
Why Magnetic Monopoles Cannot Exist:

A Gauge Potential Perspective

Shan Gao
Research Center for Philosophy of Science and Technology,

Shanxi University, Taiyuan 030006, P. R. China
E-mail: gaoshan2017@sxu.edu.cn.

August 6, 2025

Abstract

Magnetic monopoles, hypothetical entities with isolated magnetic charges (Dirac) or effec-
tive charges from field configurations (’t Hooft-Polyakov), are posited to symmetrize elec-
tromagnetism and explain electric charge quantization, yet remain undetected. This paper
demonstrates that such monopoles—Abelian Dirac and non-Abelian ’t Hooft-Polyakov—are
incompatible with a potential-centric ontology, where the gauge potential Aµ, fixed in one
true gauge, the Lorenz gauge, is the fundamental physical entity mediating local interac-
tions, as evidenced by the Aharonov-Bohm effect. We derive a no-go result, showing that
magnetic monopoles require singular (e.g., Dirac strings) or non-unique (e.g., Wu-Yang
patches) potentials in all gauges to resolve a Stokes’ theorem contradiction, violating the
ontology’s requirement for unique, non-singular potentials in the true gauge. This result
extends to sphalerons in SU(2) × U(1) electroweak theory and D-branes in string the-
ory, whose Ramond-Ramond potentials Cp+1 exhibit an AB-like effect but require singular
or non-unique potentials due to non-zero flux, leading to a theoretical self-contradiction
independent of experimental evidence. In contrast, cosmic strings, with a non-singular,
single-valued Aµ in a single gauge, satisfying Stokes’ theorem and the ontology’s criteria.
Instantons and skyrmions are compatible as non-physical or emergent constructs, and emer-
gent monopoles in spin ice, producing flux in an effective field, are also consistent with
the ontology. Our findings explain the absence of magnetic monopoles and baryon number
violation in standard electroweak processes, align with experimental null results, and sug-
gest that D-branes’ theoretical inconsistency challenges their physical realizability, offering
testable predictions for gauge theories and deepening our understanding of their ontological
implications.

1 Introduction

Magnetic monopoles, hypothetical entities carrying isolated magnetic charges (Dirac) or effec-
tive charges from field configurations (’t Hooft-Polyakov), have captivated theoretical physics
since Dirac’s pioneering work on their quantization [6, 24]. Their existence would symmetrize
electromagnetism, mirroring the duality between electric and magnetic fields, and provide a
theoretical explanation for electric charge quantization via the Dirac quantization condition,
which ensures discrete electric charges in the presence of a magnetic monopole [6, 7]. Moreover,
monopoles are predicted in Grand Unified Theories (GUTs), such as SU(5) or SO(10), where
symmetry breaking produces effective magnetic charges, making them a critical probe for high-
energy physics and cosmology [21, 22, 24, 26]. These theoretical motivations position monopoles
as compelling candidates for deepening our understanding of gauge theories and fundamental
interactions.

Magnetic monopoles produce a non-zero flux,
∮
S B · dS = g, in the true Maxwellian B-

field, encompassing Abelian Dirac monopoles in U(1) gauge theory, which are point-like with

1

mailto:gaoshan2017@sxu.edu.cn


∇·B = gδ3(r) [6, 7], and ’t Hooft-Polyakov monopoles in non-Abelian SU(2) gauge theory, which
are topological solitons with a finite core and ∇ · B = 0 but non-zero flux at large distances
[22, 26]. Emergent monopoles, such as those in spin ice materials like Dy2Ti2O7, produce
flux in an effective magnetization field, arising from spin configuration defects, not the true
B-field, which remains divergenceless with zero flux [5, 17]. This paper focuses on fundamental
magnetic monopoles, as their non-zero B-field flux challenges the structure of gauge theories
and electromagnetic ontology.

Despite their theoretical appeal, magnetic monopoles remain undetected. Experimental
searches, such as CERN’s MoEDAL experiment, have set stringent upper limits on monopole
flux, finding no evidence [1]. Cosmological constraints from the cosmic microwave background
and galactic magnetic fields suggest monopoles, if they exist, are extremely rare [23]. Dirac
monopoles require a singular gauge potential, the Dirac string, or patch-wise potentials in the
Wu-Yang formulation, which are treated as mathematical artifacts in gauge-invariant frame-
works [6, 32]. The ’t Hooft-Polyakov monopole, being non-singular, is a soliton with a finite
core [22, 26]. The physics community views magnetic monopoles as speculative, supported by
theory but lacking empirical confirmation, with no consensus on their rejection.

This paper analyzes magnetic monopoles within a potential-centric ontology, where the
gauge potential Aµ (or Aaµ in non-Abelian theories), fixed in the Lorenz gauge (∂µA

µ = 0),
is the fundamental physical entity, not the fields E or B. Inspired by the Aharonov-Bohm
(AB) effect, where Aµ mediates local, continuous phase shifts in field-free regions, this ontology
requires Aµ in one true gauge, the Lorenz gauge, to be unique, non-singular except at physical
sources, and mediate interactions locally [2, 9]. We argue that magnetic monopoles—Dirac or ’t
Hooft-Polyakov—cannot exist in this framework, as they require singularities (e.g., Dirac string)
or non-unique gauge potentials (e.g., Wu-Yang patches) in all gauges, violating the ontology’s
criteria. This no-go result extends to sphalerons in SU(2) × U(1) electroweak theory, whose
field configurations, characterized by π3(SU(2)) ∼= Z, require non-unique gauge potentials, as
well as to D-branes in string theory, whose Ramond-Ramond (RR) potentials Cp+1 exhibit an
AB-like effect but require singular or non-unique potentials due to non-zero flux, leading to a
theoretical self-contradiction independent of experimental evidence. However, cosmic strings,
with a non-singular, single-valued Aµ in a single gauge and no Stokes’ theorem contradiction,
are compatible with the ontology. Instantons and skyrmions are also compatible as non-physical
or emergent constructs. The result explains the asymmetry in Maxwell’s equations, aligns with
experimental null results, and offers testable predictions.

The paper is structured as follows. Section 2 introduces magnetic monopoles, detailing the
Dirac string and Wu-Yang formulations for Abelian Dirac monopoles and non-Abelian ’t Hooft-
Polyakov monopoles. Section 3 establishes Aµ’s reality in one true gauge via the AB effect,
critiquing gauge-invariant paradigms for nonlocality and discontinuity. Section 4 examines the
Abelian and non-Abelian monopoles, deriving a no-go result due to unphysical singularities and
non-unique potentials in all gauges. Section 5 addresses counterarguments, including emergent
monopoles in spin ice and the role of monopoles in charge quantization. Section 6 extends
the no-go result to other topological defects, such as cosmic strings, sphalerons, instantons,
and skyrmions, assessing their compatibility with the ontology. Section 7 examines D-branes,
deriving their incompatibility via an AB-like effect and Stokes’ theorem contradiction. Section
8 concludes with the no-go result’s implications and future research directions in gauge theories
and their ontology.

2 Magnetic Monopoles: Formulations and Issues

This section examines magnetic monopoles, defined as entities producing a non-zero magnetic
flux,

∮
S B ·dS = g, in the true Maxwellian B-field, encompassing both Abelian Dirac monopoles

and non-Abelian ’t Hooft-Polyakov monopoles. We present their mathematical formulations in
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Abelian U(1) and non-Abelian SU(2) gauge theories, focusing on the gauge potential Aµ or Aaµ,
and discuss their potential issues.

2.1 Abelian Monopoles

This subsection introduces Abelian magnetic monopoles in U(1) gauge theory, which produce
a radial magnetic field with non-zero divergence, ∇ ·B = gδ3(r), and flux,

∮
S B · dS = g. Two

formulations—Dirac string and Wu-Yang patch-wise—define the vector potential A, but both
introduce singularities or non-unique potentials.

2.1.1 Dirac String Formulation

An Abelian magnetic monopole at the origin with magnetic charge g generates a radial magnetic
field:

B =
g

4πr2
r̂, (1)

with a non-zero divergence:

∇ ·B = gδ3(r), (2)

violating Maxwell’s equation ∇ · B = 0. This field mimics the electric field of a point charge
(∇ · E = q

ϵ0
δ3(r)) but requires a vector potential A such that B = ∇ × A. The non-zero

magnetic flux (
∮
S B · dS = g) generated by the monopole’s field prevents a unique, globally

smooth vector potential A, as it necessitates singularities or non-unique potentials to resolve
the Stokes’ theorem contradiction (see Eq. 28 in Section 2.3).

In spherical coordinates, a standard choice for the vector potential is:

AA =
g

4πr

1− cos θ

sin θ
ϕ̂, (3)

which is singular along the negative z-axis (θ = π), termed the Dirac string. Away from the
string,∇×AA = g

4πr2
r̂, matching the monopole field. The singularity along θ = π means∇×AA

is not just the monopole field — it also includes a delta-function flux tube along the string:

∇×AA = B+ gδ(x)δ(y)Θ(−z)ẑ, (4)

where Θ(−z) is the Heaviside step function ensuring the string only exists for z < 0 [24]. This
flux tube adjusts the line integral

∮
C AA ·dr to match the flux through different surfaces bounded

by C, resolving the Stokes’ theorem contradiction (Section 2.3), while the total flux through a
closed surface remains

∮
S B · dS = g.

An alternative gauge yields:

AB = − g

4πr

1 + cos θ

sin θ
ϕ̂, (5)

singular along the positive z-axis (θ = 0). These potentials are related by a gauge transforma-
tion, AB = AA−∇χ, with χ = g

2πϕ, which shifts the singularity’s position while preserving B.
In natural units (ℏ = c = 1), the Dirac quantization condition:

qg = 2πn, (6)

ensures the string’s unobservability in quantum mechanics (QM).1 For a charged particle (charge
q) encircling the string along a closed loop C, the phase shift is:

1We set ℏ = c = 1 throughout this paper.

3



eiq
∮
C A·dr = eiqg = ei2πn = 1, (7)

leaving the wave function unchanged, rendering the singularity physically undetectable [6].
In gauge-invariant paradigms, the singularity of the Dirac string is a mathematical artifact,

not a physical feature, as physical predictions depend only on gauge-invariant quantities. The
quantization condition (Eq. 6) ensures that the singularity does not affect observable quantities,
such as scattering cross-sections or phase shifts in QM. Thus, physicists accept the Dirac string
formulation as a valid model for magnetic monopoles in QM and QED, despite the singularity,
as it correctly reproduces gauge-invariant predictions.

2.1.2 Wu-Yang Patch Formulation

The Dirac string formulation, while effective, introduces an explicit line singularity that com-
plicates the vector potential’s mathematical structure. The Wu-Yang patch-wise formulation,
often regarded as an improvement, aims to eliminate this explicit singularity by defining non-
singular but non-unique vector potentials in overlapping patches that cover the space around
the monopole, ensuring the same gauge-invariant magnetic field B [32].

For a magnetic monopole at the origin, the Wu-Yang approach uses two patches to cover
R3 \ {0}, topologically equivalent to S2:

� Patch A (0 ≤ θ < π/2 + ϵ): Covers the northern hemisphere, from the north pole (θ = 0)
to slightly past the equator, excluding the region near the south pole.

AA =
g

4πr

1− cos θ

sin θ
ϕ̂, (8)

which is non-singular for 0 ≤ θ < π/2 + ϵ, except at the origin (r = 0).

� Patch B (π/2 − ϵ < θ ≤ π): Covers the southern hemisphere, from slightly before the
equator to the south pole (θ = π), excluding the region near the north pole.

AB = − g

4πr

1 + cos θ

sin θ
ϕ̂, (9)

which is non-singular for π/2− ϵ < θ ≤ π, except at the origin.

In the overlap region (π/2 − ϵ < θ < π/2 + ϵ), the potentials are related by a gauge transfor-
mation:

AB = AA −∇χ, χ =
g

2π
ϕ, (10)

where χ is the gauge function. Although χ is multi-valued (χ(ϕ + 2π) = χ(ϕ) + g), the quan-
tization condition (Eq. 6) guarantees that the phase shift eiq(χ(ϕ+2π)−χ(ϕ)) = eiqg = ei2πn = 1,
ensuring the wave function is single-valued, maintaining physical consistency across patches.

The Wu-Yang formulation eliminates the Dirac string’s explicit singularity, as each vector
potential (AA, AB) is well-defined and non-singular within its respective patch, covering R3\{0}
without an explicit Dirac string [24]. However, a closer examination reveals that the formulation
also introduces several potenial issues not always emphasized in the literature [24]. First, the
need for multiple patches (e.g., northern and southern hemispheres) to cover S2 results in
non-unique gauge potentials, as the choice between AA and AB is ambiguous in the overlap
region (π/2 − ϵ < θ < π/2 + ϵ). Since AA and AB are different in all gauges, the ambiguity
is universal, independently of the choice of gauge. Second, in the AB effect, a loop crossing
the overlap region incurs a phase shift of g due to the gauge switch, disrupting continuous
phase accumulation and depending on a non-physical boundary, although the phase shift is
unobservable due to the Dirac quantization condition. Finally, the choice of patch boundaries
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in the Wu-Yang formulation, like the position of the Dirac string, is arbitrary, and different
patch configurations yield equivalent magnetic fields but distinct vector potentials AA and AB.
These issues will be analyzed in detail in the potential-centric ontology in Section 4.2.

The physics community views the Wu-Yang formulation as a refined approach due to the
absence of an explicit Dirac string in the vector potentials [24]. The above issues with the
potentials are considered mathematical artifacts, as only gauge-invariant quantities such as B
and the AB phase shift are physical observables. Consequently, physicists accept the Wu-Yang
formulation as a valid model for magnetic monopoles, equivalent to the Dirac string formulation
in its physical predictions, despite its mathematical intricacies [32].

2.1.3 Summary of Abelian Monopole Issues

The Dirac string and Wu-Yang formulations describe Abelian monopoles with B = g
4πr2

r̂ and
∇·B = gδ3(r). The Dirac string introduces a line singularity, while Wu-Yang uses non-singular
but non-unique potentials. In gauge-invariant paradigms, these are mathematical artifacts, and
they do not affect physical predictions.

2.2 Non-Abelian Monopoles

This subsection examines the non-Abelian ’t Hooft-Polyakov monopole in SU(2) gauge theory,
classified as a fundamental magnetic monopole due to its non-zero flux,

∮
S B · dS = gm, despite

being a soliton with ∇ · B = 0. We present its standard and Dirac string-like formulations,
showing that all require singularities or non-unique potentials as Abelian monopoles do.

2.2.1 ’t Hooft-Polyakov Standard Formulation

The ’t Hooft-Polyakov monopole is a topological soliton in non-Abelian SU(2) gauge theory with
a Higgs field in the adjoint representation, producing a non-zero magnetic flux,

∮
S B · dS = gm,

through a closed surface surrounding the monopole [22, 24, 26]. Unlike the Dirac monopole,
which is point-like with ∇ · B = gδ3(r), the ’t Hooft-Polyakov monopole is a smooth field
configuration with a finite core, resembling a Dirac monopole at large distances. This subsection
outlines its mathematical structure, emphasizing the gauge potential Aaµ, the Higgs field ϕa,

and the origin of its magnetic charge gm = 4π
e , which aligns with our definition of magnetic

monopoles due to its non-zero flux in the Maxwellian B-field.
In SU(2) gauge theory, the gauge potential Aaµ (with a = 1, 2, 3 labeling the SU(2) genera-

tors) and the Higgs field ϕa in the adjoint representation are governed by the Lagrangian:

L = −1

4
F aµνF

aµν +
1

2
(Dµϕ

a)(Dµϕa)− V (ϕa), (11)

where F aµν = ∂µA
a
ν − ∂νA

a
µ + eϵabcAbµA

c
ν is the field strength tensor, Dµϕ

a = ∂µϕ
a + eϵabcAbµϕ

c

is the covariant derivative, e is the SU(2) gauge coupling, and V (ϕa) = λ
4 (|ϕ|

2 − v2)2 is the
Higgs potential, with v the vacuum expectation value and |ϕ|2 = ϕaϕa. The Higgs field acquires
a non-zero vacuum expectation value, |ϕ| = v, breaking SU(2) to U(1), enabling monopole
solutions.

The ’t Hooft-Polyakov monopole is a static, spherically symmetric solution centered at the
origin. In spherical coordinates, the ansatz for the fields is:

ϕa = r̂a
vH(er)

er
, Aai = ϵijkr̂

jK(er)− 1

er
δak, Aa0 = 0, (12)

where r̂a = xa/r, H(er) and K(er) are profile functions.2 Boundary conditions shape the
field configuration: at r → ∞, H(er) → er, so ϕa → vr̂a, and K(er) → 0, so Aai → 0; at

2The gauge potential Aa
µ is defined with µ = 0, 1, 2, 3 (temporal and spatial indices) and a = 1, 2, 3 (SU(2)

gauge indices). For the static ’t Hooft-Polyakov monopole, we set Aa
0 = 0, and the spatial components are
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r → 0, H(0) = 0, K(0) = 1, ensuring regularity at the origin (r = 0), as the Higgs field
vanishes smoothly, avoiding a point-like singularity. The Higgs field’s direction in isospin space,
ϕ̂a = ϕa/|ϕ|, maps the spatial sphere S2 at large r to the vacuum manifold S2 ≈ SU(2)/U(1),
yielding a non-trivial winding number classified by the homotopy group π2(SU(2)/U(1)) ∼= Z.

The effective magnetic field is defined via the Higgs field’s direction:

Bi =
1

2
ϵijkϕ̂

aF ajk, ϕ̂a =
ϕa

|ϕ|
, (13)

where F ajk is the spatial field strength. At large distances (r ≫ 1/(ev)), the field approximates:

Bi ≈
gm
4πr2

r̂i, gm =
4π

e
, (14)

resembling a Dirac monopole’s field with magnetic charge gm = 4π/e, satisfying the Dirac
quantization condition qgm = 4πn for an integer n, consistent with the topological structure of
the SU(2) gauge theory. The magnetic flux through a closed surface S at large r is:∮

S
B · dS = gm =

4π

e
, (15)

confirming its status as a magnetic monopole per our definition. The divergence of the effective
magnetic field, ∇ · B, is zero everywhere, including inside and outside the monopole’s core,
distinguishing it from the Dirac monopole’s ∇ ·B = gδ3(r). The divergence is computed as:

∇ ·B = ∂iBi =
1

2
ϵijk∂i

(
ϕ̂aF ajk

)
. (16)

Using the Bianchi identity, DµF
aµν = ∂µF

aµν + eϵabcAbµF
cµν = 0, and the smoothness of ϕ̂a

(since |ϕ| ≠ 0 except at the origin, where regularity ensures no singularity), it follows that
∇ ·B = 0 everywhere, as the field strength and Higgs field are smooth.

The non-zero magnetic flux (
∮
S B · dS = 4π

e ) arises from the special configuration of the
Higgs field in the ’t Hooft-Polyakov monopole, resulting in a non-trivial SU(2) gauge bundle
over S2, classified by π2(S

2) ∼= Z. To define a consistent U(1) gauge potential for electromagnetic
interactions, the gauge field is projected onto the U(1) subgroup defined by ϕ̂a:

Ai = Aai ϕ̂
a, (17)

yielding an effective Abelian potential. However, the non-trivial topology requires multiple
patches to cover S2, analogous to the Wu-Yang formulation. In two patches (e.g., northern

and southern hemispheres), the gauge fields A
a(A)
i and A

a(B)
i and Higgs fields ϕ̂a(A), ϕ̂a(B) are

related by a transition function U ∈ SU(2):

ϕ̂a(B) = Uϕ̂a(A)U−1, A
a(B)
i = UA

a(A)
i U−1 − i

e
(∂iU)U−1, (18)

For a monopole with winding number n = 1, a typical transition function is:

U = exp

(
i
ϕn

2
τ3
)
, (19)

where τ3 is the third Pauli matrix. This function is multi-valued:

U(ϕ+ 2π) = U(ϕ)(−I) = −U(ϕ), (20)

denoted Aa
i (Eq. 12), where i, j, k are spatial indices and the Levi-Civita symbol ϵijk follows the convention with

lower indices.
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since exp(iπτ3) = −I. The effective potential Ai = Aai ϕ̂
a in each patch differs by a gauge

transformation.
This patch-wise formulation of non-Abelian monopoles, like the Wu-Yang formulation of

Abelian monopoles, also introduces several similar issues. First, the choice between A
a(A)
i and

A
a(B)
i is ambiguous at the patch boundary, yielding non-unique Aai for the same spacetime

region. Second, in the non-Abelian AB effect, a Wilson loop crossing the boundary incurs
a phase shift of gm due to the gauge switch, disrupting continuous phase accumulation and
depending on a non-physical boundary. Finally, the choice of patch boundaries is arbitrary, and

different patch configurations yield distinct gauge potentials A
a(A)
i and A

a(B)
i .

2.2.2 Dirac String Formulation for ’t Hooft-Polyakov Monopoles

The standard patch-wise formulation of ’t Hooft-Polyakov monopoles (Eq. 12) uses smooth

potentials A
a(N)
i , A

a(S)
i with a transition function U = exp(iϕτ3/2), ensuring regularity at the

origin (H(0) = 0, K(0) = 1) and a finite core (r ∼ 1/(ev)). However, this smoothness is gauge-
dependent. An alternative singular gauge can eliminate patches, using a unique potential with
a Dirac string-like singularity, preserving gauge-invariant predictions.

Consider a gauge where ϕa′ ≈ (0, 0, v) at large r, via a transformation U aligning ϕa ≈ r̂av.
The gauge potential is:

Aa′i = êa3
gm
4πr

1− cos θ

sin θ
ϕ̂iK

′(er), gm =
4π

e
, (21)

with êa3 = (0, 0, 1), K ′(0) = 1, K ′(er) → 1, ensuring regularity at r = 0. The Higgs field is:

ϕa′ = êa3v
H(er)

er
. (22)

The effective potential:

A′
i = Aa′i ϕ̂

a′ ≈ gm
4πr

1− cos θ

sin θ
ϕ̂i, (23)

is singular along θ = π. The field strength gives:

B′
i ≈

gm
4πr2

r̂i, (24)

and the line integral
∮
C A

′
idx

i ≈ gm
2 (1−cos θ0) resolves the Stokes’ contradiction (Section 2.3) in

a single patch. The equations of motion (Eq. 11) are satisfied with appropriate H(er), K ′(er),
preserving the finite core and gauge-invariant quantities (e.g., flux, energy density).

This singular gauge is equivalent to the patch-wise formulation, as both describe the same
soliton, with identical gauge-invariant predictions. The singular gauge avoids non-uniqueness
by using a unified Aa′µ , but introduces a singularity along θ = π.

2.2.3 Summary of Non-Abelian Monopole Issues

The physics community accepts the ’t Hooft-Polyakov monopole as a valid model for magnetic
monopoles in non-Abelian gauge theories, particularly in GUTs, due to its non-singular fields
and quantized magnetic charge [24]. The non-unique, patch-dependent gauge potentials in the
standard formulation are treated as mathematical artifacts, as only gauge-invariant quantities
such as the magnetic flux or scattering amplitudes are physical observables. This contrasts
with our potential-centric ontology (Section 3), which scrutinizes the physical reality of Aaµ,
highlighting the non-uniqueness and topological defects as barriers to magnetic monopoles.
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2.3 Non-Zero Flux and Stokes’ Theorem Contradiction

This subsection examines the topological implications of magnetic monopoles, defined by their
non-zero magnetic flux,

∮
S B · dS = g, in the true Maxwellian B-field, encompassing Abelian

Dirac monopoles and non-Abelian ’t Hooft-Polyakov monopoles. The non-zero flux induces a
Stokes’ theorem contradiction when defining the gauge potential A for Abelian monopoles or
the effective potential Ai = Aai ϕ̂

a for non-Abelian monopoles, necessitating singularities or non-
unique potentials in all formulations. We analyze this contradiction for both monopole types,
highlighting how their resolutions—via Dirac strings, Wu-Yang patches, or SU(2) transition
functions—introduce defects incompatible with the potential-centric ontology’s requirements
(Section 3).

Magnetic monopoles produce a radial magnetic field at large distances, B ≈ g
4πr2

r̂ for
Abelian Dirac monopoles (Eq. 1) and B ≈ gm

4πr2
r̂ with gm = 4π

e for ’t Hooft-Polyakov monopoles
(Eq. 14). The flux through a closed surface S, such as a sphere of radius R, is:∮

S
B · dS =

∫ 2π

0

∫ π

0

g

4πR2
(R2 sin θ dθ dϕ) = g, (25)

for Dirac monopoles, and similarly gm for ’t Hooft-Polyakov monopoles (Eq. 55). For Dirac
monopoles, the divergence is:

∇ ·B = gδ3(r), (26)

violating Maxwell’s ∇ ·B = 0, and the divergence theorem relates the flux to the source:∫
V
(∇ ·B) dV = g =

∮
S
B · dS, (27)

where V encloses the origin. For ’t Hooft-Polyakov monopoles, ∇·B = 0 everywhere due to the
Bianchi identity and smooth Higgs field (Eq. 16), yet the non-zero flux arises from the Higgs
field’s configuration, which has a non-trivial winding number classified by π2(SU(2)/U(1)) ∼= Z.

Stokes’ theorem requires that for a surface SC bounded by a closed loop C:∮
C
A · dr =

∫
SC

(∇×A) · dS =

∫
SC

B · dS, (28)

where A is the Abelian potential, or for non-Abelian monopoles, the effective potential Ai =
Aai ϕ̂

a (Eq. 17). However, the non-zero flux causes the integral
∫
SC

B·dS to depend on the surface
chosen for a given C. Consider a loop C at radius r and polar angle θ = θ0, parameterized by
ϕ ∈ [0, 2π]. Two surfaces bounded by C yield different fluxes:

� Northern cap (SN , θ : 0 → θ0):∫
SN

B · dS =

∫ 2π

0

∫ θ0

0

g

4πr2
(r2 sin θ dθ dϕ) =

g

2
(1− cos θ0). (29)

� Southern cap (SS , θ : θ0 → π):

∫
SS

B · dS =

∫ 2π

0

∫ π

θ0

g

4πr2
(−r2 sin θ dθ dϕ) = −g

2
(1 + cos θ0). (30)

The flux difference: ∫
SN

B · dS−
∫
SS

B · dS = g, (31)
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is non-zero, violating Stokes’ theorem unless A is singular or defined patch-wise in all gauges
to offset the gauge-invariant flux difference. This contradiction arises because R3 \ {0} is not
simply connected, and the non-zero flux prevents a globally smooth, unique gauge potential A
for Abelian monopoles or effective potential Ai = Aai ϕ̂

a for non-Abelian monopoles.
For Abelian Dirac monopoles, the Dirac string formulation resolves the contradiction using

a singular potential, e.g.:

AA =
g

4πr

1− cos θ

sin θ
ϕ̂, (32)

singular along θ = π. The line integral:∮
C
AA · dr =

∫ 2π

0

g

4πr

1− cos θ0
sin θ0

(r sin θ0dϕ) =
g

2
(1− cos θ0), (33)

matches the northern cap’s flux (Eq. 29). The Dirac string contributes additional flux for the
southern cap, adjusting the integral (30) to:

−g
2
(1 + cos θ0) + g =

∮
C
AA · dr, (34)

making the fluxes through the two caps identical and thus resolving the contradiction. The
Dirac quantization condition (Eq. 6) ensures unobservability. The Wu-Yang formulation uses
non-singular potentials (Eqs. 8, 9):

AA =
g

4πr

1− cos θ

sin θ
ϕ̂, (0 ≤ θ < π/2 + ϵ), (35)

AB = − g

4πr

1 + cos θ

sin θ
ϕ̂, (π/2− ϵ < θ ≤ π), (36)

related by:

AB = AA −∇χ, χ =
g

2π
ϕ. (37)

The line integrals match the northern and southern fluxes, with ∇χ contributing additional
flux: ∮

C
∇χ · dr = g, (38)

resolving the contradiction, but leading to a non-unique, patch-dependent A.
For ’t Hooft-Polyakov monopoles, the standard formulation defines smooth Aai and ϕ̂a in

patches, with transition functions:

ϕ̂a(B) = Uϕ̂a(A)U−1, A
a(B)
i = UA

a(A)
i U−1 − i

e
(∂iU)U−1, (39)

where U = exp(iϕ2 τ
3) is multi-valued (Eq. 20). The effective potential Ai = Aai ϕ̂

a yields a flux
difference: ∮

C
(A

a(A)
i ϕ̂a(A) −A

a(B)
i ϕ̂a(B))dxi = gm, (40)

resolving the contradiction, but leading to a non-unique, patch-dependent Aai . The singular
gauge formulation introduces a Dirac string-like singularity, with:

A′
i ≈

gm
4πr

1− cos θ

sin θ
ϕ̂i, (41)
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matching one cap’s flux, with the singularity contributing the difference, analogous to the
Abelian case.

To sum up, the non-zero magnetic flux, arising from the field configurations classified by
π2(S

2) ∼= Z, necessitates singular or non-unique potentials in all gauges to resolve the Stokes’
theorem contradiction. In gauge-invariant paradigms, these defects are artifacts, as observables
depend on gauge-invariant quantities.

2.4 Summary

This section analyzed magnetic monopoles, characterized by non-zero magnetic flux (
∮
S B ·

dS = g) in the Maxwellian B-field, encompassing Abelian Dirac monopoles and non-Abelian ’t
Hooft-Polyakov monopoles. For Dirac monopoles, the Dirac string formulation (Section 2.1.1)
introduces a line singularity in the vector potential, e.g., AA = g

4πr
1−cos θ
sin θ ϕ̂, along θ = π,

while the Wu-Yang formulation (Section 2.1.2) uses non-singular but non-unique potentials in
overlapping patches, connected by a gauge function χ = g

2πϕ. For ’t Hooft-Polyakov monopoles
(Section 2.2), the standard formulation employs smooth gauge potentials Aa and Higgs fields in
patches with SU(2) transition functions, e.g., U = exp(iϕ2 τ

3), while a singular gauge introduces
a Dirac string-like singularity. The Stokes’ theorem contradiction (Section 2.3), driven by the
non-zero flux and topology π2(S

2) ∼= Z, necessitates these singularities or non-unique potentials
in all formulations, as the gauge-invariant flux through different surfaces bounded by the same
loop differs, precluding a globally smooth, unique gauge potential A in all gauges for Abelian
monopoles or effective potential Ai = Aai ϕ̂

a for non-Abelian monopoles.
In gauge-invariant paradigms, these singular and non-unique gauge potentials are mathe-

matical artifacts, as physical observables depend only on gauge-invariant quantiyies such as B
or the AB phase, with the Dirac quantization condition (qg = 2πn) ensuring unobservability.
However, these defects are incompatible with our potential-centric ontology (Section 3), where
Aµ or Aaµ in the Lorenz gauge must be unique, non-singular except at physical sources, and
mediate local interactions.

3 Reality of Gauge Potentials via the AB Effect

The AB effect is a pivotal quantum phenomenon where electromagnetic potentials influence a
charged particle’s behavior even in regions where the electromagnetic fields vanish [2, 28]. In my
recent analysis [9], I argue that traditional gauge-invariant explanations of this effect—relying
on quantities like the magnetic flux Φ or field strength Fµν—are fundamentally flawed and can
be excluded due to issues of nonlocality, discontinuity, and incompleteness. Here, I outline the
AB effect, present these critiques in detail, and propose that the gauge potential Aµ, fixed in
one true gauge, the Lorenz gauge, is the physically real entity mediating the effect [9].

3.1 The AB Effect and Its Generalized Form

Consider a standard magnetic AB setup where electrons travel around a long, tightly wound
solenoid carrying a magnetic field B, confined entirely within its interior. Outside the solenoid,
B = 0, yet the vector potential A is non-zero, satisfying ∇×A = B. When two electron beams
travel along paths C1 and C2 encircling the solenoid and recombine, they exhibit an interference
pattern shifted by a phase difference:

ϕAB = e

∮
C
A · dr = eΦ, (42)

where C = C1−C2 is the closed loop, e is the electron’s charge, and Φ =
∫
B·dS is the magnetic

flux through the enclosed area. This shift occurs despite B = 0 along the paths, as confirmed
experimentally [28].
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A generalized version of the magnetic AB effect extends this phenomenon to dynamic scenar-
ios, where the flux Φ(t) varies over time, offering a richer testbed for analyzing gauge-invariant
accounts. The phase accumulates over a period T as:

ϕAB =
1

T

∫ T

0
eΦ(t) dt, (43)

in the quasistatic domain, reflecting a continuous buildup driven by the changing electromag-
netic environment [8]. This temporal extension highlights the effect’s dynamic nature, amplify-
ing the demand for a physical mediator beyond static Φ or Fµν .

Complementing its magnetic counterpart, the electric AB effect showcases the quantum in-
fluence of the scalar potential A0 in regions where E = −∇A0 − ∂A/∂t = 0, encompassing
both static and time-varying scenarios. The time-varying case mirrors the dynamic framework
of the generalized magnetic AB effect, emphasizing the continuous accumulation of phase over
time. Moreover, this continuous phase accumulation offers an advantage over the magnetic AB
effect. While a time-varying Φ(t) induces E = −∂A/∂t, perturbing trajectories, the electric
AB effect maintains E = 0 along the paths via shielding, despite A0(t)’s variation inducing
fields elsewhere. This eliminates trajectory shifts, making the phase’s gradual accrual a pure
manifestation of A0(t), offering a cleaner probe of potential-driven dynamics. In the following,
however, I will mainly analyze the magnetic AB effect, since its standard form has been con-
firmed by experiments and also widely discussed in literature. For convenience, I will just say
the AB effect or the generalized AB effect in brief.

3.2 Gauge-Invariant Quantities in QM

To assess the gauge-invariant accounts, we first define the complete set of gauge-invariant quan-
tities for an electron in QM, as I detailed previously in [9]. For an electron of mass m and
charge e, with wave function ψ = ReiS , these include the probability density ρ = |ψ|2 and
velocity field v = 1

m(∇S − eA) (see also [30]). In electromagnetic fields, the field strength
Fµν (yielding E and B) and integrals like magnetic flux Φ are also gauge-invariant, unchanged
under Aµ → Aµ − ∂µχ. This set—ρ, v, Fµν , and Φ—is deemed sufficient by proponents to
describe observable dynamics without Aµ. The AB effect, however, tests this claim’s limits, as
the following critiques reveal.

3.3 Dynamics of Gauge-Invariant Quantities

Consider the standard AB setup: two electron beams encircle a solenoid with constant magnetic
flux Φ, recombining to interfere. Before overlap, each beam travels in a simply connected, field-
free region (B = 0), where a gauge choice A = 0 is possible. In this gauge, the Schrödinger
equation reduces to the free form, and the solutions ψ1 and ψ2 for each beam match those of
a free electron, implying ρ and v are independent of Φ. This holds because, in each path, the
gauge transformation adjusts the phase locally, leaving gauge-invariant properties unchanged.

However, after the beams overlap, forming a closed loop C around the solenoid, A = 0
cannot be chosen globally due to the nonzero flux Φ =

∮
C A ·dr. The interference pattern shifts

by:

ϕAB = e

∮
C
A · dr = eΦ, (44)

and the velocity satisfies ∮
C
v · dr =

∮
C

1

m
(∇S − eA) · dr = −eΦ (45)

reflecting Φ’s influence. Consequently, v and ρ (via the continuity equation ∂tρ+∇ · (ρv) = 0)
abruptly depend on Φ at overlap, despite being Φ-independent beforehand.

11



3.4 Problems with Gauge-Invariant Explanations

The gauge-invariant approach to the AB effect aims to explain the effect without invoking Aµ
directly, using quantities like Φ, Fµν , or the velocity field v. I identify three critical flaws [9],
detailed below.

3.4.1 Nonlocality

The gauge-invariant approach’s reliance on Φ introduces a nonlocality problem. The phase
ϕAB = eΦ depends on flux inside the solenoid, spatially separated from the electron paths, yet
Fµν = 0 outside provides no local mediator. Moreover, the approach posits (by its dynamics)
that the phase ϕAB emerges instantaneously at the point of interference, reflecting an action
at a distance on the electron despite its confinement to a field-free region—a proposition that
strains the causal architecture of special relativity, which insists that physical effects propagate
no faster than the speed of light. Such an unmediated action across space suggests a reality
where distant entities can affect one another without a local intermediary, a notion that sits
uneasily with the principle of locality.

3.4.2 Discontinuity

This nonlocality manifests as discontinuity in the electron’s dynamics. Before reaching the
interference region, the gauge-invariant properties of the electron, ρ and v, evolve freely, inde-
pendently of Φ. At interference, ρ and v, and thus ϕAB, suddenly reflect Φ, with no gradual
transition. In the time-varying case, ρ and v remain unaffected until overlap, despite Φ(t)’s
continuous change. This sudden shift stands in stark contrast to the expectation in QM that
physical states evolve smoothly unless perturbed by local interactions—a principle of continuity
that underpins the theory’s predictive coherence.

3.4.3 Incompleteness

This discontinuity underscores an incompleteness in the gauge-invariant framework. The set
{ρ,v, Fµν ,Φ} cannot explain the phase’s continuous accrual. In the generalized AB effect, ϕAB
builds up as Φ(t) varies, yet Φ or Fµν (zero outside the solenoid) offers no mechanism for this
along the paths. The Madelung equations illustrate this [9, 10]:

� Continuity: ∂ρ
∂t +∇ · (ρv) = 0,

� Momentum: m∂v
∂t = e(E+ v ×B)−m(v · ∇)v −∇U ,

where U = − 1
m

∇2R
R is the quantum potential. With B = 0 and E = 0 outside, these equations

predict no Φ-dependence until interference, resolved only by a nonlocal quantization condition
m

∮
C v · dr = 2πn − eΦ. This leaves the local, temporal process unexplained, rendering the

account incomplete.

3.5 A No-Go Result for Gauge-Invariant Explanations

The above critiques expose the flaws of gauge-invariant explanations—nonlocality, discontinuity,
and incompleteness—but a stronger result emerges from the generalized AB effect’s dynamic
nature [8]. It is demonstrated that these explanations are not merely inadequate but fundamen-
tally excluded, as their reliance on an instantaneous phase shift at interference clashes with the
continuous phase accumulation observed in the time-varying flux scenario. Here, I summarize
this no-go result.

The proof centers on two propositions: (1) Gauge-invariant accounts—relying on quantities
like Φ, Fµν , or v—posit that the phase ϕAB emerges only at beam overlap, as ρ and v show
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no Φ-dependence beforehand; (2) The generalized AB effect, with Φ(t) varying, yields ϕAB =
1
T

∫ T
0 eΦ(t) dt, a phase that accrues continuously along the paths, not instantaneously, depending

on Φ(t)’s profile over 0 ≤ t ≤ T . These are incompatible: if ϕAB builds over time as quantum
mechanics predicts, an abrupt shift at interference cannot hold. Gauge-invariant quantities,
insensitive to this process before overlap, fail to explain the effect, excluding them as viable.

3.6 The Reality of Gauge Potentials

The issues of gauge-invariant explanations stem from sidelining Aµ. In the Schrödinger equation,
Aµ enters via the minimal coupling i∂µ → i∂µ−eAµ, shifting the phase locally along each path:

S → S − e

∫
L
Aµ dx

µ, (46)

where L is the particle’s trajectory. The phase difference ϕAB = e
∫
C1
Aµ dx

µ − e
∫
C2
Aµ dx

µ =

e
∮
C Aµ dx

µ accrues continuously, respecting locality and spacetime’s smoothness. In the gen-
eralized case, Aµ(x, t) tracks Φ(t)’s evolution pointwise, ensuring consistency.

Since Aµ is gauge-dependent, the no-go result for gauge-invariant explanations implies that
there must exist one true gauge in which Aµ is fixed and represents the state of reality and
mediates local, continuous phase shifts in field-free regions in the AB effect. I propose that the
true gauge is the Lorenz gauge (∂µAµ = 0), where Aµ satisfies the wave equation □Aµ = Jµ
(coupled to the source current Jµ) [9]. Imposing this gauge condition and boundary conditions
(e.g., Aµ → 0 at infinity) can fix Aµ uniquely. This determinacy ensures Aµ as a unambiguous
descriptor of reality, a prerequisite for its physical significance. Moreover, this choice also aligns
with QED’s relativistic covariance and ensures Aµ is a physical field over spacetime, not a mere
mathematical artifact. Gauge-invariant quantities like Φ or Fµν derive from Aµ, but only Aµ
captures the AB effect’s local, continuous origin.

3.7 Summary

The AB effect reveals the fundamental limitations of gauge-invariant accounts, which rely on
quantities like the magnetic flux Φ, field strength Fµν , or velocity field v, to explain the phase
shift ϕAB = e

∮
C Aµdx

µ. These accounts suffer from nonlocality, as the phase depends on Φ
inside the solenoid despite Fµν = 0 along the electron’s paths; discontinuity, as ρ and v abruptly
reflect Φ only at interference; and incompleteness, as they fail to account for the continuous
phase accrual in the generalized AB effect with time-varying Φ(t). In contrast, our potential-
centric ontology posits that the gauge potential Aµ, fixed in the Lorenz gauge (∂µA

µ = 0), is
the physical reality mediating the AB effect. By locally and continuously coupling to the elec-
tron’s wave function via minimal coupling (i∂µ → i∂µ− eAµ), Aµ ensures a smooth, local phase
evolution, resolving the issues of gauge-invariant accounts. This framework, supported by the
AB effect’s experimental confirmation, underscores Aµ’s role as the fundamental entity in elec-
tromagnetism, setting the stage for analyzing magnetic monopoles’ compatibility in subsequent
sections.

4 A No-Go Result for Magnetic Monopoles

This section evaluates magnetic monopoles—Abelian Dirac monopoles and non-Abelian ’t Hooft-
Polyakov monopoles, defined by their non-zero magnetic flux (

∮
S B · dS = g) in the Maxwellian

B-field—within our potential-centric ontology, where the gauge potential Aµ (or Aaµ) in the
Lorenz gauge (∂µA

µ = 0) is the fundamental physical reality, mediating local, continuous inter-
actions (Section 3). We demonstrate that both monopole types, in their Dirac string and patch-
wise formulations (Sections 2.1, 2.2), introduce unphysical singularities or non-uniqueness in all
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gauges, violating the ontology’s requirements for a unique, non-singular Aµ or Aaµ in one true
gauge except at physical sources. These defects lead to a no-go result for magnetic monopoles.

4.1 Problems of the Dirac String Formulation

The Dirac string formulation, applied to both Abelian Dirac monopoles and ’t Hooft-Polyakov
monopoles in a singular gauge, introduces a line singularity in the gauge potential Aµ or effective

Abelian potential Ai = Aai ϕ̂
a, respectively. In the potential-centric ontology, where the gauge

potential in the Lorenz gauge must be unique, non-singular except at physical sources, and
mediate local, continuous interactions (Section 3), this formulation introduces two critical issues:
an unphysical line singularity and an indeterminate singularity position, both violating the
ontology’s requirements [9].

4.1.1 Unphysical Singularity

For an Abelian Dirac monopole at the origin with magnetic charge g, the magnetic field is
B = g

4πr2
r̂, with ∇ ·B = gδ3(r) (Eq. 1, 26). The vector potential, e.g.:

AA =
g

4πr

1− cos θ

sin θ
ϕ̂, (47)

is singular along the negative z-axis (θ = π), known as the Dirac string (Section 2.1.1). With
A0 = 0, the Lorenz gauge condition (∇ · A = 0) holds except at the singularity, where the
divergence is undefined (sin θ → 0). In QED, the interaction Hamiltonian density:

Hint = −eψ̄γiAiψ, (48)

couples A to the fermion current. Along the Dirac string, AA ≈ g
4πr sin θ ϕ̂ diverges as sin θ → 0,

leading to infinite energy density where ψ̄ψ ̸= 0, such as in scattering processes or quantum
states near the string. Unlike the electric potential A0 = q

4πϵ0r
, singular only at the physical

source (∇2A0 = − q
ϵ0
δ3(r)), the Dirac string’s line singularity lacks a physical magnetic current,

rendering this infinite energy unphysical.
For ’t Hooft-Polyakov monopoles in a singular gauge (Section 2.2.2), the effective magnetic

field is B ≈ gm
4πr2

r̂ with gm = 4π
e at large distances (Eq. 14), and ∇ ·B = 0 due to the Bianchi

identity (Eq. 16). The gauge potential in a singular gauge is:

Aa′i = êa3
gm
4πr

1− cos θ

sin θ
ϕ̂iK

′(gr), (49)

with êa3 = (0, 0, 1), K ′(gr) → 1 at large r, and the effective U(1) potential:

A′
i = Aa′i ϕ̂

a′ ≈ gm
4πr

1− cos θ

sin θ
ϕ̂i, (50)

is singular along θ = π (Section 2.2.2). The non-Abelian interaction term, Hint = −gψ̄γiT aAaiψ,
where T a are SU(2) generators, yields infinite energy density along the singularity where ψ̄ψ ̸= 0,
as Aa′i diverges. This singularity, like the Abelian case, lacks a physical source (e.g., a magnetic
current in SU(2)), making it unphysical in our ontology, which requires singularities only at
physical sources.

4.1.2 Indeterminacy of Singularity

The position of the singularity in both formulations is indeterminate in the Lorenz gauge,
as gauge transformations preserving this gauge condition can shift the singularity’s position
without physical justification, violating the ontology’s requirement for a unique gauge potential
in the Lorenz gauge (with boundary conditions). For Dirac monopoles, the vector potential
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AA = g
4πr

1−cos θ
sin θ ϕ̂ (Eq. 32) is singular along the negative z-axis (θ = π). A gauge transformation,

AB = AA −∇χ with χ = g
2πϕ, yields AB = − g

4πr
1+cos θ
sin θ ϕ̂ (Eq. 5), singular along the positive

z-axis (θ = 0). Both AA and AB satisfy the boundary conditions (Aµ → 0 at infinity) and the
Lorenz gauge (∂iA

i = 0, as A0 = 0 and ∇ ·AA = ∇ ·AB = 0), yet the singularity’s position is
arbitrary due to the spherical symmetry of B = g

4πr2
r̂, providing no physical criterion to fix its

location.
For ’t Hooft-Polyakov monopoles in a singular gauge, the effective potentialA′

i ≈
gm
4πr

1−cos θ
sin θ ϕ̂i

(Section 2.2.2) is singular along θ = π and satisfies the Lorenz gauge (∂µA
aµ = 0). A gauge

transformation preserving the Lorenz gauge, such as a rotation aligning the Higgs field ϕ̂a

differently, shifts the singularity to another axis (e.g., θ = 0), producing a different Aaµ while
maintaining the same gauge-invariant B-field and flux (Eq. 55). The absence of a physical
principle to fix the singularity’s position results in non-unique Aaµ in the Lorenz gauge. This
indeterminacy violates the ontology’s uniqueness requirement, rendering both monopole types
incompatible [9].

4.2 Problems of the Patch-Wise Formulations

Patch-wise formulations, such as the Wu-Yang approach for Abelian Dirac monopoles and the
standard formulation for non-Abelian ’t Hooft-Polyakov monopoles, define gauge potentials in
overlapping regions (e.g., northern and southern hemispheres) to avoid explicit singularities
like the Dirac string. However, these formulations introduce defects that violate the potential-
centric ontology’s requirements for a unique, non-singular gauge potential Aµ or Aaµ in the
Lorenz gauge, mediating local, continuous interactions. We identify two critical issues: the
non-uniqueness of gauge potentials due to the ambiguous choice at the patch boundary and
the disruption of locality and continuity in physical interactions, both driven by the non-trivial
topology (π2(G/H) ∼= Z) of magnetic monopoles.

4.2.1 Non-Uniqueness at Patch Boundaries

In the Wu-Yang formulation for Abelian Dirac monopoles, the gauge potentials AA and AB

(Eqs. 8, 9) are defined in separate patches (northern and southern hemispheres) and are related
by a gauge transformation in the overlap region:

AB = AA −∇χ, χ =
g

2π
ϕ. (51)

At the patch boundary (e.g., θ = π/2), the choice between AA and AB is arbitrary, resulting
in a non-unique gauge potential for the same spacetime point. This ambiguity violates the
ontology’s requirement for a globally unique gauge potential Aµ in the Lorenz gauge.

Similarly, for ’t Hooft-Polyakov monopoles, gauge potentials Aaµ and Higgs fields are defined
in patches, connected by an SU(2) transition function (Eq. 19). At the patch boundary, the
choice of gauge potential Aaµ is ambiguous, as different gauge configurations can be applied in
the overlapping region, yielding distinct Aaµ for the same spacetime points. This ambiguity,
driven by the need for multiple patches to cover the manifold due to the non-trivial topology
(π2(G/H) ∼= Z), produces non-unique gauge potentials.

In gauge-invariant paradigms, this non-uniqueness is a mathematical artifact, as only gauge-
invariant quantities (e.g., B, Wilson loops) determine physical observables. However, the
potential-centric ontology requires a globally unique Aµ or Aaµ in the Lorenz gauge, render-
ing these formulations incompatible due to the ambiguous gauge choice at the patch boundary.

4.2.2 Indeterminacy of Patch Boundaries

The patch-wise formulations of both Abelian and non-Abelian monopoles also suffer from a
fundamental indeterminacy in the position of patch boundaries. This indeterminacy arises

15



because the choice of boundary location is mathematically arbitrary while having significant
physical consequences for the gauge potential’s description - a direct violation of the potential-
centric ontology’s requirement for a unique, physically determined gauge potential in the Lorenz
gauge.

For the Wu-Yang formulation of Abelian Dirac monopoles, the transition between potentials
AA and AB occurs at an arbitrarily chosen boundary (conventionally at θ = π/2). However,
this choice is not fixed by any physical principle. The magnetic field B = ∇ × A remains
unchanged regardless of boundary placement. The Lorenz gauge condition ∂µA

µ = 0 can also be
maintained for any boundary position θ = θ0 through appropriate gauge transformations. This
leads to an essential ambiguity: for any given spacetime point near the conventional boundary,
the potential could equally well be described by either AA or AB with no physical criterion to
decide between them. The resulting non-uniqueness fundamentally conflicts with the ontology’s
requirement that Aµ in the Lorenz gauge should be uniquely determined by physical conditions.

The indeterminacy is even more pronounced in the non-Abelian case. For non-Abelian ’t
Hooft-Polyakov monopoles, the standard patch-wise formulation requires choosing:

� Boundary surfaces between patches

� Transition functions U connecting different gauges

� Higgs field orientations in overlap regions

Each choice leads to mathematically equivalent but physically distinct Aaµ configurations in the
Lorenz gauge, while no physical principles fixes the configuration. The gauge potential Aaµ con-
sequently becomes fundamentally underdetermined - multiple distinct potential configurations
exist for identical physical situations. This represents a direct violation of the potential-centric
ontology’s requirement for a unique, physically determined gauge potential in the Lorenz gauge.

4.2.3 Disruption of Locality and Continuity

In the potential-centric ontology, the gauge potential is required to change continuously in
space and time in order to mediate interactions locally. However, the patch-wise formulations
introduce fundamental violations of locality and continuity through discontinuous changes in
the gauge potential across patch boundaries. These discontinuities manifest in phenomena like
the AB effect.

For Abelian Dirac monopoles in the Wu-Yang formulation, the gauge potentials AA and
AB (Eq. 8, 9) are related in the overlapping region (π/2 − ϵ < θ < π/2 + ϵ) by the gauge
function χ = g

2πϕ (Eq. 37), with ∇χ = g
2πr sin θ ϕ̂. For a closed loop in the AB effect, when

the loop’s position crosses θ = π/2, the gauge potential switches from AA to AB, and the
phase changes by g due to the transition between the two gauge potentials, disrupting the
continuous accumulation of phase in the AB effect. This non-smoothness violates continuity,
and the dependence on the non-physical patch boundary at θ = π/2 violates locality, as no local
physical source exists to account for the phase shift.

Similarly, for ’t Hooft-Polyakov monopoles, the gauge potentials Aaµ (Eq. 17) are defined in
patches and related in the overlapping region (π/2 − ϵ < θ < π/2 + ϵ) by an SU(2) transition
function, e.g., U = exp(iϕ2 τ

3) (Eq. 19). For a closed loop in the non-Abelian AB effect crossing
θ = π/2, the Wilson loop phase includes the contribution of the gauge transformation when
switching between different Aaµ, yielding a phase shift analogous to g (Eq. 40). When the loop’s
position crosses θ = π/2, the phase changes due to the transition between gauge potentials,
disrupting the continuous accumulation of phase in the non-Abelian AB effect. This non-
smoothness violates continuity, and the dependence on the non-physical patch boundary at
θ = π/2 violates locality, as no local physical source exists to account for the phase shift.

These disruptions, driven by the non-trivial topology (π2(G/H) ∼= Z), contrast with the
ontology’s requirement for continuous, local changes of the gauge potential, as evidenced by
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the AB effect’s smooth phase accumulation (Section 3). In gauge-invariant paradigms, these
defects are mathematical artifacts, but in the potential-centric ontology, they render patch-wise
formulations physically untenable.

4.3 Derivation of the No-Go Theorem

In the potential-centric ontology, the gauge potential Aµ (for Abelian U(1) gauge theories) or
Aaµ (for non-Abelian SU(2) gauge theories), fixed in the Lorenz gauge (∂µA

µ = 0 or ∂µA
aµ = 0),

is the fundamental physical entity mediating local, continuous interactions, as evidenced by the
AB effect [2, 9]. This ontology imposes three requirements on the gauge potential in the Lorenz
gauge: (1) uniqueness across spacetime, (2) non-singularity except at physical sources (e.g.,
electric charges or quark currents), and (3) mediation of local, continuous interactions. We
prove that magnetic monopoles—Abelian Dirac and non-Abelian ’t Hooft-Polyakov—cannot
exist, as their non-zero magnetic flux and non-trivial topology (π2(G/H) ∼= Z) necessitate
singularities or non-unique potentials in all gauges, violating these requirements.

Theorem (No-Go Theorem for magnetic monopoles): In a potential-centric ontology,
where the gauge potential Aµ or Aaµ in the Lorenz gauge is the fundamental physical entity,
magnetic monopoles, defined by a non-zero magnetic flux

∮
S B · dS ̸= 0 in the Maxwellian

B-field, cannot exist, as their gauge potential configurations in all gauges are either singular at
points lacking physical sources or non-unique, violating the ontology’s requirements.

Proof:
1. Abelian Dirac Monopoles: Consider an Abelian Dirac monopole at the origin with mag-

netic charge g, producing a radial magnetic field:

B =
g

4πr2
r̂, ∇ ·B = gδ3(r), (52)

yielding a non-zero flux: ∮
S
B · dS = g, (53)

through a closed surface S enclosing the origin. The non-trivial topology of the field config-
uration (π2(S

2) ∼= Z) precludes a globally smooth, single-valued vector potential A satisfying
B = ∇×A. Two formulations exist:

(1) Dirac String Formulation: The vector potential, e.g., AA = g
4πr

1−cos θ
sin θ ϕ̂ (Eq. 32), is

singular along the line θ = π, forming a Dirac string. This singularity, lacking a physical source
(unlike electric charges), causes infinite energy density in QED interactions (Hint = −eψ̄γiAiψ)
where ψ̄ψ ̸= 0 (Section 4.1). The singularity’s position is indeterminate, shiftable by gauge
transformations preserving the Lorenz condition (e.g., to θ = 0), violating uniqueness.

(2) Wu-Yang Patch-Wise Formulation: Non-singular potentials, e.g., AA = g
4πr

1−cos θ
sin θ ϕ̂ and

AB = − g
4πr

1+cos θ
sin θ ϕ̂ (Eqs. 8, 9), are defined in overlapping patches, related by AB = AA −∇χ,

with χ = g
2πϕ. The choice of patch boundaries (e.g., θ = π/2) is arbitrary, yielding non-unique

potentials in all gauges. In the AB effect, paths crossing patch boundaries incur indeterminate
phase shifts, disrupting continuity and locality (Section 4.2).

The Dirac quantization condition, qg = 2πn (Eq. 6), ensures gauge-invariant consistency
but does not eliminate these defects, as the singularity or non-uniqueness persists in all gauges
due to π2(S

2) ∼= Z.
2. Non-Abelian ’t Hooft-Polyakov Monopoles: The ’t Hooft-Polyakov monopole, a topolog-

ical soliton in SU(2) gauge theory with a Higgs field, produces an effective magnetic field:

B ≈ gm
4πr2

r̂, gm =
4π

e
, ∇ ·B = 0, (54)

at large distances, with non-zero flux: ∮
S
B · dS = gm, (55)
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driven by the Higgs field’s winding (π2(SU(2)/U(1)) ∼= Z). The gauge potential Aaµ and Higgs
field ϕa (Eq. 12) yield two formulations:

(1) Standard Patch-Wise Formulation: Smooth potentialsA
a(A)
i , A

a(B)
i are defined in patches

(e.g., northern and southern hemispheres), related by a multi-valued transition function U =
exp(iϕ2 τ

3) (Eq. 19). The effective potential Ai = Aai ϕ̂
a is non-unique, as patch choices are arbi-

trary, and Wilson loops crossing boundaries yield indeterminate phase shifts, violating locality
and uniqueness (Section 4.2).

(2) Singular Gauge Formulation: A gauge transformation aligns ϕa ≈ (0, 0, v), yielding
Aa′i ≈ êa3

gm
4πr

1−cos θ
sin θ ϕ̂i, singular along θ = π, resembling a Dirac string. This singularity, lacking

a physical source, causes infinite energy density in interactions (Hint = −gψ̄γiT aAaiψ) (Section
4.1).

The topological constraint (π2(SU(2)/U(1)) ∼= Z) ensures these defects, as the non-zero flux
requires either singularities or non-unique potentials in all gauges.

3. Comparison with Electric Charges: An electric charge q at the origin produces a scalar
potential:

A0 =
q

4πϵ0r
, ∇2A0 = − q

ϵ0
δ3(r), (56)

singular only at the physical source (r = 0), coupling to the electric current Jµ = eψ̄γµψ in
QED. This singularity is physically meaningful, corresponding to the charge’s position, and
supports local, continuous phase accumulation in the AB effect via ϕAB = e

∫
C Aµdx

µ. In
contrast, magnetic monopoles require line singularities (Dirac strings) or non-unique potentials
(patch-wise formulations) without physical sources, violating the ontology’s requirements.

4. Topological Necessity and Conclusion: The non-trivial topology (π2(S
2) ∼= Z for Dirac

monopoles, π2(SU(2)/U(1)) ∼= Z for ’t Hooft-Polyakov monopoles) mandates singularities or
non-unique potentials to achieve the non-zero flux (Eqs. 53, 55), as shown by the Stokes’ theorem
contradiction (Section 2.3). These defects—singularities causing infinite energy density or non-
unique potentials disrupting locality and uniqueness—persist in all gauge choices, precluding
a gauge potential satisfying the ontology’s criteria. Thus, magnetic monopoles cannot exist in
the potential-centric ontology.

This theorem explains the asymmetry in Maxwell’s equations (∇ · B = 0) and QED. It
also aligns with experimental null results (e.g., MoEDAL [1]) and cosmological constraints [23],
which find no evidence for magnetic monopoles. In gauge-invariant paradigms, singularities
and non-unique potentials are mathematical artifacts, as physical observables depend only on
gauge-invariant quantities (e.g., B, ϕAB) [24, 32]. The potential-centric ontology, by prioritizing
the physical reality of Aµ or Aaµ in the true gauge, reveals these defects as fundamental barriers,
offering a novel argument against magnetic monopoles.

5 Counterarguments and Responses

Our no-go result—that magnetic monopoles, encompassing both Abelian Dirac monopoles and
non-Abelian ’t Hooft-Polyakov monopoles, cannot exist in a potential-centric ontology due to
unphysical singularities or non-unique gauge potentials (Aµ or Aaµ)—faces potential objections
from gauge-invariant perspectives. Here, we address key counterarguments: that singularities
(e.g., Dirac strings) are mathematical artifacts, that patch-wise formulations (e.g., Wu-Yang
or ’t Hooft-Polyakov) eliminate singularities, that emergent monopoles in spin ice challenge
the theorem, and that monopoles are necessary to explain electric charge quantization. We
demonstrate that these objections do not undermine our conclusion, as they conflict with the
ontology’s requirements for a unique, non-singular gauge potential mediating local, continuous
interactions in the Lorenz gauge.
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5.1 Dirac Strings: Mathematical Artifacts or Physical Defects?

Critics may argue that the Dirac string’s singularity in the vector potential for Abelian monopoles,
e.g., AA = g

4πr
1−cos θ
sin θ ϕ̂ (Eq. 32), or the Dirac string-like singularity in the singular gauge for-

mulation of ’t Hooft-Polyakov monopoles (Section 2.2.2), is a mathematical artifact of gauge
choice. The singularity’s position (e.g., θ = π) can be shifted via gauge transformations (e.g.,
to θ = 0) without affecting gauge-invariant quantities like the magnetic field B = g

4πr2
r̂ (Eq. 1)

for Dirac monopoles or B ≈ gm
4πr2

r̂ (Eq. 14) for ’t Hooft-Polyakov monopoles, or the AB phase
ϕAB = e

∮
C A · dr = eg. The Dirac quantization condition (qg = 2πn, Eq. 6) ensures the

string’s unobservability in QM, as the phase around the string is trivial (eiqg = 1), suggesting
that singularities pose no physical barrier for either monopole type [6, 26].

In our potential-centric ontology, where Aµ or Aaµ in the Lorenz gauge is the physical reality,
the Dirac string’s singularity is not a mere mathematical artifact but a physical defect for both
Abelian and non-Abelian monopoles. For Abelian Dirac monopoles, the singularity along a line
(e.g., θ = π) produces infinite energy density in QED interactions (Hint = −eψ̄γiAiψ) where
ψ̄ψ ̸= 0, lacking a physical source like a magnetic current (Section 4.1.1). Similarly, for ’t Hooft-
Polyakov monopoles in the singular gauge, the effective potential A′

i ≈
gm
4πr

1−cos θ
sin θ ϕ̂i (Section

2.2.2) introduces a line singularity, leading to infinite energy density in non-Abelian interactions
(Hint = −gψ̄γiT aAaiψ) without a physical source. These singularities disrupt locality and
continuity in the AB effect (or non-Abelian analogs via Wilson loops), as paths crossing the
string yield indeterminate phase integrals (Sections 4.1.2, 4.2). The topological necessity of
the singularity, due to non-zero flux (

∮
C A · dr = g or gm) and π2(S

2) ∼= Z (Abelian) or
π2(SU(2)/U(1)) ∼= Z (non-Abelian), ensures its presence in any gauge (Section 4.4). Moreover,
the singularity’s indeterminate position—shiftable via gauge transformations without a physical
principle to fix it—violates the ontology’s requirement for a unique Aµ or Aaµ. Thus, the
Dirac string’s physical implications and indeterminacy render both Dirac and ’t Hooft-Polyakov
monopoles incompatible with our framework [9].

5.2 Patch-Wise Potentials and Bundle Theory Challenges

One may argue that patch-wise formulations, such as the Wu-Yang construction for Abelian
Dirac monopoles (Section 2.1.2), resolve the singularities of the Dirac string (Section 4.1) by
defining non-singular gauge potentials in overlapping patches, producing a globally consistent
magnetic field B = g

4πr2
r̂ (Eq. 1) [32]. Similarly, the bundle theory, a mathematical framework

for gauge theories, permits the gauge potential Aµ (or Aaµ) to be defined patch-wise over space-
time (e.g., S2 for monopoles), with transition functions ensuring consistency of the field strength
Fµν or F aµν . In this view, the patch-wise formulations of magnetic monopoles—Abelian Dirac
and non-Abelian ’t Hooft-Polyakov (Section 2)—are mathematically valid, as non-unique poten-
tials (e.g., Eq. 8, 9, 39) are standard features of principal bundles defined by field configurations
with non-zero charges, classified by π2(G/H) ∼= Z [26, 32]. Thus, these objections suggest
that the singularities or non-uniqueness highlighted in Section 4 are permissible mathematical
artifacts, potentially undermining the no-go result for magnetic monopoles.

In response, we reaffirm that our potential-centric ontology (Section 3) designates the gauge
potential Aµ (or Aaµ) in the Lorenz gauge (∂µA

µ = 0) as the fundamental physical entity
mediating local, continuous interactions, requiring it to be unique and non-singular across all of
spacetime, except at physical sources (e.g., electric charges, quark currents) [9]. While patch-
wise formulations and bundle theory ensure mathematical consistency of the field strength, they
introduce physical defects that conflict with these requirements in three critical ways.

First, the patch-wise approach results in non-unique potentials, as the choice of patch bound-
aries (e.g., northern vs. southern hemispheres for S2) and transition functions is arbitrary. In
the Wu-Yang formulation, different patch configurations yield equivalent B-fields but distinct
AA, AB, with no physical principle fixing the gauge potential (Section 4.3) [32]. For non-Abelian
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’t Hooft-Polyakov monopoles, transition functions like U (Eq. 39) vary across equivalent bundle
descriptions, leading to non-unique Aaµ (Section 4.2) [26]. This violates the ontology’s require-
ment for a globally unique Aµ or Aaµ.

Second, these defects disrupt locality and continuity in physical interactions. In the AB
effect for Abelian monopoles, paths crossing patch boundaries encounter indeterminate phase
integrals due to singular ∇χ (Eq. 38), as shown in Section 4.1.2. For non-Abelian monopoles,
Wilson loops become indeterminate near patch boundary singularities due to ∂iUU

−1 (Section
4.2). These disruptions conflict with the ontology’s requirement for continuous, local mediation
by Aµ or Aaµ.

While bundle theory ensures mathematical consistency of Fµν or F aµν through patch-wise
constructions, it does not address the physical reality of Aµ or Aaµ in our ontology. The non-zero
magnetic flux, arising from field configurations classified by the non-trivial homotopy group
π2(G/H) ∼= Z, necessitates singularities or non-unique gauge potentials, rendering magnetic
monopoles—Abelian and non-Abelian—incompatible with a unique, non-singular gauge poten-
tial. Thus, neither the Wu-Yang formulation’s alleged non-singularity nor the bundle theory’s
mathematical permissibility negates the physical objections in our ontology, reinforcing the
no-go result.

5.3 Spin Ice Monopoles: Emergent Compatibility?

Emergent monopoles in spin ice materials, such as Dy2Ti2O7, are fractionalized excitations
that mimic magnetic monopoles with effective magnetic charges, producing a non-zero flux in
an effective magnetization field,

∮
S Meff ·dS ≈ g, where g is the effective magnetic charge [5, 17].

These defects, connected by observable Dirac strings of flipped spins, might seem to challenge
our no-go theorem, which excludes magnetic monopoles—Abelian Dirac and non-Abelian ’t
Hooft-Polyakov—due to their non-zero flux in the Maxwellian B-field (

∮
S B · dS = g) and the

resulting singularities or non-unique gauge potentials (Aµ or Aaµ) in the Lorenz gauge (Section
4). This subsection clarifies that emergent monopoles are not fundamental, as their flux arises
in a coarse-grained magnetization field, not the true B-field, and they involve no fundamental
gauge potential, making them compatible with our potential-centric ontology (Section 3). We
detail their physical origin, contrast them with magnetic monopoles, and address potential
misunderstandings to reinforce the no-go theorem’s applicability.

Spin ice materials, like Dy2Ti2O7, consist of magnetic moments (spins) of Dy3+ ions ar-
ranged on a pyrochlore lattice, a three-dimensional network of corner-sharing tetrahedra. Each
spin behaves as a classical Ising spin, constrained to point along the local ⟨111⟩ axes of the tetra-
hedra, and obeys the “ice rule”: in each tetrahedron, two spins point inward and two outward,
analogous to proton positions in water ice [5]. This rule leads to a highly degenerate ground
state with macroscopic entropy. Violations of the ice rule, such as a tetrahedron with three
spins inward and one outward (or vice versa), create defects that behave as effective magnetic
monopoles. For example, a three-in-one-out configuration produces a net magnetic moment,
approximated in the continuum limit as:

Meff ≈ g

4πr2
r̂, (57)

with a non-zero divergence:

∇ ·Meff ≈ gδ3(r), (58)

where g is the effective magnetic charge, determined by the spin’s magnetic moment and lattice
geometry (typically g ≈ µ/a, with µ the Dy3+ moment and a ≈ 10 Å the lattice spacing) [5].
The flux through a closed surface S surrounding the defect is:
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∮
S
Meff · dS ≈ g, (59)

mimicking a magnetic monopole’s field. These defects are fractionalized excitations: flipping a
single spin creates a pair of oppositely charged defects (e.g., three-in-one-out and one-in-three-
out), connected by a “Dirac string” of flipped spins, which carries magnetization flux balancing
the net charge. Unlike the unphysical Dirac string of magnetic monopoles (Section 2.1.1), this
string is physical, observable via neutron scattering, and consists of a chain of flipped spins
along the lattice [17].

Unlike magnetic monopoles, emergent monopoles do not produce a non-zero flux in the true
Maxwellian B-field. The B-field, generated by the magnetic moments of Dy3+ ions, satisfies
Maxwell’s equation:

∇ ·B = 0, (60)

yielding zero flux through any closed surface:∮
S
B · dS = 0, (61)

as there are no fundamental magnetic charges. The effective field Meff is a coarse-grained
magnetization, averaged over lattice scales, capturing the net magnetic moment of spin config-
urations. Its non-zero flux (Eq. 59) arises from the topological structure of the spin ice lattice,
not from a gauge theory with non-trivial homotopy (π2(G/H) ∼= Z) as in magnetic monopoles
(Sections 2.1, 2.2). The vector potential A for the true B-field (B = ∇ × A) is non-singular
and unique in the Lorenz gauge, as ∇ · B = 0 imposes no topological constraints. No funda-
mental gauge potential Aµ or Aaµ governs the spin ice dynamics, which are driven by local spin
interactions, not gauge theory fields [5].

In our potential-centric ontology, the gauge potential Aµ (or Aaµ) in the Lorenz gauge must
be unique, non-singular except at physical sources, and mediate local, continuous interactions,
as evidenced by the AB effect (Section 3) [9]. magnetic monopoles violate these requirements,
as their non-zero flux (

∮
S B · dS = g) and topology (π2(G/H) ∼= Z) necessitate singularities

(e.g., Dirac string, Eq. 32) or non-unique potentials (e.g., Wu-Yang patches, Eq. 8, 9; SU(2)
transition functions, Eq. 19) (Section 4). Emergent monopoles in spin ice are exempt, as their
flux is in Meff, not B, and they involve no fundamental gauge potential. If an effective potential
Aeff is defined such that Meff = ∇×Aeff, it is a phenomenological construct, not a fundamental
Aµ. For example:

Aeff ≈ g

4πr

1− cos θ

sin θ
ϕ̂, (62)

mimics the Dirac monopole potential (Eq. 32) and is singular along θ = π, corresponding to
the physical Dirac string of flipped spins. This singularity is physically meaningful, tied to the
observable spin configuration, unlike the unphysical Dirac string in gauge theory, which lacks
a material source (Section 4.1). The absence of a fundamental gauge potential means spin ice
monopoles do not violate the ontology’s requirements for uniqueness or non-singularity, as these
apply to Aµ or Aaµ, not coarse-grained constructs like Aeff.

Emergent monopoles in spin ice are analogous to vortices in type-II superconductors, which
are topological defects in the superconducting order parameter ϕ = |ϕ|eiθ with a non-trivial
phase winding (π1(U(1)) ∼= Z), as described by the Abelian Higgs model [27]. These vortices
produce a quantized flux in an effective magnetic field, Beff = ∇ × Aeff, given by Φ = nhc2e ,
but the true Maxwellian B-field satisfies

∮
S B · dS = 0. The effective gauge potential Aeff,

driven by the collective dynamics of the superconducting condensate, is massive due to the
Higgs mechanism and not a fundamental QED potential, making vortices compatible with the
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ontology, as their singularities or non-uniqeness are emergent, not fundamental. Similarly, spin
ice monopoles’ effective flux and strings are lattice-scale phenomena, not gauge theory defects,
reinforcing their compatibility.

Several potential misunderstandings may arise regarding spin ice monopoles’ relevance to
the no-go theorem, which we address to clarify their distinction from magnetic monopoles:

1. Non-Zero Flux and Maxwell’s Equations: The non-zero flux
∮
S Meff ·dS ≈ g (Eq. 59)

might suggest a violation of Maxwell’s ∇ ·B = 0. However, Meff is a magnetization field,
not the true B-field. The B-field, generated by Dy3+ spins, has zero divergence (Eq. 60)
and flux (Eq. 61). The effective divergence (Eq. 58) is a coarse-grained approximation
of spin configurations, not a fundamental magnetic charge, and thus does not challenge
Maxwell’s equations or the ontology.

2. Effective Gauge Potential: Defining an effective potentialAeff (Eq. 62) might suggest a
gauge theory structure analogous to magnetic monopoles. However, Aeff is a phenomeno-
logical tool, not a fundamental Aµ in a U(1) or SU(2) gauge theory. Its singularity
corresponds to the physical Dirac string of flipped spins, observable via neutron scatter-
ing, unlike the unphysical, gauge-dependent Dirac string in magnetic monopoles (Section
2.1.1). The ontology’s requirements apply to fundamental gauge potentials, not emergent
constructs, so Aeff’s singularity is compatible.

3. Topological Similarity: The quantized flux in Meff resembles the magnetic charge of
magnetic monopoles, classified by π2(G/H) ∼= Z. However, spin ice monopoles arise from
the discrete topology of the pyrochlore lattice, not a gauge group’s homotopy. Their effec-
tive charge is due to spin configurations, not a non-trivial vacuum manifold, distinguishing
them from Dirac or ’t Hooft-Polyakov monopoles (Sections 2.1, 2.2).

4. Experimental Observability: The observability of spin ice monopoles and their Dirac
strings [17] might imply that magnetic monopoles are similarly realizable. However, spin
ice monopoles are emergent excitations within a condensed matter system, not funda-
mental particles. Their observability reinforces their physical nature as lattice defects,
whereas magnetic monopoles’ singularities (e.g., Dirac string) are unphysical in the ontol-
ogy, lacking material sources (Section 4).

5. Implications for the No-Go Theorem: One might argue that spin ice monopoles’
compatibility suggests the no-go theorem is too restrictive. The theorem targets mag-
netic monopoles with non-zero

∮
S B · dS, requiring singularities or non-unique Aµ due to

π2(G/H) ∼= Z. Spin ice monopoles, with flux in Meff and no fundamental gauge potential,
fall outside this scope, reinforcing the theorem’s specificity to gauge theory defects.

In conclusion, emergent monopoles in spin ice, such as those in Dy2Ti2O7, are fraction-
alized excitations producing a non-zero flux in the effective magnetization field Meff, not the
Maxwellian B-field, which maintains ∇·B = 0 and

∮
S B ·dS = 0. Their Dirac strings are phys-

ical chains of flipped spins, not unphysical gauge artifacts, and no fundamental gauge potential
Aµ or Aaµ is involved, as their dynamics arise from lattice-scale spin interactions. Thus, they are
compatible with our potential-centric ontology, which requires a unique, non-singular Aµ or Aaµ
for fundamental gauge fields. The no-go theorem, targeting magnetic monopoles with non-zero
B-field flux and topological defects (π2(G/H) ∼= Z), remains unaffected, as spin ice monopoles
operate outside gauge theory frameworks. Addressing misunderstandings clarifies that their
emergent nature, lattice-based topology, and lack of fundamental gauge potential distinguish
them from Dirac and ’t Hooft-Polyakov monopoles, reinforcing the theorem’s robustness.
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5.4 Monopoles and Charge Quantization

A compelling theoretical motivation for the existence of magnetic monopoles, both Abelian
Dirac and non-Abelian ’t Hooft-Polyakov types, is their role in explaining the quantization of
electric charge, a phenomenon observed universally in nature where electric charges occur in
discrete multiples of the elementary charge e (e.g., the electron’s charge) [12]. Dirac’s seminal
1931 work introduced the quantization condition qg = 2πn (Eq. 6), where q is the electric
charge, g is the magnetic charge, and n ∈ Z is an integer [6]. This condition implies that the
existence of even a single magnetic monopole in the universe enforces discrete electric charges,
as the phase shift of a charged particle’s wave function around a monopole, eiqg = ei2πn = 1,
must be single-valued to ensure physical consistency in QM. For Dirac monopoles, this arises
from the vector potential’s singularity (e.g., the Dirac string, Eq. 32), which contributes a flux
g through a closed loop. For ’t Hooft-Polyakov monopoles, the condition applies to the effective
magnetic charge gm = 4π

g (Eq. 14), derived from the topological winding of the Higgs field
(π2(SU(2)/U(1)) ∼= Z) [22, 26].

In gauge-invariant paradigms, where singularities like the Dirac string or patch-dependent
gauge potentials are considered mathematical artifacts, this quantization condition provides a
strong theoretical justification for monopoles, as it elegantly explains why electric charges are
quantized without requiring additional assumptions about the gauge group structure. Further-
more, in GUTs like SU(5) or SO(10), monopoles are predicted as topological solitons, reinforcing
their role in charge quantization and high-energy physics [21]. Proponents argue that this the-
oretical necessity, coupled with the symmetry it introduces to electromagnetic duality (E → B,
B → −E

c2
), makes the existence of magnetic monopoles highly plausible, potentially challenging

the no-go result in our potential-centric ontology.
In the potential-centric ontology, where the gauge potential Aµ (or Aaµ in non-Abelian theo-

ries) in the Lorenz gauge (∂µA
µ = 0) is the fundamental physical reality, the Dirac quantization

condition does not necessitate the existence of magnetic monopoles, whether Abelian or non-
Abelian, and alternative mechanisms can also explain electric charge quantization. Below, we
address the counterargument in detail, focusing on the quantization condition’s implications, the
physical defects introduced by monopoles, and alternative explanations for charge quantization.

First, the Dirac quantization condition (qg = 2πn) ensures the unobservability of singular-
ities in gauge-invariant frameworks but relies on problematic gauge potential configurations in
our ontology. For Abelian Dirac monopoles, the condition arises from the vector potential, e.g.,
AA = g

4πr
1−cos θ
sin θ ϕ̂ (Eq. 32), which harbors a Dirac string singularity along θ = π. The phase

shift for a particle with charge q encircling the string, eiq
∮
C A·dr = eiqg = 1, requires qg = 2πn,

rendering the singularity physically undetectable in QM [6]. However, as argued in Section 4.1,
this singularity causes infinite energy density in QED interactions (Hint = −eψ̄γiAiψ) along
the string, where ψ̄ψ ̸= 0, without a physical source like a magnetic current. The Wu-Yang
formulation, while avoiding an explicit Dirac string, introduces non-unique patch-dependent po-
tentials (Section 4.2). For ’t Hooft-Polyakov monopoles, the effective magnetic charge gm = 4π

g
satisfies the same quantization condition derived from the Higgs field’s topological winding
(Eq. 55). However, the standard formulation requires non-unique patch-dependent potentials
with multi-valued transition functions (e.g., U = exp(iϕ2 τ

3), Eq. 19), or a singular gauge with
a Dirac string-like defect (Section 2.2.2). These singularities and non-unique potentials violate
the ontology’s requirements for a unique, non-singular Aµ or Aaµ except at physical sources [9].

Second, the position of these singularities is indeterminate, as gauge transformations can
shift the Dirac string (e.g., from θ = π to θ = 0) or alter patch boundaries in Wu-Yang or
’t Hooft-Polyakov formulations without a physical principle to fix their location (Section 4.3).
For Dirac monopoles, the spherical symmetry of B = g

4πr2
r̂ and boundary conditions (Aµ → 0

at infinity) provide no preferred direction for the singularity. Similarly, for ’t Hooft-Polyakov
monopoles, the choice of patch boundaries or transition functions is arbitrary, leading to non-
unique Aaµ. This indeterminacy violates the ontology’s requirement for a unique gauge potential,
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making both monopole types incompatible, despite the quantization condition’s role in ensuring
gauge-invariant consistency.

Third, electric charge quantization can be explained without invoking magnetic monopoles,
undermining their theoretical necessity. For example, in GUTs like SU(5) or SO(10), electric
charge quantization arises from the embedding of the U(1) gauge group within a larger sim-
ple gauge group, where the generator’s eigenvalues are discrete due to the group’s structure,
independent of monopole solutions [21]. For example, in SU(5), the electric charge operator
is a linear combination of generators, yielding charges in multiples of e

3 , consistent with ob-
served quark and lepton charges. While ’t Hooft-Polyakov monopoles emerge in these theories
as topological solitons during symmetry breaking, their existence is not required for charge
quantization, as the gauge group’s algebraic properties suffice. Moreover, experimental con-
straints, such as the absence of monopoles in high-energy experiments (e.g., MoEDAL, [1]) and
cosmological limits on relic monopoles, suggest that charge quantization does not rely on their
physical presence.

Fourth, the potential-centric ontology accommodates electric charges without the issues
faced by magnetic monopoles. An electric charge at the origin produces a scalar potential
A0 = q

4πϵ0r
, singular only at the physical source (r = 0), satisfying ∇2A0 = − q

ϵ0
δ3(r) and

coupling to the electric current Jµ = eψ̄γµψ in QED. This singularity is physically meaningful,
corresponding to the charge’s position, and supports local, continuous interactions in the AB
effect, where the phase ϕAB = e

∫
C Aµdx

µ accumulates smoothly [9]. In contrast, magnetic
monopoles require line singularities or patch-dependent gauge potentials, lacking a physical
source, and their non-unique potentials violate the ontology’s criteria. This distinction explains
why electric charges are compatible with the ontology, while magnetic monopoles—Abelian or
non-Abelian—are not.

Finally, the appeal of magnetic monopoles in gauge-invariant paradigms stems from their
role in electromagnetic duality and theoretical elegance, symmetrizing Maxwell’s equations by
introducing magnetic charges (∇·B = gδ3(r) for Dirac monopoles or non-zero flux for ’t Hooft-
Polyakov monopoles). However, this symmetry is not observed in nature, as Maxwell’s equations
and QED maintain ∇ · B = 0, supported by experimental null results [1]. Introducing a dual
potential or magnetic current to restore duality would require non-standard modifications to
QED, conflicting with the ontology’s minimal, local structure. The potential-centric ontology
prioritizes the physical reality of Aµ, revealing the unphysical nature of monopole singularities,
whereas gauge-invariant paradigms dismiss these as artifacts, highlighting the novelty of our
no-go result.

In conclusion, while the Dirac quantization condition provides a theoretical motivation for
magnetic monopoles in gauge-invariant frameworks, it is neither necessary nor sufficient in our
potential-centric ontology. The singularities and non-unique potentials required by both Dirac
and ’t Hooft-Polyakov monopoles (Sections 4.1, 4.2) conflict with the ontology’s requirements,
and alternative mechanisms in GUTs explain charge quantization without invoking monopoles.
The absence of empirical evidence for monopoles further supports the ontology’s conclusion that
magnetic monopoles cannot exist.

5.5 Summary: Refuting Counterarguments

These counterarguments—Dirac strings as mathematical artifacts, patch-wise formulations elim-
inating singularities, emergent monopoles in spin ice, and monopoles explaining charge quan-
tization—fail to overturn the no-go result. For both Abelian Dirac and non-Abelian ’t Hooft-
Polyakov monopoles, singularities (in Dirac strings or transition functions) cause infinite energy
density and disrupt locality, while patch-wise formulations introduce non-unique potentials.
Emergent monopoles are irrelevant, as they involve effective magnetization, not the Maxwellian
B. Charge quantization has alternative explanations in GUTs. The topological necessity
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(π2(G/H) ∼= Z) ensures these defects, rendering magnetic monopoles incompatible with our
ontology’s requirements for a unique, non-singular Aµ or Aaµ, distinguishing our argument from
gauge-invariant paradigms.

6 Extension to Other Topological Defects

The no-go result for magnetic monopoles (Section 4) arises from their non-zero magnetic flux,
produced by field configurations classified by π2(G/H) ∼= Z, which necessitate singularities or
non-unique gauge potentials (Aµ or Aaµ) in the Lorenz gauge (∂µA

µ = 0), violating our potential-
centric ontology’s requirements for a unique, non-singular potential mediating local, continuous
interactions (Section 3). This section extends the analysis to other topological defects in gauge
theories, including cosmic strings, sphalerons, instantons, and skyrmions, assessing their com-
patibility with the ontology. We demonstrate that some fundamental topological defects in
Lorentzian spacetime (R1,3), characterized by non-trivial homotopy groups (e.g., π1, π2, π3),
introduce unphysical singularities or non-unique potentials, rendering them incompatible, while
emergent or non-physical configurations may be exempt. This universalizes the no-go result,
suggesting that fundamental topological defects are physically unrealizable in gauge theories
under our framework, with implications for cosmology, electroweak processes, and quantum
chromodynamics (QCD).

6.1 Topological Defects in Gauge Theories

Topological defects in gauge theories, such as magnetic monopoles, cosmic strings, and sphalerons,
arise from specific field configurations that define non-trivial mappings of spacetime or spatial
manifolds to the gauge group’s vacuum manifold, characterized by quantities like magnetic
flux or Chern-Simons number. In our potential-centric ontology, the gauge potential Aµ or
Aaµ in the Lorenz gauge must be unique, non-singular except at physical sources (e.g., electric
charges, quark currents), and mediate local, continuous interactions, as evidenced by the AB
effect (Section 3) [9]. We analyze cosmic strings (π1(U(1)) ∼= Z), sphalerons (π3(SU(2)) ∼= Z),
instantons (π3(SU(2)) ∼= Z), and skyrmions (π3(SU(2)) ∼= Z), evaluating their gauge potential
configurations and ontological compatibility.

Cosmic strings are fundamental topological defects that arise during symmetry-breaking
phase transitions in cosmology, primarily in Abelian U(1) gauge theories, such as the Nielsen-
Olesen vortex in the Abelian Higgs model, but also in certain non-Abelian gauge theories,
such as SU(2) or other gauge groups with appropriate symmetry breaking [18, 29]. They are
characterized by a magnetic flux:

Φ =

∮
C
Aµdx

µ =
2πn

e
, n ∈ Z, (63)

associated with π1(G/H) ∼= Z, where C is a loop encircling the string, and G/H is the vacuum
manifold after symmetry breaking (e.g., G = U(1), H = {1} for Abelian strings, or G = SU(2),
H = U(1) for certain non-Abelian strings). In the Abelian case, the gauge potential Aµ is
non-singular, regularized by the Higgs field, and single-valued, with:

Aθ ≈
n

er
at r → ∞, (64)

due to the phase winding of the scalar field ϕ = vf(r)einθ. In non-Abelian gauge theories, cosmic
strings may involve gauge potentials Aaµ with non-trivial gauge group structure, but stable
strings typically reduce to an effective U(1)-like flux at large distances due to symmetry breaking
to a U(1) subgroup, maintaining a non-singular, single-valued potential in a single gauge [29].
This non-zero flux, reflected in the gauge-invariant Wilson loop exp(ie

∮
Aµdx

µ) = exp(i2πn),
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is analogous to the AB effect, producing measurable phase shifts. The field strength Fµν (or
F aµν for non-Abelian strings) is localized near the string’s core due to the Higgs mechanism.

For a loop C encircling the string, Stokes’ theorem holds, as
∫
S FµνdS

µν = 2πn
e for a surface S

piercing the core, and the flux through a closed surface (e.g., a large sphere enclosing a finite
string loop) is zero due to ∇ · B = 0. Unlike magnetic monopoles, which require singular
(e.g., Dirac string) or non-unique (e.g., Wu-Yang patches) gauge potentials to resolve a Stokes’
theorem contradiction due to non-zero flux through closed surfaces (Section 2.1), cosmic strings
have a non-singular, single-valued Aµ (or effective Aµ) in a single gauge, satisfying the ontology’s
requirement for a unique, non-singular gauge potential mediating local, continuous interactions,
as in the AB effect. Thus, as fundamental defects in Lorentzian spacetime, both Abelian and
non-Abelian cosmic strings are compatible with the potential-centric ontology, distinguishing
them from the no-go result for magnetic monopoles (Section 4) [9].

Sphalerons in SU(2) × U(1) electroweak theory are saddle-point configurations mediating
transitions between vacuum states differing in Chern-Simons number:

NCS =
g2

32π2

∫
d3x ϵijk

(
F aijA

a
k −

2

3
gϵabcAaiA

b
jA

c
k

)
, (65)

tied to π3(SU(2)) ∼= Z, where F aij = ∂iA
a
j −∂jAai +gϵabcAbiAcj is the SU(2) field strength and g is

the gauge coupling [15]. These transitions, occurring at high temperatures or energies, violate
baryon and lepton number (∆B = ∆L = nf , with nf = 3 fermion families in the Standard
Model) due to the chiral anomaly. Sphaleron configurations are non-singular, with gauge fields
Aai ∼ ϵiakr̂kf(r)/(gr) and Higgs fields regularizing the energy to a finite value (∼ 4πv/g).
However, interpolating between vacua with ∆NCS = 1 requires patch-wise gauge potentials
with multi-valued transition functions, e.g., U = exp(iαaτa/2), leading to non-unique Aai across
patches. This non-uniqueness violates the ontology’s requirement for a unique, non-singular
gauge potential Aaµ in the Lorenz gauge (∂µA

aµ = 0). Thus, sphalerons are incompatible with
the potential-centric ontology, which demands a globally single-valued Aaµ, aligning with the
no-go result for magnetic monopoles (Section 4) [9, 15].

Instantons are non-perturbative solutions in SU(2) Yang-Mills theories in Euclidean space-
time (R4), with topological charge:

q =
g2

32π2

∫
d4xF aµνF̃

aµν ∈ Z, (66)

reflecting π3(SU(2)) ∼= Z [4]. As Euclidean constructs, instantons are not physical fields in
R1,3, but their quantum effects (e.g., chiral symmetry breaking, θ-vacuum structure) influence
physical observables in Lorentzian spacetime via path integral continuation. These effects are
gauge-invariant and computed via:

Z[θ] =
∑
n

einθ
∫
{A|q=n}

DAµDψDψ̄e−S[A,ψ,ψ̄], (67)

without requiring a physical Aaµ in R1,3. Thus, instantons’ effects are compatible with the
potential-centric ontology, as they avoid singular or non-unique gauge potentials in Lorentzian
spacetime.

Skyrmions are topological solitons in the Skyrme model, a non-linear sigma model of pions,
with baryon number:

B =
1

24π2

∫
d3x ϵijkTr

(
U−1∂iUU

−1∂jUU
−1∂kU

)
∈ Z, (68)

tied to π3(SU(2)) ∼= Z [16, 25]. In the non-gauged Skyrme model, no fundamental gauge
potential Aaµ exists, only the pion field U ∈ SU(2), which is single-valued and non-singular,
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satisfying the ontology’s requirements. In gauged versions coupled to electromagnetism, the
induced Aµ responds to baryon currents (e.g., Jµ ∝ ψ̄γµψ) and is single-valued in the Lorenz
gauge, as it lacks topological constraints like those in magnetic monopoles. As an emergent
field, it is exempt from the ontology’s constraints, similar to superconductor vortices. Thus,
skyrmions are compatible, either as non-gauged solitons or emergent configurations.

6.2 A Universal No-Go Result

Fundamental topological defects in gauge theories—magnetic monopoles and sphalerons—require
non-unique or singular gauge potentials due to field configurations classified by non-trivial ho-
motopy groups (π2, π3). Singular gauges yield infinite energy density in interactions (e.g.,
Hint ∝ AaµJ

aµ) at unphysical points, while patch-wise formulations introduce non-unique po-
tentials, disrupting locality (e.g., AB effect, Wilson loops) and violating uniqueness, as they lead
to a Stokes’ theorem contradiction for closed surfaces. Cosmic strings, however, are compatible
with the potential-centric ontology, as their non-singular, single-valued gauge potential Aµ in
a single gauge satisfies Stokes’ theorem, with the flux

∮
C Aµdx

µ = 2πn
e accounted for by the

localized field strength Fµν . Instantons, being Euclidean, and skyrmions, being non-gauged or
emergent, are also compatible, as they avoid fundamental gauge potential defects.

Unlike electric charges or quark currents, which produce singularities at physical sources
(e.g., ∇2A0 = − q

ϵ0
δ3(r)), topological defects like monopoles and sphalerons lack such sources,

rendering their singularities unphysical. Their field configurations, classified by non-trivial
homotopy groups (π2, π3), produce these defects, as their non-zero winding numbers correspond
to non-zero fluxes or Chern-Simons numbers. Cosmic strings, with π1(U(1)) ∼= Z, avoid this
issue, as their flux is consistent with a non-singular Aµ and ∇ · B = 0. Thus, fundamental
topological defects like monopoles and sphalerons are incompatible with our ontology, which
prioritizes a unique, non-singular gauge potential mediating local, continuous interactions, while
cosmic strings, instantons, and skyrmions are compatible.

This no-go result, applying to monopoles and sphalerons, offers a novel argument against
their existence. While gauge-invariant paradigms treat singularities as mathematical artifacts,
our ontology views them as physical defects. Cosmic strings’ compatibility suggests they may
exist as physical defects in cosmology, consistent with their non-detection but theoretical plau-
sibility. The result explains the absence of magnetic monopoles and baryon number violation
in standard electroweak processes, while aligning with the composite nature of skyrmions in
QCD and instantons’ quantum effects. By rejecting certain fundamental topological defects,
our ontology provides a unified perspective on gauge theories, emphasizing the physical reality
of the gauge potential over problematic topological constructs.

7 Extension to D-Branes in String Theory

D-branes, fundamental objects in string theory, are extended hypersurfaces where open strings
terminate, playing a pivotal role in non-perturbative phenomena, dualities, and the AdS/CFT
correspondence [13, 19, 20, 33]. Unlike traditional topological defects like magnetic monopoles
or cosmic strings, D-branes are dynamical objects sourcing Ramond-Ramond (RR) fields, which
are differential forms in 10-dimensional spacetime. This section extends our potential-centric
ontology, where the gauge potential (here, the RR potential Cp+1) is the fundamental entity
mediating local, continuous interactions (Section 3), to assess D-branes’ compatibility. We
demonstrate that D-branes exhibit an AB-like effect for their RR potentials, but their non-zero
RR flux leads to a Stokes’ theorem contradiction, requiring singular or non-unique potentials,
rendering them incompatible with the ontology, akin to magnetic monopoles (Section 4).
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7.1 Introduction to D-Branes

A Dp-brane is a p-dimensional spatial hypersurface in 10-dimensional spacetime, where open
strings end with Dirichlet boundary conditions [19]. D-branes carry RR charges, coupling to
RR potentials Cp+1, a (p+ 1)-form, via the Chern-Simons term in their worldvolume action:

SCS ∝ µp

∫
Dp
Cp+1 ∧ e2πα

′F , (69)

where µp is the D-brane charge, α′ is the string scale, and F = dA is the field strength of the
U(1) gauge field Aµ on the D-brane’s (p+ 1)-dimensional worldvolume. The RR field strength
is Gp+2 = dCp+1 (in the absence of background fluxes), and the D-brane acts as a source:

dGp+2 = µpδ
9−p(ΣDp), (70)

where δ9−p is a delta function supported on the D-brane’s worldvolume ΣDp. The RR charge
is measured by the flux:

Qp =

∮
Sp+2

Gp+2, (71)

over a (p + 2)-dimensional surface Sp+2 (e.g., a sphere) linking the D-brane in the transverse
directions [20]. For example, a D0-brane (point-like) sources C1, with flux over an S2, while
a D1-brane (string-like) sources C2, with flux over an S3. This non-zero flux, classified by
K-theory or cohomology, is analogous to the magnetic flux of a monopole (

∮
S B ·dS = g, Eq. 1).

7.2 AB-Like Effect for RR Potentials

The potential-centric ontology relies on the AB effect, where the gauge potential Aµ mediates
observable phase shifts in field-free regions (Fµν = 0), establishing its physical reality (Section
3) [2]. For D-branes, an analogous AB-like effect exists for the RR potential Cp+1. A probe
Dq-brane (q ≥ p) or fundamental string moving in the field of a Dp-brane couples to Cp+1 via
the Chern-Simons term (Eq. 69). Consider a probe Dq-brane encircling the Dp-brane along a
closed (p + 1)-dimensional cycle Cp+1 on its worldvolume, in a region where Gp+2 = 0. The
worldvolume action contributes a phase:

exp

(
iµq

∮
Cp+1

Cp+1

)
, (72)

where µq is the probe’s charge. This phase is gauge-invariant and observable, analogous to the
AB phase exp(ie

∮
C Aµdx

µ). For example:

� A D0-brane sources C1, and a probe D2-brane encircling it along a 1-cycle C1 (a loop)
acquires a phase

∮
C1 C1.

� A D1-brane sources C2, and a probe D3-brane encircling it over a 2-cycle C2 (e.g., a
2-sphere) acquires a phase

∮
C2 C2.

This AB-like effect establishes the physical reality of Cp+1, as it directly influences observ-
ables (phase shifts) in regions where the field strength Gp+2 = 0, mirroring the role of Aµ in the
AB effect (Section 3). The non-trivial topology of the spacetime manifold minus the D-brane
(πp+1(S

9−p)) ensures a non-zero phase, similar to the monopole’s π2(S
2) ∼= Z.
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7.3 Stokes’ Theorem Contradiction

The non-zero RR flux (Eq. 71) leads to a Stokes’ theorem contradiction, akin to magnetic
monopoles (Section 2.1). For a closed (p + 2)-dimensional surface Sp+2 linking the Dp-brane,
the flux is: ∮

Sp+2

Gp+2 = Qp ̸= 0. (73)

In the absence of D-branes, Gp+2 = dCp+1, and Stokes’ theorem for a closed surface (∂Sp+2 = ∅)
implies: ∮

Sp+2

Gp+2 =

∮
∂Sp+2

Cp+1 = 0. (74)

The non-zero flux contradicts this unless Cp+1 is not globally defined. To reconcile the flux,
Cp+1 requires either:

� Singularities: A higher-dimensional analogue of the Dirac string, where Cp+1 has a
singularity along a (9− p)-dimensional submanifold, carrying the flux (similar to Eq. 32).

� Non-unique potentials: Patch-wise definitions, analogous to Wu-Yang patches (Eqs. 8,
9), where Cp+1 differs across overlapping regions, related by gauge transformations with
multi-valued transition functions.

This is due to the non-trivial topology of the spacetime minus the D-brane, classified by
πp+1(S

9−p). For example, a D0-brane in 10D spacetime has a flux over S2, with π1(S
8), while

a D1-brane has a flux over S3, with π2(S
7). These topological obstructions prevent a globally

defined, non-singular Cp+1, violating the ontology’s requirement for a unique, non-singular
potential mediating local interactions.

In contrast, the worldvolume gauge field Aµ on the Dp-brane, with field strength F = dA,
typically satisfies ∇ ·B = 0 (no magnetic monopoles on the worldvolume). For a closed surface
S on the worldvolume,

∮
S F = 0, and Stokes’ theorem holds:∮

C
Aµdx

µ =

∫
S
F, (75)

where C = ∂S. If the worldvolume hosts vortex-like defects, the flux
∮
C Aµdx

µ = 2πn
e is

accounted for by localized F , as in cosmic strings (Section 6.1), ensuring compatibility with the
ontology.

7.4 A No-Go Result for D-Branes

The AB-like effect for Cp+1 (Eq. 72) confirms its physical reality, as it mediates observable
phase shifts in field-free regions, analogous to Aµ in the AB effect (Section 3). However, the
Stokes’ theorem contradiction requires singular or non-unique Cp+1, violating the ontology’s
criteria: uniqueness, non-singularity except at physical sources, and locality of interactions.
This parallels the no-go result for magnetic monopoles, where the non-zero flux

∮
S B · dS = g

necessitates singularities or non-unique potentials (Section 4). Since the RR potential Cp+1

is integral to the D-brane’s definition as an RR source (Eq. 69), D-branes are fundamentally
incompatible with the ontology.

Unlike magnetic monopoles, whose incompatibility is reinforced by the experimentally con-
firmed AB effect for Aµ in quantum mechanics, ruling out their existence due to the Stokes’
theorem contradiction (Section 4), D-branes are hypothetical entities in string theory, lack-
ing experimental confirmation of their AB-like effect for Cp+1. The no-go result for D-branes
arises from a theoretical self-contradiction: the AB-like effect establishes Cp+1’s physical reality
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(Eq. 72), but its singularity or non-uniqueness, required to resolve the Stokes’ theorem contra-
diction (Section 7.3), violates the ontology’s requirements. Thus, while monopoles are refuted
by both theory and experiment, D-branes’ incompatibility stems from an internal inconsistency
within string theory’s framework, independent of empirical evidence, highlighting a fundamental
challenge to their physical realizability in the potential-centric ontology.

Note that the non-gauge-invariance of Gp+2 in the presence of the Neveu-Schwarz (NS)
3-form field strength H3 ̸= 0 does not undermine the no-go result but strengthens it. The
patch-wise definition of Cp+1, necessitated by the modified field strength Gp+2 = dCp+1 +
H3 ∧ Cp−1, mirrors the Wu-Yang approach for monopoles (Section 2.1.2), where non-unique
potentials resolve the non-zero flux. Singularities, interpreted as D-branes (e.g., D(p-2)-branes),
are analogous to the Dirac string (Section 2.1.1), further violating the ontology’s requirement for
non-singularity. The Hanany-Witten transition, where D-brane creation alters the flux topology
[11], underscores the need for such configurations, reinforcing the Stokes’ theorem contradiction
and D-branes’ incompatibility with the ontology, as the physical reality of Cp+1, established by
the AB-like effect (Eq. 72), demands a unique, non-singular potential.

This no-go result is significant, as D-branes are central to string theory, underpinning du-
alities, black hole entropy, and gauge/gravity correspondences [3, 14, 19, 31]. String theory’s
gauge-invariant formalism often dismisses singularities and non-uniqeness as mathematical ar-
tifacts. Nevertheless, the AB-like effect and Stokes’ theorem contradiction provide a robust
argument against D-branes’ existence, challenging string theory’s framework. Future work
could explore whether alternative ontologies accommodate higher-form potentials or whether
string theory’s reliance on D-branes necessitates a modified gauge potential framework.

8 Conclusions and Future Directions

This study establishes a robust no-go theorem for magnetic monopoles—both Abelian Dirac
and non-Abelian ’t Hooft-Polyakov types—within a potential-centric ontology, where the gauge
potential Aµ (or Aaµ in non-Abelian theories), fixed in the Lorenz gauge (∂µA

µ = 0), is the
fundamental physical entity mediating local, continuous interactions. We demonstrate that
these monopoles, characterized by non-zero magnetic flux (

∮
S B · dS = g) produced by field

configurations classified by π2(G/H) ∼= Z, necessitate unphysical singularities or non-unique
gauge potentials in all formulations to resolve a Stokes’ theorem contradiction (Section 4).
For Dirac monopoles, the Dirac string introduces a line singularity, while the Wu-Yang patch-
wise approach introduces non-unique gauge potentials. Similarly, ’t Hooft-Polyakov monopoles
require either a singular gauge with a Dirac string-like defect or patch-wise potentials with multi-
valued transition functions (Eq. 19), both violating the ontology’s requirements for uniqueness,
non-singularity except at physical sources, and locality, as evidenced by infinite energy density
in interactions (Hint ∝ AµJ

µ) and indeterminate phase integrals in the AB effect (Sections 4.1,
4.2).

This no-go result extends to sphalerons (π3(SU(2)) ∼= Z), whose non-unique gauge potentials
disrupt locality and uniqueness (Section 6.1), and to D-branes in string theory, whose RR
potentials Cp+1 exhibit an AB-like effect but require singular or non-unique potentials due
to non-zero flux (

∮
Sp+2 Gp+2 = Qp), leading to a theoretical self-contradiction independent of

experimental evidence (Section 7). In contrast, cosmic strings (π1(U(1)) ∼= Z) are compatible
with the ontology, as their non-singular, single-valued gauge potential Aµ in a single gauge
satisfies Stokes’ theorem, with the flux

∮
C Aµdx

µ = 2πn
e accounted for by the localized field

strength Fµν (Section 6.1). Instantons, being Euclidean constructs, and skyrmions, as non-
gauged or emergent solitons, are also compatible, as they avoid fundamental gauge potential
defects (Section 6.1). This distinguishes monopoles and sphalerons as physically unrealizable in
our ontology, while cosmic strings may exist as physical defects, consistent with their theoretical
plausibility in cosmology.
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The ontology’s prioritization of Aµ’s physical reality, grounded in the AB effect’s local, con-
tinuous phase accumulation (Section 3), distinguishes this result from gauge-invariant paradigms,
where singularities are dismissed as mathematical artifacts (Section 5). Responses to counter-
arguments—Dirac strings as artifacts, patch-wise formulations, emergent monopoles in spin ice,
and monopoles’ role in electric charge quantization—reinforce the theorem’s robustness. No-
tably, charge quantization is explained without monopoles via the algebraic structure of GUTs
like SU(5) or SO(10), consistent with experimental null results and the ontology’s compatibility
with electric charges, which produce physically meaningful singularities at their sources. For
D-branes, their centrality in string theory (dualities, AdS/CFT) underscores the significance of
their theoretical inconsistency, challenging their physical realizability.

The theorem is empirically testable: detecting a magnetic monopole or sphaleron would fal-
sify the ontology, while cosmic strings’ compatibility suggests they could be observed in cosmo-
logical probes. Current null results from high-energy experiments and cosmological constraints
support our conclusions for monopoles and sphalerons [1]. Future research should pursue en-
hanced experimental searches, such as MoEDAL’s ongoing efforts or cosmological probes of
relic defects like cosmic strings, and explore theoretical extensions to non-Abelian gauge theo-
ries via Wilson loops and to string theory’s higher-form potentials. Additionally, applying this
framework to gravitational theories, where the metric gµν may serve as a potential-like entity,
could unify gauge and spacetime interactions, offering novel insights into their ontology. These
directions promise to advance our understanding of gauge theories, electromagnetic asymmetry,
and the fundamental structure of physical reality.
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