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Abstract 
The paper advances the hypothesis that the multi-field is a determinable, that is, a 
physical object characterized by indeterminate values with respect to some 
properties. The multi-field is a realist interpretation of the wave function in quantum 
mechanics, specifically it interprets the wave function as a new physical entity in 
three-dimensional space: a “multi-field” (Hubert & Romano 2018; Romano 2021). 
The multi-field is similar to a field as it assigns determinate values to N-tuples of 
points, but is also different from a field as it does not assign pre-existing values at 
each point of three-dimensional space. In particular, the multi-field values 
corresponding to the empty points (points where no particles are located) have 
indeterminate values until a particle is located at those points. The paper suggests 
that the multi-field so defined can be precisely characterized in terms of 
determinable-based, object-level, account of metaphysical indeterminacy. Under 
this view, the multi-field as novel physical entity is, in fact, a metaphysically 
indeterminate quantum object, that is, a determinable.    

1. Introduction: the status of the wave function in quantum mechanics 

Quantum mechanics (QM) is a rather peculiar theory: on the one hand, it is a 
very successful theory and no one doubts that it grasps something true about 
the nature of the microscopic world, on the other hand, however, the theory 
is metaphysically obscure, as the link between the formalism and the ontology 
of systems is not clear. As a result, different interpretations have proposed 
different ways to connect the formalism with the ontology. The standard 
interpretation of quantum mechanics (SQM, the theory presented in QM 
textbooks)1 is manifestly an operational theory, and in doing so it renounces 
to provide a realist description of systems. Literally taken, SQM indicates the 
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spectrum of possible measurement results (eigenvalues) and their relative 
probability distribution. This theory works very well in practice, but it does 
not provide an ontology of systems independently from measurement. For 
example, a plane wave cannot be interpreted as physical wave, since the 
ontology of SQM concerns the eigenvalues and not the wave function per se 
and, most importantly, the wave function cannot be generally defined as a 
classical field in 3D space. This is consistent with the standard interpretation, 
where the wave function is a probability amplitude (not an ontological entity) 
and the ontology of the theory concerns the eigenvalues/measurement 
outcomes, but it leaves the question about the nature of quantum systems 
basically unanswered.2  

In order to overcome these limitations imposed by SQM, a certain 
number of non-standard interpretations—such as the Many Worlds 
Interpretation (MWI)3 and Relational Quantum Mechanics (RQM)4—as well 
as non-standard theories—such as the Ghirardi-Rimini-Weber (GRW)5 and 
the de Broglie-Bohm (dBB)6 theories—have been proposed in the last 
decades.7 All these approaches attempt to retrieve a realist description of 
quantum systems8 while leaving the empirical predictions of SQM intact.9 It 
is a hard attempt, and in fact one that originated much controversy in the 
philosophical literature: controversy concerning the best theory to adopt, 
controversy on the correct metaphysical interpretation for each of the non-

                                                
2 For an analysis of the ontology of standard quantum mechanics, see e.g. Ballentine (2014), 
Bowman (2008), Maudlin (2019), Norsen (2017).  
3 Wallace (2012).  
4 Rovelli (1996).  
5 Ghirardi et al. (1986).   
6 Bohm (1952); Bohm & Hiley (1993).  
7 I distinguish between non-standard interpretations (MWI, RQM), which do not change the 
formalism of quantum mechanics (even though the MWI does not include the collapse 
postulate and may well be considered a non-standard theory as well) and non-standard 
theories, which do change the formalism of the theory by modifying the Schrödinger's 
equation (GRW theory) or the definition of the state (dBB theory).  
8 The situation is actually more nuanced: the GRW and Everett theories have been originally 
proposed as solutions of the measurement problem and unification of the micro and macro 
regime, whereas the dBB theory has been proposed not to solve the measurement problem 
but to provide a realist account of quantum systems. Moreover, this theory was originally 
proposed by Louis de Broglie in 1927 during the Solvay conference, so it is historically as 
old as the Copenhagen interpretation (see e.g. Baccciagaluppi & Valentini (2009) for the 
early history of the de Broglie’s theory).  
9 All non-standard theories must recover the empirical results of quantum experiments, which 
are successfully described by standard quantum mechanics.   
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standard theories. Leaving aside the former issue, the latter one is closely 
connected to the interpretation of the wave function.  

While SQM and RQM are clear on the status of the wave function, as in 
both theories the wave function is purely instrumental,10 this question is 
genuinely open in the MWI, GRW and dBB theories. Since all of these 
theories aim to provide a realist account of quantum mechanics, the wave 
function also seems to take more than just an instrumental role. In particular, 
three different interpretations of the wave function in these theories have been 
proposed so far:  
1. The nomological interpretation11 

2. The 3N-D field interpretation12  

3. The multi-field interpretation13  

Even if it is common to discuss these approaches on similar grounds, it must 
be noticed that they have different areas of applicability, i.e. not all these 
interpretations can be consistently applied to all theories. In particular, the 
nomological view and the multi-field approach have a more restrictive 
application than the 3N-D field interpretation. While the latter can be applied 
to MWI, GRW and dBB theories, the nomological interpretation can be 
applied only to theories with a primitive ontology, that is, to dBB, 𝐺𝑅𝑊$  and 
𝐺𝑅𝑊%14 theories. The multi-field approach is even more restrictive, as it can 
be consistently applied only to the dBB theory (either in the first-order 
Bohmian mechanics or in the second-order Bohm’s 1952 theory).15  
 

                                                
10 I list Relational Quantum Mechanics among the realist interpretations because, even if 
this theory is instrumental on the wave function, it describes objective relative facts, which 
are the result of any interaction between systems and do not depend on measurement 
operations. However, the debate on the metaphysics of RQM is still open in the literature 
and one may provide arguments to interpret RQM as an instrumental theory tout court. 
While I would rather defend the former option on this point, the latter one is not excluded.    
11 Goldstein & Zanghì (2013). 
12 Albert (2013); Ney (2021). I use the term “3N-D field interpretation” rather than “wave 
function realism” as there are different ways in which one can be realist on the wave 
function. For example, the multi-field approach is definitely a realist interpretation of the 
wave function, but it differs substantially from Albert’s and Ney’s wave function realism. 
13 Forrest (1988); Belot (2012); Hubert & Romano (2018); Romano (2021a).   
14 𝐺𝑅𝑊$ and 𝐺𝑅𝑊% stands, respectively, for “GRW with mass-density” and “GRW with 
flashes”.  
15 The reasons for this restriction will be clear in sect. 3.3.  



 4 

It may be useful to summarize these remarks in the following table (1.1): 
 

Interpretation of the  
wave function 

Areas of applicability 

3N-D field MWI, BM (1st-order), 
Bohm’s theory (2nd-order), 
𝐺𝑅𝑊(,	𝐺𝑅𝑊$, 𝐺𝑅𝑊% 

Nomological view BM (1st-order),  
𝐺𝑅𝑊$, 𝐺𝑅𝑊% 

Multi-field BM (1st-order),  
Bohm’s theory (2nd–order)  

Table 1.1 

This paper does not want to enter in the debate concerning the best 
interpretation of the wave function, as (I am fairly convinced that) this is 
eventually left to personal preferences and perspectives. The aim of the 
present paper is instead more humble and, at the same time, more concrete: I 
want to provide a precise metaphysical characterization of the multi-field in 
terms of the determinable-based account of metaphysical indeterminacy.  

The paper has the following structure: in (sect. 2) I review the 
interpretation of the wave function in standard QM; in (sect. 3) I describe the 
nomological view (sect 3.1), the 3N-D field interpretation (sect. 3.2) and the 
multi-field approach (sect 3.3). In (sect. 4) I present the determinable-based 
account and, following Wilson (2013, 2017), connect it to metaphysical 
indeterminacy. Finally, in (sect. 5) I describe the multi-field as a novel 
physical entity in terms of the determinable-determinate account. In (sect. 6) 
I draw some connections between the multi-field as determinable and relevant 
features of Bohm’s theory. Conclusions are given in (sect. 7).    

2. The wave function in standard quantum mechanics 

In SQM the wave function of a system represents completely the state of the 
system but it has no ontological significance: it is rather an instrument for 
computing (given a certain observable) the spectrum of possible eigenvalues 
and their probability distribution. The meaning of the state is one of the most 
relevant differences between quantum and classical mechanics. In classical 
mechanics the system’s state (initial position and velocity) has a direct 
reference to the system’s ontology: the state represents the position and 
velocity of the system at the initial time. The classical state has therefore a 
double role, representational and ontological: it specifies the degrees of 
freedom needed to compute the evolution of the system (representational 
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role) and, at the same time, it refers to a concrete system in space and time 
(ontological role). In SQM, instead, the state is just representational: the wave 
function represents the complete information on the system’s state, i.e. the 
information needed to compute the evolution of the system (via the 
Schrödinger’s equation), but it does not have a direct link with the system’s 
ontology: we do not know what kind of system the wave function represents, 
e.g. if the system is a particle, or a wave, or a “wave-particle” or just a novel 
entity. 

The physical meaning of the wave function in SQM is given by its 
absolute square |𝜓|,, which is interpreted as a probability density (Born’s 
statistical interpretation). Consequently, the integral of this quantity: ∫|𝜓|,𝑑𝑥 
gives the probability to obtain specific eigenvalues for specific observables. 
So construed, SQM is a theory about the possible measurement results 
(eigenvalues) of different observables. The eigenvalues are obtained from the 
collapse of the wave function, which is a postulate of the theory: in a 
measurement of the observable 𝐴, represented by the Hermitian operator 𝐴1, 
the wave function collapses instantaneously in one of the eigenstates |𝑎3⟩ of 
𝐴1 and the measurement result is mathematically represented by the 
eigenvalue 𝑎3 associated to |𝑎3⟩. 16   

We note that the eigenvalue cannot be assigned to the system before the 
collapse takes place, that is, before and independently of the measurement 
process. This means that a quantum superposition (e.g. a superposition of 
different locations in the two-slit experiment or a superposition of “spin-up” 
and “spin-down” in the singlet state of the electron) cannot be interpreted as 
a superposition of different eigenvalues as the collapse has not yet occurred.17 
In such contexts, we must refrain to associate to the system a superposition 
of real-existing classically incompatible values since, according to the 
postulates of quantum mechanics, we can associate physical values to a 
quantum system only through eigenvalues and we cannot associate any 
eigenvalue before a measurement has taken place. We should distinguish 
instead between representational and ontological capacity of the wave 
function, where the former is the ability to mathematically represent the 
system and the latter the ability to indicate which kind of entity the system 
described by the wave function is. While SQM succeeds in the former task, it 

                                                
16 The Hermitian operator is defined by the action on its eigenstates: 𝐴1|𝑎3⟩ = 𝑎3|𝑎3⟩ .  
17 The only exception being if the state is an eigenstate of a given observable, according to 
the eigenvalue-eigenstate link. In this case, the state does not change during the measurement 
process, so the collapse does not apply and we can assign a specific eigenvalue to the state 
independently from the measurement.   
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leaves the question about the ontology (latter task) basically unanswered. This 
aspect is unsatisfactory if we want to provide an ontology for quantum 
systems and is the main reason to look at the non-standard theories introduced 
above. Therefore, we now turn to the metaphysical analysis of the wave 
function in such theories.  

3. The wave function in non-standard quantum mechanics 

Differently from SQM, the wave function can take an ontological meaning in 
MWI, GRW and dBB theories.18 In these theories the spectrum of the 
metaphysical interpretations of the wave function is much greater: it can have 
an instrumental role (as commonly assumed in the GRW physics 
community), or a nomological role (as in the nomological view, where it 
guides the motion of the primitive ontology) or an ontological role, where it 
can represent a physical entity (as in the 3N-D field interpretation and the 
multi-field approach) or just patterns in three-dimensional space (as in 
Wallace’s MWI).19 The debate is open and there is no consensus on what the 
wave function is or represents in these theories. In the next subsections I will 
present the three major interpretations that have been proposed so far in these 
contexts, namely the nomological view, the 3N-D field interpretation and the 
multi-field approach. 

3.1 The nomological interpretation 

The nomological interpretation has been originally proposed by Goldstein & 
Zanghì (2013), even though some traces of this interpretation date back to 
Hiley and Bohm’s (1993) notion of active information. According to this 
interpretation, the wave function in the dBB theory is a nomological entity, 
i.e. a mathematical object that has no ontological counterpart but that is 
necessary to describe the evolution of the system. The analogy is with the 
Hamiltonian function in classical mechanics: as the Hamiltonian function 
(mathematically represented in phase space) “guides” the motion of the 
particles in 3D space, the wave function (mathematically represented in 

                                                
18 I refer specifically to MWI since the original Everett’s theory (“relative state formulation” 
of QM) is much closer in spirit to relational quantum mechanics: it does not postulate the 
existence of branching parallel worlds, it is observer-dependent and it describes sequences 
of “records” relative to the observers in line with RQM’s relative facts.      
19 Wallace (2010).  
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configuration space) “guides” the motion of the Bohmian particles in 3D 
space via the guiding equation:20 

 
�̇� = ℏ

$
𝐼𝑚 =∇?

?
@           (3.1) 

 
That is: given 𝜓(𝑥, 𝑡) we can compute the velocity and so the trajectories of 
the Bohmian particles in the same manner as we can compute the trajectories 
of classical particles in Hamiltonian mechanics from 𝐻(𝑥, 𝑣). This 
interpretation is quite attractive as it dissolves the problems linked to the 
multi-dimensionality of the wave function (the fact that, for an N-particle 
system, the wave function is defined in 3N-D space rather than in 3D space), 
but it also faces important issues. For example, a typical nomological entity 
(like the classical Hamiltonian) is not time-dependent and is not contingent 
(i.e. it does not depend on the boundary conditions), while the wave function 
is contingent and (generally) time-dependent. In order to solve this problem, 
Goldstein and Zanghì posit that only the wave function of the universe--the 
Universal Wave Function (UWF)—has an ontological significance. The 
UWF, as a solution of the Wheeler-de Witt equation, is supposed to be unique 
and time-independent.  

However, this creates a further problem: in quantum mechanics we 
typically assign wave functions to (isolated) subsystems, never to the universe 
as a whole, exception made for quantum cosmology. That the UWF is the 
only wave function that counts from the ontological point of view is a 
metaphysical postulate. In addition, the very definition of UWF is not 
obvious: the wave function of the universe, if it exists, may well be 
represented by a factorized state between different (effective) wave functions, 
as it is plausible to assume that not all the regions and parts of the universe 
have previously interacted with each other, forming a unique entangled state. 
Furthermore, even leaving aside the problems associated to the universal 
wave function, there is a fundamental structural asymmetry between a 
nomological entity like the Hamiltonian, which has a bottom-up structure, i.e. 
it is built “from below” by the sum of the kinetic and potential energy of the 
particles, and a typical wave function, which has a top-down structure, i.e. it 
is derived as a solution of a dynamical equation (the Schrödinger’s equation), 
as the electromagnetic field is a solution of the Maxwell’s equations.21  

                                                
20 For simplicity, I write the guiding equation for spinless particles.  
21 See e.g. Romano (2021a, sect. 2).  



 8 

 

3.1.1 Active information vs nomological view 

The idea of active information proposed by Bohm & Hiley (1987: 327-328) 
shares some common features with the nomological interpretation: according 
to Bohm & Hiley, the wave function is a sort of information pool that guides 
the motion of the particles in the same manner as the electromagnetic waves 
produced by a remote guide the motion of a radio-controlled boat. As the 
electromagnetic waves transmit to the boat the information about its future 
movement (so the boat moves according to the transmitted information), the 
wave function transmits to the Bohmian particles the information on their 
future trajectory (so the Bohmian particles move according to the information 
transmitted by the wave function). The idea of active information may be seen 
as a precursor of the nomological interpretation, as it is a first attempt to 
regard the wave function as a non-material object (information pool, 
nomological entity) which guides the motion of a material object (Bohmian 
particles). The way it transmits this information to the particles is different in 
the two cases, but the general schema (action of a non-material entity to a 
material entity) is the same. Not really “what the Doctor orders”, but what the 
information transmits.       

3.2 3N-D field interpretation 

The 3N-D field interpretation, most commonly known as wave function 
realism, has been originally proposed by Albert in two papers (1996, 2013). 
The idea is to interpret the wave function as close as possible to the role it 
plays in the quantum formalism: the wave function looks like a physical field, 
for it is the solution of a dynamical equation and, like a field, it assigns 
specific values to each point of the space on which it is defined. Since the 
wave function is defined on the system’s configuration space, it assigns 
values to each point of that space, not to points of three-dimensional space. 

Based on these features of the quantum formalism, Albert proposes to 
regard the wave function as a physical field in configuration space. As a 
classical field (e.g. the electromagnetic field) assigns real values to points of 
3D space, the wave function assigns complex values to points of 
configuration space. According to this view, the wave function is analogous 
to a classical field, the only difference being that it is defined in configuration 
space rather than in three-dimensional space and that assigns complex values 



 

 9 

rather than real values to each point of its domain. There is however an 
important consequence: since the wave function is a physical field in 
configuration space, the latter must be recognized as the fundamental physical 
space of quantum mechanics. And since quantum mechanics is more 
fundamental than classical mechanics,22 configuration space must be seen as 
the fundamental space of physics tout court. This is why this position is better 
defined as configuration space realism rather than wave function realism: one 
may be realist on the wave function without endorsing the fundamentality of 
configuration space (as it happens e.g. in the multi-field approach).23 

If configuration space is fundamental, then the configuration of the 
Bohmian particles must be also placed on that space rather than on three-
dimensional space. Following this reasoning, Albert reduces the (somewhat 
illusory or emergent) configuration of particles in 3D space to a “marvelous 
point” in 3N-D space. The marvelous point solves the communication 
problem24 between the wave function and the Bohmian particles as they are 
both placed in the same space, but it does not help with the “perception 
problem”, i.e. the problem to understand why we perceive the macroscopic 
world as three-dimensional even though the fundamental space is the 
configuration space. Solutions to the perception problem have been proposed 
by Albert (2013) and more recently by Ney (2021). Albert argues that it is the 
structure of the Hamiltonian that decomposes configuration space into sets of 
three-dimensional coordinates, giving the impression that this is the space 
where particles move and interact with each other, and eventually giving the 
                                                
22 A fair consensus has been reached in the literature that environmental decoherence plays 
an important role in the quantum-to-classical transition (Joos et al. (2013), Schlosshauer 
(2007, 2019); Zurek (2002)). According to this picture, the classical world emerges from the 
quantum world when quantum systems interact strongly and continuously with the external 
environment. The classical world in this picture is emergent or derivative with respect to the 
quantum world. See, however, Romano (2022) for a critical assessment of environmental 
decoherence in the standard context. A dissident voice on the importance of environmental 
decoherence for the classical limit is Ballentine (2008).  
23 Furthermore, we note that configuration space, differently from three-dimensional space, 
does not have a fixed number of dimensions, as the latter depends on the number of degrees 
of freedom of the system under analysis. In particular, given an N-particle entangled state, 
the system’s configuration space has a number of dimensions 3𝑁, where 𝑁 is the number of 
particles composing the system. The number of dimensions therefore vary from system to 
system. This reflects the derivative character of configuration space with respect to three-
dimensional space and, to my opinion, it is not a firm ground to assess the fundamentality of 
configuration space over three-dimensional space.  
24 The problem of communication arises when the wave function and the Bohmian particles 
“live” on different spaces (e.g. Callender 2015) and can be summarized as follows: how does 
the wave function (object in 3N-D space) guide the Bohmian particles in 3D space?    
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impression that we live in 3D space. Ney’s argument relies instead on the role 
of symmetries in quantum mechanics. In particular, she notes that, even 
though the fundamental space is configuration space, important symmetries 
of quantum mechanics are retrieved only when we represent systems in 3D 
space. In both cases, however, an open question remains on how these 
mathematical structures (Hamiltonian, symmetries) can affect our perception 
to live in a 3D world.  

3.3 The multi-field approach: the wave function as a new entity in 3D 
space 

In the multi-field view, the wave function is the mathematical representation 
of a multi-field, which has to be regarded as a novel physical entity in 3D 
space. The idea of the multi-field comes originally from the notion of 
“polywave” proposed by Forrest (1988). Forrest interprets the wave function 
in SQM as a “polywave”, that is, as a multiple assignment of field values for 
any ordered set of position coordinates. The notion of polywave has been then 
revisited and inserted in the context of Bohm’s theory by Belot (2012), who 
names it “multi-field”. However, Belot dismisses quickly the multi-field idea, 
principally because of the non-validity of the action-reaction principle (while 
the multi-field acts on the Bohmian particles, the latter do not act back on the 
former).25 After this first attempt, the multi-field approach has been further 
developed and defended in Hubert & Romano (2018) and more recently in 
Romano (2021a).  

As we saw before, the wave function looks like a field as it defines a 
specific value for each point of the space on which it is mathematically 
defined, yet these values are associated to points of configuration space and 
(for N-particle entangled states) they cannot be reduced to an assignment of 
pre-existing values associated to points of 3D space. In other words, the wave 
function generally assigns a continuous distribution of complex values to 
each point of the system’s configuration space. The idea of the multi-field is 
to interpret such distribution of values in configuration space as the 
mathematical representation of a novel physical entity in 3D space. More 
precisely, the assignment of definite values in configuration space is 
interpreted not as a classical field in configuration space, but rather as a novel 
kind of object in 3D space. The new object is the multi-field.   

                                                
25 A response to Belot on the back-reaction problem is given in Romano (2021a, sect 6.3).  
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Even though the wave function cannot assign pre-existing, determinate 
values to each point of 3D space, a projection from configuration to three-
dimensional space can always be done, as configuration space is literally the 
space of possible configurations of particles in three-dimensional space. We 
can illustrate this idea with the following example. Consider a system of two 
point-particles in 3D space represented by the coordinates 𝑝J(𝑥J, 𝑦J, 𝑧J) and 
𝑝,(𝑥,, 𝑦,, 𝑧,): we can represent the 2-particle system as two discrete particles 
in 3D space or, equivalently, as a single particle in 3N-D space: 

 
Two-particle system in configuration space 
𝑝J,,(𝑥J, 𝑦J, 𝑧J, 𝑥,, 𝑦,, 𝑧,)           (3.3.1) 

 
We note, however, that the position coordinates of the two particles in the 
single particle representation are ordered: the first set of three coordinates 
(𝑥J, 𝑦J, 𝑧J) represent particle 𝑝J, the second set (𝑥,, 𝑦,, 𝑧,) represent particle 
𝑝,. Configuration space is built from the configuration of particles in 3D 
space: we define 𝑝J,, a single point in 3N-D space, from the configuration of 
two particles	𝑝J and 𝑝, in 3D space. Since configuration space is derivative 
from three-dimensional space, the latter can be safely viewed as the 
fundamental physical space, i.e. the arena where systems exist and interact 
with each other. However, we are still left with the initial problem: the wave 
function assigns precise values to points of configuration space, not to points 
of 3D space. Let us clarify this point in the context of Bohm’s theory. 

Consider a 2-particle entangled state. In Bohm’s theory this system is 
represented by a six-dimensional wave function 𝜓J,,(𝑥J, 𝑥,, … , 𝑥N) and by 
the actual particles’ configuration 𝑞OPO composed of two point-particles, 𝑞J 
and 𝑞,, having exact locations and mathematically represented by the position 
coordinates in 3D space: 𝑞J(𝑥J, 𝑦J, 𝑧J) , 𝑞,(𝑥,, 𝑦,, 𝑧,). The Bohmian system 
is thus represented by the state: (𝜓(𝑥), 𝑞OPO).  

The wave function specifies a map from configuration space to the 
complex numbers:  

 
𝜓J,,(𝑥J, 𝑥,, 𝑥Q, 𝑥R, 𝑥S, 𝑥N) → 𝑐                  (3.3.2) 

 
If we leave the interpretation at this stage, we have the original idea of 
Forrest’s polywave (the wave function assigns a complex value to any 
ordered N-tuples of points), but in Bohm’s theory the wave function is always 
accompanied by the actual configuration 𝑞. When we insert the particles’ 
configuration into the wave function: 
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𝜓(𝑞J, 𝑞,) = 𝜓(𝑥J, 𝑦J, 𝑧J, 𝑥,, 𝑦,, 𝑧,)          (3.3.3) 

 
the wave function assigns a complex value to the two discrete points, 
(𝑥J, 𝑦J, 𝑧J) and (𝑥,, 𝑦,, 𝑧,), in 3D space corresponding to the exact location 
of the Bohmian particles 𝑞J and 𝑞,. In general, for an N-particle system, the 
wave function assigns a complex value to the N-tuple of points corresponding 
to the actual particles’ configuration. The result is not a classical field, as it 
assigns simultaneously a specific complex value (𝑐) to an N-tuple of points 
in 3D space (in our case at the two points (𝑞J, 𝑞,)) and the value is not pre-
assigned but depends on the position coordinates of the particles composing 
the configuration 𝑞. Under this view, the wave function is thus a new kind of 
physical field--a multi-field--which assigns specific field values to N-tuples 
of points corresponding to the exact location of the Bohmian particles.  

The multi-field so described can be thought as a generalization of a 
classical field: while a classical field (e.g. the electromagnetic field) assigns 
a determinate value to any point of 3D space, the multi-field assigns a 
determinate value only to N-tuple of points, corresponding in Bohm’s theory 
to the actual position of the particles. For example, given a wave function of 
the type: 

 
𝜓(𝑥, 𝑦) = 𝐴 cos(𝑥𝑦)                   (3.3.4) 

 
and configuration 𝑞 = (𝑞J, 𝑞,), with A a normalization constant, the multi-
field assigns a determinate value:  

 
𝜓(𝑞J, 𝑞,) = 𝐴 cos(𝑞J𝑞,)             (3.3.5) 

 
in correspondence of the two points  𝑞Jand 𝑞, occupied by the Bohmian 
particles. The determinate is computed by evaluating the 2-particle wave 
function at the points 𝑥 = 𝑞J and 𝑦 = 𝑞,.    

Note that the multi-field cannot be thought of as a continuous distribution 
of (determinate) values, differently from a classical field. While a classical 
field defines a determinate value at any point, the multi-field defines a 
determinate value only at those points where the Bohmian particles are 
located, leaving all the other (empty) points with indeterminate values. This 
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constitutes a discontinuity in the field, and a primary difference with a 
classical field.26 

The multi-field assigns a determinate complex value to a given N-tuple 
of points at any instant, corresponding to the exact location of the Bohmian 
particles at that instant. If complex values may sound unphysical, we note that 
the wave function can be reduced to two (coupled) real-valued functions, 
corresponding to the amplitude 𝑅(𝑥, 𝑡) and phase 𝑆(𝑥, 𝑡) of the wave function 

written in polar form: 𝜓(𝑥, 𝑡) = 𝑅(𝑥, 𝑡)𝑒
[
ℏ\(],O). Consequently, the complex-

valued multi-field can be reduced to two (coupled) real-valued multi-fields 
associated to 𝑅(𝑥, 𝑡) and 𝑆(𝑥, 𝑡). 27   

In practice we do not know the exact location of the Bohmian particles 
but we know that, given a system with wave function 𝜓, the actual 
configuration is statistically distributed according to the Born’s rule: 𝜌(𝑞) =
|𝜓(𝑥)|,. This postulate is known as quantum equilibrium and guarantees that 
the de Broglie-Bohm theory is empirically equivalent to standard QM. Since 
a Bohmian system is defined, at any time, by a unique actual configuration 
𝑞O∗, the multi-field assigns, at any time, a unique and specific value to the N-
tuple of points (𝑥J,… , 𝑥`) corresponding to 𝑞O∗ = (𝑞J, 𝑞,, … , 𝑞`, 𝑡∗): 

 
 𝜓(𝑞J, 𝑞,, … , 𝑞`, 𝑡∗) → 𝑐                (3.3.6) 

 
At any time, the multi-field assigns a complex value 𝑐 to the N-tuples of 
points in three-dimensional space: 𝑞J, 𝑞,,… , 𝑞`, corresponding to the exact 
location of the Bohmian particles. Differently from Forrest’s polywave, in 
Bohm’s theory the multi-field assigns a unique determinate value associated 
to the configuration 𝑞 at any instant of time. Even if we do not know the 
precise location of the particles (but only that they are distributed according 
to the Born rule), this is as a matter of fact an epistemic ignorance and does 
not affect the ontology described so far: even if the actual configuration is 

                                                
26 However, think this is not the kind of discontinuity that should be handled mathematically, 
since the multi-field represents a novel entity with respect to a classical field, one that is 
fundamentally characterized by discontinuity. This fundamental discontinuity is reflected in 
the metaphysical characterization of the multi-field as determinable (sect. 5).  
27 This approach has been proposed in Romano (2021a). Regarding the amplitude and phase 
of the wave function as multi-fields provides physical support to the quantum potential 𝑄 
and quantum force 𝐹c,  which enters in the definition of the quantum Newton’s law: 𝐹d +
𝐹c = 𝑚�̈�. In fact, the quantum force is generated by the quantum potential: 𝐹c = −∇𝑄 

and the latter is generated by the amplitude of the wave function: 𝑄 = − ℏh

,$
∇hi
i

.  
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epistemically unknown, still the Bohmian particles have an exact location in 
3D space, so the ontology of the multi-field is unambiguously determinate. 

The multi-field can be regarded as a generalization of a classical field.28 
Whereas a classical field assigns a specific value to each point of 3D space, 
the multi-field assigns a non-local value to N-tuples of points of 3D space. I 
say “non-local” as the specific value assigned at one point (corresponding to 
the exact location of one particle of the configuration) depends non-locally 
(i.e. simultaneously at a distance) on the exact location of all the other 
particles of the configuration. It remains a problem, however: the multi-field 
does not specify any determinate value to the empty points, i.e. all points in 
the domain of the wave function that are not occupied by the Bohmian 
particles. This raises a prompt objection: how do we know that the multi-field 
includes also the empty points (i.e. that is an entity distributed in space rather 
than a relation between N points) if the latter are not associated to any 
determinate value? In order to solve this problem, I propose the following 
hypothesis: the multi-field is a determinable representing metaphysical, 
object-level, indeterminacy (QI). The multi-field represents an indeterminate 
state of affairs (Wilson 2013), yet it is ontologically as real as a classical field 
or a classical point-particle. Before expanding on this point, we introduce in 
the next section the determinable-determinate account and its link with 
metaphysical indeterminacy. 

4. Metaphysical indeterminacy 

Metaphysical indeterminacy (MI) is the idea that there is a state of affair of 
the world that is indeterminate and that such indeterminacy is intrinsic of the 
world itself. Such indeterminacy is therefore different from epistemic 
indeterminacy (coming from the lack of knowledge) or semantic 
indeterminacy (coming from vagueness or ambiguity of language). We may 
say: semantic indeterminacy comes from an imperfect correlation between 
the language and a determinate world, epistemic indeterminacy comes from 
an incomplete knowledge of the determinate world, metaphysical 
indeterminacy is the acknowledgment that the world itself is indeterminate. 
Metaphysical indeterminacy divides into two main accounts: meta-level and 
object-level MI (Wilson 2013). The former is represented by metaphysical 
supervaluationism (Barnes 2010; Barnes & Williamson 2011); the latter by 
                                                
28 The multi-field as determinable is a novel physical entity with respect to a classical field 
in the same manner as the classical field is a novel physical entity with respect to the 
Newtonian force.  
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the determinable-based or determinable-determinate account (Wilson 2013, 
2017). Following Wilson (2013) and Calosi & Mariani (2021), the difference 
between these two accounts of metaphysical indeterminacy is that: 

[A]ccording to the former [metaphysical supervaluationism] it is indeterminate 
which determinate state of affairs obtains (SOA), whereas according to the latter 
[determinable-based account] it is determinate that an indeterminate SOA obtains. 
[Calosi & Mariani (2021: 8)] 

4.1 Supervaluationism 

Metaphysical supervaluationism can be roughly summarized by the 
following quote by Barnes (2010: 622): 

It’s perfectly determinate that everything is precise, but [...] it’s indeterminate which 
precise way things are. 

Calosi & Mariani (2021: 9) describe how supervaluationism can be applied 
to quantum mechanics, in particular how a superposition state can be 
described using supervaluationism: 
 

In general, consider a system S in state |𝜔⟩ = 𝑐J|𝜓⟩ + 𝑐,|𝜙⟩. There is MI because 
there are two admissible precisifications, the SOA that 𝜓 and that 𝜙 respectively, 
and it is indeterminate which one is the case. That is, superposition indeterminacy 
boils down to indeterminacy about which term of the superposition obtains. 

 
However, we can safely dismiss supervaluationism from our analysis for two 
reasons. First, supervaluationism does not seem to capture the characteristics 
of quantum mechanics. A superposition state is not a state in which the two 
eigenstates (precisifications, in this case) are determinate but we do not know 
which one obtains. This description does not capture the essence of a quantum 
superposition, in which all eigenstates (in the case above: |𝜓⟩ and |𝜙⟩) concur 
to the description of the behavior of the system, represented by the state vector 
|𝜔⟩ with different probability associated to each state (given by the absolute 
square of the associated coefficient). A state of affairs in which all the 
eigenstates of a superposition are equally determinate, as proposed by 
supervaluationism, would fail to generate the typical quantum interference 
that we observe in quantum experiments. For example, in the double-slit 
experiment with electrons or photons, the interference pattern that is 
progressively generated on the screen can be accounted for only considering 
constructive and destructive interferences between the two components 
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between the slits and the screen, and the latter can be accounted for only 
considering different amplitudes between the interfering components. This 
tension is reported in Calosi & Mariani (2021: footnote 17): “we should note 
that the straightforward application raises questions on how to understand the 
coefficient 𝑐J and 𝑐, in the quantum state”.  

Furthermore, supervaluationism so defined seems to collapse into 
epistemic indeterminacy. If the world is totally precise and composed of 
multiple determinates, then it is just a matter of convention or lack of 
knowledge which one of these determinates represents the actual world. For 
example, this is how Darby (2010: 235) applies metaphysical 
supervaluationism to the Schrödinger’s cat paradox:29 
 

[There is] a suggestive parallel between the terms in the superposition and the idea 
[...] of precisifications. One of the terms in the superposition [...] is a term where the 
cat is alive, the other is not; that is reminiscent of multiple ways of drawing the 
extension of ‘alive’, on some of which ‘the cat is alive’ comes out true, on some, 
false. 

 
We see that this description does not seem to capture the essential features of 
the paradox: the cat in the box (before a measurement is performed) is in a 
quantum superposition of being alive and dead, as the cat is in an entangled 
state with the radioactive material in the box, which is represented by a 
coherent superposition of two definite states, being decayed and not decayed 
(more precisely, the radioactive material is represented, in general, by a 
decreasing exponential function that describes the probability amplitude of 
the radioactive decay as a function of time). According to SQM the result of 
a measurement on the state of the cat will describe a determinate state of 
affair, but such determinate SOA cannot be ascribed to the eigenstates 
associated to the cat in the box before a measurement is performed. If 
supervaluationism does that, then it would be in conflict with standard 
quantum mechanics. A more promising approach is the determinable-based 
account introduced in the next section.      

4.2 Determinable-based account 

The determinable-based account of MI or determinable-determinate account 
has been introduced by Wilson (2013, 2017) and later applied to quantum 
indeterminacy (e.g. Wolff (2015); Calosi & Wilson (2018); Calosi & Mariani 

                                                
29 The quote is reported in Calosi & Mariani (2021: 8-9).  
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(2021); Fletcher & Taylor (2024)). The basic idea is that a state of affair is 
described by a property or an object represented by a determinable and a 
determinate, the two standing in a specific property-type relation. The 
determinable is more general and accounts for a spectrum of possible 
determinates, the determinate is a specific instance or realization or 
actualization of the determinable. This is, for example, how Wilson (2017) 
presents the determinable-determinate account: 
 

Determinables and determinates are in the first instance type-level properties that 
stand in a distinctive specification relation: the “determinable–determinate” relation 
(for short, “determination”). For example, color is a determinable having red, blue, 
and other specific shades of color as determinates; shape is a determinable having 
rectangular, oval, and other specific (including many irregular) shapes as 
determinates; mass is a determinable having specific mass values as determinates. 

 
We can report the cited examples of determinable-determinate relations in the 
following table (4.1): 

Determinables Determinates 
Color Red, blue, green, … 
Shape  Rectangular, oval, … 
Mass Mass values 𝑚J, 𝑚,,…  

   Table 4.1 

As reported in the quote above by Wilson, a standard example of 
determinable-determinate relation concerns the property of color. By saying 
that an object is “colored” we specify a determinable: a property (the property 
of being colored) to which may correspond many specific instances (the 
spectrum of determinate colors). If we say that a certain (colored) object is 
“red” we specify a determinate (a specific, determinate color) for the given 
determinable (being colored). The determinable account is pyramidal: “red” 
is a determinate with respect to the determinable “being colored” but is a 
determinable with respect to different shades of red, such as “scarlet” or 
“vermillion”.  

Note that in all these examples the determinable does not exist 
independently from the determinate: it does not exist in the world a colored 
object without a specific color, or a shaped object without a determinate 
(regular or irregular) shape. We anticipate that the multi-field is a 
determinable of a different type: it is a determinable object which exists 
independently of its determinate. This is valid for the multi-field account 
presented here as well as for any application of the determinable-based 
account to quantum indeterminacy (e.g. Calosi & Wilson (2018)).   
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In physics, the determinable-based account has been applied to classical 
properties such as mass (of a classical system) and to quantum properties such 
as the position (Bokulich (2014)) and spin (Wolff (2015)) of a quantum 
system. There is however an important difference between the classical and 
quantum case. In the classical case, the determinable property is always 
accompanied by a determinate. Consider, for example, the mass of a table. 
We may say that the mass as determinable is the general property of a 
classical object (a table in this case) of having a mass. However, it does not 
exist a classical object that has a mass without having a specific mass value. 
That is, in classical physics, the determinable (e.g. the mass property) is 
always accompanied by a determinate (a specific mass value). Same for 
colors or shapes: it does not exist a colored object without a specific color, or 
a shaped object without a specific shape.  

This is not the kind of relation between determinable and determinate 
that we find in quantum mechanics. A quantum system that is in a 
superposition of eigenstates with respect to a certain observable does not have 
a specific value for that observable (before a measurement is performed). The 
observable in quantum mechanics can thus be represented by a determinable 
without a determinate. Two standard examples concern the position and the 
spin of a quantum system. Consider a 1-particle system represented by a plane 
wave: 

 

𝜓(𝑥) = 𝐴𝑒
[
ℏl]                         (4.2.1) 

 
where 𝐴 is a normalization constant and 𝑝 the momentum eigenvalue. This 
state indicates an equal probability distribution to find the particle in any point 
of the space in a position measurement: 

 
𝑃] = |𝜓(𝑥)|, = |𝐴|,              (4.2.2) 

 
Until a measurement is performed, the particle does not have an exact position 
in space, that is, the observable “position” has a determinable without a 
determinate. The example of plane wave is summarized by Bokulich (2014: 
467) as follows: 
 

In quantum theory it is more typically the case that the degree to which the particle’s 
momentum is specified allows us to say, for example, that the particles is located 
somewhere in this room, although it is not possible to say that is located in any 
particular point in the room. In other words, while it makes sense to talk about the 
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particle having the property of position (that is to say the particles are in the room), 
that property cannot be ascribed a definite (precise) value.  

 
To be precise, in standard quantum mechanics we cannot say that the particle 
“is located somewhere” before the measurement is performed, as this would 
imply an epistemic interpretation of quantum probabilities, which is in 
conflict with the standard interpretation. It would be more correct to say that 
the particle is located nowhere before the measurement. Consequently, in the 
determinable-based account of MI, a quantum system (in SQM) never has a 
determinate position if not in the precise instant of a position measurement.30       

The example of spin as determinable is analyzed by Wolff (2015). The 
spin case is different from the position case as the latter is a scalar quantity 
while the former is a vectorial quantity. For this reason, the spin operator is 
always defined along a given direction, so we have three different operators: 
𝑆1], 𝑆1n, 𝑆1o, which represent the spin operator, respectively, along the 𝑥 −, 𝑦 − 
and 𝑧 − axis. Consider a J

,
−spin particle (e.g. an electron): this particle has 

two possible eigenvalues or the spin =+J
,
; − J

,
@, respectively associated to the 

eigenstates “spin-up” | ↑⟩ and “spin-down” | ↓⟩. As the three operators 
𝑆1], 𝑆1n, 𝑆1o are mutually incompatible (so it does not exist a state that is an 
eigenstate simultaneously of two of these operators), when the electron has a 
determinate spin along a given direction, the spin along a different direction 
is represented by a superposition of two eigenstates and thus is not 
determinate.  

From this analysis Wolff suggests that we must associate a determinable 
to each individual operator 𝑆1], 𝑆1n, 𝑆1o and not to the spin property tout court. 
Furthermore, Wolff notes that while the determinable-based account 
describes well the relation between the spin property and the spin value along 
a given direction, it does not explain why the operators 𝑆1], 𝑆1n, 𝑆1o are mutually 
incompatible, i.e. it does not explain why certain sets of determinables cannot 
have joint determinates (the same conclusion applies to all sets of non-
commuting observables, such as e.g. position and momentum). 

 Finally, Wolff analyzes three approaches to correlate the spin as a 
determinable with metaphysical indeterminacy. The first is the one proposed 
by Funkhouser (2006: 566), according to which: “an amendment for the 

                                                
30 The situation is even more tricky: position eigenstates are represented in SQM by Dirac 
delta functions, which are not solutions of the Schrödinger’s equation. In practice, a quantum 
system is considered fairly localized in position when it is represented by a Gaussian or a 
well-localized state.  
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quantum level might be that every object instantiating a determinable also 
instantiates certain determinates to certain probabilities.”31 This approach 
however does not work in the case of spin: the determinate (“spin up” or “spin 
down”) is always a well-defined value, while probabilities are associated to 
uncertainty about the specific measurement result, as reported by Wolff 
(2015: 384): 
 

[w]hat exactly the probabilities denote is of course controversial, but minimally they 
simply state the likelihood of finding a particle with spin value “up” and “down” 
respectively in a given direction. By adding in the probabilities, we simply seem to 
acknowledge the indeterminacy of the spin state, we don’t eliminate it.  

 
The second and third approaches are instead those proposed by Wilson 
(2013): we can think of a determinable as corresponding to the instantiation 
of multiple determinates (“glutty” MI) or to the instantiation of none of the 
determinates (“gappy” MI). In the first case, we should think of the different 
directions of the spin as different but complementary perspectives. The 
classical example is the iridescent feather where multiple determinates colors 
are realized with respect to different perspectives. In the case of the electron 
spin:  
 

[T]his would mean that we treat the determinate outcomes of spin measurement in 
different directions as different perspectives. Depending on which measurement we 
carry out, i.e. how we orient our Stern-Gerlach device, we will get a determinate z-
spin up, say, or a determinate y-spin down, but it would be misleading to suggest 
that the electron only has a determinate z-spin or only a determinate y-spin. It is just 
that from the perspective (read: measurement) we have chosen, this is the 
determinate which is realized in our perspective. [Wolff (2015: 384)]  

 
This approach also encounters a number of convincing objections. First, it 
looks very closely to an epistemic reading of quantum uncertainty, 
furthermore there is a difference between multiple determinates of the same 
determinable (e.g. spin up and spin down along 𝑥 −direction) and multiple 
determinates associated to different determinables (e.g. spin up and spin 
down along the 𝑦 −direction for the state | ↑⟩o) that does not seem to be 
correctly described by this approach. Building on this analysis, Wolff 
concludes (convincingly, in my opinion) that the approach considering 
“gappy” MI is the best one of the three: 
 

                                                
31 The quote is reported in Wolff (2015, p. 383).  
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Of the three answers to the question of indeterminacy, then, the third seems to be 
the most promising. It is also the most radical revision of the 
determinables/determinate distinction, since it requires the instantiation of 
determinables without determinates. If that is to be possible, determinables have to 
be accepted into the ontology on equal footing with determinates.32 [Wolff 2015, p. 
385] 

 
This is very close to the idea proposed here and developed in the next section 
to characterize the multi-field as a novel physical object. This idea imposes a 
radical revision of the current ontology, but one that (likely) offers more 
clarity in the interpretation of quantum indeterminacy and, in general, in the 
interpretation of the quantum ontology. We note that applying the 
determinable-based account to the multi-field is a step further with respect to 
applying it to spin or position in SQM, as the multi-field is not a property of 
the system but (part of) the system itself in the de Broglie-Bohm theory. 
Under this novel approach, the determinable does not describe the properties 
of a system but the system itself: the wave function is interpreted as a multi-
field and the system, represented by the wave function (and by the particles’ 
configuration) is itself interpreted as a determinable, that is, as a new kind of 
object. In the next section we will expand on this point and characterize more 
precisely the multi-field as a determinable.  

5. The multi-field as a determinable 

The hypothesis presented here is that the wave function is the mathematical 
representation of a new physical entity, a multi-field,33 which can be 
metaphysically characterized as a determinable, i.e. an object defined by 
properties without a determinate value. The multi-field is actually more 
complex than the determinable usually presented in the literature, as it assigns 
a determinate (a specific and unique complex value) to the N-tuple of points 

                                                
32 Wolff also reports some reservation on this kind of approach, as it requires a radical 
revision of the current ontology: “It is not obvious that this is a price worth paying, given 
how little the application of the determinables model seems to contribute to our 
understanding of quantum indeterminacy.” (Wolff 2015, p. 385).  
33 The name “multi-field” is correct insofar we intend it as a true generalization of a classical 
field. This generalization is fully captured by the determinable-determinate account and 
provides an example of quantum indeterminacy. We note that the quantum indeterminacy 
introduced by the multi-field characterizes the entity itself, not the properties of the system. 
A Bohmian system has a definite position (specified by the actual configuration), a precise 
velocity (specified by the guiding equation), a precise acceleration (specified by the quantum 
Newton’s law), yet the multi-field values at the empty points have an indeterminate value.  
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corresponding to the actual configuration of the Bohmian particles (𝑥s = 𝑞s) 
and a determinable without a determinate to all the other points 𝑥s ≠ 𝑞s. 
Following the determinable-based account of MI, the multi-field so defined 
implies ontological indeterminacy, i.e. it describes an indeterminate state of 
affairs in the world:  

 
Here I present an account on which what it is for there to be MI is for it to be 
determinate (or just plain true) that an indeterminate (imprecise) SOA obtains. I 
more specifically suggest that the obtaining of an indeterminate SOA is profitably 
understood in terms of an object’s having, on the one hand, a determinable property, 
but not having, on the other hand, a unique property that is a determinate of that 
determinable.” [Wilson (2013: 360-361)] 

 
Within the region 𝑅 where the multi-field is well-defined (the projection of 
the wave function in 3D space), the determinable property is represented by 
the (complex) values that the multi-field assigns to each point of three-
dimensional space. It is a determinable as (i) the value of each of these points 
(𝑥s ≠ 𝑞s) is not determinate but, at the same time, (ii) a determinate is selected 
for any of these points once a particle is located at that point, i.e. when the 
initially empty point is included in the points corresponding to the actual 
configuration 𝑥s = 𝑞s. In other words, any empty point is characterized by a 
set of possible (potentially infinite) multi-field values. A specific value from 
this set is selected, however, when a particle of the configuration 𝑞 is located 
at that point: the (originally empty) point will be so associated with a 
determinate, unique multi-field value.  

This criterion of selection of the determinate is for some aspects similar 
to the way we select a value for a classical field, but for other aspects very 
different. Consider an electric field 𝐸v⃗ (𝑥, 𝑡) defined in the region Γ. This field 
assigns a specific value to any point 𝑥 ∈ Γ for any instant of time. The way 
we generally define a field value is associated to the indirect effect of the field 
on a charged test particle. For example, if we locate a test particle on the point 
𝑥3 ∈ Γ at time 𝑡 = 𝑡∗, the particle will accelerate under the Lorentz force: 
�⃗�(𝑥3) = 𝑞𝐸v⃗ (𝑥3, 𝑡∗). From the acceleration of the test particle we derive 
indirectly the existence of the electric field 𝐸v⃗ (𝑥, 𝑡) in that region. In the case 
of the multi-field we do not have test particles but we can divide the scheme 
between the wave function 𝜓(𝑥, 𝑡) and the Bohmian particles 𝑞 =
(𝑞J, … , 𝑞`). For simplicity, consider a two-particle state with wave function 
𝜓(𝑥J, 𝑥,, 𝑡) and actual particle configuration 𝑞 = (𝑞J, 𝑞,), defined in a one-
dimensional potential box with length 𝐿. The points where the multi-field as 
determinable is well-defined correspond to the points where the wave 
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function in 3D space is well defined, i.e. to all points: 0 ≤ 𝑥 ≤ 𝐿. Differently 
from the electric field, the multi-field does not assign a specific value to each 
point of the region 0 ≤ 𝑥 ≤ 𝐿, excluding the points (𝑥J = 𝑞J; 𝑥, = 𝑞,). 
Suppose, however, that we want to know the value of the multi-field 
associated to the (originally empty) point 𝑥 = }

,
 . In this case, analogously to 

the case of the test particle, we can derive the (determinate) value of the multi-
field at 𝑥 = }

,
 at the time 𝑡 = 𝑡∗ by assuming to locate (as, in practice, we 

cannot control the position of Bohmian particles) one of the two particles of 
the configuration 𝑞 = (𝑞J, 𝑞,) exactly at the point 𝑥 = }

,
. Suppose that we 

choose particle 1, represented by 𝑞J: we thus consider the system 
𝜓(𝑥J, 𝑥,, 𝑡∗) with particle configuration 𝑞 = =}

,
, 𝑞,@. In this case, the multi-

field will assign the (complex) determinate value: 
 

 𝜓=}
,
, 𝑞,, 𝑡∗@ = 𝑐              (5.1) 

 
to the couple of points =}

,
, 𝑞,@, that is, to the two points corresponding to the 

exact location of the Bohmian particles. We note from this example that the 
value of the multi-field at 𝑞J =

}
,
 is determinate but non-local, as it depends 

on the specific location 𝑞, of the other particle of the actual configuration.    
The analogy here is that, as the test particle proves (indirectly) the 

existence of the electric field by the effect of the field on the particle, in a 
similar manner the effect on the Bohmian particle (the velocity via guiding 
equation or the acceleration via quantum Newton’s law) proves (indirectly) 
the existence of the multi-field. In particular, we can compute the determinate 
multi-field value at any point of the region where the multi-field is well-
defined by locating (hypothetically) a Bohmian particle of the actual 
configuration at that point. This process transforms a determinable (a set of 
infinite possible values) into a determinate (a specific complex value). There 
are, of course, two important differences in the classical and quantum case. 
First, the Bohmian particle is not a test particle. While in the case of the 
electric field we assume to put an external particle (test particle) to evaluate 
the value of the field, in the case of the multi-field we assume to put a particle 
of the actual configuration that composes the Bohmian system. Second, as 
mentioned before, the value of the multi-field at the point 𝑥 = }

,
  depends non-

locally on the value of  𝑞,, i.e. the position of particle 2. At any instant 𝑞, will 
be represented by a specific real number, and overall the multi-field will 



 24 

assign a unique determinate to the couple of points =}
,
, 𝑞,@. Yet, if we change 

the location of the second particle 𝑞, the multi-field value at 𝑞J =
}
,
 will also 

changes, as the multi-field assigns one specific value for the entire 
configuration: 𝜓=}

,
, 𝑞,@ = 𝑐. Differently from the classical case, the 

determinate value of the multi-field at one point depends on the exact location 
of distant particles of the actual configuration. We may say that, differently 
from the classical case, the multi-field assigns a non-local determinate value 
to the N-tuple of points corresponding to the actual configuration of particles: 
(𝑥J = 𝑞J,… 𝑥s = 𝑞s, …𝑥` = 𝑞`). In this way, Bohmian non-locality (and 
quantum non-locality more generally) is implemented in the very definition 
of the multi-field. The multi-field as determinable can be naturally regarded 
as a non-local beable.34   

The multi-field so defined is (plainly) a determinable: it describes an 
indeterminate but objective, ontologically real, state of affairs. This is exactly 
the state of affair associated to a determinable, as reported by Wilson (2013: 
p. 366):   

 
Determinable-based MI: What it is for a state of affairs to be MI in a given respect 
R at a time t is for the state of affairs to constitutively involve an object (more 
generally, entity) O such that (i) O has a determinable property P at t, and (ii) for 
some level L of determination of P, O does not have a unique level-L determinate 
of P at t.  

 
In the multi-field-as-determinable account, the MI state of affair involves the 
object or entity “multi-field” 𝑀 such that (i) 𝑀 has a determinable property 
𝑃 at 𝑡, i.e. the multi-field values that it assigns at any empty point (excluding 
the points  𝑥s = 𝑞s) within the region where the wave function in 3D is well-
defined and (ii) for any point 𝑥s ≠ 𝑞s, 𝑀 does not have a unique determinate 
of 𝑃 at 𝑡. There are two levels 𝐿 of determination: 𝐿J, 𝐿,. The first corresponds 
to the empty points within the multi-field region: 𝐿J(𝑥s ≠ 𝑞s), the second to 
the points of the actual configuration 𝐿,(𝑥s = 𝑞s) For the level of 
determination 𝐿J there is no unique determinate of 𝑃: any point is associated 
with a set of possible multi-field values. For the level of determination 𝐿, 
there is instead a unique determinate: a specific complex value assigned to 
the N-tuple of points corresponding to the actual configuration (𝑥J =
𝑞J, … , 𝑥` = 𝑞`).  

                                                
34 On this point see also Hubert & Romano (2018, sect. 5).  
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The metaphysical indeterminacy implied by the determinable-based 
account can be characterized even more precisely. In fact, there are two ways 
in which a determinable can fail to have a unique determinate: either it has 
none, or it has more than one. The former case is termed “gappy” MI, the 
latter “glutty” MI. A standard definition is given in Calosi (2021: 11305): 

 
According to the Determinable Based Account (DBA) of metaphysical 
indeterminacy (MI), there is MI when there is an indeterminate state of affairs, 
roughly a state of affairs in which a constituent object x has a determinable property 
but fails to have a unique determinate of that determinable. There are different ways 
in which x might have a determinable but no unique determinate: x has no 
determinate—gappy MI, or x has more than one determinate—glutty MI. 

 
The multi-field as determinable is a case of gappy metaphysical 
indeterminacy, as the determinable 𝑃 fails to assign a determinate value at 
any point 𝑥s ≠ 𝑞s. In conclusion, the multi-field as determinable is defined as 
a distribution of determinable-property 𝑃, that is, a set of possible complex 
values for each point within the region of 3D where the wave function is well-
defined. At any empty point (𝑥s ≠ 𝑞s) corresponds a determinable without a 
determinate, however the point takes a determinate as soon as it is occupied 
by a particle (𝑥s = 𝑞s). The specific value at that point will depend not only 
on the wave function but also on the exact location of distant particles that 
compose the actual configuration, so defining a non-local determinate.  

6.  Some remarks on the ontology of the multi-field and Bohm’s theory   

In this final section, I present some remarks on the metaphysics of the multi-
field as determinable in connection with relevant features of Bohm’s theory, 
in particular with the nature of non-locality, the guiding equation and the 
quantum equilibrium. These remarks are not intended to be complete, but they 
want to offer a suggestion on the metaphysical import of the multi-field view 
within the ontology of Bohm’s theory.35   

 

                                                
35 Thanks to an anonymous reviewer for inviting me to clarify these points concerning 
Bohmian non-locality, the guiding equation and the Born’s probabilistic distribution in the 
multi-field-as-determinable view.  
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6.1 Multi-field as determinable and non-locality 

From the discussion above, we notice that the multi-field as determinable 
implements Bohmian (and in general quantum) non-locality quite naturally, 
as the determinate depends at the same time on the precise location of all the 
Bohmian particles. Changing the position of one particle of the configuration 
instantaneously changes the determinate value that the multi-field assigns at 
that configuration. As suggested above, we can say that the determinate is 
non-local, according to this description. Consequently, the multi-field as 
determinable view accounts for the non-local correlations between distant 
particles (for N-particle entangled states) since the determinate value of the 
multi-fields depends instantaneously on the exact position of all the Bohmian 
particles of the configuration, no matter how distant they are. The Bohmian 
particles follow the actual trajectories guided by the guiding equation, but 
even when these particles are at space-like distance, the determinate value of 
the multi-field at a given time will depend on the exact location of the 
particles at that time. This is the way in which the multi-field accommodates 
the experimental violation of Bell’s inequalities: the determinate cannot be 
locally defined, its value will be defined at any instant only by the actual 
configuration of the Bohmian particles, independently from the distance 
between the particles. For example, given a 2-particle entangled state: 

 
𝜓(𝑥J, 𝑥,) = 𝑐J𝜓J(𝑥J)𝜓,(𝑥,) + 𝑐,𝜓,(𝑥J)𝜓J(𝑥,)            (6.1.1) 

 
with actual configuration 𝑞 = (𝑞J, 𝑞,), when the entangled state describes a 
macroscopic superposition, e.g. when the two components  𝜓J(𝑥J)𝜓,(𝑥,) 
and 𝜓,(𝑥J)𝜓J(𝑥,) are at a macroscopic distance with each other (this is also 
the case of space-like separated components) the Bohmian particles (𝑞J, 𝑞,) 
will enter only one of the two components, giving rise to the effective 
factorization.36 As a result, we have two possible cases:  

 

                                                
36 The process of effective factorization or effective collapse has been originally introduced 
in Bohm & Hiley (1987). In short, the effective factorization is the process that originates 
effective wave functions from larger entangled states when the latter describe macroscopic 
superpositions. This is the Bohmian equivalent of the branching process in Many Worlds 
Interpretation. Note that the formation of effective wave functions (EWFs) is independent 
from the interaction with the measuring apparatus. For example: in Bohm’s theory, the 
entanglement between the system and the external environment produces EWFs (see e.g. 
Romano 2023). The formation of EWFs is the physical basis of decoherence in Bohm’s 
theory.   



 

 27 

1.  𝜓J(𝑞J)𝜓,(𝑞,) with probability 𝑃 = |𝑐J|,                    (6.1.2) 
2.  𝜓,(𝑞J)𝜓J(𝑞,) with probability 𝑃 = |𝑐,|,                    (6.1.3) 

 
Repeating the experiment several times, this will result in the usual non-local 
correlations described by Bell’s theorem. Note that every time the multi-field 
will have a determinate value described by 𝜓J(𝑞J)𝜓,(𝑞,) or 𝜓,(𝑞J)𝜓J(𝑞,).  

6.2 Multi-field and the guiding equation  

It must be noticed that, even though the multi-field assigns indeterminate 
values to most points of the wave function, the velocity of the Bohmian 
particles, described by the guiding equation, is defined for the N-tuples of 
points corresponding to the actual location of the Bohmian particles. And for 
these points the multi-field assigns a determinate. For the empty points 
(corresponding to indeterminate values of the multi-field) the guiding 
equation can still be defined, but it does not correspond to a real velocity of 
the particles. In other words, the guiding equation defines a velocity field for 
all points of the wave function, but the actual velocity of the particles is 
defined only for the points occupied by the particles. For these points the 
multi-field has a determinate. This grounds an ontological correspondence 
between the multi-field as determinate and the real velocity of the particles. 
The particles’ velocity is always defined at their actual location, and the actual 
location of the particles correspond to the N-tuple of points for which the 
multi-field assigns a determinate. 

6.3 Determinate and indeterminate knowledge 

From the ontological point of view, the multi-field assigns a unique 
determinate at any instant. The determinate is assigned at the N-tuple of 
points where the Bohmian particles are located. However, from the epistemic 
point of view, the exact position of the Bohmian particles is unknown and 
statistically distributed according to: ρ(q) = |𝜓(𝑞, 𝑡)|,. Consequently, the 
maximum knowledge we can have of the determinate value of the multi-field 
will be also statistically distributed according to the Born’s rule. The fact that 
we do not know epistemically the exact configuration at a given instant, 
however, is not relevant for the ontology of the multi-field: independently 
from our knowledge, the state of affair (metaphysically speaking) is 
determinate: there is a unique location of the particles at every instant, which 
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corresponds to a unique determinate of the multi-field and many (potentially 
infinite) indeterminate values for the unoccupied points. To this regard, the 
multi-field does not pretend to explain why the Bohmian particles are 
statistically distributed according to the Born’s rule, or why this statistical 
distribution represents an ultimate epistemic constraint. This is an assumption 
that we have to maintain in the multi-field account, as it happens in all other 
metaphysical interpretations of the wave function in Bohm’s theory, such as 
the nomological and the realist interpretation in configuration space.  

7. Conclusions 

The multi-field can be characterized as a determinable, as it assigns to each 
point of 3D space a set of possible, potentially infinite, complex values and a 
determinate to the N-tuples of points which correspond to the exact location 
of the Bohmian particles. The multi-field so defined is a case of “gappy” 
metaphysical indeterminacy: it describes an indeterminate state of affairs in 
which a determinable property is instantiated by a set of possible 
determinates. The determinate specified by the multi-field is non-local, as it 
depends from the actual position of the Bohmian particles composing the 
system. Under this approach, the pilot-wave of the de Broglie--Bohm’s theory 
becomes an object less concrete and more abstract than a classical wave, but 
one that guides physically the particles in 3D space.  
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