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ABSTRACT

This paper proposes an alternative to standard first-order logic that seeks greater
naturalness, generality, and semantic self-containment. The system removes the first-
order restriction, avoids type hierarchies, and dispenses with external structures,
making the meaning of expressions depend solely on their constituent symbols.
Terms and formulas are unified into a single notion of expression, with set-builder
notation integrated as a primitive construct. Connectives and quantifiers are treated
as operators among others rather than as privileged primitives. The deductive frame-
work is minimal and intuitive, with soundness and consistency established and com-
pleteness examined. While computability requirements may limit universality, the
system offers a unified and potentially more faithful model of human mathematical
deduction, providing an alternative foundation for formal reasoning.
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1. Introduction

This paper outlines a system or approach to mathematical logic which is different
from the standard one. By ‘the standard approach to logic’ I mean the one presented
in chapter 2 of Enderton’s book [2] and there named ‘First-Order Logic’. The same
approach is also outlined in chapter 2 of Mendelson’s book [5], where it is named
‘Quantification Theory’.

An online article by W. Ewald [3], in the Stanford Encyclopedia of Philosophy,
describes the process that led to the establishment of first-order logic as the standard
system of mathematical logic. However, the conclusion is that there are no clear
reasons why this occurred.

How did first-order logic come to be regarded as a privileged logical system—that is,
as (in some sense) the “correct” logic for investigations in foundations of mathematics?
That question, too, is highly complicated. Even after the Gddel results were widely
understood, logicians continued to work in type theory, and it took years before
first-order logic attained canonical status. The transition was gradual, and cannot be
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given a specific date.

First-order logic has been around for many decades, but to date no absolute
evidence has been found that first-order logic is the best possible logic system. In this
regard I may quote a stronger statement at the beginning of Jose Ferreirés’ paper
‘The road to modern logic — an interpretation’ ([4]).

It will be my contention that, contrary to a frequent assumption (at least among
philosophers), First-Order Logic is not a ‘natural unity’, i.e. a system the scope and
limits of which could be justified solely by rational argument.

Honestly, in my opinion, the approach to logic I am going to propose seems to be a
‘natural unity’ much more than first-order logic is. The basic idea behind this system
is indeed to build a logical system that is as natural, general, and absolute as possible,
and to have a faithful model of the human deductive process, as far as possible.

The proposed ‘system’ seems ‘natural’ enough to me in many respects, but I can’t
say for sure it’s a truly general and absolute approach, or the only valid approach
to logic. In fact, for instance, I believe that a logical system must satisfy some
computability requirements. Although computability theory was born in the 1930s,
therefore after mathematical logic and the formalization of first-order logic by Hilbert
and Ackermann, when formalizing a logical system it is not possible to ignore basic
concepts inherent in computability theory. I suspect that this very requirement could
be an obstacle to the possibility of obtaining a general and absolute logical system,
or a unique approach to logic.

Anyway, in our approach we do not want to use some features of first-order logic
which we don’t like, because they make it too ‘limited’ or ‘relative’ without any
obvious necessity.

These features are primarily the constraint on the ‘order’ of the expressions (which
have to be ’first order’ as suggested by the name of the system) and the need of
external ‘structures’ to associate a meaning to the expressions.

Let’s first discuss these two features.

In first-order logic variables range over individuals, but in mathematics there are
statements in which both quantifiers over individuals and quantifiers over sets of
individuals occur. One simple example is the following condition:

for each subset X of N and for each x € N we have x € X or x ¢ X .

We will explicitly show in section 14 that this is a valid expression of our language.
Another example is the condition in which we state that every bounded, non empty
set of real numbers has a supremum. Formalisms which are better suited than
first-order logic to express such conditions are second-order logic and type theory,
but these systems have a certain level of complexity and are based on different types
of variable. In our system we can express the conditions we mentioned above, and
we absolutely don’t need different types of variables, the set to which the quantifier



refers is explicitly written in the expression, this ultimately makes things easier
and allows a more general approach. If we read the statement of a theorem in a
mathematics book, usually in this statement some variables are introduced, and when
introducing them often the set in which they are varying is explicitly specified, so from
this point of view our approach is consistent with the actual processes of mathematics.

Our logic is not a first-order or second-order or n-order logic, it doesn’t involve
types, so from this point of view it is an ‘absolute’ type of logic.

Let’s examine how our system behaves when giving a meaning and possibly a truth
value to expressions. Standard logic doesn’t plainly associate meanings and truth
values to formulas. It introduces some related notion as the concepts of ‘structure’
(defined in section 2.2 of Enderton’s book), truth in a structure, validity, satisfiability.
Within first-order logic a structure is used, first of all, to define the collection of
things to which a quantifier refers to. Moreover, some symbols such as connectives and
quantifiers have a fixed meaning, while for other symbols the meaning is given by the
structure. Notions such as validity and satisfiability reveal a question-based approach:
‘what happens when we change the meaning of some symbols?’ Although this may
be an interesting perspective, this is not our approach, understanding what happens
when we change the meaning of the symbols does not have a primary interest for us,
although it’s quite obvious that we’ll also try to enunciate some results that are valid
regardless of the meaning of the symbols. In this regard, if we had this perspective,
in the first place it would have to be discussed if there are anyway symbols (e.g.
connectives, quantifiers and others too) whose meaning cannot change.

Therefore, if a symbol is in our system, it has its own meaning, and we don’t feature
a notion of structure like the one of first-order logic. Also, the set of expressions in our
language depends on the meaning of symbols. We’ll simply speak of the meaning of
an expression and when possible of the truth value of that meaning. As we’ve already
said, the meaning of a sentence will depend solely on the meaning of the symbols it
contains, it will not depend on external ‘structures’. Therefore, from this view too,
our logic is an ‘absolute’ type of logic.

We now list other features of our system, pointing out the differences and improve-
ments with respect to standard logic.

In first-order logic there exist two different concepts of term and formula, in place
of these two concepts in our approach we have just one notion of expression. Each
expression is referred to a certain ‘context’. A context can be seen as a (possibly
empty) sequence of ordered pairs (x,¢), where x is a variable and ¢ is itself an
expression. Given a context k = (1, 1) ... (Tm, om) we call a ‘state on k’ a function
which assigns ‘allowable values’ (we’ll explain this later) to the variables x1,. .., zp,.
If t is an expression with respect to context k£ and o is a state on k, we’ll be able to
define the meaning of ¢ with respect to k and o, which we’ll denote by #(k,t,0).
Our approach requires to build all at the same time, contexts, expressions, states
and meanings. We'll call sentences those expressions which are related to an empty
context and whose meaning is true or false. The meaning of a sentence depends solely
on the meaning of the symbols it contains, it doesn’t depend on external ‘structures’.

In first-order logic we have terms and formulas and we cannot apply a predicate to



one or more formulas, and it seems this can be a limitation. With our system we can
apply predicates to formulas.

When we specify a set in mathematics we often use the ‘set-builder notation’.
Examples of sets defined with this notation are {x € N| Jy € N : = = 2y},
{x € R|lz = 22}, and so on. In our system the set-builder notation is included as an
expression-building pattern, and this is an advantage over standard logic.

Of course in our approach we allow connectives and quantifiers, but unlike
first-order logic these are at the same level of other operators, such as equality,
membership and more. While the set-builder notation is necessarily present with its
role, connectives and quantifiers as ‘operators’ are not strictly mandatory and are
part of a broader category. For instance the universal quantifier simply applies an
operation of logical conjunction to a set of conditions, and so it can be classified as
an operator.

Our deductive system seeks to provide a good model of human mathematical
deductive process. The concept of proof we’ll feature is probably the most simple and
intuitive that comes to mind, we try to anticipate some of it.

If we define S as the set of sentences then an axiom is a subset of S, an n-ary rule
is a subset of S"*1. If ¢ is a sentence then a proof of ¢ is a sequence (¢1,...,%m) of
sentences such that

e there exists an axiom A such that ¢ € A ;
e if m > 1 then for each j = 2...m one of the following holds
o there exists an axiom A such that 1; € A ,
o there exists an n-ary rule R and i1, ...,i, < j such that (¢5,,...,9; ,9;) €
R;
® V=¥ .

As regards the soundness of the system, it is proved at the beginning of section 7.
Consistency, also proved in section 7, is a direct consequence of soundness. We discuss
(in paragraph 8.2) on the completeness of our deductive systems.

We have examined the main features of the system. If the reader will ask what is the
basic idea behind a system of this type, in agreement with what I said earlier I could
say that the principle is to try to provide something like a general, absolute and uni-
fying approach to logic and a faithful model of human mathematical deductive process.

This statement about our system of course is not a mathematical statement, so I
cannot give a mathematical proof of it. I'm not even sure that I have truly and fully
achieved the declared objectives and that they are fully achievable. A key aspect in
this regard is the computability requirements that a logical system must satisfy, and
in this version of the manuscript we pay due attention to these requirements.

On the other hand, logic exists with the specific primary purpose of being a model
to human deduction. In general, suppose we want to provide a mathematical model of
some process or reality. The fairness of the model can be judged much more through



experience than through mathematics. In fact, mathematics always has to do with
models and not directly with reality.

This paper’s purpose is to present an approach to logic, but clearly we cannot
provide here all possible explanations and comparisons in any way related to the
approach itself. The author believes that this paper provides a fairly comprehensive
presentation of the approach in question, this introduction includes significant
elements of explanation, justification and comparison with the standard approach to
logic. Other material in this regard is presented in the subsequent parts.

Further investigations on this approach will be conducted, in the future, if and
when possible, by the author and/or other people. If any claim of this introduction
would seem inappropriate, the author is ready to reconsider and possibly fix it. In
any case he believes the most important part of this paper is not in the introduction,
but in the subsequent sections.

The paper is quite long, but the time required to get an idea of the content is not
very high. In fact, the author has chosen to include all the proofs, but quite often they
aren’t difficult proofs. In addition, the most complex part is perhaps definition 6.1
which has a certain complexity, but at a first reading it is not necessary to take care
of all the details.

2. Changes from previous version
Here we describe the main changes of the paper with respect to the previuos version.

First of all, we have introduced computability constraints in the definition of
the system. The process with which we generate expressions in our language is an
inductive process. At each step we must ensure that the set of the new expressions
is a recursive set. This ensures that the global set of expressions is a recursively
enumerable set and so are the set of sentences etc.. We also introduced the constraint
that axioms and rules must be r.e. sets., which seems reasonable.

Besides this we also added a new example of deduction.

3. The language of our logic system

In this section we want to define the language, which is the entity that underlies our
logic system. The language is actually made up of various elements including some
sets of symbols.

First we need a set of symbols V. V members are also called ‘variables’ and
just play the role of variables in the construction of our expressions (this implies
that ¥ members have no meaning associated). We assume V is a finite or countable set.

In addition we need another set of symbols C. C members are also called ‘constants’
and have a meaning. For each ¢ € C we denote by #(c) the meaning of ¢. We assume
C is a finite set.



Let f be a member of C. Being f endowed with meaning, f is always an expression
of our language. However, the meaning of f could also be a function. In this case f
can also play the role of an ‘operator’ in the construction of expressions that are more
complex than the simple constant f.

Not all the operators that we need, however, are identifiable as functions. Think
to the logical connectives (logical negation, logical implication, quantifiers, etc..), but
also to the membership predicate ‘€’ and to the equality predicate ‘=’. The meaning
of these operators cannot be mapped to a precise mathematical object, therefore
these operators won’t have a precise meaning in our language, but we’ll need to give
meaning to the application of the operator to objects, where the operator is applicable.

In mathematics and in the real world objects can have properties, such as having
a certain color, or being true, or being false. A property is therefore something
that can be assigned to an object, no object, more than one object. For example,
with reference to color, one or more objects are red or have the property ‘to be
of red color’. But more generally one or more objects have a color. Suppose to
indicate, for objects x that have a color, the color of z with C(z). So we can
say that C' is a property applicable to a class of objects. On the same object
class we can indicate with R(z) the condition ‘z has the red color’. R is in turn
a property applicable to a class of objects, with the characteristic that for all z
R(x) is true or false. A property with this additional feature can be called a ‘predicate’.

The class of objects to which a property may be assigned may be called the domain
of the property. The members of that domain may be individual objects or sequences
of objects, for example, if x is an object and X is a set, the condition ‘z € X’ involves
two objects, and then the domain of the membership property consists of the ordered
pairs (z, X), where x is an object and X is a set.

Generally we are dealing with properties such that the objects of their domain are
all individual objects, or all ordered pairs. Theoretically there may also be properties
such that the objects of their domain are sequences of more than two items or even
the number of items in sequence may be different in different elements of the domain.

As mentioned above the concept of ‘property’ is similar to the concept of function,
but in mathematics there are properties that are not functions. For example, the
condition ‘x € X’ just introduced can be applied to an arbitrary object and an
arbitrary set, so the ‘membership property’ has not a well determined domain and
cannot be considered a function in a strict sense.

So, in order to build our language, we need another set of symbols F, where each
f in F represents a property Py. Symbols in F are also called operators or ‘property
symbols’. We assume F is a finite set. We will not assign a meaning to operators,
because a property cannot be mapped to a consistent mathematical object (function
or other). However, for each f

e we need to determine a condition A¢(x1,...,x,) that given a positive integer n
and x1,...,z, arbitrary objects indicates if Py is applicable to x1,...,2,. The
condition Af(xq,...,2,) does not have to be decidable in an absolute sense,
but it must be so when it is used in the process by which we construct our



expressions;

e for each positive integer n and zi,...,x, arbitrary objects such that
Ag(x1,...,2,) holds we must be able to calculate the value of Py(z1,...,2y,).
This doesn’t mean that Py must be a computable function in a strict sense, but
we must be able to know the value of P¢(x1,...,2,) when this calculation is
required in the construction of our expressions.

We immediately explain these concepts by specifying what are the most important
operators that we may include in our language, providing for each of them the condi-
tions Af(x1,...,2yn) and Py(z1,...,2y,) (in general P¢(x1,...,z,) is a generic value,
but in these cases it is a condition, i.e. its value can be true or false).

e Logical conjunction: it’s the symbol A and we have
for n # 2 Ax(z1,...,x,) is false |
Ap(z1,22) = (21 is true or 7 is false ) and ( x2 is true or z9 is false ),
Ph(x1,x2) = both 1 and x9 are true ;

e Logical disjunction: it’s the symbol V and we have
for n #2 Ay(z1,...,x,) is false |
Ay (z1,22) = (21 is true or x; is false ) and ( x2 is true or zy is false ),
P, (z1,x9) = at least one between x; and x3 is true ;

e Logical implication: it’s the symbol — and we have
forn #2 A (1,...,x,) is false |
A (x1,29) = (&1 is true or z is false ) and ( z2 is true or xy is false ),
P_,(xz1,x9) = x is false or z3 is true ;

e Double logical implication: it’s the symbol <> and we have
for n # 2 As (21, ..., xy,) is false |
A (x1,29) = (@1 is true or z is false ) and ( 2 is true or xg is false ),
P, (x1,22) = P (x1,22) and P (z2,21) ;

e Logical negation: it’s the symbol = and we have
forn>1 A (z1,...,x,) is false ,
A (z71) is true,
P_(z1) = x; is false ;

e Universal quantifier: it’s the symbol V and we have
for n > 1 Ay(z1,...,x,) is false ,
Ay(z1) = z71 is a set and for each x in z; (z is true or x is false),
Py(x1) = for each z in 1 (z is true) .

e Existential quantifier: it’s the symbol 3 and we have
forn > 1 Asz(z1,...,x,) is false ,
As(x1) = x1 is a set and for each x in x; (z is true or z is false),
P5(x1) = there exists x in x; such that (x is true) .

e Membership predicate: it’s the symbol € and we have
for n #2 Ac(x1,...,x,) is false |
Ac(x1,22) = X2 18 a set,
Pc(x1,x2) = x1 is a member of x9 ;

e Equality predicate: it’s the symbol = and we have
forn #2 A_(x1,...,x,) is false ,



A_(z1,x9) is true,
P_(x1,x9) = 1 is equal to z3 .

In principle we can think and use also other operators, for instance operations
between sets such as union or intersection can be represented through an operator,
etc.. In any case, we must choose our operators in such a way as to guarantee
computability in the construction of our expressions, and for this reason we must
impose limits on the choice of operators. For example, set operators of the type just
mentioned will not be used.

Our set F will typically be contained in the set {—,A,V,—, <V, 3, € =}, where
each of the just mentioned symbols has been defined above. However, we want to have
a more general approach than the one in which the operators are explicitly indicated,
so we will also allow other types of operators, as long as they fall into one of the
following categories.

The first admitted category of operators is the category of the symbols f such that

o for n # 2 Ag(x1,...,z,) is false,
o Af(x1,22) = (@1 is true or xy is false ) and ( 2 is true or x9 is false ),
o P(x1,x9) is true or false.

Since for n # 2 Ag(x1,...,x,) is false, we say the symbols in this category have a
multiplicity of 2.

All of the symbols A, V, —, <> fall within this category.

Another admitted category of operators is the category of the symbols f such that

o forn >1 Ag(x1,...,z,) is false,
o Ag(xq) is true,
o Pg(x1) is true or false.

Since for n > 1 A¢(z1,...,x,) is false, we say the symbols in this category have a
multiplicity of 1.

The symbol — falls within this category.

Another admitted category of operators is the category of the symbols f such that

o forn>1 Ag(xy,...,z,) is false,

o Af(x1) = x1 is a set and for each x in 1 (x is true or z is false),
e Py(x1) is true or false.

Clearly the symbols in this category have a multiplicity of 1.

The symbols V, 3 fall within this category.

Another admitted category of operators is the category of the symbols f such that

o for n # 2 Ag(x1,...,z,) is false,



o Af(x1,72) = 2 is a set,
o Py(x1,x2) is true or false.

Clearly the symbols in this category have a multiplicity of 2.
The symbol € falls within this category.

Finally, another admitted category of operators is the category of the symbols f
such that

o for n # 2 Ag(x1,...,x,) is false,
[ Af(.’El,:EQ) is true,
o P(x1,x9) is true or false.

Clearly the symbols in this category have a multiplicity of 2.
The symbol = falls within this category.

We require that all the symbols in F fall within one of the mentioned categories,
and so they must have a multiplicity of 1 or 2.

In the standard approach to logic, quantifiers are not treated like the other logical
connectives, but in this system we mean to separate the operation of applying a
quantifier from the operation whereby we build the set to which the quantifier
is applied, and therefore the quantifier is treated as the other logical operators
(altogether, the universal quantifier is simply an extension of logical conjunction, the
existential quantifier is simply an extension of logical disjunction).

With regard to the operation of building a set, we need a specific symbol to indicate
that we are doing this, this symbol is the symbol ‘{}’ which we will consider as a
unique symbol.

Besides the set builder symbol, we need parentheses and commas to avoid ambigu-
ity in the reading of our expressions; to this end we use the following symbols: left
parenthesis ‘(’, right parenthesis ‘)’, comma ‘,” and colon *:’. We can indicate this
further set of symbols with Z.

To avoid ambiguity in reading our expressions we require that the sets V, C, F and
Z are disjoint. It’s also requested that a symbol does not correspond to any chain
of more symbols of the language. More generally, given ay,...,a, and f51,...,0mnm
symbols of our language, and using the symbol ‘||’ to indicate the concatenation of
characters and strings, we assume that equality of the two chains ai]|...|a, and
Bil|--.||Bm is achieved when and only when m = n and for each i = 1...n a; = f;.
We also specify that by ‘string’ we mean a concatenation of symbols of our language.

While the set Z will be always the same, the sets V, C, F may change according to
what is the language that we describe. If we think to our language as a language as
defined in languages theory, once we have chosen V, C and F the alphabet 3 of our
language is given by X =VUCU F U Z.



Another variable element that we add to our language is made by a finite number
of sets D1, ..., D, such that:

e for each 4,j = 1...p such that i # j D; # D; and D; N D; # 0;
e for each ¢ =1...p and for each x € D; z is not a set;
e for each i = 1...p and for each x € D; x is not true and x is not false.

Here we have to specify that we can also not need this additional sets and in this
case we can say that p = 0.

A notion that we will soon use in the continuation is the notion of power set. Given
a set A we’ll indicate with P(A) the set of the subsets of A, but in our definition the
empty set will not be a member of P(A), so P(A) for us is the set of the non empty
subsets of A.

We also define P9(A) for any positive integer g. Of course P1(4) = P(A) by
definition, and given a positive integer ¢ P4T1(A) = P(PI(A)).

A specific language of our logic system is described by its variable elements which
are the sets V, C, F, the function # which associates a meaning to every element of C
and in addition the (potentially empty) set of sets {D1, ..., Dp}. Moreover somewhere
we will be in the condition to define new expressions for our language with reference
to the sets P4(D;) (or (P4(D;))™ for m > 2) where ¢ is potentially unlimited. Since
this could be a problem in the perspective of the recursivity of the set of expressions
that we define, we also need a positive integer ¢,.q, which we want to use as an upper
bound of ¢ is this situation.

Therefore our language is identified by the 6-tuple (V, F,C,#,{D1,...,Dp}, ¢maz)-
Since the ‘meaning’ of an operator is not a mathematical object, operators must be
seen as symbols which are tightly coupled with their meaning.

We also need to set some constraints on our constants, which must not refer to
the empty set or to a set which has the empty set as a member and so on. In order
to do that we want to define formally some predicates that we’ll soon use in the
continuation. We actually define the following predicates.

Seti(x) = z is a set.

Eventy(z) = x is true or z is false.

Given a positive integer ¢

o Setgi1(x) = x is a set and for each u € x Sety(u);
e Eventgy1(z) = x is a set and for each u € x Eventy(u).

If Seti(x) holds we define
NotEmpty, (z) = (x # 0).

Given a positive integer g, if Setyy1(z) holds we define
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NotEmpty,1(x) = NotEmpty,(z) and for each u € x NotEmpty,(u).

The constraints we want to put on our constants can now be stated as follows: for
each c € C

o if Set1(#(c)) then NotEmpty;(#(c));
e for each g > 1 if Set,(#(c)) then NotEmpty,(#(c)).

3.1. Other definitions and results

Before we can describe the process of constructing expressions we still need to
introduce some notation. In fact in that process we’ll use the notion of ‘context’ and
the notion of ‘state’. Context and states have a similar form, here we define a notion
of state-like pair and related results that well’apply to states, but similar definitions
and results will be given for contexts.

We define D = {0} U {{1,...,m}| m is a positive integer}.

Suppose z is a function whose domain dom(x) belongs to D. Suppose C € D is such
that C' C dom(z). Then we define z ¢ as a function whose domain is C' and such that
for each j € C z,0(j) = z(j) -

Suppose z and ¢ are two functions with the same domain D, and D € D. Then we
say that (x,¢) is a ‘state-like pair’.

Given a state-like pair k = (x, ¢) the domain of z will be also called the domain of
k. Therefore dom(k) = dom(z) = dom(yp).

Furthermore dom(k) € D and given C' € D such that C' C dom(k) we can define
kjc = (z/c,¢/c)- Clearly k)¢ is a state-like pair.

We define R(k) = {k;c| C € D,C C dom(k)}.
Given another state-like pair h we write h C k if and only if h € R(k) .

Suppose h € R(k), then there exists C' € D such that C C dom(k), h = k)c =
(z/c,¢)c)- Therefore dom(h) = C and k/gomn) = k/c = h.

Suppose h € R(k) and g € R(h). This means there exist C' € D such that
C C dom(k), h = k¢, and there exist D € D such that D C dom(h), g = h/p.
So D C dom(h) = C C dom(k), g = (k/c)/p = (%/c,¢/¢)/p = (@/p:%/D) = k/D-
Therefore g € R(k).

Suppose k = (x,¢) is a state-like pair whose domain is D. Suppose (y,?) is an
ordered pair. Then we can define the ‘addition’ of (y, 1)) to k.
Suppose D = {1,...,m}, then we define D’ = {1,...,m+1}. We define 2’ as a function
whose domain is D’ such that for each o = 1...m 2/(a) = z(«), and 2’'(m+1) = y. We
define ¢’ as a function whose domain is D’ such that for each a = 1...m ¢'(a) = p(«),
¢'(m+1) = 4. Then we define k+ (y, ) = (2',¢'). Obviously (k+(y,%)) /q1,...m} = K,
so k€ R(k+ (y,v)).
If D = () then clearly D’ = {1}. We define 2’ as a function whose domain is D’ such that
2'(1) = y. We define ¢’ as a function whose domain is D’ such that ¢'(1) = ¢. Then
we define k 4 (y,v) = (2, ¢’). Obviously (k + (y,%))p =0 =k, so k € R(k + (y,¢)).
In both cases k + (y,v) is a state-like pair, and k& € R(k + (y,%)), which implies
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dom(k) C dom(k + (y. ).
We have also seen that (k + (y,%)) /aomx) = (k + (y,%))/p = k.

We also define € = (),0), so € is a state-like pair.

Given a state-like pair k = (z,¢) we define var(k) as the image of the function
x. In other words if k = € then = = (), so var(k) = 0, otherwise x has a domain
{1,...,m} and var(k) = {x;|i =1...m}.

Clearly, if we assume that k + (y,v) = (2, ¢’), we can easily see that

var(k + (y,v)) = {z}|i € dom(z})} = {x;|i € dom(x;)} U{y} = var(k)U {y}.

In the next lemma we prove that, when a state-like pair is obtained as k + (y, ),
then k, y, and v are univocally determined.

Lemma 3.1. Suppose k1 = (x1,¢1) is a state-like pair whose domain is D1, and
(y1,%1) is an ordered pair. Suppose ko = (x2,p2) is a state-like pair whose domain
is Do, and (y2,12) is an ordered pair. Finally suppose ki + (y1,v1) = ka2 + (y2,12).
Under these assumptions we can prove that k1 = ko, y1 = y9, Y1 = ¥s.

Proof. We define h = k1 + (y1,v1) = ka2 + (y2,%2). Since h = k1 + (y1,v1) we can
have two possibilities:

e Dy =0, D] = {1} and there exist two functions z} and ¢} whose domain is D]
such that h = (2], ¢}) ;

e there exists a positive integer my such that Dy = {1,...,m1}, D] ={1,...,m1+
1} and there exist two functions 2} and ¢} whose domain is D] such that h =
(@1, ¢1).

Similarly, since h = ko + (y2,%2) we can have two possibilities:

e Dy =), D} = {1} and there exist two functions z}, and ¢/, whose domain is D),
such that h = (2, ¥}) ;

e there exists a positive integer mgo such that Dy = {1,...,ma}, D) ={1,...,ma+
1} and there exist two functions x5, and ¢}, whose domain is D) such that h =
(75, ¢5)-

It follows that (zf,¢)) = h = (24, ¢h), so 2} = 2}, and ¢} = ¢}, and D] = Dj,.

Suppose D; = (. This implies that D}, = D} = {1}, thus Dy = (.
In this case k1 = € = ko, y1 = 24 (1) = 25(1) = y2, 1 = ¢}(1) = ph(1) =1 .
Suppose there exists a positive integer m such that D; = {1,...,mq}. This implies
that Dé = Dll = {1,...,m1+1}, thus Dy = {1,...,m1}‘
In this case for each @ = 1...m; z1(a) = 2} () = 2h(a) = z2(a), p1(a) = ¢ (a) =
oh(a) = pa(a) . So k1 = (x1,¢1) = (22, p2) = ko; and moreover y; = zj(m; +1) =
wy(m1 +1) =y, Y1 = @y (m1 + 1) = @y(my + 1) =z .

O

Other useful results are the following.
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Lemma 3.2. Suppose h = (z,¢), k = (z,¢) are state-like pairs such that h € R(k).
Then, for each j € dom(h) xj = z; and pj = ;.

Proof. There exists C € D such that C C dom(k), h = k;c = (2/¢,%,c). Therefore
r = z/c and ¢ =9 ¢. For each j € dom(h) = C z; = z; and ¢; = ;. O

Lemma 3.3. Suppose h = (z,¢), k = (2,9) are state-like pairs such that h € R(k)
and for each i,j € dom(k) i # j — z; # zj. Then, for each i € dom(k), j € dom(h)
zizxj—>¢¢:<pj.

Proof. Let i € dom(k), j € dom(h) and z; = x;. Clearly j € dom(k), x; = z;, thus
Zi:Zj,i:j,Qszwj:dJi. ]

Lemma 3.4. Suppose k = (x,¢) and h = (y,v) are state-like pairs such that for each
i € dom(k), j € dom(h) x; = y; = i = ;. Suppose (u,0) is an ordered pair and
u ¢ var(k), u ¢ var(h). Let ¥ = k + (u,0) and b’ = h + (u, ). Let also k' = (2, ¢’)
and h' = (y',9'), then for each i € dom(k'), j € dom(h') x; = y; — ¢} = .
Proof. Let i € dom(k'), j € dom(h’) such that x; = y.

Suppose i € dom(k). If j ¢ dom(h) then 2; = z; € var(k), y; = u ¢ var(k) so
z; # y;. So j € dom(h) and ¢} = p; = ¥; = ).

Suppose i ¢ dom(k). If j € dom(h) then z} = u ¢ var(h) and y; = y; € var(h), so
z; # ;. Then obviously also j ¢ dom(h) and ¢} = 0 = . O

Lemma 3.5. Suppose k = (x,¢) and h = (y,9) are state-like pairs such that for
each i € dom(k), j € dom(h) z; = y; — ¢; = ;. Suppose k = (2,¢) C k and
g = (w,0) T h. Then for each i € dom(k), j € dom(g) z; = wj — ¢; = b;.

Proof. There exists C € D such that C C dom(k), k = k)c = (z/c,¢,c). Therefore
dom(k) = C C dom(k).

Similarly there exists D € D such that D C dom(h), g = h/p = (y/p,9/p)-
Therefore dom(g) = D C dom(h).

Let i € dom(k), j € dom(g), z; = wj, then i € dom(k), j € dom(h),

z; = (r)0)i =2z =wj = (Yp)j =Yj -

Then

¢i = (p/c)i=i=19;=(9p); =b; .

Lemma 3.6. Suppose h = (x,¢) is a state-like pair, (y,®) is an ordered pair and
define k = h + (y, ¢). Suppose g € R(k) is such that g # k. Then g € R(h).
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Proof. Let D = dom(h).

Suppose m is a positive integer and D = {1,...,m}. Then k = (2/, ¢’) has a domain
{1,...,m+1}. Moreover there exists C' € D such that C' C {1,...,m+1} and g = k/c.
Since g # k we must have C' C {1,...,m}. We have

9="kic=()c:¥)c) = ((@)p) o (¢)p)jc) = (@01 0)0) = hye -

Now suppose D = (). Then k = (2/,¢’) has a domain {1}. Moreover there exists
C € D such that C C {1} and g = k/¢. Since g # k we must have C' = ) and

g=0.0)=
In both cases g € R(h). O

Lemma 3.7. Let x be a function such that dom(z) € D, let C,D € D such that
C C D C dom(x). Then we can define x,c and (vp) ¢, and we have (z/p),c = T/c-

Proof. Define y = z,p, we have dom(y) = D and for each j € D y(j) = z(j).
Moreover dom(y,c) = C = dom(x,c) and for each j € dom(C) y,c(j) = y(j) =

z(j) = x,0(j)- O

Lemma 3.8. Let k = (z,p) be a state-like pair, let C,D € D such that C C D C
dom(k). Then we can define k;c and (k/p),c, and we have (k/p),c = k/c-

Proof.

(k/p)jc = (x)p,v/p)jc = ((Z/p)cs (0/D))c) = ()0, ¢/0) = k)c-

O
Lemma 3.9. Let g, h,k be state-like pairs, let g T h, h T k. Then g C k.
Proof. There exists C' € D such that C' C dom(h), g = hc.
There exists D € D such that D C dom(k), h = k/p.
This implies that C' C dom(h) = D, so g = h,c = (k/p)/c = k/c-
Since C' C dom(k), g C k. O

Lemma 3.10. Let g,h and k = (x,¢) be state-like pairs such that g,h € R(k),
dom(g) C dom(h). Then g € R(h).

Proof. There exists C' € D such that C C dom(k), g = k'/ And there exists D € D
such that D C dom(k), h = k/p. It results C = dom(g) C dom(h) = D. Then, clearly

g=(z,9)c=(r/c,¢,c) = ((x/p) 05 (/D)) = (T/ps /D) )0 = hyc -

14



Lemma 3.11. Suppose h = (z,p) is a state-like pair, (y,$) is an ordered pair and
define k = h + (y, ¢). Then k;gomn) = h-

Proof. Let D = dom(h) and k = (2',¢"). Then k/qomn) = (iL‘//D, (p'/D) = (z,) = h.
O

We also need some notation referred to generic strings, this notation will be useful
when applied to our expressions, which are non-empty strings. If ¢ is a string we can
indicate with £(¢) t’s length, i.e. the number of characters in ¢. If ¢(¢) > 0 then for
each a € {1,...,4(t)} at position « within ¢ there is a character, this symbol will be
indicated with t[a]. We call ‘depth of o within ¢’ (briefly d(¢, «)) the number which is
obtained by subtracting the number of right round brackets ‘)’ that occur in ¢ before
position a from the number of left round brackets ‘(’ that occur in ¢ before position «

The following lemma will be useful later within proofs of unique readability. Its proof
is so simple that we feel free to omit it.

Lemma 3.12. Let ¥, ¢, n be strings with £(9) > 0, £(p) > 0, and let t = V||p||n; let
also a € {1,...,4(p)}. The following result clearly holds:

d(t, (V) +a) =d(t,((9) + 1) + d(p, a).

O

Before we describe the process of constructing expressions for our language we
must also prove some useful lemmas related to the predicates we have defined above.

Lemma 3.13. Giveni = 1...p and a positive integer q, for each x € PI(D;) we have

o Sety(x),
o for each r > q —Set,(x)

Proof. We proceed by induction on gq.
Let ¢ = 1. We assume x € P(D;), then clearly Set;(z).

Given a positive integer r, we assume Set,1(x) and try to derive a contradiction.
Since x # () we can take z € x, we have Set,(z) and z € D;, this actually is a
contradiction. So we have proved —(Set,11(x)).

Let now ¢ be a positive integer and assume for each = € PI(D;) we have

o Sety(z),
e for each r > q —Set,(z).

We want to show that for each = € P4+1(D;) we have

o Setgii(x),
e for each r > g+ 1 =Set,(z).
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We have that x # (), for each z € z z € P4(D;), so for each z € x Sety(z). Therefore
Setg1(x).

Given a positive integer r > ¢+ 1, we assume Set,(z) and try to derive a contradic-
tion. Let z € z, we have z € PY(D;) and Set,_1(z). Since r —1 > q =Set,_1(z) should
hold, and we have derived a contradiction. ]

Lemma 3.14. Given i,j = 1...p, q,r positive integers such that g # r P4(D;) N
Pr(D;) = 0.

Proof. Let’s suppose, absurdly, « € P4(D;) N P"(D;). Suppose q < .

Using lemma 3.14 we have both Set,(z) and —Set,.(z). Therefore we must have
Po(D) NP (D) =

In the case ¢ > r we can apply the same type of reasoning. O

Lemma 3.15. Given i,j = 1...p such that i # j and a positive integer q we have

P4(D;) N PYD;) = 0.
Proof. We proceed by induction on q.
Let ¢ = 1. Assume P(D;) NP(D;) # 0 and let = € P(D;) N P(D;).

We have  # (), « C D;, « € Dj, so x € D; N Dj, and D; N D; # (), against our
assumptions.

In order to perform the inductive step, let ¢ be a positive integer, we assume
P(D;) N PI(D;) =0 and we try to show PITH(D;) N PITL(D;) = 0.

We assume, absurdly, z € P9T1(D;) N PIH(D;). We have z # 0,  C PI(D;), x C

P4(D;). So x C PI(D;) N'PY(D;) and P4(D;) N PY(D;) # () against our assumptions.
O

Lemma 3.16. Given i = 1...p and a positive integer q for each x € PY(D;) and
r < g we have Set,(x) and NotEmpty,(z).

Proof. We proceed by induction on gq.
Let ¢ =1 and let z € P(D;). Clearly Sety(z) and NotEmpty;(z).

In order to perform the inductive step, let g be a positive integer, we assume for
each z € P4(D;) and r < ¢ we have Set,(x) and NotEmpty,(z).

Let now = € P4tY(D;), we want to show that for each » < ¢ + 1 we have Set,(z)
and NotEmpty,(z).
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Cleary Seti(z) and NotEmpty;(x) both hold true.
Given r < ¢ + 1 such that r > 1 we want to prove Set,(z) and NotEmpty,(z).

In order to prove this we just need to prove that for each u € = Set,_;(u) and
NotEmpty,_1(u).

Since z € P4T(D;) then 2 C P4(D;) and for each u € x u € PI(D;). Since r—1 < ¢
we have indeed Set,_1(u) and NotEmpty,_1(u). O

Lemma 3.17. Given i = 1...p and a positive integer q for each x € P4(D;) and
r < ¢+ 1 we have ~Event,(z).

Proof. We proceed by induction on gq.

Let ¢ = 1. Let z € P(D;), x is a set and I think we can assume —Event;(x).
Moreover z C D; so for each u € z u € D;, for each u € x ~Eventy(x), so it is false
that for each u € x Eventi(z), and it follows that —(Eventa(z)).

For the inductive step, let ¢ be a positive integer and we assume for each z € P(D;)
and r < ¢ + 1 we have ~Event,(z). Let x € PITL(D;), let r < ¢ + 2, we want to show
that - Event,(z) holds.

If r = 1 since x is a set we can assume —Fvent;(z) holds.
If r > 1 we have x C PI(D;), so for each u € x u € P4(D;), and then for each

u € x ~Event,_1(u). So it is false that for each u € x Event,_1(u), and Event,(z) is
false. O

Lemma 3.18. For each positive integer ¢ and for each x if Eventy,1(x) then Sety(z).

Proof. For the initial step of the proof, if Fventy(z) then Set;(x).

For the inductive step, let ¢ > 1 and Eventqy1(z), then x is a set and for each u €
Eventg(u). It then follows that for each u € x Set,_1(u), and then Sety(z). O

Lemma 3.19. Given i = 1...p and a positive integer q for each x € P4(D;) and
r > q+ 1 we have ~Event,(x).

Proof. Let x € P1(D;) and let r > g + 1. Since r — 1 > ¢ by lemma 3.13 =Set,_1(z)
and by lemma 3.18 = FEvent,(z). O

4. Computability theory

In our logic system we want to satisfy every requirement that must be desirable
with respect to the Computabilty Theory. In order to be able to understand and
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satisfy such requirements, clearly we must have at least a basic knowledge of the
Computability Theory.

We use Cutland’s book [1] as the main reference for this. The book defines the
concept of computable function: given a set A of natural numbers and a function
f A — N, we say that f is computable when it is URM-computable. We will not
define here the concept of URM-computability, the reader can find the definition in
the mentioned book.

As suggested by the book we use the symbol € to indicate the set of the computable
functions from a subset of N to N (also called the ‘partial functions’ from N to N).

The book also provides many alternative definitions of the notion of effective
computability and affirms that ‘the remarkable result of investigation by many
researchers is the following: Each of the above proposals for a characterisation of the
notion of effective computability gives rise to the same class of functions, the class
that we have denoted with %”.

Finally the book also states the famous ‘Church’s thesis’ in the following terms:
‘The intuitively and informally defined class of effectively computable partial functions
coincides exactly with the class ¥ of URM-computable functions’.

If A is a subset of N we can define the characteristic function of A as the function
cagiven by:if x € Aca(z) =1;if v ¢ A ca(xr) =0. Then A is said to be recursive if
c4 is computable.

If A is a subset of N we can define the semi-characteristic function of A as the
function s4 given by: if z € A sg(x) =1;if x ¢ A sa(z) is undefined. Then A is said
to be recursively enumerable (r.e.) if s is computable.

A recursive set is obvioulsy also recursively enumerable.

Given a subset A of N the following statements are equivalent:

e Aisr.e,;
e A= () or A is the range of a total computable function;
e A is the range of a partial computable function.

Please refer to Cutland’s book for the proof of the equivalence.

We now state and prove a theorem which is important for us, but is not present in
Cutland’s text.

Theorem 4.1. Let A be a r.e. subset of N, let f be a function defined on A such that
for each v € A f(x) is a r.e. subset of N. Then |J,c4 f(x) is r.e..

Proof. There exists a partial computable function £ such that A = ran(§). For each
x € A there also exists a partial function y, such that f(z) = ran(xz).

Let’s consider the function 7 : N> — N (named the Cantor’s pairing function)
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defined by
m(z,y) = (@ +y)z+y+1)/2+y.

This function is a bijection and the inverse function ¢ : N — N2 is a computable
function itself (cfr. Wikipedia ‘https://en.wikipedia.org/wiki/Pairing_function’).

Let’s now consider a function ¢ defined over N such that ¢(z) is calculated as
follows: we first calculate ((z) = (z1,22), then we calculate £(z1), if it terminates
§(21) € A and we can set ¢(2) = x¢(z,)(22)-

The function ¢ is a partial computable function and we can show that

Uzea f(@) = ran(e).

Given y € Jyc4 f(z) we will prove that y € ran(¢). In fact there exists » € A
such that y € f(z). There exists z; € N such that x = £(z1), and there exists zo € N
such that y = xz(22) = Xg(z,)(22). There exists z € N such that ((z) = (z1,22) and
therefore y = ¢(z2).

Vice versa given y € ran(¢) we want to show that y € (J,c4 f(z). There exists

z € N such that y = ¢(2). If we set (21,22) = ((2) then y = ¢(2) = x¢(z,)(22). We
have that §(21) € A and y = x¢(2,)(22) € f(£(21))-

U

Our reference book also explains how to apply the definition of computability
and the related ones to a domain D which is different from N. This requires the
availability of a coding.

A coding of a domain D of objects is and explicit and effective injection o : D — N.

We can actually assume that the range of o is N (and in this case « is a bijection)
or at least that ran(«) is recursive.

A partial function f : D — D is coded by the function f* = ao foa ™!, so f*
is a partial function N — N. We say that f is computable if and only if f* is computable.

Given a set A C D we can define A* = {a(d)|d € A}. We say that A is recursive
iff A* is recursive, and that A is recursively enumerable iff A* is recursively enumerable.

Given A C D we can define the characteristic function of A as the function cg
whose domain is D given by: if x € A ca(z) = 1;if ¢ A ca(x) = 0. We can also
define the semi-characteristic function of A as the function s4 whose domain is A,

such that for each x € A s4(z) = 1.

In relation to the former definitions, we can prove the following lemma.

Lemma 4.2. Let A C D, then

o A is recursive if and only if c4 is computable;
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o A s r.e. if and only if sa is computable.
Proof. First of all we notice that given n € N

e if n € A* then a™(n) € 4;
e if a7 !(n) € A then n € A*.

We also notice that given x € D, if x ¢ A then a(r) ¢ A*. In fact if a(x) € A*
then there exists y € A such that a(zx) = a(y), but since = # y and « is injective we
cannot have a(x) = a(y).

Let’s assume A is recursive, we want to show that c4 is computable.

We know that ca- is computable. Given x € D

o if x € Athen a(z) € A" ca(z) =1=¢
o if z ¢ A then a(x) ¢ A* cy(x) =0 = ca-(a(x)).

Therefore in every case c4(x) = ca«(a(x)), and then cy is computable.
Vice versa we now assume c4 is computable and we want to show that A is recursive.

Given n € N,

e if n ¢ ran(a) we have ¢, qn(q)(n) = 0, 50 ca<(n) = 0 = Crgp(a(n).
e if n € ran(a) we have ¢,4pn(q)(n)
o if n € A* then a~!(n) €
o if n ¢ A* then a=1(n) ¢

Clearly we can compute c4-(n) as follows:

If ¢ran(a)(n) = 0 then ca-(n) = 0;

if Cran(a)(n) = 1 then ca-(n) = cala™t(n)).

Let’s assume A is r.e., we wanto to show that s4 is computable.

Given z € D,
o if z € Athen a(x) € A*, x € dom(sa), a(z) € dom(sa-) sa(z) =1 = sa-(a(x))

o ifif x ¢ A then a(z) ¢ A* = ¢ dom(sa), a(z) ¢ dom(sa-), sa(z) and sa-(a(x))
are both divergent.

Therefore s4(x) can be calculated by s4-(a(x)), and s4 is computable.
Vice versa we now assume s, is computable and we want to show that A is r.e..

Given n € N,

o if n ¢ ran(a) we have n ¢ A* = dom(sa-), therefore ss-(n) is divergent, and
sa(a~t(n)) is divergent too.
e if n € ran(a) we have ¢,.qn(q)(n) = 1 and
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o if n € A* then a~t(n) € 4, sa-(n) =1 =sa(a"1(n));
o if n ¢ A* then a=1(n) ¢ A, sa-(n) and sa(a~!(n)) are both divergent.

Therefore in all cases sa-(n) can be calculated as s4(a~1(n)), and so sa- is com-
putable and A is r.e..
O

In the theorem 4.1 above we proved that a r.e. union of r.e. sets is still a r.e. set.
This theorem was stated for subsets of N, and we will generalize it to generic domains.

Theorem 4.3. Let D1 and Do be two ‘domains’ to which we can apply the notions of
computability using two codings o1 : D1 — N and ag : Dy — N. Let A be a r.e. subset
of D1, let f be a function defined on A such that for each x € A f(x) is a r.e. subset
of Da. Then |J,c 4 f(x) is a r.e. subset of Ds.

Proof. We call W the set J 4 f(2) € Dz. We'll prove that W is r.e. by proving
that W* = {aa(y)|y € W} isr.e.. Let’s assume that actually W* = |, 4- flart(2)*.

If the equality we have assumed holds, then we can consider that A* is a r.e.
subset of N, and that for each z € A* a;'(z) € A, f(a;'(2)) is a r.e. subset of Dy,
f(a7(2))* is a r.e. subset of N. Therefore, if the equality holds, we have proved that
W* is r.e. and our proof is finished.

Let’s then show that W* =, 4. f(a;'(2))* actually holds.

Let w € W* then there exists y € W: w = aa(y), and there exists z € A: y € f(z).
Let 2 = a(z) € A*, then y € f(a;'(2)) and w = as(y) € f(a;'(2))*. So we can
confirm that w € |, 4. f(a7 ' (2))*.

Conversely let w € |J,c4- f(e7'(2))* and we want to prove that w € W*. There
exists z € A* such that w € f(ay;'(2))*. Let © = a;'(2) € A then w € f(x)*. Let
y=a; (w) € f(z). We have y € W and so w = aa(y) € W*.

O

Typically we will be dealing with a finite or countable alphabet ¥, and the domain
to which we will have to apply the concepts of computability will be the set >* of
all the empty or finite strings with characters in the mentioned alphabet. But we
may also need to apply those concepts e.g. to (X*)™. So let us examine some sets to
which we can actually apply computability notions, in order to be able to apply such
concepts wherever we need them.

First of all we consider the set N2. There is a coding 7 : N> — N and this coding is
the Cantor pairing function defined by

m(ki, ko) = (k1 + ka)(k1 + ko +1)/2 4+ ko .

So, obviously, we can apply computability notions to N2, and actually we are able
to apply them also to N™ for an arbitrary integer n > 2. In fact if we assume 7, is

21



a coding N* — N, with n > 2, then we can define a function 7,1 : N**! — N as
follows:

7Tn+1($1a cee uxnvxn—i-l) = 7I-(7"'n(x17 s 7In)axn+1) .
And this function is actually a coding N**! — N.

At this point given n domains D1, ..., D, such that for each i = 1...n there exists
a coding «; : D; — N we can build a coding o : Dy x --- x D,, — N. Our coding will
be defined as follows:

Oé(dl, N ,dn) = ﬂn(al(dl), e ,Oén(dn)) .

We said earlier that typically we will be dealing with a finite or countable alphabet
>, and the domain to which we will have to apply the concepts of computability will
be the set X*. With respect to this, we notice that N can be itself considered as an
alphabet, so we first try to find a coding N* — N.

Here we notice that N* = {e} U5, N,

We have seen that for each ¢ > 2 m; is a coding N — N, so we can create a coding
iUz N = N2 as follows:

e for each x € N y(z) = (0,z);
o foreach i > 1, (x1,...,2;) € N y(z1,...,2;) = (0 — L, m(w1, ..., 2:)).

We now want to create a coding « : N* — N. We define our coding « as follows:

o afe) =0; ‘
o for each z € ;5 N* o) = ma(y(z)) + 1.

Given a finite or countable alphabet 3 we now want to define a coding ¥* — N. Of
course there exists a coding o : ¥ — N. We first want to define a coding ¢ : ¥* — N*,
and, since ¥* = {e} UJ;5, X', we can define it as follows.

o 0(€) =¢ . ‘
o foreachi >1 (x1,...,2;) € X" 0(z1,...,25) = (o(z1),...,0(x;)) € N°

At this point if « is a coding N* — N then v = a0 § is a coding ¥* — N.

We can notice that if 3 is finite then o is not surjective, and so also § and  are
not surjective. Anyway ran(y) is still recursive since given x € N we can decide
whether x € ran(y). In order to do this we can calculate a~!(x) € N*, and here
we can determine if a~(z) € ran(d), if this is true since * = a(a~!(z)) then
x € ran(7y). If on the contrary a~!(x) ¢ ran(§) then x ¢ ran(y). In fact if z € ran(y)
then exists y € X* such that z = y(y) = a(d(y)), so a(a"(z)) = a(i(y)), and
a Y(z) = (y) € ran(9).

Once we have a coding for ¥* we have it also for (X*)", where n is a positive

integer, and if T" is another alphabet we have a coding for (X*)™ x (I'*)™, where m is
another positive integer.
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Given n domains Dy,...,D, and given A; C Dq,..., A, C D, if Ay,..., A, are
r.e. then A; x --- x A, is also r.e.. In fact given (z1,...,2,) € D1 X --- x D,, we can
compute Sa,x..xA, (Z1,...,2,) as follows: for each i = 1...n we calculate su,(z;)
and if we obtain a result for each ¢ then we emit the result 1.

Given a domain D and a coding o : D — N and given a function f : N — D we
can say that f is computable when oo f : N — N is computable.

We can prove the following lemma:

Lemma 4.4. Given a set AC D A is r.e. if and only if A= or there exists a total
computable function f: N — D such that A = ran(f).

Proof. Let A* = {a(d)|d € A}.

If Aisr.e. then A* is r.e. and so A* = () or there exists a total computable function
g : N — N such that A* = ran(g). If A* = 0 then clearly A = (), otherwise since
A* C ran(a) we can define f = a1 og, f is a function N — D and ran(f) = A.

In fact if d € ran(f) then there exists + € N: d = a~!(g(r)). We know that
g(z) € A* and so d = a~1(g(x)) € A. Conversely if d € A then a(d) € A* and there
exists z € N: g(z) = a(d), d = a~(g(x)) = f(x) € ran(f).

Conversely if A = () then A* = (), A* is r.e. and A is r.e.. If there exists a total
computable function f : N — D such that A = ran(f) then g = ao f : N — N is
computable and A* = ran(g).

In fact if y € A* then there exists d € A: y = «a(d) and there exists x € N:

d= f(x),soy=a(f(x)) € ran(g). Conversely if y € ran(g) then there exists z € N:
y = a(f(x)), and since f(z) € A then y € A*.

So in the latest case too A* is r.e. and A is r.e.. O

Let D1 and D5 be two ‘domains’ to which we can apply the notions of computability
using two codings a7 : D1 — N and as : Dy — N. Using codings, we can define the
notion of ‘computable function’ also for a function f : D; — Dy. We say that f is
computable if and only if ag o f o al_l : N — N is computable. We can notice that
since the domain of 041_1 could be a proper subset of N the mentioned function could
actually be a partial function N — N.

Using the just introduced notion, we can prove the following lemma:

Lemma 4.5. Let A be a r.e. subset of Dy and let f : Dy — Dy be a computable
function. If we define B = {f(a)|a € A}, then B C Dy is r.e..

Proof. If A= () then B=0isr.c..

Otherwise there exists a computable function g : N — Dj such that A = ran(g).
We have fog:N— Dy and B = ran(f o g).

In fact if dy € B then there exists a € A such that do = f(a) and there exists x € N

23



such that a = g(z), so da = f(g(x)). Conversely if dy € ran(f o g) then there exists
z € N such that dy = f(g(x)), so g(x) € A and d2 = f(g(x)) € B. O

5. Premise: description of contexts

We want to be able to show that a certain set of contexts is recursive or recursively
enumerable. To this end we are going to define contexts as strings. Given a finite
or countable alphabet ¥ which contains a finite or countable set of variables V, the
symbols > and ‘,” and doesn’t contain the symbols ‘<’ and ‘>’ we can define an
alphabet I' = ¥ U {<, >}.

Let € be the string ‘<>’ and let ©(3,V) (henceforth ©) be the set

{efu{<<zr1:o1>  <am:pm>> |01, ., 2m €V, p1...0m € X'}

Lemma 5.1. Let k € © —{e}, let m positive integer, 1,...,Tm €V, ©1,. .., Pm € L*
such that k =<< x1:p1 > -+ < Ty 1 oy >>. Let also p positive integer, y1,...,Yyp €
V, Y1,...,0p € X* such that k =<< y1 : Y1 > -+ < yp : ¥p >>. Then p = m, for
eacht=1...m y; = x; and Y; = ;.

Proof. First of all, as in former parts of the paper, if ¢ is a string we will indicate
with £(t) t’s length, i.e. the number of characters in t.

Also, given a = 1...4(t) let t[e] indicate the character with position « inside ¢,
and given a, f = 1...4(t) with o < 3 let t[av, §] be the substring of ¢ which begins at
character a and ends at character .

For each i =1...m let ¢; = k[oy, p;]. For each j =1...p let ¢; = k[, v;].

Clearly y; = k[3] = z1.

If vy > pg then vy > pp +1 > a7 =5 =1 so ‘>’ = k[uy + 1] is a character in 1);:
this cannot be true, so vy > p is false and similarly pu; > v is false, so v = 1 and

it follows that ¢ = 1.

If m =1 then k[u; + 2] = *>’. In this case if p > 1 then k[ + 2] = ‘<’. Therefore
it must be p = 1 and our proof for m = 1 is finished.

Let’s consider the case m > 1. In this case given ¢ = 1...m — 1 we assume we have
proved that for each j =1...7p > j y; = xj, ¥; = ¢; and that v; = p;. We want to

show that p > i + 1, yir1 = Tig1, Yiv1 = Qit1, Vit1 = Hit1-

Since i < m k[p; + 2] = ‘<’, therefore also k[v; + 2] = ‘<’ and this implies that
p=i+1.

We also notice that yit1 = k[v; + 3] = ki + 3] = zi41.

We also notice that 841 =v; +5 = p; + 5 = ajy1.
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If i1 > pis1 then vipq > pip1+1 > @1 = Big1 so > = k[ui+1+1] is a character
in t;41: this cannot be true, so v;41 > piy1 is false and similarly p;41 > v;41 is false,
S0 Vi1 = pi+1 and it follows that ;411 = @iy1.

We have now proved that foreach i =1...m p > i y; = z;, ¥; = v; and v; = p;.

We have also (k) = piy, + 2. If p > m then (k) > v, + 2 = py, + 2, and this is a
contradiction, therefore p = m.
O

Given k € © we define dom(k) (i.e. the domain of k) as follows.

o if k = € then dom(k) =0,
o if k # ethen k =<< x1 : 91 > -+ < Ty, © y, >> and we define dom(k) =
{1,...,m}.

We define D = {0} U {{1,...,m}| m is a positive integer}.
Of course, given k € O, dom(k) € D.

Given k € © and C € D such that C C dom(k) we can define k¢, i.e. the ‘restric-
tion’ of k to the domain C, as follows:

o if k =cor C =0 then k/c = e € O (so dom(k)c) =0 = C),

e ifk#£Aeand C # () then k =<<x1:p1 >+ < Tyt >>and C ={1,...,p}
where 1 < p < m, we define k/o =<< 21 : 01 > --- < 2 1, >>€ O (s0
dom(ksc) =A{1,...,p} = C).

We also define R(k) = {k/c| C € D,C C dom(k)}.

Given another h € © we write h C k if and only if h € R(k) .

Suppose h € R(k), then there exists C € D such that C' C dom(k), h = k/c. As we

have seen in this case dom(h) = C and k/gomn) = k/c = h.

Given k € © we define var(k) as follows.

e if k = € then var(k) =0,
o if k # e then k =<< 1 : p1 > -+ < Ty : O >> and we define var(k) =
{ml,...,xm}.

We are now going to define the ‘addition’ of a new element to a context string.

Definition 5.2. Let h € ©, x € V, ¢ € ¥*, we define h+ < x, ¢ > as follows:

o if h =€ then h+ < z,p >=<< x,p >>€ O;

e if h # € then let m positive integer x1,...,Zm €V, ©1,...,0m € X* such that
h=<<x1:01> < Tm: om >>, we define
ht <2, >=<<T1:01 > < Ty & O >< T, 0 >>E O,
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Lemma 5.3. Let h € O,z € V, p € ¥*, let k = h+ < x,¢ >. Then the following
hold true:

dom(h) C dom(k),

h = k/dom(h)z

h € R(k),

var(k) = var(h) U{z}.

Proof. 1t is obvious by the definition of k that dom(h) C dom(k).
If h = € then dom(h) = 0 and kgom(n) = € = h.

if h # € then let h =<< 21 : 91 >+ < Ty, : @ >>, this implies
k=<<z1:9p1> " < Ty :om ><x,0 >> and clearly k/gomn) = h-

It also follows that h € R(k).
If h = € then var(k) = {z} = var(h) U {z}.
Ifh#eand h=<<x1:¢1 > < Ty : @y >> then

var(k) = {z1,...,zm} U{z} =var(h) U{z} .

Lemma 5.4. Given k € © — {e} there exist h € ©, x € V, ¢ € ¥* such that
k= h+ < x,¢ >. Moreover h, x and ¢ are univocally determined.

Proof. Let k € ©—{¢}, there exist a positive integer m, x1,...,Tm €V, ©1,...,¢om €
¥ such that k =<<x1: 01 > -+ < Tyt Oy >>.

Ifm=1then k =<< 1 : 91 >>=€+ < 11,1 >.

Ifm>1thenk=<<x1:901 > <Tm_1:Pm-1>< Ty : Pm >>, and so
k=<<z1:01> " <Tm-1:Pm-1>>+<Tm:Om >.

We have seen there exist h € O, x € V, ¢ € ¥* such that k = h+ < x, ¢ >. Suppose
there also exist g € O, y € V, ¢ € ¥* such that k = g+ < y, ¢ >.

Suppose h = € and g # ¢, then there exist a positive integer m and y1,...,ym € V,
U1,y Uy € ¥ such that g =<< y1 1 Y1 > -+ < yYm @ ¥y, >>. It follows that
k=<<z,p>>and k =<<y; 191 > < Yn ¥y ><y, >> hence l =m+1,
which is false. Therefore h = € and g # ¢ is false and similarly h # ¢ and g = € is false.

Let’s consider the case where h = g = €. In this case << x,p >>=k =<< y, 9 >>,
soy =z and ¥ = .

Finally we consider the case where both h # € and g # €. There exist m positive
integer z1,...,2m € V, ©1,...,0m € X" such that h =<< 21 : 1 > -+ < Ty ¢
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©m >>. There also exist p positive integer, y1,...,yp € V, ¥1,...,9, € X* such that
g=<<y1:9Y1 > - <yp: 1y >>. It follows that

o k=<<z1:01> < Ty 1 P > T, 0 >>
o k=<<yi:Y1 > <yp:Pp >y, >>

Hence p+1=m+ 1, p=m, foreachi=1...m y; = x;, y = x, ¥ = ¢. Finally
g = h also holds.
O

Lemma 5.5. Let h€ O,z €V, p € ¥*, k = h+ < y,¢ >. Suppose g € R(k) is such
that g # k. Then g € R(h).

Proof. Let D = dom(h).

We first consider the case where h # €. In this case there exists a positive integer m
such that D = {1,...,m}, and clearly dom(k) = {1,...,m+1}. Since g € R(k) there
exists C' € D such that C C {1,...,m + 1} and g = k/¢. Since g # k we must have
C C{1,...,m}. We have

g=kic=(kp)jc="hc.

Let’s now consider the case where h = €. In this case D = () and dom(k) = {1}.
Moreover there exists C' € D such that C' C {1} and g = k/¢. Since g # k we must
have C = and g =€ = h.

In both cases g € R(h), of course. O

Lemma 5.6. Let k =<< 1,01 > -+ < Ty, o >>€ O —{e}, let he R(k). If h # ¢
then there exists p = 1...m such that h =<< 1,1 > -+ < Xp, pp >>.

Proof. 1f h € R(k) then there exists C' € D such that C' C dom(k), h = k;c. f C =0
then h = ¢, so C # (), since dom(k) = {1,...,m} there exists p = 1...m such that
C={1,....p}and h =<< 1,01 > -+ < Zp, pp >>. O

6. Building the expressions of our system

We can now describe the process of constructing expressions for our language £. This
is an inductive process in which not only we build expressions, but also we associate
them with meaning, and in parallel also define the fundamental concept of ‘context’.
This process will be identified as ‘Definition 6.1’ although actually it is a process in
which we give the definitions and prove properties which are needed in order to set
up those definitions.

Within this definition we will define the expressions of our language. Such expres-

sions are finite sequences of characters of the alphabet ¥ =V UC U F U Z. In other
words they are members of >*.
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Since this is a complex definition, we will first try to provide an informal idea of
the entities we’ll define in it. The definition is by induction on positive integers, we
now introduce the sets and concepts we’ll define for a generic positive integer n (this
first listing is not the true definition, it’s just to introduce the concepts, to enable the
reader to understand their role).

K(n) is the set of ‘contexts’ at step n. If we define I' = ¥ U {<, >}, contexts will
be defined as members of ['*, and they will be strings of the form << z1,¢1 >,..., <
T, ©m >>, where x1,..., 2, € V and ¢1,...,¢, are expressions. The string <>
which we’ll also name € is also a possibile context, and when we use the symbol € with
respect to a context we actually mean <>.

For each k € K(n) Z(k) is the set of ‘states’ bound to context k. If n > 1 and
k € K(n — 1) then Z(k) has already been defined at step n — 1 or formerly, otherwise
it will be defined at step n.

Ifk=<<z1,01 >,...,< Tm, om >> is a context, a state on k is a state-like pair
o = (z,s) where of course x is the function which associates z; to each i = 1...m
and (roughly speaking) for each i = 1...m s; is a member of the meaning of the
corresponding expression ¢; .

For each k € K(n) E(n, k) is the set of expressions bound to step n and context k.
And here it is important to underline that we need to ensure that E(n,k) (as a
subset of ¥*) is a recursive set.

E(n) is the union of E(n, k) for k € K(n) (this will not be explicitly recalled on
each iteration in the definition).

For each k € K(n), t € E(n,k), o € Z(k) we'll define #(k,t, o) which stands for
‘the meaning of ¢t bound to k and o’.

The following set Es(n, k) should be defined in the same way at each step, we put
here its definition, to avoid to repeat that definition each time. For each k € K(n) we
define

Es(n, k) = {t|t € E(n,k),Vo € Z(k) #(k,t,0) is a set}.

6.1. Definition process

This section contains only definition 6.1. This definition is an inductive definition
process within which we have assumptions, lemmas etc.. Symbols like [0 within
this definition are not intended to terminate the definition, they just terminate an
assumption or lemma etc. which is internal to the definition.

Definition 6.1. We are now ready to begin the actual definition process, so we
perform the simple initial step of our inductive process.

We define K (1) = {¢}, E(¢) = {€}, E(1,¢) =C.
Cleary when we define K(1) with ¢ we mean the string <>, while when defining
Z(e) = {e} the € on the left side is <> and the € on the right side is (0, ().

For each t € E(1,¢) we define #(e, t,€) = #(t).
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The inductive step is a bit more complex. Suppose all our definitions have been
given at step n and let’s proceed with step n 4+ 1. In this inductive step we’ll need
some assumptions which will be identified with a title like ‘Assumption 5.1.x.
Each assumption is a statement that must be valid at step 1, we suppose is valid
at step n and needs to be proved true at step n+1 at the end of our definition process.

The first assumptions we need are the following.

Assumption 6.1.1. K(n) C O.

O
Assumption 6.1.2. K(n) is recursive and € € K(n).

O
Assumption 6.1.3. For each k € K(n) Z(k) # 0.

O
Assumption 6.1.4. If n > 1 then for each m <n K(m) C K(n).

O
Assumption 6.1.5. For each k € K(n) E(n,k) C ¥*.

O
Assumption 6.1.6. For each k € K(n) E(n, k) is recursive.

O

Assumption 6.1.7. For each k € K(n) k € © and for each 0 € Z(k) o is a state-like
pair and dom(o) = dom(k).

O]

Assumption 6.1.8. For each k € K(n) k = e and =(k) = {€¢} or
(n > 1 and there exist m < n, h € K(m), ¢ € Es(m,h), y € (V —wvar(h)) such that
E=ht <y,6> Z(k) = {0 + (1,9 0 € 5(h), 5 € #(h, 6,0)}).

O]
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Assumption 6.1.9. If n > 1 then for each k € K(n) : k # ¢, 0 € Z(k), h € R(k) :
h # k, there exists m < n such that h € K(m) and it results o;gom(n) € Z(h).

O

Assumption 6.1.10. For each k € K (n) each of the following predicates over E(n, k)
(where ¢ is a positive integer and ¢ € E(n,k)) is decidable:

e for each o € Z(k) Sety(#(k,p,0));

e for each 0 € Z(k) Event ( (k,p,0));

o for each 0 € Z(k) #(k,p,0) € Dy;

e for each o € E(k) #(k, p,0) € PUD;);

e if (for each o € E( Set ¢(#(k,p,0))) then

k)
(for each o € E(k) NotEmptyq(#(k:, ©,0))).

Moreover the last predicate holds true.
O

Clearly assumption 6.1.10 is valid with n = 1, in fact in this case k = ¢, E(n, k) =
E(1l,e) =C, E(k) = {€¢}, so ¢ € C and #(k,p,0) = #(¢), and the predicates are the
following;:

o Setq(#(»));

o Eventy(#(p));

o #(p) € Dy;

o #(p) € PI(D;);

o if (Sety(#(p))) then (Not Empty,(#(¢)))-

We can go on with the inductive step and define

Kn)" ={h+<y,¢>|he€ K(n),¢ € Es(n,h),y € (V—var(h))} - K(n),

Kn+1)=Kn)UK(n)"

Let k € K(n)". Then there exist h € K(n),¢ € Es(n,h),y € (V —var(h)) such
that k = h+ <y, ¢ >. By lemma 5.4 we know that h, ¢,y are univocally determined.

We can assume that Z(k) is defined for k € K(n), and we need to define this for
ke K(n+1)— K(n), ie. for k € K(n)™. If k € K(n)" there exist h € K(n),¢ €

Es(n,h),y € (V —wvar(h)) such that & = h+ < y,¢ >; and h, ¢,y are univocally
determined. So we can define

2(k) = {0+ (y,9)| 0 € E(h), s € #(h, 6,0)}.
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A consequence of lemma 3.1 is the following: for each k € K(n)" and o + (y, s) in
=(k), o, y and s are univocally determined.

To ensure the unique readability of our expressions we need the following assumption
(which is clearly satisfied for n = 1).

Assumption 6.1.11. For each t € E(n)
o t[e(t)] #°( ;
t? ) )
o foreach a € {1,...,4(t)}if (tla] = ")V (ta] =)V (tla] =¢)’) then d(t, «) > 1.
0

We immediately prove the following.
Proof of 6.1.1. Given that K(n) C © we have to show that K(n + 1) C ©.

Let k € K(n+ 1), if k € K(n) then kK € O, else there exist h € K(n) C 0O,
¢ € Es(n,h) CX* y € (V—war(h)) such that k = h+ < y,¢ >€ O. O
Proof of 6.1.2. We have to show that K(n + 1) is recursive and € € K(n + 1).

We have assumed by inductive hypothesis that K (n) is recursive and that € € K (n).

First of all it is obvious that € € K(n + 1) because K(n) C K(n + 1).

Let k € I'* and let’s try to decide whether £ € K(n + 1). We can decide whether
k € K(n), if this holds then k£ € K(n + 1), otherwise we know k # e.

At this point we can verify whether k has the form << x1: @1 > - < T @ Om >>
where x1,..., 5 €V, ©1,...,0m € X*.

In fact in order to verify that x; € V we just need to verify that z; is not a character
in our alphabet that is not a variable (there are finite such characters). In order to
verify that ¢; € ¥* we just need to verify that the characters in ; are not < or >.

If k has not the form << x1 : o1 > -+ < Xy : Py >> clearly k ¢ © and we can
decide that k ¢ K(n+1).

If £ has the form << z1:p1 > -+ < Ty, @ @ >> then k € © — {€}, so there exist
he®,yeV, e ¥* such that k = h+ < y,¢ >, we know how to calculate h, y, ¥,
and they are univocally determined.

Now consider the following conditions

e he K(n),
o ycV—wvar(h),
o € Es(n,h).
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If all these conditions hold, then k € K(n + 1), else (knowing that k ¢ K(n))
k¢ K(n+1).

All of the mentioned conditions are decidable. In fact K(n) is recursive and so we
can decide whether h € K(n). Moreover E(n,h) is recursive, and given ¢ € E(n,h)
the condition ‘for each p € Z(h) Set1(#(h, ¢, p))’ is decidable. Therefore 1 € Es(n, h)
is decidable.

As regards the condition y € V — var(h), we know that y is a variable, so if it
doesn’t belong to var(h) this means it belongs to V — var(h), and so we can also

decide this condition.

Therefore we have proved that K(n + 1) is recursive. O

Proof of 6.1.3. Let k € K(n+ 1), we have to show Z(k) # 0.

If k € K(n) then Z(k) # 0, else there exist h € K(n), ¢ € Es(n,h),y € (V—wvar(h))
such that k = h+ <y, ¢ >, and Z(k) = {o + (y,s)| o € E(h),s € #(h,¢p,0)}.

By the inductive hypothesis Z(h) # (), let’s then take o € Z(h), then
Sety(#(h, ¢,0)) and Not Empty, (#(h, ¢,0)). If we take s € #(h, ¢,0) then o+ (y, s) €
=(k) . O

It is time to define E(n+1,k), for each k in K(n+1). Then for each ¢t in E(n+1, k)
and o in Z(k) we need to define #(k,t,0). We begin to do this by defining some new
sets of expressions bound to context k, and for the expressions in each new set we
define the proposed value of #(k,t, o).

For each k = h+ < y,¢ >€ K(n)" we define
Eo(n+1,k) ={y}.

Clearly E,(n+ 1,k) C ¥* and E,(n + 1, k) recursive.
For each t € Eq(n+ 1,k), 0 = p+ (y,s) € E(k) we define:

#(k7 t, U)(nJrl,k,a) = S.

We notice that e € K(n) and define Ey(n + 1,¢) = 0.
For each k = h+ <y, >€ K(n) — {e} we define

Ey(n+1,k) = {t|t € E(n,h),t ¢ E(n,k)}.
Clearly Ey(n+ 1,k) C E(n,h) C X* and Ey(n + 1, k) recursive.
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For each t € Ey(n+ 1,k), 0 = p+ (y,s) € E(k) we define the proposed value of
#(k,t,0):

#(kv L, U)(n—i—l,k’,b) = #(h7 t, p)

Given k € K(n) and a constant ¢ € C we can define the following set

H.(n+ 1,k)={()(p1,.- ., om)| @1, -, om € E(n,k)}.
and we can prove it is recursive using some auxiliary lemma.

Lemma 6.1.12. Let ¢ € ¥* and let ¢ = (¢)(¢) € ¥*. Suppose for each r positive
integer such that 4 < r < £(p) and p[r] =" we have d(p,r) > 1. Then ¢ € H.(n+1, k)
if and only if ¢ € E(n, k).

Proof. It is obvious that if ¢ € E(n, k) then ¢ € He(n + 1, k).

Conversely, if ¢ € H.(n + 1,k) then there exist a positive integer m and
b1y .oy € B(n, k) such that ¢ = ()(1,. .., ).

If m > 1 then let r be the first explicit occurrence of *," in (¢)(¢1,...,¥m). Clearly
we have d(¢,r) > 1, so it cannot be m > 1.

It follows that m = 1 then (¢)(¢) = ¢ = (¢)(¢y1) and so ¥ = 1 € E(n, k). O

Lemma 6.1.13. Let ¢ € ¥* and let ¢ = (¢)(¢)) € £*. Consider the set of the positive
integers r such that 4 < r < £(p), ¢[r] = *, and d(p,r) = 1. Assume this set is not
empty and let’s name r1,..., 7y, its members (in increasing order).

Let’s also define 11 = ¢[5,r1 — 1] (if r1 — 1 < 5 then 91 = € where € is the empty
string over the alphabet ).

If h > 1 then for each @ = 1...h — 1 we define ¥;11 = @lr; + 1,41 — 1] (if
rit1 — 1 <r; + 1 then ¥ = €).

Finally we define ¢p11 = ¢[rn + 1,4(p) — 1] (if £(¢) — 1 < rp + 1 then Pp1 = €).

With these definitions we have ¢ = (¢)(¢1,...,¢¥p4+1) and ¢ € He(n + 1,k) if and
only if for each i =1...h+ 1 ¢; € E(n, k).

Proof. Clearly if for each i =1...h+11; € E(n,k) then ¢ € He.(n+ 1,k).

Conversely, if ¢ € H.(n + 1,k) then there exist a positive integer m and
X1s- -5 Xm € E(n,k) such that ¢ = (¢)(x1,-- -, Xm)-

If m = 1 then ¢ = (¢)(x1), we have d(p,r;) = 1. Since 4 < r1 < £(p1)
x1lr1 — 4] = ¢lr1] = ¢, d(x1,71) = d(p,r1) — 1 = 0. But this contradicts assump-

tion 6.1.11 and therefore we cannot have m = 1.

Since m > 1 we can indicate with ¢i,...,¢n_1 the positions of the explicit
occurrences of ¢, in the representation (¢)(x1, ..., Xm) of ¢.

33



For each j =1...m —1 d(y,q;) = 1, therefore {q1,...,¢m—1} C{r1,...,rn}.

Suppose there exists ¢ = 1...h such that r; ¢ {q1,...,¢mn—1}. In this case one of
these conditions will occur:

o 7, < (1,
® 7, > Qm—1,
e m — 1> 1 and there exists j = 1...m — 2 such that ¢; <r; < gj41.

If r; < g1 then 4 < r; also holds, x1 = ¢[5,¢1 — 1], é(x1) =q1 —1—-5+1=¢ — 5,
for each a = 1...q1 — 5 xi1la] = ¢[4d+a]. Sor, —4 > 1, r, —4 < ¢ — 4
and then r, —4 < g —5 = {(x1). Then also xi[ri — 4] = ¢[ri] = ¢ and
d(x1,mi —4) = d(¢,7;) — 1 = 0. This contradicts assumption 6.1.11 and therefore we

cannot have r; < q1.

If r, > gm—1 then 7, < {(p) also holds, xm = ¢lgm-1 + 1,4(p) — 1],
Uxm) =p)—1—(gm-1+1)+1=4(p)—gm-1—1. Foreacha=1...4(p) —gm-1—1
Xmla] = ©lgm-1 + a]. So i — gm—1 = 1, 77 — gm—1 < €(¢) — gm-1 and then
Ti — Gm—-1 < E(@) —qn-1— 1= E(Xm) Then also Xm[ri - Qm—l] = ()O[Ti] = and
d(Xm, T — gm—1) = d(¢,7i) —1 = 0. This contradicts assumption 6.1.11 and therefore
we cannot have r; > ¢p_1.

Finally assume m — 1 > 1 and there exists j = 1...m — 2 such that ¢; < r; < gj41.
In this case xj+1 = ¢lgj +1,¢j41 — 1], L(xj+1) = ¢j+1 —1—(¢; +1)+1 =gj41—¢; — 1.
Foreacha=1...¢j41—¢; —1 xjile) = ¢lgj+a]. Sori—q; > 1, 15— qj < ¢j+1—qj
and then r; — ¢; < gj+1 —qj — 1 = £(x;j+1). Then also xjy1[r;i — g;] = ¢[ri] = ;" and
d(xj+1,7 — qj) = d(¢,r;) —1 = 0. This contradicts assumption 6.1.11 and therefore
we cannot have that m—1 > 1 and there exists j = 1...m—2 such that ¢; < r; < gj41.

So we have to conclude that {q1,...,¢m-1} = {r1,...,7,}. This means that h+1 =
m and foreach i =1...h+1v¢; = x; € E(n, k). O

Lemma 6.1.14. Given k € K(n) and c € C H.(n + 1, k) is recursive.

Proof. Let ¢ € X*. If ¢ doesn’t begin with the four characters (¢)( or doesn’t end
with the character ) then ¢ ¢ H.(n + 1,k).

Then assume we are in the case ¢ = (¢)(¢)) where ¢ € ¥*. Consider the set of the
positive integers r such that 4 < r < £(p), ¢[r] =, and d(¢,r) = 1.

If the mentioned set is empty then ¢ € H.(n + 1, k) if and only if ¢ € E(n, k).

If the mentioned set is not empty then let’s name 7q,...,7, its members (in
increasing order).
Let’s also define ¥ = ¢[5,71 — 1] (if 1 — 1 < 5 then 11 = € where € is the empty
string over the alphabet X).
If h > 1 then for each @ = 1...h — 1 we define ;11 = @lr; + 1,141 — 1] (if
rit1 — 1 <r;+ 1 then 941 =e.
Finally we define ¢p41 = @[rn + 1,4(p) — 1] (if £(¢) — 1 < rp, + 1 then ¢y 1 = €).
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With these definitions we have ¢ = (¢)(¢1,...,¢¥n4+1) and ¢ € He(n + 1,k) if and
only if for each i =1...h+ 1 9¢; € E(n, k). O

Lemma 6.1.15. Let k € K(n), ¢ € C. There exists an algorithm that given ¢ € ¥*

e determines if p € H.(n + 1,k),
e if p € H.(n+1,k) it also identifies a positive integer m and 1, ..., ¥, € E(n, k)
such that ¢ = (¢)(¥1,...,Ym).

Proof. See the proof of lemma 6.1.14. O

Lemma 6.1.16. Given k € K(n), c € C, ¢ € Hc.(n + 1,k) there exist m positive
integer, ¥1,...,Ym € E(n,k) such that ¢ = (¢)(¢1,...,%m) and m and ¥1,..., 0¥,

are univocally determined.

Proof. 1t is obvious by the definition of H.(n + 1, k) there exist m positive integer,
U1,y € E(n, k) such that ¢ = (¢)(¢1,...,%Um).

Suppose there are also p positive integer and ¢1,...,¢, such that
¢ = (c)(¢1,...,9¢p). Of course we want to show that p = m and for each

To this end we consider there exists 1) € X* such that ¢ = (¢)(¢0). Consider the set
of the positive integers r such that 4 < r < {(¢), ¢[r] =, and d(p,r) = 1.

Suppose the mentioned set is empty. In this case if m > 1 then let r be the first
explicit occurrence of ‘" in (¢)(¢1, ..., %¥m). Clearly we would have d(p,r) = 1, so it
cannot be m > 1. Similarly it cannot be p > 1, so m =1 =p and @1 = 9 = 9.

Now assume this set is not empty and let’s name ry,...,7, its members (in
increasing order).
Let’s also define x1 = ¢[5,r1 — 1] (if r1 — 1 < 5 then x; = € where € is the empty
string over the alphabet X).
If h > 1 then for each i = 1...h — 1 we define x;y1 = @[ri + 1,41 — 1] (if
rit1 — 1 <r;+ 1 then x;41 =€
Finally we define xp4+1 = @[rn + 1,€(p) — 1] (if £(¢) — 1 < r, + 1 then xp41 = €).

We have seen in lemma 6.1.13 that we cannot have m = 1 and that since m > 1
we can indicate with ¢i,...,¢n_1 the positions of the explicit occurrences of ,” in the
representation (¢)(v1,...,%n) of ¢.

For each j = 1...m — 1 d(p,q;) = 1, therefore {q1,...,qgm-1} C {r1,...,rp}. In
the mentioned lemma we have seen that actually {qi,...,qm-1} = {r1,...,r}. This
means that h+1=m and for eachi=1...h+1 x; = ¢; € E(n, k).

Similarly we obtain that h+ 1 =p and foreachi=1...h+1 x; = p; € E(n, k).

Therefore finally p=h +1=m and for each ¢ =1...m ; = x; = ¥;. O
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Given a constant ¢ € C if #(c) is a particular type of function then for each
k € K(n) we can define a set of expressions related to ¢ and k, and we’ll call
E¢(n + 1, k) this set of expressions.

Let’s examine the categories of functions to which we refer.

If there exist ¢ = 1...p and a positive integer m such that #(c) is a function whose
domain is (D;)™ and whose range is D; then we define E¢(n + 1, k) as the set of the
strings (¢)(¢1,---,9m) € He(n + 1, k) such that:

O1r. e om € E(n, k);

for each j =1...m, o € Z(k) #(k, ¢j,0) € Di;
(1, om) & E(n, k);

(@1, 0m) & Ey(n+1,k).

The set E¢(n + 1,k) is recursive since given 1 € ¥* we can determine if ¢ €
H.(n+1, k) and if so we can identify a positive integer v and @1, . .., @, € E(n, k) such
that ¥ = (¢)(p1,...,py). As we have seen u and ¢1, . .., ¢, are univocally determined,
so if u # m then ¥ ¢ E¢(n+1,k). If u = m then, for each j = 1...m, we can decide if
for each o € 2(k) #(k, ;,0) € D;, and we can also decide if the following conditions
hold:

i (C)(@l, cee 7()0771) §é E(”? k)v
e ()1, om) & Ep(n+1,k).

For each t = (¢)(p1,...,om) € E¢(n+ 1, k) we define

#(ka ta J)(n+1,k,<c>) = #(C)(#(k7 ®1, 0)7 RN #(kv Pm U))

If there exist i = 1...p, a positive integer g and a positive integer m such that #(c)
is a function whose domain is (P4(D;))™ and whose range is P4(D;) then we define
E°(n+ 1,k) as the set of the strings (¢)(¢1,...,¢om) € Ho(n + 1, k) such that:

@1y Pm €E<n,]€),

for each j =1...m, o0 € Z(k) #(k,¢;,0) € PI(D;);
(C)(Splu v 7@771) §é E(nv k)a

() (1, ¢m) & Ep(n+1,k).

The set E¢(n+1, k) is recursive in this case too since given ¢ € ¥* we can determine
if v € He(n + 1,k) and if so we can identify a positive integer u and ¢1,...,¢@, €
E(n, k) such that ¥ = (¢)(¢1,. .., ¢u). As we have seen v and 1, . . ., ¢, are univocally
determined, so if u # m then ¢ ¢ E¢(n + 1,k). If u = m then, for each j = 1...m,
we can decide if for each o € Z(k) #(k, p;,0) € PY(D;), and we can also decide if the
following conditions hold:

e (O)(p15---,0m) ¢ E(n, k),
o ()(p1,---r0m) & Ep(n+1,k).

For each t = (¢)(p1,...,0m) € E¢(n+ 1, k) we define
#(ka t, U)(n+1,k,<c>) = #(C)(#(ka #1, U)a s #(ka Pms U))
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If there exist ¢ = 1...p and a positive integer m such that #(c) is a function whose
domain is (D;)™ and such that for each (di,...,dn) € (D)™ #(c)(d,...,dp) is
true or false, then we define E°(n + 1,k) as the set of the strings (¢)(¢1,...,¢om) €
H.(n + 1,k) such that:

® V1., Pm S E(nﬂk)7

e foreach j=1...m, o € E(k) #(k,pj,0) € D;;
o (c)(@1,---om) ¢ E(n, k);

o (O)(@15--0m) & Ep(n+1,k).

The set E¢(n + 1,k) is recursive since given 1 € ¥* we can determine if ¢ €
H.(n+1, k) and if so we can identify a positive integer v and @1, ..., @, € E(n, k) such
that ¥ = (¢)(p1,...,py). As we have seen u and ¢, . .., ¢, are univocally determined,
so if u # m then ¥ ¢ E¢(n+1,k). If u = m then, for each j = 1...m, we can decide if
for each o € 2(k) #(k,¢;,0) € D;, and we can also decide if the following conditions
hold:

o ()(p1s---s0m) ¢ E(n, k),
o (P15 som) & Ep(n+1,k).

For each t = (¢)(p1,...,m) € E¢(n + 1, k) we define

#(ka t, U)(n+1,k,<c>) = #(C)(#(ka #1, U)a LR #(ka Pm; U))

If there exist i = 1...p, a positive integer ¢ and a positive integer m such that #(c) is
a function whose domain is (P?4(D;))™ and such that for each (di, ..., dn) € (PY(D;))™
#(c)(dy,...,dy) is true or false, then we define E¢(n + 1,k) as the set of the strings
(c)(@1s---50m) € He(n+ 1,k) such that:

.901""7@m6E(nak);

e foreach j =1...m, 0 € E(k) #(k, p;,0) € PI(D;);
i (C)(g&l,...,(pm) ¢E(n7k)§

hd (C)(QDl,...,QOm) ¢Eb(n+1’k)

The set E(n+1, k) is recursive in this case too since given ¢ € ¥* we can determine
if v € He(n + 1,k) and if so we can identify a positive integer u and ¢1,...,¢@, €
E(n, k) such that ¥ = (¢)(¢1, .-, ¢u)- As we have seen v and ¢1, . . ., ¢, are univocally
determined, so if u # m then ¢ ¢ E°(n + 1,k). If u = m then, for each j = 1...m,
we can decide if for each o € Z(k) #(k, ¢;,0) € P4(D;), and we can also decide if the
following conditions hold:

e (P15 0m) ¢ E(n, k),
o ()(p1,---r0m) ¢ Ep(n+1,k).

For each t = (¢)(p1,...,m) € E°(n+ 1, k) we define

#(ka ta 0)(n+1,k,<c>) = #(C)(#(ka ®1, U)? RN #(kv Pm, U))

Assume m is a positive integer and #(c) is a function whose domain is
Ugs1(Uizy,(P4U(D;))™) such that for each ¢ > 1,7 = 1...p, (A1,...,An) €
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(PUD;))™ #(c)(A1,...,Apn) € PYUD;). Then we define E°(n + 1,k) as the set of
the strings (¢)(¢1,...,9m) € He(n+ 1, k) such that:

® V1,...,pm € E(n,k);

e there exist i = 1...p, ¢ = 1...Gmaa such that for each j = 1...m, o € E(k)
#(k, pj,0) € PI(D;);

b (C)(§01, s 7(Pm) ¢ E(”) k)a

o (c)(p1y---som) & Ep(n+1,k).

The set E(n+1, k) is recursive in this case too since given ¢ € ¥* we can determine
if v € He(n + 1,k) and if so we can identify a positive integer u and ¢1,...,¢@, €
E(n, k) such that ¥ = (¢)(¢1,. .., ¢u). As we have seen v and 1, . . ., ¢, are univocally
determined, so if u # m then ¢ ¢ E°(n+1,k). If w = m then, for each i =1...p and
q¢=1...¢maz we can decide if for each j = 1...m and o € E(k) #(k, ¢;,0) € PI(D;),
and we can also decide if the following conditions hold:

i (C)(@la e 7§0m> §é E(TL, k)7
o (¢)(¢1,---om) & Ep(n+1,k).

For each t = (¢)(¢1,...,0m) € E¢(n+ 1, k) we define

#(kv t, U)(n+1,k,<c>) = #(0)(#(k7 #1, U)a B #(kv Pm, U))

We may also include in our language a ‘special’ constant IT whose meaning #(II) is
a function over the domain {J -, (U;=; ,P?(D;)) such that for each ¢ > 1,i=1...p
A € PU(D;) #(I1)(A) = P(A). Then we define E'(n 4 1,k) as the set of the strings
(IT)(¢1) € Hr(n + 1, k) such that:

o v € E(n,k);
o there exist i = 1...p, ¢ = 1... ¢nae such that for each o € Z(k) #(k,p1,0) €
PU(D;);

o (ID(e1) ¢ E(n, k);
o (IN(e1) ¢ Ep(n+1,k).

The set EY(n + 1,k) is recursive since given ¢ € ¥* we can determine if 1) €
Hp(n + 1,k) and if so we can identify a positive integer u and ¢1,...,¢, € E(n,k)
such that ¥ = (II)(¢1,...,%u). As we have seen u and ¢i,...,p, are univocally
determined, so if u # 1 then ¢ ¢ EY(n + 1,k). If u = 1 then, for each i = 1...p and
q = 1...¢naz we can decide if for each o € Z(k) #(k, ¢1,0) € PI(D;), and we can
also decide if the following conditions hold:

o (I)(p1) & E(n, k);
o (I)(p1) & Ep(n+1,k).

For each t = (I1)(¢1) € E™(n + 1, k) we define

#(k,t, U)(n+1,k,<1‘l>) = #(ID) (#(k, ¢1,0)).

Given k € K(n) and f € F we can define the set H¢(n + 1,k) as follows. If f has
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multiplicity 1 then

Hy(n+1,k) = {f(p1)l¢1 € E(n, k)}.

If f has multiplicity 2 then

Hy(n+1,k) = {f(¢1,02)| @1, 02 € E(n,k)}.

We can prove Hy(n + 1, k) is recursive using some auxiliary lemma.

Lemma 6.1.17. Let f € F and assume f has multiplicity 1. Let ¥ € ¥* and let
@ = f() € ¥*. Then ¢ € Hy(n + 1,k) if and only if ¢ € E(n, k).

Proof. 1t is obvious that if ) € E(n, k) then ¢ € Hf(n + 1,k).
Conversely, if ¢ € Hy(n + 1, k) then there exists x € E(n, k) such that ¢ = f(x).

Therefore ¢ = x € E(n, k). O

Lemma 6.1.18. Let f € F and assume f has multiplicity 2. Let ¢ € X* and let
p=[f(y)exm

Consider the set of the positive integers r such that 2 < r < £(p), ¢[r] = ¢, and
d(p,r) = 1. If this set has just one member 7 then we can define ¢; = ¢[3,r] — 1]
(if 11 — 1 < 3 then 91 = € where € is the empty string over the alphabet ¥). We also

define 9o = @[r1 + 1,4(p) — 1] (if £(¢) — 1 <71 + 1 then 1y = ¢).

With these definitions we have that ¢ € H¢(n + 1,k) if and only if

e the set of the positive integers r such that 2 < r < £(p), p[r] =, and d(¢,7) =1
has just one member 7y,

® 1,92 € E(n, k).
Proof. If the two conditions

e the set of the positive integers r such that 2 < r < £(¢), ¢[r] = ‘,” and d(¢,7) =1
has just one member 71,

o Yy,2 € E(n, k).
both hold then clearly ¢ = f(¢1,v¢2) € Hf(n + 1, k).
Conversely if ¢ € Hy(n + 1,k) then there exist x1,x2 € E(n,k) such that

© = f(x1,x2). Let’s call g; the position of the explicit occurrence of ¢’ in the
representation f(x1,x2) of ¢. Clearly d(yp,q1) = 1 and ¢; is a member of the set of

the positive integers r such that 2 < r < £(¢), ¢[r] = ¢, and d(p,r) = 1.
Let’s then call r1, ..., 7, the members of the set of the positive integers r such that
2 <r <L), plr] = and d(p,r) = 1. We have already seen that ¢; € {ry,...,m}.

Suppose h > 1 and there exists ¢ = 1...h such that r; # ¢1. In this case one of the
following conditions will occur:
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o 1, <(q1,
e >q.

If r; < q1 then 2 < r; also holds, x1 = ¢[3,q1 — 1], {(x1) =1 —1—-2=¢q — 3,
for each « = 1...¢1 —3 xile] = ¢[2+a]. Sor, —2 > 1, 1 —2 < ¢ — 2
and then r;, — 2 < ¢ —3 = £(x1). Then also xi[ri — 2] = ¢[ri] = ¢, and
1=d(p,r;) =d(x1,m—2)+1, so d(x1,mi —2) = 0. This contradicts assumption 6.1.11

and therefore we cannot have r; < q;.

If r; > q1 then 1; < {(¢p) also holds, x2 = ¢lg1 + 1,£(p) — 1], £(x2) = L(p) — 1 — q1.
Foreach a=1...4(¢) =1 —q1 x2la] =plgi+a]. Sori—q =21, r, —q1 < l(p) —q

—

A
and then r; — q1 < l(p) —1—q1 = €(x2). Then also xa[r; — q1] = ¢[ri] =,

Moreover if we define ¥ = ¢[1, ¢1] then ¢ is the concatenation of ¥, y2 and ). Then

d(p,ri) = d(p, q1 + (ri —q1)) = d(, £(9) + (ri — q1)) = d(, £(F) + 1) + d(x2, (ri — q1))-
It follows that d(p,r;) = d(v,q1) + d(x2, (ri — ¢1)), and so d(x2, (ri — ¢1)) = 0. This
contradicts assumption 6.1.11 and therefore we cannot have r; > ¢;.

So we have to conclude that h =1, r1 = q1, ¥; = x; € E(n, k). O

Lemma 6.1.19. Let f € F and assume f has multiplicity 2. Then H¢(n + 1,k) is
recursive.

Proof. Let ¢ € ¥* and let’s see how we decide if ¢ € Hy(n + 1, k).

If ¢ doesn’t begin with the characters f( or doesn’t end with the character ) then
¢ He(n+1,k).

Then assume we are in the case ¢ = f(¢) where ¢» € ¥*. Consider the set of the
positive integers r such that 2 < r < £(p), ¢[r] = ¢, and d(p,r) = 1.

If the mentioned set is empty or has not exactly one member then ¢ ¢ H¢(n+1,k).

If this set has just one member r; then we can define 11 = p[3,r1 —1] (if r1 —1< 3
then ¢y = € where € is the empty string over the alphabet ). We also define
o = @[r1 + 1,4(p) — 1] (if £(p) — 1 <71 + 1 then 1y = ¢).

If 91,12 € E(n,k) then we can decide ¢ € Hy(n + 1,k), otherwise ¢ ¢ Hy(n +
1, k). 0

Lemma 6.1.20. Let f € F and assume f has multiplicity 2. There exists an algorithm
that given ¢ € ¥*

e determines if ¢ € Hy(n + 1, k),
o if p € Hy(n+ 1,k) it also identifies ¢, 42 € E(n, k) such that ¢ = f(11,12).

Proof. See the proof of lemma 6.1.19. O
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Lemma 6.1.21. Let f € F and assume [ has multiplicity 2. Given ¢ € Hy(n +
1,k) there exist x1,x2 € E(n,k) such that ¢ = f(x1,x2) and x1, x2 are univocally
determined.

Proof. 1t is obvious by the definition of H(n+ 1, k) that there exist x1, x2 € E(n, k)
such that ¢ = f(x1, x2). We have also seen in lemma 6.1.18 that the set of the positive
integers r such that 2 < r < £(p), ¢[r] =, and d(p,r) = 1 has just one member r;.

By the same lemma if we define ¥4 = ¢[3,71 — 1] (if 1 — 1 < 3 then ¢ = €
where € is the empty string over the alphabet ) and ¢y = ¢[r; + 1,4(¢) — 1] (if
(@) —1 <11+ 1 then ¢y =€), then ¥ = x1, 12 = xo2.

We can assume there also exist ¢1,¢2 € FE(n, k) such that ¢ = f(¢1, ¢2). Clearly
we can apply lemma 6.1.18 also in this case and obtain ¥; = ¢1, Y2 = ¢o.

It obviously follow that ¢1 = x1, ¢2 = x2.
O

Lemma 6.1.22. Let f € F and assume f has multiplicity 1. Then Hy¢(n + 1,k) is
recursive.

Proof. Let ¢ € ¥* and let’s see how we decide if ¢ € Hy(n + 1, k).

If ¢ doesn’t begin with the characters f( or doesn’t end with the character ) then
o ¢ He(n+1,k).

Then assume we are in the case ¢ = f(¢)) where ¢ € ¥*.

In this case using lemma 6.1.17 if ¢ € E(n, k) we’ll decide that ¢ € Hy(n + 1,k),
otherwise we’ll decide that ¢ ¢ Hy(n +1,k). O

Lemma 6.1.23. Let f € F and assume f has multiplicity 1. There exists an algorithm
that given ¢ € ¥*

e determines if ¢ € Hy(n + 1, k),
o if o € Hp(n+ 1,k) it also identifies ¢ € E(n, k) such that ¢ = f(v).

Proof. See the proof of lemma 6.1.22. O

Lemma 6.1.24. Let f € F and assume f has multiplicity 1. Given ¢ € H(n + 1, k)
there exists x € E(n, k) such that ¢ = f(x) and x is univocally determined.

Proof. 1t is obvious by the definition of Hy(n + 1,k) that there exists x € E(n, k)
such that ¢ = f(x).

We can also assume there exists ¢ € E(n, k) such that ¢ = f(¢), then obviously
¢ =X O

For each k € K(n) and f € F if f has multiplicity 2 we define Ef(n + 1,k) as the
set of the strings f(y1,p2) € Hf(n + 1, k) such that:
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® p1,p2 € E(”vk)y

o for each o € Z(k) Ap(#(k,p1,0),#(k, p2,0)) is true;
o f(p1,02) & E(n, k);

o fle1,92) & Ey(n+ 1,k).

For instance, this means that if f is the ‘logical conjunction’ symbol ‘A’ and it
belongs to F, @1, @2 belong to E(n,k), for each o € Z(k) both #(k,¢1,0) and
#(k,p2,0) are true or false, A(p1,92) ¢ E(n, k), N(p1,92) ¢ Ep(n + 1,k) then
A(p1, @2) belongs to Ef (n + 1, k).

We now show that Ef(n + 1,k) is recursive. Given ¢ € ¥* we can determine if
¢ € Hp(n+1,k). Clearly if ¢ ¢ Hy(n+1,k) then ¢ ¢ E/ (n+1,k). If o € Hp(n+1,k)
then we can identify 1,12 € E(n,k) such that ¢ = f(1,12). We have seen that
11,19 are univocally determined.

For f with multiplicity 2 A¢(#(k, ¢1,0),#(k, p2,0)) can be one of the following

o Eventy(#(k,¢1,0)) and Eventy(#(k, v2,0)),

o Setl(#(ka ©2, U))v
e ‘something which is true’ (e.g. 1 =1)

In every mentioned case the predicate ‘for each o € =(k)
A (#(k,p1,0),#(k,p2,0))" is decidable, and we can also decide if the follow-
ing conditions hold

i f(8017902) ¢ E(nv k)a
o flp1,92) ¢ Ep(n+1,k).

For each f with multiplicity 2, t = f(¢1,2) € Ef(n + 1, k) we define

#(k, 1, 0) (ny1h,<p>) = Pr(#(k, o1, 0), #(k, p2,0)).

If f has multiplicity 1 we define Ef(n 4 1,k) as the set of the strings f(p1) €
H¢(n +1,k) such that:

e 1 € E(n,k);

o for each o € Z(k) Af(#(k, p1,0)) is true;
o f(p1) & E(n, k).

o flp1) & Ey(n+1k).

We now show that E/(n + 1,k) is recursive. Given ¢ € ¥* we can determine if
¢ € Hy(n+1,k). Clearly if o ¢ Hf(n+1,k) then ¢ & Ef (n+1,k). If o € Hp(n+1,k)
then we can identify ¢ € E(n,k) such that ¢ = f(¢). We have seen that 1 is
univocally determined.

For f with multiplicity 1 A¢(#(k,¢1,0)) can be one of the following

e ‘something which is true’ (e.g. 1 =1),
o Eventy(#(k,¢1,0)).
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In every mentioned case the predicate ‘for each o € Z(k) Af(#(k, p1,0)" is decid-
able, and we can also decide if the following conditions hold

i f(%ol) ¢ E(nak)7
o f(p1) ¢ Ep(n+1,k).

For each f with multiplicity 1, t = f(¢1) € Ef(n +1,k) we define

#(kata U)(n+1,k,<f>) = Pf(#(k7 ¥1, U))

Let k € K(n), m a positive integer, = a function whose domain is {1,...,m} such
that for each i =1...m x; € V —wvar(k), and for each i,j =1...m i # j = x; # xj,
¢ a function whose domain is {1,...,m} such that for eachi =1...m ¢; € E(n), and

finally let ¢ € E(n). We write
g(n) kv m,x, ey, ¢)

to indicate the following condition (where k| = k+ < x1,¢1 >, and if m > 1 for
eachi=1...m —1kj ;| =ki+ < 241, 0i11 >):

e v € Eg(n,k);
e if m >1thenforeachi=1...m—1kl € K(n) A1 € Es(n,k.);
e k. e K(n)AN¢e€ E(n,kl,).

For each k € K(n) we define H.(n + 1, k) as the set of the strings

{}(.%’1 Py, Tm t me7¢)
such that:

e m is a positive integer;

x is a function whose domain is {1,...,m} such that for eachi =1...m xz; €
V —war(k), and for each i,j =1...m i # j — z; # xj;

e ¢ is a function whose domain is {1,...,m} such that for each i = 1...m ¢; €
E(n);

¢ € E(n);

g(n, k,m,x,0,0);

Let t € ¥*. If ¢ doesn’t begin with the characters ‘{}(’ or it doesn’t end with ‘)’
then t ¢ He(n + 1,k). Let ¢ € X* and let ¢t = {}(¢)). Consider the set of the positive
integers r such that 2 < r < {(t), t[r] = ;" and d(¢t,r) = 1. If t € He(n + 1,k) then
this set is not empty and by contraposition if this set is empty then t ¢ H.(n + 1, k).
The following lemma will helps us to state the recursivity of He(n + 1, k).

Lemma 6.1.25. Let ¢ € ¥* and let t = {}(¢)) € £*. Consider the set of the positive
integers r such that 2 < r < £(t), t[r] = ¢, and d(¢t,r) = 1. Assume this set is not
empty and let’s name 71, ..., 7, its members (in increasing order).
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Let’s also define 11 = t[3,r; — 1] (if r1 — 1 < 3 then ¢; = € where € is the empty
string over the alphabet X).
If h > 1 then for each i = 1...h — 1 we define ;41 = t[r; + 1,71 — 1] (if
rit1 — 1 <r;+ 1 then 941 =e.
Finally we define ¢p,41 = t[rp, + 1,£(t) — 1] (if 4(t) — 1 < 7, + 1 then ¢p41 = €).

With these definitions ¢t € Hc(n + 1, k) if and only if

o foreach i =1...h £(¢;) =3, i[2] = 75 L(Yp41) = 1;

e let’s define a function x over the domain {1,...,h} by setting x(i) = 1;[1]; let’s
define a function ¢ over the domain {1,..., h} by setting ¢(z) = (3, £(1);)]; let’s
define ¢ = 11 then

o foreachi=1...hx; € V—wvar(k),and foreach i,j =1...hi#j— x; #
Tj,

o foreachi=1...h ¢; € E(n),

o ¢ € E(n);

o E(n,k,h,x,p,d).

Proof. Suppose t € Ho(n + 1, k), then there exist

e a positive integer m;

e a function y whose domain is {1,...,m} such that for each i = 1...m y; €
V —wvar(k), and for each i,j =1...m i # j — y; # y;;

e a function x whose domain is {1, ..., m} such that foreachi =1...m y; € E(n);

e § € E(n);

such that £(n, k,m,y,x,0) and t = {}(y1 : X1,---,Ym : Xm,0)-

Let’s indicate with gq1,..., ¢, the positions of the explicit occurrences of ‘,” in
the representation {}(y1 : X1,---,Ym : Xm,0) of t. For each i = 1...m d(t,¢q;)) = 1
therefore {q1,...,qn} C{r1,..., 70}

Suppose there exists ¢ = 1...h such that r; ¢ {q1,...,¢n}. In this case one of the
following conditions will occur:

® 7 < {1,
® 7 > (m,
e m > 1 and there exists j = 1...m — 1 such that ¢; <r; <gj41.

If r; < ¢ then 4 < r; also holds, x1 = t[5,q1 — 1], l(x1) =1 —1—4 = ¢ — 5,
foreach a =1...q1 —5 xila] =tld+a]. Sor;, —4 > 1, r, —4 < ¢1 —4 and then
ri—4 < q1—5 = £(x1). Then also x1[r;—4] = t[r;] = and 1 = d(t,r;) = 1+d(x1,7mi—4),
therefore d(xi,7; —4) = 0. This contradicts assumption 6.1.11 and therefore we
cannot have r; < q.

If r; > g, then r; < £(t) also holds, 0 = t[g, + 1,4(t) — 1], £(0) = £(t) — 1 — ¢, =
0(t) — qm — 1. For each o = 1...4(t) — ¢ — 1 O[a] = tlgm + a]. So 5 — ¢, > 1,
i — qm < L(t) — ¢m and then r; — g, < L(t) —gm — 1 = £(0). Then also O[r; — gm] = t[ri]
and 1 = d(t,r;) = d(t,gm + 1) +d(0,7i — gm) = 1 4+ d(0,7; — ¢m), therefore
(0,7; — ¢n) = 0. This contradicts assumption 6.1.11 and therefore we cannot have

S |
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Ti > Qm-

Finally assume m > 1 and there exists j = 1...m — 1 such that
¢; < 1i < gj+1. In this case we have also ¢; + 2 < 15, xj+1 = tlg; + 3,¢+1 — 1],
Uxj+1) = gj+1 — 1 — (¢ +2) = gj4+1 — ¢; — 3. For each a« = 1...¢j41 —¢q; — 3
Xj+1lo = tlgg+2+a]. Sor; —qi—2 > 1,1, —q; —2 < gj+1 — ¢j — 2 and then
i —qj —2 < gj+1 — ¢ — 3 = l(xj+1). Then also xjy1[ri —¢; — 2] = t[r;] = ¢, and
1= d(t,T’i) = d(t,qj + 3) + d(Xj-‘,-l,rz’ —qj — 2) =1+ d(Xj—i—lari —q; — 2). Therefore
d(xj+1,7 — qj —2) = 0 and this contradicts assumption 6.1.11 and therefore we
cannot have that m > 1 and there exists j = 1...m — 1 such that ¢; <r; < g;11.

So we have to conclude that {q1,...,qm} = {r1,...,mn}. This means that h = m.

It also follows that for each ¢ = 1...h ¥; = ‘y; : xi’, Yn+1 = 0. And it also follows
that for each i = 1...h £(¢;) > 3, ¥i[2] = 75 L(Ypa1) = 1.

Let’s now define a function = over the domain {1,...,h} by setting z(i) = ¥;[1] =
y(1); let’s define a function ¢ over the domain {1, ..., h} by setting ¢(i) = ¥;[3, £(;)]
x(2); let’s define ¢ = 1,1 = 6 then

e foreachi=1...h z; €V —wvar(k), and for each i,j =1...h i # j = x; # x;j,
o foreachi=1...h ¢; € E(n),

e o€ E(n);

o E(n,k,h,x,p,0).

Conversely assume the following;:

o foreachi=1...h (1)) = 3, ¥i[2] = "5 L(Yny1) = 15
e let’s define a function x over the domain {1,...,h} by setting x(i) = 1;[1]; let’s
define a function ¢ over the domain {1,..., h} by setting ¢(i) = ¥;[3, £(;)]; let’s
define ¢ = 11 then
o foreachi=1...hz; € V—wvar(k), and foreachi,j=1...hi#j — x; #
xj,
o foreachi=1...h ¢; € E(n),
o ¢ € E(n);
o &(n,k,h,x,p,p).

Notice that ¢ = {}(¢1,...,Yn, Yri1) = {Hx1 2 ©1,...,2h ¢ @, @), so clearly t €
He(n+1,k). O

Lemma 6.1.26. Given k € K(n) He(n + 1, k) is recursive.

Proof. Let t € ¥*. If t doesn’t begin with the characters ‘{}(’ or it doesn’t end with
‘) thent ¢ He(n+1,k). Let ¢» € ¥* and let t = {}(¢)). Consider the set of the positive
integers r such that 2 < r < {(t), t[r] = ¢, and d(t,r) = 1. If t € H.(n + 1,k) then
this set is not empty and by contraposition if this set is empty then t ¢ H.(n + 1, k).

So we can consider the case of the former lemma where the just mentioned set is

not empty. And we define ¢ = ¢[3,r1 — 1] (if r; — 1 < 3 then ¢; = € where € is the
empty string over the alphabet X).
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If h > 1 then for each @ = 1...h — 1 we define ¢;11 = t[r; + 1,r;y41 — 1] (if
rit1 — 1 <r;+ 1 then 941 =e.
Finally we define ¢p1 = t[rp, + 1,0(t) — 1] (if £(t) — 1 < rp + 1 then ¥y = €).

At this point we can verify the following: for each i = 1...h £(¢);) = 3, ¥;[2] = '
0(vp+1) = 1t if this is false then t ¢ He(n + 1, k).

If the condition is true we can go on with our verifications and first of all we define
a function = over the domain {1,...,h} by setting x(i) = 1;[1]; let’s define a function
¢ over the domain {1,...,h} by setting ¢(i) = ¥;[3, £(1;)]; let’s define ¢ = ¥ 11.

At this point we just need to check this condition

o foreachi=1...hx; € V—war(k), and for each i,j =1...h i # j — x; # xj,
o o1 € Es(n, k) ;
e if m >1thenforeachi=1...m—1kl € K(n) A1 € Es(n,k.);
e k. e K(n)AN¢e€ E(n,kl,).

The condition is decidable. In fact E(n, k) is recursive and so are K (n), E(n, k;) and
E(n, k],). If the condition holds then clearly t € H.(n+1,k), else t ¢ He(n+1,k). O

Lemma 6.1.27. Let k € K(n), given t € Ho(n + 1, k) there exist

e a positive integer m;

e a function y whose domain is {1,...,m} such that for each i = 1...m y; €
V —war(k), and for each i,j =1...m i # j —= y; # y;;

e a function x whose domain is {1, ..., m} such that foreachi =1...m y; € E(n);

e § € E(n);

such that E(n, k,m,y,x,0) and t = {}(y1 : X1,--++Ym : Xm,0)-

Moreover m, y, X, 8 are univocally determined.

Proof. Since t € He(n + 1,k) we are in the case of lemma 6.1.25 and we can define
r1y...,7p and ¥1,...,%p41 as in that lemma. As shown in the lemma the following
holds

o foreachi=1...h (1) = 3, ¥i[2] = "5 L(Ypy1) = 15
e let’s define a function x over the domain {1,...,h} by setting z(i) = 1;[1]; let’s
define a function ¢ over the domain {1,...,h} by setting (i) = ¥;[3, £(1);)]; let’s
define ¢ = 11 then
o foreachi=1...hx; €V —wvar(k), and foreachi,j=1...hi#j = x; #
Ly,
o foreachi=1...h p; € E(n),
o ¢ € E(n);
o g(nv k? h7 €L, P, ¢)

As seen in the lemma it also happens that m = h and for each i = 1...m
y(1) = (i), x(i) = ¢(i), and finally 6 = ¢.

If we had identified some potentially different (p, z,7, ) such that

e p is a positive integer;
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e 2 is a function whose domain is {1,...,p} such that for each i = 1...p z; €
V —war(k), and for each i,j =1...p i # j — z; # z;;

e 7 is a function whose domain is {1, ..., p} such that foreachi =1...pn; € E(n);

e ¥ € E(n);

o E(n,k,p,z,m,0);

o t={}(z1:01,...,2 : Xp,V);

we can still conclude that p = h = m and for each i = 1...p 2(i) = z(7) = y(i),
n(i) = ¢(i) = x(i), and finally 9 = ¢ = 0. z

For each k € K(n) we define E.(n + 1, k) as the set of the strings

{31 o1, s Tm t Pm, @) € He(n+ 1,k)
such that:

e m is a positive integer;

x is a function whose domain is {1,...,m} such that for each i = 1...m z; €

V —war(k), and for each i,j =1...m i # j — x; # xj;

e ¢ is a function whose domain is {1,...,m} such that for each i = 1...m ¢; €
E(n);

o ¢ € E(n);

b {}(xl PPy Tm @m»@é) Qf E(n’ k);

o {Hx1:p1,.o oy Tm : om, @) & Ep(n+1,k).

Lemma 6.1.28. E.(n + 1,k) is recursive.

Proof. As we have seen in lemma 6.1.26, given ¢ € ¥* we can decide if t € Ho(n+1, k)
and if we decide it is true then we also identify in the process what follows:

e a positive integer h;

e a function = over the domain {1,...,h} such that for each i = 1...h z; €
V —war(k), and for each i,j =1...hi# j — x; # xj;

e a function ¢ over the domain {1,...,h} such that foreach i =1...h ¢; € E(n);

e ¢ € E(n)

such that E(n, k,h,z,0,¢) and t = {}(x1 : @1, .., Tm : ©m, D).
Clearly we can also decide if the following conditions hold:

o {}(z1:01, . sTm : Om, @) & E(n,k);
o {}(z1:01, . s Tm  om, @) & Ep(n+1,k).

If the conditions both hold then ¢ € E.(n + 1, k), otherwise t ¢ E.(n + 1, k). O

For every t = {}(z1 : ¢1,.. ., Zm : Pm, @) € Ee(n + 1, k) we define

#(k,t,0) (1, ke) = {# (ks 8, 0)| o7, € Elkyy), 0 T o7, },

where ky = k+ (21, ¢1), and if m > 1foreachi =1...m—1kj | = kj+(zi11, 0iy1).
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Notice that the set {#(kl,, ®,0.,)| on, € E(k.,),0 C o}, } is specified using a stan-
dard mathematical notation. We could specify it using a notation closer to the one of
our expressions, in this case we should define a set Q as the set of o], € Z(k],) such
that o C o/, then we could write the above mentioned set as { }(o},, : Q, #(k.,, d,00,)).

Actually, it might still be a bit unclear what is the intended meaning of the expres-
sion

{}($1 Py T ¢m7¢)

This is the same meaning that the expression

{p| 1 € ©1,...,Tm € Om}
is intended to have when used in most mathematics books.

We have terminated the definition of the ‘new sets’ (of expressions bound to context
k) and the related work, we are now ready to define E(n + 1,k) for k € K(n + 1).

First of all let C' be the set of the constants ¢ € C for which, given k € K(n), we
can define E(n + 1, k).

To be precise we list here all the type of constant that belong to C’. The following
constants, and only those which are listed here, belong to C’.

™ and

e the constants ¢ € C such that #(c) is a function whose domain is (D;)
whose range is D;;

e the constants ¢ € C such that #(c) is a function whose domain is (P?(D;))™ and
whose range is PY(D;);

e the constants ¢ € C such that there exist ¢ = 1...p and a positive integer m
such that #(c) is a function whose domain is (D;)™ and such that for each
(di,...,dm) € (D;)™ #(c)(dy,...,dp) is true or false;

e the constants ¢ € C such that there exist ¢ = 1...p, a positive integer ¢ and a
positive integer m such that #(c) is a function whose domain is (P4(D;))™ and
such that for each (di,...,dn) € (P9(D;))™ #(c)(d1,...,dn) is true or false;

e the constants ¢ € C such that #(c) is a function whose domain is
Ugs1(Ui=1. ,(P4(D;))™) such that for each ¢ > 1, i = 1...p, (A1,...,4n) €
(PID))™ BN (Ar,. .., Am) € PID);

e if C includes a constant II whose meaning #(II) is a function over the do-
main {J,>; (U1, P?(D;)) such that for each ¢ > 1, i =1...p A € PUD;)
#(II)(A) = P(A), then II also belongs to C'.

If k € K(n)* we have defined E,(n + 1,k), we also define
o E(n+1,k) = E,(n+ 1,k).

If k € K(n) we have defined Ey(n+1,k), E¢(n+1,k) (for each ¢ € C"), Ef (n+1,k)
(for each f € F), Ee(n+ 1,k), we also define

H(n+1,k) = {E(n, k), By(n+1,k), Ee(n+1, k) YU{ES(n+1, k)|c € C'YO{E (n+1, k)| f € F),
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Em+1,k)= ) A4
AeH(n+1,k)

Lemma 6.1.29. Given A, Be H(n+1,k) AnNB =1

Proof. 1t is obvious by definition that Ey(n + 1,k) N E(n, k) = 0.
It is also obvious that E.(n+1,k)NE(n,k) = 0 and E.(n+1,k)N Ep(n+1,k) = 0.

Given c € ('

o E¢(n+1,k)NE(n, k) =10,

e E¢(n+1,k)NEy(n+1,k) =0,

e E(n+1,k)NE.(n+1,k)=0.
( )

Given ¢1,c0 €C' E“(n+ 1, k)N E%(n+1,k) = 0.

Given f € F

e Ef(n+1,k)NE(n,k) =0,
e Ef(n+1,k)NnEy(n+1,k) =0,
e Ef(n+1,k)NE.(n+1,k) = 0.

Given f € F,ceC Ef(n+1,k)NE°(n+ 1,k) = (.

Given f1, fo € F Elf(n+ 1,k) N E/2(n +1,k) = 0.
O

For every k € K(n+1),t € E(n+ 1,k) and 0 € Z(k) we need that #(k,t,0) is
defined.

If k € K(n)"™ we just need to define #(k,t,o) for each t € E,(n + 1,k). Obviously
we define #(ka i, U) = #(k7 i, U)(n+1,k,a)‘

If £ € K(n), how do we define #(k,t,0) for each t € E(n + 1,k)? We have seen
that E(n+1,k) = Usep(ni1r) A and that given A, B € H(n+1,k) ANB =10.

Given t € E(n, k) #(k,t,0) is already defined and we don’t need to redefine it.
Given t € Ep(n + 1, k) we define #(k,t,0) = #(k,t,0) (n41,k,0)-

Given t € Ec(n + 1,k) we define #(k,t,0) = #(k,t,0) (n41 k,e)-

Given c € (', t € E¢(n + 1, k) we define #(k,t,0) = #(k, 1, 0) (n41,5,<c>)-

Given f € F,t € Ef(n +1,k) we define #(k,t,0) = H# (Kt 0) (nt 1k, < f>)-

Notice that if k € K(n)* we have not defined Ey(n+1,k), E.(n+1,k) given c € C’

we have not defined E¢(n + 1,k) and given f € F we have not defined Ef(n + 1,k).
We conventionally define all of these sets as the empty set.
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Also notice that if k& € K(n) we have not defined E,(n+ 1, k) and we conventionally
define it as the empty set.

In the last part of our definition we need to prove that all the assumptions we have
made at step n are true at step n + 1.

Proof of 6.1.4. Let m < n+ 1. If m = n then clearly K(m) = K(n) C K(n+1).
Else m <nso K(m) C K(n) C K(n+1).
O

Proof of 6.1.5 and 6.1.6 . Let k € K(n + 1), if & € K(n)" then
E(n+1,k) = E,(n+1,k) C X*.

If k € K(n) then E(n+1,k) = U sep(ns1,4) A- Since H(n+1, k) is finite, in order to
prove that E(n+1,k) C X* we just need to prove that for each A € H(n+1,k) A C X*.

We actually have the following:

E(n,k) C ¥*,

Ey(n+1,k) C X*,

Eo(n+1,k) C 9¥,

for each c € ' E¢(n+1,k) C 3%,
for each f € F Ef(n+1,k) C ©*.

Let’s now see how we prove that E(n + 1, k) is recursive.

Let t € ¥*, we have to decide if t € E(n + 1, k). First we can decide if k € K(n), if
this is false then we just need fo decide if t € E,(n + 1, k).

If instead k € K (n) holds true, we check the following conditions

t€ E(n,k),

te Eb(n + 1, k‘),

t € E(n+1,k),

the condition ¢t € E°(n+ 1,k) (for each ¢ € '),
the condition t € Ef(n + 1,k) (for each f € F).

If at least one of the conditions is true then we can decide t € E(n+1, k), otherwise
t¢ E(n+1,k).
O]

Proof of 6.1.7. We have to show that for each k € K(n+ 1) k € © and for each
o € Z(k) o is a state-like pair and dom(c) = dom(k).
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If k € K(n) this is clearly true because it is precisely our assumption.

If k € K(n)" then there exist h € K(n),¢ € Es(n,h),z € (V —var(h)) such that
k=h+<z¢>and Z2(k) ={p+ (2,8)|p € =Z(h),s € #(h,d,p)}.

For each o € Z(k) 0 = p+(z,s) with p € E(h), s € #(h, ¢, p), so o is a state-like pair.

Moreover, we can assume dom(h) = dom(p)

= () or dom(h) = dom(p) = {1,...,m}
for a positive integer m. In the first case dom(o) =

{1} = dom(k), else

dom(o) = dom(p) U{m + 1} = dom(h) U {m + 1} = dom(k) .

Proof of 6.1.8. We have to show that for each k € K(n+ 1) k = € and Z(k) = {¢}
or
(there exist m < n+ 1, h € K(m), ¢ € Es(m,h), y € (V — var(h)) such that
E=ht <y,6> (k) = o+ (5, 5)| 0 € 5(h), s € #(h 6,0)} ).

If k € K(n) by the inductive hypothesis k = ¢ and =Z(k) = {e} or
(n > 1 and there exist m <n <n+1, h € K(m), ¢ € Es(m,h), y € (V —var(h))
such that k = h+ <y, ¢ >, Z(k) = {0 + (y,5)| 0 € E(h),s € #(h,d,0)}).

Otherwise k € K(n)* so there exist h € K(n),¢ € Es(n,h),y € (V —var(h)) such
that k = h+ <y,¢ >, E(k) = {0+ (y,s)| 0 € E(h),s € #(h,¢,0)}. O

Proof of 6.1.9. We have to show that for each k € K(n+ 1) : k # ¢, 0 € E(k),
h € R(k) : h # k, there exists m < n + 1 such that h € K(m) and it results

 1dom(n) € E(h).

We first consider the case where n + 1 = 2. Here we have to show that for each
ke K2):k#e, 0€Zk),heR(k):h#k, he K(1)and it results 0 /qomn) € Z(h).

Let k € K(2) : k 75 €, 0 € 2(k), h € R(k) : h # k. Clearly k € K(1)*, so
there exist ¢ € K(1), ¢ € Es(1,9), y € V —wvar(g) such that k = g+ < y,¢ >.
By lemma 5.5 we obtain that h € R(g). Since g = € then also h = ¢ € K(1) , so

at
O /dom(h) = 0/p = € € = ( ) :E(h)

Let’s now examine the case where n+1 > 2. Let k € K(n+1) : k # ¢, let 0 € E(k),
h € R(k) : h # k, we have to show there exists m < n + 1 such that h € K(m) and it
results o /gom(n) € Z(h).

As we have just proved in relation to assumption 6.1.8, there exist m < n + 1,
g € K(m), ¢ € Es(m,g), y € (V — var(h)) such that £k = g+ < y,¢ >,
E(k) ={p+ (y,s)lp € E(g),s € #(g,0,0)} ).

This implies there exist p € =Z(g),s € #(g,¢,p) such that ¢ = p + (y,s). By
assumption 6.1.7 and lemma 3.11 we have that T Jdom(g) = O Jdom(p) = P-
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If h = g then O Jdom(h) = O /dom(g) = P € =(h).

Otherwise we have h # g. Since k = g+ < y,¢ >, h € R(k), h # k by lemma 5.5
we have that h € R(g). If ¢ = € we would have h = € = g, so g # e. This implies
that m > 2. By our inductive hypothesis we obtain there exists ¢ < m < n such that
h e K(q ) and p/gom(n) € E(h). Now by lemma 3.8

 1dom(h) = (O fdom(g)) /dom(h) = PJdom(h) € =(h).

Proof of 6.1.10. Given k € K(n + 1) we have to show that a certain set of
predicates over E(n + 1,k) are decidable.

We recall that the predicates are the following

e for each o € Z(k) Sety(#(k, p,0));

e for each o € Z(k) Event ( (k,p,0));

o for each 0 € Z(k) #(k,p,0) € Dy;

e for each o € Z(k) #(k, p,0) € PYUD;);

o if (for each 0 € Z(k Set ¢(#(k,p,0))) then

)
(for each o € Z(k) NotEmptyq(#(k, ©,0))).
And we also need to verify that the last predicate holds true.

We have seen that if K € K(n)"™ E(n+1,k) = E,(n+ 1,k), and if k € K(n)

Em+1,k)= |J A
AcH(n+1,k)

So let P be one of the predicates which we want to examine.

If k € K(n)™ P is a predicate over Eq(n + 1, k), suppose we can show in this case
P is decidable over E,(n + 1,k).

If instead k € K(n) P is a predicate over | ep(11,) A- Suppose in this case for
each A € H(n+ 1,k) we can show P is decidable over A.

If we can show the above properties for P, then P is decidable over E(n + 1, k).

In fact given t € E(n + 1,k) to decide P(t) we first decide if k£ € K(n), if this is
false then t € E,(n + 1, k) and we can decide P(t).

If k € K(n) is true then ¢ € (Jep(n41,4) A- For each A € H(n+1,k) we can decide
if t € A, this will be true for just one set A and since t € A we can decide P(t).

So in order to prove the decidability of P we must prove the following;:

o if k ¢ K(n) then P is decidable over E,(n + 1,k),
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e if k € K(n) then for each A € H(n+ 1,k) P is decidable over A.

There is also a predicate @ over E(n + 1, k) which we want to prove true. In order
to prove the truthness of this predicate we must prove the following:

o if k ¢ K(n) then Q is true over E,(n+ 1,k),
o if k € K(n) then for each A € H(n + 1,k) Q is true over A.

Finally, in order to prove the decidability of all the predicates we want to declare
decidable and the truthness of the predicate Q@ we will proceed as follows.

e we prove that if £ ¢ K(n) then for each of our predicates P P is decidable over
E.(n+1,k), Q is true over E,(n+1,k),

e we prove that if & € K(n) then for each A € H(n + 1,k) and for each of our
predicates P P is decidable over A, @) is true over A.

For the first step, let k ¢ K(n) and let’s try to prove that for each of our predicates
P P is decidable over E,(n + 1, k).

v

(n,h),y € (V —wvar(h)) such that
#(h,¢,p)}. Moreover h, y and ¢
}

{y}.

Givent € E,(n+ 1,k), 0 = p+ (y,s) € E(k) #(k,t,0) = s € #(h, o, p).

Since k € K(n)T there exist h € K(n),¢ € E
k=ht <y, ¢ > Ek) ={p+ (y,s)|p € E(h),s
are clearly identifiable within &k and E,(n + 1, k)

I m

We first consider the predicate ‘for each o € Z(k) Sety(#(k,p,0))’ (where ¢ is a
positive integer).

We consider that ¢ € E(n,h) and by inductive hypothesis we can decide whether
‘for each p € =(h) Setqr1(#(h, ¢,p))’.

If we decide this is true then for each o € E(k) there exist p € Z(h), s € #(h, ¢, p)

such that 0 = p+ (y, s), #(k,,0) = s € #(h, ¢, p), and since Setq1(#(h, ¢, p)) we
have Setq(#(k,¢,0)).

So if we decide ‘for each p € =(h) Setqr1(#(h, ¢, p))’ is true we can use this to
decide ‘for each o € E(k) Sety(#(k,p,0))’ is true.

If instead we decide ‘for each p € =(h) Setqr1(#(h, ¢, p))’ is false this means there
exists p € Z(h) such that —(Setyr1(#(h,¢,p))). Since ¢ € Es(n,h) we have that
#(h,¢,p) is a set and so there exists s € #(h, ¢, p) such that =(Set,(s)). If we set
o =p+(y,s) then o € Z(k) and #(k, p,0) = s so ~(Set,(#(k, p,0)).

So if we decide ‘for each p € Z(h) Sety1(#(h, ¢, p))’ is false we can use this to
decide ‘for each o € E(k) Sety(#(k, ¢,0))’ is false too.

We now want to prove the following:

if (for each o € E(k) Set,(#(k,¢,0))) then
(for each o € Z(k) NotEmpty,(#(k,¢,0))).
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We assume (for each o € =(k) Sety(#(k,p,0))), clearly this implies
(for each p € Z(h) Setqr1(#(h, ¢, p))), which (by inductive hypothesis) implies
(for each p € Z(h) NotEmpty,1(#(h, ¢, p))).

We can then consider that for each o € Z(k) there exist p € Z(h), s € #(h, ¢, p)

such that 0 = p+ (y, s), #(k,p,0) = s € #(h, ¢, p). Since NotEmptyg1(#(h, ¢, p))
holds then Not Empty,(#(k, ¢, 0)) holds too.

Given ¢ = 1...p we now want to consider the predicate ‘for each o € Z(k)
#(7@%0) €Dy

By the inductive hypothesis we are able to decide the predicate ‘for each p € Z(h)
#(h,¢,p) € P(Di)".

If we decide the last condition is true then as seen above for each o € Z(k) there exist

p € E(h), s € #(h, ¢, p) such that o = p+ (y, s), #(k,p,0) = s € #(h, ¢, p) € P(Dy),
therefore #(k, p,0) € D;.

If instead we decide the mentioned condition is false, then there exists p € Z(h):
#(h, ¢, p) ¢ P(D;). Since #(h, ¢, p) is a set and it is not empty, this means there exists
s € #(h,¢,p): s ¢ D;. If we set 0 = p+ (y,s) then o € Z(k) and #(k,p,0) =5 ¢ D;,
so there exists o € Z(k): #(k,p,0) ¢ D;.

Given ¢ = 1...p and a positive integer ¢ we now want to consider the predicate
‘for each o € Z(k) #(k, p,0) € PI(D;) .

By the inductive hypothesis we are able to decide the predicate ‘for each p € Z(h)
#(h, ¢, p) € PIH(D;)".

If we decide the last condition is true then as seen above for each
o € Z(k) there exist p € E(h), s € #(h,¢,p) such that ¢ = p + (y,s),
#(k, 0, 0) = s € #(h, ¢, p) € PITH(D;), therefore #(k, p,0) € #(h, ¢, p) C PI(D;).

If instead we decide the mentioned condition is false, then there exists p € Z(h):
#(h,¢,p) ¢ PIT(D;). Since #(h,¢,p) is a set and it is not empty, this means
there exists s € #(h,d,p): s ¢ PIUD;). If we set 0 = p + (y,s) then o € Z(k) and
#(k,p,0) = s ¢ PYUD;), so there exists o € Z(k): #(k, p,0) ¢ PLD;).

Given a positive integer ¢ we now want to consider the predicate ‘for each o € Z(k)
Eventy(#(k,p,0))’.

By the inductive hypothesis we are able to decide the predicate ‘for each p € Z(h)
Eventhrl (#(ha Qsa p))’

If we decide the last condition is true then as seen above for each o € =(k) there

exists p € =(h) such that #(k, ¢,0) € #(h, ¢, p). Since Eventyi1(#(h, ¢, p)) we have
Eventqy(#(k,p,0)).

If instead we decide the mentioned condition is false, then there exists p € E(h):
—(Eventy1(#(h, ¢, p))). This implies there exists s € #(h, ¢, p): ~(Eventy(s)). If we
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set 0 = p+ (y,s) then o € E(k) and #(k, p,0) = s, so ~(Eventq(#(k,¢,0))). This
means there exists o € Z(k): —~(Event,(#(k, p,0))).

Let’s now move to the second step of our proof, where we expect to prove that
if k € K(n) then for each A € H(n + 1,k) and for each of our predicates P P is
decidable over A.

By the inductive hypothesis (i.e. what we assumed true at level n) we can assume
that each of our predicates P is decidable over E(n, k).

Let’s now try to prove that for each of our predicates P P is decidable over
Eb(n —+ 1, k).

If k = € we have Ey(n + 1,k) = 0, so our predicates are trivially decidabile over
such empty domain.

We’ll then consider the case k # €. Here by our assumption 6.1.8 n > 1 and there
exist m < n, h € K(m), ¢ € Es(m,h), y € (V —wvar(h)) such that k = h+ < y,¢ >,
E(k) ={p+ (y,s)lp € E(h),s € #(h, b, p)}).

For each ¢ € Ey(n+ 1,k), 0 =p+ (y,s) € E(k) #(k,¢,0) = #(h, ¢, p).

We first consider the predicate ‘for each o € Z(k) Setq(#(k,p,0))" (where ¢ is a
positive integer).

By the inductive hypothesis we can decide if the following condition holds: ‘for
each p € Z(h) Sety(#(h,p,p))’.

If the just mentioned condition holds we can consider that for each o € Z(k) there

exist p € Z(h), s € #(h,,p) such that o = p + (y,s) and #(k, p,0) = #(h, ¢, p).
Since Sety(#(h, ¢, p)) then Set,(#(k, ¢, o)) holds too.

If the mentioned condition is decided as false then there exists p € ZE(h):
—(Sety(#(h, ¢, p))). We have that for each § € =Z(h) Seti(#(h,¢,0)), so for each
0 € E(h) NotEmptyi(#(h,$,0)). So let s € #(h,¢,p) and let 0 = p + (y, s), then
o € E(k) and #(k, p,0) = #(h, ¢, p) and so ~(Sety(F#(k, ¢, 0))).

We now want to prove the following:

if (for each o € E(k) Set,(#(k,¢,0))) then
(for each o € E(k) NotEmpty,(#(k,p,0))).

We assume (for each o € Z(k) Sety(#(k, ,0))), clearly this implies
(for each p € Z(h) Setqy(#(h, ¢, p))), which (by inductive hypothesis) implies
(for each p € E(h) NotEmpty,(#(h, ¢, p))).

We can then consider that for each o € ZE(k) there exist p € Z(h), s € #(h, ¢, p)

such that o = p + (y, s), #(k, 0, 0) = #(h, ¢, p). Since NotEmpty,(#(h, ¢, p)) holds
then NotEmpty,(#(k, , o)) holds too.
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Given i = 1...p we now want to consider the predicate ‘for each o € Z(k)
#(k,p,0) € D;’.

By the inductive hypothesis we can decide the condition ‘for each p € Z(h)
#(h, ¢, p) € Di’.

If the just mentioned condition holds then we consider that for each o € E(k) there

exist p € Z(h), s € #(h,,p) such that o = p + (y,s) and #(k, p,0) = #(h, ¢, p).
Therefore clearly #(k, p,0) € D;.

If on the contrary the mentioned condition is decided as false then there exists
p € E(h): #(h,p,p) ¢ D;. We have that for each 6 € Z(h) Sety(#(h,®,0)), so for
each 0 € Z(h) NotEmptyi(#(h,$,0)). So let s € #(h,¢,p) and let o = p + (y, s),
then o € E(k) and #(k, p,0) = #(h, ¢, p) ¢ D;.

Given ¢ = 1...p and a positive integer ¢ we now want to consider the predicate
‘for each o € Z(k) #(k, p,0) € PU(D;) .

By the inductive hypothesis we are able to decide the predicate ‘for each p € Z(h)
#(ha ©s p) € PQ(DZ)’

If the just mentioned condition holds then we consider that for each o € Z(k) there

exist p € Z(h), s € #(h, ¢, p) such that o = p + (y,s) and #(k,p,0) = #(h, ¢, p).
Therefore clearly #(k, ¢,0) € P1(D;).

If on the contrary the mentioned condition is decided as false then there exists
p € E(h): #(h,p,p) ¢ P4(D;). We have that for each 6 € Z(h) Set1(#(h, ¢,9)), so
for each 0 € Z(h) NotEmptyi(#(h, ¢,0)). So let s € #(h, ¢, p) and let 0 = p + (v, s),
then o € E(k) and #(k, p,0) = #(h, ¢, p) ¢ PUD;).

Given a positive integer ¢ we now want to consider the predicate ‘for each o € Z(k)
Eventy(#(k,p,0))’.

By the inductive hypothesis we are able to decide the predicate ‘for each p € Z(h)
Eventq(#(ha ©s p>)7

If the just mentioned condition holds then we consider that for each o € E(k) there

exist p € Z(h), s € #(h,$,p) such that o = p + (y,s) and #(k,p,0) = #(h, ¢, p).
Therefore clearly Eventy(#(k,p,0)).

If on the contrary the mentioned condition is decided as false then there exists
p € E(h): ~(Eventy(#(h, ¢, p))). We have that for each 6 € Z(h) Seti(#(h, ¢,9)), so

for each 6 € Z(h) NotEmpty,(#(h, ®,0)). So let s € #(h, ¢, p) and let o = p + (y, s),
then o € Z(k) and #(k, p,0) = #(h, ¢, p), so ~(Eventy(#(k, p,0))).

Let’s now try to prove that for each of our predicates P P is decidable over

Ec(n + 1,k).

We recall that for every t = {}(x1 : ¢©1,...,Zm : ©m,d) € Ee(n + 1,k) we have
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defined

#(k,t,0) = {# (K, &, 000)| o € Ekry), 0 E 07,

where k] = k+ < z1,91 >, and if m > 1 for each ¢ = 1...m — 1
k'+1—k+<xz+1790z+1>

We first consider the predicate ‘for each o € Z(k) Set,(#(k,t,0))" (where ¢ is a
positive integer).

It is clear that for each o € Z(k) Set1(#(k,t,0)) holds true.

Let’s then examine the condition ‘for each o € Z(k) Setyq1(#(k,t,0))’ (where ¢ is
a positive integer).

We have ¢ € FE(n,k],) so we can decide the condition ‘for each o], € Z(k,)

Setf](#(k‘;nv ¢7 07/71))"

If the just mentioned condition holds true then we can observe that for each o € Z(k)
and for each u € #(k,t, o) there exists o], € Z(k},,) such that u = #(kl,, ¢,0.,), and
so Setq(u). It follows that Set,i1(#(k,t,0)) holds true.

If on the contrary the mentioned condition is decided as false then there exists
o, € Z(k;,) such that —(Setq(#(k;,, ¢, 00,)))-

Let o = (0] )/dom(k) we can apply assumption 6.1.9 to show that o € Z(k). In fact
kl, #eson >1, 0, € E(k,), k€ R(kl,), k # k,,. It is also obvious that ¢ C o7,.
So #(kl,, p,00,) € #(k t,0), and so there exists u € #(k,t,0) such that —(Set,(u)).
Finally, there exists o € E(k) such that —(Setq 1 (#(k,t,0))).

We have seen that for each o € Z(k) Set1(#(k,t,0)). So we also need to show that
for each o € Z(k) NotEmpty, (#(k,t,0)).

Given o € E(k), in order to show NotEmpty;(#(k,t,0)) we have to prove there
exists o/, € Z(k!,) such that o C o/, in this case in fact #(k.,, ¢, 0,,) € #(k,t,0).

First we will show there exists o] € Z(k}) such that o C o7.

Indeed 1 € E4(n, k) so for each § € Z(k) Setq(#(k, ¢1,0)). So for each § € Z(k)
NotEmpty, (#(k, ¢1,0)) and this implies #(k,(pl,a) # 0. So given s1 € #(k,¢1,0)
we can define o} = o + (1, s1) and clearly o] € Z(k}). Obviously o C o}.

If m > 1 given j = 1...m — 1 we can assume the existence of o; € (k)
such that o C o} and prove the existence of o%,; € Z(k},;) such that o C o7;.
Indeed ¢j1 € Es(n,kj) so for each 6 € E(k}) Setl(#(k;,goﬁl,é)) So for each
6 € E(kj) NotEmpty:(# (K}, ¢j+1,0)) and this implies #(k}, j11,05) # 0. So
given sj11 € #(k}, pj+1,0%) we can define o}, = o} + (:B]H,SJH) and clearly
041 € E(kj41). Obviously o C o C o7 ;.
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So it is proved that there exists o], € Z(k/,) such that ¢ C o},, and thus

#(k;nv(ba U;n) S #(k,t, 0'), m>

Let’s now consider the case where for each o € Z(k) Setq1(#(k,t,0)). We want
to show that for each o € =(k) NotEmptyq1(#(k,t,0)).

The following condition holds true:
‘for each o), € Z(k},) Setq(#(k,, P, 00,)) -

Consequently the following also holds:
‘for each o}, € E(k],,) NotEmptyy(#(k,,, ¢,00,))’ .

Given o € Z(k) we have to show NotEmpty,(#(k,t,0)) and for each u € #(k,t,0)
NotEmpty,(u).

Since for each 6 € Z(k) Setqy1(#(k,t,0)) then for each § € =(k) Seti(#(k,t,9))
also holds. This implies Not Empty, (#(k,t,0)).

Moreover given u € #(k,t, o) there exists o}, € Z(k},,) such that u = #(k/,,, ¢, 01,),
so NotEmpty,(u) holds true.

Given ¢ = 1...p we must be able to decide the condition ‘for each o € Z(k)
#(k,t,0) € D; .

Clearly for each o € Z(k) #(k,t,0) is a set and so #(k,t,0) ¢ D;. Since E(k) # 0
the condition ‘for each o € Z(k) #(k,t,0) € D;’ is false.

Given ¢ = 1...p we must be able to decide the condition ‘for each o € Z(k)

#(k,t,0) € P(D;)’.

We have ¢ € FE(n,k],) so we can decide the condition ‘for each o], € Z(k,)
# (ks &, 0) € Dy

If this condition is true then we can prove that ‘for each o € Z(k) #(k,t,0) € P(D;)’
is also true.

In fact given u € +#(k,t,0) we have there exists o], € Z(k],) such that
u = F#(k.,,¢,00,) € D; and so #(k,t,0) C D;, and since #(k,t,0) # 0,
#(k‘,t,O’) S P(Dz)

If on the contrary the mentioned condition is decided as false then there exists
o), € E(k},) such that #(k.,, ¢,0.,) ¢ D;.

Let 0 = (0},,) /dom(k)> We can apply assumption 6.1.9 to show that o € Z(k). In fact
kI, #eson>1, 0, €Z(k,), k€ R(k,), k # k,,. It is also obvious that o C o7,.
So #(k,, &,00,) € #(k,t,0), and so there exists u € #(k,t,0) such that u ¢ D;. So
#(k,t,0) is not a subset of D;, and so #(k,t,0) ¢ P(D;).

Finally, there exists o € Z(k) such that #(k,t,0) ¢ P(D;).

Given ¢ = 1...p and a positive integer ¢ we must be able to decide the condition
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“for each o € Z(k) #(k,t,0) € PIHL(D;).

We have ¢ € FE(n,k],) so we can decide the condition ‘for each o], € Z(k,)

#(kpn, &, 07,) € P(D;)’.

If this condition is true then we can prove that ‘for each o € Z(k)
#(k,t,0) € PITY(D;) is also true.

In fact given u € +#(k,t,0) we have there exists o], € Z(k],) such that
u = #(k;naqbﬁo—{m) S Pq(DZ) and so #(kvtaa) - Pq(Dz)a and since #(k‘,t,U) 7& ®7
#(k.t,0) € PTH(D;).

If on the contrary the mentioned condition is decided as false then there exists
o), € E(k],) such that #(k.,, ¢,0.,) ¢ PLD;).

Let 0 = (0},,) /dom(k), We can apply assumption 6.1.9 to show that o € Z(k). In fact
kI, #eson>1, 0, €Z(kl,), k€ R(k,), k#k,,. It is also obvious that o C o/,. So
#(k.,, b,00,) € #(k,t,0), and so there exists u € #(k,t,0) such that u ¢ PI(D;). So
#(k,t,0) is not a subset of P4(D;), and so #(k,t,0) ¢ PITH(D;).

Finally, there exists o € Z(k) such that #(k,t,0) ¢ PITL(D;).

Given a positive integer ¢ we must be able to decide the condition ‘for each
o € Z(k) Eventy(#(k,t,0)).

Actually for each o € E(k) #(k,t,0) is a set, so =~(Event;(#(k,t,0)). Therefore
the condition ‘for each o € Z(k) Eventi(#(k,t,0))’ is false.

Given a positive integer ¢ we must be able to decide the condition ‘for each
o € E(k) Bventyi1(#(k,t,0)).

We have ¢ € FE(n,k],) so we can decide the condition ‘for each o], € Z(k,)
Eventq(# (K, 6,07))"

If this condition is true then for each o € Z(k) for each u € #(k,t,0) there
exists o, € Z(kj,) such that u = #(k},,¢,0,,), and so Eventy(u). Therefore
Eventgi1(#(k,t,0)).

If on the contrary the mentioned condition is decided as false then there exists
o), € Z(k],) such that —(Eventy(#(k.,, ¢, 00,)))-

Let 0 = (an)/dom(k), we can apply assumption 6.1.9 to show that o € Z(k). In fact
kl,#eson>1, o), €Z(k,), ke R(EK,),k#Ek,,. It is also obvious that o C o/,. So
#(k,,, ¢,00,) € #(k,t,0), and so there exists u € #(k,t,0) such that ~(Eventy(u)).
So ~(Eventqi1(#(k,t,0))).

Finally, there exists o € Z(k) such that =(Eventq,1(#(k,t,0))).

Let’s now try to prove that for each of our predicates P and for each ¢ € C' P is
decidable over E¢(n + 1, k).

§. We first consider the case where #(c) is a function whose domain is (D;)™ and
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whose range is D;, and E°(n+1, k) is defined as the set of the strings (¢)(¢1,...,¢om) €
H.(n+1,k) such that:

SO].) . '780m 6 E(n, k;)’

for each j =1...m, 0 € Z(k) #(k,pj,0) € D;;
©) (@1, 0m) & E(n, k);

(C)(@l, ... 790777/) ¢ Eb(n + 1,]{?)

We recall that for each t = (¢)(¢1,...,pm) € E¢(n+ 1,k) we have defined
#(kv 2 J) = #(C)(#(k’ $1, U)v ) #(k7 Pm;s U))

It is immediately clear that the condition ‘for each o € E(k) #(k,t,0) € D;’ is true
and that the corresponding predicate over E(n + 1, k) is decidable.

Given j = 1...p such that j # ¢ we must be able to decide the condition ‘for each
o € E(k) #(k,t,0) € Dj’.

Since for each o € Z(k) #(k,t,0) € D; and D; N Dj = () then for each o € Z(k)
#(k,t,0) ¢ D; and we can decide the condition ‘for each o € Z(k) #(k,t,0) € D;’ is
false.

Given j = 1...p and a positive integer ¢ we must be able to decide the condition
‘for each o € Z(k) #(k,t,0) € P4(D;)’.

For each o € Z(k) #(k,t,0) € D;, so #(k,t,0) is not a set and #(k,t,0) ¢ P4(D;),
therefore the condition ‘for each o € E(k) #(k,t,0) € PI(D;)’ is false.

We now want to decide the condition ‘for each o € Z(k) Set,(#(k,t,0))’.

For each o € E(k) #(k,t,0) € D;, so #(k,t,0) is not a set and —(Setq(#(k,t,0))),
therefore the mentioned condition must be false.

We now want to decide the condition ‘for each o € E(k) Eventi(#(k,t,0))’.

For each o € E(k) #(k,t,0) € D;, so =(Eventi(#(k,t,0))). Therefore the men-
tioned condition is false.

Given a positive integer ¢, we now want to decide the condition ‘for each o € Z(k)
Eventgi1(#(k,t,0)).

For each o € E(k) #(k,t,0) € D;, so =(Set1(#(k,t,0))). Therefore the mentioned
condition is false.

§. We now consider the case where there exist ¢ = 1...p, a positive integer ¢ and
a positive integer m such that #(c) is a function whose domain is (P4(D;))™ and
whose range is P4(D;). In this case we defined E¢(n + 1,k) as the set of the strings
(©)(¢1y---s0m) € He(n+ 1, k) such that:

® Vi, ., Pm S E(”ﬂk)v
e for cach j =1...m, 0 € E(k) #(k, p;,0) € PUD;);
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hd (C)(Sola e 7S0m) gé E(n7 k)7
e ()1, 0m) & Ep(n+1,k).

By our definitions, for each t = (¢)(¢1,--.,pm) € E¢(n+ 1,k)
#(k7 t, J) = #(C)(#(k, ¥1, 0)7 ceey #(k> Pm U))

It is immediately clear that the condition ‘for each o € E(k) #(k,t,0) € P1(D;)’ is
true and that the corresponding predicate over E¢(n + 1, k) is decidable.

Given j = 1...p we must be able to decide the condition ‘for each o € Z(k)
#(k,t,0) € Dj'.

For each o € Z(k) #(k,t,0) € PI(D;), so #(k,t,0) is a set and #(k,t,0) ¢ Dy,
therefore the mentioned condition is false.

Given j = 1...p and a positive integer r such that r # ¢, we must be able
to decide the condition ‘for each ¢ € Z=(k) #(k,t,0) € P"(D;). By lemma 3.14
PT(D;) NPIUD;) = 0, so for each o € E(k) #(k,t,0) ¢ P"(D;), and the mentioned
condition is false.

Finally, given 7 = 1...p such that j # ¢ we must be able to decide the condition
‘for each o € Z(k) #(k,t,0) € PY(D;)’. By lemma 3.15 P4(D;) N PY(D;) = 0, so for
each o € E(k) #(k,t,0) ¢ P4(D;), and the mentioned condition is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € Z(k) Set,.(#(k,t,0))’, and when this condition is decided as true we must also be
able to decide that for each o € Z(k) NotEmpty,(#(k,t,0)).

We first consider the case r < ¢. We know that for each o € Z(k)
#(k,t,0) € PYD;), so by lemma 3.16 for each o € =Z(k) Set,(#(k,t,0)) and
NotEmpty,(#(k,t,0)).

Let’s now consider the case r > ¢. Here by lemma 3.13 for each o € Z(k)
—Set,(#(k,t,0)), so the condition ‘for each o € Z(k) Set,(#(k,t,0))’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € E(k) Event,(#(k,t,0)).

We know that for each o € Z(k) #(k,t,0) € P4(D;), so by lemmas 3.17 and 3.19
—FEvent,(#(k,t,0)). This obvioulsy implies that our condition ‘for each o € Z(k)
Event,(#(k,t,0))’ is false.

§. We now consider the case where there exist ¢ = 1...p and a positive in-
teger m such that #(c) is a function whose domain is (D;)™ and such that for
each (di,...,dm) € (D;)™ #(c)(dy,...,dn) is true or false. In this case we defined
E¢(n+ 1,k) as the set of the strings (¢)(¢1,-..,9m) € He(n + 1,k) such that:

® V1,...,pm € E(n,k);
o foreach j=1...m, 0 € E(k) #(k,pj,0) € D;;
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hd (C)(Sola e 7S0m) gé E(n7 k)7
e ()1, 0m) & Ep(n+1,k).

By our definitions, for each t = (¢)(¢1,--.,pm) € E¢(n+ 1,k)

#(k7 t, U) = #(C)(#(kj7 ¥1, 0)7 ceey #(k) Pm U))
Clearly for each o € Z(k) #(k,t,0) is true or false.

Given o = 1...p we must be able to decide the condition ‘for each o € Z(k)
#(k,t,0) € D, .

Since for each o € Z(k) #(k,t,0) is true or false, then for each o € Z(k)
#(k,t,0) ¢ D,, and so then condition ‘for each o € Z(k) #(k,t,0) € D, is false.

Given a = 1...p and a positive integer ¢ we must be able to decide the condition
‘for each o € E(k) #(k,t,0) € P1(Dy)’.

Given o € E(k) FEventi(#(k,t,0)) and by lemma 3.17 this implies
#(k,t,0) ¢ P1(D,). Therefore the condition ‘for each o € Z(k) #(k,t,0) € P4(Dy)’
is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € Z(k) Set,(#(k,t,0))’, and when this condition is decided as true we must also be
able to decide that for each o € Z(k) NotEmpty,(#(k,t,0)).

For each o € E(k) Ewvent)(#(k,t,0)) so —Seti(#(k,t,0)) and then also
—Set,(#(k,t,0)). Therefore the condition ‘for each o € E(k) Set, (#(k,t,0))’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € Z(k) Event,(#(k,t,0))’.

Clearly the condition is true for » = 1, while for » > 1 given o0 € Z(k)
—Set1(#(k,t,0)) and so ~Event,(#(k,t,0)), so the condition is false for r > 1.

§. We now consider the case where there exist ¢ = 1...p, a positive integer ¢ and a
positive integer m such that #(c) is a function whose domain is (P9(D;))™ and such
that for each (dy,...,dn) € (PY(D;))™ #(c)(d1,...,dn) is true or false. In this case
we defined E°(n + 1,k) as the set of the strings (¢)(¢1,...,¢m) € He(n + 1, k) such
that:

® V1,....,om € E(n,k);
e foreach j=1...m, 0 € E(k) #(k,p;,0) € PI(D;);

° ()(p1s---50m) ¢ E(n, k);
o ()(p15---som) & Ep(n+1,k).

By our definitions, for each t = (¢)(¢1,...,pm) € E‘(n+ 1,k)

#(k,t,0) = #(0)(#(k, 01,0), ..., #(k, om, 7).

Clearly for each o € Z(k) #(k,t,0) is true or false.
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Given a = 1...p we must be able to decide the condition ‘for each o € Z(k)
#(k,t,0) € Do,

Since for each o € Z(k) #(k,t,o0) is true or false, then for each o € Z(k)
#(k,t,0) ¢ D,, and so then condition ‘for each o € Z(k) #(k,t,0) € D, is false.

Given a = 1...p and a positive integer ¢ we must be able to decide the condition
‘for each o € Z(k) #(k,t,0) € P1(D,)’.

Given o € Z(k) FEventi(#(k,t,0)) and by lemma 3.17 this implies
#(k,t,0) ¢ PY(D,). Therefore the condition ‘for each o € Z(k) #(k,t,0) € P1(D,)’
is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € Z(k) Set,(#(k,t,0))’, and when this condition is decided as true we must also be
able to decide that for each o € =(k) NotEmpty,(#(k,t,0)).

For each o € ZE(k) Eventi(#(k,t,0)) so —Seti(#(k,t,0)) and then also
—Set,(#(k,t,0)). Therefore the condition ‘for each o € Z(k) Set,(#(k,t,0))’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € 2(k) Event,(#(k,t,0))’.

Clearly the condition is true for » = 1, while for » > 1 given o0 € Z(k)
~Set1(#(k,t,0)) and so ~Event,(#(k,t,0)), so the condition is false for r > 1.

§. We now consider the case where #(c) is a function whose domain is
Ugs1(Uiz1 ,(P4U(D;))™) such that for each ¢ > 1, i = 1...p, (A1,...,Ay) €
(PLUD;)™ #(c)(A1,...,Am) € PIUD;). In this case we defined E°(n + 1,k) as the
set of the strings (¢)(¢1,...,9m) € He(n + 1, k) such that:

® V1,...,pm € E(n,k);

e there exist ¢ = 1...p, ¢ = 1...Gmas such that for each j = 1...m, o € Z(k)
#(k,pj,0) € PUD;);

hd (C)((rola e a‘Pm) ¢ E(n7 k)a

hd (C)((:Ola cee a‘Pm) ¢ Eb(n + 17k)

By our definitions, for each t = (¢)(¢1,-..,pm) € E¢(n+ 1,k)
#(k> t, U) = #(C)(#(ka P1, U)a SRR #(k7 Pm, G))

Clearly, by the inductive hypothesis, given ¢t = (¢)(¢1,...,¢om) € E¢(n+ 1,k) for
eachi=1...pand ¢ =1...¢na we can decide if for each j =1...m and o € Z(k)
#(k,pj,0) € PYD;). There must exist ¢ = 1...p and ¢ = 1...¢mqz such that for
each j =1...m and o € Z(k) #(k,¢;,0) € PI(D;), and so we can determine i and g
with such requirements.

Given o = 1...p we must be able to decide the condition ‘for each o € Z(k)
#(k,t,0) € D, .
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As we have just seen, there must exist ¢ = 1...p and ¢ = 1... @mnae such that for
each j =1...m and o € Z(k) #(k, p;,0) € PI(D;), so #(k,t,0) € PUD;), #(k,t,0)
is a set and #(k,t,0) ¢ D, therefore the mentioned condition is false.

Given a = 1...p and a positive integer » we must be able to decide the condition
‘for each o € E(k) #(k,t,0) € P"(Dq) .

We first consider the case where r < ¢mnq.. In this case we have two subcases: the
first subcase is when for each j = 1...m and o € Z(k) #(k, pj,0) € P"(Dy,), in this
case for each o € Z(k) #(k,t,0) € P" (D).

Otherwise there must exist i = 1...pand ¢ = 1...@nas such that foreach j =1...m
and o € Z(k) #(k,¢j,0) € PYUD;) and so #(k,t,0) € PY(D;). Of course in this case
i£qorr#q.

In the case r # ¢ by lemma 3.14 P"(D,) N PY(D;) = 0, so for each 0 € =
#(k,t,o) ¢ P"(D,), and the condition we are discussing ‘for each o € Z(k)
#(k,t,0) € P"(Dy)’ is false.

In the case r = ¢ and ¢ # « by lemma 3.15 P"(D,) N PY(D;) = 0, so for each
o € E(k) #(k,t,0) ¢ P"(D,), and the condition we are discussing ‘for each o € Z(k)
#(k,t,0) € P"(Dy)’ is false.

Let’s now consider the case where r > @q.. Here there must exist ¢ = 1...p and
q¢ = 1...¢maz such that for each j = 1...m and o € Z(k) #(k,p;,0) € PIUD;).
Clearly r # ¢, so by lemma 3.14 P"(D,) N PYD;) = 0, so for each o € Z(k)
#(k,t,0) ¢ P"(Dy), and the condition we are discussing ‘for each o € Z(k)
#(k,t,0) € P"(D,) is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € 2(k) Set,(#(k,t,0))’, and when this condition is decided as true we must also be
able to decide that for each o € Z(k) NotEmpty, (#(k,t,0)).

We have seen that, given t = (¢)(p1,...,om) € E(n + 1,k), there must ex-
ist i = 1...p and ¢ = 1...¢nas such that for each j = 1...m and o € Z(k)
#(k,pj,0) € PY(D;), and that we can determine such 7 and g.

Then, given t = (¢)(¢1,...,m) € ES(n+ 1,k),leti=1...pand ¢ =1...¢mnax be
such that for each j = 1...m and o € Z(k) #(k, ¢j,0) € PI(D;). We have that for
each o € Z(k) #(k,t,0) € PI(D;).

If » < ¢ then by lemma 3.16 for each o € Z(k) Set.(#(k,t,0)) and
NotEmpty, (#(k,t,0)).

If instead r > ¢ then by lemma 3.13 for each o € Z(k) —Set,(#(k,t,0)), and then the
condition ‘for each o € E(k) Set,(#(k,t,0))’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € 2(k) Event,(#(k,t,0))’.

Given t = (¢)(¢1, ..., om) € E°(n+1,k),let i =1...pand ¢ =1...¢nas be such
that for each j = 1...m and o € Z(k) #(k,p;,0) € P4(D;). We have that for each
o € =(k) #(k,t,0) € PYD;).

By lemmas 3.17 and 3.19 we can conclude that for each o € Z(k) —~FEvent,(#(k,t,0)).
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Therefore the condition ‘for each o € =(k) Event,(#(k,t,0))’ is false.

§. We now consider the case where ¢ is the special constant IT whose meaning #(II)
is a function over the domain {J -, (U;=;_, P?(D;)) such that foreachg > 1,i=1...p
A € PYD;) #(I1)(A) = P(A). In this case we defined EY(n + 1,k) as the set of the
strings (II)(p1) € Hu(n + 1, k) such that:

e p1 € E(n,k);
e there exist i = 1...p, ¢ = 1...@mas such that for each o € Z(k) #(k,p1,0) €
PU(D;);

e (IN) (1) & E(n, k);
o (I)(¢1) & Ep(n+1,k).

By our definitions, for each t = (II)(¢1) € E%(n + 1, k)
#(k> t, U) = #(H)(#(kv #1, G))

Clearly, by the inductive hypothesis, given t = (II)(¢1) € EY(n + 1,k) for each
i=1...pand ¢ =1...¢mae we can decide if for each o € Z(k) #(k, p1,0) € P4(D;).
There must exist ¢ = 1...p and ¢ = 1...¢nas such that for each o € Z(k)
#(k,¢1,0) € P1(D;), and so we can determine ¢ and ¢ with such requirements.

We can also notice that, given a set B, if A € P(B) then A C B, P(A) C P(B),
P(A) € P(P(B)).
So if A € PYD;) then we have two cases: if ¢ = 1 then A € P(D;) and so
P(A) € P2(D;).
If ¢ > 1 then A € P(P11(D;)), so P(A) € P2(P4=1(D;)), that is P(A) € PTY(D;).
Actually in both cases P(A) € PIH(D;).

Clearly given t = (II)(¢1) € EM(n+ 1,k), i = 1...p and ¢ = 1...¢max Such
that for each o € Z(k) #(k,¢1,0) € PYD;), we have that for each 0 € Z(k)
#(k,t,0) = P(#(k,¢1,0)) € PIH(Dy).

Given o« = 1...p we must be able to decide the condition ‘for each o € Z(k)
#(k,t,0) € Dy .

As we have just seen, there must exist ¢ = 1...p and ¢ = 1... @mnae such that for
each o € Z(k) #(k, p1,0) € PYUD;), so #(k,t,0) € PITY(D;), #(k,t,0) is a set and
#(k,t,0) ¢ D,, therefore the mentioned condition is false.

Given a = 1...p and a positive integer » we must be able to decide the condition
‘for each o € E(k) #(k,t,0) € P"(Dq) .

Let ¢ = (IT)(1). We first consider the case where 2 < 1 < @pqz + 1. In this case we
have two subcases: the first subcase is when for each o € Z(k) #(k, ¢1,0) € P""1(Dy,),
in this case for each o € Z(k) #(k,t,0) € P"(D,).

Otherwise there must exist i = 1...p and ¢ = 1... @nas such that for each o € Z(k)
#(k,1,0) € PIUD;) and so #(k,t,0) € PITL(D;). Of course in this case i # « or
r—1+#q.

In the case r — 1 # ¢ by lemma 3.14 P"(D,) N PI4TYH(D;) = 0, so for each o € Z(k)
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#(k,t,0) ¢ P"(D,), and the condition we are discussing ‘for each o € Z(k)
#(k,t,0) € PT(Dy) is false.
In the case 7 — 1 = ¢ and i # « by lemma 3.15 P"(D,) N PIL(D;) = 0, so for each
o € E(k) #(k,t,0) ¢ P"(D,), and the condition we are discussing ‘for each o € Z(k)
#(k,t,0) € P"(D,)’ is false.

Let’s now consider the case where r = 1 or r > @maer + 1. Here there must exist
i=1...pand ¢ =1...¢mnas such that for each o € Z(k) #(k, p1,0) € P4 D;) and so
#(k,t,0) € PIY(D;). Clearly r # g + 1, so by lemma 3.14 P"(D,) N P(D;) = 0,
so for each o € Z(k) #(k,t,0) ¢ P"(D,), and the condition we are discussing ‘for
each o € Z(k) #(k,t,0) € P"(D,)’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € E(k) Set,(#(k,t,0))’, and when this condition is decided as true we must also be
able to decide that for each o € Z(k) NotEmpty,(#(k,t,0)).

As we have seen given t = (I)(¢1) € EM(n+ 1,k), i = 1...pand ¢ = 1... Gmaas
such that for each o € Z(k) #(k,v1,0) € PI(D;), we have that for each o € Z(k)
#(k,t,0) = P(#(k, ¢1,0)) € PIT(D;).

Let’s first consider the case r < ¢ + 1, here by lemma 3.16 we have that for each
o € E(k) Set,(#(k,t,0)) and NotEmpty,(#(k,t,0)).

Let’s then consider the case r > g + 1, here by lemma 3.13 we have that for each
o € E(k) ~Set,(#(k,t,0)), hence the condition ‘for each o € Z(k) Set,(#(k,t,0)) is
false.

Given a positive integer r we must be able to decide the condition ‘for each
o € Z(k) Event,(#(k,t,0))’.

As we have seen given t = (II)(¢1) € EM(n+1,k), i =1...pand ¢ = 1... Gmaz
such that for each o € Z(k) #(k,1,0) € PI(D;), we have that for each o € Z(k)
#(kt,0) = P(#(k,1,0)) € PTH(Dy).

By lemmas 3.17 and 3.19 we can conclude that in both cases r < g+2 and r > ¢+2
for each o € EZ(k) —~Event,(#(k,t,0)). Therefore the condition ‘for each o € Z(k)
Event,(#(k,t,0))’ is false.

In order to finish our proof we have to prove that for each of our predicates P and
for each f € F P is decidable over Ef (n 4 1,k).

8. We first consider the case where f has multiplicity 2. In this case we defined
Ef(n+ 1,k) as the set of the strings f(¢1,¢2) € Hy(n+ 1,k) such that:

® 1,02 € E(n,k);

o for each o € Z(k) Af(#(k,p1,0),#(k, p2,0)) is true;
o f(p1,p2) ¢ E(n, k);

o f(p1,02) ¢ Ep(n+1,k).
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By our definitions, for each t = f(p1,¢2) € Ef(n +1,k),

#(k7t7 U) = Pf(#(ka P1, U)? #(ka P2, U))
Clearly for each t € Ef(n 4 1,k) and o € Z(k) #(k, t,0) is true or false.

Let’s also consider the case where f has multiplicity 1. In this case we defined
Ef(n+ 1,k) as the set of the strings f(p1) € Hy(n + 1,k) such that:

e 1 € E(n,k);

o for each o € (k) Ay(#(k,1,0)) is true;
o f(¢1) & E(n, k).

o flp1) & Ey(n+1k).

By our definitions, for each t = f(¢1) € Ef(n+ 1,k),

#(k’tv U) = Pf(#(k’ P15 U))

It is also true in this case that for each t € E/(n + 1,k) and o € Z(k) #(k,t,0) is
true or false, and we can show that each of our predicate is decidable (in both cases
of multiplicity 1 and 2) using this property.

Given o = 1...p we must be able to decide the condition ‘for each o € Z(k)
#(k,t,0) € D, .

Since for each o € Z(k) #(k,t,0) is true or false, then for each o € Z(k)
#(k,t,0) ¢ D,, and so then condition ‘for each o € Z(k) #(k,t,0) € D, is false.

Given a = 1...p and a positive integer ¢ we must be able to decide the condition
‘for each o € E(k) #(k,t,0) € P1(Dy)’.

Given o € E(k) Eventi(#(k,t,0)) and by lemma 3.17 this implies
#(k,t,0) ¢ P1(D,). Therefore the condition ‘for each o € Z(k) #(k,t,0) € P4(Dy)’
is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € E(k) Set,(#(k,t,0))’, and when this condition is decided as true we must also be
able to decide that for each o € =(k) NotEmpty,(#(k,t,0)).

For each o € ZE(k) Eventi(#(k,t,0)) so —Seti(#(k,t,0)) and then also
—Set,(#(k,t,0)). Therefore the condition ‘for each o € Z(k) Set,(#(k,t,0))’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
o € 2(k) Event,(#(k,t,0))’.

Clearly the condition is true for » = 1, while for » > 1 given o0 € Z(k)
~Set1(#(k,t,0)) and so ~Event,(#(k,t,0)), so the condition is false for r > 1.

O]
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Proof of 6.1.11. We need to prove that for each k € K(n+1), t € E(n+1,k)

o t[e(t)] #°( ;
o if t[¢(t)] =) then d(t, (¢ ) =1, else d(t,e(t)) =0;
e foreach a € {1,...,4(t)} if (t[o ] SV (ta) =)V (tla] = ¢)’) then d(t, o) > 1.

We have seen that if k € K(n)* E(n+1,k) = E,(n+1,k), and if k € K(n)

Em+1,k)= |J A4,
AeH (n+1,k)

with the following definition of H(n + 1, k):

H(n+1,k) = {E(n, k), Ey(n+1, k), Eo(n+1, k) YU{E¢(n+1,k)|c € C'YU{ES (n+1,k)|f € F}.

Let k € K(n)™ and t € Ea(n+ 1,k). There exist h € K(n), ¢ € Es(n,h), y €
V —wvar(h) such that k = h+ < y, ¢ >. We also have t = y, so t has just one character,
t[1] differs from ‘(’, <, ¢, )" and d(¢, £(t)) = 0.

Let k € K(n) and t € E(n, k), this means that ¢ € F(n). In this case we just need
to apply assumption 6.1.11.

Let k = h+ < y,¢ >€ K(n) — {¢} and t € Ep(n+1,k). We have h € K(n),
t € E(n,h), so we can apply assumption 6.1.11 to finish.

Let k € K(n), c€ C' and t € E®(n+ 1,k). Then t € H.(n + 1,k), so there exist
©1, -5 om in E(n, k) such that t = (¢)(e1,- .., ©m)-

In this representation of ¢ we see ‘explicit occurrences’ of the symbols ‘(" , ¢)” and ¢,’.
There are explicit occurrences of ;> only when m > 1. The first explicit occurrence of
‘)’ is in position 3, and the second explicit occurrence of ‘)’ is clearly in position £(t).
If m > 1 we indicate with ¢1, ..., ¢n_1 the positions of the explicit occurrences of ‘,’.

We have d(t,2) =1 and also d(t,3) = 1, moreover d(t,5) =d(¢t,3) —1+1=1.
If m > 1 we can prove that for each i =1...m —1d(t,¢;) = 1.
We first consider that

d(t,q1 — 1) = d(t,4 + (1)) = d(t, 4+ 1) +d(p1,(p1)) = 1+ d(1,£(1))-

If g1 — 1] = p1[l(p1)] = )’ then d(t,q1) = d(t,q1 — 1) — 1 = d(p1,4(p1)) = 1.
Else tfg1 — 1] = p1[l(p1)] € {*(,)'} so d(t,q1) = d(t,q1 — 1) = 1 + d(p1,£(p1)) = 1.

If m = 2 we have finished this step. Now suppose m > 2. Let i =1...m — 2 and
suppose d(t,q;) = 1. We'll show that d(¢,g;+1) = 1 also holds.

In fact

d(t,qiv1 — 1) = d(t, g + £(piy1)) = d(t, g + 1) + d(@ir1, {(pit1)) =
=1+ d(pir1,£(pit1))-

If t{git1 — 1) = @ir1[l(pit1)] = ) then
d(t,qiv1) = d(t,qiv1 — 1) = 1 = d(piy1,£(pit1)) = 1.
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Else t[git1 — 1] = @ip1[(pir1)] ¢ {'(, )} so
d(t, gi+1) = d(t, giv1 — 1) = L+ d(piy1, (pit1)) = 1.
So it is shown that for each i =1...m — 1 d(t,¢;) = 1.

We now want to show that d(¢,4(t)) = 1.
If m =1 then

d(t,€(t) — 1) = d(t,4 + L(p1)) = d(t,4 + 1) + d(p1,£(p1)) = 1 + d(p1, (1))
If m > 1 then

d(t7 g(t) - 1) = d(t, dm—1 +£((Pm)) = d(t, Gm—1+ 1) + d(‘ﬁma E(‘Pm)) =1+ d(()@ma e(@m))

IE£[0(t) — 1] = @m[l(om)] = ) then d(t, £(t)) = d(t, (t) 1)~ 1 = d(pm, £(om)) = 1.
1Else ) =1 = em[llpm)] & {'(,°)} so d(t, £(t)) = d(t, £(t) 1) = 1+d(pm, ((pm)) =

Let’s now examine the facts we have to prove. It is true that ¢[¢(¢)] # ‘(. It’s also
true that t[¢(t)] = )" and d(t, £(t)) = 1.

Now let a € {1,...,4(t)} and ( t[a] = " or t[a] = *, or t[a] = ‘)’ ). This implies
a ¢ {1,2,4}.

If o« € {3,¢1,.--,qm-1,4(t)} we have already shown that d(¢,«) = 1. Otherwise
there are these alternative possibilities:

In the situation a. we have

4<a<l(t),

0<a—4<(t)—4,

d(t,a) =d(t, 4+ (a—4)) =d(t,4+ 1) + d(p1,a — 4) =
=14+d(p1,aa—4) > 2.

In the situation b. we have

4 < a<q,
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O<a—-4<q —4,
I<a—4<q—5=L¢),
p1]a — 4] = t[a],

d(t,a) =d(t,44+ (o« —4)) =d(t,4+ 1) + d(p1,a — 4) =
=1+d(p1,a—4) =2

In the situation c. we have

G < @< (i1,
0<oa—gq <gi+1—q,
I<a—q <qiv1— ¢ — 1 =L(pir1),
pitia — ai] = tlo],

d(t,a) = d(t,qi + (o — q;)) = d(t, g + 1) + d(pit1, 0 — q;) =
=1 + d(@i-{—h o — qi) 2 2.

In the situation d. we have
m—1 < a < L(t),
0<a—qgm-1<lt)—gm-1,
I<a—gmo1 <Ut) = gm-1—1="Lpm),

pmla = gm-1] = t[a],

d(t, o) = d(t, gm—1+ (¢ = gm—1)) = d(t, ¢m-1 + 1) + d(m, a0 — gm—1) =
=1+ d(@ma o — Qm—l) > 2.

Let k € K(n), f € F and t € Ef(n+ 1,k). Then t € Hy(n + 1,k), so if f has
multiplicity 2 there exist 1, p2 € E(n, k) such that t = f(p1, p2), if f has multiplicity
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1 there exists ¢ € E(n, k) such that ¢t = f(p1).

We first consider the case where f has multiplicity 1. Here we first want to show
that d(t,4(t)) =

We have

d(t,0(t) — 1) = d(t,2 + £(p1)) = d(t,2 4+ 1) + d(p1, (1)) = 1 + d(1, (1))

) (t) -
d(t, £(t) -

Let’s now examine the facts we have to prove. It is true that ¢[¢(¢)] # ‘(’. It’s also
true that t[((t)] = )" and d(t,4(t)) =

I 40() — 1] = @1 [£(1)] = )’ then d(t, €())
t

= d(t
Else t[(t) —1] = p1[l(p1)] € {*(", )"} so d(t, £(1)) =

1) =1 =d(p1,0(¢1)) = 1.
1) = +d(9017€(<ﬂ1)) =1

Now let o € {1,...,4(t)} and ( t[a] = *" or t[a] = *, or t[a] = *)’ ). This implies
a ¢ {1,2}.

If o = £(t) we have already shown that d(¢,«) = 1. Otherwise clearly 2 < o < £(¢)
and

O0<a—2</(t)—
IL<a—2<L(t) —3={p1),
p1la — 2] = t[a],

dt,a) =d(t,2+ (« —2)) =d(t,2+ 1) + d(p1,a — 2) =
=1+4+d(p1,aa—2)>2.

Let’s then consider the case where f has multiplicity 2. Here we indicate with ¢;
the position of the explicit occurrence of ¢,” within ¢. First of all we want to prove that
d(t,q1) = 1. To this end we consider that

d(t,q1 — 1) = d(t,2 + (1)) = d(t, 2+ 1) +d(p1,£(p1)) = 1+ d(p1,£(1))-

1) =1 =d(p1,l(p1)) =1

If tlgy — 1] = p1[l(p1)] = °)" then d(t, q1) = d(t,q1 —
=d(t,q1 — 1) =1+ d(p1,l(¢1)) =

@
Else t[g1 — 1] = p1[l(p1)] & {*(,*)"} so d(t, q1)

We then want to show that d(¢, £(t)) = 1. We have

d(t, (t) — 1) = d(t,q1 + l(p2)) = d(t,q1 + 1) + d(p2, £(w2)) = 1 + d(p2,{(p2))-

IE £[e(t) — 1] = @a[l(p2)] = *)” then d(t, £(t)) = d(t, £(t) — 1) — 1 = d(p2, £(p2)) = 1.
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Else t[€(t) —1] = pall(p2)] ¢ {*(, )"} so d(t, £(t)) = d(t, £(t) = 1) = 1+d(2, ((p2)) = 1.

Let’s now examine the facts we have to prove. It is true that ¢[¢(¢)] # ‘(’. It’s also
true that ¢[¢(t)] = )" and d(t, £(t)) = 1.

Now let o € {1,...,4(t)} and ( tfa] = " or t{a] = *,” or t[a] = ‘)’ ). This implies

a ¢ {1,2}.

If o € {q1,¢(t)} we have already shown that d(¢,a) = 1. Otherwise there are these
alternative possibilities:

a. (a>2)A(a<q),
b. (a>q1) A (a < £(t)).

In the situation a. we have

2 <a< ),

0<a—2<L(t)—2,

dt,a) =d(t,24+ (« —2)) =d(t,2+ 1) + d(p1,a — 2) =
=1+d(p1,a—2)>2.

In the situation b. we have

g1 < a</(t),
O<a—q <Ll(t)—aq,
I<a—q <L) —q —1="{p2),
p2[a — q1] = t[a],

d(ta a) = d(ta q + (Oé - ql)) = d(ta q + 1) + d(§027 a — ql) =
=1+4+d(p2,a—q1) = 2.

Let k € K(n) and t € E¢(n + 1,k). As a consequence to t € E.(n+1, k) there exist
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e a positive integer m,

e a function = whose domain is {1,...,m} such that for each i = 1...m
xz; € V —wvar(k), and for each i,j =1...m i # j — x; # xj,

e a function ¢ whose domain is {1, ..., m} such that foreachi =1...m ¢; € E(n),

* ¢ € E(n)

such that t = {}(z1: @1, ., Tm : Pm, D).

In this representation we see ‘explicit occurrences’ of the symbols ‘,” and ‘:’. We
indicate with ¢1, ..., ¢, the positions of the explicit occurrences of ;" and with r1 ... 7.,
the positions of the explicit occurrences of ‘,’. The only explicit occurrence of ‘)’ has
the position #(t).

We want to show that for each ¢ = 1...m d(¢t,¢) = 1,d(¢t,r;) = 1 and that

d(t, £(t)) =

It is obvious that d(t,q1) = 1. Moreover

)

d(t,r1 — 1) =d(t,q1 + l(p1)) = d(t,q1 + 1) + d(p1,£(p1)) =
=1+ d(p1,4(¢1))-

If tfry — 1] = p1[l(p1)] = )" then d(t,r1) = d(t,r1 — 1) — 1 =d(p1, (1)) =
Else t[r1 — 1] = p1[l(p1)] ¢ {'(,)’} so d(t,m1) = d(t,m1 — 1) = 1 + d(e1, (1 )

If m = 1 we have shown that for each i = 1...m d(t,¢q;) = 1,d(t,r;) = 1. Now
suppose m > 1,let i = 1...m — 1 and suppose d(t,q;) = 1,d(t,r;) = 1. We show that

d(t,gi+1) = 1,d(t,riv1) = 1.
We have ¢;11 = r; + 2 and it is immediate that d(¢,g;.+1) = 1. Moreover

d(t,rip1 — 1) = d(t, gip1 + L(pit1)) =
=d(t,git1 + 1) + d(@ir1, Lpit1)) = 1+ d(@it1, £(pit1))-

If t[riv1 — 1] = pir1[l(@ir1)] = )" then
d(t,rip1) = d(t,riv1 — 1) = 1 = d(pir1, Upit1)) = 1.
Else t[riy1 — 1] = wir1[l(pir1)] ¢ {°(,°)’} so
d(t, Ti+1) = d(t, Ti+1 — 1) 1 + d((pi+1,€(g0i+1)) =1.

Furthermore

d(t, (t) —1) =d(t,rm + (o

)
=d(t,rm+1)+

d(d, £(¢)) = 1+ d(¢, £(9))-

IE¢[e(t) — 1] = ¢[t(¢)] =) then d(t, £(t)) = d(t, £(t) —1) =1 = d( (@) =
Else t[0(t) — 1] = o[t(¢)] ¢ {*(, )"} so d(t, £(t)) = d(t, £(t) — 1) = 1+ d(, £(¢ )

Let’s now examine the facts we have to prove. It is true that ¢[¢(t)] # ‘(’. It’s also
true that ¢[((t)] = )" and d(t,£(t)) =

Now let a € {1,...,4(t)} and ( t[a] = ortla] =" ortla] =)").

Ifae{q,...,qm,71,--., m,L(t)} we have already shown that d(¢,) = 1. Other-
wise there are these alternative possibilities:
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a. 3t = 1...m such that ¢; < a < ry,
b. iy < a < U(1).

In the situation a. we have

g < o <ryg,

O<a—q <ri—q,

I1<a—qg <ri—q—1="0yp),

d(tv Oé) = d(tv% + (Oé - qz)) = d(ta q; + 1) + d(@la o — Qi) =
=14+d(ypi,a—q) = 2.

In the situation b. we have

Tm < a < L(t),

0<a—rpy<l(t)—r1nm,

¢la —rm] = tla],

d(t7a) = d(t,?“m + (a - Tm)) = d(t7rm + 1) + d(¢7a - rm) =
=14+d,a—rp) > 2.

7. Deductive systems and proofs
In this section we will define deductive systems and proofs and we will introduce
other concepts and results related to our deductive methodology. Given a language

L=W,F,C,#,{D1,...,Dpn}, Gmaz), we begin with some preliminary definitions.

Lot K = U5, K(n).
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For each k € K let

Es(k) ={t|t € E(k),Yo € E(k) #(k,t,0) is a set } .

Let B = {U,cx E(k); E is the set of all expressions in our language.

One expression t € E(k) is a ‘sentence with respect to &’ when for each o € Z(k)
#(k,t,0) is true or #(k,t,0) is false.

We define S(k) = {t|t € E(k),t is a sentence with respect to k}.
For each t € E(e) we define #(t) = #(e, t, €).
A sentence with respect to e will simply be called a ‘sentence’.

At this point we can define what is a proof in our language. To define this we
need to define the notions of axiom and rule. We first notice that the symbols of our
language belong to the four disjoint sets V, C, F and Z. Let’scall ¥ = VUCUF U Z
the set of all the symbols (or alphabet) of our language and 3* the set of all the empty
or finite strings built with the symbols in 3. Clearly given k € K S(k) C E(k) C ¥*.

An aziom is a set A such that

e AC S(e) CX*,
e Aisr.e.,
e for each p € A #(p) holds.

The property ‘for each ¢ € A #(p) holds’ states that axiom A is ‘sound’.

Given a positive integer n we indicate with S(e)" the set of all n-tuples (¢1,. .., ¢n)
for ¢1,...,0n € S(€). An n-ary rule is a set R such that

e R C S(e)n+1 C (E*)n—l-l’

e Risr.e.,

o for each (¢1,...,¢n, ) € Rif #(p1),...,#(pn) hold then #(¢) holds.

The property ‘for each (¢1,...,¢n,0) € R if #(p1),...,#(pn) hold then #(y)
holds’ states that rule R is ‘sound’.

Both in the definition of axiom and rule we have included a requirement of
soundness.

A deductive system is built on top of our language £, and is identified by a pair
(A, R) where A is a finite set of axioms in £ and R is a finite set of rules in L.
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We require that the set of the axioms and the set of the rules are finite since we
need to be able to list each of them on a piece of paper.

Given a language £, D = (A, R) deductive system in L, ¢, ¥1,. .., 1, sentences in
L, we say that (11,...,1%n) is a proof of ¢ in D if and only if

e there exists A € A such that ¢; € A;
e if m > 1 then for each j = 2...m one of the following holds
o there exists A € A such that ¢; € A,

o there exist an n-ary rule R € R and iy,...,%, < j such that
(%‘1, cee ﬂﬂinﬂﬁj) € R;
® Uy = .

Given D = (A, R) deductive system in £ and ¢ sentence in £ we say that ¢ is
derivable in D and write Fp ¢ if and only if there exist 1, ..., 1, sentences in L
such that (¢1,...,1y) is a proof of ¢ in D.

A deductive system D = (A, R) is said to be sound if and only if for each ¢
sentence in L if Fp ¢ then #(¢) holds. In the next lemma we easily prove that each
of our systems is sound.

Lemma 7.1. Let D = (A, R) be a deductive system in L. Then D is sound.

Proof. Let ¢ be a sentence in L. Suppose p ¢. There exist 1, ..., ¥y, sentences in
L such that (11,...,1y,) is a proof of ¢ in D. We can show that for each j =1...m
#(1;) holds.

There exists A € A such that ¢ € A, so #(¢1) holds.
If m > 1 suppose j =2...m.
If there exists A € A such that ¢; € A then #(v;) holds.

Otherwise there exist an n-ary rule R € R and i1, ..., < j such that

(wip ) 7¢in7wj) cR.
Since #(1i,), - - ., #(1;,) all hold then #(1;) also holds. O

We now want to point out some recursivity requirements with respect to the sets
that we defined above: E(k), S(k), Es(k). We will prove these sets are recursively
enumerable.

For each k € K we defined E(k) = U, > 1.k (n) E(0, k).
The set {njn € Nyn > 1,k € K(n)} is r.e.. In fact if we call ngy the least n € N such
that & € K(n) we have that the just mentioned set is actually {n|n € N,n > ng},

that is a recursive and r.e. set. Since for each n in the mentioned r.e. set E(n, k) is
r.e. then E(k) is also r.e..
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Given a positive integer n and k € K(n), let’s define the following sets:

S(n,k) = {¢| ¢ € E(n, k), for each o € E(k) #(k, ¢,0) is true or #(k, p, o) is false };
Es(n,k) = {¢| ¢ € E(n, k), for each o € Z(k) #(k,p,0) is a set };
Ep.(n,k) ={¢| ¢ € E(n,k), for each o € Z(k) #(k,p,0) € D;}.

For each ¢ € E(n, k) we can decide the following conditions:

©,0) is true or false;

#(k,
#(k, U) is a set;
#(k,
k)

e for each o € Z(
e for each o € Z(
=(

k)
k)
k)
e for each o € Z(k)

,0) € Dj.

Therefore, since E(n, k) is recursive, S(n, k), Es(n, k) and Ep,(n, k) are recursive

too.
It is casy to verify that S(k) = U, 1.kek(n) S(n, k), therefore S(k) is r.e..

Similarly, it is easy to verify that Eg(k) = U,>1.kek () Es(n k), therefore Es(k) is
r.e..

Moreover we can define Ep, (k) = {¢| ¢ € E(k), for each o € E(k) #(k,p,0) € D;}

Then it is easy to verify that Ep, (k) = U,>1.ke i (n) ED: (1, k), therefore Ep, (k) is
r.e..

We now want to define some possible axiom and rule and prove they are recursively
enumerable, in order to convince ourselves and the reader that we have correctly built
our system. We first need to provide some definition.

Definition 7.2. Let x € V, ¢ € E. We define
Hiz: o] =p € Es(e) .

If the condition H[x : ¢| holds then we define k[z : ¢] = e+ < x,¢ >. Clearly
klx : ¢] € K. In fact there exists n positive integer such that e € K(n) A ¢ € Es(n,¢€),
r eV —war(e),soklz:p]=e+ <z, > K(n)UK(n)"=K(n+1)CK.

Moreover k[z : ¢| =<< z,¢ >> and var(klz : ¢]) = {z}.

Let m be a positive integer. Let z1,...,241 € V, with z; # x; for ¢ # j. Let
©1y- -y Pm+1 € E. We can assume to have defined H[x; : ¢1,...,Zm : @n) and if this
holds to have defined also k[z1 : ¢1,...,Zm : ¥m] € K, such that

Elx1: @1,y Tm t om] =<< X1,01 >,y < Ty - Oy >>
var(k[zy : @1, Tm  om]) = {z1,...,Tm}
We define
Hlzy: @1, o i1 @mt1] = H[T1 2 01,00, T P

A @mi1 € Es(klxy : o1, Tm : pm)) -
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If Hz1: 91, Tm+1 : ©m+1] then we define
Elx1: @1, oy Tmt1 t Omt1] = k[T1: 01,0y Tm 2 Om)+ < Tmt1s O@mt1 > -

Clearly k[z1 : 1, Tm+t1 ¢ pm+1] € K. In fact there exists a positive integer n
such that k[z1 : @1,...,Zm : om] € K(n) and ¢py1 € Es(n, k[z1 2 @1, .., Tm : ©m]),
Tmy1 €V —wvar(klxy : ©1,...,Tm : ©m]), 80 k[T1 : @1, Timy1 : Omy1] € K(n) U
K(n)T=K(n+1).

Moreover
Elzy: o1, Tmyt - @myt] =<< 21,01 >0, < Tipgl © Qg1 >>
var(klzi o1, Tttt Pmta]) = {1, T b
Lemma 7.3. Let m positive integer, x1,...,Tm € V, with x; # x; for i # ],
O1y--som € E. Then H[xy : ¢1,..., Ty : cpm] is defined and if H[z1 : ©1,...,Tm :

©m] holds then klxy : p1,...,Zm : gpm] 18 also defined and belongs to K. Moreover

var(klzy : @1, Tm  om]) = {21, ..., Tm} -

Proof. This is an obvious consequence of the previous definition and has been verified,
by induction on m, in the definition itself. O

Remark 7.4. Let m be a positive integer. Let x1,...,z,, € V, with x; # x; for ¢ # j.
Let ©1,...,pm € F and assume H[x1 : ¢©1,...,Zm : @nl. In these assumptions we can
easily see that foreach i =1...m H[z1 : ¢1,...,z; : ;] holds and so k[z1 : ¢1,...,x;
©i] is defined, k[z1 : @1,...,z;: @] € K, var(klx1: o1,...,2 : @i]) = {z1,..., 2}

In fact this is clearly true for ¢ = m. Given ¢ = 2...m, if we suppose this is true for

i, then we have H[z1 : ¢1,...,zi—1 : pi_1], and so the remaining facts also hold.

In these assumptions we can define k9 = € and for each ¢ = 1...m
ki = klx1 : p1,...,2 : p;i]. We have kg € K, var(kg) =0, foreachi=1...m k; € K,
var(k;) = {x1,...,x;}. Hereafter we’ll often use this kind of simplified notation.

We can also easily see that for each i = 1...m ¢; € Es(ki—1) and k; = ki1+ <
xi, ;i >, and dom(k;) = {1,...,i}.

For the following definition we need to assume that the symbol V belongs to the
set F of our language. This assumption applies to the remainder of this section.

Definition 7.5. Let m be a positive integer. Let ¢1,...,0m € 3X*. Let ¥1,..., 9%y €
3*. Let ¢ € ¥*. Define

Ybm + oms ] = V{HYm : om, ¢)) -
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If m > 1 for each i = 2...m suppose we have defined Y[1); : @4, ..., Um : Pm, | and
define

7[7;[)1;71 PPy 717Z}m : Somvgo] = V({}(@Z}zfl : @i*lav[wi PP M/Jm : SOmaSO])) :

With this we have also defined y[¢1 : ¢1,...,Um : ©m, @]
O

We can define a function x on the domain (¥*)?*™ x ¥* such that given

(1/}1) 1y 71/}7717 QOm) € (Z*)2m and Y € 2*7 X((¢17 1y 7¢m7 Som)v SO) = ’7[¢1 :
©1y- -y Um  ©m,p]. Clearly this function is computable since the result can be
obtained by simply concatenating the elements of the input with other symbols of
our language.

We can also observe the following.

Lemma 7.6. Let m be a positive integer, m > 1. Let ¢1,...,0m € X*. Let
Uy ..Uy € X%, Let ¢ € ¥*. Then

’)’Wl CP1, '71/}771 : (pm,(p] = 7[w1 cP1, 7¢m—1 : §0m—17v({}(¢m : Spm790)>] .
Proof. We want to prove that foreachi=1...m —1
’Y[wz S Qi 7wm : @m7§0] = 7[¢’L P 71/1771—1 : @m—hv({}(T/}m : gpm,(p))} .

We start the proof at m — 1 and we are then going backwards by induction to 1. So

V[Ym-1: Om—1,Vm : Pm; ] = V{H(¥m-1 1 Pm—1,7[¥m : Om,¢]))
V{HWm-1: @m—1, V({3 (¥m : om, ¥))))
Ybm—1 1 om—1, V{} (¥m : om; )]

If m = 2 our proof is finished, whilst if m > 2 given ¢ = 2...m — 1 we can assume

VWit @iy ey Vm t Omy 0] = Y5 @iy me1 @1, Y (Wm : 0ms 9))] -

And in this case we have

Yic1: im1y s Um s Oms @] = Y Wiz1  0im1, Y5 2 @iy Ym t Pms 0)))
V{3 (Wit s @ic1, Y0 a5 Vmet1 t 01, V{3 (e  0ms 9))]))
’7[%’—1 cPi—1,. - ﬂzjm—l : @m—lvv({}(¢m : QOmv(p))] .

O]

Given a positive integer m let’s call R,, the set

{(z1, 01, s Tm,om)| T1,...,xm €V with @; #x; for i # 4, ¢1,...,0m € E,H[xz1 : 01,...,Zm : om]} .

Clearly given (x1,¢1,. .., Tm,¥m) € Rm k[z1 1 @1,...,Zm : om] € K.
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Let’s also define

Qm = U {(z1, 01, s Tm, om)} X S(k[z1: @1, ., Tm : Pm]) -
(Z1,P1 5+ sTm yPrm )ERm

Actually Q,,, C (X*)?™ x ©*. Our goal is now to show that @Q,, is r.e. in order to be

able to show that the set {X((:l:lv P15+ Tm, Som)v 30)| ((1"17 PLs- - Tm, Som), (10) € QM}
is r.e. itself.

As a first remark in this proof we can notice that our set of variables V is recursive.
In fact given a string ¢ € ¥* if ¢ has not exactly one character then it doesn’t belong
to V. If it has just one character then, since apart from the variables our alphabet
has a finite number of symbols, we can decide if ¢ € V.

The first step in this proof is to show that R,, is r.e., i.e. the following lemma:

Lemma 7.7. For each m positive integer R,, is r.e..

Proof. In the initial step of the proof we have to show that R; is r.e.. We have

Ry = {(z1,91)|21 €V, 1 € E, H[z1 : 1]}
= {(z1,01)| 21 €V, 01 € Es(e)}
=V x Es(e)

and since both V and Ejs(e) are r.e. then R is r.e..

Given a positive integer m we assume R, is r.e. and want to show that R, is r.e..

Actually
Rot1 ={(x1,01, ., Zmt1, mt+1)| T1,.. ., Tmy1 €V with z; #xj for i # 4, ¢1,...,0m+1 € E,H[x1: @1,...,Tm+1 : Pm+1]}
= {(xl,gol,...,a:m+1,gom+1)\ T1,...,Tm+1 € V with x; ;ﬁx]’ for i # j, ©1,---,Pm+1 € E,
Hz1: @1, .- Zm : em] A om+1 € Es(klz1 : @1,...,Zm : om])}
= {(37178017---7wm+1780m+1)‘ (3717(%717---775771790771) S R7n7$m+1 ey — {xlv---vwm}7¢m+l € Es(k[xl Py Tt me})}
Let’s now consider the set
Uni1 = U {(x1, 01,y Tmy pm) }X V{1, ..., om ) X Es(klx1 0 01, .., Tm 2 ©m)) -

(1,015 T m Pm ) ERm
Given (21,01, .., %m,Pm) € Rm the sets {(x1,01,...,Tm,om)} C (927", (V —

{z1,...,2n}) C X" and Es(k[z1 @ @1,...,Zm : pm]) C X* are r.e., so the cartesian
product

{(z1, 01, s Tm,om) } X (V —{x1, ..., 2m}) X Es(k[z1 : @1, .., Zm : ©m))

is also 1.e., and Up, 1 C (X%)?™ x % x ¥ is r.e..
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The set R,,41 is a subset of (3*)*"*2 which is not (necessarily) the same
of (X*)?™ x ¥* x ¥*. In fact a member of (X*)*"*2 can be expressed as
(V1,015 -+, Ymi1, me1) and a member of (X*)2™ x ¥* x ¥* can be expressed as
(V1,015 -« s Vmy ©m)s Ym+1, Pm+1). Anyway we can easily map members of the first
set to the ones of the second set and vice-versa. In fact we can define a function s over

(E*)2m+2 such that /‘5(¢17 @1, .- 7¢m+17 80m+1) = ((¢1> Plyee ey ¢m7 @m)a ¢m+17 Spm-i-l),
and the function x is computable.

Given (¢17 P1y .- 7¢m+1, (Pm—l—l) € (E*)2m+2 if (77/)17 1y 7¢m+17 <pm+1) € Rm+1
then K‘(wla PLy---y wm—i-lv (pm—i-l) € Um+1 and vice-versa if /‘?le P1y- - 7¢m+17 ‘Pm—i—l) €
Um+1 then (1,01, .., Ymt1, Pmt1) € Rmy1-

As we have seen U,y1 is r.e. so its semi-characteristic function sy is com-
putable. Let’s now consider the function sy o x which is defined over (X*)2m+2,
Given (1,01, Y1, mr1) € (B2 0f (1, 01,0, Ymi1, Pmy1) € R
then “(¢178017~-a¢m+1»90m+1) € Um+1 and SU(H(@bl,(,Ol,...,@ZJerl,QOerl) = 1
If (V1,015 s Yms1, mr1) ¢ Rt then (Y1, 01, Ymi1, ome1) ¢ U1 and

su(K(¥1,01, -« sy Umt1, Pme1) diverges. So sy o k is actually the semicharacteristic
function of R,,+1 and it is clearly a computable function. This proves that R,,11 is
r.e.. ]

Now given (z1,¢1,...,Tm,Pm) € Rm both {(z1,¢1,...,Zm,pm)} and S(k[z1 :

Ol oy Tm & Pm]) are r.e., 80 {(T1,P1,- s Tm, Pm)} X S(k[z1 : @1,...,Zm : Pm]) is
r.e. too, and so Q,, is a r.e. subset of (¥*)2™ x ¥*,

We can now recall that we have defined a computable function
X : (92 x ¥* — ¥* Because of lemma 4.5 we have that the set

{Ix((x1,015 s Ty ©m)s )| (X1, 015+, Ty Pm)s @) € Qm} is a r.e. subset of
.

And finally the set

U {X((ﬂ”lu@L cee 7$m7§0m)7(p)| ((551,(,017 s )$m790m)790) € Qm}

m>1

is itself a r.e. set. It seems this is not particularly significant to us because this set
is not an axiom, but we’ll see sets that are very similar to this one and that we can
use as an axiom in our deductive system.

8. Deductive methodology

We now need to introduce some other fundamental notions and results relevant to
our deductive methodology.

At the beginning of section 3 we have introduced the logical connectives. In our
deductions, expressions will make an extensive use of the logical connectives, so we
assume that all of these symbols: =, A, V, —, >V, 3 are in our set F. For each of these
operators f Ag(xy,...,x,) and Pg(x1,...,xy,) are defined as specified at the beginning
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of section 3.

Lemma 8.1. For each n positive integer such that n > 2, k € K(n): k # € there
exists m < n such that k € K(m)*.

Proof. We prove this by induction on n. Clearly if k¥ € K(2) and k # € then k €
K(1)*.

Letn > 2,k € K(n+1): k # e. Clearly if k € K(n)" our proof is finished. Otherwise
ke K(n ) and in this case we can apply the inductive hypothesis. ]

Lemma 8.2. For each n positive integer such that n > 2, k € K(n): k # €

o there exist m < n, h € K(m),¢ € Es(m,h),y € (V — var(h)) such that
k=ht+ <y, ¢ > E(k)={o+(y,5)[0 €E(h),s € #(h,¢,0)};

o for each g € K(n),0 € Es(n,g),z € (V —wvar(g)) such that k = g+ < 2,0 >
Z(k) = {0+ (2,5)|0 € E(9), s € #(9,6,0)}.

Proof. The first part clearly follows from lemma 8.1. The second part holds because
we have g =h,z =y,0 = ¢. O

Lemma 8.3. For each n positive integer such thatn > 2, k € K(n) : k # €, h €
R(k) : h # k there exists m < n such that h € K(m).

Proof. We prove this by induction on n. Let k € K(2): k # ¢, h € R(k) :
h # k. There exist m < n, g € K(m),¢ € Es(m,g),y € (V — var(g)) such that
k =g+ (y,¢). In this case m = 1, so g = €. By lemma 5.5 we have h € R(¢) and so
h=ee K(1).

In order to perform the inductive step, let k € K(n+1) : k # €, h € R(k) such that
h # k. There exist m < n+1, g € K(m),¢ € Es(m,g),y € (V —var(g)) such that
k =g+ (y, ). By lemma 5.5 we have h € R(g). If h = g € K(m) our proof is finished.
Otherwise h # g and g # €, we can apply our inductive hypothesis and obtain that
there exists ¢ < m < n + 1 such that h € K(q). O

Lemma 8.4. For each n positive integer such thatn > 2, k € K(n) : k # ¢, 0 € E(k),
h € R(k) : h # k, there exists m < n such that h € K( ) and it results 0 /qom(n) €

=(h).

Proof. We prove this by induction on n. Let k € K(2): k # €, 0 € E(k), h € R(k) such
that h # k. Clearly k € K(1)*, so there exist g € K(1), ¢ € FEs(1,9), y € V —var(g)
such that k = g+ < y, ¢ >. By lemma 5.5 we obtain that h € R(g). Since g = € then
also h =€ € K(1) , 80 0/gom(n) = 0/p = € € Z(€) = Z(h).

In order to perform the inductive step, let k € K(n+1) : k # ¢, 0 € E(k), h € R(k)
such that h # k . By lemma 8.1 there exists m < n such that k € K(m)™*. Then there
exist g € K(m), ¢ € Es(m,g),y € (V —wvar(g)) such that k = g+ < y, ¢ >. Moreover

E(k) ={p+(y,8)|p € E(9).s € #(g. ¢, )}
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Therefore there exist p € Z(g), s € #(g, ¢, p) such that o = p + (y, s). By assump-
tion 6.1.7 and lemma 3.11 we have that ¢ /4om(g) = T /dom(p) = P-

If h = g then o/4omn) = 0 /dom(g) = P € Z(h).

Otherwise we have h # g. Since k = g+ < y,¢ >, h € R(k), h # k by lemma 5.5
we have that h € R(g). If ¢ = ¢ we would have h = € = g, so g # e. This implies
that m > 2. By our inductive hypothesis we obtain there exists ¢ < m < n such that
h e K(q) and P/dom(h) € E(h) Now

7 tdom(h) = (O fdom(g)) /dom(h) = PJdom(h) € =(h).

O]

Lemma 8.5. For each n positive integer k =<< 1,1 >+ < T, Pm >>€ K(n) —
{€}, for each i,j =1...mi+# j— x; # x;.
Proof. Since K(1) — {e} = 0 the initial step is trivially verified.

Let n be a positive integer, let k =<< z1,¢1 > -+ < Ty, om >>€ K(n+ 1) — {€},
we want to verify that for each i,7 =1...m i # j = x; # z;.

If k € K(n) this is obvioulsy verified.

Otherwise k € K(n)", so there exist h € K(n),¢ € Es(n,h),y € (V —var(h)) such
that £k = h+ < y, ¢ >.

If h = € then k =<< y, ¢ >>, this implies m = 1 and we have finished.

If h # € then h =<< y1,¢1 > -+ < yp,¥p >> and
k:<< ylawl > <yp7wp >< ya¢>>

Clearly this implies m = p+ 1. Given 4,5 = 1...m with ¢ # j if ¢,j < p then
ri=vy; #y;=x;. fi<pand j=mthen z; =y; #y =z, = 7;. O

Lemma 8.6. For each n positive integer, k € K(n), o = (2,£) € Z(k):

o if k=c¢€ then z =0, var(c) =0 = var(k);
o ifk#e k=<<x1,01 > < T, Pm >> then dom(z) = {1,...,m}, for each
i=1...m z; = z;, var(c) = var(k).

Proof. The initial step is trivially verified.

Let n be a positive integer, let k € K(n+1), let 0 = (2,¢) € Z(k). If k € K(n) then
we can assume the result is valid.

Otherwise k € K(n)™, so there exist h € K(n),¢ € Es(n,h),y € (V —var(h)) such
that k = h+ < y,¢ > and

(1]

(k) ={p+ (y,s)lp e E(h),s € #(h, d,p)} -

There exists p = (u,v) € E(h), s € #(h, ¢, p) such that o = p + (y, s).
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If h=e€then k =<<y,¢ >>,s0m =1, p=c¢, dom(z) = {1}, (1) = y. Moreover
x1 =y = z(1), var(k) = {y} = var(o).

Otherwise let h =<< y1,91 > -+ < yp, P >>, 50
k=<<y, Y1 > <yp,p ><y,o >>.

Using our inductive hypothesis we can state that dom(u) = {1,...,p} for each
i=1...py; =u, var(p) =var(h).

It follows that dom(z) ={1,...,p+ 1} ={1,...,m}.
Foreachi=1...p x; = y; = u; = z;, MOTrEOver Tpy1 = Y = Zp41-

It also follows that var(o) = var(k). O

Lemma 8.7. For each n positive integer, k € K(n), o = (2,§) € E(k), for each
i,j € dom(o) i # j — z; # 2j.

Proof. Clearly in the case k = € we have 0 = € and the result is trivially verified.
Now suppose k # €, k =<< 1,01 >+ < Ty, O >>.

From lemma 8.5 it follows that for each i,j = 1...m i # j — x; # ;. From
lemma 8.6 dom(z) = {1,...,m}, foreachi=1...m z; = ;.

It follows that for each i,j € dom(o) if i # j then z; = z; # x; = ;.

Lemma 8.8. For each n positive integer, k =<< 21,01 > -+ < Ty, Pm >>,h =<<
Y1, Y1 > - < Yg, g >>€ K(n) — {e} if h T k then for each i € dom(k), j € dom(h)
Ti =Yj = i = Vj.

Proof. From lemma 8.5 it follows that for each i,j € dom(k) i # j — x; # z;.
With this we can apply lemma 5.6 and obtain that there exists p = 1...m such that
h=<< 1,01 > < Tp, op >>.

At this point for each ¢ € dom(k), j € dom(h) x; = y; implies z; = z; so i = j and
i = @; = ;. O

Lemma 8.9. For each n positive integer, h,k € K(n), o = (xz,n) € E(k), p = (y,0) €

=(h), if p C o then for each i € dom(c), j € dom(p) z; =y; — n; = 0;.
Proof. From lemma 8.7 it follows that for each 7,j € dom(o) i # j — x; # x;. With

this we can apply lemma 3.3 and obtain that
for each i € dom(o), j € dom(p) z; = y; — n; = b;. O
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Lemma 8.10. For each n positive integer such that n > 2, k € K(n), t € E(n, k)
such that t ¢ C one of the following two alternatives holds:

o t € Ey(n, k) U Ee(n, k) UlU.cer BC(n, k) UUser BY (0, )

e n > 2 and there exist m positive integer such that 2 < m < n, h € K(m) such
that h Tk, t € Eq(m,h) U Ec(m,h) UU.ccr E(m,h) UlUper Ef(m,h) and for
each o € E(k) 0 /dom(h) € E(h) and #(k,t,a) = #(hvta U/dom(h))'

Proof. Of course we begin with the case n = 2. Let k € K(2), t € E(2, k) such that
t ¢ C. We have K(2) = K(1) UK (1)*.

If k € K(1)* we have E(2,k) = E,(2,k), so t € E,(2,k).
If k € K(1) we have

E(2,k) = E(1,k)UE,(2,k) UE.(2,k) U | E°2.k)u | BT (2,k) .
ceC’ feF

Since k = € we have E(1,k) =C, Ey(2,k) =0, so

E(@2,k)=CUE.(2, kU | E°@ kU] E(2k) .
ceC’ feF

Therefore in this case we have

te E.2,k)U ) E@RKuUl]E2F.
ceC’ feF

Let now n > 2 and we try to prove the result for n + 1. So let kK € K(n + 1),
t € E(n+ 1,k) such that t ¢ C. We have K(n+1) = K(n) UK (n)*.

If k€ K(n)* we have E(n+ 1,k) = Eo(n+ 1,k) sot € Eq(n+ 1,k).

We now need to examine the case k € K(n). Here we have

E(n+1,k) = E(n,k)UEy(n+1,k)UE(n+1,k)U | E°(n+ 1L, k)U | | Ef(n+1,k) .
ceC’ feF

Ift € Ec(n+1,k)UU.ec EC(n+1,k)UU e r Ef(n+1, k) then our result is verified.

If t € E(n,k) and we can apply our inductive hypothesis, which leads to two alter-
natives:

o t € Ey(n,k)UEe(n, k) UU.ce B, k) UUser Bl (n, k);

e n > 2 and there exist m positive integer such that 2 < m < n, h € K(m) such
that h C k, t € Eq(m, h) U Ee(m,h) UU.cer £(m, ) UUser Ef(m,h) and for
each o € Z(k) 0/qomn) € E(h) and #(k,t,0) = F#(h,t, 0 /gom(n))-

In the first case we observe that 2 <n <n+1, k € K(n), k C k. Moreover for each
o< E(k) 0 /dom(k) = T € E(k) and #(k‘,t,()’) = #(k7t7 J/dom(k))'

So in the first case our result is verified.
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Let’s examine the second case. Here 2 < m < n <n-+1, h € K(m), h C k, for
each 0 € Z(k) 0/4om(n) € Z(h) and #(k,t,0) = #(h,t,0 /gom(n))- So everything is as
expected and our result is verified in this case too.

We have still one case to examine, which is the case of t € Ey(n + 1,k). Here we
have k # € so by assumption 6.1.8 there exist m < n, h € K(m), ¢ € Es(m,h),
y € (V—war(h)) such that k = h+ < y, ¢ >. Moreover by the definition of Ey(n+1, k)
we know that t € E(n, h). So we can apply our inductive hypothesis, which again leads
to two alternatives:

o t € Eqg(n,h) UEe(n,h) UU.cor E(nh) Ul per Ef(n, h);

e n > 2 and there exist p positive integer such that 2 < p < n, g € K(p) such
that g £ h, t € Eu(p,9) U Ee(p, 9) U Ueee £(0,9) U Ufef Ef(p,g) and for each
pe E(h> P/dom(g) € E(g) and #(h‘thO) = #(g7t7 p/dom(g))'

In the first case we observe that 2 < n <n+1, h € K(n), hC k, t € Ey(n,
Ee(n,h) UUeecr E4(n, h) UU per Ef(n, h), moreover for each o = p+ (y,s) € Z(k
have

L #(k7t70) = #(hatap)a
L O /dom(h) = O /dom(p) = P,
e therefore #(k,t,0) = #(h,t, 0 /dom(n))-

h) U
)

we

Let’s examine the second case. Here 2 < p <n <n+1,g¢€ K(p), g C h Ck,
t € Ea(p,9) U Ee(p, 9) UUeceer BS(0,9) UUjer B (p,g). Moreover for each o = p +
(y,s) € E(k) we have

L d #(k:7t’o-) :#(h’t7p)’

® 0 /dom(h) = O/dom(p) = P>

® T /dom(g) — (U/dom(h))/dom(g) = P/dom(g)»

d #(kv t U) = #(h, t P) = #(97 t p/dom(g)) = #(97 t U/dom(g))'

O]

Lemma 8.11. For each n positive integer, k € K(n), t € E(n,k) if t € C then for
each o € Z(k) #(k,t,0) = #(t).

Proof. Let’s verify the result for n = 1. Here k = ¢, for each 0 € Z(¢) 0 = € so
#(k7 t? O-) = #(67 t? 6) = #(t)'

Now let’s examine the inductive step. Given k € K(n+1), t € E(n+1, k) such that
t € C and 0 € Z(k) we want to show that #(k,t,0) = #(¢).

Ifk € K(n)* thent € E4(n+1,k), but since ¢t € C this cannot happen, so k € K(n)"
cannot happen.

Therefore k € K(n) and
te E(n,k)UEy(n+1,k)UE.(n+1,k)UU.co E(n+1,k)U UfefEf(n +1,k).

Since t € C it follows that t € E(n, k) U Ey(n + 1, k).
If t € E(n, k) clearly #(k,t,0) = #(t) holds by the inductive hypothesis.

If t € Ey(n+ 1,k) then we have k # € so by assumption 6.1.8 there exist m < n,
h € K(m), ¢ € Es(m,h), y € (V —wvar(h)) such that £k = h+ < y,¢ >, E(k) =
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{p+ (y,s)|p € Z(h),s € #(h,d,p)}). Moreover by the definition of Ep(n + 1,k) we
know that ¢t € E(n,h).

Clearly there exist p € E(h), s € #(h, ¢, p) such that o = p+ (y, s) and #(k,t,0) =
#(h,t, p). By the inductive hypothesis #(h,t, p) = #(t), so #(k,t,0) = #(t). O

Lemma 8.12. Let k,h € K(n) such that h = € or k = € or (h,k # € and k =<<
1,1 > < Ty, P >>, h =<y, Y1 > -+ < Yq, g >> and for each i € dom(k),
j€dom(h) z; =y; = @i =;). Letw eV —var(k): w €V —wvar(h) and 9 € E(n),
let k' = k+ < u,¥ > and ' = h+ < u,¥ >. Since k,h # € there exist x',..., 2}, €
V, @10, € X such that k' =<< 2,07 > -+ < 2,0, >>, y1,.-,0. €V,
P, L € XF such that b =<< yy, ] > -+ <y, . >> and for each i € dom(k'),
j € dom(h') xy =y — o} =%

Proof. 1f both k,h = € then ¥ =<< u,9 >>=h' and our result is verified.

If £ # € and h = € then let k =<< x1,001 > -+ < Ty, om >>, clearly
K =<< 21,01 > < Ty, om >< u,¥ >> and h =<< u,9 >>. Here we see that
for each i € dom(k'), j € dom(h') z} = y; implies j = 1, y; = u, 2} = u, 50 ¢ = ¥ = Y.

Finally if both h,k # €, k =<< x1,01 > -+ < ZTmyPm >>, h =<<
Yy, 1 > o < Ygathg >> then K =<< z1,01 > o < Tpyyom >< w, ¥ >>
and b =<< y1,¢¥1 > -+ < yg, ¥g >< u,¥ >>. Given i € dom(k'), j € dom(h') such
that 2} =y we havei=1...m+1,j=1...¢g+ L

If i <m and j < ¢ then clearly z; = 2} = y; = y; and ¢} = ¢; = 1; = ¢

If i =m+1then 7; = u, so yj =u and j =g+ 1, so ¢} = = . O

Lemma 8.13. Let k,h € K(n) such that h = € or k = € or (h,k # € and k =<<
1,01 > < Ty om >>, h =<<y1, 1 > -+ < yg, g >> and for each i € dom(k),
j€dom(h) z; =y; = pi=1;). Let k C k and g C h then kK =€ or g =€ or

® k,gF# € and so h, k # e,
o there exist p,r positive integers such that p < m, r < ¢, Kk =<< 21,01 >
C < Tp,pp >>, 9 =<< y1,P1 > -0 < Y, P >> and for each i € dom(k),
J € dom(g) x; = yj — @i = ;.

Proof. Clearly we can have Kk = € or g = €, otherwise we have k,g9 # €, so also
(hk # € and k =<< 21,01 > -+ < Ty, o >>, h =<< Y1, > -+ < Yg, g >>
and for each i € dom(k), j € dom(h) z; = y; = ;i = ©j).

By lemma 5.6 there exist p,r positive integers such that p < m, r < g,
K=<JZ1,p1 > < Tp,Pp>>, 9 =<< ylawl > < yraw'r >>.

Moreover dom(k) C dom(k) and dom(g) € dom(h) so for each i € dom(k), j €
dom(g) x; = y; = @i = ;. O
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Lemma 8.14. Let k,h € K(n) such that h = € or k = € or (h,k # € and k =<<
1,01 > < Ty o >>, h =<<y1, Y1 > -+ < yg, g >> and for each i € dom(k),
j € dom(h) z; = y; — @i = ;). Let t € E(n,k) N E(n,h). Let 0 = (x,2) € Z(k),
p = (y,r) € E(h) such that for each i € dom(c), j € dom(p) z; = y; — 2z =rj. Then
#<k7t7a) - #(h,t, P)-

Proof. We prove this by induction on a positive integer n.

Let’s verify the initial step. Here we have k,h € K(1). This implies h = ¢ = k. We
have t € E(1l,e) = C. We have 0 = (z,s) € Z(¢), p = (y,7) € Z(€). Of course this
implies 0 = € = p. Then #(k,t,0) = #(e,t,€) = #(h,t, p).

Let us see the inductive step, that is given a positive integer n we assume the result
is true for each m < n and we try to prove it for n 4+ 1. In other words what we
are trying to prove is that for each k,h € K(n + 1) such that one of the following
conditions holds

e h—=c¢
o k=c¢
e hk # € and k =<< 21,01 > < T, om >>, h =<< y1, 1 > -+ <

Yq, g >> and for each i € dom(k), j € dom(h) x; = y; — @i = 1
and for each t € E(n+ 1,k)NE(n+1,h), 0 = (z,2) € 2(k), p= (y,7) € ZE(h) such
that for each i € dom(o), j € dom(p) x; = y; — z; = r; we have #(k,t,0) = #(h,t, p).
If t € C then by lemma 8.11 #(k,t,0) = #(t) = #(h,t, p).

Otherwise since k € K(n+ 1) and t € E(n + 1,k) we can apply lemma 8.10 and
obtain these two following alternative possibilities:

o t€Ey(n+1,k)UE(n+1,k)UU.e ES(n+1,k) UUscr B/ (n +1,k);

e n+ 1> 2 and there exist p positive integer such that 2 < pu <n+1, kK € K(u)
such that k C k, t € Eg(p, k) U Ee(pt, ) UUeeer E(15) U Uper BEf(u,x) and
for each o € Z(k) 0 /gom(x) € E(k) and #(k,t,0) = #(K, 1, 0 /dom(x))-

Since h € K(n+1) and t € E(n+ 1, h) we can also use lemma 8.10 to obtain these
two other following alternative possibilities:
e t€Eu(n+1,h)UE(n+1,h)UU.ce B(n+1,h) UUjer B (n+ 1, h);
e n+ 1> 2 and there exist v positive integer such that 2 < v <n+1, g € K(v)
such that g C h, t € Ey(v,9) U Ee(v, 9) UUcer E€(v, 9) U Ufef Ef(v,g) and for

each p € E(h) pdgom(qg) € E(9) and #(h,t, p) = #(9: 1. p1dom(q))-
So we have three possible cases to examine. The first is
o t € Eu(n+1,k)UE.(n+1,k)UU.ce ES(n+1,k) UUser B (n+1,k) and
o t€Eu(n+1,h)UE(n+1,h)UU.ce B(n+1,h) UUjper Bf (n+1,h).
The second case is

e t€E,(n+1Lk)UE(n+1,k)UU.cc E°(n+1,k) UUser Ef(n+1,k) and
e n+ 1> 2 and there exist v positive integer such that 2 < v <n+1, g € K(v)
such that g C h, t € Eq(v,9) U Ee(v, 9) UUpee (v 9) UUper Ef(v,g) and for

each p € E’(h) P /dom(g) € E(g) and #(hatap) = #(gata p/dom(g))'

Another case to examine would be the following
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e n+ 1> 2 and there exist y positive integer such that 2 < pu<n+1, Kk € K(u)
such that k C k, t € Eq(p, 5) U Ee(p, £) U U eer E€(ps 6) Ul per Bf(u,x) and

for each o € Z(k) 0/gom(x) € E(k) and #(k,t,0) = #(K,t, 0 /gom(x)) and
e t€Ey(n+1,h)UE(n+1,h)UU.ce B +1,h) UUjper Bf (n+1,h).

Anyway this case is practically equal to the second one, so we don’t need to consider
it. Finally the third case is the following.

e n+ 1> 2 and there exist p positive integer such that 2 < u<n+1, Kk € K(u)
such that k C k, t € Eg(p, k) U Ee(pt, ) UUeeer E(15) U Uper Ef(u, ) and
for each 0 € Z(k) 0)dom(x) € Z(k) and #(k,t,0) = #(k, t, 0 /gom(x)) and

e n+ 1> 2 and there exist v positive integer such that 2 < v <n+1, g € K(v)
such that g C h, t € Ey(v,9) U Ee(v, 9) U U eer E€(v,9) U Ufef Ef(v,g) and for

each p € E’(h) P/dom(g) € E(Q) and #(h‘at:p) = #(g7t7p/dom(g))'

We now examine the three different cases we have distinguished. We start with the
first one, where we have four different subcases:
t € Es(n+1,k)UE(n+1,k) UU,ee ES(n+1,k) UUser BX (n+1,k).

We start with the subcase ¢ € E,(n + 1, k). We must have t € Eq(n + 1,h).

If k € K(n) then Ey(n+ 1,k) = 0 so k € K(n)" and there exist k € K(n), 0 €
Es(n,k), u € (V —var(k)) such that k = k+ < u,0 >, E,(n + 1,k) = {u}. Since
o € Z(k) there exist £ € E(k), s € #(k,0,&) such that 0 = £ + (u, s),

#(kat)a—) = #(k7tva)(n+l,k,a) =S.

If h € K(n) then Eo(n+1,h) =0 so h € K(n)" and there exist ¥ € K(n), pu €
Es(n,?), v € (V —var(¥)) such that h = 9+ < v, >, Es(n+ 1,k) = {v}. Since
p € Z(h) there exist ¢ € Z(¥), ¢ € #(U, p, ¢) such that p =+ (v,q),

#(h, tvp) = #(h)ta p)(n—l—l,h,a) =q.

Since t € E,(n+1,k) we have t = u, since t € E,(n+ 1, h) we have t = v, therefore

u=n.

There exists ¢ € dom(o) such that u = z;, s = z;, there exists j € dom(p) such that
v=1yj, ¢=Tj.

Therefore z; = u =v =y; and #(k,t,0) =s =z =r; = q¢ = #(h,t,p).

We now consider the subcase t € |J,cor E°(n+1, k). This implies there exists ¢; € C’
such that ¢t € E (n+ 1, k). This also implies k € K(n) and we have t € H.,(n+ 1, k).

Clearly t ¢ Eq(n+1,h)UE.(n+1,h)UUscr Ef(n+1,h),s0t € Upeer E€(n+1,R).
This implies there exists co € C’ such that t € E2(n + 1,h). Clearly we must have
h € K(n) and we have also t € H,(n+ 1,h).

As we have seen in lemmas 6.1.12 and 6.1.13 since ¢ = (c¢1)(¢) = (c2)(¢)) then
ca = ¢1 and t can be written as (¢1)(¢1,...,%y). Since t € He,(n+1,k)NH,(n+1,h)
then for each ¢ = 1...u ¢; € E(n, k)N E(n,h). By the inductive hypothesis it follows
immediately that for each i = 1...u #(k,¥;,0) = #(h, s, p).
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Finally it follows that

#(k7t7 U) = #(Cl)(#(ka 1/}17 U)a ) #(kaww U))
= #(02)(#(ha @Z)lap)a K #(hv¢m P)) = #(hvt’ p)

We now consider the subcase ¢ € [Jscr Ef(n 4 1,k). This implies there exists

fi € F such that t € Eft(n + 1,k). This also implies ¥ € K(n) and we have
tGHfl(n—i-l,k).

Clearly t ¢ E,(n+1,h)UE.(n+1,h)UU,cc E¢(n+1,k),s0t € Ufe]_-Ef(n—i- 1, h).
This implies there exists f» € JF such that ¢ € E/2(n 4 1,h). This also implies
h € K(n) and we have t € Hy,(n+ 1, h).

Since t € Hy,(n + 1,k) then t = fi(¢)) where ¢ € ¥*. Since t € Hy,(n + 1, k) then
t = fo(p) where p € ¥*. It follows that fo = fi.

If f1 has multiplicity 1 then there exists ¢ € E(n, k) such that ¢t = f1(¢)) and there

exists ¢ € F(n,h) such that t = fo(p). It follows that ¢ = 1 and by the inductive
hypothesis #(k, 1, 0) = #(h, ¥, p) = #(h, ¢, p). It also follows that

#(kvtv U) = Pfl (#(kv¢a U)) = Pf2(#(hv 807[))) = #(ha tvp)'

If f1 has multiplicity 2 we can consider that ¢ = f1(¢) where ¢y € ¥* and that
t € Hy(n+1,k), so by lemma 6.1.18 we can determine 11,12 € E(n,k) such that

t = fi(v1,v¥2).

We have also t = fao(1)) where ¢ € ¥* and t € Hy,(n + 1,h), so using the same
lemma we can determine that 11,19 € E(n,h) and t = fa(1)1,19).

By the inductive hypotesis #(k,v1,0) = #(h, Y1, p) and #(k, 9, 0) = #(h, V2, p),

SO

#(k‘,t,a) = Pf1 (#(kﬁﬂ/}l,g),#(k,ﬂ)g,a)) = sz (#(hﬂ/}hp))#(h?w%p)) = #(hvtap)

o

We now consider the subcase t € E.(n + 1,k) (which implies & € K(n)). Clearly
t¢ Eq(n+1,h)UU.ce E(n+1,h)U Ufej_-Ef(n +1,h),s0t € E.(n+1,h), which
implies h € K(n).

We have t € He(n+ 1,k) and t € Ho(n+ 1, h).

Since t = {}(¢) for some 1) € ¥* we can apply lemma 6.1.25.
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Consider the set of the positive integers r such that 2 < r < £(¢), t[r] = ¢, and
d(t,r) = 1. Since t € H¢(n + 1,k) this set is not empty and let’s name rq,...,rp, its
members (in increasing order).

Let’s also define 11 = ¢[3,r; — 1] (if r1 — 1 < 3 then ¢; = € where € is the empty
string over the alphabet ).
If p > 1 then for each i = 1...p — 1 we define ;11 = t[r; + 1,rip1 — 1] (if
rit1 — 1 <r;+ 1 then 941 =e.
Finally we define 9,1 = t[rp, + 1,£(t) — 1] (if £(t) — 1 < rp + 1 then ¢p11 =¢).

Since t € He(n + 1,k) we have that for each i = 1...p £(v;) > 3, ¥[2] =
l(¢py1) = 1 and we can define a function u over the domain {1,...,p} by setting
u(i) = ;[1]; we can define a function 9 over the domain {1,...,p} by setting ¥(i) =
¥i[3,£(1;)]; let’s also define 0 = 1,41. With those definitions we have the following

o foreachi=1...pu; €V —wvar(k), and for each i,j =1...p i # j = u; # uj,
o foreachi=1...pv; € E(n),

e § € E(n),

o E(n,k,p,u,v,0).

Since t € He(n + 1, h) we have also the following:

o foreachi=1...pu; €V —wvar(h),
e E(n,h,p,u,v,0).

We have also ¢t = {}(¥1,...,Up, Ypr1) = {Hwr : O1,...,up : ¥Up,0), so as
suggested by lemma 6.1.27 we have identified the elements p,u,9,0 such that
t= {}(u1 :191,...,up : 19p,¢9).

We have

(ks t,0) = (£} 0,0)| o, € Z(k)), 0 C ob}

where k| = k+ <wu1,91 >, and if p>1foreachi=1...p—1
k;z,'—i-l = k;'f- < ui+1,19i+1 >.

We have also

#(h,t,p) = {#(hy,, 0, 0)| pp, € E(hy,), p C pp,}

where b} = h+ < wu;,¥1 >, and if p > 1 for each ¢ = 1...p — 1
h§+1 = h;—i— < Uig1, Vig1 >.

We want to show that #(k,t,0) = #(h,t, p), thus we have to show
(K, 0,00)| o} € ()0 € ol = {#(k}u 0. 0})| gy € ()0 C )

To prove this we just need to prove the following two assertions:

e for each o, € Z(k},) such that o C oy, there exists pj, € Z(h;,) such that p C pj,
and #(h,.0, p) = #(k}, 0, 0%);
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o for each pj, € Z(hy,) such that p C pj, there exists 0, € Z(k;,) such that o C o,
and ()0, 01) = #(h . 6,,).

It is clearly enough to prove the first one, since the second would be proved by
simply substituting variables in the proof of the first.

Let o, € E(k;,) such that o C oy, we want to find pj, € Z(h;,) such that p C pj, and
#(hy, 0, 0p) = #(kp,, 0, 07).

If p > 1 we define o = (0},) /dom(k;), Otherwise o} = (0},) /dom(k;) holds all the same.
We should be able to prove that:

° Ui S E(k‘ll)
e there exists s1 € #(k, V1, 0) such that o] = o + (u1, s1).

If p =1 then o} € Z(k}) clearly holds, else we have k! # ¢, o € Z(k.), k} € R(k]),
1 1 P P p/r ™1 P
k| # Ky, so by lemma 8.4 07 = (0},) /dom(k;) € Z(k7)-

We have k] = k+ < uq,91 > and k]| € K(n), clearly k] # € and n > 2 also hold.
Moreover k € K(n), V1 € Es(n, k), up € V —var(k), so by lemma 8.2
E(k1) = {& + (w1, 9)[§ € E(k), s € #(k, ¥1,€)}-

Then there exist £ € Z(k), s € #(k,91,£) such that o] = £ + (uq, s). Here we can
see that
(1) Jdom(k) = (01) fdom(e) = &

and at the same time, since dom(k) C dom(k}) C dom(k),) = dom(ay,),
(Ui)/dom(k) = ((O-g/))/dom(ki))/dom(k) = (O-;))/dom(k) = (Ug/))/dom(a) =0.
Therefore £ = o and there exists s € #(k,v1,0) such that o] = o + (u1, s).

If p > 1 then for each i = 1...p—1if i +1 < p we can define o} ; = (0}) /dom(k

§+1)’

otherwise o, = 0, = (0}, Jdom(k,) = (0p) jdom(kz, ,) 18 equally true. We can observe

that with the definitions we have provided for each i = 1...p o} = (6) /dom(k!)-

We should also be able to prove that for each¢i=1...p—1

e 0iy € E(kiy),
o there exists s;11 € #(kj, Viy1,0;) such that o} = o] + (uiy1, Si11).

If i +1 = p then o} | € Z(k} ) clearly holds, else i + 1 < p and k, # ¢, 0, € Z(k}),
k‘;+1 € ,R’(k;))’ ngrl 7& kj;;v S0 by lemma 8.4 O-ngl = (O-;))/dom(kgﬂ) € E(k;+1)

We have kj | = kji+ < uiy1,%41 > and ki, € K(n), clearly ki | # € and n > 2
also hold. Moreover k} € K(n), Vi1 € Es(n,k}), var(k)) = var(k) U {ui,...,u;},
ui+1 € V —var(k}), so by lemma 8.2

E(kiy 1) = {€+ (uitr1, )| € € B(k)), s € #(kj, Vi11,€)}
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Then there exist £ € Z(k;),s € #(kj, ¥iy1,&) such that of, | = & + (usy1,s). Here
we can see that

(0741) Jdom (k) = (Tis1) fdom(e) = &

and at the same time, since dom(k;) C dom(k; ) C dom(k,) = dom(c,,),

(@i1) rdomi) = () fdom(k ) rdom(ky) = (Op) fdom(ky) = 0

Therefore £ = o and there exists s € #(kj, ¥it1,0;) such that o], | = 0} + (uiy1, ).

Then we define p| = p + (u1, s1), and we should be able to prove that p| € Z(h}).

We have &(n, h,p,u,¥,0). This implies 1 € Es(n,h). We have b = h+ < uq,91 >
and b} € K(n), | # €, n > 2, moreover h € K(n), u; € V —var(h) and therefore

E(hh) = {& + (u1,5)|€ € E(h), s € #(h,V1,8)}-

Since p € Z(h), to prove that p} € Z(h)) we just need to prove that s; € #(h, 91, p).
We know that s; € #(k,¥1,0). We have 91 € E(n, k), 91 € E(n,h).

With that we can apply the inductive hypothesis and obtain that #(k,91,0) =
#(h, V1, p), therefore s; € #(h, V1, p) and p| € Z(h}).

We also notice that k] = k+ < wui,th >, b} = h+ < uy,¥1 >, so if we set
Ky =<<2y,01 > -0 <@, @, >> and by =<< gy, > -+ <y, >> then by
lemma 8.12 for each o € dom(k7), B € dom(h}) xq, = Y3 — ¢ = V.

Moreover we notice that o] = o+ (u1, s1), pj = p+ (u1, 1), and if we set o] = (2/,2'),
p1 = (y',7') then by lemma 3.4 for each e € dom(0), B € dom(py) xp, =y — 25 =175

If p > 1 then for each i = 1...p — 1 we can define p; | = pj + (uiy1,5i+1) and we
expect to be able to prove that pj,, € Z(hj, ;).

We have £(n, h, p,u,,0) and hi_ | = hj+ < ujy1,¥541 >. This implies b, € K(n),
hi,, # € and n > 2 holds too. Moreover h; € K(n), ¥;11 € Eq(n,h]), and, since
var(h) = var(h) U{ui,...,u;}, uiy1 € V —var(h}). Therefore

E(hiy1) = {& + (uiy1,5)| € € E(R)), s € #(h},0i41,6)}

By inductive hypothesis we can assume that p, € Z(h), therefore to prove
Piy1 € E(hjy,) we just need to prove siy1 € #(hj,Vit1,p;). We know that s;1 €
#(kéﬂgi-&-lvavl)'

As an inductive hypothesis we can also assume that

o if we set kl =<< 2),¢] > - < al,,0,, >> and b, =<< YY) > - <

Ygr» Yy >> then for each a € dom(k;), B € dom(h}) i, = yj3 — ¢f, = V.
o if we set o] = (2/,2'), pl = (¥/,7’) then for each a € dom(c}), B € dom(p})
To =Yp = 2 =T

We have k] € K(n), h, € K(n), 941 € Es(nk), ¥ix1 € Es(n,hl),
o, € Z(kf), p, € Z(h}), so we can apply the inductive hypothesis and obtain that
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#(kl,Vix1,00) = #(h, 911, p}). Therefore s;11 € #(h},Vi41, p;) and we have proved
Piy1 € E(hip).

In this proof that pj, , € Z(hj ;) we have used an inductive hypothesis which we
still haven’t proved, so we need to prove it now. What we need to prove is the following:

o if we set kj | =<< ), > - < a0, >>and b =<< Y, >0 <
Yor» Yy >> then for each a € dom(ki,,), B € dom(hi,q) x, = ys — ¢ = V.
o if we set o;,; = (2,2'), pi; = (¥,r) then for each a € dom(oj ), B €
dom(piy) To, = Y — 20 =T
To prove the first item we consider that ki, ; = kj4+ < w1, Y541 >,
hi = hi+ < w1, V%41 >, g1 €V —var(k)), uiy1 € V —wvar(h}), 941 € E(n). So
we can apply lemma 8.12 and the first condition is proved.
To prove the second item we consider that o}, = o] + (wit1, 5i41),

Py = P + (Uig1,8i41), g1 € V —wvar(o}), uiy1 € V — var(p;). So we can apply
lemma 3.4 and the second condition is proved.

At this point we have defined pj, such that p T pf, and proved that pj, € Z(h;).
We have also that k, € K(n), 0 € E(n,ky), h;, € K(n), 0 € E(n,h;,), o, € Z(k,).
Moreover

o if we set k, =<< 29,9 > .-+ < 2,00, >> and b, =<< Y, > -0 <

Yg» Yy >> then for each a € dom(ky,), B € dom(hy) 7, =y — ¢, = Y.
. if/ we s/et o = (m:,z’), pp = (y';r') then for each o € dom(oy,), B € dom(p},)
T =Yy — 2o =T

With that, #(hy,, 0, pj,) = #(k,, 0, 0,,) follows by inductive hypothesis.

Let’s consider the second case, which as we recall is the following:

e tc E;(n+1,E)UEc(n+1,k) Uz ES(n+1,k)U UfefEf(n +1,k) and
e n+ 1> 2 and there exist v positive integer such that 2 <v <n+1, g € K(v)
such that g C h, t € Eq(v,9) U Ee(v, 9) UU cer E°(v, 9) UUper Ef(v,g) and for

each p e E(h) P/dom(g) € E(.g) and #(hatvp) = #(gata p/dom(g))'

Initially we consider the same four different subcases of the first case:
t€ Eu(n+1,k)UE(n+1,k) UU,ee ES(n+1,k) UUser BX (n +1,k).

We start with the subcase t € E,(n + 1, k). We must have t € E,(v, g).

If k € K(n) then E,(n+ 1,k) =0 so k € K(n)* and there exist kK € K(n), 0 €
Es(n,k), u € (V —wvar(k)) such that k = k+ < u,0 >, E,(n + 1,k) = {u}. Since
o € Z(k) there exist £ € =(k), s € #(k,0,&) such that o =& + (u, s),

#(k’tv U) = #(k7ta U)(n+1,k,a) = S.

Ifg € K(v—1) then E4(v,g9) =0so g € K(v—1)" and there exist ¥ € K(v—1), pu €
Es(v—1,9), v € (V—war(?¥)) such that g = 9+ < v, u >, E,(v, g) = {v}. We have p €
E(h) and p/gom(g) € Z(9)- Let 1 = p/aom(q), then there exist ¢ € Z(J), q € #(J, i, ()
such that n = ¢+ (v,q), #(g,t,m) = #(9, £, M (v,g.0) = ¢-
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We have to prove that #(k,t,0) = #(h,t,p), and since #(h,t,p) = #(g,t,n) it is
enough to prove that #(k,t,0) = #(g,t,n).

Since t € Eq(n + 1,k) we have t = u, since t € E,(v,g) we have t = v, therefore
u=v.

Since n C p we can apply lemma 3.5 to show that if n = (w,d) then for each
i € dom(o), j € dom(n) x; = wj = 2z; = 0;.

There exists ¢ € dom(o) such that u = x;, s = z;, there exists j € dom(n) such that
v =wj, q=0;.

Therefore z; = u = v =w; and #(k,t,0) = s =z; = 0; = ¢ = #(g,t,n).

We now consider the subcase t € |J e E(n+1, k). This implies there exists ¢; € C’
such that ¢t € E'(n+ 1, k). This also implies k € K(n) and we have t € H., (n+ 1,k).

Clearly t ¢ Eq(v,9) U Ee(v,9) UlU e Ef(v,g), so t € Uuee E°(v, g). This implies
there exists co € C' such that ¢t € E(v, g). Clearly we must have g € K(v — 1) and
we have also t € H,, (v, g).

As we have seen in lemmas 6.1.12 and 6.1.13 since ¢ = (c¢1)(¢) = (c2)(¢)) then
cp = ¢1 and t can be written as (¢1)(¢1,...,%y). Since t € He, (n + 1,k) N He, (v, g)
then foreachi=1...uv¢; € E(n,k)NE(v—1,g). Clearly g € K(n) and ¢; € E(n, g).

Let = p/dgom(q) € Z(g). By lemma 8.13 we have that k = e or g =€ or

e k,g+# candsok,h#e,
e there exist p positive integer such that p < ¢, g =<< y1,¢1 > -+ < yp, P >>
and for each i € dom(k), j € dom(g) z; = y; = pi = ;.

Since 7 C p we can apply lemma 3.5 to also show that if 7 = (w, 1) then for each
i € dom(o), j € dom(n) x; = wj — z; = p;.

We can apply the inductive hypothesis and obtain that for each ¢ = 1...u
#(kuwivo-) = #(971/1“77)

Finally it follows that

#(k7t7 U) = #(Cl)(#(kawlaa)a ceey #(kﬂ/Ju,U))
= #(02)(#(9777[)1377)7 AR #(ga@buaﬁ)) = #(g7t777) = #(h’t’p)

We now consider the subcase ¢ € [Jscr Ef(n 4 1,k). This implies there exists

fi € F such that t € Ef*(n + 1,k). This also implies ¥ € K(n) and we have
t e Hfl(n—i— 1,k).

Clearly t ¢ Eo(v,9) U Ee(v,9) UlU.eer E°(v,9) sot € User Ef(v,g). This implies
there exists fy € F such that t € E/(v,g). This also implies ¢ € K(v — 1) and we
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have t € Hy, (v, g).

Since t € Hy, (n + 1,k) then t = fi(¢)) where ¢ € ¥*. Since t € Hy,(v,g) then
t = fa(p) where ¢ € ¥*. It follows that fo = fi.

Let 7 = p/dom(g) € Z(g). By lemma 8.13 we have that k = € or g = € or

e k,g+# candsok,h+#e,
e there exist p positive integer such that p < ¢, g =<< y1,¢1 > -+ < Yy, ¥p >>
and for each i € dom(k), j € dom(g) z; = y; = pi = ¥;.

Since 7 C p we can apply lemma 3.5 to also show that if 7 = (w, ) then for each
i € dom(o), j € dom(n) x; = w; = z; = ;.

If f1 has multiplicity 1 then there exists ¢ € E(n, k) such that ¢ = f1(¢) and there
exists ¢ € E(v — 1,¢g) such that t = fa(p). It follows that ¢ = 1. Clearly g € K(n)
and ¢ € E(n,g).

So we can apply the inductive hypothesis and obtain that #(k,v,0) = #(g,%,n).
It also follows that

#(k,t,0) = Py, (#(k, 0, 0)) = Pr,(#(9,¢,n)) = #(g,t,m) = #(h,t, p).

If f1 has multiplicity 2 we can consider that ¢ = f1(¢) where ¢y € ¥* and that
t € Hy (n+1,k), so by lemma 6.1.18 we can determine ¢y, € E(n,k) such that

t = fi1(1,¢2).

We have also t = f2(1)) where ¢ € ¥* and ¢t € Hy, (v, g), so using the same lemma
we can determine that ¢1,19 € E(v — 1,¢9) and t = fa(1)1,12). Clearly g € K(n) and
V1,12 € E(n, g).

By the inductive hypOteSiS #(kv ¢17U) = #(gawhn) and #(kv ¢27U) = #(gaw%n)?
SO

#(k7t70) = Pfl (#(k7¢170->7 #(kanaO’)) = sz(#(ga%,ﬁ),#(gv%,??)) = #(97t7n)a

#(kvtvg) = #(gata 77) = #(hatu p)

We now consider the subcase t € E.(n + 1,k) (which implies k& € K(n)). Clearly
t ¢ Ea(v,9)UUcee E°(v: 9)UU e r Ef(v,9)sot € E.(v,g). This implies g € K (v—1).

We have t € Ho(n+ 1,k) and ¢t € He(v, g).
Since t = {}(¢) for some 1 € ¥* we can apply lemma 6.1.25.

Consider the set of the positive integers r such that 2 < r < £(t), t[r] = ¢, and
d(t,r) = 1. Since t € Ho(n + 1, k) this set is not empty and let’s name ry,...,r, its
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members (in increasing order).

Let’s also define 11 = t[3,r; — 1] (if r1 — 1 < 3 then ¢; = € where € is the empty
string over the alphabet ).
If p > 1 then for each i = 1...p — 1 we define 11 = t[r; + 1,rip1 — 1] (if
rit1 — 1 <r;+ 1 then 941 =e.
Finally we define 1,1 = t[rp, + 1,£(t) — 1] (if £(t) — 1 < rp + 1 then ¢p11 =¢).

Since t € H.(n + 1,k) we have that for each i = 1...p £(v;) > 3, ¥;[2] =
l(¢p+1) = 1 and we can define a function u over the domain {1,...,p} by setting
u(i) = ;[1]; we can define a function 9 over the domain {1,...,p} by setting ¥(i) =
¥i[3,£(1;)]; let’s also define 6 = 1), 11. With those definitions we have the following

o foreachi=1...pu; €V —wvar(k), and for each i,j =1...p i # j = u; # uj,
o foreachi=1...pv; € E(n),

e § € E(n),

o E(n,k,p,u,v,0).

Since t € H.(v, g) we have also the following:

foreachi=1...pu; €V —wvar(g),
foreachi=1...pv; € E(v—1),
e E(v—1),

Ev—-1,9,p,u,v,0).

We have also t = {}(¥1,...,¢p, Ypr1) = {Huwr : V1,...,up © 0p,60), so as
suggested by lemma 6.1.27 we have identified the elements p,u,,0 such that
t = {}(u1 : 191,...,up : 19;,,0).

We have

#(k,t,0) = {#(k,,0.0,)| 0, € E(kp), 0 C oy},

where k| = k+ <wu1,91 >, and if p>1foreachi=1...p—1
kipr = kit < tiy1, i1 >

Let 7 = p/dom(g) € Z(g). We have also
#(g,t,m) = {#(g,,0.m)| n, € E(g,),n T},

where ¢f = g+ < wu,¥y >, and if p > 1 for each ¢ = 1...p — 1
Giv1 = 9it < i1, >.

We want to show that #(k,t,0) = #(h,t,p), but #(h,t,p) = #(g,t,n) thus we
have to show

{#(ky,0,0p)| 03, € E(ky), 0 E 0.} = {#(g,,0,m,)| m, € E(gp),n E i} -

To prove this we just need to prove the following two assertions:

e for each o, € E(k;,) such that o C oy, there exists 7, € Z(g,,) such that n C 1,
and #(gy,,0,m,) = #(ky, 0,0,);
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e for each 7, € Z(g,) such that n C 7, there exists o, € Z(k;) such that o C o),
and #(k,,, 0,0,) = #(g,,0,1,,)-

We begin with the first one.
/ — (1! / / —( /
Let 0, € Z(k,) such that o C o;,, we want to find 7, € Z(g,,) such that  C 7, and

#(gp, 0. m,) = #(kp, 0, 07).

If p > 1 we define o} = (0,) /dgom(k;), Otherwise o} = (0},) /dom(k;) holds all the same.
We should be able to prove that:

° Ui S E(k‘ll)
e there exists s1 € #(k, 1, 0) such that o] = o + (u1, s1).

If p =1 then o} € E(ky) clearly holds, else we have k, # ¢, 0, € Z(k,), k| € R(k),
k| # Ky, so by lemma 8.4 07 = (0},) /dom(k;) € Z(k7)-

We have k] = k+ < uq,91 > and k| € K(n), clearly k] # € and n > 2 also hold.
Moreover k € K(n), V1 € Es(n, k), up € V —var(k), so by lemma 8.2

E(k1) = {&+ (u1, 8)[§ € E(k), s € #(k, ¥1,€)}.

Then there exist £ € Z(k), s € #(k,91,§) such that of = & + (u1, s). Here we can
see that
(01) jdom(k) = (01) Jdom(e) = &

and at the same time, since dom(k) C dom(k}) C dom(k;,) = dom(a,,),
(1) jdom(k) = () jdom(ir)) jdom(k) = (Op) jdom(k) = (Tp) jdom (o) = O
Therefore £ = o and there exists s € #(k,v1,0) such that o] = o + (u1, s).

If p > 1 then for each i = 1...p—1if i +1 < p we can define o} | = (0}) /dom(k

§+1)’

otherwise o, = o, = (0}, Jdom(k,) = (0p) jdom(kz, ,) is equally true. We can observe

that with the definitions we have provided for each i = 1...p o} = (6) /dom(k!)-

We should also be able to prove that for each¢i=1...p—1

e 0iy € E(kiy),
o there exists s;11 € #(kj, Viy1,0;) such that o} = o] + (uiy1, Si11).

If i +1 = p then o} | € Z(k} ) clearly holds, else i + 1 < p and k, # ¢, 0, € Z(k},),
k;+1 S 'R,(k';,), ngrl 7& k;w S0 by lemma 8.4 0'£+1 = (O-;))/dom(ngrl) € E'(k;+1)

We have k| = kj+ < uiy1,%41 > and ki, € K(n), clearly ki ; # € and n > 2
also hold. Moreover £} € K(n), Vi1 € Es(n,k}), var(k)) = var(k) U {ui, ..., u;},
ui+1 € V —var(k}), so by lemma 8.2

E( §—|—1) = {6 + (uiJrla 5)|§ € E(k;)’s S #(k‘;vﬁﬂrlaé)}
Then there exist § € E(k}),s € #(kj,¥i11,&) such that o7, = £+ (uiy1,s). Here
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we can see that

(0741) Jdom (k) = (Tis1) fdom(e) = &

and at the same time, since dom(k;) C dom(k; ) C dom(k,) = dom(c},),

(@51) sdomi) = () fdom(k ) fdom(ky) = (Op) fdom(ky) = 0

Therefore £ = o and there exists s € #(k}, ¥i11,0}) such that o], | = 0} + (uiy1, ).

Then we define 0} = n + (u1, s1), and we should be able to prove that 7} € Z(g}).

We have E(v — 1, g,p, u,?,60). This implies 1 € Es(v — 1,g9) C Es(v, g). We have
gy =9+ <wup,¥ >and ¢y € K(v—1) C K(v), g # €, v—1 > 2, moreover g € K(v),
uy; € V —var(g) and therefore

E(91) = {€+ (u1,5)|§ € E(g),s € #(9.91,8)}.

Since n € Z(g), to prove that ] € Z(g}) we just need to prove that s; € #(g,91,7).
We know that s; € #(k,¥1,0). We have ¢4 € E(n,k), V1 € E(v—1,9) C E(n,g).

We also notice that by lemma 8.13, since g T h, k =¢c or g =€ or

e kg#eandsoh#e k=<<x1,01> < T, pm >>, h=<<yp,P1 > - <
Yq, Vg >> and for each i € dom(k), j € dom(h) x; = y; — @i = Vj;

e there exists v positive integer such that v < q, g =<< y1,9¥1 > -+ < Yo, Yy >>
and for each i € dom(k), j € dom(g) z; = y; — vi = ;.

Since 7 C p we can apply lemma 3.5 to also show that if 7 = (w, 1) then for each
i € dom(o), j € dom(n) x; = wj — z; = ;.

With this we can apply the inductive hypothesis and obtain that
#(k,ﬁl,(f) = #(97191777)7 therefore S1 € #(97191777) and 77/1 € E(gll)

We also notice that k’l = k+ < up, % >, g’l = g+ < wui,¥1 >, so if we set
K =<<al,p) > <z, ¢, >>and ] =<< yj, ] > - < y;’z/v%’ >> then by
lemma 8.12 for each o € dom(ky), B € dom(g}) 7, = Y3 — g, = V.

Moreover we notice that o] = o+ (u1, s1), ] = 7+ (u1, s1), and if we set o = (2/, 2/),

n = (y',r") then by lemma 3.4 for each a € dom(a?), B € dom(my) xp, = yj3 — 2, = 1.
If p > 1 then for each i = 1...p — 1 we can define 7}, | = 7 + (uiy1, i+1) and we
expect to be able to prove that n;, ; € Z(g;, ).

We have E(v — 1,9,p,u,9,0) and gj , = g; + (ui41,Y41). This implies gi,, €
K(v—1) € K(v), gy # € and v —1 > 2 holds too. Moreover g; € K(v), ¥i41 €
Es(v—1,g) C Es(v, g}), and, since var(g;) = var(g)U{u1,...,u;}, uir1 € V—var(g,).
Therefore

E(giy1) = {€ + (uiy1,5)| € € E(g7), s € #(gi,Yi41,6) }-
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By inductive hypothesis we can assume that 7, € Z(g}), therefore to prove
M41 € E(gi;1) we just need to prove s;y1 € #(g;,Viy1,7;). We know that s;y1 €
# (ki Vit1, 07).

By inductive hypothesis we can also assume that

o if we set kl =<< 2,¢) > -+ < 2,00, >> and g =<< yl,lbll > - <
Yors oy >> then for each o € dom(k;), B € dom(g;) xp, = yjz — o = ¥
o if we set o) = (2}, 2)) and n; = (w}, p}) then for each o € dom(o}), f € dom(n,)

[ ERad)

(@7)a = (Wi)s = (21)a = (17)p-

We have k] € K(n), g, € K(v) C K(n), 941 € Es(n,k}), 9i41 € Es(v,g;) C
Es(n,g.), o) € E(k}), n; € E(g}), so we can apply the inductive hypothesis and obtain
that #(kf, Yiz1,00) = #(9},Yi+1,7,). Therefore s;11 € #(g},Yit1,7n;) and we have
proved i1 € E(gi11)-

In this proof that 7}, ; € Z(g;,;) we have used an inductive hypothesis which we still
haven’t proved, so we need to prove it now. What we need to prove is the following:

° lf we Set k,+1 =<< 3717(P1 - < CE /,Sam/ >> aIld gl-‘rl =<< y1,¢1 e K
Ygr> Yo >> then for each a € dom( kiz1), B € dom(giyy) T = Y — @0 = V5.

o if we set oj,; = (2,2'), nj,; = (¥,r’) then for each a € dom(oj ), B €
dom(ify1) 3 = gy 4 = 14,

To prove the first item we consider that & 1= = kl+ < uiy1,Yip1 >,
Giy1 = i+ < uip1,%i41 >, uip1 € V —wvar(k)), uip1 € V —var(g;), ¥iy1 € E(n). So
we can apply lemma 8.12 and the first condition is proved.

To prove the second item we consider that o}, | = 0] + (wit1,5i41),
Migr = M5 + (Uit1,8i41), uit1 € V —var(o]), uiy1 € V —var(n;). So we can apply
lemma 3.4 and the second condition is proved.

At this point we have defined 7;, such that 1 C 7, and proved that 7, € Z(g,,). We
have also that k, € K(n), 0 € E(n, k), g, € K(n), 0 € E(n,g,), 0, € Z(k,). Moreover

o if we set k, =<< z7,¢] > - < 3,, ¢, >> and g =<< yl,wi > e <
Ygr> Yoy >> then for each a € dom(k’) B € dom(gy,) r, = yﬁ — ol = Wg

o if we set 0, = (2/,2), m, = (¥',7') then for each a € dom(a},), B € dom(n,)

I, I
To =Yg = Zq = Tp-

With that, #(g,,0,m,) = #(k,, 0, ;) follows by inductive hypothesis.

such that n C 7, we

We now examine the other side of the proof. Let 77 e =( ;) )
») = #£(gp, 0,m,). Remember

want to find o), € Z(k;,) such that o C o, and #(k,, 9 o
that n = p/dom(g)'
We notice that dom(g)) € dom(g,) = dom(n,). So if p > 1 we can define 7y =

(1) Jdom (g,)> Otherwise 07 = (1) /dom(g;) holds all the same. We should be able to
prove that:

e 1 €E(g1)
e there exists s1 € #(g,91,7n) such that 0} = n+ (u1, s1).

If p = 1 then 1} € Z(g;) clearly holds, else we have g, # ¢, n, € Z(g,,), 91 € R(g,),
/ / A T
91 7& Gps SO by lemma 8.4 m = (np)/dom(gi) € H(gl)'
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We have ¢) = g+ < u1,91 > and g] € K(n), clearly g] # € and n > 2 also hold.
Moreover g € K(n), 91 € Es(n,g), u1 € V —var(g), so by lemma 8.2

E(gh) = {& + (w1,9)[ € € E(9), 5 € #(g,91,6)}.

Then there exist £ € E(g), s € #(g,91,§) such that n] = £+ (u1, s). Here we can
see that

(1) fdom(g) = (M) jdom(e) = &

and at the same time, since dom(g) C dom(g;) € dom(g,) = dom(n,),

(n,l)/dom(g) = ((n;)/dom(g{))/dom(g) = (n;)/dom(g) = (n;)/dom(n) =

Therefore £ = 7 and there exists s € #(g, Y1, 7n) such that n] =n+ (u1, s).

We notice that dom(g;,,) € dom(g,) = dom(n,). So if p > 1 then for
each i = 1...p — 1:if i +1 < p we can define ni .y = (0,)/dom(g;,,), Other-

wise 772-1—1 = 77;; = (n;o)/dom(n;) = n;)/dom(g;) = (n;))/dom(gngl) is equally true. We can
observe that with the definitions we have provided for each i = 1...p 1} = (1) /dom(q!)-

We should also be able to prove that for each¢=1...p—1

® N1 € E(gi41);
e there exists s;41 € #(g, ¥i11,n;) such that n; , = nj + (wit1, 5i41)-

If i + 1 = p then n, | € (g, ) clearly holds, else i +-1 < p and g, # ¢, n, € Z(g,,),
g£+1 € R(g;))a g§+1 7é g;;/yv so by lemma 8.4 77;—&-1 = (n;))/dom(g§+1) € E(g;—o—l)

We have gj , = gi+ < ui1,%41 > and gj; € K(n), clearly g;,, # ¢ and n > 2
also hold. Moreover ¢, € K(n), ¥i41 € Es(n,g.), var(g;) = var(g) U {ui,...,u;},
ui+1 € V —var(g;), so by lemma 8.2

E(git1) = {&€+ (wiy1,9)| € € E2(gi), s € #(g,Vit1,€)}-

Then there exist £ € E(g;), s € #(g;,Vi+1,&) such that nj, | = £+ (uig1,5). Here we
can see that

(Mig1) fdom(g)) = (Mi41) jdom(e) = €
and at the same time, since dom(g;) C dom(g;, ) C dom(g,) = dom(n,,),
(Mi+1) jdom(g) = () jdomgL, 1)) sdomi(g) = (M) sdomigr) = M-

Therefore £ = n; and there exists s € #(g;, ¥;11,7;) such that nj ; =7} + (uiy1, s).

Then we define 0] = o + (u1, s1), and we should be able to prove that o} € E(k]).

We have E(n, k,p,u,,0). This implies ¥; € Es(n, k). We have k] = k+ < uy, 91 >
and k) € K(n), k] # €, n > 2, moreover k € K(n), u; € V — var(k) and therefore

E(k1) = {&€+ (w1, 5)[§ € E(k), s € #(k, 1,8}
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Since o € Z(k), to prove that o] € Z(k}) we just need to prove that s; € #(k, 91, 0).
We know that s; € #(g,91,n). We have ¥; € E(n,k), V1 € E(v—1,g9) C E(n,g).

We also notice that by lemma 8.13, since g C h, k =€ or g = € or

e kgftecandsoh#e k=<<x1,01 > < T, om >>, h=<<y, 1 > <
Yq, g >> and for each i € dom(k), j € dom(h) x; = y; — @i = V;;

e there exists v positive integer such that v < q, g =<< y1,9¥1 > - < Yy, Yy >>
and for each i € dom(k), j € dom(g) z; = y; = pi = ;.

Since 7 C p we can apply lemma 3.5 to also show that if 7 = (w, 1) then for each
i € dom(o), j € dom(n) x; = wj — z; = ;.

With this we can apply the inductive hypothesis and obtain that
#(k,01,0) = #(g,91,n), therefore s; € #(k,V1,0) and o} € E(k)).

We also notice that k] = k+ < w1, 91 >, ¢f = g+ < ui, 1 >, so if we set
Ky =<< @), 07 > -0 <@y, 0, >> and g) =<< yp, ) > - < yp, by, >> then by
lemma 8.12 for each a € dom(k}), B € dom(gy) w, = Y3 — ¥l = V.

Moreover we notice that o] = o+ (u1, s1), 71 = n+ (u1, s1), and if we set o} = (2, z’/),

n = (y',7") then by lemma 3.4 for each a € dom(a'), B € dom () xp, = yj3 — 2, = 77.

If p > 1 then for each i = 1...p — 1 we can define 0], ; = o} + (uiy1,5:41) and we
expect to be able to prove that o ; € E(k;, ;).

We have &(n, k,p,u,?,0) and kj ; = ki 4+ (ui41,%i41). This implies kj ; € K(n),
'y # e and n > 2 holds too. Moreover ki € K(n), Yix1 € Es(n,k.) and, since
ar(k}) = var(k) U{u1,...,u;}, uiy1 €V — var(k‘;). Therefore

E(kis1) = {&+ (uir1, 8)| € € Z(k]), s € #(ki, Uiz, §) ).

By inductive hypothesis we can assume that o] € E(k:;) therefore to prove
oi.1 € E(kjy,) we just need to prove s;i1 € #(kj,¥i11,07). We know that s;11 €
#(97/;7191'-4-17777/;)‘

By inductive hypothesis we can also assume that

o if we set k] = (2}, ¢)) and ¢, = (v}, ¢;) then for each o € dom(k}), f € dom(g})

(@7)a = (wi)g = (#)a = (#))p;
o if we set o) = (2}, 2]) and 0, = (w}, u}) then for each o € dom(c}), p € dom(n))

i <%

(7)o = (Wj)s = (2))a = (1)

We have k] € K(n), ¢ € K(p) C K(n), 941 € Es(n,k}), 9ix1 € Es(p,g;) C
Eq(n,gl), of € E(k}), n; € E(g;), so we can apply the inductive hypothesis and obtain
that #(gl, Yit1,m,) = #(kl,Yit1,0}). Therefore s;11 € #(k},Vit1,0,) and we have

proved o € E(kj ).

7
/
K

In this proof that o;,, € E(kj,;) we have used an inductive hypothesis which we
still haven’t proved, so we need to prove it now. What we need to prove is the following:

o if we set k;+1 =<< 2,0y > o<l e, >> and gl+1 =<< y1a¢1 e <
Ygr» Yoy >> then for each a € dom( kiz1)s B € dom(giy1) T = Y — @0 = V5.

e if we set O‘Z+1 = (o, z) 77z+1 = (y/,7’) then for each o € dom(oj,,), B €
dom(n) ) =, = yﬁ =zl = 7"6
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To prove the first item we consider that & 1= k4 < wiy1,Yip1 >,
Giy1 = i+ < uip1,%41 >, uip1 € V —wvar(k)), uip1 € V —var(g;), ¥iy1 € E(n). So
we can apply lemma 8.12 and the first condition is proved.

To prove the second item we consider that o, | = o} + (uit1, 5i41),
Mg = 105 + (Uit1,8i41), uit1 € V —wvar(o]), uiy1 € V — var(n;). So we can apply
lemma 3.4 and the second condition is proved.

At this point we have defined oy, such that o C o}, and proved that o, € Z(k,). We
have also that &, € K(n), 8 € E(n,k,), g, € K(n), 0 € E(n,g,), 1, € =(g,). Moreover

o if we set k, =<< 1,97 > - < 27,0, >> and g =<< yl,% > 0 <
Yg» Yy >> then for each a € dom(ky,), B € dom(g,,) z, = Y — o = V.

o if we set 0, = (2/,2), m, = (¥/,7') then for each o € dom(c},), B € dom(n;,)
m’a:y’ﬁ—>z;:r'ﬁ.

With this, #(ky, 0,0,) = #(gy,0,7,) follows by inductive hypothesis.

Finally, let’s consider the third case, which, we recall, is the following.

e n+ 1> 2 and there exist p positive integer such that 2 < pu <n+1, kK € K(u)
such that k C k, t € Eq(p, k) U Ee(pt, k) U Upeer B (,)UUfE}- f(u, x) and
for each 0 € Z(k) 0)dom(x) € E(k) and #(k,t,0) = #(k, 1, 0 /gom(x)) and

e n+ 1 > 2 and there exist v positive integer such that 2 < v <n+1, g € K(v)
such that g C h, t € Ey(v,9) U Ee(v, 9) UUeer E€(v, 9) UUfefEf(y,g) and for

each p € '—'(h) P/dom(g) € E( ) and #(h,t,p) #(g7t7p/dom(g))'

We have t € E(u, k) N E(v,g), with u,v <n+ 1.

We have also 0 = (x,2) € E(k), p = (y,r) € Z(h) such that for each i € dom(o),
J € dom(p) x; = y; — z; = r; and we want to show that #(k,t,0) = #(h,t, p). So we
just need to show that #(k,t, 0 /dgom(x)) = #(9 s P/dom(q))-

We can have k = € or ¢ = €. Otherwise k,g # €, k,h # €, k =<< 21,01 > -+ <
T, Pm >>, h =<< y1,9¥1 > -+ < yg,%q >> and for each i € dom(k), j € dom(h)
x; = Y; — @; = ;. By lemma 8.13 there exist p, v positive integers such that p < m,
V< g R =<K 2,01 > < Xy, pp S>>, 9 =<< YL, P > o < Yy, Py >> and for
each i € dom(k), j € dom(g) z; = y; — @i = V;.

If we deﬁneuzmam{u,y} then K9 € K( ), t € E(u Ii)ﬂ E(u,g) andu<n+1
Moreover let 0’ = 0 4om(x), ' = (2',2"), ' = pdgom(g)> P = (¥, 7"). Since ¢’ C o and
p' C p by lemma 3.5 we obtain that for each i € dom(o ) | € dom(p') T =y = 2 =

/
.

J
By the inductive hypothesis we then obtain #(k,t,0’) = #(g,t,p’), and so we have
proved #(k, t,0) = #(h, 1, p). O

Lemma 8.15. Given

e q positive integer n;
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o ke K(n);
o f € F such that f has multplicity 2;
® p1,p2 € E(n7k)7

such that for each o € Z(k) Ap(#(k,¢1,0), #(k, p2,0)) is true,
we have that t = f(p1,p2) € E(n+ 1,k).

Given o € E(k) we have also

#(k" t U) = Pf(#(k’ ¥1, U)a #(kv ¥2, U)) :

Proof. If t € E(n,k) U Ey(n + 1,k) then t € E(n + 1,k), else t € Ef(n+ 1,k) C
E(n+1,k).

Using lemma 8.10 we have that one of the following alternatives holds:

e t€E,(n+1Lk)UEe(n+1,k)UU.ce E(n+1,k) U, er E9(n + 1,k);

e there exist m positive integer such that 2 < m < n+ 1, h € K(m) such that
h Tk, t € Eq(m,h)UEc(m,h)U.cc E(m,h)UU,cr E(m,h) and for each
o€ E(k) 0 Jdom(h) € E(h) and #(kyta U) = #(hatag/dom(h))'

If the first alternative holds, that is t € Eq(n + 1,k) U Ee(n + 1,k) U e E(n +

Lk) U UjerE(n + 1,k), then clearly t € Ef(n + 1,k). This implies that
#(k,t,0) = #(k,t,0) (n41,k,< f>), SO in this case our proof is finished.

Otherwise it must be ¢ € Ef(m, h). This implies that there exist 1,19 € E(m—1,h)
such that t = f(¢1,12), for each p € Z(h)

i Af(#(ha ¢17P)a #(hv ¢27P)) is true;
L4 #(h,t,p) = Pf(#(hﬂ/}la p)7 #(hﬂ/}% P))

We now consider what we have seen in lemma 6.1.18. We have ¢t = f(¢) with
Y € ¥*. Since t € H¢(n+ 1, k) the set of the positive integers r such that 2 < r < £(t),
tlr] = ¢, and d(t,r) = 1 has just one member r;. We can define x1 = ¢[3,71 — 1] (if
r1 — 1 < 3 then x; = € where € is the empty string over the alphabet ). We also
define xo = t[r1 + 1,4(t) — 1] (if £(t) — 1 < r1 + 1 then x2 = €). The lemma tells us
that x1, x2 € F(n, k), and we can notice that ¢t = f(x1, x2).

Using lemma 6.1.21 we obtain that @1 = x1 and @3 = xa2.

We can apply again lemma 6.1.18 using the fact that ¢ € H¢(m, h), to obtain that
X1,x2 € E(m —1,h) and t = f(x1, x2) still holds. Using lemma 6.1.21 we obtain that
1 = x1 = @1 and Yy = x2 = @a. Therefore p1,p2 € E(m —1,h) C E(n,h) and for
each p € E(h) #(h,t, p) = Pr(#(h, 1, p), #(h, p2,p))-

So given o € Z(k) if we define p = 0 /gom(n) € Z(h) then
#(k,t,0) = #(h,t, p) = Pr(#(h, o1, p), #(h, 02, p)) -
So we want to prove that
Py(#(h, o1, p), #(h, 02, p)) = Pr(#(k, ¢1,0), #(k, p2,0)) ,
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and to prove this it is enough to prove that for each o € {1,2}

#(h, i, p) = #(k, @i, 0) .

It is not difficult to prove this. In fact, by lemma 8.8, if k =<< x1,60; > -+ <
Ty, 0y >>, h =<< y1,01 > -+ < yq,0q >>€ K(n) — {€} since h C k then for each
i € dom(k), j € dom(h) z; = y; = 6; = V;. If 0 = (x,2), p = (y,r) then using
lemma 8.9 we obtain that for each i € dom(o), j € dom(p) z; = y; — 2z; = rj. With
this we can apply lemma 8.14 and obtain that #(h, ¢a, p) = #(k, pa,0). O

Lemma 8.16. Given

a positive integer n;

ke K(n);

f € F such that f has multplicity 1;
Y1 € E(n, k),‘

such that for each o € Z(k) Ap(#(k,p1,0)) is true,
we have that t = f(p1) € E(n+ 1,k).

Given o € Z(k) we have also

#(katv U) = Pf(#(kv P1, U)) .

Proof. If t € E(n,k) U Ey(n + 1,k) then t € E(n+ 1,k), else t € Ef(n+ 1,k) C
E(n+1,k).
Using lemma 8.10 we have that one of the following alternatives holds:

e t€Ey(n+1k)UE(n+1,k)UUece E(n+1,k) UUyer E9(n + 1,k);

e there exist m positive integer such that 2 < m < n+ 1, h € K(m) such that
h Tk, t€ Eq(m,h)UEc(m,h)U.cc ES(m,h)UU,crE(m,h) and for each
o c E(k) 0 /dom(h) € E(h) and #(k,t, U) = #(h,t,a'/dom(h)).

If the first alternative holds, that is t € Eq(n + 1,k) U Ee(n + 1,k) UJ,co E(n +
Lk) U UjerE?(n + 1,k), then clearly t € Ef(n + 1,k). This implies that
#(k,t,0) = #(k,t,0) (ng1,k,<f>), S0 in this case our proof is finished.

Otherwise it must be t € Ef(m, h). This implies that there exist ¢, € E(m — 1,h)
such that t = f(¢1), for each p € Z(h)

o Ap(#(h,v1,p)) is true;
o #(h,t,p) = #(h.t, p)mn<y>) = Pr(#(h, ¢1, p)).

Clearly = ¥1 SO for each pE E’(h) #(hatap) = Pf(#(hv §01>p))

Moreover given o € Z(k) if we define p = 0 4om(n) € Z(h) then

#(kata U) = #(hata P) = Pf(#(h7 ©1, P)) .
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So we want to prove that
Pf(#(h7 ®1, p)) = Pf(#(kv P1, U)) )
and to prove this it is enough to prove that

#(h7 Splvp) = #(kaSObC’) :

It is not difficult to prove this. In fact, by lemma 8.8, if &k =<< 21,61 > -+ <
Ty, Oy >>, h =<y, > -+ < yq,0q >>€ K(n) — {€} since h C k then for each
i € dom(k), j € dom(h) x; = y; = 6; = ¥;. If 0 = (x,2), p = (y,r) then using
lemma 8.9 we obtain that for each i € dom(o), j € dom(p) x; = y; — 2z = rj. With
this we can apply lemma 8.14 and obtain that #(h, ¢1, p) = #(k, ¢1,0). O

Lemma 8.17. Given

e q positive integer n;

o ke K(n);

¢ € C such that there exist i = 1...p and a positive integer m such that #(c) is
a function whose domain is (D;)™ and whose range is D;;

® V1,....,pm € E(n,k);

such that for each j =1...m, o € Z(k) #(k, p;,0) € D;,
we have that t = (¢)(¢1,-.-,0m) € E(n+ 1,k).

Given o € E(k) we have also

#(kt,0) = #()(#(k, 01,0), ..., #(k, om, 7)) -

Proof. If t € E(n,k) U Ey(n + 1,k) then t € E(n+ 1,k), else t € E°(n + 1,k) C
E(n+1,k).

Using lemma 8.10 we have that one of the following alternatives holds:

o t€Ey(n+1,k)UE(n+1,k)UUsee B n+1,k) UU,cr B/(n +1,k);

e there exist v positive integer such that 2 < v < n+1, h € K(p) such that h C k,
t € Eo(v,h) U Ee(v,h) UUgee: B4 (v, h) U U er E9(v, h) and for each o € Z(k)
T /dom(h) € E(h) and #(k,t,0) = #(hatag/dom(h))'

If the first alternative holds, that is t € Eq(n+ 1,k) U Ec(n+ 1,k) U Uyee E%(n +
1,k) U Ugef E9(n 4+ 1,k), then clearly t € E°(n + 1,k). This implies that
#(k,t,0) = #(k,t,0) (ng1,k,<c>), S0 in this case our proof is finished.

Otherwise it must be t € E¢(v, h). This implies that there exist ¢1,...,¢, € E(v—
1, h) such that t = (¢)(¢1,...,¥m), for each p € Z(h)

e for each j =1...m #(h,v¢;,p) € D;;
b #(h7t7p) = #<C)<#(h7wlap)v .. 7#(h7¢m7:0))

We have t = (¢)(x) with x € X*. Consider the set of the positive integers r such
that 4 < r < £(t), t[r] = ¢, and d(t,r) = 1. If this set is empty we can call x; = x
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and using lemma 6.1.12, given that t € H.(n + 1,k) and t € H.(v, h) we obtain that
X1 € E(n,k) and x; € E(v — 1,h).

If the mentioned set is not empty let’s name r,...,7, its members (in increasing
order).

Let’s also define x1 = t[5,71 — 1] (if r; —1 < 5 then x; = € where € is the empty string
over the alphabet X).

If w > 1 then for each @ = 1...u — 1 we define x;41 = t[r; + 1,rip1 — 1] (if
rit1 — 1 <r; + 1 then x;11 = €).

Finally we define 41 = t[ry + 1,£(t) — 1] (if £(t) — 1 < 7y + 1 then xu4+1 = €).
Using lemma 6.1.13 we obtain ¢ = (¢)(¢1,...,%u+1) and for each i = 1...u + 1
Xi € E(”) k)) Xi € E(V - 17h)

Using lemma 6.1.16 we obtain that in the first case m = 1 and x1 = ¢1, x1 = 91,
in the second case m = u + 1 and for each j = 1...u+1 x; = ¢;, xj = ;. In both
cases for each j = 1...m ¢; = 1;.

Moreover given o € Z(k) if we define p = 0/4om(n) € Z(h) then

#(k,t,0) = #(h, t, p) = #()F#(h, Y1, p), -, # (R Y, p)) -

In order to prove that #(k,t,0) = #(c)(#(k,¢1,0),...,#(k, om,0)) we just need
to prove that for each j =1...m #(k,p;,0) = #(h,¢;,p).

It is not difficult to prove this. In fact, by lemma 8.8, if k =<< 21,01 > -+ <
Ty, 0y >>, h =<< y1,01 > -+ < yq,0q >>€ K(n) — {e} since h C k then for each
i € dom(k), « € dom(h) z; = yo — 0; = Vo. If 0 = (x,2), p = (y,r) then using
lemma 8.9 we obtain that for each i € dom(o), a € dom(p) i = Yo — 2 = Ta-
Moreover ¢; = ¢; € E(v —1,h) C E(n,h). With this we can apply lemma 8.14 and
obtain that #(h,;, p) = #(h, ¢j, p) = #(k, ¢j,0). O

Lemma 8.18. Assume Il € C. Gien

® a positive integer n;
o ke K(n);
e 1 € E(n,k);

such that for each o € 2(k) #(k, ¢1,0) € P(D1),
we have that t = (I1)(¢1) € E(n+ 1, k).

Given o € E(k) we have also
#(kvtu U) = #(H)(#(k7@170—)) .

Proof. If t € E(n,k) U Ey(n + 1,k) then t € E(n + 1,k), else t € EM(n + 1,k) C
E(n+1,k).

Using lemma 8.10 we have that one of the following alternatives holds:

e t€Ey(n+1,k)UE(n+1,k) UUzee E4n+1,k)U Uyer E9(n+ 1, k);
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e there exist v positive integer such that 2 < v < n+1, h € K(p) such that h C k,
t € Eq(v,h) U Ee(v,h) UUyee B4 (v, h) U Uger E?(v, h) and for each o € E(k)
T 1gom(n) € E(h) and #(k,t,0) = #(h,t, 0 dom(n))-

If the first alternative holds, that is t € Eq(n+1,k) U Ee(n 4+ 1,k) U Ugee B4 (n +
Lk) U Uyer B9(n + 1,k), then clearly t € EY(n + 1,k). This implies that
#(k,t,0) = #(k,t,0) (n41,k,<11>), 50 in this case our proof is finished.

Otherwise it must be t € E'(v, h). This implies that there exists ¢y € E(v — 1, h)
such that t = (IT)(v1)

e there exist i = 1...p, ¢ = 1...@max such that for each p € Z(h) #(h,91,p) €
PUD;);
e for each p e E(h) #(h7t7p) = #(H)(#(hﬂwl?p))

Moreover given o € Z(k) if we define p = 7 4om(n) € Z(h) then
#(k’ t, 0) = #(ha t, ,0) = #(H)(#(ha ¢17 p)) :

In order to prove that #(k,t,0) = #(II)(#(k,p1,0)) we just need to prove that
#(ka $1, U) = #(h) 1/}17 p)

It is not difficult to prove this. In fact, by lemma 8.8, if k£ =<< 21,01 > -+ <
Ty, 0y >>, h =<< y1,01 > -+ < yq,0q >>€ K(n) — {e} since h C k then for each
i € dom(k), « € dom(h) z; = yo = 0; = Vo. If 0 = (x,2), p = (y,r) then using
lemma 8.9 we obtain that for each i € dom(o), o € dom(p) i = Yo — 2 = Ta-
Moreover ¢1 = 91 € E(v — 1,h) C E(n,h). With this we can apply lemma 8.14 and

obtain that #(h, 1, p) = #(h, 1, p) = #(k, p1,0). [

Lemma 8.19. Given

® a positive integer n;

e k,h € K(n) such that h = € or k = € or (h,k # € and k =<< uy,nm >
o < Uy My >>, h =<< v, 0 > - < g, ¥g >> and for each i € dom(k),
j € dom(h) vy =v; = n; =19;)

e p=(v,v) € Z(h), 0 =(u,un) € E(k) such that
for each i € dom(o), j € dom(p) w; = vj = p; = vj;

® a positive integer m;

e a function x whose domain is {1,...,m} such that for each i = 1...m z; €
V —wvar(k), z; € V —var(h), and for each i,j =1...m i # j — x; # x;;

e a function ¢ whose domain is {1,...,m} such that for each i = 1...m @; €
E(n);

e ¢ € E(n);

such that

i g(nu k) m,x, e, d));
i g(nu h) m,z,p, d)):
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and given t = {}(x1 : @1, ., Tm : Om, P), we have that

for each o), € E(k],,) such that o C o), there exists pl,, € E(h,) such that p C pl,
and #(h;n7 ®, p;n) = #(k;na ®, U;n):

where of course

ok} = k+ < w1 >, and if m > 1 for each i = 1...m —1 ki, = ki+ <
Tit1, Pitl >,

o = h+ < x1,01 >, and if m > 1 for each i = 1...m —1 hj | = hi+ <
ZTit1, Pit1 >-

Proof. Let o, € Z(k],) such that o C o}, we want to find p}, € Z(h},) such that

m?
pC p;n and #(h;nv ®, p;n) = #(k;nv b, 01,71)
If m = 1 then o} is defined, else let o] = (07,,) /dom(i;)- We should be able to prove
that:

. Ui S E(k‘ll)
e there exists s1 € #(k, ¢1,0) such that o] = o + (21, $1).

If m = 1 then o] € Z(k]) clearly holds, else we have kI, # €, o}, € Z(k],,), k| €
R(ky,), ky # ki, so by lemma 8.4 0y = (07,,) jdom(k;) € Z(K1)-

We have k] = k+ < z1,¢1 > and k] € K(n), clearly k] # € and n > 2 also hold.
Moreover k € K(n), 1 € Es(n, k), 1 € V —var(k), so by lemma 8.2

E(ky) = {& + (z1,9)| € € E(k), s € #(k, 1, 6)}-

Then there exist £ € E(k), s € #(k, ¢1,&) such that o] = & + (1, s). Here we can
see that

(1) sdom(ky = (01) fdom(e) = &

and at the same time, since dom(k) C dom(k}) C dom(k},) = dom(o),),

(1) sdom(ky = ((O1m) jdom(k1)) dom(k) = (Tm) jdom(ky = (O1m) jdom(o) = O
Therefore £ = o and there exists s € #(k, p1,0) such that o] = o + (21, s).

Ifm>1leti=1...m—1,ifi+1=m then oj,, = oy, is defined, else we can

define U;«H = (U%)/dom(k;+l)' Ifti+1=m 0-£+1 = O-;n = (O-;n)/dom(kjn) = (J%L)/dom(k;“)
is equally true. We can observe that with the definitions we have provided for each

i=1...m O'g = (O-':n)/dom(k:;)'
We should also be able to prove that

e 0iy € E(kiy),
e there exists s;11 € #(kj, pit1,0;) such that o | = 0} + (Tit1, 5i41)-

If i + 1 = m then o], € Z(kj,,) clearly holds, else i + 1 < m and k, # €, o, €
E(k;n)v kz/'—l—l € R(k;n)v kz/'-l—l # k;na so by lemma 8.4 Uz/'+1 = (U;n)/dom(kgﬂ) € E(kéﬂ)-

We have k| = ki+ < zi41, 0541 > and ki, € K(n), clearly kj | # € and n > 2
also hold. Moreover k; € K(n), ¢iy1 € Es(n,kl), var(k}) = var(k) U {x1,... 2},
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ziy1 € V —var(k}), so by lemma 8.2
E( £+1) = {5 + (xi+175)|§ € E(k;)v s € #(k;’sol—i-hg)}

Then there exist £ € Z(k}),s € #(kj, pir1,£) such that of | = £ + (2441, s). Here
we can see that

(0i41) dom(k) = (Ti1) Jdom(e) = &-
At the same time, if i + 1 = m then
(U£+1)/dom(k§) = (O';n)/dom(k;) = 02-
Else since dom(k;) C dom(kj ) C dom(k;,) = dom(a7,),
(0711) sdom(ky) = ((O) fdom(ks, ) fdom(ky) = (Tpn) jdom (k) = -

Therefore £ = o and there exists s € #(k;, @iy 1, 0;) such that o] | = o] + (2i41, 5).

Then we define pj = p + (21, s1), and we should be able to prove that pj € Z(h}).

We have E(n, h,m, x, , $). This implies 1 € E4(n,h). We have b = h+ < x1,¢1 >
and b} € K(n), b} # €, n > 2, moreover h € K(n), x1 € V — var(h) and therefore

E(h)) ={&+ (z1,5)|£ € E(h), s € #(h, ¢1,€)}-

Since p € Z(h), to prove that pj € E(h}) we just need to prove that s; € #(h, ¢1, p).
We know that s; € #(k,1,0). We have ¢1 € E(n, k), ¢1 € E(n,h). We have also
that for each i € dom(k), j € dom(h) u; = v; — n; = ¥; and for each i € dom(o),
J € dom(p) u; = v; — p; = vj. With this we can apply lemma 8.14 and obtain that
#(k, 01,0) = #(h, 1, p), therefore s1 € #(h, 1, p) and py € E(hy).

We also notice that kf = k+ < z1,1 >, b} = h+ < 21,01 >, so if we set
Ky =<<ui,m > 0 < ug,myy >>, b =<< v, 97 > -0 < g, ¥y, >> then by
lemma 8.12 for each o € dom(ky), 8 € dom(hy) ug, = vy — g, = V.

Moreover we notice that o) = o + (z1,s1), p} = p + (z1,51), and if we set
op = (W, 1), py = (v,V) then by lemma 3.4 for each o € dom(c}), B € dom(p})
Uy = Vg = fo = V.

If m > 1 then for each i = 1...m — 1 we can define pj | = Pk + (zi41, si41) and we
expect to be able to prove that p} ; € Z(hj, ).

We have E(n,h,m,z,p,¢) and h] | = hi+ < ziy1,pi41 >. This implies A}, ; €
K(n), hi, # € and n > 2 holds too. Moreover h; € K(n), p;iy1 € Es(n, h}), and, since
var(h) = var(h) U{z1,...,2;}, zi41 € V — var(h}). Therefore

E(hiy1) = {€+ (wir1,8)| € € E(hy), s € #(his pir1,€)}

By inductive hypothesis we can assume that p, € Z(h}), therefore to prove
Pir1 € Z(hjL;) we just need to prove s;i1 € #(hi,pir1,p;). We know that
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Siv1 € #(k, pit1,07).

As an inductive hypothesis we can also assume that

o if we set kj =<< ul,n) > <ul,,n, >>, b, =<< vy, 01 > -0 < v, Uy >>
then for each v € dom(k’) 6 € dom(h}) ug = vy — g, = V.

o if we set o} = (v, 1), p; = (v',V') then for each a € dom(c}), 5 € dom(p})

1, o/
Uy = Vg = Hg = Vg

We have ki € K(n), h, € K(n), gis1 € Es(nkl), pix1 € Es(n,hl),
o, € E(k{), p; € ZE(h}), so we can apply lemma 8.14 and obtain that

#(ki, piy1,07) = #(hi,0iv1,p;). Therefore s;p1 € #(h}, @it1,p;) and we have
proved pi 1 € E(hi ).

In this proof that p},, € Z(hj, ;) we have used an inductive hypothesis which we
haven’t proved, so we need to prove it now. What we need to prove is the following:

o if we set ki, =<< ul,m] > - < u, 7]1’1}, >>, hi, =<< vl,ﬁ’ - <
Vg, Uy >> then for each a € dom( ,+1)a € dom(hi ) up = vy — 1, = 19’

o if we set o, = (v, 1), pi,y (v/,v') then for each a € dom(o Z+1),
B € dom(pyy) uy = vy — pig = V.

To prove the first item we consider that kj ; = ki+ < 211, pit1 >,
i1 = hit < mip1, 0001 >, zip1 € V —var(k;), zit1 € V —var(hj). So we can apply

lemma 8.12 and the first condition is proved.

To prove the second item we consider that o, | = o} + (zit1,5i41),
Piy1 = P+ (Tit1,8i11), Tiv1 € V —var(o}), xip1 € V — var(p;). So we can apply
lemma 3.4 and the second condition is proved.

At this point we have defined p}, such that p C p!, and proved that pm =(hl,).
We have also that &, € K(n), ¢ € E(n,k,), hl,, € K(n), ¢ € E(n,h.,), o, € Z(k,).

Moreover

o if we set kj, =<< uj,n] > - < ul,n, >>, h, =<< v,0] > - <
Vg, Vg >> then for each o € dom(ky,), B € dom(hy,) ug = v — 1, = V.

o if we set o], = (v, 1), pl, = (v',V') then for each o € dom(al,), B € dom(p),)
Uy =V = lg = V.

With this, #(h,, ¢, pl,,) = #(kl,, ¢,00,) follows by lemma 8.14.

O
Lemma 8.20. Given
® q positive integer n;
o ke K(n);
® q positive integer m;
e a function x whose domain is {1,...,m} such that for each i = 1...m x; €

V —war(k), and for each i,j =1...m i # j — x; # x;;
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e a function ¢ whose domain is {1,...,m} such that for each i = 1...m @; €
E(n);
e ¢ € E(n);

such that E(n, k,m,x, ¢, @),
we have that t = {}(z1: ¢1,..., Tm : Pm,®) € E(n+ 1,k).
Given o € Z(k) we have also
1k, 1,0) = {$(k), 6,0%)| Ty € (), 0 C 0T},

where ky = k+ < x1,01 >, and if m > 1 for each i = 1...m —1 kj | = ki+ <
Titls Pitl >-

Proof. If t € E(n,k) U Ey(n + 1,k) then t € E(n+ 1,k), else t € E.(n+ 1,k) C
E(n+1,k).

Using lemma 8.10 we have that one of the following alternatives holds:

o t€Ey(n+1,k)UE(n+1,k)UU.c ES(n+1,k) UUscr B (n +1,k);
e n+ 1> 2 and there exist p positive integer such that 2 < p <n+1, h € K(p)
such that h C k, t € Eq(p, h) U Ee(p, h) UlU e E(p, 1) UU e r Ef(p,h) and for

each 0 € Z(k) 0/dom(n) € Z(h) and #(k,t,0) = #(h,t, 0 1gom(n))-

If the first alternative holds, that is t € Eq(n + 1,k) U Ee(n + 1,k) UJ co E(n +
Lk) U User Ef(n 4+ 1,k), then clearly t € E.(n + 1,k). This implies that
#(k,t,0) = #(k,t,0) (n41,k,e), S0 in this case our proof is finished.

Otherwise it must be t € E.(p,h) and h € K(p — 1). This implies that there exist:

e a positive integer ¢;

e a function y whose domain is {1,...,q} such that for each i = 1...q y; €
V —wvar(h), and for each i,5 =1...q i # j — yi # y;;

e a function 7 whose domain is {1, ..., ¢} such that foreachi =1...¢n; € E(p—1);

e e E(p—1);

such that

L d g(p - 17 h7Q7y>7779);

o (Jyr:m,...,yg:ng.0) ¢ E(p—1,h).
o t={}y1:m,...,Yq: 1 0).

Clearly given p € Z(h) we have

#(h,t,p) = {#(hy, 0, p5)| Py € E(hg), 0 E p},

where h} = h+ < wy1,m1 >, and if ¢ > 1 for each i = 1...¢q — 1
Ry = hit < yig1,miv1 >
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Consider the set of the positive integers r such that 2 < r < £(¢), t[r] = ¢, and
d(t,r) = 1. Since t € H.(n + 1, k) then this set is not empty, let’s name rq,...,r, its
members (in increasing order).

Let’s also define 11 = ¢[3,r; — 1] (if r1 — 1 < 3 then ¢; = € where € is the empty
string over the alphabet ).
If w > 1 then for each @ = 1...u — 1 we define ¢;11 = t[r; + 1,riy1 — 1] (if
rit1 — 1 <r;+ 1 then 941 =e.
Finally we define ¢y 41 = t[ry, + 1,0(t) — 1] (if £(t) — 1 < ry + 1 then ¥, 11 = €).

Using lemma 6.1.25, since t € He(n + 1, k) then

o foreachi=1...u l(1);) = 3, ¥;[2] = "5 L(Yuy1) = 15
e let’s define a function z over the domain {1,...,u} by setting z(i) = ¢;[1]; let’s
define a function y over the domain {1,...,u} by setting x(i) = ¥;[3, £(;)]; let’s
define ¥ = 1,11 then
o foreachi=1...uz €V —wvar(k), and foreach i, =1...ui#j— z #
25,
o foreachi=1...u x; € E(n),
o ¥ € E(n);
o E(n,k,u,z,x,0).

Using lemma 6.1.27 we obtain that u =m, z =z, x = ¢, ¥ = ¢.

We can use lemma 6.1.25 another time, in fact since t € FE.(p,h) we have the
following

e foreachi=1...u 2z €V —wvar(h), and for each i,j =1...u i # j — 2z # 2,
o foreachi=1...uyx; € E(p—1),

e Je E(p—1);

e E(p—1,h,u,z,x,9).

And again using lemma 6.1.27 we obtain that u =¢q, z =y, x =7, ¢ = 0.
It follows that ¢ = m, y =z, n = ¢, § = ¢ and so given p € Z(h) we have

#(h,t, p) = {F# (s &, 0P| P € E(hiy), p E pin )

where b} = h+ < z1,1 >, and if m > 1 for each ¢ = 1...m — 1
Ry = hit < Tip1, piy1 >

Now given ¢ € E(k) we want to prove that
#(k,t,0) = {# (K}, &, 00,)| 07 € Ekyy), 0 E 0y}

If we define p = 0/4om(n) € Z(h) then

#(k,t,0) = #(h, t, p) = {#(hpn, &, o] P € E(han), p T pa}-
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So in the end what we need to prove is that
{# (ki 6, 000) ] 07 € ERn), 0 C 03} = {# My &, )| o1 € E(Pin), p E Pl }-

To prove this we just need to prove the following two assertions:

e for each o/, € Z(k,) such that ¢ C o], there exists p,, € Z(h,) such that
DTl and #(Hy, 6. ph) = (Rl 6,005

e for each p/, € Z(h!,) such that p C pl  there exists o/, € Z(k/,) such that
o E O-;n a‘nd #(k;rwd)v m) - #( 7¢7pm)

Here we want to apply lemma 8.19. This is possible since

e hk € K(n), since h C k we have h = € or (h,k # € and k =<< uy,m >
C < U, My >>, b =<< vy, > - < vy, ¥ >> and for each i € dom(k),

j € dom(h) u; = vj = n; =195)

p € E(h), o € E(k), since pC o if p = (v,v), 0 = (u, ) then by lemma 8.9

for each i € dom(o), j € dom(p) wi = vj = p; = vj;

e 1 is a function whose domain is {1,...,m} such that for eachi =1...m z; €
V —wvar(k), x; € V —wvar(h) and for each 4, j =1...m i # j = x; # xj;

e ¢ is a function whose domain is {1,...,m} such that for each i = 1...m ¢; €
E(n);

e o€ E(n);

o E(n,k,m,x,p,¢);

o E(n,h,m,x, 0, d);

o t={}(x1: 01, T Om,y D).

Clearly E(n, h,m,x, @, ) holds because of E(p — 1, h, m, x, p, $). Indeed
E(p—1,h,m,z,p, ) implies

® ¢1 € Es(p—1,h) C Es(n, h) ;

e if m > 1 then for each i = 1...m—-1h, € K(p—1) C K(n) AN @i €
Es(p - 17h;) - ES(n’ h;);

e hl, e K(p—1)CK(n)AN¢p € E(p—1,hl,) C E(n,hl,).

Both of our statements hold because, while we can use lemma 8.19 to prove the first
one, it is also clear that in the same lemma we could use the exact same reasoning to
be able to prove the second result.

O

Lemma 8.21. Let he€ K, ¢ € Es(h), y € (V —wvar(h)), k=h+ <y,¢ >. We have
ke K, and ifﬁ € S(k) then

e {Jy:0,0) € E(h)

e V({}(y <z5719 ) € S(h), 3({} y:¢,9)) € S(h);

o VpeE(h) #(h, ({}( ), p) = Pe({#(k, 0,0)| o € E(k), pC o});
o VpeE(h) #(hI{}y: ¢, 0),p) = Ps({#(k, V,0)| 0 € E(k), pC a}).

Proof. Since ¢ € Eq(h) there is a positive integer n such that h € K(n), ¢ € Es(n,h).
This implies that £k € K(n)T UK(n) = K(n+1) C K.
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Let 9 € S(k). There is a positive integer m such that k € K(m) and ¥ € E(m, k).
We define p = max{n + 1, m}, then we have

h € K(p)

y € (V —wvar(h))

¢ € Es(p,h)

ke K(p), v € E(p,k).

Here we can apply lemma 8.20, in fact in the statement of the lemma we can replace
n with p, k& with h, m with 1,  with (1,y), ¢ with (1,¢), ¢ with 9. Every required
condition is satisfied, including the condition £(p, h, 1, (1,y), (1, ), ).

So by lemma 8.20 we have that {}(y : ¢,9) € E(p+ 1,h) and for each p € Z(h)
#(h, {3y : ¢,9),p) = {#(k,0,0)| 0 € E(k), pCo}.

We want to show that V({}(y : ¢,9)) € E(p + 2,h). To obtain this we can use
lemma 8.16, so we just need to show that for each p € Z(h) Ay(#(h,{}(y : ¢,9),p))
holds.

Now Ay(#(h, {}(y : ¢,9), p)) is equal to

#(h,{}(y : ¢,9),p) is a set and for each u € #(h,{}(y : ¢,¥),p) u is true or wu is
false.

Clearly #(h,{}(y : ¢,9),p) is a set, furthermore for each u € #(h,{}(y : ¢,9),p)
there is o € E(k) such that p C o and u = #(k, 9, 0). Since ¥ € S(k) u is true or u is
(h

false. So Ay(#(h,{}(y : ¢,9),p)) holds and Y({}(y : ¢,9)) € E(p + 2, h).

Moreover for each p € Z(h)

#(h,V({}(y : ¢,9)), )— G(# (0 {3y 2 0,9),p)) =
By({#(k,0,0)| 0 € E(k), pE 0}) .

and Py({#(k, 0 U)| o € Z(k), pCo}) is clearly true or false.
Hence V({}(y : ¢,9)) € S(h).

Similarly we can show that I3({}(y : ¢,9)) € E(p + 2,h). In fact to show this we
just need to prove that for each p € =(h) A3(#(h, {}(y : ¢,7),p)) holds, and this is
proved since

AEI(#(hv {}(y L o, 79)7/))) = AV(#(hv {}(y Lo, ﬁ),p)) :

Moreover for each p € Z(h)

#(hﬂ({}(y:qbﬁ)),ﬂ)— 5(#(h, {3y 2 9,0),0) =
Py({#(k, 0 U)I o €E(k), pCoa}) .

and Ps({#(k,9,0)| 0 € 2(k), p C o}) is clearly true or false.
Hence 3({}(y : ¢,9)) € S(h).
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Lemma 8.22. Let m be a positive integer. Let x1,...,xm € V, with x; # x; fori # j.
Let v1,...,0m € E and assume H[x1 : ©1,...,Zm : ©m]. Let ko = € and for each
i=1...mk =klxy: p1,...,2 : @;|. Let o € S(ky,). Then for each i = 1...m
Y[Ei s piyeo Tt Om, @] € S(kiz1).

Proof. By definition we have [z, : om, ¢] = V{Hxm : ©m, ¢)).

Moreover kp—1 € K, kp = kpo1+ < ZTm,om >, om € FEs(km-1),
Tm € V — wvar(km—1). So we can apply lemma 8.21 and obtain that
Y[Tm : om, ] € S(km—1).

If m > 1 for each i = 2...m we have defined v[x; : ¥i,..., Tm : Pm, | and we can
assume it is a member of S(k;_1), by our definitions we have also

7[%‘-1 CPi—1ye -5 Tm SDm,SO] = V({}($i—1 : %—1,’7[@“1’ PPis e Tt SDm,SO])) .

We have also k;—o € K, ki1 = ki—o+ < xj—1,0i—1 >, @i—1 € Es(k‘i_g), Ti—1 €
V—wvar(ki—2). So we can apply again lemma 8.21 and obtain that y[z;—1 : @i—1,...,ZTpm :
@m)sp] € S(kl—Q) ]

Lemma 8.23. Let X be a set, let f, g be functions whose domain is X. Then let
B={f(z)| z€ X} and C = {g(z)| x € X}. Suppose for each x € X

o f(x) is true or f(x) is false,

e g(x) is true or g(x) is false,

o f(x) ¢ g(x).

Then the following hold

b AV(B);
b AV(C)f

o Ry(B) < Ry(C).

Proof. Clearly B is a set and for each b € B there exists x € X such that b = f(z),
so b is true or false. So Ay(B) holds and similarly Ay(C') holds.

Moreover, if Ry(B) holds this means that for each b € B b is true, so for each z € X
f(z) is true and for each z € X g(z) is true. Let ¢ € C, there exists z € X such
that ¢ = g(z), g(z) is true and so c is true. So Ry(C) holds. Conversely with the same
reasoning we can prove that if P/(C) holds then Py(B) also holds. O

Theorem 8.24. Let m be a positive integer. Let x1,...,xy, €V, with x; # x; for
i # j. Let v1,...,0m € E and assume H[xy : ©1,...,Tm : om]. Let ¢ € S(k[xy :
Olye ey T Om]). Then y[x1 1 @1, .., Tm : ©m, @] € S(€) and

#1015 T oy @)]) &
o Py({#(klz1: @1, Tm - oml], 0,0)] 0 € B(k[z1: 01,0, T 2 0m)])})

Proof. By lemma 8.22 vy[z1 : ¢1,...,Tm : ©m, @] € S(e).
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Let kg = € and for each i = 1...m k; = k[z1 : ¢1,...,2; : ;] as in remark 7.4.
What we need to show is:

#Or1 @1, T D oms]) & Pe({#(km, 0, 0)| 0 € E(km)}) -

Let’s consider that, by lemma 8.22, for each i =1...m y[x; : @i, ..., Tm : Om, @] €
S(ki—1).

In order to prove our result we try to show that for each i = m...1 and for each
p € E(ki-1)

#(ki—1, 7@t ise oo Tm T om, 0], p) > Pe({#(km, 0, 0)| 0 € E(km), pC o}) .

We prove this by induction on ¢, starting with the case where ¢ = m. Here we need
to show that for each p € Z(kp—1)

#(km—1,7[Tm : om. ¢l p) & Pe({#(km, ¢, 0)| 0 € E(kp), pCo}) .

Actually, by lemma 8.21,

#(k}m_1,’}/[$m FPm, QD],p) = #(/{m_l,V({}(iL‘m : SOm,SO)),,O) =
= Py({#(km, ,0)] & € S(kn), pC o)) |

Now suppose m > 1, let ¢ = 2...m and suppose the property holds for i, we show
it also holds for i — 1. We need to prove that for each p € E(k;_2)

#(kim2, V[Tic1 1 i1, Tt oo ), p) & Pa({#(km, ¢, 0)| 0 € E(km), pEo}) .
By our definitions we have

#(ki—oy[Tic1 : Qic1y - T P, ), p) =
— #(kif%v({}(l'ifl : %—177[% B2 P @m»SO])),P)

By lemma 8.21

#H(kia V{} @izt pim1,Y[®i - @iy oy T - Oy @), ) =
= Ry({# ki1, v[xi : @is - T 2 Om, ), 0)] 6 € E(ki—1), p T 6})

By the inductive hypothesis given 6 € (k;—1) we have

#(kifla’}/[xi PP0 ey It Spm>80]’5) A PV({#(km7SO7O-)| o€ E(km)7 oC O}) :

and so

#F (ki V({H(wic1 i1, 7[Ti 0+ T Om, 0))), p)
< Py({Py({#(km, p,0)| 0 € E(km), 6 Co})| 6 € E(ki—1), pEJ}) .
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So it comes to showing that

Py({Py({# (ks 0,0)| 0 € Z(kn), 6 C 0})| 6 € E(kic), pE6})
& Po({#(knm, .0)] & € E(kn), pT o)) -

Suppose Py({Py({#(km, ,0)| o € E(km), 6 Eo})| 6 € Eki-1), p E0}).
This means that for each § € =(k;_1) such that p C ¢ and foreach o € Z(ky,) : dC o
#(km, ¢, 0) holds.

Let 0 € Z(kp) : p E o, we need to prove #(ky,, @, 0).

We define § = 0/4om(k,_,)- By lemma 8.4 § € Z(k;—1). Moreover §,p € R(0) and
dom(p) = dom(k;—2) C dom(ki—1) = dom(d). By lemma 3.10 we obtain p C §. There-
fore #(km, ¢, o) holds.

Conversely suppose Py({#(km,¢,0)| ¢ € Z(km), p T o}), so that for each
o € ZE(km) : p C 0 #(km,p,0) is true. Let 6 € E(k;—1) be such that p C § and let
o € Z(ky,) be such that 6 T o. Since 0 € Z(ky,) and p T o we have #(kp, ¢, 0).

This completes the proof that for each p € E(k;_2)

#(ki2, (i1 2 @ity T omy ], p) & Py({#(km, @,0)] 0 € E(km), pEo}) .
We have also finished the proof that for each i =m...1 and for each p € =(k;_1)
#(kim1, V[T i Tm s omy ), p) < Py({#(km, ¢, 0) 0 € E(km), pEo}) .

It follows that for each p € Z(ko)
# ko, v[w1 s @1, wm s om, ¢l p) < Bo({#(km, ¢,0) 0 € E(km), pE0}) .

and clearly this can be rewritten

#(677[1:1 PPy Tm me’sp]’e) A Pv({#(k‘m,gﬁ,g)’ o€
#Orr @1 Tm s om, @) & By({#(km,p,0)| 0 € E(km)}) -

We now need to prove the following result, which is in some way similar to 8.21
but involves the other logical connectives. After that we will be able to discuss the
consistency and the completeness of our system.

Lemma 8.25. Let h € K, 1,92 € S(h). Then

o A(p1,92), V(p1, 92), = (¢1,92), < (<P17<P2) —(¢1) € S(h);

o for each p € E(h) #(h, N(@1,2),p) = Pr(#(h, 01, p), #(h, ©2,p)) ;
o for each p € E(h) #(h,V(p1,92),p) = Py (#( @1, p), #(h, 02, p)) ;
b fO?” eaCh’p €= ( ) #( (‘101,%02)7,0) ( ( ¢17P)7#(h7 9027p)) ;
hd fO?” eachp SRS ( ) #( (SOlaSO2)7P) ( ( ¢17P)7#(h‘7 9027P)) 5
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o for each p € E(h) #(h, = (1), p) = P-(#(h, 1,p)) -
Proof. For each p € Z(h) #(h, @1, p) is true or #(h, @1, p) is false; #(h, p2, p) is true
or #(h, pa, p) is false.

We recall that for each p € E(h) A#(h, 01, p), #(h, 02, p)),
Au(#(hy 01, ), # (b 02, 0))s Ao (F(hy 01, ). # (b 92,0)). Ao (F(h 01, ), # by 02 0))

are all defined as

(#(h, 1, p) s true or #(h, @1, p) is false) and (#(h, @2, p) is true or #(h, g, p) is
false).

Therefore A/\(#(h7 ¥1, P)7 #(hv ©2; P)), A\/(#(hv 41017[))7 #(hv 9027[)))7
AH(#(ha Qphp)? #(ha QOQap))a A(—)(#(hv ®1, P)7 #(h, Y2, p)) are all true.

And for each p € Z(h) A~ (#(h, ¢1,p)) is true.
Then by lemmas 8.15 and 8.16

Ap1,92), V(p1, 02), = (91, 92), <> (¢1,92), (1) € E(h) .

Moreover for each p € Z(h)

#(h, A(p1,92), p) = Pa(F(hs 1, p), #(h, 02, p));
#(h, V(p1,2), p) = Pu(#(h, o1, p), #(h, 92, p));

#(h, = (01,902), p) = P_(F#(h, 01, p), #(h, 2, p));

#(h, < (p1,92), p) = P (#(h, 01, p), #(h, 02, p));
#(h, = (1), p) = P~(#(h, ¢1,p)) -

SO

#(h, N(¢1,92), p) is true or false;
#(h,V(p1,92), p) is true or false;
#(h,— (@1, 92), p) is true or false;
#(h, < (p1,92), p) is true or false;
#(h,=(¢1), p) is true or false .

Therefore we get

Ap1,92), V(91, 02), = (p1,92), < (91, 92), 7 (p1) € S(h) .

8.1. Consistency

We have proved that a deductive system is sound, i.e. if we can derive a sentence @ in
our system then #(¢) holds. We now discuss the consistency of a deductive system.
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Our definition of consistency implies that the symbol = with the meaning we have
associated to it in section 3 is in the set F of our language. Actually in this section
we have assumed that all of these symbols: =, A,V, —, <>, V¥, 3 (with their meaning
defined in section 3) are in our set F, and we usually assume this since we expect in
our deductions we’ll frequently need these symbols.

A deductive system D = (A, R) is said to be consistent if and only if for each ¢
sentence in £ (Fp ¢) and (Fp —(¢)) aren’t both true.

Lemma 8.26. Let D = (A, R) be a deductive system in L. Then D is consistent.

Proof. Suppose there exists a sentence ¢ such that Fp ¢ and Fp —(p) both hold. By
the soundness property we have #(¢) and #(—(p)). Clearly by lemma 8.25

#(2(9)) = #(e,2(9), €) = P~(#()) = (#(p) Is false) .

So #(¢) would be true and false at the same time, a plain contradiction. ]

8.2. Completeness

Let’s now define the completeness of a deductive system and talk a bit about this.
Completeness is the converse property of soundness. A deductive system D = (A, R)
is said to be complete if and only if for each ¢ sentence in £ if #(¢) holds then
Fp . It was easy to prove the soundness of our system, unfortunately the topic of
completeness is not as easy. Clearly, if we have defined a deductive system, there is
no obvious reason to expect it is also complete.

Anyway, let’s define a set A as the set of all sentences ¢ such that #(y) holds.
Assume A is an axiom in £ (this is a wrong assumption, but let’s accept it for
a moment). If we define D = ({A},0) then D is a deductive system in L. For
each ¢ sentence in L if #(p) holds then ¢ € A and so Fp . In other words
D is a complete deductive system. So, in the assumptions we made, a complete
deductive system exists. Anyway as we said earlier, the assumption that A is an ax-
iom is clearly wrong, and it is wrong because there is no proof or evidence that A isr.e..

Another trivial attempt we could make to define a complete system is the following.
For each sentence ¢ such that #(p) holds let {¢} be an axiom in our deductive system
D. In this case for each ¢ sentence in L if #(¢) holds then Fp ¢ and so the system is
complete. However, even in this case we have violated a requirement in the definition of
a deductive system. In fact, there is no proof or evidence that our set of axioms is finite.

So we cannot trivially define a complete deductive system. It seems Cutland’s
book [1] has interesting material with respect to the completeness or incompleteness of
deductive systems, in chapter 8. Actually Cutland introduces a notion of ‘recursively
axiomatised formal system’ and what he names a ‘simplified version of Goedel
incompleteness theorem’. This theorem states that, given a recursively axiomatised
formal system in which all provable statements are true, in this system there is a
statement which is true but not provable (and so this system is not complete). The
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proof of this theorem is based on the fact that the set P of the provable statements
of the system is recursively enumerable (r.e.) while the set T of the true statements
of the system is not r.e.. Actually it seems to understand that Cutland refers to
recursively axiomatised formal systems ‘of arithmetic’ i.e. systems that are ‘adequate
for making statements of ordinary arithmetic’ and so include symbols like 0, 1, +, x, =
and the logical connectives and quantifiers.

So, given a deductive system within our logic system, if we could describe it as a
recursively axiomatised formal system of arithmetic, we would have proved that this
same system is not complete. From another point of view, given a deductive system
within our logic system, if one of the following conditions holds

e the system cannot be described as a recursively axiomatised formal system
e the language does not include arithmetic

we cannot state the incompleteness of the system.

This suggests two questions:

e can we describe a deductive system within our logic system as a recursively
axiomatised formal system?

e given a language that does not include arithmetic, under which conditions, if
any, a deductive system within our logic system is complete?

However these are non-trivial questions that I do not want to discuss in this
manuscript, they are obviously of interest in further investigation of this approach.

In the next section we will build a deductive system and then use it to prove a given
statement. This example system has many interesting and general features that can
be applied also in other contexts in proving many statements. With our logic system
we can certainly use many ideas to build powerful deductive systems and the example
helps us to understand this. Anyway, looking at this single system, we just prove one
single statement with it. We may want to prove other true statements in the same
language, we may be able to do this with the axioms and rules we have provided or,
to be able to do this, we may need to add other axioms or rules. However we will not
make any statement about the completeness or incompleteness of the system.

We can also think to an alternative definition of completeness, let’s call it
d-completeness. Given a sentence ¢ in £ we say that ¢ is derivable in L if there
exists a deductive system D in £ such that Fp ¢. We define the d-completeness of a
deductive system D as follows: D is d-complete if and only if for each ¢ sentence in £
if  is derivable in £ then Fp .

Here we notice that if #(¢) holds then we can define A = {p} and A is clearly
an axiom in L. If we define D = ({4}, 0) then D is a deductive system and Fp ¢, so
¢ is derivable in L. Conversely is ¢ is derivable in £ then by soundess #(y) holds.
Therefore ¢ is derivable in £ if and only if # () holds, so the notion of d-completeness
is actually equivalent to the notion of completeness.
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9. Deductive methodology: further results

In this section we show some additional results, which can be referred to any
language £ = (V,F,C,#,{D1,...,Dn},qmaz) such that all of these symbols:
=, A\, V, =, 4>, V,3, €, = are in our set F. For each of these operators f Ag(x1,...,xy)
and Py(x1,...,xy,) are defined as specified at the beginning of section 3.

Lemma 9.1. Let m be a positive integer, x1,...,%m €V, with x; # x; for i # j. Let
©1y- -y om € E, assume H[x1 : ©1,...,Zm : Pm], define k = k[z1 : 01, Zm ¢ Pm)
and as usual kg = € and for each i =1...m k; = klx1: o1,...,2; : ©il.
Then for eachi=1...m, j=14...m
® I; E(]{?j),
e ; E(kj),
e for each o € E(k;)
O O/dom(k:_,) € E’(ki—l)f
o #(kj, i, 0) € #(ki-1,Pis T jdom(k,_1))>
#(kj, @i 0) = #(ki-1, i, 0 Jdom(k,_1))
#(k’j,l’i,(f) € #(kja QPhU)'

Proof. We prove our assertion by induction on j, so we begin by proving it at level i.

(¢]
(¢]

Since k; € K there exists a positive integer n such that k; € K(n), and since k; # €
we have n > 2. By lemma 8.1 there exists a positive integer ¢ < n such that k; € K(q)™.
So there exist h € K(q),¢ € Es(q,h),y € (V —wvar(h)) such that k; = h+ < y, ¢ >.
We have also k; = ki—1+ < x;,p; > so

T, =Y € Ea(q + 1,]%) C E(q +1, k’z) - E(kz) .

For each 0 = p+ (y,s) € Z(k;)

#(kla Ti, U)(n+1,k,a) =sc #(h7 ¢7 p) = #(ki—lv i, p)

Clearly 0 )4om(p) = p; dom(p) = dom(h) = dom(k;—1), therefore o /qomr, _,) = p and
finally

#(kis i, 0) = #(kis iy 0) (ng1,k,0) = 5 € #(Kio1, 905 T dom(ki_1))-
Since ¢; € E(k;—1) there exists a positive integer ¢ such that k;—; € K(g) and
vi € FE(q,ki—1). Since k; € K there also exists a positive integer n such that
k; € K(n). Let p = max{q,n}, then ¢; € E(p,k;—1) and k; € K(p).

If ; € E(p,k;) then clearly ¢; € E(k;). Otherwise, since k; = ki—14+ < m;, p; >,

At this point, given o € Z(k;), we observe that k;—1,k; € K(p + 1), ki1 C kK,
vi € E(p+ 1, ki—1) N E(p+1,k), O Jdom(ki_1) € E(ki—1), O Jdom (k1) C o. Here we can
apply lemma 8.14 and obtain that #(ki, @i, o) = #(ki—1, ¥i, T jdom(k,_1))-

Now, in the case i < m, let j =i...m — 1, we assume all of the following hold:
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e z; € E(kj),

e ; € E(kj),

e for each o € Z(k;)
O O /dom(ki—1) € E(ki_l)’
o #(k:j,xi,a) S #(ki—la Wi?o—/dom(ki—l))7
o #(k:j,goi,a) = #(ki—17(pi7a/d0m(ki71))7
o #(kj,zi,0) € #(kj,pi,0),

and we try to prove the same statements for j + 1.

Since kjy1 € K there exists a positive integer n such that k;j;1 € K(n). There exists
a positive integer ¢ such that z; € E(q, k;). Let p = max{q,n}, then k; 1 € K(p) and
z; € E(p, kj).

We can also observe that kj11 = kj + (xj41,9j+1) € K(p) — {€}, so

Ep(p+ 1, kji1) = {t| t € E(p, kj), t & E(p, kji1)}-

Clearly if z; € E(p,kjt1) then z; € E(kj;1), otherwise z; € E(p,kj) and
zi ¢ E(p,kj+1), so z; € Ey(p+1,kj1) € E(kjt).

We now want to show that for each o € Z(kj11) 0/dom(k;_,) € =(ki-1) and
#(kjr1,7i,0) € #(ki—1, 00, 0 jdom(k: 1)) -

We define p = o/do
hypothesis p/dom(k,_,)

m(k;), 50 (by lemma 8.4) p € Z(k;j) and by the inductive
€ E(ki—1) #(kj, i, p) € #(Ki—1, i, P rdom (k1))

It is also clear that dom(k;—1) C dom(k;) C dom(kj;1) = dom(o) and therefore
T fdom(ki_1) = (T jdom(k;)) Jdom(ki_y) = P/dom(ki_1) € Z(Ki-1)-

Hence #(kj,zi,p) €  #(ki-1,9i0/dom(k,_,)) and to complete our proof
that  #(kji1,7,0) € #(ki-1, i 0 /dom(k,_,)) We Jjust need to show that
#(kjt1, i, 0) = #(kj, i, p).

In order to prove this we can use lemma 8.14. In fact kj, kj11 € K(p+1), kj C kjtq,
x; € E(p+1, kj) NE(p+ l,k‘jJrl), S E(k‘j+1), pE E(kj), pCo.

Since ¢; € FE(k;) there exists a positive integer ¢ such that k; € K(q) and
@i € E(q,kj). Since kjy1 € K there also exists a positive integer n such that
kjt1 € K(n). Let p = maxz{q,n}, then ¢; € E(p, k;) and k;j41 € K(p).

If ¢; € E(p,kjt1) then clearly ¢; € FE(kji1). Otherwise, since kji1 =
ki + (zj41,9541): @i € Bp(p+ 1, kj1) C E(p+1,kj11) C E(kjta).

At this point we observe that k;_1 C kij+1, i € E(kﬁl_l) N E(kj.;,_l), o < E(k}j+1),
T fdom(ki_r) € E(ki—1), O Jdom(k:_,) = 0. Here we can apply lemma 8.14 and obtain that
#(kjr1,0i,0) = F#(Kki—1,9is O 1dom(k;_1))-

O]
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Lemma 9.2. Suppose k € K, t,p € E(k) and for each o € E(k) #(k,p,0) is a set.
Then

o c(t,p) €S(k);
o for cach o € Z(k) #(k, € (t,¢),0) = Pe(#(k,t,0), #(k, ¢, 0)).

Proof. This is a trivial consequence of lemma 8.15 . O
Lemma 9.3. Let m be a positive integer. Let x1,...,Tmy1 € V, with x; # x; for
i #j. Let 1,...,pm+1 € E and assume H[x1 : 01, .., Tmt1 © Om+1]-

Define k = klx1 : ¢1,...,Tm+1  ©m+1]- Of course H[z1 : ©1,...,Tm : ©m] also
holds, we define h = k[z1 : @©1,...,Tm : ©m]. Let p € Eg(h).

Then ¢ € Eg(k) and for each o € Z(k) 0jqommn) € Z(h), #(k,p,0) =
#(ha ©s U/dom(h))'

Proof. Since ¢ € E(h) there exists a positive integer ¢ such that h € K(q) an
@ € E(q,h). Since k € K there also exists a positive integer n such that k € K(n).
Let p = max{q,n}, then ¢ € E(p,h) and k € K(p).

If ¢ € E(p,k) then clearly ¢ € E(k). Otherwise, since k = kpy1 = kpn+ <
Tm+1, Pm+1 >= h+ < Tm+1; Pm+1 >7 @ € Eb(p+ 17k) g E(p+ ]-7 k) g E(k;)

Let now o € Z(k), by lemma 8.4 we have 0/4omn) € Z(h), moreover h C k, ¢ €
E(h)NE(k), 0 /d4om(n) E 0. Here we can apply lemma 8.14 and obtain that #(k, p,0) =

#(ha @aa/dom(h))' a

Lemma 9.4. Let ¢ € C. For each positive integer n and k € K(n)

e ce E(n+1,k);
o for each o € Z(k) #(k,c,0) = #(c).

Proof. The proof is by induction on n.
For n = 1 we have k = e so ¢ € E(l,e) = E(n,k) C E(n + 1,k) and for each
o€ E(k> 0 =¢, 80 #(k7ca U) = #(E,C, 6) = #(C)
Let n be a positive integer and k € K(n+1) = K(n) U K(n)™.
If k € K(n) then
e cc E(n+1,k) CE(n+2k);
o for each 0 € Z(k) #(k,c,0) = #(c).
Otherwise k € K (n)™, so there exist h € K(n),¢ € Es(n,h),y € (V —var(h)) such
that k = h + (y, ¢). By the inductive hypothesis

e cc E(n+1,h);
e for each p € E(h) #(h, ¢, p) = #(c).
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We have ¢ ¢ E(n+ 1,k), k=h+ (y,¢) € K(n+1) —{e}, so c € Ey(n+2,k) C
E(n+ 2,k) and for each 0 = p+ (y, s) € E(k)

#(kacv U) = #(k7c70)(n+2,k,b) = #(h7c7 p) = #(C) .

10. Building a deductive system
In this section we will build a deductive sytem D = (A, R), in order to be able to
show an example of proof in the next section. The deductive system we are building
can refer to any language £L = (V, F,C,#,{D1,...,Dp}, ¢maz) such that all of these
symbols: =, A,V,—, >, V,3,€,= are in our set F. For each of these operators f
A¢(x1,...,2,) and Pf(x1,. .., 2,) are defined as specified at the beginning of section 3.
We’'ll now list the set of axioms and rules of our deductive system. For every
axiom/rule we first prove a result which ensures the soundness of the axiom/rule and

then define properly the axiom /rule itself.

In our proofs we’ll frequently use the following simple result.

Lemma 10.1. Let S be a set and q,r be functions over S such that for each o € S

q(o) and r(o) are true or false (in these assumptions q,r can be called ‘predicates over
S’). Then

Av({q(o)] o € 5}), As({q(0)| o € 5})
Py({q(0)| 0 € S}) <> for each o € S q(0),

P5({q(0)| 0 € S}) <+ there exists o € S: q(0),

Av({q(o)] o € S,7(0)}), A3({g(0)| o € 5,r(0)})
P,({q(o)| 0 € S,r(0)}) <> for each o € S if r(c) then q(o),

P5({q(0)| 0 € S,r(0)}) <> there exists o € S : r(o) and q(o).

Proof. Let x1 = {q(0)| o € S}.

Clearly 1 is a set and for each x € x1 there exists o € S such that z = ¢(0), so x
is true or false. So Ay(z1) and A3(x1) both hold.

We suppose Py(z1) and try to prove for each o € S ¢(0).
Let 0 € S, clearly ¢q(o) € x1, so ¢q(o) is true.
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Conversely we suppose for each o € S ¢(o) and try to prove Py(x1).
Let « € z1, there exists o € S such that x = ¢(0) is true.

We suppose P3(z1) and try to prove there exists o € S ¢(0).
There exists = in x; such that (z is true). There exists ¢ € S such that = = ¢(0),
therefore (o) is true.

Conversely we suppose there exists o € S ¢(o) and try to prove P5(xq).
Clearly ¢(o) € x1 and ¢(o) is true, so P3(x1) is proved.

Now, to prove the remaining results, let z1 = {q(0)| 0 € S, r(0)}.

Clearly =1 is a set and for each € z; there exists o € S such that (r(c) and)
x = q(0), so z is true or false. So Ay(z1) and A5(x;) both hold.

We suppose Py(x1) and try to prove for each o € S if (o) then ¢(0o).
Let o € S and assume r(o), clearly ¢(o) € x1, so ¢(o) is true.

Conversely we suppose for each o € § if 7(0) then ¢(o) and try to prove Py(x1).
Let @ € z1, there exists o € S such that r(o) and x = ¢(0) is true.

We suppose P3(z1) and try to prove there exists o € S : (o) and ¢(o).
There exists z in x; such that x is true. So there exists 0 € S such that r(o) and
x = (o), therefore ¢(o) is true.

Conversely we suppose there exists 0 € S : (o) and ¢(o) and try to prove P(x1).
Clearly ¢(o) € x1 and ¢(o) is true, so P3(x1) is proved. O

Lemma 10.2. Let m be a positive integer. Let x1,...,2,m € V, with x; # x; for
i # j. Let v1,...,0m € E and assume H[x1 : @1,...,Zm : ©m]. Define k = k[x;
Oly -y Tt om] and let ¢ € S(k).

Under these assumptions we have

o A, ), — (/\(so,w),sO) (A1), ¥) € S(k),
b 7[1}1 TP, Tm L Pmy ( ( )790)] S(E)f
hd 7[1'1:()017" yTm - Pm, ( ( )ﬂM ( )

Morcover # (4[z1 ¢ 91, - Zm : G (A1), 9)]) and
#(Y[z1: 01, T s om, = (A(p, ), 0)]) are both true.

Proof. Using theorem 8.24 and lemma 8.25 we can rewrite
#(Y[x1: 01, Tt om, = (A(p, ), )]) as follows:

By({#(k, = (A(,¥), ), 0)| 0 € E(k)})
By({P (3 (K, A, ¥),0) , # (k,0,0)) | o € E(K)})

PV({P—> (P/\ (#(kv ®, U)? #(ka ¢7 O')) 7# (kv ®, U)) ’ o€ E(k)})

This can be expressed as
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for each o € E(k) if #(k, p,0) and #(k, ), 0) then #(k, ¢, 0),
which is clearly true.

In the same way we can prove the truth of

# Oz o1, Tm  omy = (A0, ¥),9)])

We can create a set Ajgo which is the union of two sets of sentences.

Let G be the set of all the sentences y[x1 : ©1,...,Zm : ©m, = (A(@, ), ¢)] such
that

e m is a positive integer, x1,...,zp € V, 2; # x; for i # j, ¢1,...,0m € E,
Hlzi: @1, . Tm : Om),
o o€ Sklxy:vr, . Tm: ©m])-

Let G2 be the set of all the sentences y[z1 : ©1,...,Zm : Pm, — (A(@,¥),1)] such
that

e m is a positive integer, x1,...,zp € V, 2; # x; for i # j, ¢1,...,0m € E,
Hlzi: @1, . Tt Oml,
o v, € S(klz1: 1, Tm : om)).

Then Ajgso is the union of G and G9. Lemma 10.2 shows us that this set of
sentences (which is a potential axiom) is ‘sound’. In order to use Ajp2 as an axiom in
our system we also need to show that Ajgo is r.e..

Lemma 10.3. Aigo is r.e. .

Proof. Given a positive integer m and (x1,¢1,...,Zm, ¥m) € Ry we can notice the
following;:

o k[z1:¢1,...,Tm o] € K;
o S(k[x1: @1, .., &Tm : om]) is 1€
o {(21,01,- s Ty pm) } X S(k[x1: 01,y T om])? is T

So we can define the following

Qm,2: U {(5517901,~--»$m790m)}XS(k‘[$1 :@1,...,$m330m])2 .
(xl75017~-v7x'm790m)6R7n

Clearly Q2 C (X*)?™ x (£*)? is r.e..

We can define a function y over (¥*)*" x (X*)? such that for each
((lea@ly s 7wm790m)7 (QD, 1/))) € (Z*)2m X (E*)Q

X(((wla‘pla ooy Yy (Pm)a (§0¢w))) = ’7[77/}1 TP 7¢m P Pm, (/\(907w)¢90)] :

127



Now x clearly is a computable function and so the set

{X(($1,QO1,.--,xm,@m),(w,w)ﬂ((561,4,01,...,37m,<,0m),(@,Tﬂ)) € Qm,?} iS a r.e.
subset of ¥*. And finally the set

U {X<((x17 P15+ T, (Pm)v (907 Tb)))‘ (((1131, P1y- -+ T, @m)7 (QO, lb))) € Qm,2}

m>1

is itself a r.e. set. This set can obvioulsy be rewritten as follows

U {7[.%'1 QL Tm L Py (/\(907w)790)” (((.%‘1,@1, .. -,-’Em,@m)7 (()Oa ¢))) € Qm,2}

m>=1

and it should be clear at this point that this set is actually our axiom Gy, and so
that G is r.e..

In fact if £ € G then there exist a positive integer m, x1,...,T, € V such that
x; # xj for i # j, ¢1,...,om € E such that H[z1 : p1,...,Tm : om], ¢, € S(k[z; :
P15, Tt pm]) such that & =v[z1 @1, .., Tm 2 om, = (A(p,9), 9)]-

It follows that (x1, ¢1,...,Tm, om) € Ry and ((x1, @1, .-+, Tm, ©m), (¢, V) € Qm.2,
S0 ‘S € {X((yla 77/)17 cee aym7wm)7 (¢7 9))‘ ((ylawlv LR ymawm)> (¢> 9)) € QM,2}7 and so

5 S U {X(((thl, ceey yp?¢ﬁ)7 (qb? 6)))| ((y1, wl’ cee >yp7wp)v (¢7 9)) € QPQ} .
p=1

Conversely if

¢ D, v,y v) (6.0 (1,01, 4py ), (6,6)) € Q2

pzl
there exist p > 1, ((y1, %1, .., Yp, ¥p), (6,6)) € Qp2 such that
‘£ = X(((ylawlw-'?ypawp)a<¢70))> = ’Y[yl : ¢17"'7yp : 1/)pa_> (A(¢79)7¢)]7 S0
(ylawh cee 7yp7wp) € va ¢,6 € S(k[yl : wla .. '7yp : wp])
SO y1,...,Yp € V with y; #y; for i # 4, 1,..., 0, € E,Hyr : 1, ..., yp : Yp).
And this implies £ € G.

Similarly G is r.e. and so Ajgo is r.e.. ]

Then let Ajgs € A.

Lemma 10.4. Let m be a positive integer. Let x1,...,2, € V, with x; # x; for
i # j. Let p1,...,0m € E and assume H[x1 : ©1,...,%m : pm]|. Define k = klzy :
@1, Tm o] and let o9, x € S(k).

Under these assumptions we have
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o = (¢, 0), = (¥, x), = (¢, x) € S(k),

1 7[1'1 TP, Tt Py (%"‘ﬂ)] € 5(6)7
L4 7[1'1 TP, T D Py (¢7X)] € S(6>7
o Y[T1: Q1. Tt Pm, — (@, x)] € S(e).

Moreover if

hd #(V[xl TP T E Pm, ((pa ¢)])7
o #(v[x1: @1, T m, = (¥, X)])

then # (Y1 : 1, Tm : m; = (2, X)])-
Proof. We can rewrite #(y[x1 : @1, .., Tm : ©m, = (p,¥)]) as follows:

By({#(k, = (p,9),0)] 0 € E(R)})

By({P- (#(k, 0, 0), #(k, ¥, 0)) | 0 € E(k)}).

And we can rewrite #(y[z1: @1,.. ., Tm : Pm, — (¥, x)]) as follows:

By({#(k, = (¢, x),0)| o € E(k)})

PV({P—> (#(’ﬁ%‘ﬂa #(k7X70)) ’ g e E’(k)})

In other words for each o € Z(k) if #(k, ¢, o) then #(k, ¢, 0), and if #(k, 1, o) then
#(k,x,0). So, for each o € E(k), if #(k, ¢, 0) then #(k, x, o). This can be written as
follows:

Py({P- (#(k, p,0), #(k,x,0)) | o € E(k)})

Py({#(k, = (p,x),0)| 0 € E(k)}),

#(’Y[ml TP, Tt Py (307)()])‘

O
We can create a set Rig4 as the set of all 3-tuples
’Y[ml B2 RN 7 Qpﬂ’w—) (<p7w)]7
’7[-%1 P,y Tt ‘Pm7_> (w:X)]a
V@1 o1, Tm : Pm, = (0, X))]
such that
e m is a positive integer, x1,...,xp € V, 2; # x; for i # j, o1,...,0m € E,

Hlzy: @1, .. Tm : Om),
1 %%XG S(k[xl CPLy ey I me])
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Lemma 10.4 shows us that this set (which is a potential 2-ary rule) is ‘sound’. In
order to use Rjg4 as a rule in our system we also need to show that Rjg4 is r.e..

Lemma 10.5. Rig4 s r.e. .

Proof. Given a positive integer m and (z1,¢1,-..,Tm,¥m) € Ry we can notice the
following:

b k[xl:(;ola“wxngam] € K;
o S(klx1:¢1,...,Tm : om]) is e

o {(21,01,- s Tm,om)} X S(k[x1: 01, Tm : om])? is Tee..
Let’s define
Qm,3: U {(x17¢17"'7xm780m)}XS(k[xl 3‘P17'-‘733m590m])3

(1,01 50+ sTm P ) ERm,
Clearly Q3 C (X*)?™ x (X*)3 is also r.e..

We now define three functions 81, 62,1, d3.m over (X*)?™ x (£*)3 as follows. Given
((wla ®1y .- 7wm7 ¢m)7 ((pa ¢7 X)) € (E*)2m X (2*)3

51,m(<"¢1;9017 s a¢m;@m)a (¢7¢7X)) = 7[1/}1 : @17 s 7wm : ‘Pm7_> (()07 w)] .
52,m<(¢179017 <o 7¢m790m)7 (‘Padj?X)) = ’Y[wl B2 P 'awm D Pm, (¢7X)] .

03.m (Y1, 01, -+ Yms om), (0,0, X)) = V[W1 2 15+, P Oms— (9, X)] -

All of the three functions we have defined are computable functions from ($*)*™ x
(¥%)3 to X*. If we define a function §,, over (£*)?™ x (£*)? as follows:

51,m((¢17 @1, .- adjma Som)7 (QDa 77Z)> X))a
5m((¢17 Ply-- - wma @m)7 (907 1/}7 X)) = 62,7”((11}1’ 1y s U, Som)7 (90’ Y, X))a
53,m((d}1a @1, - - 7¢m7 Som)7 (Qpa 1/), X))
then 6, is a computable function from (X*)?™ x (3*)3 to (¥*)3, therefore the set

Dy = {6m (1, 01, - - - s Y, 0m), (0,0, X)) (1, 015+ -+ Y, 0m), (90,9, X)) € Qm 3}

is a r.e. subset of (3*)3.

If we now consider the set (J,,,»; D, then this is a r.e. subset of (£*)? and actually
this set is equal to our rule Ryp4 which so is r.e. itself.

If £ = (&1,8&2,&3) € Ryp.4 then there exist a positive integer m, x1,..., 2, € V, with

x; # xj for i # j, ¢1,...,m € E such that H[z1 : ¢1,...,%m : ©n]; if we define
k=k[z1:¢1,...,%m : @] there also exist ¢, 1, x € S(k) such that
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e LI =9[Z1 01,y T Pm,— (0, 0)],
o L =9[T1 01, Tm  Pm, — (U, X)),
o 3=7[r1: 01,0, Tt Omy— (0 X))

This means (1,@1,...,Tm, Pm) € Rm, o, 0, x € S(klx1 : ©1,...,Tm : Pm]), SO
((931,801a cee 7xm’§0m)a (%%X)) € Qm73

L4 61 = 51,m((m17 P1y- -5 Tm, ‘Pm) (¢7¢7X))7
L4 62 :527m((1'179017'~737m790m) (907’(/]7X))7
o &3 =03m((®1, 01, s Tm, ), (0,0, X))-

( €

ie &= 5m(($17901, cee ,xmaSDm)7 0,1, )) Dy,

Conversely if there exists p > 1 such that { € D, then there exists
((wlv @1, .- 7wpa @p): (()0’ ¢7 X)) € Qp,3 such that § = 5P<(¢17 L1, 7¢p7 SDP)7 ((pa 1/1, X))

It follows that (¢, ¢1,...,%p,0p) € Rp, 0,0, x € S(k[z1 : @1,...,2p 1 @p]), 50
¢1,---,¢fp€V7¢i7A¢j fOI”L.?éj, (pla"w(ppeEv H[wlzwla"wwp:gop]'

Moreover
((1/)179017"')77&}7790;0 90’1/)7 )a
gz5p((w17(p17"'7wp7(pp)7¢7waX): P((wlawly-'-,d)pa@p 90)1/)7 )7
p( ¢17<P17---,¢pa§0p 90)¢7 )
@17'-‘71/}13 Qopv (90’1/]
9017"‘7wp Spp7 (1/}7X)]
9017"‘71/]17 Spp7 (QO)X)]
and so £ € Rig.4.
O
Then let Rig4 € R.
Lemma 10.6. Let m be a positive integer. Let x1,...,2, € V, with x; # x; for

i # 7. Let p1,...,0m € E and assume H[xy : ©1,...,Tm : pm]. Define k = k[x;
Oy - s Tt Om]-
Leti=1...m, then
o C (ﬂsi,goi) c S(k),
® Y[T1: 01, Tt Pm, € (Ti, )] € S(e),
L #(’Y[xl TPy T Pm, € (xu@z)])

Proof. Using lemma 9.1 we obtain

o z; € E(k),
e p; € E(k),
e for each o € Z(k)

© U/dom(k ) € E(k )
( , Piy O ):#( i—15 P15 0 Jdom (k;_ 1))
o #(k Ly, 0 ) € #( y Piy O )
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We have also that ¢; € FEg(ki—1), so for each o € Z(k) #(k,pi,0) =
#(ki—1, i, 0 jdom(k:_,)) 18 a set. Therefore we can apply lemma 9.2 and obtain that
€ (24, i) € S(k). Consequently

Y@L @1, Tm  ms (€) (i, 4)] € S(e)

Moreover we can rewrite #(Y[x1 : @1,...,ZTm : ©m, (€)(2i, vi)]) as follows

Py({#(k, (€)(wi, i), 0)| o € E(R)})

PV({PE(#(k’xia U)? #(ka Pis U))| o€ E‘(k)}) :

To show this we have to prove that for each o € Z(k) #(k,x;,0) belongs to
#(k, pi,0). But we have just seen this is true. O

We can create a set Ajg¢ which is the set of all sentences y[x1 : @1,...,Zm : Pm, €
(x4, ;)] such that

e m is a positive integer, z1,...,2y, € V, x4 # 25 for a # B, ¢1,...,0m € E,

Hlzi: @1, .. Tm : ©m),
e ;=1...m.

Lemma 10.6 shows us that this set of sentences (which is a potential axiom) is
‘sound’. In order to use Ajgg as an axiom in our system we also need to show that
A10_6 isr.e..

Lemma 10.7. Agg s T.e. .

Proof. Let m be a positive integer and let ¢ = 1...m. We define a function y; over
(£*)2™ such that for each (Y1, 01, .., Ym, om) € (B*)*™

Xi(¢1a@17---,¢m,80m) = W’Wl : 8017---7¢m 1 Pm, € (%a%)] .

Now x; «clearly is a computable function and so the set
{1,015+ Ty )| (X1, 015+ Ty Pm) € Ry} is a r.e. subset of ¥*. And
moreover the set

U {Xi(mlasolw . -a$m7¢m)| (xla(pla R ’xm,@m) S Rm}

i=1...m

is itself a r.e. set. And finally the set

U( U {Xi(l'l,@l,-.-,CCm,SOm)‘($1,§01,...,:Em,90m) eRm})

m21 i=1l..m

is itself a r.e. set. This set can obviously be rewritten as follows:
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and it should be clear at this point that this set is actually our set A1g¢.

In fact if £ € A1g9¢ then there exist a positive integer m, x1,...,2Z, € V such that
zo # xg for a # B, p1,...,¢m € E such that H[z1 : @1,...,Zm : @m), i =1...m
such that § = y[z1 1 01,...,Tm © om, € (i, i)]-

Of course this implies (z1, @1, ..., Tm, ©m) € R, so

§ € {Xi(thOl?' . '7$m790m)’ (xla(pla"'vxmvwm) € Rm} .

And then

56 U {Xj($17§017- --,xm,@m” (xl,ng,-.. >$m7§0m) € Rm} ;

j=l..m

§e U( U {Xi(zr, 01, @p, )| (@1, 01, -, 2, 0p) € Rp})
p=1 j=l..p

Conversely if

56 U( U {Xj($17¢1a---7xp7@p)|(x17@17~--7xp790p) € Rp})
pzl j=1l..p

then there exists p positive integer, j = 1...p, (z1,¢1,...,Zp, pp) € Ry such that

é.:Xj(wlaSOla"'vxvaOp) :7[1'1 TPy Tp SOP’G ($]a90_7)] .

Clearly we have x1,...,7, € V such that x, # xg for a # 3, ¢1,...,¢p € E such
that H[z1 : @1,...,2p : ©pl, 50 & € Ajpe. O

At this point let Ajgg € A.

Lemma 10.8. Let m be a positive integer. Let x1,...,2,m € V, with x; # x; for
i # j. Let 1,...,0m € E and assume H[x1 : Q1,...,%m : pm]. Define k = klzy :
Olye oy Tt om] and let p, ¢ € S(k).

Under these assumptions we have

o — (1, ) € S(k),
i 7[$1 PPy Tt @ma‘p] GS(G):
L ’7[:31 QL T f Pmy (wa@)] € S(E)

Moreover if # (Y[x1 : @1, ..+, T Py @) then # (V@1 2 @1, T 2 Py — (U, 9)])
also holds.
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Proof. Suppose # (y[z1: @1, Tm : ©m,¢]) holds. It can be rewritten as
PV({#(k)SO7O-)| S E(k)}) .
We can rewrite # (Y[x1 : @1,.. ., Tm : ©m, — (¥, p)]) as

Py({#(k, = (¥, 9),0)[ 0 € E(R)}) ,

PV({P—)(#(kv ¢, 0)7 #(kv ®, U))| S E(k)}) .
For each o € Z(k) #(k, ¢, o) holds, this implies that

P (#(k, v, 0), #(k, ¢, 0))

holds too, therefore

By({P-(#(k, ¥, 0), #(k, 0, 0))| o € E(K)})

also holds and this completes the proof. O
We can create a set Rigg as the set of all pairs

(7[$1 Py, Tm t gOm,QD],'Y[Qfl TP, T L Py (¢7¢)])

such that

e m is a positive integer, x1,...,xpy € V, 2; # x; for i # j, o1,...,0m € E,
Hlxi:01, T Oml,
o v, € S(klry: @1, -y Tm: ©m])-

Lemma 10.8 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rjgg as a rule in our system we also need to show that Rjgg is r.e..

Lemma 10.9. Rigg s r.e. .

Proof. Given a positive integer m and (x1,¢1,...,Tm, Pm) € Ry we can notice the
following;:

o klx1:¢1,. -y Tm : om] € K;
o S(klz1: @1,y Tm : om]) is .

o {(21,01, s T, om)} X S(k[x1: 01, ., Tm : om])? is T.e..
So we can define the following
Qm2 = U {(z1, 01, Tm, pm)} X S(k[z1 :(pl,...,mmzapm])z .

(wl P15 Tm 7<Pm,)€Rm

Clearly Q2 C (X%)?™ x (£*)? is ree..
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We now define two functions 81, 02, over (X*)?™ x (X*)? as follows. Given
(¥1,01,- -, Ym, om), (0,9)) € (59)2™ x (57)?

617m((w17§017 e 7wm790m)7 ((pa 1/})> = ’7[1/}1 : ()017 e 7¢m : Spm7¢] N

52,m((¢17901a .. -ﬂ/fm, (Pm)a (%W) = V[wl PP 'a¢m L Pm, (%@)] .

All of the two functions we have defined are computable functions from (X*)?™ x
(¥%)2 to X*. If we define a function §,, over (£*)?™ x (£*)? as follows:

Ol (1,911 s o) () = (e ol (200 )

then 6, is a computable function from (X*)?™ x (¥*)2 to (¥*)?, therefore the set

Dy, = {5m((¢17§017 oo ,%bm,@m)’ ((pvlb)” ((wla 1y 7¢m790m)7 (907 ¢)) € Qm,Z}
is a r.e. subset of (3*)2.

If we now consider the set Um>1 D, then this is a r.e. subset of (3*)? and actually
this set is equal to our rule Ryp.g which so is r.e. itself. ]

Then let Rigs € R.

Lemma 10.10. Let m be a positive integer. Let x1,...,Tmy1 € V, with x; # x; for
i#j. Let 1,...,0m+1 € E and assume H[x1 : o1, ., Tmt1 : Pmt1]-

Define k = klx1 : ¢1,...,Tm+1 : ©m+1]- Of course Hl[z1 : ©1,...,Tm : ©m] also
holds, we define h = k[x1 : ¢1,...,Tm : om]. Let x € S(h), t € E(h), ¢ € Es(h).

Under these assumptions

€ (Tmy1,9) € S(k),

Y{} (@mt1 : omt1, € (Tmt1,0))) € S(h),

Y21 @15 Tm  @my = (6 (Tt @ma1, € (Tmr1,9))))] € S(e),
€ (t,om+1) € S(h),

Y1 @1, T @ms— (X € (t, @mt1))] € S(e),

€ (t,p) € S(h),

’Y[:Ul TP, T Pmy (X,E (t? 90))] € S(€>

Moreover if

hd #(’Y[xl TP Tt Pm, (va({} (xm+1 CPm41, € (mm—i—l; ()0))))]) and
L #(’Y[xl PPy T Py (X7 € (tv (Pm—i-l))])

then #('}/[1’1 TPy T  Pmy (X: € (t7 90))])

Proof. By lemma 9.1 we obtain that x,,4+1 € E(k).

By lemma 9.3, since ¢ € E;(h), we obtain that ¢ € Es(k) and for each o € Z(k)
0 1dgom(n) € E(h), #(k,0,0) = #(h, 0,0 1dom(n))-
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By lemma 9.2 we obtain that € (zy,41,¢) € S(k).
By lemma 8.21 we obtain V({} (Zm+1 : ©m+1, € (Tm+1,9))) € S(h).
Clearly this implies that

’Y[ZL’l TPy T Pmyy, (X,V({} (xm—i-l P Pm+1, € (xm—i-la@))))] € S(E)

Furthermore we have t € E(h), ¢m+1 € Es(h), so € (t,om+1) € S(h). It clearly
follows that y[z1 : ¥1,.. s Tm : ©m, — (X, € (£, ©m+1))] € S(e).

We have also ¢ € Es(h), so € (t,¢) € S(h). It follows that
YL@, @m tom, = (X € (8 9))] € S(e).

We now assume

o #(y[T1: 015 Tm  Omy = OGY{} (@mt1 : @mt1s € (T, 9))))]) and
L4 #(’Y[xl PPy Tt Py (Xv € (tv (Pm—i—l))])

both hold and we try to prove #(y[x1 : @1, Tm : ©m, = (X, € (t,9))])-

We can rewrite

#(’7[%1 Py T P (X,V({} (:Em-l—l CPm+1, € (xm+1,g0))))])

as

By({# (s = 06V ({} (@1 2 mr, € (Emi1,9)))) 5 0) [ p € E(R)})

Py({ P (# (h, x, p) s # (0, Y ({} (Tmt1 2 @ma1, € (Tma1,9))) 5 0) | p € E(R)})

Py({P- (# (h, x, p) s By ({# (k, € (wmi1,9),0) | 0 € E(k), pEo}))| peE(h)}) ,

Py({P= (# (h, x, p) , Py ({ Pe (#(k, 211, 0), #(k, 0, 0)) | 0 € B(k), pEa})) [ peE(R)}) .

We can rewrite

#(’)/[1'1 TPl Tm L Py (Xv € (ta (Pm—i-l))])

as

By({#(h, = (x, € (t, em11)), p)l p € E(R)})

PV({PH(#(}Z’Xap)?#(h’ € (t7 (;Dm+1)7p))| pEe E(h)}) ’

PV({P*)(#(}L?X7P)7 PG(#(ha tvp)a #(h’ (pm+17p)))| IS E(h)}) .
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We can rewrite
#(')’[xl TPy Tm L Pmy (Xa € (t7 90))])
as

PV({#<ha - (X? € (t,@)),p)’ pE E(h)}) ’

PV({P%(#(h7X7p)7#(h7 S (t> 90)?p))’ pE E(h)}) s

Py({ P (#(h, x; p), Pe(#(h, 1, p), #(h, ¢, p)))| p € E()}) -

Let p € Z(h) and let #(h,x,p). We need to show that #(h,t,p) belongs to
#(h, ¢, p).

There exists a positive integer ¢ such that k € K(q)". So there exist g € K(q), ¢ €
Es(q,9),y € (V —wvar(g)) such that k = g+ < y, ¢ >. At the same time

k= km—i—l = km+ < Tm+1, Pm+l >= h+ < Tm+1; Pm+1 > -

Therefore

(1]

(k) ={6+ (y,5)[0 € E(g),5 € #(g,¢,0)} =
= {5 + ($m+173>‘ d€ E(h)75 € #(h‘a (Pm—i-lv(s)} .

We have p e E’(h‘)’ #(h7t7p) € #(h,@erl,p), SO p+ ('rerl?#(hvtvp)) € E(k>

Let 0 = p + (Tmy1, #(h,t,p)) € Z(k), clearly p C o, so #(k,xm11,0) belongs to
#(k,p,0). And we have also

Tm+1 =Y € Ea(Q+1’k;) g E(Q+1vk)7
#(k,fL‘m+1,U) = #(k,$m+1, U)(q—i—l,k,a) = #(hvt)p) )

#(k, 0, 0) = #(h, 0,0 1domn)) = # (R, 0,0 1dom(p)) = # (1, 0, p) -
Finally we obtain #(h, t, p) = #(k, Tyt1,0) belongs to #(k, p,0) = #(h,@,p). O
We can create a set R1g.19 which is the set of all 3-tuples

Ve s oms = 06 VY (@mat : omys € (@mr1,0))))];

Y[z o1, Tm oms— (G € (E @
Y[z @1, Tm oy — (X € (9))]

such that
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e m is a positive integer, z1,...,Zm41 € V, with x; # x; for i # j, v1,...,Pm41 €
E, Hlz1: 01, .., Tmi1 : Pmy1];
o if we define k = k[z1 : ©1,...,Zmy1 : ©my1] and h = k[z1 @ @1, .., T © P
then
o x € 5(h),
ot e E(h),
o ¢ € Eq4(h).

Lemma 10.10 shows us that this set (which is a potential 2-ary rule) is ‘sound’. In
order to use Rjg.10 as a rule in our system we also need to show that Rjg 19 is r.e..

Lemma 10.11. RlO.lO 1S T.€. .

Proof. Given a positive integer m and (z1,¢1,- .-, Tm+1, Pm+1) € Rme1 all of the
following sets are r.e.:

o E(klry:¢1,. - sTm : ©m]),
o S(klz1: 01, -, Zm : oml),
o Ey(klry: @1,y Tm : ©m])-

Therefore the following set is also r.e.:

{(@1, 01, s Tmtt, @mt1) } X S(E[x1 2 01, @ 2 om]) X E(k[z1 0 @1, ., - Oml)
X Es(k[z1: @1, Zm : om)).

Let’s use this temporary definition
le—i—l,iﬂ: U {(1‘17901,...,l‘m+1,<,0m+1)}><5(k‘[$1 :@17...,xm:¢m])
(Il79017~-~7~’Um+17<Pm+1)€Rm+1
X E(k[z1 : 01,y Tm t om]) X Es(k[z1 @1, Tm : ©m])-
With this Q/,,; 5 is a r.e. subset of (£%)2(mH1) x £* x $* x ©*.

We now define three functions 01,,, 02,m, 03m over (E*)Z(mﬂ) X XF x ¥* x X* as
follows. Given (11,01, ., Vmi1, Pmi1)s X b @) € (2%)2MHD 5 3% 5 3% x B

O1,m((V1, 015+ Yma1, Oma1), Xo 6 ) =
7[¢1 TP1y . 7d}m P Pmy (Xa\v/({} (¢m+1 CPm+1, € (¢m+17§0))))] .

62,m((77[}1a @1y ﬂperla Som+1)7X7ta (10) = 7[1&1 P, 7Q;Z)m CPm, (Xv € (ta SDerl))] .
53,m((¢15 @1y 71/}m+17 Soerl)v X)t’ ‘P) = 7[1#1 P, ,T/Jm - Pm; — (Xv S (t’ (p))] .
All of the three functions we have defined are computable functions from

(2%)2(m+1) 5 3% 5 B* x % to B*. If we define a function 8, over (X*)2(mH1) 5 3% x 5% x 1%
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as follows:
51,m((1/]17 P1y- - 71/}m+17 90m+1)7 X tv @)7
5m((¢1> PLy---y ¢m+1» (pm-i-l)? X t? 90) = 52,”1((1/]17 L1y 77/Jm+17 Som-‘rl)a X5 ta @)7
53,m((1/)17 P10 71/)m+17 Spm-‘rl)a X5 ta gp)

then 6, is a computable function from (X*)2(7+1) x 5% x 3% x £* to (X*)?3, therefore
the set

Dm - {5m((¢1> @1y .- 7¢m+17 Spm-i-l)?Xat? 90)’((1/}17 P1y-ey ¢m+1; ()Om-l—l)a X7t7 90) S Q;n+173}
is a r.e. subset of (3*)3.

If we now consider the set (J,,,»; D, then this is a r.e. subset of (£*)3 and actually
this set is equal to our rule R1g.19 which so is r.e. itself.

If £ € Ryo.10 then there exist a positive integer m, x1,...,Tm41 € V, with z; # x;
for i # 7, ¢1,...,om+1 € E such that H[z1 : ©1,...,Tm+1 : ©m+1]; if we define
k= Eklz1: o1, ., Tmt1  Pm+1] and b = k[x1 :© ¢1,..., Ty : @n] there also exist

X € S(h), t € E(h), ¢ € Es(h), &1,82,&3 € ¥* such that
b 52 (51752763)

o &1 =901, Tt oms = OGS (Tt f Pmt1, € (Tma1, )]s
o Hr=7[T1 01, T Ems— (X E (B @mt1))]s
4 63 :'Y[«Tl TPy Tt Py (X,E (t790))]

This means that (z1,¢1,. ., Tmt1, Pm+1) € Rmy1, X € S(k[x1: @1, Zm  Pm)),
t € Eklrr @ ©1,--sTm : ©m]), © € Egklry : @1,...,m : ©m]), so
((l’l, @1y -+ Tm+1, SOTI’H*l)?X’ t? 90) € Qfm—i—l,?)’

Moreover

© & =0 m((T1, 01, Tmpts Pmt1), X L ),
o &= 0am((21, 01, Tmt 1, Pmt1), X 1 )
© &= 0m((T1, 01, Tmpt, Pmt1), Xo 1)

Le. § = 5m(($179017 B 7xm+1790m+1)7X7t7g0) € Dm

)

Conversely if there exists p > 1 such that { € D, then there exists

((wla Pl 7wp+17 (pp-‘rl): X t, QD) € Q;+173 such that
§ = (5}7((7/)17 Ply-- -y ¢p+17 (Pp+1)7Xat7 90)-

Since ((¢1;<P17 <o 7¢p+17@p+1)7X7t7§0) € Q;+173 we have (wla(plv v 7wp+17<pp+1) S
Ryti, x € Skl = o1,..0p = wpl), t € Ek[Yr + o1,...,0 © 9pl),
p e Es(k[wl TP1y ,wp : Sop])

It follows that w1,...,Yp41 € V, ¥y # ; for @ # j, ¢1,...,0p41 € E,
Hlpr 01, ¥pi1  pral-
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Moreover

51p((w1a9017"'7wp+1790p+1)7X7ta90)7
gzép((d}la(plv'”ad]p-f—l SDP+1 X5 790 62p((w1’9017"'7wp+17§0p+1)7X7ta90)7 -
63p wla(plv"'7wp+17§0p+1)7X7ta(10)

Y1 s @1, op, = GV (Vpt1 : @pr1s € (Ypr1,9))))]5
= | 101, p,— EX (t, p+1))ls
X, €

VWH :8017"'”7[)}7:(1010’ ) ( ))]

and so £ € Ryg.10.

Then let Rip.10 € R.

Lemma 10.12. Let 1 € V, ¢1 € E and assume H|x1 : p1]. Define k = klz1 : ¢1].
Let 1p € S(k) and ¢ € S(k) N S(e). Under these assumptions we have

o = (¥,p) € S(k),
b 7[171 L1, (d}a@)] € S(e)’
o I({}Ha1:p1,9)) € S(e),
= (F({Ha1:e1,9)),0) € S(e).

Moreover if #(y[z1 : @1, = (¥, @)]) then #(= 3({} (21 : ¥1,9)),9))-
Proof. Suppose #(v[z1 : ¢1,(—)(¥, ¢)]). We have

Py({#(k, = (¥, 9),0)[ 0 € E(R)}) ,

PV({P%(#(kvw’U)v #(k79070'))| o c E(k)}> :

In turn #(— (3 ({}(z1: ¢1,v)),¢)) can be rewritten as

#(e, = Qa1 01,9)),0),6)
PH(#(€7 3 ({}("El : Q/Jlﬂl})) 7€)a #(67 @, 6)) )
Po(#E({H @1 91,9))), #(0))

P (Ps({#(k, ¥, 0)| o € Z(k)}), #()) -

In order to prove the last statement, we suppose there exists o € Z(k) such that
#(k,4,0). This implies #(k, ¢, ), but we need to show that #(y) holds.

To perform this step we can use lemma 8.14. In fact there exists a positive integer
q such that e,k € K(q), p € E(q,¢) N E(q,k). Moreover ¢ C k, € € Z(€), 0 € Z(k),
€ C o so by lemma 8.14 #(k, p,0) = #(€, 0, €) = #(p). O
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We can create a set Rig.12 as the set of all pairs

< Y[w1 1, = (0, )], )
= (F{Hz1:01,9)) )

such that x1 € V, p1 € E, H[z1 : 1], ¥ € S(k[x1 : ¢1]) and ¢ € S(k[z1 : ¢1])NS(€).

Lemma 10.12 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rip.12 as a rule in our system we also need to show that Rig.12 is r.e..

Lemma 10.13. Rqp12 is r.e. .

Proof. Given (z1,¢1) € R all of the following sets are r.e.:

o S(klz1:¢1)]),
o S(k[z1:¢1]) N S(e),
o {(z1,01)} x S(k[z1 : ¢1]) x (S(k[z1: ¢1]) N S(e)).

Let’s use this temporary definition

Qo= U A{@nen)} x Skl : g1]) x (S(klz1 : ¢1]) N S(e)) -
(z1,1)ER

With this @ 5 is a r.e. subset of (X*)? x X* x ¥*,
We now define two functions 41,1, d2,1 over (X%)2 x ¥* x ¥* as follows:

011((1, 1), 9, 0) = Y1 = o1, = (¥, )],

52,1((¢1,¢1)7wa<ﬂ) == (El ({}(¢1 : <P1;¢>)’<P) .

The two functions we have defined are both computable functions from (3*)% x ¥* x
¥* to X*. If we define a function §; over (X*)% x X* x ¥* as follows

e = (SINELS )

then &7 is a computable function from (3*)2 x ¥* x ¥* to (X*)2, therefore the set

D1 = {61((¢1, 01), ¥, )| ((¥1, 01), %, ) € Q) 2}

is a r.e. subset of (E*)Q, and D1 is equal to our set R1g.12 which so is r.e. itself. [

Then let Rip.12 € R.

Lemma 10.14. Let m be a positive integer. Let x1,...,zym € V, with x; # x; for
i # j. Let v1,...,0m € E and assume H[x1 : ©1,...,%Tm : pm]. Define k = klzy :
@1, Tm ] and let 1,92 € S(k).
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Under these assumptions we have — (p,11), — (@,12), = (@, A(¥1,12)) € S(k).

Moreover, if

#Olzr @1 B omy = (9, ¥1)]), #F(V @101, T om, = (0,92)])
then
#(v[z1 1, Tm tom, = (0, A(P1,42))]) -
Proof. We need to show

#(’7[$1 P Tt Pmy (()07 A(¢1,¢2))]) )

that is

Py({#(k, = (¢, A(¥1,¢2)),0)] o € E(
By({ P~ (3 (k, ¢, 0), #(k, A1, 42),0))| 0 € E(R)})
F%({PH(#(]CWO’ o), PA(#(k, ¥1,0), #(k, 11}2, o))l o € E(k)}) - (10.1)

k)})

But we have

#1155 T Pmy = (0,901)])
Py({#(k, = (p,91),0)| 0 € E(k)}) ,
PV({P%(#(kv(pa )7 ( 1/}17 ))| o€ ( )}) :

And we have

#( [«Tl Ply--Tm P Pmy — ( 1/}2)])
Py({#(k, = (p,12),0)| 0 € E(K)}) ,
Py({P- (#(k, ¢, 0), #(k, ¥2,0))| 0 € E(k)}) .

So for each o € =(k) if #(k, ¢, o) holds true then both #(k, 1, 0) and #(k, 12, 0)
hold. This implies 10.1 holds true in turn. 0

We can create a set Ri1g.14 which is the set of all 3-tuples
’Y[$1 PPy Ty L Py (@7¢1)]7
7[5'31 P, T - Qpﬂ’h_) (@7¢2)]7
’7[:61 TPy T Py, (‘pa A(¢1,w2))]

such that

e m is a positive integer, x1,...,zy € V, 2; # x; for i # j, ¢1,...,0m € E,
Hlxi:01, T Oml,
o o, 1,2 € S(klz1: 01, Tm t om]).
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Lemma 10.14 shows us that this set (which is a potential 2-ary rule) is ‘sound’. In
order to use Rjg.14 as a rule in our system we also need to show that Rig 14 is r.e..

Lemma 10.15. Rig.14 is T.€. .

Proof. Given a positive integer m and (z1,¢1,-..,Tm,¥m) € Ry we can notice the
following:

o klx1:¢1,. .y Tm : om] € K;
o S(klx1: @1, .., Tm : om]) is T
o {(21,01,- s Tmyom)} X S(k[x1: 01, Tm : om])? is Tee..

Let’s define

Qms = U {(x1, 01, s Tm, Pm)} X S(k[z1: p1,..., 2 :gom])3 .
(ZU],(P],--.,JIm,(Pm)ERm

Clearly Q3 C (X*)?™ x (X*)3 is also r.e..

We now define three functions 81, 62, d3.m over (X*)?™ x (£*)3 as follows. Given
((917 P1ye ey ema (Pm)v (SO7 wlﬂ ¢2)) € (E*)2m X (2*)3

51,m(<917¢17 e 797717()0771)7 (@7¢17¢2)) = 7[01 CP1y . 76771 : 4Pm7_> ((pu ¢1)] .
52,771((917@17 v 7(97717()0771)7 (@aiﬂlﬂh)) = 7[01 CPL, 79m D Pm, — ((pa ¢2)] .

53,m((0179017 e 70m7§0m)> (()01 ¢17¢2)) = 7[91 LP1, - 'aem L Pm, 7 (@?A(wth))] .

All of the three functions we have defined are computable functions from (¥*)*™ x
(¥%)3 to X*. If we define a function §,, over (X*)?™ x (£*)? as follows:

51,m((913 P1y. .- 70m7 SOWL)v (Soa wlﬂ ¢2))7
S ((01, 01, - -+, Om, om), (0, ¥1,92)) = | O2m((01, 01, -+, Om, om), (0, 91,92)),
53,m((917 P1y- - 7‘9ma (Pm)a (Soa ¢1, ¢2))
then 6, is a computable function from (X*)?™ x (3*)3 to (¥*)3, therefore the set
Dm - {6771((017 @1y 70m7 @m)7 (<P7¢17¢2))| ((917 @1y 707717 ‘Pm)a <907w17 ¢2)) S Qm,3}

is a r.e. subset of (3*)3.

If we now consider the set (J,,,»; D, then this is a r.e. subset of (£*)? and actually
this set is equal to our set R1g.14 which so is r.e. itself. O

Then let Rip14 € R.
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Lemma 10.16. Let m be a positive integer. Let x1,...,xm € V, with x; # x; for
i # j. Let 1,...,0m € E and assume H[x1 : ©1,...,%m : pm]. Define k = klx; :
Oly -y T t om] and let ¢ € S(k).

Under these assumptions we have

o — (o, A (1, ~(¥))), ~(p) € S(k),
4 7[x1 TPl T L Py (907/\ Wﬁ(l/))))] € S(E),
o Y[T1:P1, .y Tyt Pm, ()] € S(e).

Moreover if #(y[z1 : @1, -, Tm = @m>— (0, A (Y, 2(1)))]) then
#(ylz1: 015000 T Om, 2 (0)]).

Proof. We can rewrite #(y[21: @1, ..., Tm : @m,— (0, A (¥, =(1)))]) as

Py({#(k, = (o, A, =), 0)| o € E(R)}) ,

Py({P- (#(k,0,0), #(k, A (0, =(¥)) ,0)) | o € E(R)})

PV({P% (#(k7 ¥, J)v P (#(kvdja O-)’ #(k’ _'(7!))’0-))) | o€ E(k)}) )

Py({ P (#(k, @, 0), Pr (#(k, ¥, 0), P~(#(k, ¥, 0)))) | o € E(K)}) -

This can be expressed as ‘for each o € Z(k) either #(k,p,0) is false or both
#(k,v,0) and (#(k,v,0) is false) are true’.

Since #(k,1,0) cannot be both true and false at the same time we have that ‘for
each o € Z(k) #(k, p,0) is false’. This is formally expressed as

By({P-(#(k, ¢, 0))| 0 € E(F)})

Py({#(k, ~(¢),0)| 0 € E(F)}) ,
which we can finally rewrite as #(y[z1: @1, ..., Tm : Pm, 2 (@)])- O
We can create a set Rig.16 which is the set of all pairs

(’Y[l‘l P Tt Pmy ((,0,/\(1/),“(1#)))],’}/[331 P Tm (,Dm,_'(C,O)])

such that

e m is a positive integer, x1,...,2y € V, 2; # x; for i # j, o1,...,0m € E,
Hlxi:01, Tt Oml,
o v, € Sklrr: @1, -y Tm: ©m])-

Lemma 10.16 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rip.16 as a rule in our system we also need to show that Rig.16 is r.e..
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Lemma 10.17. Ryg.14 @S r.€..

Proof. Given a positive integer m and (z1,¢1,-..,Tm,¥m) € Ry we can notice the
following:

o klz1:p1,. ., Tm : om] € K;
o S(klx1: @1, .., Tm : om]) is e,
o {(21,01,- s Tmyom)} X S(k[x1: 01,y Tm - om])? is Tee..

Let’s define

Qma = U {(z1, 01, Tm, pm)} X S(k[z1 :(pl,...,mmzapm])z .
(xlySolrnvw'ranDM)eRm

Clearly Q2 C (X%)?™ x (£*)? is also r.e..

We now define two functions 1, d2., over (3*)*™ x (X*)? as follows. Given
((¢17 P1ye .- )¢m> Som)7 (507 ¢)) € (E*)Zm X (E*)Q

51,7”((1/}1’@17 oo 71/}771790771)7 (9071/])) = 7[¢1 CPL S m Pmy = (907/\ (%bﬁ(i/’)))] :

52,m((¢1,§017 s 71/]’”1790771)7 (QO’ sz))) = 7[% FP1 . 7¢m : Somaﬁ(@)] :

All of the two functions we have defined are computable functions from (X*)2™ x
(¥*)2 to X*. If we define a function d,, over (3*)?™ x (X*)2 as follows:

Ol (1,911 s o) () = (et ol (0000 )

then 6, is a computable function from (X*)?™ x (3*)2 to (¥*)?, therefore the set

Dm = {5771((1:[)17901’ s 7¢m’§0m)7 (¢7¢))| ((1/11#?1» s 71/]771790771)7 (QO’ 1][))) € Qm,2}

is a r.e. subset of (¥*)2.

If we now consider the set (J,,,5; D, then this is a r.e. subset of (¥*)2 and actually

this set is equal to our set R1g.1¢ which so is r.e. itself.
O

Then let Rip.16 € R.

Lemma 10.18. Let m be a positive integer. Let x1,...,zym € V, with x; # x; for
i # j. Let v1,...,0m € E and assume H[xy : ©1,...,Tpm : ©m]. Define k = k[x :
Oy Tt om] and let p, 9 € S(k).

Under these assumptions we have

o (A, ¥)), = (¢, ~(¥)) € S(k),
hd ’)/[1‘1 PPy Tt SDma_‘(/\(%w))] S 5(6)7
o YT1:ipn, . Tt om, = (0, 7)) € S(e).
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Moreover if #(y[x1: @1, .., Tm : ©m, 2 (A(@,4))]) then
#1101, Tm tom, = (0, 2(¥))]).

Proof. We can rewrite #(y[x1: ©1,-..,Tm : ©m, 7 (A(p,1))]) as

By({#(k, = (N, 9)) o) o € E(R)})

By({P~(#(k, M@, 9),0)) o € E(R)}) ,

PV({P—‘(P/\(#(IC7 9070-)7 #(k7wa U)))‘ o c E(k)}) :

We can rewrite #(y[x1: @1, -+, Tm : ©m, — (p,7(¥))]) as

Py({#(k, = (¢,=(¥)),0)| 0 € E(F)}) ,

PV({PH(#(]@(on-)?#(k‘?_'(ﬂ))?a)” o€ E(k)}) )

By({P-(#(k, ¢, 0), P-(#(k, ¢, 0)))| o € E(K)}) -

Thus if #(y[z1: @1, -, Tm : ©m, 2 (A(@,1))]) we have that ‘for each o € Z(k) it is
false that #(k, ¢, o) and #(k, 1, o) are both true’.

In other words for each o € Z(k) (#(k, ¢, 0) is false) or (#(k,v,0) is false).
In other words for each o € Z(k) P (#(k, p,0), P-(#(k,¢,0))).
The last condition clearly implies #(vy[z1: @1, ., Tm : Pm, — (@, 2 (¥))]). O

We can create a set Ryg.1g which is the set of all pairs

(’7["171 TPy Tm L Py (/\(8071/)))]77[331 TPy T L Py (907_‘(1/}))])

such that

e m is a positive integer, x1,...,xp € V, 2; # x; for i # j, o1,...,0m € E,
Hlzi: @1, .. Tm : Om),
i ¢;¢€5(k[$1 :(Pl:"wxm:@m])'

Lemma 10.18 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rip.1g as a rule in our system we also need to show that Rig.1g is r.e..

Lemma 10.19. Ryg.18 S r.e..

Proof. Given a positive integer m and (z1,¢1,-..,Tm,¥m) € Ry we can notice the
following:

o k[r1:¢1,...,Tm o] € K;
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o S(klx1:¢1,...,Tm : om]) is e

o {(21,01, s Ty om)} X S(k[x1: 01, .., Tm : om])? is Tee..

Let’s define

Qm2 = U {1,015+ s Ty @) } X SK[T1 01,0, Tt om))?

(w175017~~~:wM7<P7H)€Rm
Clearly Q2 C (X*)?™ x (X*)? is also r.e..

We now define two functions 81, 2, over (X*)2™ x (X*)2 as follows. Given

(Y1, 01, ¥m, om), (0, 9)) € (B%)P™ x (2%)?
51,m((¢1, P1y- - 7¢m7 Spm)7 ((Pv w)) = ’Y[wl PPL - 7¢m P ¥Pm, (/\((Pa ¢))] :

52,m((¢17801, .. 'awmvwm)a (%¢)) = 7W1 CPL, . 7Q/)m D Pm, (()07 _‘W))] .

All of the two functions we have defined are computable functions from (X*)%™ x
(£%)2 to X*. If we define a function §,, over (£*)?™ x (£*)? as follows:

XU (U RMRAL R

then 6, is a computable function from (X*)?™ x (3*)2 to (2*)?, therefore the set
Dm = {5m((¢17 P1y. .- ﬂpm) Som)7 (¢7¢))| ((1/11, ©1y. .- 7¢m7 ¢m)7 (Soa w)) € Qm,Z}
is a 1.e. subset of (¥*)2.

If we now consider the set (J,,,»; Dp, then this is a r.e. subset of (£%)? and actually
this set is equal to our set R1g.1g which so is r.e. itself.

O]
Then let Rip.18 € R.
Lemma 10.20. Let m be a positive integer. Let x1,...,Tmy1 € V, with x; # x; for
i#j. Let o1,...,0m+1 € E and assume H[x1 : 01, .., Tmt1 : Omt1]-
Define k = k[x1 : ©1,.. ., Tmt1 : ©m+1]. Of course H[x1 : @1,...,Zm : ©m] also

holds, we define h = k[x1 : ¢1,...,%m : om]. Let x € S(h), p € S(k).

Under these assumptions we have

o V({}(@m+1: m+1,9)) € S(h),

o ~(V{}(@ms1: ©mr1,9))) € S(h),

o = (%~ (V({Hzms1 t pmt1,9)))) € S(h),
o Y11, @t o= OG0 (Y{H@ms1 - oma1,9))))] € S(e),
e ~(p) € S(k),

o I({}@m+1: Pmt1,2(9))) € S(h),
o = (G I{HEm41 : et (@) € S(h),
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o Vw11, @ om, = (G (@mar : emt1, (9))))] € S(e).
Moreover if #(7[x1 Py T L Pmy (Xv o (v({}<‘rm+1 CPm+1, @))))]) then

#(7[$1 TP T L Pmy (X?El({}(xm-ﬂ P Pm+1, _'((P))))]) .

Proof. We can rewrite #(vy[z1 : ©1,-+ s Zm : ©m,— 06 (VM Tmt1 : @m+1,9)))])
as

Py({#(h, = (x; ~ (V({}(@m+1 s oma1,0)))) 5 p)| p € E(R)})

Py({ P (#(h, x5 p), # (b, = (V({H(@ma1 2 oma1,0))) . p)) | p €E(R)})

By({P- (#(h, X, p), P~ (#(h,V ({3 (@my1 s omi1,9)),0))) | p € E(R)})

By({P- (#(h, X, p), P~ (Py({#(k, ¢, 0)| 0 € E(k), pEa})))| p€E(h)}) -

We can furtherly express this as

a}),

‘for each p € Z(h) if #(h, x, p) then it is false that (for each o € E(k) such that
p E o #(k,p,0) holds)’,

‘for each p € Z(h) if #(h,x, p) then (there exists 0 € Z(k) such that p C o and
#(k,p,0) is false)’.

We can rewrite #(y[z1 : @1, Tm 2 ©my, — 06 I{H Tmer1 : pmit, 7(9))))]) as

By({#(h, = O, 3{H@m+1 2 emi1, 2(9)))), p)l p € E(R)})

Py({P- (#(h, X, p), #(h, 3({ 3 (@mi1 = omr1,2(0))), p)) | p € E(R)})

By({ P (#(h, x, p), Pa({#(k, ~(9), 0)| o € E(k), pEa})) [ p € E(R)})

Py({ P~ (#(h, x, p), Pa({ P~ (#(k, ¢,0))| 0 € E(k), pEa}))| p € E(R)}) .

This can be furtherly rewritten as

for each p € Z(h) P, (#(h, X, p), Pa({P-(#(k, ¢,0))| 0 € E(k), pTo}))

‘for each p € Z(h) if #(h, x, p) then P3({P-(#(k,p,0))| c € E(k), pC a})’,

‘for each p € E(h) if #(h, x, p) then (there exists o € Z(k) such that p C o and
#(k,p,0) is false)’.

The last condition is clearly ensured by our hypothesis. O
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We can create a set Rig.99 which is the set of all pairs

( YT @1, Tm  Oms = 06 (V{3 (@mt1 + emt1, 9))))]s )
Yz e, am s om, = 06 I{H@ma1  emer1, 2(9))))]

such that

e m is a positive integer, z1,...,Tm41 € V, with ; # ; for i # j, v1,...,om41 €
E, Hlwy: 91,0, Tttt Pml;

o if we define k = k[z1 : ©1,...,Zmy1 : ©my1] and b = k[z1 @ @1, ., T : P

then x € S(h), p € S(k).

Lemma 10.20 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rjg.20 as a rule in our system we also need to show that Rjg.gg is r.e..

Lemma 10.21. Ryg99 S r.e..

Proof. Given a positive integer m and (z1,¢1,. .., Tm+1, Pm+1) € Rmy1 all of the
following sets are r.e.:

o S(klz1: 01,y Zm : om]),
o S(klz1: @1, -, Tm+1 : ©m+1))-

Therefore the following set is also r.e.:
{101, B, emi) I XS (klzy c @1, T s o)X S(k[21 1 01, Tt Oma]) -
Let’s use this temporary definition

Qi1 = U {(z1, 01, Tmt1, Pma1) xSkl @1, Tt o)

(1,015 Tmt1,Pmt1) ERm11

X S(k[x1: 01, Tt Pmt1]))-
With this Q) ;5 is a r.e. subset of (3%)2(mT1) x $* x $*.

We now define two functions 01 ,,, 02, over (E*)Q(mﬂ) x X* x ¥* as follows. Given
((d}l’ P1ye .- ,merla 80m+1)7 X QD) S (E*)z(m+1) X XF X X*

Sm (U1, 01, s U1, Pmt1), Xo @) =
Y1 @15 m s oms = (6 2 (Y Wma1 © @mt1,9))))] -

52,m((w17 P1y- - 7wm+1a SDerl)v X 90) =
’Y[wl FP1 e Ym t Om, (X7 El({}<¢m+1 : me+1,ﬂ(g0))))] :

All of the two functions we have defined are computable functions from (£*)2(m+1) x
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¥* x ¥* to X, If we define a function d,, over (X*)2("+1) x 3% x ¥* as follows:

_ 51,m((1/]17¢17"‘71/}’m+1790m+1)7X7 SO)?
Sm (V1,015 s Vit 1, Pm+1), X5 ) = ( Sam (01, 01, -+ s P ts Pmst)s X @)

then 8, is a computable function from (X*)2(m+1) x ¥* x ¥* to (£*)2, therefore the
set

D, = {5m((7p13 P15 - ,”I,Z)erl, (perl))Xa 90)|((¢17 P1y- - 7¢m+17 Som+1)7X7 (70) € Q;n—i-l,Q}
is a r.e. subset of (3*)2.

If we now consider the set (J,,,~; D then this is a r.e. subset of (£*)2 and actually
this set is equal to our rule Riy99 which so is r.e. itself.

If £ € Rio.20 then there exist a positive integer m, x1,...,Tm4+1 € V, with 2; # z;
for i # 7, ¢1,...,0m+1 € E such that H[z1 : ©1,...,Tm+1 : ©m+1); if we define
k= klzy: o1, .., Tmt1 : ©m+1] and b = Ek[x1 1 @1,...,2y : @] there also exist
x € S(h), ¢ € S(k), &1,&2 € £* such that

e {=(&,8)

e S1=9T1: 01, Tm  Pms— (6 (YV{H(@mr1 : oma1,9))))]5
e Lo =9[1:01, - Tm t Pms = (G I{ (@ma1 : Omr1,(90))))]-

This means that (1,01, .., Tm+1; Pm+1) € Rmt1, X € S(k[z1: 01, ., Tm : ©m]),
¢ € S(klr1: @1, Tmr1 : Pmra])s 50 ((T1, 015+ -+ Tt s Pmt1)s X @) € Qry 00

Moreover

° 51 = 517m((,7;1, ©Oly-- 3y Tmt1, (Pm+1)7X7§0)7
1 52 = 52,m((x1a Ply- oy Tm+1, (Pm—l—l)aXa(P)'

ie. & =0m((z1, 01, Tmi1, Pmt1), X, ) € Din.

Conversely if there exists p > 1 such that & € D, then there exists

((d}lv @1y 7¢p+1a QDP+1)7 X 90) € Q;H_LQ such that
5 = 5])((1:[)17 Plye-ey ¢p+1a Soerl)?Xa SO)

Since ((11, 91, Upt1, Pp+1), Xo 0) € Qpy1o We have (Y1, 01, ., Ypt1, Ppr1) €
Rpv1, x € S(k[th1 01, ¥p 1 pl), 0 € S(k[h1 @1, -, ¥pr1  ppra])-

It follows that 1,...,Yp41 € V, ¥ # ¢; for @« # j, o1,...,0p41 € E,
H[¢13¢1,---,¢p+1isﬂp+ﬂ'

Moreover

51 ((¢17@1a s 7¢ +1, P +1)’X7<10)7 )
= 5 ) AR M ) 9 - 7p p p -
£= (Y11 pt1 Ppr1) X0 9) ( S2.p((1, 01, -+ s Upt1s Pp41), Xo )

_ ( Vb1 = @1, o= (6= (V{3 Wpa1 = 0pr1,0)))],s >
Y1 o1, e, = (6 3{ (pt1 1 wpt1, ()]
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and so £ € Rig.20.

Then let Rip20 € R.

Lemma 10.22. Let m be a positive integer. Let x1,...,xym € V, with z; # x; for
i # 7. Let v1,...,0m € E and assume H[xy : ©1,...,Tpm : ©m]. Define k = k[x; :
Oy -y Tt om] and let o, 9, x € S(k).

Under these assumptions we have

= (A, ¥),x), = (0, = (¥, X)) € S(k),
o Yz1in, T om, = (MA@, ¥), X)) € S(e),
b 7[3’:1:@17"‘71.771:807717 ( ( 7X))]€S(€)

Moreover if #(y[z1 : @1, .., Zm  m, = (A(@, ), X)]) then
#(Yw1 o1 m  oms = (9, (9, 0))])-

Proof. We assume #(v[x1: @1,y Tm : ©m, — (A(,¥), x)]) which can be rewritten

By({#(k, = (A(,¥),x), 0)| o € E(K)})
Py({ P (#(k, M@, ), 0), #(k, X, 0))| 0 € E(k)})

By({ P (PA(#(k, @, 0), #(k, ), 0)), #(k, X, 0))| o € E(k)}) -

Of course we now try to show #(y[z1: ¢1,...,Tm : ©m, — (¢, — (¥, X))]) which in
turn can be rewritten

Py({#(k, = (¢, = (¥,X)),0)| o € E(k)})
By({ P (#(k, 9, 0), #(k, = (¥, X),0))] 0 € E(k)})

PV({P%(#U{? 9070)7 P%(#(kv"%a)v #(k7X7U)))‘ o€ E(k)}) .

Let 0 € Z(k), suppose #(k, p,0) and #(k,1,0), then we have #(k, x, o) and this
completes the proof. O

We can create a set Rig.92 which is the set of all pairs

(’}/[.%'1 PPy s T L Py (/\(Spa ¢),X)],’Y[$1 PPy T L Py (‘Pv_> (waX))])

such that

e m is a positive integer, x1,...,2y € V, 2; # x; for i # j, o1,...,0m € E,
Hlxi:01, T Oml,
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1 SOaT/JaXGS(k'[CUl38017---7513m190m])-

Lemma 10.22 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rjg.22 as a rule in our system we also need to show that Rjgo2 is r.e..

Lemma 10.23. Ryg92 s r.e..

Proof. Given a positive integer m and (z1,¢1,-..,Tm,¥m) € Ry we can notice the
following:

o klx1:¢1,. . T om] € K;
o S(klx1: @1, .., Tm  om]) is 1€
o {(21,01,- s Tm, om)} X S(k[x1: 01,y T om])? is T

Let’s define

Gns= U {@nen.mmen)} x Sz on ot onl)®
(-leSoly-":w'anOM)eRm

Clearly Q3 C (X*)?™ x (£*)3 is also r.e..

We now define two functions 1, d2., over (3%)*™ x (X*)3 as follows. Given
((wlv L1y .- 7wm7 Som)a ((pa 1/}7 X)) € (E*)2m X (Z*)S

51,m((¢1a<,01; v ,lﬂm,SOm)» ((pallv/)?X)) = W’Wl CPL, . 7¢m P Pm, (/\(vaw)aX)] .

62,m((w1a9017 v 7¢m790m)’ (SO»ZZ%X)) = ’YW’I CPL, . ﬂ/Jm P Pm, (QD’_> (@ZJ?X))] .

All of the two functions we have defined are computable functions from (X*)2™ x
(£*)3 to X*. If we define a function d,,, over (3*)*™ x (X*)3 as follows:

{1,910 U gy 000) = ((Gun{{E s e 21000 )

then 6, is a computable function from (X*)?™ x (3*)3 to (¥*)?, therefore the set

Dm = {5m(("¢1;§017 o 7wm790m)7 ((p7w7X))| ((¢1,<P1; v 7wm790m)7 (%%X)) € Qm,3}

is a r.e. subset of (3*)2.

If we now consider the set |, Dy, then this is a r.e. subset of (X*)? and actually
this set is equal to our set R1g.02 which so is r.e. itself. O

Then let Rig92 € R.

Lemma 10.24. Let ¢,1,x € S(e). We have
o — (v, = (¥,x)) € S(e),
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* — (/\(9071?)7)() S S(G)
Moreover if #(— (¢, — (¥, Xx))) then #(— (A (@, 1), x)).

Proof. Suppose #(— (¢, — (1, x))) holds. It can be rewritten

P (#(9), #(= (¥, X))

P (#(), P (#(¥), #(X))) -

In turn, #(— (A(e,v), x)) can be rewritten

P (# (N (@, ), #(X))

P (PA(#(0), # (1)), #(X)) -

Suppose #(p) and #(¢)) both hold, we need to show that #(x) holds. This is
granted by

P (#(), P (#(¥), #(X))) -

We can create a set Rig.24 which is the set of all pairs

< — (o, = (1, X)), )
= (A, 1), X)

such that ¢, 1, x € S(e).

Lemma 10.24 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rip24 as a rule in our system we also need to show that Rigo4 is r.e..

Lemma 10.25. R10‘24 1S T.€.

Proof. Clearly S(e) is .r.e. and so is S(e)3.

Let’s define two functions 6y 1, d2,1 over (£%)3 as follows:

51,1(@71/}7X) =— ((107_> (1/)7X)) y

52,1(@7¢7X) =— (/\((pa ¢)7X) :
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The two functions we have defined are both computable functions from (X*)? to
¥*. If we define a function d; over (3*)3 as follows

_ [ 01a(e, 9, ),
51(@7 1, X) = < 5271(¢7 0, X) )
then 67 is a computable function from (3*)3 to (¥*)?2, therefore the set

Dy = {81(¢, 0, 0)(9, %, x) € S(€)*}

is a r.e. subset of (E*)Q, and D1 is equal to our set Rqg.04 which so is r.e. itself. [

Then let Rip24 € R.

11. Example of a proof

As an example of proof, we want to prove a form of the Bocardo syllogism. In
Ferreir6s’ referenced paper ([4]), on paragraph 3.1, the syllogism is expressed as
follows:

Some A are not B. All C' are B. Therefore, some A are not C.

Suppose A, B and C represent sets, the statement we actually want to prove is the
following;:

If ( (there exists z € A such that = ¢ B) and (for each y € C' y € B) ) then
(there exists z € A such that z ¢ C).

In order to formalize this, we will use a language (V, F,C,#,{D1,....Dp}, ¢maz)
which must be as follows

V = {.T’ y? Z}?
‘F = {_|7 /\7 \/7 %7 H7\v/’ 3’ E’ :}7

C ={A, B,C},
where A, B, C' are constants each representing a set.

Moreover, we do not need the additional sets {Dy, ..., D,} so we can set p = 0 and
we also set a conventional value of 1 for gqz.

At this point we suppose we can formalize the statement as

3({} (= : A= (e (z,B))), et
%(A<v<{}<y:c,e<y,3>>> )73<{}<Z-A’ <e<,c>>>>). (Thy)
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We’ll soon see a proof of this statement and of course if we can show a proof of a
statement then we have also proved the statement is a sentence in our language.

First of all we need the following lemma, that can be applied to any language
which includes all the symbols =, A, V, —, <>, V, 3, € in the set F, and therefore it can
also be applied to our current language.

Lemma 11.1. Let m be a positive integer, x1,...,Tm € V, with x; # x; fori # j. Let
A1, ..., Ay € C such that for eachi = 1...m #(A;) is a set. Let D € C such that #(D)
is a set. We have H[xy : A1, ..., &m : Ap]. If we define k = kl[z1 : A1,...,&m : An)
then for eachi=1...m

e € (z;,D) €S(k),

o for each o € E(k) #(k, € (x;,D),0) = Pe(#(k,zi,0),#(D)).

Proof. We first consider that A; € E(e) and #(A;1) is a set, so Ay € Eg(e) and
H[:Iil : Al] Let k1 = k[xl : Al]

If m > 1 then for each i = 1...m — 1 we suppose H[z; : Ay,...,x; : A;] holds and
we define kz = k[l’l : Al, RN S Az}
Clearly by lemma 9.4 A;11 € E(k;) and for each p € Z(k;) #(ki, Ait1,p) = #(Aiy1)
is a set.
So Aiy1 € Es(k;), which implies H[zxy : Ai,...,zit1 : Ai+1] (and we can define
ki1 =klzy: Ay, i Aigal).

This proves that H[xi : A1, ...,Zm : Ap] holds.

Let i = 1...m. Using lemma 9.1 we obtain that z; € E(k).

Moreover D € E(k) and for each o € Z(k) #(k, D,0) = #(D) is a set. By lemma 9.2
we have

o € (z;,D) € S(k),
o for each 0 € Z(k) #(k, € (zi,D),0) = Pc(#(k,x;,0),#(D)).

O]

In order to provide a proof of statement T°h; we’ll make use of a deductive system
which includes all the axioms and rules listed in section 10.

Using the former lemma we can derive H[z : A] and we can define h = k[z : A].
Moreover € (z,B) € S(h), so =(€ (z,B)) € S(h).

We also have H[z : A,y : C] and we define ky, = k[z : A,y : C].
We have € (y, B) € S(ky) and by lemma 8.21 V({}(y : C, € (y, B))) € S(h).

Thus A (=(€ (z,B)),Y({}(y : C, € (y, B)))) also belongs to S(h).

Moreover H[z : A,z : A] and we define k, = k[x : A,z : A].
We have € (z,C) € S(k,) and by lemma 8.21 V({}(z: 4, € (2,C))) € S(h).

The first sentence in our proof is an instance of axiom Ajg.s.

—(€ (=, B)),
eid— (A " G e w B ’),/\ (€ (=, B)), . (11.1)
7[ ( ( wg}(z:A,ye ) ) ( V{}y: C € (v, B)) )
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By Ajp.2 we also obtain

! [x A (A < ;((f}((;’:%),)é (y, B))) > (€ (fL'aB))ﬂ : (11.2)

By 11.1, 11.2 and rule Rio4
A ( _'(6 (a:,B)), >
T A,—> A V( }(y : C, (g;B))) ’ ,_'(G (:UvB)) : (11'3)

Another instance of Aigo is the following

A( ~(c (2.B)), )
vl A= [ A ({}(y Ce(yB)) ) | V{}=z:4,€(z0)) || (114)
V{}(z: 4,€ (2,0))
By axiom Ajgg we obtain
vz A, € (x, A)]. (11.5)

By 11.5 and rule Rjg.8 we also get
(7562 )

z: A — | A V{}(y: C, (g)/; B)) )’ |,€(z,A) . (11.6)

Since x € E(h), C € Es(h) etc. we can apply rule Ry 10 to 11.4 and 11.6 and obtain
A _\(G (x7B))7 >

z:A— | A V{}y:C,e(y,B)) )’ |,€ (z,0) .
V({}(z: ,C)))

By axiom Aqg.2

! [x A <A ( ;(({e}((;’:@,)’e (y, B))) ) V{3 C e (y,B)))ﬂ . (118)

By 11.1, 11.8 and rule Rjg4

A<ﬁ<e< B)), >
e R S A ROl I

V({}(z:

v

v (11.7)

(11.9)

Since x € E(h), B € E5(h) etc. we can apply rule Ry 19 to 11.7 and 11.9 and obtain

A _‘(E (:1:73))7 )
vylz:A — | A V{}(y:C, GC()%B))) " |.,e(x,B) || . (11.10)



By 11.10, 11.3 and Rip.14

—(€ (=, B)),
v Ao (/\ ( A( Y C. ec(g)/),B))) ) ) ,/\< f(g’(f’)é)) ))] RENGIRT)

A ﬂ(E (:L‘,B)), )
ylz: A=A V{}(y:C,e (y,B))) )’ . (11.12)
V({}(z: A4,€ (2,0)))
By Rio.1s

S PR \;(E(“":%))’e ) OGEAe o) )| (1113)
[ ( ( {Hy: C.e(y,B)))

By Ri0.20

y [az A, (/\ ( \;(({6}((;’:@7)’6 . B)) ) (= A (e (2,0))))>] o (1114)
Since 3({}(z: A,=(€ (2,C)))) € S(h) we can apply Rjp.22 and obtain

o (e (S )] o

Using lemma 11.1 we obtain that € (y, B) € S(k[y : C]) and € (z,C) € S(k[z : A4]).

By lemma 8.21 we obtain that V({}(y : C, € (y, B))) € S(e) and similarly
A{}(z: 4, 2(e (2,0)))) € 5(e).

We can apply rule Ryg.12 to 11.15 and obtain
S <E|({}(x L A,~(€ (,B)))), = ( \;EHEZ ijf((e‘%(i)é))’))) )) (11.16)
Finally, by R10.24, we obtain

({}(@: A, =(e (=,B)))), A (e (s
- </\< V({}y: C (. B))) ),3({}(2 t A, (€ ( ,C))))> (11.17)

We have proved statement Thi, this also means that Th; is a sentence in our
language.
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12. Extending our deductive system

In this section we are going to extend our deductive systems, in other words we are
going to add axioms and rules to some of the deductive sytems D = (A, R) which we
have built in section 10. We are going to do this in order to be able to show another
example of proof in the next section. Our new deductive systems can refer to any
language £ = (V,F,C,#,{D1, ..., Dp}, dmae) such that all of these symbols: N, * are
in our set C, all of these symbols x, ¥, z, u, v, w are in our set V), all of these symbols:
-, A\,V,—, >, V, 3, €,= are in our set F. For each of these operators f A¢(z1,...,%n)
and Py(z1,...,xy) are defined as specified at the beginning of section 3. Moreover we
require p > 1 and D; = N.

The constant symbol N represents the set of natural numbers N, so that we have
#(N) = N.

The symbol x that stands for the product (or multiplication) operation in the
domain N of natural numbers. Therefore #(x) is a function defined on N x N and for

each a, 8 € N #(x)(«, ) is the product of o and (3, in other words #(x)(«, 8) = a- S.

Given a language £ = (V, F,C,#,{D1,...,Dp}, ¢maz) as above, in section 10 we
have defined a deductive system for this language, and we assume that all the axioms
and rules we have defined for that deductive system apply to our new deductive
system. We are now going to add new axioms and rules to our new deductive system.

Lemma 12.1. H[z: N,y : N,z : N,u: N,v: N]| holds.

Proof. Follows from lemma 11.1.

O
Lemma 12.2. Let k € K and p,¢ € E(k). Then
o =(p,¢) € S(k)
e for each o € E(k) #(ka = (901 77/))70—) = (#(ka 2 U) = #(k7wa J)) :
Proof. It’s a simply a case of lemma 8.15. O

Lemma 12.3. Let k € K and let p,v € E(k). Assume for each o € E(k) #(k,p,0) €
N and #(k,v,0) € N, then

o (x)(,¥) € E(k)
o for each o € E(k) #(k, (+)(¢,v),0) = (#(k, p,0) - #(k, ¥, 0)) .

Proof. 1t’s simply a case of lemma 8.17. 0
Lemma 12.4. Let k € K and let ¢ € E(k), then

e € (p,N)e S(k),
o for each o € Z(k) #(k,€ (p,N),0) = Pc(#(k,p,0),N).
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Proof. It’s a simply a case of lemma 8.15. O

Lemma 12.5. Letk =kl[xz: N,y : N,z: N,u: N,v: N|, ¢ € E(k) such that for each
o€ Z(k) #(k,p,0) € N then

o = (y:p) € 5(k)
o = (2,%(y,v)) € S(F)
o = (z.x(.v)) € S(h)

Moreover

# Ol :Ny: Nz:N,u:N,v: N,— (A= (y,9), = (2,9v)),= (2,90))])
18 true.

Proof. By lemma 9.1 y € E(k) and by 12.2 = (y,¢) € S(k).

Moreover by 9.1 v € E(k). If we define k, = k[x : N,y : N,z : N,u : N] then for
each o € E(k) 0 Jdom(k,) € E(kv) and #(k,v,a) S #(kv,N, U/dom(kv)) = #(N) =N.

Similarly by lemma 9.1 if we define k, = k[z : N] then for each o € Z(k) 0 /qom(k,) €
E(ky) and #(k7y7 0) € #(ky7 N7 U/dom(ky)) - #(N) =N

Similarly by the same lemma z € E(k) and if we define k, = k[z : N,y : N] then
for each o € Z(k) 0 /dom(1.) € E(kz) and #(k, 2,0) € #(kz, N, 0 /dgom(i.)) = #(N) = N.

By lemma 12.3 it follows that (x)(y,v) € FE(k) and for each o € Z(k)
#(k, (*)(y;v),0) = (#(k,y,0) - #(k,v,0)) €N .

Similarly (x)(p,v) € E(k) and for each o € Z(k) #(k, (*)(p,v),0) = (#(k,¢,0) -
#(k,v,0)) € N.

By lemma 12.2 = (z,%(y,v)) € S(k) and = (2, *(¢,v)) € S(k).

Clearly it follows that — (A(= (y,¢),= (2,yv)),= (2,¢v)) € S(k) and we can
rewrite

#(7[‘T:va:Naz:N7U:N7U:N7_> (/\(: (y790)7: (Zvyv))7: (Z,QDU))])

as follows
Py({#(k, — (A= (v, 90): = (2,9v)), = (2,9v)) ,0)| 0 € E(K)}) ,

PV({P%(#(I/WA(: (y7 90)7 = (z,yv)),(f),#(k,: (Z,QOU),U))‘ o€ E(k)}) )

for each o € Z(k)
#(k,N(= (y,p),= (2,yv)),0) is false or #(k,= (z,pv),0).

Given o € Z(k) we assume #(k, A(= (y,¢),= (z,yv)),0) holds and want to show
that #(k,= (z,¢v), o) then holds.
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We have

P/\(#(k,: (y7@)70)7#(k7: (Z,y’l)),0'>) ,

P/\(#(k',y,d) = #(k79070—)7 #(k,z,a) = #(k,yv,a)) s

P/\(#(kay70) = #(k,(p,a),#(k,z,a) = #(k7y70) : #(k,v,a)) .

From there it follows that #(k, z,0) = #(k, ¢, 0) - #(k,v,0).
We have shown that #(k,= (z, pv), o) holds, in fact it can be rewritten

#(k7 2, U) = #(ka P, U):

#(k,Z,U) = #(ka%a) ' #(kﬂjvo—) :

We can create a set A125 which is the set of all sentences
Y[z : Nyy: N,z: N,u: Nyo: N,— (A= (y,0),= (z,9v)), = (2, 90))]

such that

e pc E(klx:N,y:N,z: Nyu: N,v:NJ]),
e for each o € Z(k) #(k,p,0) € N .

Lemma 12.5 shows us that this set of sentences (which is a potential axiom) is
‘sound’. In order to use Ajs5 as an axiom in our system we also need to show that
A12_5 isr.e..

Lemma 12.6. A5 is r.e..

Proof. Ais5 is the set of all sentences
Y[x:N,y: N,z: Nyu: N,v: N,— (A= (y,9),= (z,yv)),= (2, pv))]
such that ¢ € Ex(k[z: N,y: N,z: N,u: N,v: NJ).

Let’s define a function n over ¥* with n(¢) = v[z : N,y : N,z : Nyu: N,v: N,—
(/\(: (y7 90)’ = (z,yv)),: (2730’”))]'

Then Aj5 is simply the set {n(y)| ¢ € En(k[z: N,y : N,z: N,u: N,v: NJ)}.

Since En(k[z : N,y : N,z: N,u: N,v: N]) is r.e. then Ao is also r.e..
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Then let Aj55 € A.

Lemma 12.7. Let k=k[x: N,y: N,z: N,u: N,v: N|, x € S(k) then
o = ((zu)v,z(uv)) € S(k)
Moreover
B(le: Ny Nz Nous Nyo: N,— (= (zu)o, a(u))))
18 true.

Proof. By lemma 9.1 u € E(k). If we define k, = k[x : N,y : N,z : N] then for each
o< ‘E(k) O /dom(k.,) S ‘E(ku) and #(k7u7 J) S #(klu N, J/dom(ku)) = #(N) =N

Similarly by 9.1 = € E(k). If we define k;, = € then for each o € E(k)
O dom(k,) € E(kz) and #(k,z,0) € #(kz, N, 0 jdom(k,)) = #(N) = N.

Similarly by 9.1 v € E(k). If we define k, = k[x : N,y : N,z : N,u : N] then for
each o € Z(k) 0 /dom(k,) € E(kv) and #(k,v,0) € #(kv, N, 0 jdom(k,)) = #(N) = N.

By lemma 12.3 (x)(x,u) € E(k) and for each o € ZE(k) #(k,(x)(x,u),0) =
(#(k,x,0) - #(k,u,0)) € N.

Also by lemma 12.3 (x)(zu,v) € E(k) and for each o € Z(k)
#(k, (x)(zu,v),0) = #(k,zu,0) - #(k,v,0) = (#(k,z,0) - #(k,u,0)) - #(k,v,0) .

By lemma 12.3 (x)(u,v) € E(k) and for each o € Z(k) #(k, (x)(u,v),0) =
(#(k,u,0) - #(k,v,0)) € N.

Also by lemma 12.3 (x)(z,uv) € E(k) and for each o € ZE(k)
#(k, () (z,uv),0) = #(k,x,0) - #(k,uv,0) = #(k,x,0) - (#(k,u,0) - #(k,v,0)) .

Clearly it follows that for each o € Z(k)

#(k, (x)(z,uwv),0) = #(k, (x)(zu,v),0) .

By lemma 12.2 it also follows that = ((zu)v,z(uv)) € S(k) and that for each
o € E(k) #(k,= ((zu)v, x(uwv)), o) is true.

Finally we observe that

#(y[z:N,y: Nyz: Nu:N,v: N,— (x,= ((zu)v, x(uv)))])

can be rewritten as

By({#(k, = (06 = ((zw)v, z(wv))) o) 0 € E(K)}) ,
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By({ P (#(k, x; 0), #(k, = ((zu)v, z(w)), 0))| o € E(K)}) ,
for each o € E(k) #(k, x,0) is false or #(k,= ((zu)v, z(uwv)), o).
So we have proved it is true. O
We can create a set Ajo.7 which is the set of all sentences
Y[z : Nyy:N,z:N,u: Nyv: N, — (x,= ((zu)v, x(uv)))]

such that
e x€ S(klz:N,y:N,z: N,u: N,v:NJ]).
Lemma 12.7 shows us that this set of sentences (which is a potential axiom) is

‘sound’. In order to use Ajs7 as an axiom in our system we also need to show that
Aia7isr.e..

Lemma 12.8. A7 is r.e..

Proof. Ais7 is the set of all sentences
Y[z : Nyy: Nyz: Nyu: Nyov: N, — (x,= ((zu)v, x(uv)))]
such that
e x€S(k[z:N,y: N,z:N,u: N,v:N]).
Let’s define a function n over ¥* with
B0 =z Nyy: N,z Nyw: Ny Ny (g = (zu)o, a(u)))]
Then Ajo.7 is simply the set {n(x)| x € S(k[z: N,y: N,z: N,u: N,v: N|)}.
Since S(k[x : N,y : N,z: N,u: N,v: N]) is r.e. then Aj57 is also r.e.. O

Then let A127 € A.

Lemma 12.9. Let m be a positive integer. Let x1,...,2, € V, with x; # x; for
i # j. Let 1,...,0m € E and assume H[x1 : ©1,...,%m : pm]. Define k = klzy :
Oy T t om] and let x € S(k), ¢,1,0 € E(k).

Then
#(7[1;1 Py Tt Pmy, (Xa - (/\ (: (va ¢)1 = (¢79)) ’y = (807 9)))])

Proof. We can rewrite

#(7[331 TPL e T L Pmy, (Xv*> (/\ (: (Qpa ¢)7: (¢79))’: (9079)))])
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as

Py({#(k, = 06 = (A= (0, 9), = (,0)) .= (9,0))),0)| 0 € E(K)}) ,

PV({P%(#(ku X J)? #(ku — (/\ (: ((pa 1/1)7 = (w76)) ’» (907 6)) ?0—))’ o< E(k)}) )

for each o € Z(k) #(k, x,0) is false or
#(k, = (A (= (p,¥), = (¥,0)) ,= (#,0)) ,0).

We can rewrite #(ka_> (/\ (: (9071/])7: (wve)%: (4,0, 9)) 70) as

P—>(#(’£7/\ (: (9071/])7: (%9)) 70)7 #(kv = (9079)70')) )
P—><P/\(#<k7: (¢7¢)7U)7#(k7: (%9)70))7#(/’%: (8070)70')) )

P—>(P/\(#(k7()070) - #(k7¢70)7#(k,¢70) - #(k,9,0>),#(k,(p,0') - #(k,&,a)) )

(#(k,p,0) = #(k,¢,0) and #(k,,0) = #(k,0,0)) is false or
#(k,cp,a) = #(k,Q,O').

It (#(kp,0) = #(kt,0) and #(kp,0) = #(k0,0)) is false then
#(k,— (N= (p,0),= (4,0)),= (¢,0)) ,0) is true.

Otherwise clearly #(k, p,0) = #(k,0,0) holds and so
#(k,— (N= (o,0),= (¢,0)),= (¢,0)) ,0) is true all the same.

O
We can create a set Ajo.9 which is the set of all sentences
’Y[‘Tl TPy T Py (X? — (/\ (: (¢7¢)7 = (¢7 9)) s — (@7 9)))]
such that
e m is a positive integer, x1,...,zp € V, 2; # x; for i # j, o1,...,0m € E,
Hlzi: @1, .. Tm : Om),

o 0, ,0 € E(klx1:¢1,...,Tm : ©m]),
o x €S(k[r1: 01,y Tm : Pm)).

Lemma 12.9 shows us that this set of sentences (which is a potential axiom) is

‘sound’. In order to use Aj29 as an axiom in our system we also need to show that
A12_9 isr.e..

Lemma 12.10. Ajs9 is r.c..

Proof. Given a positive integer m and (1, ¢1,

ey T, ©m) € Ry, we can notice the
following:
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Elx1: @1,y Zm : om] € K;

E(klx1: @1,y Tm : ©m]) s 1€

S(k[x1: @1,y Tm : om]) IS T.e;

{(x1,01, oy Tmyom) } X E(k[z1 @1,y Ty <pm])3 X S(k[x1: @1, s Tm : Om])
isr.e..

So we can define the following

Qm,4: U {(*/L'hgoh"'7xm7¢m)}XE(k[x1 Z§01,...,$m1§0m])3xs(k[$1 :3017"‘7xm:<10m])'

(21,015 Tm Pm) ERm

Clearly Q4 C (X%)2™ x (X*)3 x X* is r.e..

We can define a function 1 over (X*)?™ x (X*)3 x ¥* such that for each
((7/11, P1y- - )wmv Sﬁm), (()Oa ’(/)) 9)5 X) € (E*)Qm X (E*)S x X

77(((1/)17901, cee 7wmv<pm)a (Sﬁﬂl)a@),x)) = 7[x1 TP T L Py (Xa*) (/\ (: (80,7/1),: (%9)) = (5070)))] .

Now n clearly is a computable function and so the set

{77((@1;9017-~-,95m,90m)7(90,1/179),)())’((3317901,--'a$m790m),(80a¢79)aX) € Qm,4}
is a r.e. subset of ¥*. And finally the set

U {77(((9517 P1y--- 5 Tm, (Pm)v (90>wv 0)7)())’ ((xla Ply---5Tm, Som)’ ((pa % 9)7 X) € Qm,4}

m>1

is itself a r.e. set. It should be clear at this point that this set is actually our set
A12,9, and so that A12.9 isr.e.. OJ

Then let Ajo9 € A.

Lemma 12.11. Let m be a positive integer. Let x1,...,zym € V, with x; # x; for
i # j. Let v1,...,0m € E and assume H[xy : ©1,...,Tm : ©m]. Define k = k[x; :
D1y - s Tt m] and let p, 1, x € S(k). Under these assumptions, if

#1101, T ome— (G 9)]),

#Olzr 1wt om, = (06— (9,9))))
then
#Orl1 o1, T t om, = (G Y)))
Proof. We can rewrite
#Olz1 01, Tm t om, = (X 9)])
as
Py({#(k,— (x.¢),0)| 0 €E(k)}) ,
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PV({P%(#(]{:7X7 U)? #(kv 2 U))’ o€ E(k)}) .
We can rewrite
#1010, T om, = (6= (9, 1)])

as

Py({#(k, = (x, = (¢, ¥)) ,0)| 0 € E(K)}) ,
By({P (#(k, x, 0), #(k, = (9, 9),0)) [ 0 € E(R)})

Py({P- (#(k, x,0), P (#(k, 0,0), #(k,¥,0))) | o € E(k)}) .
Finally we can rewrite
#(fy[xl PPy T D Py (val/})])

as

By({#(k, = (. ¥),0)| 0 € E(R)}) ,

By({ P (#(k, x, 0), #(k, ¢, 0))] o € E(k)}) -

If we assume both

#OV[z1 01, Tm  Ome— (G 9)])

#OVw1 @1, Tt o= (X = (0,9))])

then for each o € Z(k)

o #(k,x,0) is false or #(k, ¢, 0) is true,
o #(k,x,0) is false or #(k, ¢, 0) is false or #(k,1,0) is true.

Clearly this implies #(k, x, o) is false or #(k,, o) is true.
Therefore in our assumptions #(y[z1 : ©1,...,ZTm : ©m, — (X, 1)]) holds.

We can create a set Ri2.11 which is the set of all 3-tuples

’7[33‘1 Py T D Pmy, (Xa@)]a
'7[5131 Py Tt Py (X7_> (%W)L
’Y[xl Pl T Py (X7¢)]

such that
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e m is a positive integer, x1,...,zp € V, 2; # x; for i # j, ¢1,...,0m € E,
Hzi: @1, . Tt Oml,
b @aT/JaXGS(/ﬁ[xl28017---,96mf<Pm])-

Lemma 12.11 shows us that this set (which is a potential 2-ary rule) is ‘sound’. In
order to use Rj2.11 as a rule in our system we also need to show that Ri21; is r.e..

Lemma 12.12. R12.11 18 T.€.

Proof. Given a positive integer m and (z1,¢1,-..,Tm,¥m) € Ry we can notice the
following:

d k[xl:(/)h“wxm:%om] € K;
o S(klx1: @1, .., Tm : om]) is e
o {(21,01,- s Tm,om)} X S(k[x1: 01, Tm : om])? is Tee..

Let’s define

Qmsz = U {(z1, 01, Tm, pm)} X S(k[z1 :(pl,...,xm:gom])?’ .
(331%017"':337117<PM)€RW

Clearly Q3 C (X*)?™ x (£*)3 is also r.e..

We now define three functions 61 y,, d2,m, 03.m over (X%)27m x (2*)3 as follows. Given
((1/}17 1y ﬂ/me Qﬁm), (()0’ w7 X)) € (E*)Zm X (E*)3

51,m((¢17§017 .- 'a"/}ma (pm)a (%%X)) - 7[77/}1 L1, 7¢m S Pmy, = (X? (P)] :
62,m((w1a(p17 v ﬂﬁm;@m): ((p7¢7X)) = ’Y[¢1 TP1y . 7¢m P POmy (X7_> (%w))] .

53,m((w179017 <o 7wm790m)7 ((va7X)) = 7[w1 QL. 'al/)m D Pm, (Xvw)] .

All of the three functions we have defined are computable functions from (%*)?™ x
(£*)3 to X*. If we define a function §,, over (X*)?™ x (X*)3 as follows:

51,m((w1a L1y .- ﬂﬁm: Som)a ((pa /‘7/)7 X))v
6m((w1v Ply--y wma me)a (907 ¢a X)) = 52,m((¢17 @1y .- 7wm7 Som)a ((pa ¢7 X))v
53,m((¢17 @1y .- 7wm? Som)a ((pa 77/}7 X))v
then 6, is a computable function from (X*)?™ x (3*)3 to (2*)3, therefore the set
D’m - {5m((¢15 (Y25 P 7¢m7 90m)7 (QO’ ¢7X))| ((wlv @1y .- 71/]7717 ¢m)7 (soa qzva)) € Qm,S}

is a r.e. subset of (3*)3.

If we now consider the set (J,,,»; D, then this is a r.e. subset of (¥*)3 and actually
this set is equal to our set R19.11 which so is r.e. itself. O
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Then let Ri211 € R.

Lemma 12.13. Let k =k[z: N,y : N,z: N,u: N,v: N|, x € S(k), ¢ € E(k) such
that for each o € Z(k) #(k,p,0) € N then

o = (z,mp) € S(k),
e J{}(w: N,= (z,zw))) € S(k).

Under these assumptions if
#(lz:Noy:N,z: Nyu: Nyv: Ny—= (x, = (2,29))])
then
# (e Noy:N,z: Nyu: Nyv: Ny—= (6 3({Hw : N, = (2, 2w))))])
18 true.

Proof. By 9.1 x € E(k). If we define k, = € then for each o € Z(k) 0 /qom(k,) € Z(kz)
and #(k, z,0) € #(kz, N, 0 jdom(k,)) = #(N) = N.

By lemma 12.3 it follows that (x)(z,¢) € E(k) and for each o € Z(k)
#(kv (*)(l'a @)?O-) = (#(kvl‘a U) ) #(ka @, U)) eN.

By 9.1 z € E(k), so we can apply lemma 12.2 and obtain that = (z,xp) belongs
to S(k).

Let h = k+ < w, N >, we have N € E(k) and for each o € Z(k) #(k,N,0) =
#(N) =N. So N € E (k). Moreover w € (V — var(k)) so by lemma 8.21 h € K.

We now want to show that = (z, zw) belongs to S(h). Since N € E(k) we have
Hlx:N,y:N,z: N,u: N,v: N,w: N|. We have

kElx : N,y:N,z: Nyju: N,v: Nyw: N| =k+ <w,N >=h..

Using lemma 9.1 we obtain that z,z,w € E(h). If we define h, = € then for each
p e E(h> P/dom(hs) € E(hm) and #(haxap) € #(hl":Na p/dom(hﬁ)) = #(N) =N.

Moreover for each p € Z(h) paomy € Z(k) #(hw,p) € #E N, pjaom) =
#(N) =N,

By lemma 12.3 it follows that (%)(x,w) € FE(h) and for each p € Z=(h)
#(h’ (*)(CE’ w)ap) = (#(ha :l:?p) ’ #(ha w, p)) eN.
By lemma 12.2 = (z, zw) belongs to S(h). We can now apply lemma 8.21 and obtain

that 3({}(w : N,= (z,2w))) € S(k) and for each o € Z(k)
#(k, 3{Hw: N, = (z,2w))), 0) = Pa({#(h, = (z,2w), p)| p € E(h), 0 E p}) .

We can rewrite

#(y[z: N,y : N,z: Nyu:N,v: N,— (x,= (z,29))])
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as:

Py({#(k, = (x, = (z,29)) ,0)| 0 € E(K)}) ,

By({P= (#(k, x, 0), #(k, = (z,20),0))| 0 € E(F)})

for each o € Z(k)
#(k,x,0) is false or #(k,= (z,2p),0).

We can rewrite
#(y[z:N,y: Nyz: Nyu:Nyv: N, = (x, 3{Hw : N, = (2,7w))))])
as:

By({#(k, = 06 3{H(w : Ny = (z,2w)))) , 0)| 0 € E(R)})

By({Po (#(k, x, 0), #(k, 3({}(w : N, = (2, 2w))), 0))| 0 € E(K)}) ,

Py({P(#(k, x, 0), Ps({#(h, = (z,2w), p)| p € E(h), 0 E p}))| 0 € E(K)}) ,

for each o € Z(k)
#(k, x,0) is false or P5({#(h,= (z,zw), p)| p € Z(h), o C p}).

We now assume
#(’Y[l‘iN,y:N,Z:N,’U,:N,’U:N,-) (X,:(Z,{I,‘(p))])
and try to prove

#((ylr: N,y:N,z: Nyu:N,v: N,— (x, I{Hw: N,= (z,z2w))))]) .

Let o € Z(k), if #(k, x, o) is false then our proof is already finished. So we assume

#(k,x,0) is true. In this case #(k,= (z,zp), o) holds.
It follows that

#(kvz’o-) = #(kaxwva) = #(kvwva) : #(k,(p,d) .

We have to show there exists p € Z(h) such that o C p and #(h,= (z,zw), p). We

can rewrite #(h,= (z,zw), p) as

#(hvzno) = #(ha IEUJ,p) = #(h,l’,p) ' #(hvva) :

Let’s define p = o + (w, #(k,p,0)). There exists a positive integer n such that
h € K(n). Since h # € we have n > 2 and by lemma 8.1 there exists ¢ < n such
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that h € K(q)". Then there exist g € K(q), ¢ € Es(q,9), a € (V —var(g)) such that
h =g+ < a,¢ > and

E(h) ={6+ (o, 5)[ 6 € E(g),s € #(9,9,0)} .
Now we have also h = k+ < w, N > therefore
E(h) =46+ (w,s)|d € 2(k),s € N}.

It follows that p € Z(h) and moreover

#(ha w, P) = #(hawap)(q+l,h,a) = #(ka ©s 0) :

We have also #(h, z,p) = #(k,z,0). In fact z € E(h) N E(k), k C h, 0 C p and we
can use lemma 8.14. Similarly we obtain #(h,z, p) = #(k,z,0). Since

#(k,z,0) = #(k,z,0) - #(k, 0, 0) .
we have
#(h, z,p) = #(h, z, p) - #(h, w, p) .
and then of course #(h, = (z,zw), p). O

We can create a set Ri2.13 which is the set of all pairs

(fy[a::N,y:N,z:N,u:N,v:N,%(X,:(z,xcp))], >
Y[z :Nyy: Nyz:N,u: Nyv: N, — (x,3{}(w : N, = (2,2w))))]

such that x € S(k), ¢ € E(k) such that for each o € Z(k) #(k,¢,0) € N.

Lemma 12.13 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rj2.13 as a rule in our system we also need to show that Ri213 is r.e..

Lemma 12.14. R12,13 18 T.€..

Proof. Our set Ri2.13 is the set of all pairs

(fy[x:N,y:N,z:N,u:N,v:N,%(X,:(z,xcp))], >
Y[z:Nyy: Nyz:N,u: Nyo: N, — (x,3I{}(w : N, = (z,2w))))]

such that xy € S(k[x : N,y : N,z: N,u: N,v: NJ|), ¢ € Ex(klx : N,y : N,z : N,u :
N,v: NJ).

We now define two functions d1, 62 over (£*)? as follows. Given y, p € ¥*

n(x,e) =[x :N,y: N,z: Nyu: N,v: N,— (x,= (z,2¢))] ,
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do(x, ) =7[x: N,y: N,z: Nyu: N,v: N,— (x, I{Hw : N,= (z,zw))))] .

All of the two functions we have defined are computable functions from (X*)? to
¥*. If we define a function 6 from (X*)2 to (X*)? as follows:

st = (55 )

then ¢ is a computable function from (E*)2 to (E*)Q. We can actually rewrite Ris.13
as

{6(x,9)| (x,p) € S(k[z: N,y : N,z: Nyu: N,v: N|)xEn(k[z : N,y: N,z: Nyu: N,v:N]|}.

Since S(k[x: N,y: N,z: Nyu: N,v: N]) and Ex(k[z: N,y: N,z: Nyu: N,v: N]|
are r.e. then Ry913 is r.e. itself. ]

Then let Ri213 € R.

Lemma 12.15. Let m be a positive integer. Let 1, ..., Tmy1 € V, with x; # x; for
i#j. Let 1,...,0m+1 € E and assume H[x1 : o1, .., Tmt1 : Pmt1]-

Define k = k[x1 : @1, Tmt1 : ©m+1]. Of course H[xy : @1,..., %y : ©m] also
holds, we define h = k[x1 : @1,...,Tm : om]. Let x € S(h) N S(k), ¢ € S(k).

Under these assumptions we have

V({} @ma1 : omt1,9)) € S(h),

= 0GY{H(@mr1 : omt1,9))) € S(h),

Y1 @1, Tm t ems = (G V{3 @mt1 : omt1,9)))] € S(e),
YT o1, Tt f Omr1, — (X 9)] € S(e).

Moreover if #(y[z1: @1, .., Tmi1 : @m+1, — (X, @)]) then

#(’7[1'1 Py Tt Pmy (X,V({}($m+1 : §0m+1380)))]) :

Proof. By lemma 8.21 V({}(zm+1 : @m+1,9)) € S(h), and clearly all the other ‘pre-
liminary’ results hold.

We can rewrite

#(7[331 TP - Tl P, (X#?)])

as

Po({# (b, = (x, ), 0) | o € E(R)})

PV({P—> (# (k7X7 U) ) # (k7 9070—)) ’ o€ E’(k)}) .

We can furtherly express this as
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‘for each 0 € Z(k) P, (# (k,x,0),# (k,,0))’,

‘for each o € Z(k) # (k, x, o) is false or # (k,p,0)’.

We can rewrite

#(’Y[xl TP Tt Pmy, (X,V({}(wm—i-l : (Pm—i-l?(p)))])

as

Py({# (h, = 06V ({} @t - omt150))),0) | p € E(R)})

Py({ P (# (hy x, p) o # (0, Y ({} (B = omt1,0)) 5 0)) | p € E(R)})

By({P~ (3 (h, X, p) s Py ({# (k,p,0) [ 0 € E(k), pEa})) [ peE(h)}) -

We can furtherly express this as
‘for each p € Z(h)
P (# (h.x;p) , Pe ({# (k. p,0) | 0 € E(k), pE a})),

‘for each p € Z(h)
# (h, x, p) is false or Py ({# (k,0,0)| 0 €Z(k), pC o}’

‘for each p € Z(h) # (h, x, p) is false or
for each o € E(k) such that p C o #(k, ¢,0)’.

Let p € Z(h) and # (h, x, p), let o € ZE(k) such that p C o, we want to show that
# (k,p,0) holds. To show this it is clearly enough to show that # (k, x, o) holds. To
do this we can use lemma 8.14. In fact there exists a positive integer n such that
h e K(n), x € E(n,h), k€ K(n), x € E(n,k). Given that p € Z(h), 0 € 2(k), pC o
we can apply that lemma and get #(h, x, p) = #(k, x,0), so #(k, x, o) is proved. [

We can create a set Ri9.15 which is the set of all pairs

( ’Y[Qfl Py T4l :‘Pm+17_>(X7(P)]a )

Yz1 i er, @t om, = (O0G YV H(@ma1 : emt,9)))]

such that

e 'm is a positive integer, x1,...,Zy1 € V, with ; # x; for i # j, o1,...,Qm41 €
E, H[z1: 01, Tmi1 : Pms1l;

o if we define k = k[x1 : ¢©1,...,Tmy1 @ @mt1] and b = k[z1 1 01, ., Tm 1 Om]

then xy € S(h) N S(k), ¢ € S(k).

Lemma 12.15 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rj2.15 as a rule in our system we also need to show that Rjo 15 is r.e..
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Lemma 12.16. Rq5.15 is r.e..

Proof. Given a positive integer m and (z1,¢1,. .., Tm+1, Pm+1) € Rm41 all of the
following sets are r.e.:

o S(klz1: 01, -, Zm : om]),
L S(k[xl CP1y e Tmtl :SOm+1])7
o S(k[r1: @1, Tm o)) N S(E[x1: @1, Tt Pmy])-

Therefore the following set is also r.e.:

{(@1, 01, s Tmat, Pmt1) P X (S(E[x1 2 01, @ 2 0m])NS (B[21 0 01,5+ Zig1  @ms1]))
X S(k[x1: o1, s Tt 2 Pmt]) -

Let’s use this temporary definition

Q;n—i-l,Z = U {(z1, 015 Tmg1, Pmr1) }
(Z1,01 5y Tmt1,Pm+1)ERm+1
X (S(klzr o1, @m tom]) N S(Klz1 01,000 T - Pma])
X S(k[z1: @1, Tmy1 : Omy1]))-

With this Q) , is a r.e. subset of (5%)2(mH1) x £ x $*.

We now define two functions 01 y,, 02, over (E*)Q(mﬂ) X ¥ x ¥ as follows. Given
((wlv L1, .- ’merl’ Som+1)7 X SD) S (E*)Z(m+l) X YF X X*

51,771((1/}179017"'71/}m+17()0m+1)7X730) - ’Y[T/fl : <P17~-a1/1m+1 : (:p’m-‘y-la_> (Xﬂ(p)] .

52,m((’¢1’ P1s--- 7’¢m+1a (perl)a X 90) =
Y1 o1, om0 V({3 (Wmt  omt1, 9)))] -

All of the two functions we have defined are computable functions from (£*)2(m+1) x
¥ x ©* to L. If we define a function 8, over (X*)2(m+1) x ¥* x ©* as follows:

_ 51,m((¢1a§017---,¢m+17$0m+1)7X7 90)3
6m((¢17801,...,¢m+1,¢m+1),X7<P) = ( 52,m((¢1a§017~--a¢m+1v§0m+1)aX7 ©)

then 4, is a computable function from (X*)2(m+1) x ¥* x ¥* to (¥*)2, therefore the
set

Dy = {0m (1,015« Y1, @m+1), X @ ((V1, 015 - Y1, Pmt1)s Xo @) € Qg 2}

is a 1.e. subset of (X*)2.
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If we now consider the set Um>1 D, then this is a r.e. subset of (3*)? and actually
this set is equal to our set R19.15 which so is r.e. itself. ]

Then let Ri5.15 € R.

Lemma 12.17. Let m be a positive integer. Let x1,...,Tmi1 € V, with x; # x; for
i#j. Let 1,...,0m+1 € E and assume H[x1 : o1, .. Tmt1 © Prmt1]-

Define k = klx1 : ¢1,...,Tm+1 : ©m+1]- Of course H[z1 : ©1,...,Tm : ©m] also
holds, we define h = k[x1 : ©1,...,Tm : ©m]. Let x € S(h), p € S(k), ¥ € S(h)NS(k).

Under these assumptions we have

v({}(xrn-i-l D Pm41, (907 w))) € S(h)7

= 06YV{H@mt1 : emt1, = (0,9)))) € S(h),

I{}(@m+1 : Pmt1,9)) € S(h),

- (Xa - (El({}(xm-l—l : <Pm+1790))71/1)) € S(h)

7[561 Py Tt Pmy, (X,V({}(.%’m_H L Pm41, (¢7¢))))] € S(e):
7[371 TP Tm D Pmy <X7_> (El({}(xm-l-l : <Pm+1780)>71/}))] € S(G)

Moreover if #(v[z1: @1, .., Zm : ©m,— GV H @mat1 + @ma1, = (0, 7))))]) then

#Olrr s @1 e @m om, = 06 = BU{HEmt1 2 emt1,9)), ¥))]) -

Proof. Clearly — (p,9) € S(k) and by lemma 8.21

V{}@mi1 : emi1, = (@,9))) € S(h).

Similarly 3{}(Zm+1 : ¢m+1, %)) € S(h) and all the other ‘preliminary’ results hold.

We can rewrite

#FOVr1 @1, = 06 Y HEmt1  omy1, = (0,9))))])

as

By({# (B, = 06V ({3 (@ma s omrrs = (0,9)))) 5 0) [ p € E(R)})

Py({P= (# (h,x, p) s # (B, YV ({} (@1 2 @mr1, = (0,9))),p)) | p€ E(R)}) ,

Py({P= (# (h, x, p) » Py ({4 (K, = (@, 9),0) | 0 € E(k), pEo})) [ peE(R)}) ,

Py({P- (# (h,x, p), Py ({ P (#(k, 0,0), #(k,,0)) | 0 € E(k), pE o})) | peE(R)}) .

We can furtherly express this as
‘for each p € Z(h)
P (# (h, x, p) , By ({ P (#(k, 9, 0), #(k, ¢, 0)) | 0 € B(k), pE a}))’,
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‘for each p € Z(h) # (h, x, p) is false or
Py ({P- (#(k,,0), #(k,1,0)) | 0 € E(k), pC a})’,

‘for each p € Z(h) # (h, x, p) is false or
for each o € Z(k) such that p C o P, (#(k,p,0),#(k,¥,0))’,

‘for each p € Z(h) # (h, x, p) is false or
for each o € Z(k) such that p C o #(k, ¢, 0) is false or #(k,v,0)’.

We can rewrite

#(7[371 TPy T Py (Xa — (3({}(xm+1 : §0m+1790)>71/}))])

as

By({# (h, = (6 = G{}@mi1 : emi1,9)),9)),p) [ p € E(M)})

Py({P= (# (h,x, p) s # (b, = B} (@ms1 2 omt1,9)),9),0)) [ p € E(R)})

PV({P—> (# (h7Xa p) ) P—> (#(h” El({}($m+1 CPm41, <p))’p)a #(h’v %P))) | P € E(h’)}) )
Py({P~ (# (h, X, p) , P (Pa ({# (K, ¢, 0) [ 0 € E(K), p E 0}),#(h ¥, p))) | p € E(R)}) -

We can furtherly express this as
‘for each p € Z(h)
P (# (b x; p), P (Ps ({# (k, ¢, 0) | 0 € E(k), pE o}),#(h, ¥, p)))’,

‘for each p € Z(h) # (h, x, p) is false or
Py (Ps({# (k,p,0) | 0 € Z(k), pE a}), #(h, ¢, p))

‘for each p € Z(h) # (h, x, p) is false or
(P ({# (k,9,0) | 0 € E(K), p T o}) is false or #(h, v, p))".

‘for each p € Z(h) # (h, x, p) is false or
((there exists o € Z(k) such that p C o and # (k, ¢, 0)) is false or #(h, v, p))’.

We now assume

#(7[x1 TPy Tt Py, (X;V({}(l'm-H P Pm+1, (9071/}))))])

and try to prove

#(7[$1 Py Tm Py (X7 — (EI({}(merl P Pm+1, 90))7 ¢))]) :

Let p € ZE(h) and # (h, X, p), suppose there exists ¢ € =(k) such that p C o
and # (k,¢,0). Clearly under our assumptions #(k,,o) holds. We need to prove
#(h,v, p), and to do this we can use lemma 8.14. In fact there exists a positive integer
n such that h € K(n), ¢» € E(n,h), k € K(n), ¢ € E(n,k). Given that p € Z(h),
o € E(k), p C o we can apply that lemma and get #(h, ¥, p) = #(k, 1, 0), s0 #(h, ¥, p)
is proved. O
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We can create a set Ri9.17 which is the set of all pairs

< '7[1‘1 Pl T Py (X?v({}(merl D Pm1, 7 (gp,q]ﬁ) ))]7 >
Ve @m s oms = 06— Q{3 Eme : emi1,9)),¥))]

such that

e m is a positive integer, z1,...,Tm41 € V, with ; # x; for i # j, v1,...,Pm41 €
E, Hlwy: 1, Tttt Oml;

o if we define k = k[z1 : ©1,...,Zmy1 : ©my1] and b = k[z1 @ @1, ., T : P

then x € S(h), ¢ € S(k), ¥ € S(h) N S(k).

Lemma 12.17 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rj2.17 as a rule in our system we also need to show that Rjo 17 is r.e..

Lemma 12.18. Rys.17 is r.e..

Proof. Given a positive integer m and (z1,¢1,- .., Tm+1, Pm+1) € Rmy1 all of the
following sets are r.e.:

o S(klz1: 01, -, Zm : om]),
o S(k[z1:¢1,- - Tmt1 : Pmt1]),
o S(k[r1: @1, Tm o)) N S(K[x1: @1, Tt Pmy])-

Therefore the following set is also r.e.:

{(1"179017 cee )xm—‘rlu@m-i-l)} X S(k[SUl P T - (pm])
X S(k[:cl PPy s T g0m+1])
X (S(k[x1: @1,y Tm s om]) NS(k[z1: 01, o Tmt1 © Pmr1])) -

Let’s use this temporary definition

Q;n+173: U {(55179017-~-al‘m+17‘10m+1)}><5(k[xl :9017"')33”1:80771])

(1,01, Tm41,Pm+1) ERm1
x S(klr1: @1, Zmat © Oma1])
X (S(klz1: @15 mm  om]) N S(k[x1 0 01, Tigr * Pmta])) -

With this @), 5 is a r.e. subset of (5%)2(m+1) x ¥* x $* x ¥*.

We now define two functions 01, d2,, over (E*)2(m+1) x X* x ¥* x ¥* as follows.
Given (1,01, s Va1, Pmi1)s X @, ) € (X%)2MFD 5 3% 5 3% 5 3

51,m((¢}17 P15 .- - 7’(7Z}m+1’ meJrl)a X5 P w) =
Y1 o1, U oms = OV (Wma t omtr, = (0,9))))]
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52,771((1/}17 P1y .- 71/}771-"-17 (pm-i-l)? X5 ¥ 1/}) =
’YWJI TPy 7¢m L Pm, 7 (Xa - (3({}(¢m+1 : @m+17@))77p))] .

All of the two functions we have defined are computable functions from (32*)2(m+1) x
Y x BF x U to X*. If we define a function 4, over (¥*)2(m+1) x ¥* x ¥* x ©* as
follows:

1) m s yoes Pm41y Fm s Xo ¥ )
5m((1/11,@1,'-‘71/Jm+1,<,0m+1)7x, QD,QIZ)) - ( 5;:mggiiaiiaimiiaimiiga);, Zj?zg )

then 8, is a computable function from (£%)2(7+1) x 5% x 2% x £* to (X*)?, therefore
the set

Dm = {5m((¢17 @1, 7wm+17 @m—i—l)vXa @, w)‘((d}l? @1y 71/}m+17 @m—i—l); X5 9071/]) S QIWL+1,3}
is a r.e. subset of (3*)2.

If we now consider the set (J,,,5; D, then this is a r.e. subset of (£*)? and actually
this set is equal to our set R19.17 which so is r.e. itself. O

Then let Ri217 € R.

Lemma 12.19. Let m be a positive integer. Let 1, ..., Tmy1 € V, with x; # x; for
i#j. Let 1,...,0m+1 € E and assume H[x1 : o1, .., Tmt1  Pmt1]-

Define k = k[z1 : ©1,.. ., Tmt1 : ©m+1]. Of course H[xy : @1,..., Ty : ©m] also
holds, we define h = k[x1 : ©1,...,Zm : ©m]. Let p € S(k), ¥ € S(h) N S(k).

Under these assumptions we have

V({}($m+1 S Pmil, ((pa "/}))) € S(h)7

3({}(377?14-1 : (Pm—i-l,(p)) € S(h):

’7[1'1 PPy Tt @m,v({}(xm—i-l S Pmi1, ((pa %/J)))] € 5(6)7
VEr o1, wm s om, = (A{HEmtr  ema1,9)), )] € S(e).

Moreover Zf #(’7[%1 PPy Tt @mvv({}(l'erl P Pm41s (¢7¢)))]) then
#(vlzr s on, s mm  om, = ({3 (@mt1 : emi1, 9)), ¥)]) -
Proof. Clearly — (p,9) € S(k) and by lemma 8.21

V({3 (@ms1 2 @ms1, = (@,9))) € S(h).

Similarly 3({}(zm+1 : ¢m+1,¢)) € S(h) and all the other ‘preliminary’ results hold.

We can rewrite

#2115 Tt m, Y{H(@mt1 © Omt1, = (0,9)))])
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as

By({# (.Y ({} (#mi1 s omrrs = (0,4)))0) [ p € E(R)})

Py(Py ({# (k, = (p,¢),0)| 0 € E(k), pEo})| peE(R)}) ,

Py({Py ({ P (#(k, ¢,0), #(k, ¥, 0)) | 0 € B(k), pEa}) [ peE(h)}) -

We can furtherly express this as
‘for each p € E(h) Py ([P (#(k, 0, 0), #(k,0,0)) | o € Z(k), p C 0},

‘for each p € Z(h)
for each o € E(k) such that p C o P, (#(k, p,0),#(k,¢,0))’,

‘for each p € Z(h)
for each o € Z(k) such that p T o #(k, ¢, 0) is false or #(k,v,0)’.

We can rewrite

#(7[561 TP T D Pmy (3({}<$m+1 P Pm+1, @))ﬂﬂ)])

as

Py({# (h, = A{}@mi1 : emi1,9)),¥),0) | p € E(R)})

Py({ P (#(h, I @mt1 - omr1,9)): 0), # (b0, p)) | p € E(R)})
Py({P (Pa({# (k. ¢, 0) | 0 € E(k), pEo}), #(h v, p)) [ p € E(R)}) -

We can furtherly express this as
‘for each p € Z(h)
Py (Ps({# (k, 0, 0) | 0 € B(k), p E o}),#(h,v,p))’,

‘for each p € Z(h)
(Ps ({(# (k, 9,0) | 0 € S(k), pC o}) s false or #(h 1, )’

‘for each p € Z(h)
((there exists o € Z(k) such that p C o and # (k, ¢, 0)) is false or #(h, v, p))’.

We now assume

#OV[@1 @1, Tt o Y{H@ma1 © @mt1, = (0,9)))])

and try to prove

#(’Y[wl TP Tm Py (El({}($m+1 : §0m+17§0))7w)]) .

Let p € E(h), suppose there exists o € Z(k) such that p C o and # (k, ¢, o). Clearly
under our assumptions #(k,, o) holds. We need to prove #(h, 1, p), and to do this
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we can use lemma 8.14. In fact there exists a positive integer n such that h € K(n),
Y € E(n,h), k € K(n), ¢ € E(n,k). Given that p € Z(h), 0 € E(k), p C o we can
apply that lemma and get #(h, ¢, p) = #(k, v, 0), so #(h, 1), p) is proved. O

We can create a set Ri2.19 which is the set of all pairs

< 7[1'1 PPy Tt (Pm,v({}(fUm_H D Pm+1, (‘Pv¢) )]7 )
’Y[xl Py Tt Pmy (El({}(xm—&-l : 80m+1,<P)>»¢)]

such that

e m is a positive integer, z1,...,Tm41 € V, with ; # x; for i # j, v1,...,Pm41 €
Ea H[xl Py Tl @m-ﬁ-l];

o if we define k = k[x1 : ¢1,...,Zmt1 @ @m+1] and b = k[z1 1 01, ., Tm ¢ Om)]

then ¢ € S(k), ¢ € S(h) N S(k).

Lemma 12.19 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Rj2.19 as a rule in our system we also need to show that Rz 19 is r.e..

Lemma 12.20. Ris.19 s r.€..

Proof. Given a positive integer m and (z1,¢1,- .-, Tm+1, ©m+1) € Rmy1 all of the
following sets are r.e.:

o S(klz1: 01, -, Zm : om]),
o S(klr1: 01, ., Tmi1 : Pma1]),
o S(klz1: @1,y xm :om]) N S(k[z1: @1,y Tmt1 : Om+1))-

Therefore the following set is also r.e.:

{101, Tmpr, emia) } X S(R[21 01,0 T - Pma])
X (S(k[x1: @1,y Tm t om]) NS(k[z1: 01, oy Tmt1 © Pmt1])) -

Let’s use this temporary definition

Qi1 = U {(z1, 01, Tmg1, Omr) XS (k21 0 015 Tt o)

(1,015 Tmt1,Pm+1) ERm41

X (S(klx1: @1, oy Tm tom]) NSK[z1 2 01, oy Tmt1 © Omt1])) -
With this @/, ;5 is a r.e. subset of (3%)2(mT1) x ¥ x ¥*.

We now define two functions 01 ,,, 02, over (E*)Q(mH) X ¥ x ¥* as follows. Given
((d}l’ P1ye .- ,merla Som+1)a P, w) S (2*)2(m+1) X X*x X

61,771((1/]17 P1y .- 7wm+17 (Pm—l-l)a 2 7/1) =
YY1 ens U m, V{E(mar = omir, = (@, 9)))]

178



02,m (V1,015 s Vg1 Pmt1), . ¥) =
Y1 15 m 2 oms = F{3(Wmt1 : omt1,9)),¥)] -

All of the two functions we have defined are computable functions from (2*)2(m+1) x
¥ x ©* to ¥*. If we define a function 6, over (X*)2(m+1) x ¥* x ©* as follows:

5 m ) yr ity M )y ¥m [ ’
SallVrs1e e men)o o) = (G2 e S 20 )

then 6, is a computable function from (X*)2(m+1) x ¥* x ¥* to (¥*)2, therefore the
set

Dp = {5m((¢17 D1y Ymt1, SDm-i—l) ¢)|((¢17 D1y Ymt1, me-i—l)’ 1) ¢) € Q;n+1,2}
is a r.e. subset of (3*)2.

If we now consider the set [J,,,~; Dm then this is a r.e. subset of (£*)2 and actually
this set is equal to our set Rj2.19 which so is r.e. itself. L]

Then let Ri5.19 € R.

Lemma 12.21. Let m be a positive integer. Let x1,...,zym € V, with x; # x; for
i # 7. Let v1,...,0m € E and assume H[xy : ©1,...,Tm : ©m]. Define k = k[x; :
Oy -y Tt om] and let o, 9, x € S(k).
Under these assumptions we have
= (A, 9), x), = (o, = (¥, )) (/;;)

® Y[ p1, s T Oy — (9, (P, X))] €
e Y[T1:p1, .y T Py — (( V), x)] €

S(e)-
Moreover if #(Y[x1: @1, .., Tm : @m, — (@, = (¥, X))]) then
#(7[‘771 TPy Tt Py, (/\(9071/])7X)]>

S (6)

€

Proof. We assume #(v[z1 : ¢1,...,Tm : ©m, — (¢, — (¥, x))]) which can be rewrit-
ten

Py({#(k,— (o, = (¥,X)),0)| 0 € E(k)})

By({ P~ (3 (k, ¢, 0), #(k, = (¢, x), 0))| 0 € E(k)})

Pv({Pﬁ(#(k,QD,O')7P_>(#(IC,¢,O')7 #(kvx’o-)))‘ S E(k)}) ’

‘for each o € Z(k) #(k, p,0) is false or (#(k,v,0) is false or #(k, x,0))’.

We now try to show #(y[z1 : @1, Tm © ©m, = (A(@,1), x)]) which in turn can
be rewritten

By({#(k, = (A(@,¥),x), 0)| o € E(K)})
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By({ P (#(k, A(p, ), 0), #(k, x, 0))] o € E(k)})

PV({P%(PA(#(kvtpaa)a #<k7¢70))7#(k7Xa 0-))’ o€ E’(k)}) )

‘for each o € Z(k) it is false that (#(k, ¢, 0) and #(k,,0)) or #(k, x,0)’.

Let o0 € E(k), let’s also keep in mind that #(k,p, o) is false or #(k,v,0) is false
or #(k,x,0). If #(k,p,0) is false then it is false that (#(k,¢,0) and #(k,v,0)).
Similarly if #(k, 1, o) is false then it is false that (#(k, ¢, o) and #(k,,0)). Finally
if #(k, x, o) holds then it holds itself and what we wanted to show is true. O

We can create a set Ri2.91 which is the set of all pairs

(Y1 s 01, s mm s @ms— (05— (D, X)L YT @15 T T o, — (A9, 90), X))

such that

e m is a positive integer, x1,...,2y € V, 2; # x; for i # j, o1,...,0m € E,
Hlxi:01, T Oml,
1 d %%Xes(k[l‘l1801»-~-al‘m390m])-

Lemma 12.21 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use Ri291 as a rule in our system we also need to show that Rjs91 is r.e..

Lemma 12.22. R12.21 1S T.€..

Proof. Given a positive integer m and (x1,¢1,...,Tm,¥m) € Ry we can notice the
following;:

o klr1:p1,. . Tm: om] € K;
o S(klx1: @1, .., Tm : om]) is T.e;

o {(21,01, s Ty om)} X S(k[x1:Q1,. .. Tm : om])? is Tee..
Let’s define
Qm,3: U {(5517901,~~-7$m790m)}XS(k‘[xl :Qpla--'vxm:som])g .

(xl 7801 sy Lm 790m)6R7n

Clearly Q3 C (X%)?™ x (£*)3 is also r.e..

We now define two functions 81, 2, over (X*)2™ x (X*)3 as follows. Given
((1/}17 P1y. .- 71/}m7 Qﬁm), (@7 ¢7 X)) € (Z*)Qm X (E*)3

51,m((¢1;§017 s 71/]771790771)7 (@7¢7X>) = 7[1/}1 S P 71/]m CPm, (907_> (WX))] :

527m((¢17¢17 ce ﬂpmﬂpm)? (%%X)) = 7[7/]1 L P1y s Um L Omy — (/\((paw)J()] :
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All of the two functions we have defined are computable functions from (X*)2™ x
(¥%)3 to X*. If we define a function §,, over (£*)?™ x (£*)? as follows:

B2, 01, e o) (2 6,00) = (oot ol (00000 )

then 6, is a computable function from (X*)?™ x (3*)3 to (¥*)?, therefore the set
Dm = {6m((1/}17 ©1y .- 71/17717 Som)7 (‘107 ¢7X>)| (("%7 P11y 7wm7 Spm)7 (()Ou w7X)) € Qm,S}
is a 1.e. subset of (X*)2.

If we now consider the set |J,,,; Dy, then this is a r.e. subset of (X*)? and actually
this set is equal to our set R19.91 which so is r.e. itself. O

Then let Ri291 € R.

13. Another proof

For each z,y natural numbers we say that x divides y if there exists a natural number
a such that y = za.

In our example we want to show that for each x,y, z natural numbers if z divides
y and y divides z then x divides z.

Of course, we first need to build an expression in our language to express this. To
build that expression we must add to our language a constant symbol N to represent
the set of natural numbers N, so that we have #(N) = N.

And we need to add another constant symbol in our language. This is the symbol
that stands for the product (or multiplication) operation in the domain N of natural
numbers. Therefore #(x) is a function defined on N x N and for each o, € N
#(*)(a, B) is the product of a and 8, in other words #(*)(a, 8) = a - B.

The set F of operators is the same we have assumed in our former example, so it
must contain all of these symbols: =, A, V, —, <>, V, 3, €, =.

So, in order to formalize our statement and a proof of it, we will use a language
(V,F,C,#,{D1,...,Dp}, Gmaz) which must be as follows
V={z,y,z,u,v,w}.

‘F = {_\? /\7 v? _>7 H7V7 37 67 :}?

C ={N,x};
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Moreover, we need to include the set N of natural numbers in our additional sets,
so let p =1 and D; = N, and we also set a conventional value of 1 for ¢qz-

At this point, the statement we wish to prove is the following;:
~ [z:N,y:N,z:N,H (/\( iggﬁl‘fﬁjiEZ,’i‘((Z;i‘)’f))}’ )73({}(111:N,:(z,*(:v,w)))))} . (Thy)

Let £ = klx : N Nz:N,u:N,v:N].BylemmanuEE()Ifwe
define k, = klz : N y N,z : NJ then for each 0 € Z(k) 0/dgom(r,) € =(ku) and
#(kaua U) € #( us IV, O /dom(k )) = #(N) =N.

Similarly by 9.1 =z € E(k). If we define k;, = € then for each ¢ € Z(k)
0 Jdom(k,) € E’(km) and #(k,.l?,O') € #(kxan O-/dom(kz)) = #(N) =N

By lemma 12.3 it follows that (x)(z,u) € FE(k) and for each o € Z(k)
)

)
#(k, (¥)(z,u),0) = (#(k,z,0) - #(k,u,0)) € N.

The first sentence in our proof is an instance of axiom Ajs 5.

Y[z :N,y: N,z: Nyu: N,v: N,— (A= (y,zu), = (z,yv)), = (z, (zu)v))]  (13.1)

The following also hold:
o A= (y,zu), = (z,yv)) € S(k).
By Ai2.7 we obtain
Y[z :Nyy: N,z: N,u: Nyv: N, — (A= (y,zu),= (z,yv)), = ((zu)v, z(uv)))]
(13.2)
The following also hold:

= (z, (zu)v) € S(k),
= ((zu)v, z(uwv)) € S(k).

By 13.1, 13.2 and rule R10.14
ylz:Nyjy:N,z: Nu: Nyv: N, — </\( z (y, zu), ),/\( z (2, (zu)u), ))] . (13.3)

The following also hold:

e z € E(k),
o (zu)v € E(k),
o z(uv) € E(k).

By axiom Aig.9
o devivos (f (2 ) s (V2GS ) = Gt )]
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The following also hold:
o = (z,z(uww)) € S(k).
By 13.3, 13.4 and rule Ri2.11

~y [m:N,y:N7z:N,u:N,v:N,—> </\< - Eg%} >7: (z,x(uv))ﬂ . (13.5)

The following also hold: (x)(u,v) € E(k) and for each o € E(k)
#(k, (x)(u,v),0) = (#(k,u,0) - #(k,v,0)) € N (cfr lemma 12.7).

By 13.5 and rule Rj2.13

5 {x:N,y:N,z:N,u:N,v:N,% </\< = (y,zu), >,EI({}(w:N,:(z,xw))))]. (13.6)

= (z,yv)

The following also holds: I({}(w : N, = (z,zw))) € S(k) (cfr lemma 12.13).
By 13.6 and rule Ryg.22

~y {x :N,y:N,z:N,u: N,v:N,— (: (y, zu), — < 3:({(;3“)]\[: (2, 2w)) >>] . (13.7)

h = klz : N,y : N,z : Nyu : N]. By lemma 9.1 v € E(h). If we define
hy = klz : N,y : N,z : NJ then for each p € Z(h) p/gom(n,) € Z(hu) and
#(ha U»P) € #(hu,Na p/dom(hu)) = #(N) =N.

Similarly by 9.1 =z € E(h). If we define h, = € then for each p € E(h)
P/dom(h,) € E(h:c) and #(hvxap) € #(hﬂﬁN? p/dom(hx)) = #(N) =N.

By lemma 12.3 it follows that (x)(z,u) € FE(h) and for each p € Z(h)
#(h, () (z,u), p) = (#(h, z, p) - #(h,u, p)) € N.

Still by 9.1 y € E(h) and by lemma 12.2 = (y,zu) € S(h).

By 13.7 and rule Rj2.15

~yle:N,y:N,z:Nu:N,— (: (y,zu),v<{} (v:N,—)( ;(E;Efuv?}V,:(z,xw))) ))))} (13.8)

We now want to prove that I({}Hw : N,= (z,zw))) € S(h). We start by defining
g=h+<w,N >.

We have N € E(h) and for each p € Z(h) #(h,N,p) = #(N) =N. So N € Es(h).
Moreover w € (V — var(h)) so by lemma 8.21 g € K.

We now want to show that = (z,zw) belongs to S(g). Since N € Eg(h) we have
Hlx:N,y:N,z: N,u: N,w: N]. We have

Elx:N,y: N,z: Nyu: Nyw: N]=h+ (w,N)=g .
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Using lemma 9.1 we obtain that z,z,w € FE(g). If we define g, = € then for each
o € E(9) 0/dom(g,) € E(9x) and #(g,7,0) € #(92, N, 0 jdom(g,)) = #(IN) = N.

Moreover for each o € Z(g) 0/gom(n) E(h) #(g,w,0) € #(h, N,0/gomn)) =
#(N) =N,

By lemma 12.3 it follows that (x)(«, ) € FE(g) and for each ¢ € Z(g)
#(g, (%) (z,w),0) = (#(g,2,0) - #(g,w,0)) €

By lemma 12.2 = (z, zw) belongs to S(g).
that 3({}(w : N, = (z,2w))) € S(h).

To sum up we have = (y,zu) € S(h), = (z,yv) € S(k),
A{}Hw: N,= (z,zw))) € S(h) N S(k).

By 13.8 and rule Rj9.17

We can now apply lemma 8.21 and obtain

v {z:N,y .N,z:N,u:N,— <_ (y, 1), — < ggggz%z(éz;v&))))) ))] . (13.9)

Using lemma 7.6, we can rewrite 13.9 as

~ {m :N,y:N,z: N,V ({} (u N, = (: (y, zu), = ( ggggfﬂ%z(é?ivg}))))) ))))} . (13.10)

Let kK = k[z : N,y : N,z : N]. We have proved that
A{}Hw: N,= (z,z2w))) € S(h) and 3({}(v : N,= (z,yv))) € S(h).

We also need to prove that I({}(w : N, = (z,zw))) € S(k)
and ({}(v: N,= (z,yv))) € S(k).
In order to prove I({}(w : N,= (z,zw))) € S(k) we redefine g as K+ < w, N >.

We have N € E(k) and for each p € (k) #(k, N,p) = #(N) =N. So N € E4(k).
Moreover w € (V — var(k)) so by lemma 8.21 g € K.

We now want to show that = (z,zw) belongs to S(g). It follows from lemma 11.1
that H[x : N,y : N,z : N,w: N|. We have

kElx : N,y:N,z: Nyw: N| =r+ <w,N >=g .

Using lemma 9.1 we obtain that z,x,w € FE(g). If we define g, = € then for each
0 € Z(9) 0/dom(g,) € =(9z) and #(g,,0) € #(9z, N, 0 /dom(g,)) = # (V) = N.

Moreover for each o € Z(9) 0/gomx) € E(k) #(g,w,0) € #(K, N, 0 /dom(r)) =
#(N) =N.

By lemma 12.3 it follows that (x)(z, ) € E(g) and for each ¢ € Z(g)
#(9, (%) (z,w),0) = (#(g,2,0) - #(g,w,0)) €

By lemma 12.2 = (z, zw) belongs to S(g).
that 3({}(w : N,= (z,2w))) € S(k).

In order to prove 3({}(v: N,= (z,yv))) € S(k) we redefine g as k+ < v, N >.

We have N € E(k) and for each p € E(k) #(k, N,p) = #(N) =N. So N € E4(k).
Moreover v € (V — var(k)) so by lemma 8.21 g € K.

We can now apply lemma 8.21 and obtain

184



We now want to show that = (z,yv) belongs to S(g). It follows from lemma 11.1
that H[z : N,y : N,z : N,v: N]. We have

Elx : N,y: N,z: Nju: N]=k+ <v,N >=g.

Using lemma 9.1 we obtain that z,y,v € E(g). If we define g, = k[z : N] then for
cach 0 € Z(9) 0/dom(y,) € Z(gy) and #(g,y,0) € #(9y: N, 0 /dom(g,)) = #(N) = N.

Moreover for each o € Z(9) 0/gom(x) € Z(k) #(g,v,0) € #(K,N,0/domx)) =
#(N) =N.

By lemma 12.3 it follows that (x)(y,v) € FE(g) and for each o € ZE(g)
#(9, (%) (y,v),0) = (#(g,y,0) - #(g,v,0)) €N.

By lemma 12.2 = (z, yv) belongs to S(g). We can now apply lemma 8.21 and obtain
that 3({}(v: N,= (z,9v))) € S(k).

Then if we apply rule Ri2.19 to 13.10 we obtain

~ [x N,y N,z: N> (a({}(u LN, = (y,2u))), — ( 3&3&%1(&%% ))] (13.11)

We have also 3({}(u : N,= (y,zu))) € S(k), so if we apply rule Ri291 we finally
obtain

o [m N,y:N,z: N,— (/\( gg‘g&‘jx”:gi’;ﬁ)’)))) ),a({}(w L N,= (z,xw))))}. (13.12)

14. Expression with mixed orders
We mentioned in the introduction that in our system we can express statements in
which both quantifiers over individuals and quantifiers over sets of individuals occur.
We made the simple example of the following statement:

for each subset X of N and for each x € N we have x € X or x ¢ X .

Let’s see how we can map the statement within our system. In our language we
need two constants: N whose meaning is the set of natural numbers, II which has
a predefined meaning of a function that produces the power set of the provided

argument.

The set F of operators is the same we have assumed in our other examples, so it
must contain all of these symbols: -, A, V, —, <>, V, 3, €, =.

So, in order to formalize our statement and a proof of it, we will use a language
(V,F,C,#,{D1,...,Dp}, Gmaz) which must be as follows

V={z,X}.

f = {_‘7 /\7 \/7 %7 <_>7v7 37 E? :}7
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C ={N,I1};

Moreover, we need to include the set N of natural numbers in our additional sets,
so let p=1and D; = N, and we also set a conventional value of 1 for ¢,,qz-

Since N € P(N), N belongs to the domain of II.
With this setup, we can express the statement as follows

vz N, X II(N), V(e (z,X), (€ (z,X)))] .

Let’s now verify this is an expression of our language.
First of all we want to verify that H[x : N, X : II(/V)] holds.
Clearly N € E;(e) so H[z : N] holds.

In order to show that H[z : N,X : II(N)] is true we have to show that
II(N) € Es(k[z : NJ).

We have N € E(k[x : NJ]) and for each 0 € E(k[z : N]) #(k[x : N],N,o0) =
#(N)=Ne P(N).

So we can apply lemma 8.18 and obtain that II(N) € E(k[z : N]) and for each
o € E(klx : N]) #(k[z : N,II(N), 0) = #(I1)(#(k[x : N],N,0)) = P(N).

Therefore II(N) € Eg(k[z : N]) holds and H[x : N, X : II(/V)] holds.

Let now k = k[z : N, X : TI(N)], we try to show that € (z, X) € S(k).

Using lemma 9.1 we obtain that z, X € E(k).

Moreover, let h = k[r : NJ, then for each o € Z(k), 0/4ommn) € =(h) and
#(k,X,0) € #(h,JI(N),0/4omn)) = P(N). Therefore #(k, X,0) is a set, we can
apply lemma 9.2 and obtain that € (z, X) € S(k).

As a consequence of this V(e (z,X), (€ (z,X))) € S(k) and finally

Nz N, X T(N), V(€ (2, X), ~(€ (z, X)))] € S(e) .

15. Further study

Of course, further investigations about our approach to logic can be performed. We
have mentioned in section 8.2 the topic on the completeness or incompleteness of our
deductive systems. Then we have introduced some example of a deductive system.
Some questions that I have not investigated in depth are the following:

e can we describe a deductive system within our logic system as a recursively
axiomatised formal system?
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e given a language that does not include arithmetic, under which conditions, if
any, a deductive system within our logic system is complete?

Another interesting (and not extremely easy) topic is about comparing the
expressive power of our system with the one of standard logic systems.

Another topic to consider is substitution. First-order logic features the notion of
‘substitution’ (see e.g. Enderton’s book [2]). Under appropriate assumptions, we can
apply substitution to a formula ¢ and obtain a new formula ¢f, by replacing the
free occurrences of the variable x by the term ¢. In our approach we could be able to
define a similar notion, with the difference that for us ¢ could be a generic expression.
I have somehow studied how the topic of substitution could be applied to this type of
system, but with respect to a former version of my system. I am rather confident that
general substitution mechanisms can be introduced for this type of logic, but I'm not
sure how much work this would require. After all I suppose the introduction of general
substitution mechanisms could be considered as not being properly a core topic about
this approach, since for instance we can use simplified substitution mechanisms.

Finally, let’s also briefly talk about paradoxes. A paradox is usually a situation
in which a contradiction or inconsistency occurs, in other words a paradox arises
when we can build a sentence ¢ such that both ¢ and —(¢) can be derived. Since our
system is consistent it shouldn’t be possible to have true paradoxes in it. If we have
proved the consistency of our system, what can we do more than this to exclude that
the system is vulnerable to paradoxes?

It could anyway not be wrong to discuss some of the most known paradoxical
arguments to ask ourselves if our system could be vulnerable to one of them.

We begin with Russell’s paradox. Assume we can build the set A of all those sets
X such that X is not a member of X. Clearly, if A € A then A ¢ A and conversely
if A¢ A then A € A. We have proved both A € A and its negation, and this is the
Russell’s paradox.

It seems in our system we cannot generate this paradox since building a set is permitted
only if you rely on already defined sets. When trying to build set A in our language
we could obtain something like this:

{}(=(e (X, X)), X) .

However it is clear this isn’t a legal expression in our language, since in our language
if you want to build a context-independent expression using a variable X, then you
have to assign a domain to X.

Finally we want to examine the liar paradox. Let’s consider how the paradox is
stated in Mendelson’s book.

A man says, ‘I am lying’. If he is lying, then what he says is true, so he is not lying.

If he is not lying, then what he says is false, so he is lying. In any case, he is lying
and he is not lying.
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Mendelson classifies this paradox as a ‘semantic paradox’ because it makes use of
concepts which need not occur within our standard mathematical language. I agree
that, in his formulation, the paradox has some step which seems not mathematically
rigorous.

We'll try to provide a more rigorous wording of the paradox.

Let A be a set, and let § be the condition ‘for each x in A x is false’. Suppose ¢ is
the only member of A. In this case if § is true then it is false; if on the contrary ¢ is
false then it is true.

The explanation of the paradox is the following: simply ¢ cannot be the only item
in set A. In fact, suppose A has only one element, and let’s call it ¢. This implies 9 is
equivalent to ‘p is false’ so it seems acceptable that § is not ¢.

Another approach to the explanation is the following.

If 6 is true then for each x in A x is false, so ¢ is not in A. By contraposition if § is
in A then ¢ is false.

Moreover if § is false and the uniqueness condition ‘for each x in A z = § is
true then ¢ is true, thus if ¢ is false then ‘for each z in A = = ¢’ is false too. By
contraposition if ‘for each x in A x = ¢’ then 0 is true.

Therefore if § is the only element in A then § is true and false at the same time.
This implies 6 cannot be the only item in A.

On the basis of this argument I consider the liar paradox as an apparent paradox
that actually has an explanation. What is the relation between our approach to logic
and the liar paradox?

Standard logic isn’t very suitable to express this paradox. In fact first-order logic is
not designed to construct a condition like our condition ¢ (= ‘for each z in A x is false’),
and moreover, it is clearly not designed to say ‘0 belongs to set A’. These conditions
aren’t plainly leading to inconsistency, so it is desirable they can be expressed in a
general approach to logic. And our system permits to express them. The paradox isn’t
ought to simply using these conditions, it is due to an assumption that is clearly false,
and the so-called paradox is simply the proof of its falseness.

Related to the liar paradox is the Cretan ‘paradox’, which is actually not a proper
paradox, but is perhaps even more ‘unsettling’ and we quote again Mendelson in this

regard: ([5]).

The Cretan “paradox”, known in antiquity, is similar to the Liar Paradox. The Cretan
philosopher Epimenides said, “All Cretans are liars”. If what he said is true, then, since
Epimenides is a Cretan, it must be false. Hence, what he said is false. Thus, there must
be some Cretan who is not a liar. This is not logically impossible, so we do not have
a genuine paradox. However, the fact that the utterance by Epimenides of that false
sentence could imply the existence of some Cretan who is not a liar is rather unsettling.
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If we try to put this argument in a more formal statement, it still refers to a
sentence 0 of the type ‘for each x in A x is false’, where this time A is the set of all the
statements made by a Cretan and ¢ is a member of A. Here if § is true then it is false, so
we have to conclude that ¢ is false, hence there exists x € A such that x is true. As no-
ticed by Mendelson, it can be unsettling to accept this just because J is a member of A.

We can still use an argument we have shown above with respect to the liar paradox:
If § is true then for each x in A x is false, so ¢ is not in A. By contraposition if ¢ is
in A then ¢ is false. And another formulation is the following: ¢ is false or ¢ is not in A.

Let A be a set of true/false statements (think to an actual list of statements) and
0 be the statement ‘for each x in A x is false’. We know from the discussion on the
liar paradox that if A has just one element then § cannot belong to A.

In the case of the Cretan paradox we have that § could belong to A and there
is not a constraint that A has just one element. Is it possible in this case that §
belongs to A? The basic problem is that ¢, if it belongs to A, makes a reference
to itself and this can lead us to suspect that § in this case is not something well defined.

We could therefore conclude that also in this case it cannot be accepted that
belongs to A. In this case we could ‘resolve’ the problem by using axioms like

—(e V{H @ : ¥, ~())), ¥)) ,
for each expression v that represents a set.

If instead we accept the possibility that § belongs to A it is evident that we must
also accept that if 0 belongs to A then it is false, in fact if it were true then it would
not belong to A.

As a conclusion, with respect to paradoxes, we cannot state that our system is
designed to prevent for sure every possible form of paradox, for instance it doesn’t
prevent anyone to conceive something which is unsettling or contradictory. Anyway
although I have made some assessments on the matter, I currently have no reason to
suppose that the system is subject to some paradox.

References

[1] N.J. Cutland, Computability, Cambridge University Press, 1980.

[2] H. Enderton, A Mathematical Introduction to Logic - Second Edition, Academic
Press, 2001 (first edition 1972).

3] W. Ewald, The Emergence of First-Order Logic, The Stanford Encyclopedia
of Philosophy (Spring 2019 Edition), Edward N. Zalta (ed.). Retrieved from
https://plato.stanford.edu/entries/logic-firstorder-emergence/

[4] J. Ferreir6s, The road to modern logic - an interpretation, The Bulletin of Sym-
bolic Logic, Volume 7, Number 4, Dec. 2001.

[5] E. Mendelson, Introduction to Mathematical Logic - Fourth Edition, Chapman
& Hall, 1997 (first edition 1964).

189



