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1. INTRODUCTION

Topological Data Analysis (TDA) is a relatively recent method of Data Analysis based on
the mathematical theory of Persistent Homology [36], [30], [14]. TDA proved effective in
various fields of data-driven research including Life sciences and the Biomedical research.
As the popular idiom goes, TDA helps to identify the shape of data, which turns out to be
in many ways informative. But what precisely one can possibly learn from such shapes?
How this method applies across different scientific disciplines and practical tasks? Sarita
Rosenstock in her recent article [42]provided a very valuable presentation of TDA for gen-
eral philosophical readership and explored the above epistemological questions in general
terms. The present work extends Rosenstock’s study in three different ways. First, it
broadens the theoretical context of the discussion by bringing in some related epistemo-
logical problems concerning today’s data analysis and data-driven research [2} Second, it
brings the epistemological discussion on TDA into a wider historical context by pointing
to some relevant earlier developments in the pure and applied mathematics [3}, [l Finally,
the present Chapter focuses on applications of TDA in the Biomedical research and tests
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theoretical epistemological conclusions obtained in the earlier sections of this work against
some concrete examples

2. "THE END OF THEORY’

In his provocative 2008 popular article [3], Chris Anderson proclaimed the “end of theory”.
Anderson argued that given our dramatically increased capacities to collect, store, and
proceed large volumes of digital data, such traditional methods of scientific research as
modelling and theorising become “obsolete” and should be replaced by something akin
to Google’s algorithmic search. He argues that data sets of the “petabyte scale” don’t
admit for the usual treatment with traditional statistical methods but call “for an entirely
different approach, one that requires us to lose the tether of data as something that can
be visualized in its totality. It forces us to view data mathematically first and establish
a context for it later.” Anderson further argues that in the contemporary data-driven
science the traditional concept of causation is no longer relevant, so that “correlation is
enough” and should never be even tentatively interpreted in causal terms. On the positive
side, Anderson’s proposal amounts to letting “statistical algorithms find patterns where
[the traditional] science cannot”. As Rob Kitchin formulates Anderson’s view “rather than
testing a theory by analysing relevant data, new data analytics seek to gain insights born
from the data” [27, p. 2.

Anderson justifies these and some other strong epistemological claims by referring to the
success of Google’s approach in the automated translation between natural languages,
which unlike some other attempted approaches in the automated translation relies on sta-
tistical and syntactical but not semantical considerations. The recent success of Large
Linguistic Models provides an additional support for Anderson’s claims. A different moti-
vation of Anderson’s epistemological claims comes from the computational biology, namely,
from the so-called “shotgun” DNA sequencing, which was invented in the late 1970s, and
further advanced (using modern computers) and promoted by J. Craig Venter in the 2000s.
Venter’s approach is similarly based on a formal data analysis rather than testing some
relevant theories and models.

In his harsh reply to Anderson Massimo Pigliucci claims that Anderson mistakes science
for something different [38]. In Pigliucci’s view, science is supposed to do exactly what
Anderson’s new science does not: to model, to theorise, to hypothesise and to explain. So
Pigliucci argues that Anderson’s notion of science simply does not deserve the name.

The reading of Anderson’s arguments proposed in the present Chapter is equally critical but
nevertheless more charitable. Pigliucci is right that modelling and theorising are valuable

LSince so many excellent presentations of TDA are found in the recent literature, which include informal
presentations for the general academic readership [42], [30] as well as rigorous presentations for mathemati-
cians and computer scientists [36], [I4], the author of the present work focuses on epistemological features
of TDA referring the reader to the aforementioned literature for learning about the mathematical details
of the method itself.
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epistemic procedures which should not be so easily given up. At the same time it would
be wrong to dismiss Anderson’s proposal only because it does’n square with the standard
well-established ideas about science. Let us see what exactly Anderson proposes.

The identification of empirical patters stressed by Anderson as a distinctive feature of his
proposed new scientific method equally plays a pivotal role in the traditional science. As
remarks Frege in a different context, “[tJhe discovery that the rising Sun is not new every
morning, but always the same, was of very great consequence for astronomy.” [I5], p. 56].
One may add that the identification of the pattern of the “rising Sun” is perhaps even
more important for science than solving Frege’s problem of whether this pattern involves
a single reappearing object or multiple objects. Thus the practice of identification of novel
empirical patterns (including stable correlations) hardly diverges from the traditional forms
of science (whether such an identification is achieved with a powerful computer and a smart
algorithm or by a pair of non-assisted human eyes and a human brain).

What makes Anderson’s proposal so controversial is his suggestion that in the new context
of Big Data the identification of patterns not only remains necessary but also becomes
sufficient in science, so more advanced epistemic tools like models and theories become
“obsolete”. There are two lines of argument in Anderson’s paper that support this idea.
First, he stresses that in the context of Big Data the identification of patterns by the
naked eyes and the naked brain is impossible and, at the same time, it is possible and
highly effective by using computers and appropriate algorithms. Second, he observes that
in the context of Big Data such standard methodologies as theory testing and model-driven
experimental design are unsuccessful. This leads Anderson to his pragmatic conclusion that
the most effective way of acquiring a knowledge from the Big Data, namely, the algorithmic
search for patterns, should be prioritised.

2.1. Spurious correlations. Ironically, the context of Big Data makes Anderson’s idea
that “correlation is enough” particularly prone to objection. Let us for the sake of argu-
ment accept after Anderson the Humean thesis according to which the concept of physical
causation is unreliable and epistemically worthless. It turns out that the growing volumes
of analysed data make correlations of variables computed on these data (using standard
statistical methods) less informative anyway [8]. This effect, which can be formulated
with a mathematical precision and explained via statistical considerations , gives rise to
the so-called spurious correlations like that between the U.S. spendings on science, space
and technology, and the number of people in U.S. suicided by hanging, strangulation and
suffocation] Such correlations are not informative not only because they are in odds with
common ideas about causal relations but also because they are unspecific and can be fully
explained away using only general statistical principles. Roughly, the spurious correlations
are explained by the fact that the Big Data can be sufficiently big for making apparently
improbable coincidences statistically probable.

2see https://www.datasciencecentral.com/spurious-correlations-15-examples/
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The phenomenon of spurious correlations shows that at the “petabyte scale” (to use Ander-
son’s word) traditional statistical methods developed in the 20th century become useless
and need to be replaced by more appropriate methods of data analysis. This concerns
among other things the standard methods of computing correlations. In his [3] erroneously
assumes that the concept of correlation unlike that of causation is immune to the “deluge
of data”. It is not.

2.2. Power of abstraction. Anderson’s example of gene sequencing by Venter which he
offers as a paradigm of a new data-driven science is mot, contrary to Anderson’s claim,
an example of scientific achievement made without modelling and theorising. Indeed, the
concept of gene sequence is a highly developed theoretical concept making part of today’s
theory of biological reproduction and biological evolution. Venter’s research could not
be possibly done wholly outside of this theoretic framework. The “raw” data used by
Venter in his research without such a framework could not be possibly collected. Thus
Anderson’s recommendation “view data mathematically first, and establish a context for
it later” should be understood with a pinch of salt: a theoretical context matters already
at the stage of data collection.

What the example of Venter’s achievements demonstrates is not the irrelevance of modelling
and theorising in today’s data-driven science but rather the power of abstraction. When
one wants to calculate the trajectory of a projectile using principles of Classical mechanics it
is useful and even indispensable at certain point to forget about (i.e. abstract away) all the
involved physical contents and proceed with purely mathematical (or even purely symbolic)
manipulations; the obtained formal result is then (re)interpreted back in physical terms,
and in this (interpreted) form constitutes the required solution. The effectiveness of this
procedure demonstrates the power of mathematical abstraction across all sciences and the
pure mathematics itselff] The effectiveness of formal mathematical data analysis stressed
by Anderson is of the same character. It demonstrates the power of formal methods and
mathematical abstraction in various research fields where these methods are used carefully.
But Anderson’s examples do not support his radical thesis according to which raw data
and clever mathematics is all what one needs in science.

2.3. Pattern Identification. Anderson’s proposal to take the identification of patterns
in empirical data seriously makes perfect sense even if one doesn’t buy his claim that in the
context of Big Data any further theorising is either impossible or not necessary [25]. The re-
ceived historical narrative about science suggests thinking about pattern identification and
pattern recognition is a primitive, archaic and mostly outdated forms of empirical research.
The fact that the identification of observable patterns such as constellations is shared by

3Although pure mathematics can be described as formal science it admits for internal degrees of being
formal. A simple example is given by Analytic Geometry where geometrical constructions are associated
with certain algebraic equations. Given a geometrical problem one first formulates it in terms of appropriate
equations, then solves the equations formally, i.e., forgetting about their geometric interpretation, and,
finally, translates the obtained results back in the geometrical terms.
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the science of Astronomy with the pseudo-science of Astrology suggests that the distinction
between science and pseudo-science lies outside this primitive form of knowledge.

The fact that pattern identification is epistemically primitive does not mean, however,
that it fully belongs to a remote historical past and cannot be both fruitful and problem-
atic in today’s science. Consider the case of Astronomy. Today’s Astronomy is heavily
laden by advanced astrophysical theories such as General Relativity (GR) and its heirs,
and today’s astronomical observations often aim at theory- and model-testing. The first
empirical observation of gravitational waves [I], which were theoretically predicted by Al-
bert Einstein one century earlier, exemplifies a success of the theory-focused approach in
science. At the same time the 20th century Astronomy gives us some examples of impor-
tant empirical discoveries that followed the more traditional path from the identification
of certain unexpected and unexplained empirical patterns to accounting for and explaining
away the discovered patterns in terms of appropriate theories. Such was the discovery of
the quasars, which were identified in the early 1960s as unusual radio sources of unknown
nature; later these sources were identified with active nuclei of remote galaxies [26]. It goes
without saying that quasars cannot be observed by naked eye; the very notion of observa-
tion, which is relevant in the given case, is heavily theory-laden. Nevertheless the contrast
with the case of gravitational waves is obvious: while the gravitational were first theoreti-
cally predicted and only later empirically discovered with an equipment built precisely for
that purpose, the quasars were first empirically discovered and only later accounted for
theoretically.

In research fields, which are not backed with advanced mathematically-laden theories like
Astronomy and Astrophysics, the role of pattern identification is even more important. As
we shall see in [6] this is the case of Biomedicine (among many other similar cases).

Thus, contrary to Anderson, we submit that there is no good reason to reject the notion of
theory in data-driven research and give up all attempts to build theories using Big Data.
But, this time in agreement with Anderson, we also submit that pattern identification is an
important research activity which should not be ignored or underfunded. A stable reliable
pattern has more epistemic value than an unreliable theory. But, other things being equal,
a reliable theory still has more epistemic value than an identified empirical pattern. A
further detail is that in the research practice the boundary between pattern identification
and theory building is often blurred because the former is combined with proto-theoretical
elements such as classifications and systematisations/[]

3. TOPOLOGICAL DATA ANALYSIS AS A METHOD OF PATTERN IDENTIFICATION

Let us now see how the pattern identification works in the TDA. The resulting patterns
— otherwise referred to in TDA as shapes — are geometrically realised (usually low-
dimensional) finite simplicial complexes [42]. Generally, TDA assigns to a given dataset

1See examples in @
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more than just one shape: it continuously “zooms” the given data and picks up stable
shapes at different scales wherever those are found []

Since the TDA is whollyframedby the underlying theory of Persistent Homology it certainly
does not support the idea of “data speaking of themselves free of human bias or framing”
[27, p. 4]. But since this framing theory is purely mathematical it does not assume and does
not tell anything about the nature of the analysed data. This is why TDA can be applied
to any kind of data. Nevertheless the theory of Persistent Homology rigidly determines
the class of possible shapes of those data that TDA can detect. Notice that unlike the
traditional ways pattern identification and pattern recognition by naked eye (as in the
aforementioned Frege’s example), the TDA-based pattern identification and recognition is
aided by a sophisticated mathematical theory, to wit, the theory of Persistent Homology.
But since this mathematical theory is used in the TDA for purposes of general data analysis
but not for modelling a specific natural or social phenomenon or representing some physical
principle the resulting analysis remains formal; it allows one to detect a phenomenon but
not, by itself, to obtaine its causal explanation.

It is instructive to compare an elaborated physical theory like GR with the mathematical
theory of Persistent Homology as a part of the mathematical background of TDA. GR has
a number of empirically testable consequences including the physical possibility of black
holes and the existence of gravitational waves. An empirical test of such a hypothesis
can be described in the epistemological terms as a very narrow (or focused) query, which
needs highly specialised equipment (like that used in the LIGO experiment [I]), and which
admits, at least ideally, only two possible responses: yes and no. By contrast, treating
large volumes of empirical data with TDA can be described as a distorted (de-focused)
query, which admits for a large (but nevertheless limited and pre-determined) spectrum of
possible responses. When there is good theoretical reason to believe that collected data
have some topological structure (as, for example, in the brain research where the brain
structure is analysed of in terms of connections between neurones and groups of neurones
[19] or in the case of information networks [2]) then the application of TDA can detect and
specify this very structure. But TDA can be also applied blindly in the hope that detected
topological shapes of analysed datasets would somehow carve nature in its joints and give
one valuable insights into things and processes that have left their trace in the form of
those datasets[]

The methodological question concerning these two kinds of queries — whether focused or
rather distorted queries should be prioritised in science — is not new. Empirically-minded
scientists and philosophers of the 17th and 18th centuries such as Francis Bacon (1561-
1626) and Robert Boyle (1627 - 1691) rejected the medieval “Scholastic” tradition in the
natural sciences which prioritised a logically refined theoretical speculation, in favour of a
non-prejudged (but nevertheless systematic) data collection — very much in the spirit of

5“Zooming” should be understood here in terms of the global metrics defined on the given dataset, so
the emerging topology is induced by this underlying metrics.
5Compare in |§| on “shallow” and “deep” applications of TDA.
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the recent idea of “data speaking for themselves” . About the same time Galileo (1564-
1642) pioneered the modern experimental method by combining experimental design with
mathematical modelling of natural phenomena. Newton’s Principia [24] are commonly seen
as a crowning achievement of these developments, which provided a powerful paradigm for
the modern science. Philosopher Immanuel Kant inspired by Newton’s example, provided
an elaborated account of the conceptual working of science, which justified the method
of focused theoretically-laden experimental designed and devaluated a “blind” empirical
search promoted by Bacon and his followers qualifying it as an archaic and outdated form
of scientific study [17]. This didn’t prevent, of course, scientists and philosophers from de-
fending and pursuing alternative methodologies and research agendas during the following
centuries.

What the lesson of TDA can teach us today about the above methodological dilemma? To
begin with, it demonstrates that it is not a genuine dilemma. The choice is not between
a blind and random empirical search, one the one hand, and testing elaborated theoretical
hypotheses, on the other hand, but rather between more and less focused theoretical frame-
works, which support larger and narrower empirical queries and, correspondingly, admit for
larger and narrower spectra of possible empirical responses. Although the identification
of a single empirical pattern is typically a more modest epistemic gain than the crucial
testing of an important theory, using a weak multi-purpose theoretical framework such as
TDA in an empirical study (rather than building a specific theory and designing experi-
ments for its testing) is less costly. There is a tradeoff between the scope of a theoretical
framework, the potential epistemic gain, and the research costs, which may also depend
on some external factors. In any event there is indeed good reason to locate a part of
available resources to “distracted” empirical studies using TDA and similar methods that
give us a chance to discover new phenomena that lay wholly out of the scope of our current
theories and then pursue their further study. In some case such empirical discoveries can be
applied in practice before they are properly understood and explain (as this often happens
in medicine).

4. TOPOLOGICAL DATA ANALYSIS AS A VISUALISATION TECHNIQUE

In 1933 Hans Hahn published an influential article titled “The Crisis of Intuition”[] where
he argued contra Immanuel Kant that mathematical intuition] cannot play a foundational
role in mathematics and science. In the support of his anti-Kantian view Hahn provided
a number of mathematical and physical examples where, according to his analysis, Kant’s
account of how intuition and conceptual reasoning work together in mathematics and
mathematically-laden science did not apply. In particular, Hahn pointed in this paper to
geometrical constructions, which since the 1970s became known under the name of fractals
because of their fractional Hausdorff dimension [32].

"[20], English translation [21]
8According to Kant, mathematical intuition splits into its spatial and temporal varieties, the former
being related to geometry and the latter to arithmetic.
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Referring to the graph of Weierstrass function (which is a fractal curve), Hans remarks
that “the character of this curve entirely eludes intuition” |21 p. 84]. As a remedy of this
alleged failure of mathematical intuition Hans points to a large program in the foundations
of mathematics aiming at the “complete formalisation of mathematics”, that is, a setting
where “every new mathematical concept was to be introduced through a purely logical
definition; every mathematical proof was to be carried through by strictly logical means”
[21] p. 93].

A reason why fractals became so popular towards the end of the 20th century was, ironi-
cally, the booming development of computer imagery, which allowed Benoit Mandelbrot to
visualise the geometrical construction, which Hahn assumed to be non-visualisable. Quite
surprisingly these shapes looked even more “natural” than the more familiar Euclidean
shapes, so Mandelbrot could use them for mimicking natural landscapes [32]. Whether
or not Hahn was right urging in 1933 for “purely logical” foundations of mathematics he
simply could not imagine how the Weierstrass curve would look like if its construction is
continued up to the limits of human vision; perhaps he was not interested in studying this
psychological question.

According to a popular historical narrative since the second half of the 19th century mathe-
matics progressively developed toward higher levels of abstraction. Hahn’s perceived Crrisis
of Intuition supports this narrative along with stories about the rise of the modern abstract
algebra [47] during the first half of the 20th century, an extensive historical literature on
the contemporary booming contemporary development of the axiomatic Set theory and
the formal axiomatic viewpoint more generally [16], and the rise of Category theory during
the second half of the same century [28], [4I]]] Hahn’s 1932 paper is just one historical
evidence among so many that the development of mathematics towards higher abstrac-
tion and formalisation was indeed intended by its protagonists. It is impossible to deny
that such efforts were successful. One of major protagonists of these developments, David
Hilbert, expressed, however, a different view on the development of mathematics, which
brings the receive narrative into question:

In mathematics, as in any scientific research, we find two tendencies present.
On the one hand, the tendency toward abstraction seeks to crystallize the
logical relations inherent in the maze of material that is being studied,
and to correlate the material in a systematic and orderly manner. On the
other hand, the tendency toward intuitive understanding fosters a more
immediate grasp of the objects one studies, a live rapport with them, so to
speak, which stresses the concrete meaning of their relations/™|

So in Hilbert’s view a progress in abstract logical foundations of mathematics is wholly
compatible with a progress in its intuitive representation and understanding. This is in

9In the 1950s Category theory was described as an “abstract nonsense” by one of its early developers
and promoters Norman Steenrod, see [33]
1022, Preface], quoted by [23]
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spite of the fact that the two trends may compete against each other, and do so in the real
history. The aforementioned case of fractals perfectly illustrates Hilbert’s point: a concept
that at certain point of history was conceived of as abstract and admitting no intuitive
representation later acquired such a representation using a new type of imagery. This is
a move from abstraction to concretion, not the other way round. Other similar examples
are found in [40].

At the absence of any objective measure of the “level of abstractness”, which can be applied
to the whole of mathematics at any given moment of global historical time, the claim that
“mathematics progressively becomes more abstract” can describe an epistemic priority or a
vision but not a firm historical fact. Notice that the notion of the “whole” of mathematics
is very vague and flexible. Should the elementary school mathematics around the world, the
mathematics taught in engineering schools, the mathematics used in logistics and financial
matters, etc. be included onto the global account? There is indeed a clear a sense in
which the Modern Algebra as presented by van der Waerden [47] is more abstract than any
kind of Algebra known before 1900. But how do we know that this development toward a
higher level of abstraction was not compensated by the opposite move toward concretion
elsewhere in mathematics?

4.1. Cartesian imagery and Topological imagery. Whether the idea of an overall
mathematical progress towards a higher abstraction can be saved or not, the above his-
torical remarks show that the mathematical concretion, i.e., concrete forms of represen-
tation of mathematical concepts, deserves at least as much historical and epistemological
consideration as mathematical abstraction. This is an appropriate starting point for an
epistemological analysis of TDA, which brings along a new kind of mathematical imagery,
which may complement and in some cases compete the more familiar Cartesian imagery.
By the Cartesian imagery we understand here a representation of continuous (and typically
smooth) functions using the rectangular Cartesian coordinates. The paradigm case here is
the representation of trajectory of a point-like particle moving continuously through space
(think of the parabolic trajectory of a projectile like a cannonball). Today’s standard of
mathematical literacy assumes a familiarity with this method of representation. It is taught
in the secondary and undergraduate schools worldwide, and widely applied in economics,
sociology, engineering, biology, physics, and many other fieldd"]

11As the name indicates, the idea of Cartesian Coordinates dates back to the works of René Descartes
in the 17th century. The Cartesian Coordinates achieved its modern form and became universally known,
however, only much later. A history of Cartesian Coordinates, which focuses on their applications, diffusion
and the imagery rather than on the conceptual development is still waiting to be written. It goes without
saying that the conceptual part is very important: a graph of continuous function is not a mere image
but an image interpreted in precise mathematical terms. Unless one is not familiar with the concept of
continuous function that person cannot possibly interpret a given image as its graph. But that does not
mean that the representation of functions in form of material images is somewhat trivial and doesn’t deserve
a historical study. As an example of a recent historical study that focuses on material and perceptional
aspects of mathematics see [18]
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TDA applies a different type of imagery, which is well-known to mathematicians (albeit in
different visual forms) but so far remains largely unknown to the general public and even
to many professionals who routinely use applied mathematics in their work; it enjoys today
a social status similar to which the Cartesian imagery used to enjoy two or three centuries
ago. Like the Cartesian imagery the TDA-related imagery is supported by a mathematical
theory, which this time is a branch of Algebraic Topology called (the theory of) Persistent
Homology. For that reason the TDA-related imagery can be called topological. If TDA
fulfils its promises and replaces (or essentially complements) more traditional mathematical
tools routinely used today for various practical purposes, the topological imagery and the
associated topological conceptual optics will become a part of everyone’s everyday life very
much like graphs of continuous functions that represent changing inflation rates, average
temperatures and other such things of common interest.

The history of Topology very well illustrates the conflicting co-existence of opposite trends
of mathematical thought — one toward abstraction and the other toward concretion —
noticed by Hilbert. The first systematic treatise on Topology by Johann B. Listing [31]
which appeared in 1847, where the name of Topology first appeared publicly , is full of very
concrete naturalistic examples. This includes a number of biological examples, which shows
that the author followed his contemporary biological literature on morphology and made
his own observation using microscope. In the very end of the 19th century Henri Poincaré
published his fundamental work [39], which by today’s standard is written in rather “con-
crete” because it uses a metrical set up of Riemanian geometry. Simultaneously begins the
rise of highly abstract set-theoretic topology, pointed to by Hahn as a way out of the“crisis
of intuition” [20]. In 1952 appears the fundamental monograph by Eilenberg and Steen-
rod [13] where the Algebraic Topology is presented axiomatically using Category theory.
The language of category theory, on the one hand, can (and has been) been described as
highly abstract but, on the other hand, it admits for concrete diagrammatic representation,
which supports the topological intuition. The theory of Persistent Homology used in TDA
developed during the early 1990s is an offspring of the above developments.

TDA applies topological concepts to an analysis of various empirical data. In this way
TDA extends the scope of topological intuition far beyond the limits of pure mathematics.
But what it can possibly tell us about the data and about things and processes, which
have left their traces in the form of these data 7

5. SHALLOW AND DEEP TOPOLOGICAL DATA ANALYSIS IN THE BIOMEDICAL RESEARCH

We shall try to answer the above question using applications of TDA in the Biomedical
research as a case study. In a recent review article on that topic [44] the authors mention
(among many other) the following achievements:

(1) the identification of a new type breast cancer tumour earlier undetected by other
methods [35];
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(2) the identification of two new subtypes of asthma [29];

(3) the visualisation of high-dimensional immunological data pertaining to co-infection
of mice with influenza and pneumococcus, allowing for characterisation of dis-
tinct immune responses in various infection scenarios and stages within immune
responses to co-infection [43];

(4) a highly accurate classification of subtypes of stomach lesions [12];
(5) a classification of type 2 diabetes mellitus (T2DM) disease trajectories [10];

(6) using molecular topological fingerprints (MTFs) for protein identification, classifi-
cation, quantitative analysis of rigidity, and evolution of structural features during
folding [48];

(7) the identification of distinct molecular states in the RNA hairpin folding process,
providing insight into its mechanism [6];

(8) astudy of the spread of contagions across a network from geometric and topological
perspectives [45].

The following is a description and a tentative classification of cases (1)-(8) according to
their epistemic character. (1)-(2) are cases of a pure pattern identification. The fact that
the newly identified patterns of breast cancer tumour and of asthma were identified using
TDA rather than a different method of data analysis is not supposed to have any effect on
the obtained results: TDA proved effective in these case but the same new types of cancer
tumour or of asthma could be in principle discovered by another method. TDA and its
mathematical background (the theory of Persistent Homology) are not supposed to play
any explanatory role in these cases. The role of TDA is limited here to the identification
of new empirical patterns within a fixed theoretical framework. TDA is used in these cases
as an external “optical instrument” (in the sense of conceptual optics) like a microscope
or an X-ray machine: the principles of working of all those instruments have no specific
relevance to things studied with these instruments. Accordingly, in these two cases the
epistemic function of TDA reduces to pattern identification: TDA with its associated
theory of Persistent Homology has no explanatory role in one’s theoretical understanding
of the breast cancer or asthma.

Case (3) is similar to (1)-(2) in that the theoretical background TDA is unrelated to the
subject-matter (this time the subject matter is a set of scenarios of the immunological
response to multiple infections) but the authors of [43] also stress the representational
function of the TDA in their study. This example illustrates the above discussion on
Cartesian and Topological imagery The authors use both types of imagery: they use
TDA with its supporting topological imagery in order to refine a Cartesian image that
represents a theoretical prediction obtained earlier by the same authors using traditional
mathematical modelling [43] Fig. 1]. This is how the authors describe their methodological
view on using the TDA as an alternative to mathematical modelling:
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Motivated by the obvious potential of topological investigations in biomedi-
cal sciences, in the present study we seek to understand the evolution of the
immune system as it responds to co-infection between virus and bacteria.
Mathematical modelling research in influenza-pneumococcal co-infections
has been a growing field within last years [...]. These previous approaches
are based on differential equations constructed based on biological reason-
ing. While they are suitable tools to test different hypothesis, and have
helped elucidate many of the details of the mechanisms of these intricate
systems, these models are susceptible to bias by the designer and model
complexity rapidly limits the reliability in the parameter fitting procedures
[...]. In contrast, TDA is a tool that detects true patterns in the data,
without imposing artificial assumptions. [43] p. 2]

Without trying to enter into the field of immunology where the author of the present
work has no expertise, we notice that the above passage is objectionable from a purely
methodological viewpoint. The idea of the TDA as a magic tool that allows one to “detect
true patterns in the data” avoiding the usual human biases involved into the mathematical
modelling and biological theorising (which makes an echo of Anderson’s “end of theory” [3])
is, in our opinion, misleading. The TDA and the mathematical modelling with differential
equation guided by a “biological reasoning” are not two different mathematical techniques
of treating the available immunological data, which stand on equal footing and can be
compared by their effectiveness. The two approaches have different epistemic goals. TDA
helps to establish certain empirical facts via an analysis of relevant data and then to
represent these facts in a concise and comprehensible manner. The mathematical modelling
— and moreover a genuine scientific theorising combined with the mathematical modelling
— has a different and higher epistemic ambition: it is supposed to elucidate and help us
to understand the causal “mechanism” hidden behind the modelled phenomena. It goes
without saying that scientific modelling and scientific theorising requires testing theories
and models against empirical facts. Thus the TDA and the mathematical modelling do
not really compete but rather complement each other: biological theories and related
mathematical models can be checked against facts established with TDA (among other
methods of data analysis).

Sasaki and her co-authors readily give up without noticing the traditional epistemic goals
associated with scientific modelling and theorising and, without a further ado, limit their
epistemic aim to establishing certain facts using TDA. It is undeniable that facts play a
crucial role in all empirical sciences, and that modelling and theorising not tested against
facts is a speculation but not a science. What is objectionable is the idea that establishing
facts is the only goal that science can hope to achieve. When Sasaki and her co-authors
refer to the “obvious potential of topological investigations in biomedical sciences” in the
above quote, it appears that they talk about a potential theoretical significance of topo-
logical concepts in this area, i.e., to a possibility to build and develop biological theories
using topological concepts. But TDA is not a theory but a method, its application in the
biomedical research does not, by itself, introduce topological concepts into the biomedical
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theorising. Just like using an X-ray machine for studying a broken bone does not point to
any functional role of X-rays in the human skeleton, the application of TDA for studying
scenarios of the immune response does no, by itself, point to a potential role of topological
concepts in our understanding of working of the immune system.

In scientific practice the distinction between theories and facts is often blurred. When a
model has a lot of parameters that are supposed to be empirically adjusted, and when a
fact is formulated using a heavy theoretical framework, the two may appear similar. It is
hardly methodologically advantageous, however, to mix data, facts, theories and models
completely. It is out of place to give here formal definitions to these notions but it is
essential to distinguish them here informally. True, modelling and theorising requires a lot
of human creativity. But it is misleading to describe this creativity in terms of “biases” as in
the above quote. Facts, in their turn, typically depend on underlying theories. For example,
the fact of the merger of black holes recorded in the LIGO experiment by detecting the
gravitational waves issued as a result of this merger [I] could not be possibly established
without General Relativity (GR) where the concepts of black hole and of gravitational
waves are introduced. TDA is underpinned by the theory of Persistent Homology (PH)
which equally required quite a lot of human inventiveness for its creation [37]. Unlike GR,
PH is a mathematical but not physical theory. This implies that facts established with
PH (via TDA) are formal; they reflect formal structures of data independently of where
these data come from. TDA can tell us something important about scenarios of immune
response (as in [43]) only when this method is used in a wider theoretical framework
that includes some theory of the immune system and explains why the analysed data
are relevant. The idea that TDA may present a viable alternative for modelling and
theorising makes sense only in a situation where the concerned models and theories are
sufficiently poor, so pursuing a less ambitious epistemic goal of establishing facts (laden
with a sophisticated mathematical theory but not with any specific theory of the immune
system) may be a good choice. But the idea that TDA provides a direct access to reality
free of usual human biases is anyway wholly misleading.

As indicate their titles, in cases (4)-(5) TDA not only allows one to identify new patters
but also suggests theoretical principles for their classification. In case (4) stomach lesions
are classified according to their geometrical and topological properties, which are detected
via the TDA of magnifying endoscopic images (ME) of the gastrointestinal tract. So in
this case there is an understanding of how the topological “shapes of data” revealed by
TDA translate into the shapes of stomach lesions identified with this method.

Case (6) is similar in this respect. Here the authors use the notion of “pseudo-time” that
characterises the progression of a disease and “propose the joint use of pseudo time-series
with TDA in order to illustrate the temporal characteristics of disease progression, so that
disease trajectories can be constructed from the data using the topological model [of the
data obtained with TDA] as a guide.” [10] p. 2]. Once again, the path from the data to the
wanted trajectories via TDA profiles aka the “topological model” or “shape” of the data in
this case is transparent. Although the “topological model” referred to in the above quote
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is obviously not a full-fledged theoretical model of the disease in question, it is not just
an external indication of certain state of affairs either 2} The author’s “topological model”
does not directly represent but rather helpfully encodes the relevant features of analysed
health records, which show how the studied disease may progress in the real time.

In case (7) the authors claim that TDA helps them to understand the “mechanism” of the
RNA hairpin folding process. By the mechanism they understand here a detailed spatial
description of the RNA hairpin folding, which involves topological concepts (such as a
“contact” between different fragments of a RNA molecule). So TDA is, once again, used
here for studying a natural process in which topological properties are essential.

In case (8) topological concepts are used for modelling the spread of contagions, and these
very topological features are read off from the relevant empirical data using TDA. So in
this case TDA is definitely used not for a mere pattern identification but for testing and
an empirical adjustment of a theoretical mathematically-laden model of certain underlying
natural process (viz. the spread of contagions) against the relevant data.

Thus cases (1)-(8) differ by their epistemological character. Cases (1)-(3) are examples of
“shallow” applications of TDA. They are shallow in the sense that in these cases TDA has
no special relevance to things and processes (namely, breast cancer, asthma and scenario of
immune response) studied using this method. In cases (4)-(7) geometrical and topological
concepts get involved (independently of TDA) into modelling of the phenomena studied
with TDA. In these cases topological features of datasets revealed with TDA more directly
reflect essential features of studied processes. Such applications of TDA can be described as
being “deep”. The deepest application of TDA in the above list is the case (8) where TDA is
used for testing and the adjustment of a topological model of the spread of contagions.

Thus even if by default TDA is a method of formal data analysis, which may be applied
to any set of data provided with a global metric, TDA can be also used in more specific
contexts, which involves topological modelling and topological theorising. In this latter case
using TDA is no longer presents itself as way to “allow data to speak for themselves” but is
guided by appropriate theories, which share with this method a part of their mathematical
background. This shows that Anderson’s “end of theory” paradigm [3]is not only untenable
(see but also unnecessary because new effective methods of working with Big Data like
TDA are compatible with the traditional modelling and theorising.

6. CONCLUSION

Since TDA is a specific method of data analysis, an epistemological study of TDA requires
some preliminaries concerning the epistemological foundations of data science [I1]. In the
present work TDA has been framed into the continuing debate on the role of data analysis
as a possible replacement for theory-building and theory-testing suggested back in 2008
by Anderson [3] Like many other critics of Anderson’s radical proposal the author

12Compare cases (1)-(2).
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of this work rejects it in its integrity but exploits its insights concerning the strengthened
epistemic role of pattern identification and pattern identification in the context of Big Data
combined with sophisticated mathematical methods of their analysiﬂ TDA clearly qual-
ifies as such a method. Since TDA is underpinned by a mathematical theory of Persistent
Homology (PH) this method cannot be described as theory-free; this theory provides a
specific “conceptual optics” that allows for a specific interpretation of data using TDA.
But the fact that PH is mathematical rather than physical or biological theory allows one
to apply TDA to data of all types (provided that the data are appropriately prepared);
this method is universal and not restricted to this or that domain of science.

The above case study of applications of TDA in the biomedical research adds important
nuances to the above general picture. In some cases which have been described as shallow
applications (cases (1)-(3) in[6) TDA is used as an external instrument that is wholly un-
specific with respect to the studied biological processes. In such cases one can only hope
that topological patterns identified using TDA in relevant datasets will reflect essential
properties of the targeted biological entities rather than be mere artificially created fig-
mentﬁ But in other cases (cases (4)-(8) in @ the application of TDA has a theoretically
deeper character because there is some conceptual affinity between this particular method
of data analysis and the background theories and models associated with the analysed
data. Namely, in such cases topological concepts are applied not only as a part of TDA’s
mathematical background but also as a part of theoretical background related to the stud-
ied biological entities. In case (8) the studied process is the spread of contagions across a
network where the network is described in geometrical and topological terms. In this case
it is possible to read the relevant topological information from relevant data using TDA;
this topological information adjusts the model to (and tests it against) empirical data just
like this is done in the traditional mathematical modelling. There are also intermediate
cases when TDA supports only some theoretical elements like a classification of the studied
entities (cases (4)-(5)) but not a full-fledged theory or a model.

A remarkable feature of TDA, which partly explains its growing popularity, is its capacity
to represent its outcomes in a visual form. Unlike the standard imagery used along with
the traditional statistics and other methods of data analysis, TDA involves a novel type
of imagery, which is tightly related to its mathematical background theory, to wit, the
theory of Persistent Homology. In this Chapter the standard imagery has been called
Cartesian (because of its historical roots), while the TDA-related imagery has been called
topological. Even if using images for explaining the basic concepts of Algebraic Topology
and Homological Algebra is by now a well-established educational practice producing such
images automatically from datasets was not known before the rise of TDA. The relevance
of TDA in many areas of empirical research where TDA proves useful allows scientists to
explore and apply in their work many topological and homological intuitions, which until

L3For an overview of various critical arguments against Anderson’s theses of the “end of theory” see [11],
section 6.2.].
HFor a wider discussion on the epistemic role of mathematics in the context of data analysis see [34]
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recently were known only to (and mastered only by) people having a special mathematical
training.

Further, the present epistemological study of TDA demonstrates that the epistemological
role of sensual (including visual) and intuitive representations of mathematical concepts is
not limited to its educative and heuristic functions; they equally function as junctions that
connect mathematical concepts to various forms of human experience that includes sci-
entific experiments, observations and measurementﬁ During the last decades topological
concepts have been successfully applied in various areas of science. This concerns theoret-
ical physics (including Topological Quantum Field Theory [4]), chemistry [7], biology [46]
and some other areas. As a general method of data analysis TDA does not exclusively
belong to any of these fields; topological concepts are used in the TDA for analysing data
of any type rather than for building some specific theories and models. Analysing data
with TDA in the general case amounts to the identification of certain patterns by their
topological properties that may reflect or not reflect essential features of studied things and
processes. But a more attentive view on how TDA is used in practice shows that in the cur-
rent research the distinction between pattern identification and theory- and model-building
is often blurred .

It is instructive in this respect to compare the pioneering 1969 paper by René Thom who
proposed to use topological ideas and topological mathematical apparatus for treating
the biological phenomenon of morphogenesis [46] with the 2020 overview of topological
approaches in biology by Ann S. Blevins and D.S. Bassett [5]. While Thom’s approach
can be described as a daring mathematically-laden scientific theorising aiming at a general
biological phenomenon that doesn’t have a satisfactory explanation, a large part of Blevins
and Bassett’s overview is reserved for a presentation of TDA that stresses its advantages
in biology and explains the role of topology in data analysis. In the same article the
authors also discuss the relevance of topological concepts in the accounting for signal flows
in the complex biological systems, which is a clear case of mathematical modelling. The
comparison suggests the following picture: while early applications of topology in biology
like Thom’s were theoretical and rather speculative — in the sense that they didn’t have
means for testing the proposed theories and models against empirical data — more recent
applications were focused on the data analysis and some eventual modelling but avoided a
systematic topological theorising. Anderson’s “end of theory” [3] is a public expression of
this latter trend. One may hope that in the future the existing gap between the theoretical
speculation, on the one hand, and the study of empirical data, on the other hand, will

15Trying to save Kantian philosophy of mathematics in a new mathematical context that included Non-
Euclidean geometries and other recent developments not taken into account by Kant himself, Ernst Cassirer
in 1907 considered the effectiveness of mathematics in natural sciences to be the only relevant content of
the concept of mathematical intuition: “The principle according to which our concepts should be sourced in
intuitions means that they should be sourced in the mathematical physics and should prove effective in this
field. Logical and mathematical concepts must no longer produce instruments for building a metaphysical
“world of thought”: their proper function and their proper application is only within the empirical science
itself.” [0, p. 44], the author’s translation from German.
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be filled with full-fledged topological theories and models in various domains of science,
which will be testable against the available data using TDA or similar methods of data
analysis.
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