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Abstract

We re-examine the old question to what extent mathematics may be compared with a game.
Mainly inspired by Hilbert and Wittgenstein, our answer is that mathematics is something
like a “rhododendron of language games”, where the rules are inferential. The pure side of
mathematics is essentially formalist, where we propose that truth is not carried by theorems
corresponding to whatever independent reality and arrived at through proof, but is defined by
correctness of rule-following (and as such is objective given these rules). Godel’s theorems,
which are often seen as a threat to formalist philosophies of mathematics, actually strengthen
our concept of truth. The applied side of mathematics arises from two practices: first, the
dual nature of axiomatization as faking from heuristic practices like physics and informal
mathematics whilst giving proofs and logical analysis; and second, the ability of using the
inferential role of theorems to make “surrogative” inferences about natural phenomena. Our
framework is pluralist, combining various (non-referential) philosophies of mathematics.
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1 Introduction

The aim of this paper is to re-examine the old question to what extent mathematics may be com-
pared with a game (like chess) It is no accident that the idea of such a comparison originated
in the late nineteenth century, since that was the time of the “modernist transformation” in which
mathematics lost its connection with physical reality and visualizability, which were replaced by
abstraction and rigorous proofE] Indeed, serious analysis of the analogy between mathematics
and games like chess started with Frege’s criticisms of Thomae (1898), Heine (1872) and Illi-
gens (1893)E] Frege rejected the analogy; he was primarily unable to comprehend how a mere
game could describe any “thought”f_fl and his secondary, more specific reasons for disapproving
of the analogy reduce to this idiosyncratic inability (see §2]below). Frege’s discussion remains of
considerable interest for the general philosophy of mathematics, whose questions concernﬂ

1. Ontology: What is mathematics about?ﬁ] What (and where) are mathematical objects?
2. Truth: What is the nature of mathematical truth?

3. Epistemology: How can we know about mathematics? Do we discover or invent it?
4. Applicability: What makes applied mathematics possible?

We cannot even begin to summarize the huge literature about these questions, which go back to
Plato and Aristotle. But there is one position—incorporating all kinds of platonism and other forms
of realism—we would like to highlight as a foil, since it seems to be very widely shared among
both “working mathematicians” and philosophers. Here is a typical expressions of it by Hardyﬂ

‘It seems to me that no philosophy can possibly be sympathetic to a mathematician which
does not admit, in one manner or another, the immutable and unconditional validity of math-
ematical truth. Mathematical theorems are true or false; their truth or falsity is absolute and

I'The review by Epple (1994) provides an excellent historical and philosophical introduction to this question; see
also Detlefsen (2005) and Weir (2022). We will not discuss the the mathematics of games, cf. du Sautoy (2023).

2See, for example, Mehrtens (1990) and Gray (2008).

3See Frege (1903), §§86-137, translated in Geach and Black (1960).

4This was the central ingredient of his philosophy of both mathematics and language. The word ‘thought’
(Gedanke) is ambiguous in both English and German. Frege (1892) clarifies that for him, thoughts do not refer to
the subjective act of thinking, but to the objective content thereof, and thus are possible truth carriers. Frege (1918)
moves to an uncompromising platonism, e.g., ‘Without wishing to give a definition, I call a thought something for
which the question of truth arises. (...) A thought is something immaterial and everything material and perceptible is
excluded from this sphere of that for which the question of truth arises.” (Frege, 1918, p. 292). He even uses the (no
longer usable) term ‘dritte Reich’ (best translated as: third Realm) as the sphere beyond the material and perceptible.

SFor a somewhat different list see Linnebo (2017), §1.1. See also Tait (2001).

6 Anticipating a Wittgensteinian setting, a more precise form of this question would be: are mathematical objects
given in advance?, where we adopt the following definition: ‘An object is given in advance iff the criteria of identity
for the object which the language game is about are not completely stated or presented by the language game itself;
and it is not given in advance iff the criteria of identity for the object are completely stated or presented in the language
game — [so] that this identity is given by the language game alone and by nothing else.” (Miihlholzer, 2012, p. 114).

7See also Hardy (1940), pp. 63—64, or more recently: “The assumption that an arithmetical statement is true is not
an assumption about what can be proved in any formal system, or about what can be “seen to be true,” and nor is it an
assumption presupposing any dubious metaphysics. Rather, the assumption that Goldbach’s conjecture is true is exactly
equivalent to the assumption that every even number greater than 2 is the sum of two primes. Similarly, the assumption
that the twin prime conjecture is true means no more and no less than the assumption that there are infinitely many
primes p such that p + 2 is also a prime, and so on. In other words “the twin prime conjecture is true” is simply another
way of saying exactly what the twin prime conjecture says. It is a mathematical statement, not a statement about what
can be known or proved, or about any relation between language and a mathematical reality.” (Franzén, 2005, p. 30)



independent of our knowledge of them. In some sense, mathematical truth is part of objec-
tive reality. “Any number is the sum of 4 squares”; “any number is the sum of 3 squares”;
“any even number is the sum of 2 primes”. These are not convenient working hypotheses,
or half-truths about the Absolute, or collections of marks on paper, or classes of noises sum-
marising reactions of laryngeal glands. They are, in one sense or another, however elusive
and sophisticated that sense may be, theorems concerning reality, of which the first is true,
the second is false, and the third is either true or false, though which we do not know. They
are not creations of our minds; Lagrange discovered the first in 1774; when he discovered it
he discovered some- thing; and to that something Lagrange, and the year 1774, are equally

indifferent.” (Hardy, 1929, p. 4).

This belief that any proposition about at least natural numbers is either true or false full stop,
i.e., irrespective of axioms, deductions, etc., has been called arithmetical determinacy (Warren,
2020) or truth-completeness of arithmetic (Paseau and Pregel, 2023). The latter also call it a
‘fundamental commitment of mathematics’. It is debatable whether this commitment applies just
to arithmetic or to further or even all parts of mathematics (as suggested by Hardy’s introductory
prose but not by his examples); but this difference is irrelevant to us, since we reject it even in
its—most basic and most convincing— arithmetical form. As we will explain, this rejection and the
alternative view we replace it by are a direct consequence of our analysis of the title question,
which we initially follow up through Frege and his great adversaries Hilbert and Wittgenstein.
Via this route we arrive at an answer to the effect that although comparing mathematics to a
game is far too simple, it may be favourably compared with a certain combination of language
games whose rules are inferential and whose interlocking is well described by a rhododendron,
having both multiple roots and branches At its roots one finds foundational theories or overall
formal and logical frameworks for mathematics like ZFC set theory, as well as its serious com-
petitorsﬂ Each of these roots branches out into one or even various forms of metamathematics, as
well as into (typically interwoven) individual areas of mathematics (like number theory or group
theory), which in turn brach out into increasingly specialized areas thereof (like algebraic number
theory or Lie groups). Within all of these areas (as well as within the foundational theories at
the bottom) one has a language game of pure mathematics with its formalized proofs; in many of
them, one has a second language game of applied mathematics (including mathematical physics).
Our picture is pluralist and provides a coat rack onto which various (originally partly hostile)
philosophies of mathematics may be attached and may even peacefully support each other, e.g.:

» Formalism, and its close relatives deductivism and coventionalism as the language game
governing pure mathematics grounded in proofs and defining the meaning of truth.

* Intuitionism comes in twice: (i) as one of the possible language games giving a founda-
tion of pure mathematics; and (ii): even if the latter is classical, as a possible logic of the
metamathematics used to analyze the framework (and similarly for finitism, as Hilbert tried).

* Inferentialism also enters twice: first, in pure mathematics as the source of its convention-
alism, and second, in applied mathematics through its use in the concept of surrogative
inference in relating mathematical models to empirical phenomena (see below).

One advantage of our approach is that it describes both the practice and the results of mathematics.
For example, each step in a proof is seen as a move in a specific language game, which is a practice:
the final score of the game is the result. For this reason we also incorporate the philosophy of

8See for the connection of this idea with Wittgenstein’s famous ‘motley’ of language games.
9Their axioms are what Feferman (1999) calls foundational. The others are structural. See also Schlimm (2013).



mathematical practice, which aligns with our aim (which was also Wittgenstein’s) to describe
mathematics as it is, seeing it as a human practice grounded in historym More generally, rather
than contradicting each other all these philosophies in fact complement and reinforce each other

As an introduction to our proposal, let us summarize our answers to the four questions above.

1. Ontology. We follow Wittgenstein in warning against the confusion that mathematical ex-
pressions are (primarily) referential (see §2)). Numerous problems are created by assuming
the ethereal “existence” of mathematical objects (not just in the Platonic sense). The things
mathematics falks about are similar to chess pieces, whose physical or spiritual embodiment
is irrelevant. Yet mathematics is not about these pieces themselves in whatever incarnation.
It is about the rules they are subject to, and their consequences. As we see it, this makes
mathematics intersubjective on the verge of objectivity in the following sense

The constitutive property of mathematical items is not existence, but identity. (...) Itis
painful to abandon the age-old prejudice that identity must presuppose existence. The
permanence of the identity of a mathematical item through space and history, and across
civilizations, is an extraordinary phenomenon for which there is no easy explanation,
and which is shared by few objects of the world. (Rota, 2000, pp. 93)

Husserl (1954) explained an interesting aspect of this permanence, which we endorse. His-
torically, mathematics originated in experience and applications, but subsequently under-
went a process of ‘idealization’, in that for example mathematicians idealize different draw-
ings of a circle into identical circles. After this first step of ‘idealization’ (which is rel-
evant in the specific context of Euclidean geometry that he discusses but can be replaced
by formalizing any piece of would-be mathematics), the ‘objectification’ or ‘permanence’
(Immerfort-Sein) inherent in the concept of ‘identity’ takes place within humanity seen as an
‘emphatic and linguistic community’ (Einfiihlungs- und Sprachgemeinschaft) or ‘communi-
cation community’ (Mitteilungsgemeinschaft). Permanence then arises via written or other
communication, followed by ‘reactivation’ (Reaktivierung). This seems a valid description
of the sense in which both pure mathematics and (tournament) chess are sharedE]

2. Truth. Theorems lack essential properties of things that have a truth value. What may be true
(or a matter of fact) is the claim that some sentence is a theorem within a specific formal
system: it is not the content of a theorem that is true but its “theoremhood” (i.e., that the
result follows from the premisses according to the rules; that the game has correctly been
played). Although this kind of truth is remote from the Platonist one, it shares the advantage
that we should all agree about it: even Brouwer should admit that Hilbert’s theorems are
correct by his own standards, and vice versa. We extensively argue this point in §4]

3. Epistemology. We know about mathematical items because we invented them. If mathemat-
ics is primarily seen as a human practice, the epistemological question hardly arises. For
example, if one believes with Russell that (mathematical) logic reveals the logical structure
of reality, the question is how we know this structure. For us, any kind of logic is an in-
ferential language game invented by logicians on the basis of studying actual and practical

10For introductions to the philosophy of mathematical practice we refer to e.g. Mancosu (2008), Hamami & Morris
(2020). Pérez-Escobar (2022) argues that this philosophy resonates well with the later Wittgenstein.

'n his dispute with Brouwer, Hilbert came to see this at least for the first and the second points (Mancosu, 1998).

12Rota, a mathematician, here summarizes a key element of Husserl’s philosophy of mathematics as he saw it
shortly before his death in 1999, after 40 years of study. An important primary source is Husserl (1954). From the vast
secondary literature we just refer to Hacking (2009) for the work just cited, and to Hartimo (2021) more generally.

13Dawkins’s well-known concept of a meme also seems to describe the nature of mathematics as we just described.



linguistic and mathematical reasoning, which may subsequently be studied by itself, or may
be held against language or mathematics as an object of comparison, perhaps even in a nor-
mative way (as in prescribing rules of proof) The epistemology of this is unproblematic.

4. Applicability. Though sometimes ignored, this is one of the “hard problems” of philosophy:

To an unappreciated degree, the history of Western Philosophy is the history of attempts
to understand why mathematics is applicable to Nature, despite apparently good reasons
to believe that it should not be. (Steiner, 2005, p. 625)

For us, the main problem is to match our non-referential account of pure mathematics with
its apparent representational role in describing the natural world. Our answer will be pre-
sented in historical and philosophical detail in successor papers (Landsman, 2025ab)E]

We elaborate our proposal in three sections. In §2]we summarize Frege’s objections to the anal-
ogy between mathematics and games, and introduce our main protagonists Hilbert and Wittgen-
stein through their replies to Frege, followed by a summary of (late) Wittgenstein, including the
Brandomian turn to inferential rule-following, and a review of Hilbert’s views on the foundations
of mathematics in so far as these are relevant. §3|presents our picture of mathematics as a “rhodo-
dendron of language games”, followed by an analysis of truth in §4] We conclude the main body
of the paper in §5] followed by an appendix that relates our proposal to four related philosophies
of mathematics, viz. formalism, pluralism, conventionalism, and deductivism.

2 From Frege to Hilbert and Wittgenstein

Our proposal that mathematics is like a rhododendron of inferential language games originated
in an analysis of Frege’s arguments against an analogy between mathematics and chess, which
we compared with the pertinent positions of Hilbert and Wittgenstein. Predicated on his idea that
mathematics is about “thoughts” which games are allegedly too poor to carry, Frege argued that:

* Mathematics is meaningful, since it refers to thoughts. But games are meaningless.
* Thus the rules of mathematics originate in reality, whereas for games they are arbitrary.
* Grounded in reality, there is truth in mathematical theorems, which games lack.

* On Frege’s conceptualization, logical inference must take us from truth to truth. Without
truth (which games allegedly lack) there is no logical deduction and hence no mathematics.

* The applicability of mathematics would be incomprehensible if it were merely a game, and
also leads to irresolvable ambiguities between the formal and the applied sides.

14We follow late Wittgenstein here. See for example Philosophical Investigations, §§130-131, as well as Bangu
(2018), Kuusela (2019), chapter 6, and Peregrin (2019) for expositions. More generally, as we shall see in §[Z} mathe-
matical theorems are held against practices like someone computing 25 x 25 or counting apples, but this time as norms.

5Here is already a sketch: We just saw that logical language games are both extracted from natural language and
held against it. Similarly, in Hilbert-style mathematical physics axioms are inspired by (heuristic) theoretical physics
so as to define theories of of pure mathematics (again seen as inferential language games), which are subsequently
held against the relevant natural phenomena as yardsticks or objects of comparison. But how is this comparison or
measurement actually made? This is done via what is called surrogative inference, in which inferences made from
a mathematical model mirror inferences made about natural (or artificial) phenomena (Sudrez, 2024). This obviously
squares with our inferential view of pure mathematics, and (perhaps less obviously) also matches our anti-realism about
(pure) mathematics with a corresponding empiricist philosophy of science as developed notably by van Fraassen (2008).



* Even if mathematics initially were just a game, it also incorporates the theory of the game
instead of only being the game. Similarly, there are theorems about chessm This is some-
thing an allegedly meaningless game by itself (i.e. mathematics) could not accomplish.

The following exchange arguably contains the essence of the debate between Frege and Thomae

Anyone who wants to ground arithmetic in a formal theory of numbers, a theory that does not
ask what numbers are and what they are supposed to do, but rather asks what we need from
numbers in arithmetic, will want to look at another example of purely formal creation of the
human mind. I thought I had found such an example in the game of chess. The chess pieces
are symbols that have no other content in the game than what is assigned to them by the rules
of the game. Saying that the signs are empty may lead to misunderstandings in the absence
of any goodwill to understand. So I also believed that I could view the numbers in arithmetic,
seen as a game of computation, as symbols that have no other content in the game than what
is assigned to them by the rules of the game or the calculation. The system of symbols of the
arithmetic game is made up of the symbols 0 1 23 45 6 7 8 9 in the usual known manner.
(Thomae, 1906a, pp. 434-435)

Mr. Thomae writes: ‘The symbol system of the arithmetic game is made up of the characters 0
123456789 in aknown manner.” If he had simply said that the arithmetic game had those
numbers as game objects, we would be satisfied. But now he seems to want to say that the
game objects are made from these numbers, and that in a known way. How should we know
the matter since we first want to get to know the arithmetic game? Here Mr. Thomae makes
the recurring mistake of assuming that what he wants to lay the foundation for, is already
known. (Frege, 1908a, p. 52)

About a decade earlier, Frege had had a more balanced exchange with Hilbert on similar themes.
Their correspondence between 1895 and 1903 is a jewel in the history and philosophy of math-
ematics, and although many readers will be familiar with it we now quote two passages whose
theme is the same as in the exchange just cited (although chess is not mentioned explicitly){l;g]

In my opinion, a concept can be fixed logically only by its relations to other concepts. These
relations, formulated in certain statements, I call axioms, thus arriving at the view that axioms
(perhaps together with propositions assigning names to concepts) are the definitions of the
concepts. I did not think of this view because I had nothing better to do, but I found myself
forced into it by the requirements of strictness in logical inference and in the logical construc-
tion of a theory. I have become convinced that the more subtle parts of mathematics and the
natural sciences can be treated with certainty only in this way; otherwise one is only going
around in a circle. (Hilbert to Frege, 22 September 1900)

Here, following his famous Grundlagen der Geometrie from 1899, Hilbert replaced the traditional
understanding of mathematical objects (according to which they are always defined explicitly
prior to appearing in axioms) by what was later called implicit definition, according to which such
objects are defined by the axiom systems in which they occur Modern mathematics would be

16For example, a Bishop cannot move to a square of a different color: this is not a rule but a consequence of the
rules (albeit a trivial one). A deeper example is the fact that chess games must end after finitely many moves.

"This debate (which started in a friendly way but eventually degenerated into an acrimonious personal polemic)
consists of Frege (1903), §§86—103, Thomae (1906ab, 1908), and Frege (1906, 1908ab), so that our main text only
gives a very small (literally quoted) excerpt. See also Frege (1899) in response to Schubert, written in a similar style.

18The letters may be found in the original German in Gabriel, Kambartel, and Thiel (1980), with English translations
in Gabriel et al. (1980). See also Blanchette (2018) and Rohr (2023).

195ee Peckhaus (1996), Pollard (2010), Schlimmm (2011, 2013), Giovannini & Schiemer (2021), Biagioli (2024),
and Sereni (2024) for various aspects of the history of implicit definitions. Briefly, there was a French line of develop-



unthinkable without this idea, which in particular put an end to the struggles by Cantor, Frege, and
others to define sets more explicitly—a struggle that also failed for the concept of number, even
for the number one, as Frege fatefully found out. In our view, this should also have put an end to
arithmetical determinacy (cf. the Introduction), but it hasn’t; we take this up in §4

Yet Hilbert was no philosopher in that direction we turn to Wittgenstein In this section
we merely discuss Wittgenstein’s most acute comments on Frege and Hardy:

Consider [Hardy (1929)] and his remark that ‘to mathematical propositions there corresponds—
in some sense, however sophisticated—a reality’. (...) We have here a thing which constantly
happens. The words in our language have all sorts of uses; some very ordinary uses which
come into one’s mind immediately, and then again they have uses that are more and more
remote. For instance, if I say the word ‘picture’, you would think first and foremost of some-
thing drawn and painted and, say, hung up on the wall. You would not think of Mercator’s
projection of the globe; still less of the sense in which a man’s handwriting is a picture of
his character. A word has one or more nuclei of uses which come into every body’s mind
first; so that if one says so-and-so is also a picture—a map or Darstellung in mathematics—in
this lies a comparison, as it were, “Look at this as a continuation of that.” So if you forget
where the expression “a reality corresponds to” is really at home— What is “reality”? We
think of “reality” of something we can point to. It is this, that. (Wittgenstein, Lectures on the
Foundations of Mathematics, pp. 239-240).

This is one of the many expressions of Wittgenstein’s non-referential approach to the philosophy
of mathematicsEZI which he extended to the philosophy of language. In particular, Wittgenstein’s
reflections on the analogy between mathematics and chess during his middle period were pivotal
in arriving at this late philosophy, as is especially clear from the following comment on Fregefz]

Frege ridiculed the formalist conception of mathematics by saying that the formalists confused
the unimportant thing, the sign, with the important, the meaning. Surely, one wishes to say,

ment starting with Gergonne and summiting in Poincaré, a German one in which Pasch and to some extent Schroder
were key predecessors of Hilbert, and an Italian line involving Burali-Forti, Peano, and Enriques (who introduced the
term ‘implicit definition’ in the axiomatic context, which is different from Gergonne’s who also used this term). Gio-
vannini & Schiemer (2021) call implicit definitions structural, since the words ‘implicit’ and ‘explicit’ are adjectives for
certain technical definitions in logic (which Beth’s definability theorem identifies). In fact, even an implicit definition a
la Hilbert and Enriques may be seen as an explicit definition of an n-place relation, where » is the number of symbols
implicitly defined by the axioms (e.g. Blanchette, 2018, §2.1). Poincaré’s conventionalism is also based on implicit
definitions (which he called ‘definitions in disguise’ given by axioms), and despite some differences his debate with
Russell mirrored the one between Hilbert and Frege. See e.g. Ben-Menahem (2006).

20This is not to say that Hilbert was a novice to philosophy; he had clearly read Kant and knew for example
Husserl in person. Hilbert’s student Weyl went well beyond this, but as explained by Toader (2011), he never overcame
the tension between: (i) the pull of Hilbert’s formalism, which Weyl saw as necessary for both objectivity (in the
sense of mind-independence) and free concept formation by ‘symbolic construction’ of the kind needed for theoretical
physics, yet at the cost of intelligibility; (ii) Husserl’s phenomenology, which required contentual reasoning and concept
formation by abstraction from immediate experience; and (iii) Brouwer’s intuitionism, which emphasized individual
mathematical understanding at the cost of objectivity and formalism. See also Da Silva (2017).

2l Ror comparisons of Hilbert and Wittgenstein see e.g. Muller (2004), Miihlholzer (2006, 2008, 2010, 2012), and
Friederich (2011, 2014). The closest links are between Hilbert’s views of mathematics around 1900 as reviewed above
and those of “middle” Wittgenstein (i.e., 1929-1936), where they both opposed Frege such that Hilbert’s mathematics
matched Wittgenstein’s philosophy. In his later period Wittgenstein became quite critical of Hilbert’s metamathematics.

22The philosophy of mathematics occupied Wittgenstein throughout his career but it was never completed or even
prepared for publication by Wittgenstein himself. The primary sources are the posthumous Bemerkungen iiber die
Grundlagen der Mathematik (BGM), written 1937-1944 (Wittgenstein, 1969) and the Lectures on the Foundations of
Mathematics, Cambridge 1939 (LFM; Diamond, 1975). Recent secondary literature includes e.g. Miihlholzer (2006,
2008, 2010, 2012), Schroeder (2020), Floyd (2021), Scheppers (2023), and Bangu (2025).

23Secondairy literature may be traced back from Lawrence (2023). Kienzler (1997) remains irreplaceable.



mathematics does not treat of dashes on a bit of paper. Frege’s idea could be expressed thus:
the propositions of mathematics, if they were just complexes of dashes, would be dead and
utterly uninteresting, whereas they obviously have a kind of life. And the same, of course,
could be said of any proposition: Without a sense, or without the thought, a proposition would
be an utterly dead and trivial thing. And further it seems clear that no adding of inorganic signs
can make the proposition live. And the conclusion which one draws from this is that what must
be added to the dead signs in order to make a live proposition is something immaterial, with
properties different from all mere signs.

But if we had to name anything which is the life of the sign, we should have to say that it was
its use. (Wittgenstein, 1958, p. 4).

In other words, Frege (allegedly) just saw two possibilities: either symbols refer to something in
reality, in which case the game is meaningful (which, in his view, doesn’t apply to chess since it
lacks “thoughts™, whose absence supposedly blocks any analogy with mathematics), or they don’t
(which for Frege applies to chess but not to mathematics), in which case the game is meaningless.
Wittgenstein’s point, then, is that Frege overlooked the possibility that even a priori meaningless
symbols might “come alive” by their use, as governed by the rules they are subject ton] In sum:

* For Frege, the use of symbols follows from their meaning, given by their external referents;

» For Wittgenstein, the use of symbols, as determined by certain rules, is their meaning.
Wittgenstein also echoed our last quote from Hilbert to Frege, now in explicit reference to chess:

It is, incidentally, very important that by merely looking at the little pieces of wood I cannot
see whether they are pawns, bishops, castles, etc. I cannot say, ‘This is a pawn and such-and-
such rules hold for this piece.” Rather, it is only the rules of the game that define this piece.
A pawn is the sum of the rules according to which it moves (a square is a piece too), just as
in language the rules of syntax define the logical element of a word. (Wittgenstein, 1967, p.
134).

During the 1930s Wittgenstein moved from what has been called a calculus conception of
mathematics, partly inspired by the analogy with chess, to a language-game conception This ac-
companied (and probably even induced) a similar move in his philosophy of language°| which in
fact is a more important source for us than his (unfinished) philosophy of mathematics. Very briefly
and with hindsight, in his Philosophical Investigations he replaced referential theories of meaning
by what we reconstruct as inferential ones, via the intermediate device of language games.

Although Wittgenstein himself refrains from giving a definition of those—and would surely re-
gard any such definition as misguided, since games, languages, and language games are among his
main examples of family resemblances, which somehow defy definition—we try it nonetheless

24 As noted by Kienzler (1997), §4a, Wittgenstein himself overlooks or ignores the fact that Frege (1903) does note
this ‘other possibility’, for in footnote 1 on page 83 (which is part of §71) he says: ‘Of course, there is also an opinion
according to which numbers are neither symbols that mean something nor nonsensical meanings of such symbols, but
rather figures that are handled according to certain rules, for example like chess pieces. According to this, the numbers
are neither aids for research nor objects of observation, but rather objects of handling. This will have to be checked
later.” Indeed, in §95 Frege (1903) complains that the rules of chess do not endow the chess pieces with any content
that would be the consequence of these rules, ‘like the name “Sirius” designates a certain fixed star.” This suggests a
stubborn inability or refusal to see that the rules themselves comprise the meaning of chess (even though the pieces are
meaningless); which was Wittgenstein’s point.

258ee Gerrard (1991), p. 127.

268ee Kienzler (1997) and Kuusela (2019) for his move in the philosophy of both mathematics and language.

2Twittgenstein introduced language games as a tool of his analysis of language in his middle period (notably in the
Blue and Brown Books from 1933-1935), generalizing this concept in the Philosophische Untersuchungen. The closest
Wittgenstein himself comes to at least a characterization of language games is his list of examples in §23 of the PU.



1. A language game is a practice where certain words and symbols are used.

2. The meaning of (most) words and symbols is given by their use within such a practice.
3. This use is determined by specific rules (forming the grammar of the language game)FE]
4. These rules are inferential: that is, the meaning of sentences lies in their inferential role.

Though it seems compatible with (late) Wittgenstein, the last point was made more explicitly by
Brandom (1995, 2001) concerning language and social practices as a wholeEg] Whatever the value
of inferentialism in (natural) language, it does seem appropriate to logic (where the original in-
spiration came from)ET] and, though less easily implementable, to mathematics—though surely,
considerable work remains to be done in developing a full and satisfactory inferentialist account
of pure mathematicsFI] For the moment we take this possibility for granted and proceed. The ques-
tion also arises which language games in the above sense correspond to some form of mathematics;
we let this question be answered by mathematical practice and ideas of family resemblance. The
answer has to be fluid, if only because the rules of mathematics—and hence what came to be ac-
cepted as mathematics—have regularly been subject to change; and despite a century of apparent
stability they will surely change again (see also the end of §4|below).

Furthermore, the key point found in both (late) Wittgenstein and Brandom is that language—or
mathematics—is primarily a (rule-governed) practice; if one looks for a “foundation” of language—
or of mathematics—then this practice (rather than some logical formalism) is its foundation As
already mentioned, such an attitude towards mathematics seems to make it difficult to explain how
mathematics can be such a powerful tool for describing the physical world. Though we defer a
detailed analysis to successor paper (Landsman, 2025ab), as a first step towards understanding ap-
plications of at least basic arithmetic we again turn to Wittgenstein. Among the coherent fragments
of his philosophy of mathematics is the idea that mathematics does not provide representations of
“reality” (at least not primarily), but yardsticks to measure reality:

What I want to say is: mathematics as such is always measure, not the thing measured
(Wittgenstein, 1969, §II1.75h)

Conversely, although mathematical results typically originate in experience, they are not empirical
themselves, but should rather be seen as ‘empirical propositions hardened into a rule’ FE]

It is as if we had hardened the empirical proposition into a rule. And now we have, not an
hypothesis that gets tested by experience, but a paradigm with which experience is compared
and judged. And so a new kind of judgment.

285ee especially §§185-242 of the PI. For a brief discussion we recommend Miihlholzer, (2010), §1.5. Kuusela
(2019), Chapter 6, holds that language games need not be based on rules; but those in mathematics are.

29This is the subject of an immense literature. Brandom (2007), Peregrin (2014) and Beran, Kolman, and Koreni
(2018) are good points to start. See also Haaparanta (2019) and Wischin (2019) comparing Brandom and Wittgenstein.

30The original sources of Brandom’s inferentialism was Gentzen’s proof system of Natural Deduction in logic (see
e.g. Von Plato, 2013), where each logical symbol has an introduction rule and an elimination rule. These are seen as
rules of inference for its use, from which its ‘usual’ meaning is supposed to follow. This was in fact also suggested by
Wittgenstein, for example in his (1967), VIL.30, as quoted below in our main text. Garson (2013), Peregrin (2019), and
Warren (2020) are inferentialist accounts of logic.

31Some steps were taken by Warren (2020) in support of his Conventionalism, but already our account of truth in
differs from his, and also the role of (notably implicit) definitions as well as the origin of axioms, both a la Hilbert,
need to be clarified. See our appendix below for further details and its relationship with Hilbert’s formalism.

32For Wittgenstein’s philosophy of mathematics this view is developed in detail in Miihlhélzer (2010).

33°See also Kuusela (2019), §4.4, for similar views on the philosophy of language during Wittgenstein’s middle
period (notably in the Blue Book).

34See Schroeder (2020), Chapter 7, and Bangu (2025), Chapter 3, for detailed analysis of this passage.



For one judgment is: ‘He worked out 25 x 25, was attentive and conscientious in doing so and
made it 615’; and another: ‘He worked out 25 x 25 and got 615 out instead of 625.” But don’t
the two judgments come to the same thing in the end?

The arithmetical proposition is not the empirical proposition: ‘“When I do this, 1 get this’—
where the criterion for my doing this is not supposed to be what results from it.
(Wittgenstein, 1969, §V1.22bcd)

Once the result has become a rule, it has become a piece of mathematics that as such is no longer
subject to checks by experience: it is ‘put into the archives’[”>| This resolves the tension between
mathematics as being timeless, non-spatial, acausal, etc., and yet applicable to our causal world
in space and timeﬁ] This tension is due to a confusion between two different language games,
namely pure mathematics, within which theorems are proved or looked up in some reliable book,
and applied mathematics, in which theorems are compared with reality. As Wittgenstein warned:

(...) the sentence seems odd only when one imagines it to belong to a different language-
game from the one in which we actually use it. (Wittgenstein, 2009, §195).

On the other hand, for all his earlier sympathy for the analogy between mathematics and chess
and his emphasis on rules, later Wittgenstein saw mathematics as applied by deﬁnition

I want to say: it is essential to mathematics that its signs are also employed in mufti. It is
the use outside mathematics, and so the meaning of the signs, that makes the sign-game into
mathematics. (Wittgenstein, 1969, §V.2)

This view is problematic in modern mathematics, which is grounded in the autonomous develop-
ment of mathematics from the 19th century onwards (see footnote [2)). Likewise, his comments
on the transition from the empirical origins of mathematics to a rule-governed activity reviewed
above have an extremely limited scope in modern mathematics and mathematical physics; and
even within his elementary context Wittgenstein had no acceptable theory of applied mathematics.

The relationship between pure and applied mathematics, which is a central question for us,
was a major theme for Hilbert, who (unlike Wittgenstein) was not just familiar with most or all of
the mathematics and mathematical physics of his time; he had created or inspired much of it.

Was Hilbert a “formalist”? He emphasized the importance of axiomatization throughout his
career; in the context of what is now called “Hilbert’s program” this even came to include the rules
of proof. As such, on a par with Euclid he was a leading contributor to the idea that mathematics
is governed by (inferential) rules But it was one of his deepest conceptual insights that both the
rigour and the applicability of mathematics originate in axiomatization:

Mathematics has a two-fold task here: On the one hand, it is necessary to develop the systems
of relations and examine their logical consequences, as happens in purely mathematical disci-
plines. This is the progressive task of mathematics. On the other hand, it is important to give
the theories formed on the basis of experience a firmer structure and a basis that is as simple
as possible.

For this it is necessary to clearly work out the prerequisites and to differentiate exactly what is
an assumption and what is a logical conclusion. In this way, one gains clarity about all uncon-
sciously made assumptions, and one recognizes the significance of the various assumptions,

355ee LFM, Lecture IX, p. 107, further discussed in §E]below.

36The timeless of mathematics seems denied by Brouwer’s intuitionism, and perhaps some forms of constructivism.
370n this topic see also Gerrard (1991), Miihlholzer (2010), and Dawson (2014).

38See Mancosu, Zach, and Badesa (2009), and Ewald (2018).

39Pasch, whose work foreshadowed Hilbert’s in various ways, had similar ideas (Pollard, 2010; Schlimm, 2010).
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so that one can overlook what modifications will arise if one or the other of these assump-
tions has to be eliminated. This is the regressive task of mathematics (Hilbert, 1919/1992, pp.
17-18).

By axiomatization, Hilbert meant the identification of certain sentences (becoming axioms) that
form the foundation of a specific field in the sense that its theoretical structure (Fachwerk) can be
(re)constructed from the axioms via logical principles. The epistemological status of the axioms
differs between various fields of mathematics. For example, Hilbert considered geometry initially
a natural science that emerged from the observation of nature (i.e. experience), which then turned
into a mathematical science through axiomatization (Corry, 2004, p. 90). This does not mean that
he treated the axioms of geometry as definitive, let alone as “true” (as Euclid cum suis had done)@
Especially in physics Hilbert often stressed the tentative and malleable nature of axiom systems:

As can be seen from what has been said so far, in physical theories the elimination of con-
tradictions that arise will always have to be done by changing the choice of axioms and the
difficulty lies in making the selection in such a way that all observed physical laws are logical
consequences of the selected axioms. (Hilbert, 1918, p. 411)

For Hilbert, the axiomatization of physical theories is therefore never a static process: it moves on
as physics itself moves on (Corry, 2004; Majer, 2014). Axiomatization may lead to the exposure
of contradictions via a purely logical analysis, whose removal is then an important step forward.
Indeed, as Majer powerfully summarized Hilbert’s view on the axiomatization of physics:

physical theories live, as it were, on the border of inconsistency (Majer, 2014, p. 72)

As Majer explains Hilbert, this is a consequence of an important difference between mathematics
and physics in so far as axiomatization is concerned: the former usually considers single disci-
plines in what he calls ‘maximal conceptual purity’, whereas the latter often combines and inter-
twines a number of mathematical theories into a single highly complicated physical theory.
Axiomatization, then, contributes in two very different ways to the rigour of mathematics:

1. via syntactic proofs from the axioms (whose symbols remains uninterpreted);

2. via the axiomatization of sufficiently mature informal theories of mathematics
Similarly, axiomatization is also the key to the applicability of mathematics, namely:

3. via the axiomatization of sufficiently mature theories of physics, space, quantity, etc.

In fact, it seems neither possible nor necessary to sharply distinguish between the second and third
activities: for example, are Euclid’s axioms (more precisely: his so-called postulates and common
notions—whatever their clarity and worth from a modern point of view) attempts to axiomatize
earlier informal geometry, or some physical theory of space? Even the axiomatization of set
theory in the early twentieth century brought rigour into both the informal set theories of Riemann,
Dedekind, and Cantor, and the genuine efforts by Frege, Russell, and others to understand sets as
ingredients of the physical universe or at least the human mind (Ferreir6s, 2008).

40See Pulte (2005) for a history of the interpretation of mathematical axioms related to physics.

4IEven in mathematics itself Hilbert acknowledged the appearance of contradictions as a historical phenomenon.
But unlike physics, he apparently found contradictions unacceptable in mathematics, give his obsession of proving the
consistency of classical mathematics. This marks a major difference with Wittgenstein, whose cheerful acceptance of
inconsistent theories, repeated comments on the indeterminateness of decimal expansions (e.g. of 7), relaxed attitude
towards the possibility of rejecting a correct proof, and whose insisting that proofs change or even define the nature of
what was proved, sound out of touch with modern mathematics and hence are inappropriate for our program.
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Thus the key difference is between numbers 1 on the one hand and 2—3 on the other: the
first is formal and focuses on proofs, whereas numbers 2 and 3 both take us outside (formal)
mathematics Thus it would reflect the spirit of Hilbert’s ‘zweifache Aufgabe’ (two-fold task) of
mathematics to only list two sources of rigour in mathematics and the mathematical sciences:

(i) Defining mathematical theories by finding appropriate axioms from heuristic considerations;

(ii) Proving theorems, given these axioms (including deduction rules, themselves axiomatized).

3 Mathematics as a rhododendron of language games

Despite his insights into the empirical sources of axioms and his impressive record in mathematical
physics, even Hilbert hardly bridged the gap between his formalist views of pure mathematics
(even if this was inspired by physics or other applications) and the mathematical description of
natural phenomena: he relied on the notion of “pre-established harmony”, a philosophical or
even theological doctrine with roots in the monadology of Leibniz@ Wittgenstein, on the other
hand, left us both the impressive but far too narrow view that mathematics consists of ‘empirical
propositions hardened into a rule’ (see §2)), and his famous description of what mathematics is:

Mathematics is a MOTLEY of techniques of proof. — And upon this is based its manifold
applicability and its importance (Wittgenstein, 1969, §111.46a)

This juxtaposition of mathematical proof and applicability seems bizarre—unless one understands
what Wittgenstein means by ‘Beweistechniken’ (proof techniques); the passage goes on as follows:

But that comes to the same thing as saying: if you had a system like that of Russell and
produced systems like the differential calculus out of it by means of suitable definitions, you
would be producing a new bit of mathematics.

Now surely one could simply say: if a man had invented calculating in the decimal system—
that would have been a mathematical invention!-Even if he had already got Russell’s Principia
Mathematica. (Wittgenstein, 1969, §I11.46bc)

In other words, by ‘Beweistechniken’ Wittgenstein means systems of definitions that, together
with the logical deduction rules in Principia Mathematica form the basis of new pieces of math-
ematics and hence (potentially) of new applications. If Wittgenstein hadn’t disliked set theory
so much, the opening quote of this section could simply be that mathematics is a motley of its
various branches, formalized within set theory. And this richness is indeed the key to its manifold
applications and importance. Moreover, we may combine the first quote with a later one:

Logical inference is part of a language-game. (...) We can conceive the rules of inference—I
want to say—as giving the signs their meaning, because they are rules for the use of these
signs (Wittgenstein, 1969, §VIIL.30)

The suggestion then arises that mathematics is a motley of language games; although Wittgenstein
himself never seems to have claimed this in general, the spirit of the idea is noticeable in both his
Remarks on the Foundations of Mathematics and the Philosophical Investigations, and he does
identify a few special cases as such. But the setting in which he does so remains very limited.
For a successful version of this idea, one should incorporate all that mathematics involves:

42We follow Tait (1986) in seeing models in set theory as internal to mathematics, and hence the distinction between
syntax and their interpretation in set theory is irrelevant for our theme.

43See Pyenson (1982), Kragh (2015), and Corry (2004).

4 Anscombe famously translated Wittgenstein’s ‘buntes Gemisch’ as ‘motley’, which is the traditional costume of
the court jester or fool. See Miihlhélzer (2005), p. 66, footnote 15, for a critique of this translation.
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1. A long history: from numerical tables in Mesopotamia almost 4000 years ago to the rigorous
concept of a function in the 19th and 20th centuries; from quantitative methods of surveying
to Riemannian geometry; from counting to class field theory, et cetera. It has thereby led to:

2. A number of different formal foundations of mathematics, like ZF or ZFC or BNG set
theory, intuitionistic set theory, A-calculus, topos theory, homotopy type theory, et cetera.

3. Within each of these foundational systems: a wide collection of mathematical theories (also
called areas, branches, disciplines, or ﬁelds)E] each with its own community, goals, and
standards of proof. One may also think of Peano arithmetic or (Hilbert-style) Euclidean
geometry. These areas typically also overlap (e.g. Lie groups combine group theory and
differential geometry; functional analysis combines linear algebra and topology, etc.). Fol-
lowing Hilbert (see §2) we find it hard to maintain the traditional distinction between “pure”
and “applied” mathematics (although many mathematics departments do!).

4. Associated notions of proof ranging from the informal reasoning of ancient Babylonian and
Chinese mathematicians to the pseudo-axiomatic setting of Euclid (which lacked explicit
rules of deduction) to the advanced logical apparatus of Frege, Russell, Hilbert, and Godel.
But even the logic differs not only between the formal foundational systems just mentioned
(and others), but also includes considerable diversity in what is being tolerated within each
of them, from informal rigour to bending the rules See also Wittgenstein’s quote above.

5. The meta-theory of the axiomatized theories (i.e. Frege’s “theory of the game”), including
both formal aspects like proof theory and informal aspects like “the strategy of the game”m

6. Applications of individual branches of mathematics to physics and other disciplines.

Expanding the notion of a game, we answer our title question ‘Is mathematics like a game?’ by:

Mathematics is a rhododendron of language games of a very specific (formalized) kind.

Here our word ‘rhododendron’ replaces Wittgenstein’s ‘motley’ in order to emphasize that the
structure of mathematics we propose has both multiple roots and various branches above these.
The roots correspond to the various possible formal foundations, as just listedF'E] From each such
root, such as ZFC set theory, further pieces of formalized mathematics branch out, again as listed.
Most of mathematics takes the form of three language games played on the same theories:

1. The cleanest mathematical language game is the development of theorems and proofs—
where different proof systems may be used, defining different language games (cf. §4).

$See the Mathematics Subject Classification (MSC) at https://mathscinet.ams. org/mathscinet/msc/
msc2020.html, or the ‘Branches of Mathematics’ listed in Gowers (2008).

4See Miihlhdlzer (2006) and Floyd (2023) for Wittgenstein’s notion of ‘surveyability” of a proof, which includes
the criterion that its reproduction must be ‘an easy task’. This may be held against the proof of 1+ 1 =2 in Principia
Mathematica *54.43, which including all preparation takes hundreds of pages. Fully written Hilbert-style formal proofs
of more complicated theorems would share this fate-though Dutilh Novaes (2011) identifies eight different ways in
which formality and rules can be interpreted. An informal proof is more likely to be understandable but is not rigorous,
whereas a formal proof will hardly be understandable if only because of its length, which also increases the probability
of error (Avigad, 2021). In some cases informal proofs are pointless, as in the four-colour theorem; we suggest that
computer-assisted proofs and computer-verified proofs have their own language game (as defined below).

4TDeveloping the formals aspect of this, i.e., metamathematics, was of course Hilbert’s achievement.

“BWittgenstein would already regard this starting point as misguided! Cf. Miihlhélzer (2010) and Scheppers (2023).
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2. The second one is Hilbert-style metamathematics, yet with one version for each root@
3. The third is applied mathematics in the specific form summarized in the Introduction.

The first is “mathematicians’s mathematics”. The second is played by logicians and philosophers.
The third, which practiced by applied mathematicians and mathematical physicists, is obviously
restricted to ‘applicable” branches of mathematics (which of course expand in the course of time).

Hilbert’s formalist emphasis on the meaninglessness of mathematical symbols applies to the
first, but only in so far as proofs and other formal aspects of axiom systems are concerned (such
as consistency and completeness). The analogy between mathematics and chess applies here. This
analogy is not uniquely definable, but an attractive version is the one proposed by Weyl (1926)13_0-]

* The axioms of some theory are analogous to the starting position of a game of chess;
* The deduction rules (a 1a Natural Deduction) are analogous to the possible moves
* A sentence (as defined in logic) is analogous to some position on a chess board;

* A theorem is like a legal position in a correctly played chess game;

* A proof is like a game leading to that position, played according to the rules;

* A definition resembles the idea that chess pieces are defined by the rules of chess.

Given the formal notion of proof developed by by Frege, Russell, and Hilbert, in which (unlike
in Euclid-let alone 17th and 18th century mathematics) not only the axioms but also the rules of
deduction are formalized and stated, the rules of this language game are clearly inferential.

The second language game is one level above the previous one but it also squarely lies on
the formal and inferential side: although the object of investigation is a mathematical theory, its
symbols remain uninterpreted. It is played on the same theories as the previous one (for example,
arithmetic, as in “Hilbert’s program”), but it need not follow the same logic as the original game

The third one, which is crucial in understanding the relationship between mathematics and the
physical world, is based on rules that are inferential in a much less obvious way, for which we
again refer to the Introduction for a summary and to Landsman (2025ab) for a full development.

EPTs

49f (against our advice) mathematics is seen as a game, then metamathematics is Frege’s “theory of the game”.
Whatever one’s philosophy of mathematics, Frege was right that the “theory of the game” cannot be about meaning-
less symbols since it is about mathematical proofs; and this interprets the symbols. Nonetheless, metamathematics
is determined by inferential rules (like mathematics itself) and the corresponding “meaning is use” semantics returns
this interpretation. Hence the metamathematical language games share this semantics with all the other mathematical
language games and in that sense they are all on the same par. A similar comment applies to the theory of any game
with a mathematical structure (which includes the metamathematics of some given root of the rhododendron).

50The last point, which is the idea of implicit definition, was not mentioned by Weyl (1926) and should be attributed
to Hilbert and others; see footnote [[9} What is admittedly missing in the analogy between mathematics and chess is a
translation of the goal of winning in chess: there seems to be no analogue of checkmate in mathematics (although there
is an emotional analogue of resigning, i.e., “giving up”, after repeated failure to prove some theorem). Indeed, in the
latter the goal is to establish the counterpart not of a winning position but of an arbitrary legal position (i.e. a theorem).
Perhaps the shared aspect of beauty in both games of chess and proofs somewhat compensates for this discrepancy.

SlWhat we have in mind here is that the axioms are supposed to describe some specific mathematical theory (such
as set theory, or arithmetic, or Euclidean geometry) whereas all deduction rules are logical in character and, perhaps
with a few exceptions, are universal for all fields of mathematics (like Euclid’s common notions). See e.g. von Plato
(2017). In contrast, in a Hilbert-style calculus (Hilbert & Ackermann, 1928) modus ponens is the only deduction rule
whilst the other deduction rules in Natural Deduction are seen as axioms. This calculus does not fit our metaphor.

52Here one need not think of the full scope of Hilbert’s program; Gédel’s completeness theorem is already meta-
mathematical, as is its special case for propositional logic (Zach, 1999).
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And of course there are numerous other language games that are especially relevant to mathe-
matical practice; for example, in either trying to find proofs or in creating new mathematics even
the most stubborn formalist will look for interpretations and perhaps visualizations in both ap-
plied and non-applied (or not-yet-applied) fields, for links with different fields of mathematics,
etc. Similarly, learning mathematics is a language game by itself (much as learning a language is,
as analyzed in the early parts of the Philosophical Investigations). And so on and so forth.

4 Truth

The truth predicate then preserves his contact with the world, where his heart is. (Quine, 1986, p. 35)

What does the “pure” or “formalist” language game imply for the concept of truth in mathematics?
On the one hand this is a difficult question, since we see mathematics as a human practice, for
whose rules there were always many different possibilities and choices, even when these rules
were inspired by empirical phenomena. On the other hand, mathematical practice suggests that
“truth” is merely a facon de parler, in that for most “working mathematicians” “p is true” simply
means that p is a theorem. Anything beyond this meets the scathing comment of Bourbaki:

Mathematicians have always been sure that they prove “truths” or “true propositions”; such a
conviction can obviously only be sentimental or metaphysical. (Bourbaki, 1994, p. 11)

We agree, but some place for “truth” remains in mathematics; it just needs to be relocated.

Let us return to chess for inspiration. It seems meaningless to say that a position p in chess
is “true”. But it does make sense to claim that p is legal, in that it arose from a game played
according to the rules R. This claim, call it R - p, rather than p itself, could be said to be true or
false, and this can be established by a proof in the form of an actual (legal) chess game leading to
p, cf. §3] In normal games p even arises in this way; in so-called retrogade chess problems one
has to reconstruct p. Similarly, in our non-referential ideology mathematical theorems cannot be
true either, since there is no objective state of affairs they could describe correctlyFE] Moreover,
the kind of truth conventionalists aspire to is, in our view, covered much better by our proposal
below than by declaring theorems of propositions themselves to be true. Like in chess, truth in
mathematics cannot lie in sentences ¢ (such as closed formulae in first-order logic), but only in
claims T - @ stating that @ is a theorem within an ambient theory T (which is supposed to include
rules of inference). And this is the case (by definition) iff there exists a proof of ¢ according to
the rules of 7. Thus the only thing we can say about mathematical truth in our framework is this:

‘Mathematical truth resides not in theorems but in claims that some sentence is a theorem. ‘

This makes a proof of ¢ in T the truth-maker of the truth-bearer 7 - ¢. Our only compromise
towards realism is our belief that such truth (or falsehood) is a matter of fact, whether or not it is
knownF_ZI But this is not the truth of platonism (or of naturalistic views of mathematics), which
concerns @ rather than T - ¢, backed by a correspondence theory of truth. We also reject other
approaches which argue that a sentence ¢ itself (as opposed to T = @) is true iff ¢ has a proofE]

33We repeat the point already made in footnote Tarski’s concept of truth as defined in model theory is internal
to pure mathematics and has little or nothing to do with the notion of truth sought by the Platonists or naturalists. It will
play a minor role in the discussion of Godel’s theorems below.

54This might be varied by defining T F ¢ to be true if a proof of ¢ is known, as in intuitionistic mathematics.

SSee e.g. Dieudonné (1971) and Tait (1986). See also Appendix for truth in formalism and deductivism. The
so-called BHK (Brouwer—Heyting—Kolmogorov) interpretation (or semantics) of intuitionistic logic is also often taken
to mean that a sentence is true iff it has a proof (Artemov & Fitting, 2021). We reject this, too, but even so one may still
support the more modest BHK interpretation of the logical connectives in terms of proofs (van Atten, 2023).
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First, unless one believes that there is a single “true” foundational system for mathematics
(such as ZFC set theory with additional cardinality axioms, as proposed by Godel), such proposals
endorse a coherence theory of truth (Young, 2018), in which each such system would come with
its own set of truths. As explained in §3] we reject this (cf. Landsman, 2025ab). On our proposal,
although people may differ about the virtues of different foundational systems, given unambiguous
concepts of inference and proof they cannot rationally differ about the theorems in each of these.

SecondE] according to Godel’s first incompleteness theorem, for any 7" (satisfying the usual
assumptions) there are sentences ¢ such that neither ¢ nor —¢ is provable in 7. Yet in classical
logic ¢ V —@ is provable for every ¢@. If this implies that ¢ V - is true, then for undecidable
¢ this would be the case without either ¢ or —¢@ being true, which is awkwardE] But since the
claim ‘T - (¢ V —¢)’ is clearly different from (7 - @) or T = (—¢)’, there is no argument to
conclude from the truth of the former that the latter is true, and so even on TND and the everyday
understanding of ‘or’ we are not forced to (wrongly) conclude that either 7 - ¢ or T I —¢ is true,

Thus the possibility of assigning truth to ¢ is challenged by Godel’s incompleteness theorems,
whereas T - ¢ faces no such problemsF_gI If Dummett’s (1963/1978) famous (but controversial)
argument for the ‘vagueness’ of the concept natural number is correct,@ then the stance of arith-
metical determinacy mentioned in the Introduction (and in its wake the more general ‘fundamental
commitment of mathematics’) is also weakened by Godel’s incompleteness theorems, although
these are usually seen as a threat to philosophies like oursF_G] The following preamble is uncontro-
versial. Take T = PA (i.e., Peano Arithmetic with first-order logic) to be specific, and let Gt be its
Godel sentence, which expresses its own unprovability in TF_'-] Then it is well known that Gy is
undecidable (i.e., neither T - G nor T & =Gr) if and only if T is consistentF_ZI Then:

* Arithmetical determinists take the “existence” of the natural numbers N and their satisfac-
tion of the PA axioms as given, whence PA is consistent. From this, they are entitled to
conclude that the interpretation [[Gr]]y of G7 in N is true in their absolute sense (cf. §I).

* Without the commitment to arithmetical determinacy, [[G7]|y is merely true in the formal
sense of Tarski for model theory, where N is a construction within ZFC set theoryF_g]

Thus the claim that [[Gr]]y or Gr is true in an “absolute” sense, i.e., beyond derivability in some
axiomatized theory (such as ZFC in the second case), must already assume arithmetical determi-
nacy: the incompleteness theorems cannot be used to derive it or even argue for itndeed:

The [arithmetical determinist] however, operates with the notion of a model as if it were
something that could be given to us independently of any description: as a kind of intuitive

36See also Paseau & Pregel (2023), §9, and references therein.

5TThis problem obviously does not arise in intuitionistic logic, which Godel (1931) actually incorporated.

58 As brought to our attention by Barteld Kooi, incompleteness does lead us to an asymmetry between truth and
falsehood the naive approach (in which ¢ itself is true or false) does not have. Namely, if T I ¢ is true then it has a
truth-maker in the form of a proof of ¢ from T'; but if 7' I~ ¢ is false, i.e., not true, then there is a false-maker for it just
in case @ is decidable in 7' (in which case T - —¢ and hence the false-maker is a proof of —¢ from T'). But this seems
a lesser evil (for us) than some assumption of mathematical realism.

MSee e.g. Engler (2025) and references therein. See also Parsons (1990) for arguments similar to Dummett’s.

60See Weir (2010), §4.1I1, for formalism; Warren (2020), §11.VII, for conventionalism; and Paseau and Pregel
(2023), §9, for deductivism. See also §[£f]below for our relationship to these philosophies or attitudes.

611n very naive discussions this sentence is claimed to be true full stop, and since it cannot be proved (in T) this is
supposedly an argument against formalism and for platonims and/or the superiority of the brain over any formal system.
See Franzén (2005) for a critical discussion of this and many other misunderstandings of Godel’s theorems.

62See e.g. Franzén (2005) or Raatikainen (2022).

930r in some fragment thereof in which the construction of N can be carried out and in which the consistency of PA
can be proved. This only makes sense if ZFC (or the fragment just alluded to) is consistent, which of course is a big if.

64As does for example Connes in support of his Platonism (Connes, Lichnerowicz, and Schiitzenberger, 2001).
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conception which we can survey in its entirety in our mind’s eye, even though we can find
no description which determines it uniquely. This has nothing to do with the concept of a
model as that concept is legitimately used in mathematics. There is no way in which we can
be ‘given’ a model save by being given a description of that model. If we cannot be given a
complete characterisation of a model for number theory, then there is not any other way in
which, in the absence of such a complete description, we could nevertheless somehow gain a
complete conception of its structure. (Dummett, 1978, p. 191)

This confirms the circularity in arguing that Godel’s theorems enforce arithmetical determinacy.
Our account of this situation is as follows, assuming PA is consistent. No sentence in PA = T,
including Gr, has anything like a truth value. The claims PA - Gr and PA - -Gy are both false
in our sense (i.e., not true). The “truth” of [[Gr]] is just the truth of N E Gr, seen as a theorem in
ZFC or in some weaker system, such as the proof system one obtains by adding the so-called w-
rule to PAE] In view of our definition of truth we here effectively replace “truth-talk” (in the usual
sense) by “proof-talk”, with the crucial feature that by changing the proof system in passing from
PA = Gt (which is false) to N F Gy (which is true) we switched to a different language game@

Still assuming consistency of PA, there is a non-standard model N’ of PA in which the inter-
pretation [[G7]|n of Gr is false This falsehood indicates that the concept of a natural number
is not sufficiently captured by PA, and since this argument is independent of the choice of PA
arithmetical determinists must agree that ‘we have a certain, quite definite, concept, which cannot
be fully characterised just by the fact that we make certain assertions about it’ and that we ‘cannot
characterise completely the meaning of “natural number” by specifying which arithmetical state-
ments we are prepared to assert and which forms of inference within arithmetic we are prepared
to accept.’@ We conclude that since PA—or some similar system, facing similar problems—is the
only intuition we have about natural numbers, one cannot possibly claim that the natural numbers
are “defined” or “exist” in some absolute senseF_;] But arithmetical determinists, instead of giving
up their position, conclude from this that at least in this case meaning (namely the absolute con-
cept of natural numbers they have in mind) cannot be given by use (according to the axioms and
rules of inference). It is this way out that the controversial remainder of Dummett’s argument tries
to undermine, so that Dummett’s higher goal lies in defending a “meaning = use” semantics.

In any case, one surely needs to get used to the idea that say 7+ 5 = 12 is neither true nor false
(it is just not the kind of mathematical statement that has a truth Value) whereas the superficially
similar but technically and conceptually very different claim PA - (7+5 = 12), stating that 7+5 =
12 is a theorem of Peano arithmetic, or equivalently that 745 = 12 is true in PA, is true

95 This rule, which goes back to Hilbert, states that ¢(n) for all n defined in PA as 0 = 0, 1 = §(0), 2 = 5(5(0)), etc.,
implies V@ (x). This rule allows one to prove all true statements V,¢(x) provided PA - ¢(n) foreachn=0,1,2,..., at
the expense of using an infinite number of assumptions. As such it distinguishes the standard model N of PA from all
other (i.e. non-standard) models, in that the @-rule holds for all @(x) precisely in N. The Godel sentence Gt is of the
form Gr = V¥, ¢(x), where each ¢(n) forn =0,1,2,... is a theorem of PA. The gap between the inability to prove Gr
in PA and the ability to prove it in N is therefore precisely bridged by the w-rule. See e.g. Warren (2020), §10.VIIL.

66See also Kolman (2014, 2016), which makes a similar point in a different context.

7 Continuing footnote each sentence ¢(n) appearing in Gy = V,@(x) is true on N, yet Gy is false in N'.

%8 Dummett (1978), p. 186, 187.

%9We recall the sad fact that Frege’s life work of defining the natural numbers failed even for the number one.

70 An anonymous referee highlighted the radical nature of our concept of truth by mentioning the Sylow theorems
for finite groups. Here the temptation to relate a purely mathematical claim to real things like apples seems absent, but
this weakens the pull to attach any truth label to such theorems. Like all mathematical objects, finite groups and their
properties have a ‘permanence of identity through space and history’ (see Rota quoted in the Introduction), but like
numbers this identity is given by specific definitions and other rules, as opposed to things that actually have the said
properties. This increases the pull in the opposite direction of believing that theorems are statements about rules.

"n some crazy theory T where T - (7 +5 = 10), this would still be true on our criterion (as long as the proof in T
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Don’t seven apples add up with five apples to yield twelve apples? They do. But this expresses
neither 7+5 = 12 nor PA+ (7+5 = 12): the former is held against the apples as a yardstick,
justified by the latter. This yardstick even seems to yields perfect results (which is rare and may
be restricted to counting and elementary arithmetic), but already Aristotle realized how much
is involved in this: one must regard each apple as a unit, which deliberately overlooks that firstly
each apple is divisible, and secondly that all apples are different. Even granting these idealizations,
what we have is a match between empirical data and some mathematical theorem, viz. 7+5 = 12.
Following Wittgenstein, the latter is an ‘empirical proposition hardened into a rule’. But this rule
cannot inherit any kind of truth from the empirical propositions that originally inspired it (such as
the counting of objects like apples), since that would confuse the physical world with the role of
mathematics as a set of yardsticks invented by humans to understand it:

I am trying to show in a very general way how the misunderstanding of supposing a math-
ematical proposition to be like an experiential proposition leads to the misunderstanding of
supposing that a mathematical proposition is about scratches on the blackboard.

Take “20 4 15 = 35”. We say this is about numbers. Now is it about the symbols, the
scratches? That is absurd. It couldn’t be called a statement or proposition about them; if
we have to say that it is a so-and-so about them, we could say that it is a rule or convention
about them.—One might say, “Could it not be a statement about how people use symbols?”
I should reply that that is not in fact how it is used—any more than as a declaration of love.
(Wittgenstein, LEM, Lecture XII, p. 112)

The unity of mathematics emphasized by Hilbert provides an additional argument for the lack
of truth of 7+ 5 = 12. If this theorem were true, then every theorem in mathematics should
be true. This leads to a problem discussed earlier: since different foundational systems may
yield contradictory results, just one of these systems could be “true”. The history of mathematics
suggests this is dubious. Even if only one of them ultimately comes out be correct (e.g. since the
others unexpectedly are inconsistent), putting esoteric result in ZFC set theory about inaccessible
cardinals on a par with 7+ 5 = 12 as both being “true” sounds equally wrong. The only way to
get around these problems seems to be to treat all theorems from all foundational systems on a
par; but instead of declaring them all true, the ensuing notion of truth is expressed much better by
saying that the claim 7 F ¢ that ¢ can be deduced from T is true, rather than ¢ itself.

We see that even the simplest theorems in arithmetic, involving very small integers, are no
threat to our notion of truth. Our case against realism is even stronger if large integers are involved;
and still stronger for Euclidean geometry; and stronger again if we use the advanced theories of
mathematics physics, about which only very naive physicist would say their theorems are “true”;
see Landsman (2025ab) for further analysis. But our argument is uniform for all these cases.

Wittgenstein’s (disquotational) concept of truth differs from ours: in §136 of the Philosophical
Investigations he identifies ‘p’ is true with p itself (and ‘p’ is false with not-p). But in a marked
difference with the ‘fundamental commitment of mathematics’ he then adds that this concept of
truth belongs to the rules of the language game in question Similarly, Wittgenstein wrote:

Mathematical truth isn’t established by their all agreeing that it’s true—as if they were wit-
nesses to it. Because they all agree in what they do, we lay it down as a rule, and put it in the
archives. (Wittgenstein in Diamond, 1975, Lecture IX, p. 107)

Disputes do not break out (among mathematicians, say) over the question whether a rule has
been obeyed or not. People don’t come to blows over it, for example. (Wittgenstein, 2009,
§240)

is correct!). This theory might be an interesting game but it would be a useless yardstick in applied mathematics.
72Similarly in §6 of Appendix II of Wittgenstein (1969).
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5 Conclusion

What is the conclusion to which we come? Modern mathematics and physics may seem to
move in thin air. But they rest on a quite manifest and familiar foundation, namely the concrete
existence of man in his world. (Weyl, 2009, p. 188)

Our aim was to re-examine the question to what extent mathematics may be compared with a game.
Trying to answer this question led us essentially to Weyl’s conclusion just quoted. To get there, we
combined certain insights by Hilbert and Wittgenstein (as “inferentialised” by Brandom). From
Hilbert, we took the idea that axiomatization enables both pure and applied mathematics (including
mathematical physics). From Wittgenstein, our main lessons is that pure and applied mathematics
correspond to different language games, both of which are non-referential. The “applied” one also
relies on his remarkable idea of using mathematical theorems or theories as yardsticks.
Mathematics also incorporates various other language games, together forming a structure
we like to call a “rhododendron” (rather than Wittgenstein’s “motley”, which seems too flat).
Various mainstream philosophies of mathematics find a peaceful place within this structure, except
Platonism: Platonists and other realists will like little of our proposal, since they already reject
our (and Wittgenstein’s) starting point of ultimately grounding mathematics in human practice.
Formalists may have more sympathy for our view, since we not only defend what should be the
deductivist concept of truth, but also moved the problem of understanding applied mathematics
within a formalist framework a step forward. Logicism, formalism, and intuitionism may no longer
exist in their original form, but what is left of them is also welcomed within the rhododendron.
We take this peaceful coexistence to be a major advantage of our proposal. We propose this
rhododendron of language games as an object of comparison itself: we invite readers to compare
the mathematics they have in mind with this picture, to see where it agrees and where it deviates.
Finally, although our paper is by no means meant as an analysis of Wittgenstein’s philosophy
of mathematics (nor of Hilbert’s), we hope to have implicitly answered certain objections to it by
firstly doing some cherry-picking (i.e. tacitly removing some of his more extreme and outdated
views) and secondly integrating these marbles with modern ideas appropriate to contemporary
mathematics (especially ideas of Hilbert’s, hopefully without falling into Ais traps either).

A Formalism, deductivism, conventionalism, and pluralism

In tis appendix we briefly compare our approach with certain interpretations (or even philosophies)
of mathematics that are related to ours and of which we have tried to incorporate some parts.

A.1 Formalism and deductivism

Though often associated with Hilbertm there isn’t a canonical notion of “formalism”. Here are
two caricatures from leading textbooks in the philosophy of mathematics:

The various philosophies that go by the name of ‘formalism’ pursue a claim that the essence
of mathematics is the manipulation of characters. A list of the characters and allowed rules
all but exhausts what there is to say about a given branch of mathematics. (Shapiro, 2000, p.
140).

Formalism is the view that mathematics has no need for semantic notions, or at least none that
cannot be reduced to syntactic ones. (Linnebg, 2017, p. 39)

73Indeed, the exposition of formalism by von Neumann (1931) is indeed entirely devoted to Hilbert’s program.
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This is the version attacked by Frege; cf. his correspondence with Hilbert quoted in §2] But Hilbert
is a straw man; for him it is only in the context of proofs and in the analysis of consistency of
axiom systems etc. that mathematics is a deductive enterprise in which symbols have no meaning
(outside the rules they are subject to). A broader view of formalism is described by Detlefsen
(2005). Our own approach incorporates formalism on the side of pure mathematics, but tries to
balance it via Hilbert’s emphasis on the informal meaning of symbols inherited from the heuristic
theories of either physics or mathematics inspiring most axiomatizations. His implicit definitions,
or Wittgenstein’s corresponding ideas about the meaning of symboles given by their use (‘the life
of the sign’) also gives meaning (or even ‘life’) to formalism in a way that many philosophical
discussions seem to overlookE] We are not “formalists” if this is seen, as it historically has, in
opposition to logicism or intuitionism; appropriately formalized (!) at least the latter is a valid
mathematical language game on a par with classical mathematics as used by most formalists.

Our concept of truth within the formalist language game expounded in §4]is compatible with
a philosophy of mathematics called deductivism, famously summarized by Russell (1903) as:

Pure mathematics is the class of all propositions of the form “p implies g”.

See Paseau and Pregel (2023). Different “deductivists” had different concepts of truth. For exam-
ple, Russell saw the truth of logic and mathematics in the universe. Around 1900, Hilbert defined
mathematical truth as flowing from axioms, which by themselves were deemed “true” if they were
consistent (Paseau and Pregel, 2023, §3.1). Curry (1951)’s Chapter 1II is called ‘The problem of
mathematical truth’ and starts with the statement that “The central problem in the philosophy of
mathematics is the definition of mathematical truth’. It may then come as a slight disappointment
that he simply puts truth in the theorems themselves, justified by a verification procedure that
comes down to checking their proofs. Lolli (1998) states that only logical truth matters, defined as
‘truth under any interpretation whatsoever’ which in turn he takes to mean ‘true under any notion
of truth’ (p. 118), adding that ‘the great success of mathematical logic is to have shown that all
of logic is independent of a definition of truth. (p. 119). For Weir (2010), truth comes from the
correctness of utterances, which in mathematics is guaranteed by provability. But unlike in our
analysis it is still the utterance, i.e., the theorem, which is deemed true. Et cetera.

A.2 Pluralism and Conventionalism

Our proposal is meant to give room to various “philosophies” or “foundations” of mathematics that
are often seen to be mutually incompatible, such as classical mathematics (based on set theory) and
the formalism often associated with it, intuitionism, constructivism, etc. We see these as different
language games. As such, it is clearly “pluralist” in character. But what does this mean?

Friend (2014) ends her monograph on mathematical pluralism with the following manifesto:

One can be pluralist in different respects, at different levels and one’s pluralism can be gov-
erned by different logical inclinations or hypotheses. In general, the pluralist aspires to the
following virtues: unprejudiced observation of mathematical practice and a desire to encom-
pass and accommodate as wide a variety of practices as is coherently possible. The inverse
of these virtues are manifested when we insist on unique, simple, teleologically satisfying an-
swers, beyond what the evidence will support. (...) The pluralist position is meant to give a
philosophical theory to support what is already happening in the philosophy of mathematics.
Thus the position is ‘new’ in the sense of not having yet been expressed this way in print, but

741n addition, Hilbert’s program of giving a finitist consistency proof of classical mathematics re-introduced content
even in a purely formal setting, cf. Hilbert (1918). This is taken into account by the second language game in
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it is ‘old’ in the sense of being already implemented and understood, at some level, by some
mathematicians and philosophers of mathematics. (Friend, 2014, pp. 241-242)

In a more recent text, Priest (2024) argues for the coexistence of various foundations (or ‘are-
nas’) of mathematics (including even substructural logics), draws the analogy with games, and
even ends with the same quote of Wittgenstein that appears in the opening of our Finally, a
recent paper by Zalta (2024) opens with:

Mathematical pluralism can take one of three forms: (1) every consistent mathematical theory
consists of truths about its own domain of individuals and relations; (2) every mathematical
theory, consistent or inconsistent, consists of truths about its own (possibly unintersting) do-
main of individuals and relations; and (3) the principal philosophies of mathematics are each
based upon an insight or truth about the nature of mathematics that can be validated.

Our paper is written in the same spirit, contributing to mathematical pluralism. Priest (2024) is
closest to us, but none of these works present a similar the analysis and architecture of mathematics
(based on Hilbert and Wittgenstein) or has a comparable approach to applied mathematics.

Coventionalism is a philosophical position that is closely related to mathematical pluralism,
as well as to our work. It has its roots in Poincaré, early Wittgenstein, and logical positivism
(Ben-Menahem, 2006). Given our analysis in §2] it should be no surprise that the species of
conventionalism of interest to us is inferentialism, in which the relevant conventions are (syntactic)
inference rules. This is developed for natural language by Brandom and followers (see §2] and
references therein), whereas for logic and mathematics Warren (2020) is a major source; see also
Garson (2013) for logic All of this is also indebted to late Wittgenstein, as well as to Hilbert,
and we largely align with it. As far is truth is concerned, there seem to be two main directions,
of which we follow Ben-Menahem (2006) in thinking of conventions as hypothetical conditions
rather than as freely postulated truths, as in Warren (2020). See Landsman (2025ab) for details.
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