems occupy an intermediate regime: they are not point-like, but they do not source curvature.
The section analysed two complementary frameworks that yield the first physically meaningful
approximations to natural motion in curved spacetime. The Mathisson—Papapetrou—Dixon (MPD)
formalism captures how internal spin and higher multipole moments couple to curvature, mod-
ifying the motion of the centre of mass (§5.1). The geodesic deviation formalism, by contrast,
models how tidal effects—arising from curvature gradients—induce relative acceleration across
the body’s interior modelled as a congruence of geodesics. Moreover, by analysing the role of
torsion, I showed that even the geometry used to define free fall expose the geodesic principle as
inadequate: the very meaning of natural motion depends on the structural features of the spacetime
model (§5.1.2). These findings mark a turning point in the paper: they reveal that geodesic motion
lies entirely outside the approximation hierarchy grounded in physically admissible systems.

§6, completed the construction of the layered natural motion by addressing the motion of ex-
tended, backreacting bodies in GR. I distinguished two conceptually distinct regimes of backre-

action. The first—perturbative backreaction—describes small, compact bodies whose self-gravity
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can be modelled as a linear perturbation of a fixed background (§6.1). I examined the Mino-Sasaki-
Tanaka-Quinn-Wald (MiSaTaQuWa) formalism, which introduces a delta-function stress—energy to
compute self-force effects, but does so only within the linearised Einstein equations. While this ap-
proach captures essential features of gravitational self-interaction—such as history-dependent rail
terms—its use of a point-particle source is assumed rather than derived. This gap is closed by the
Gralla—Wald construction, which rigorously derives the MiSaTaQuWa formalism as the limit of a
one-parameter family of smooth, extended, on-shell solutions. This marks a pivotal moment: un-
like geodesic motion, the MiSaTaQuWa worldline represents a real, backreacting system—earning
its place in the hierarchy of natural motion.

By contrast, the second regime—non-perturbative backreaction—reveals the illusory character
of geodesic motion in the standard cosmological FLRW model (§6.2). I showed that the geodesic
Hubble flow of cosmic dust, though often cited as the canonical example of inertial motion in
GR, does not approximate any realistic inhomogeneous matter configuration. Averaging proce-
dures over inhomogeneous spacetimes generically yield non-geodesic effective flows, as shown by
Buchert and collaborators. This amounts to a Type Il failure of idealisation: even in the large-scale
limit, no consistent system realises the geodesic property. The FLRW geodesics are thus revealed
to be symmetry-induced artefacts with no physical referent—neither real nor idealised. Neverthe-
less, the fully non-linear regime remains central to the overall framework. Far from being excluded,
fully non-perturbative, backreacting systems—despite their analytic intractability—constitute the
most general and fundamental level of natural motion.

Across both regimes, this section confirmed that geodesic motion cannot be salvaged as a model
of free fall in backreacting systems. They conclude the trajectory initiated in the earlier sections:
the rejection of geodesic motion is not a renunciation of dynamical realism, but a pathway to
recovering it on stronger grounds.

§7 completed the constructive arc of the paper by explicitly articulating the layered concept
of natural motion that had been progressively developed across §§5-6. Drawing together the dis-
tinct approximation regimes explored earlier—ranging from structured test bodies to perturbative
and fully nonlinear backreaction—this section defined natural motion as the system-specific, dy-
namically consistent motion of a body under gravity alone. It was shown that no single law or
trajectory captures this plurality. Instead, each level of approximation corresponds to a distinct
formalism that respects both the matter configuration and the constraints of the EFEs. Importantly,
this layered pluralism is not merely approximation-theoretic in character. Even in the most com-
plete and physically fundamental regime—namely, the fully non-linear dynamics of backreacting
bodies under gravity alone—there exists no single, universal equation of motion. This reveals a
deeper plurality: the diversity of natural motion reflects not just the limitations of approximation,
but the structural richness of general relativistic dynamics itself. This plural structure was for-

malised in a new Principle of Natural Motion, which does not rely on privileged trajectories or
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frames and displaces the geodesic principle as the foundational principle of free motion in GR. In
this framework, geodesic motion is no longer the core ideal to be corrected or recovered; it is an
artefact excluded by every admissible regime. Natural motion thus replaces inertial motion as the
physically meaningful standard for describing how bodies move under gravity in GR.

What, then, becomes of inertia? The lesson that GR seems to teach us is that the concept per-
sists, but only as a formal by-product of GR’s geometric structure, not as a physically instantiated
principle. The rhetorical force of the geodesic principle masks its physical vacuity. What GR of-
fers instead is a richer picture: one that replaces the inertial framework with a plurality of natural
motions, each dynamically valid within its regime of approximation.

This conclusion is not a terminus. The distinctions drawn here open several paths for future
research.

One concerns the extension of the natural motion framework to field theory. What does it mean
for a field configuration—governed by Euler—Lagrange dynamics—to evolve naturally, rather than
inertially? Can the distinctions between the various layers of natural motion be framed for field
degrees of freedom? Such questions invite deeper inquiry into the dynamics of fields in curved
spacetime.

A second direction concerns generalisation beyond GR. I already mentioned the role of torsion.
In theories such as Newton—Cartan gravity or even in equivalent formulations of GR (Beltrdn Jiménez
et al., 2019; Wolf et al., 2024), one may ask whether similar tensions arise between inertial and
natural motion. The framework developed here could offer new criteria for distinguishing between
formal constructs and dynamically meaningful trajectories in alternative gravitational theories.

Finally, this work suggests a broader interpretive shift to be explored elsewhere. The unifica-
tion that GR achieves is not between gravity and inertia—as traditionally claimed—but between
gravity and natural motion. This reconceptualisation reveals that GR does not simply refine our
understanding of inertial motion; it dissolves it. One of GR’s deepest lessons is that motion under
gravity is not defined by a universal, privileged class of curves, but by a layered system of approx-

imation regimes: structurally rich, dynamically consistent, and physically grounded.
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