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ABSTRACT
This paper proposes an alternative to standard first-order logic that seeks greater
naturalness, generality, and semantic self-containment. The system removes the first-
order restriction, avoids type hierarchies, and dispenses with external structures,
making the meaning of expressions depend solely on their constituent symbols.
Terms and formulas are unified into a single notion of expression, with set-builder
notation integrated as a primitive construct. Connectives and quantifiers are treated
as operators among others rather than as privileged primitives. The deductive frame-
work is minimal and intuitive, with soundness and consistency established and com-
pleteness examined. While computability requirements may limit universality, the
system offers a unified and potentially more faithful model of human mathematical
deduction, providing an alternative foundation for formal reasoning.
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1. Introduction

This paper outlines a system or approach to mathematical logic which is different
from the standard one. By ‘the standard approach to logic’ I mean the one presented
in chapter 2 of Enderton’s book [2] and there named ‘First-Order Logic’. The same
approach is also outlined in chapter 2 of Mendelson’s book [5], where it is named
‘Quantification Theory’.

An online article by W. Ewald [3], in the Stanford Encyclopedia of Philosophy,
describes the process that led to the establishment of first-order logic as the standard
system of mathematical logic. However, the conclusion is that there are no clear
reasons why this occurred.

How did first-order logic come to be regarded as a privileged logical system—that is,
as (in some sense) the “correct” logic for investigations in foundations of mathematics?
That question, too, is highly complicated. Even after the Gödel results were widely
understood, logicians continued to work in type theory, and it took years before
first-order logic attained canonical status. The transition was gradual, and cannot be
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given a specific date.

First-order logic has been around for many decades, but to date no absolute
evidence has been found that first-order logic is the best possible logic system. In this
regard I may quote a stronger statement at the beginning of Josè Ferreirós’ paper
‘The road to modern logic – an interpretation’ ([4]).

It will be my contention that, contrary to a frequent assumption (at least among
philosophers), First-Order Logic is not a ‘natural unity’, i.e. a system the scope and
limits of which could be justified solely by rational argument.

Honestly, in my opinion, the approach to logic I am going to propose seems to be a
‘natural unity’ much more than first-order logic is. The basic idea behind this system
is indeed to build a logical system that is as natural, general, and absolute as possible,
and to have a faithful model of the human deductive process, as far as possible.

The proposed ‘system’ seems ‘natural’ enough to me in many respects, but I can’t
say for sure it’s a truly general and absolute approach, or the only valid approach
to logic. In fact, for instance, I believe that a logical system must satisfy some
computability requirements. Although computability theory was born in the 1930s,
therefore after mathematical logic and the formalization of first-order logic by Hilbert
and Ackermann, when formalizing a logical system it is not possible to ignore basic
concepts inherent in computability theory. I suspect that this very requirement could
be an obstacle to the possibility of obtaining a general and absolute logical system,
or a unique approach to logic.

Anyway, in our approach we do not want to use some features of first-order logic
which we don’t like, because they make it too ‘limited’ or ‘relative’ without any
obvious necessity.

These features are primarily the constraint on the ‘order’ of the expressions (which
have to be ’first order’ as suggested by the name of the system) and the need of
external ‘structures’ to associate a meaning to the expressions.

Let’s first discuss these two features.

In first-order logic variables range over individuals, but in mathematics there are
statements in which both quantifiers over individuals and quantifiers over sets of
individuals occur. One simple example is the following condition:

for each subset X of N and for each x ∈ N we have x ∈ X or x /∈ X .

We will explicitly show in section 14 that this is a valid expression of our language.
Another example is the condition in which we state that every bounded, non empty
set of real numbers has a supremum. Formalisms which are better suited than
first-order logic to express such conditions are second-order logic and type theory,
but these systems have a certain level of complexity and are based on different types
of variable. In our system we can express the conditions we mentioned above, and
we absolutely don’t need different types of variables, the set to which the quantifier
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refers is explicitly written in the expression, this ultimately makes things easier
and allows a more general approach. If we read the statement of a theorem in a
mathematics book, usually in this statement some variables are introduced, and when
introducing them often the set in which they are varying is explicitly specified, so from
this point of view our approach is consistent with the actual processes of mathematics.

Our logic is not a first-order or second-order or n-order logic, it doesn’t involve
types, so from this point of view it is an ‘absolute’ type of logic.

Let’s examine how our system behaves when giving a meaning and possibly a truth
value to expressions. Standard logic doesn’t plainly associate meanings and truth
values to formulas. It introduces some related notion as the concepts of ‘structure’
(defined in section 2.2 of Enderton’s book), truth in a structure, validity, satisfiability.
Within first-order logic a structure is used, first of all, to define the collection of
things to which a quantifier refers to. Moreover, some symbols such as connectives and
quantifiers have a fixed meaning, while for other symbols the meaning is given by the
structure. Notions such as validity and satisfiability reveal a question-based approach:
‘what happens when we change the meaning of some symbols?’ Although this may
be an interesting perspective, this is not our approach, understanding what happens
when we change the meaning of the symbols does not have a primary interest for us,
although it’s quite obvious that we’ll also try to enunciate some results that are valid
regardless of the meaning of the symbols. In this regard, if we had this perspective,
in the first place it would have to be discussed if there are anyway symbols (e.g.
connectives, quantifiers and others too) whose meaning cannot change.

Therefore, if a symbol is in our system, it has its own meaning, and we don’t feature
a notion of structure like the one of first-order logic. Also, the set of expressions in our
language depends on the meaning of symbols. We’ll simply speak of the meaning of
an expression and when possible of the truth value of that meaning. As we’ve already
said, the meaning of a sentence will depend solely on the meaning of the symbols it
contains, it will not depend on external ‘structures’. Therefore, from this view too,
our logic is an ‘absolute’ type of logic.

We now list other features of our system, pointing out the differences and improve-
ments with respect to standard logic.

In first-order logic there exist two different concepts of term and formula, in place
of these two concepts in our approach we have just one notion of expression. Each
expression is referred to a certain ‘context’. A context can be seen as a (possibly
empty) sequence of ordered pairs (x, φ), where x is a variable and φ is itself an
expression. Given a context k = (x1, φ1) . . . (xm, φm) we call a ‘state on k’ a function
which assigns ‘allowable values’ (we’ll explain this later) to the variables x1, . . . , xm.
If t is an expression with respect to context k and σ is a state on k, we’ll be able to
define the meaning of t with respect to k and σ, which we’ll denote by #(k, t, σ).
Our approach requires to build all at the same time, contexts, expressions, states
and meanings. We’ll call sentences those expressions which are related to an empty
context and whose meaning is true or false. The meaning of a sentence depends solely
on the meaning of the symbols it contains, it doesn’t depend on external ‘structures’.

In first-order logic we have terms and formulas and we cannot apply a predicate to
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one or more formulas, and it seems this can be a limitation. With our system we can
apply predicates to formulas.

When we specify a set in mathematics we often use the ‘set-builder notation’.
Examples of sets defined with this notation are {x ∈ N| ∃y ∈ N : x = 2y},
{x ∈ R|x = x2}, and so on. In our system the set-builder notation is included as an
expression-building pattern, and this is an advantage over standard logic.

Of course in our approach we allow connectives and quantifiers, but unlike
first-order logic these are at the same level of other operators, such as equality,
membership and more. While the set-builder notation is necessarily present with its
role, connectives and quantifiers as ‘operators’ are not strictly mandatory and are
part of a broader category. For instance the universal quantifier simply applies an
operation of logical conjunction to a set of conditions, and so it can be classified as
an operator.

Our deductive system seeks to provide a good model of human mathematical
deductive process. The concept of proof we’ll feature is probably the most simple and
intuitive that comes to mind, we try to anticipate some of it.

If we define S as the set of sentences then an axiom is a subset of S, an n-ary rule
is a subset of Sn+1. If φ is a sentence then a proof of φ is a sequence (ψ1, . . . , ψm) of
sentences such that

• there exists an axiom A such that ψ1 ∈ A ;
• if m > 1 then for each j = 2 . . .m one of the following holds

◦ there exists an axiom A such that ψj ∈ A ,
◦ there exists an n-ary rule R and i1, . . . , in < j such that (ψi1 , . . . , ψin , ψj) ∈
R;

• ψm = φ .

As regards the soundness of the system, it is proved at the beginning of section 7.
Consistency, also proved in section 7, is a direct consequence of soundness. We discuss
(in paragraph 8.2) on the completeness of our deductive systems.

We have examined the main features of the system. If the reader will ask what is the
basic idea behind a system of this type, in agreement with what I said earlier I could
say that the principle is to try to provide something like a general, absolute and uni-
fying approach to logic and a faithful model of human mathematical deductive process.

This statement about our system of course is not a mathematical statement, so I
cannot give a mathematical proof of it. I’m not even sure that I have truly and fully
achieved the declared objectives and that they are fully achievable. A key aspect in
this regard is the computability requirements that a logical system must satisfy, and
in this version of the manuscript we pay due attention to these requirements.

On the other hand, logic exists with the specific primary purpose of being a model
to human deduction. In general, suppose we want to provide a mathematical model of
some process or reality. The fairness of the model can be judged much more through
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experience than through mathematics. In fact, mathematics always has to do with
models and not directly with reality.

This paper’s purpose is to present an approach to logic, but clearly we cannot
provide here all possible explanations and comparisons in any way related to the
approach itself. The author believes that this paper provides a fairly comprehensive
presentation of the approach in question, this introduction includes significant
elements of explanation, justification and comparison with the standard approach to
logic. Other material in this regard is presented in the subsequent parts.

Further investigations on this approach will be conducted, in the future, if and
when possible, by the author and/or other people. If any claim of this introduction
would seem inappropriate, the author is ready to reconsider and possibly fix it. In
any case he believes the most important part of this paper is not in the introduction,
but in the subsequent sections.

The paper is quite long, but the time required to get an idea of the content is not
very high. In fact, the author has chosen to include all the proofs, but quite often they
aren’t difficult proofs. In addition, the most complex part is perhaps definition 6.1
which has a certain complexity, but at a first reading it is not necessary to take care
of all the details.

2. Changes from previous version

Here we describe the main changes of the paper with respect to the previuos version.

First of all, we have introduced computability constraints in the definition of
the system. The process with which we generate expressions in our language is an
inductive process. At each step we must ensure that the set of the new expressions
is a recursive set. This ensures that the global set of expressions is a recursively
enumerable set and so are the set of sentences etc.. We also introduced the constraint
that axioms and rules must be r.e. sets., which seems reasonable.

Besides this we also added a new example of deduction.

3. The language of our logic system

In this section we want to define the language, which is the entity that underlies our
logic system. The language is actually made up of various elements including some
sets of symbols.

First we need a set of symbols V. V members are also called ‘variables’ and
just play the role of variables in the construction of our expressions (this implies
that V members have no meaning associated). We assume V is a finite or countable set.

In addition we need another set of symbols C. C members are also called ‘constants’
and have a meaning. For each c ∈ C we denote by #(c) the meaning of c. We assume
C is a finite set.
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Let f be a member of C. Being f endowed with meaning, f is always an expression
of our language. However, the meaning of f could also be a function. In this case f
can also play the role of an ‘operator’ in the construction of expressions that are more
complex than the simple constant f .

Not all the operators that we need, however, are identifiable as functions. Think
to the logical connectives (logical negation, logical implication, quantifiers, etc..), but
also to the membership predicate ‘∈’ and to the equality predicate ‘=’. The meaning
of these operators cannot be mapped to a precise mathematical object, therefore
these operators won’t have a precise meaning in our language, but we’ll need to give
meaning to the application of the operator to objects, where the operator is applicable.

In mathematics and in the real world objects can have properties, such as having
a certain color, or being true, or being false. A property is therefore something
that can be assigned to an object, no object, more than one object. For example,
with reference to color, one or more objects are red or have the property ‘to be
of red color’. But more generally one or more objects have a color. Suppose to
indicate, for objects x that have a color, the color of x with C(x). So we can
say that C is a property applicable to a class of objects. On the same object
class we can indicate with R(x) the condition ‘x has the red color’. R is in turn
a property applicable to a class of objects, with the characteristic that for all x
R(x) is true or false. A property with this additional feature can be called a ‘predicate’.

The class of objects to which a property may be assigned may be called the domain
of the property. The members of that domain may be individual objects or sequences
of objects, for example, if x is an object and X is a set, the condition ‘x ∈ X’ involves
two objects, and then the domain of the membership property consists of the ordered
pairs (x,X), where x is an object and X is a set.
Generally we are dealing with properties such that the objects of their domain are
all individual objects, or all ordered pairs. Theoretically there may also be properties
such that the objects of their domain are sequences of more than two items or even
the number of items in sequence may be different in different elements of the domain.

As mentioned above the concept of ‘property’ is similar to the concept of function,
but in mathematics there are properties that are not functions. For example, the
condition ‘x ∈ X’ just introduced can be applied to an arbitrary object and an
arbitrary set, so the ‘membership property’ has not a well determined domain and
cannot be considered a function in a strict sense.

So, in order to build our language, we need another set of symbols F , where each
f in F represents a property Pf . Symbols in F are also called operators or ‘property
symbols’. We assume F is a finite set. We will not assign a meaning to operators,
because a property cannot be mapped to a consistent mathematical object (function
or other). However, for each f

• we need to determine a condition Af (x1, . . . , xn) that given a positive integer n
and x1, . . . , xn arbitrary objects indicates if Pf is applicable to x1, . . . , xn. The
condition Af (x1, . . . , xn) does not have to be decidable in an absolute sense,
but it must be so when it is used in the process by which we construct our
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expressions;
• for each positive integer n and x1, . . . , xn arbitrary objects such that
Af (x1, . . . , xn) holds we must be able to calculate the value of Pf (x1, . . . , xn).
This doesn’t mean that Pf must be a computable function in a strict sense, but
we must be able to know the value of Pf (x1, . . . , xn) when this calculation is
required in the construction of our expressions.

We immediately explain these concepts by specifying what are the most important
operators that we may include in our language, providing for each of them the condi-
tions Af (x1, . . . , xn) and Pf (x1, . . . , xn) (in general Pf (x1, . . . , xn) is a generic value,
but in these cases it is a condition, i.e. its value can be true or false).

• Logical conjunction: it’s the symbol ∧ and we have
for n ̸= 2 A∧(x1, . . . , xn) is false ,
A∧(x1, x2) = ( x1 is true or x1 is false ) and ( x2 is true or x2 is false ),
P∧(x1, x2) = both x1 and x2 are true ;

• Logical disjunction: it’s the symbol ∨ and we have
for n ̸= 2 A∨(x1, . . . , xn) is false ,
A∨(x1, x2) = ( x1 is true or x1 is false ) and ( x2 is true or x2 is false ),
P∨(x1, x2) = at least one between x1 and x2 is true ;

• Logical implication: it’s the symbol → and we have
for n ̸= 2 A→(x1, . . . , xn) is false ,
A→(x1, x2) = ( x1 is true or x1 is false ) and ( x2 is true or x2 is false ),
P→(x1, x2) = x1 is false or x2 is true ;

• Double logical implication: it’s the symbol ↔ and we have
for n ̸= 2 A↔(x1, . . . , xn) is false ,
A↔(x1, x2) = ( x1 is true or x1 is false ) and ( x2 is true or x2 is false ),
P↔(x1, x2) = P→(x1, x2) and P→(x2, x1) ;

• Logical negation: it’s the symbol ¬ and we have
for n > 1 A¬(x1, . . . , xn) is false ,
A¬(x1) is true,
P¬(x1) = x1 is false ;

• Universal quantifier: it’s the symbol ∀ and we have
for n > 1 A∀(x1, . . . , xn) is false ,
A∀(x1) = x1 is a set and for each x in x1 (x is true or x is false),
P∀(x1) = for each x in x1 (x is true) .

• Existential quantifier: it’s the symbol ∃ and we have
for n > 1 A∃(x1, . . . , xn) is false ,
A∃(x1) = x1 is a set and for each x in x1 (x is true or x is false),
P∃(x1) = there exists x in x1 such that (x is true) .

• Membership predicate: it’s the symbol ∈ and we have
for n ̸= 2 A∈(x1, . . . , xn) is false ,
A∈(x1, x2) = x2 is a set,
P∈(x1, x2) = x1 is a member of x2 ;

• Equality predicate: it’s the symbol = and we have
for n ̸= 2 A=(x1, . . . , xn) is false ,
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A=(x1, x2) is true,
P=(x1, x2) = x1 is equal to x2 .

In principle we can think and use also other operators, for instance operations
between sets such as union or intersection can be represented through an operator,
etc.. In any case, we must choose our operators in such a way as to guarantee
computability in the construction of our expressions, and for this reason we must
impose limits on the choice of operators. For example, set operators of the type just
mentioned will not be used.

Our set F will typically be contained in the set {¬,∧,∨,→,↔,∀,∃,∈,=}, where
each of the just mentioned symbols has been defined above. However, we want to have
a more general approach than the one in which the operators are explicitly indicated,
so we will also allow other types of operators, as long as they fall into one of the
following categories.

The first admitted category of operators is the category of the symbols f such that

• for n ̸= 2 Af (x1, . . . , xn) is false,
• Af (x1, x2) = ( x1 is true or x1 is false ) and ( x2 is true or x2 is false ),
• Pf (x1, x2) is true or false.

Since for n ̸= 2 Af (x1, . . . , xn) is false, we say the symbols in this category have a
multiplicity of 2.

All of the symbols ∧,∨,→,↔ fall within this category.

Another admitted category of operators is the category of the symbols f such that

• for n > 1 Af (x1, . . . , xn) is false,
• Af (x1) is true,
• Pf (x1) is true or false.

Since for n > 1 Af (x1, . . . , xn) is false, we say the symbols in this category have a
multiplicity of 1.

The symbol ¬ falls within this category.

Another admitted category of operators is the category of the symbols f such that

• for n > 1 Af (x1, . . . , xn) is false,
• Af (x1) = x1 is a set and for each x in x1 (x is true or x is false),
• Pf (x1) is true or false.

Clearly the symbols in this category have a multiplicity of 1.

The symbols ∀, ∃ fall within this category.

Another admitted category of operators is the category of the symbols f such that

• for n ̸= 2 Af (x1, . . . , xn) is false,
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• Af (x1, x2) = x2 is a set,
• Pf (x1, x2) is true or false.

Clearly the symbols in this category have a multiplicity of 2.

The symbol ∈ falls within this category.

Finally, another admitted category of operators is the category of the symbols f
such that

• for n ̸= 2 Af (x1, . . . , xn) is false,
• Af (x1, x2) is true,
• Pf (x1, x2) is true or false.

Clearly the symbols in this category have a multiplicity of 2.

The symbol = falls within this category.

We require that all the symbols in F fall within one of the mentioned categories,
and so they must have a multiplicity of 1 or 2.

In the standard approach to logic, quantifiers are not treated like the other logical
connectives, but in this system we mean to separate the operation of applying a
quantifier from the operation whereby we build the set to which the quantifier
is applied, and therefore the quantifier is treated as the other logical operators
(altogether, the universal quantifier is simply an extension of logical conjunction, the
existential quantifier is simply an extension of logical disjunction).

With regard to the operation of building a set, we need a specific symbol to indicate
that we are doing this, this symbol is the symbol ‘{}’ which we will consider as a
unique symbol.

Besides the set builder symbol, we need parentheses and commas to avoid ambigu-
ity in the reading of our expressions; to this end we use the following symbols: left
parenthesis ‘(’, right parenthesis ‘)’, comma ‘,’ and colon ‘:’. We can indicate this
further set of symbols with Z.

To avoid ambiguity in reading our expressions we require that the sets V, C, F and
Z are disjoint. It’s also requested that a symbol does not correspond to any chain
of more symbols of the language. More generally, given α1, . . . , αn and β1, . . . , βm
symbols of our language, and using the symbol ‘∥’ to indicate the concatenation of
characters and strings, we assume that equality of the two chains α1∥ . . . ∥αn and
β1∥ . . . ∥βm is achieved when and only when m = n and for each i = 1 . . . n αi = βi.
We also specify that by ‘string’ we mean a concatenation of symbols of our language.

While the set Z will be always the same, the sets V, C, F may change according to
what is the language that we describe. If we think to our language as a language as
defined in languages theory, once we have chosen V, C and F the alphabet Σ of our
language is given by Σ = V ∪ C ∪ F ∪ Z.
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Another variable element that we add to our language is made by a finite number
of sets D1, . . . , Dp such that:

• for each i, j = 1 . . . p such that i ̸= j Di ̸= Dj and Di ∩Dj ̸= ∅;
• for each i = 1 . . . p and for each x ∈ Di x is not a set;
• for each i = 1 . . . p and for each x ∈ Di x is not true and x is not false.

Here we have to specify that we can also not need this additional sets and in this
case we can say that p = 0.

A notion that we will soon use in the continuation is the notion of power set. Given
a set A we’ll indicate with P(A) the set of the subsets of A, but in our definition the
empty set will not be a member of P(A), so P(A) for us is the set of the non empty
subsets of A.

We also define Pq(A) for any positive integer q. Of course P1(A) = P(A) by
definition, and given a positive integer q Pq+1(A) = P(Pq(A)).

A specific language of our logic system is described by its variable elements which
are the sets V, C, F , the function # which associates a meaning to every element of C
and in addition the (potentially empty) set of sets {D1, . . . , Dp}. Moreover somewhere
we will be in the condition to define new expressions for our language with reference
to the sets Pq(Di) (or (Pq(Di))

m for m ⩾ 2) where q is potentially unlimited. Since
this could be a problem in the perspective of the recursivity of the set of expressions
that we define, we also need a positive integer qmax which we want to use as an upper
bound of q is this situation.

Therefore our language is identified by the 6-tuple (V,F , C,#, {D1, . . . , Dp}, qmax).
Since the ‘meaning’ of an operator is not a mathematical object, operators must be
seen as symbols which are tightly coupled with their meaning.

We also need to set some constraints on our constants, which must not refer to
the empty set or to a set which has the empty set as a member and so on. In order
to do that we want to define formally some predicates that we’ll soon use in the
continuation. We actually define the following predicates.

Set1(x) = x is a set.

Event1(x) = x is true or x is false.

Given a positive integer q

• Setq+1(x) = x is a set and for each u ∈ x Setq(u);
• Eventq+1(x) = x is a set and for each u ∈ x Eventq(u).

If Set1(x) holds we define

NotEmpty1(x) = (x ̸= ∅).

Given a positive integer q, if Setq+1(x) holds we define
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NotEmptyq+1(x) = NotEmpty1(x) and for each u ∈ x NotEmptyq(u).

The constraints we want to put on our constants can now be stated as follows: for
each c ∈ C

• if Set1(#(c)) then NotEmpty1(#(c));
• for each q > 1 if Setq(#(c)) then NotEmptyq(#(c)).

3.1. Other definitions and results

Before we can describe the process of constructing expressions we still need to
introduce some notation. In fact in that process we’ll use the notion of ‘context’ and
the notion of ‘state’. Context and states have a similar form, here we define a notion
of state-like pair and related results that well’apply to states, but similar definitions
and results will be given for contexts.

We define D = {∅} ∪ {{1, . . . ,m}| m is a positive integer}.

Suppose x is a function whose domain dom(x) belongs to D. Suppose C ∈ D is such
that C ⊆ dom(x). Then we define x/C as a function whose domain is C and such that
for each j ∈ C x/C(j) = x(j) .

Suppose x and φ are two functions with the same domain D, and D ∈ D. Then we
say that (x, φ) is a ‘state-like pair ’.

Given a state-like pair k = (x, φ) the domain of x will be also called the domain of
k. Therefore dom(k) = dom(x) = dom(φ).

Furthermore dom(k) ∈ D and given C ∈ D such that C ⊆ dom(k) we can define
k/C = (x/C , φ/C). Clearly k/C is a state-like pair.

We define R(k) = {k/C | C ∈ D, C ⊆ dom(k)}.

Given another state-like pair h we write h ⊑ k if and only if h ∈ R(k) .

Suppose h ∈ R(k), then there exists C ∈ D such that C ⊆ dom(k), h = k/C =
(x/C , φ/C). Therefore dom(h) = C and k/dom(h) = k/C = h.

Suppose h ∈ R(k) and g ∈ R(h). This means there exist C ∈ D such that
C ⊆ dom(k), h = k/C , and there exist D ∈ D such that D ⊆ dom(h), g = h/D.
So D ⊆ dom(h) = C ⊆ dom(k), g = (k/C)/D = (x/C , φ/C)/D = (x/D, φ/D) = k/D.
Therefore g ∈ R(k).

Suppose k = (x, φ) is a state-like pair whose domain is D. Suppose (y, ψ) is an
ordered pair. Then we can define the ‘addition’ of (y, ψ) to k.
SupposeD = {1, . . . ,m}, then we defineD′ = {1, . . . ,m+1}. We define x′ as a function
whose domain is D′ such that for each α = 1 . . .m x′(α) = x(α), and x′(m+1) = y. We
define φ′ as a function whose domain isD′ such that for each α = 1 . . .m φ′(α) = φ(α),
φ′(m+1) = ψ. Then we define k+(y, ψ) = (x′, φ′). Obviously (k+(y, ψ))/{1,...,m} = k,
so k ∈ R(k + (y, ψ)).
IfD = ∅ then clearlyD′ = {1}. We define x′ as a function whose domain isD′ such that
x′(1) = y. We define φ′ as a function whose domain is D′ such that φ′(1) = ψ. Then
we define k + (y, ψ) = (x′, φ′). Obviously (k + (y, ψ))/∅ = ∅ = k, so k ∈ R(k + (y, ψ)).
In both cases k + (y, ψ) is a state-like pair, and k ∈ R(k + (y, ψ)), which implies
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dom(k) ⊆ dom(k + (y, ψ)).
We have also seen that (k + (y, ψ))/dom(k) = (k + (y, ψ))/D = k.

We also define ϵ = (∅, ∅), so ϵ is a state-like pair.

Given a state-like pair k = (x, φ) we define var(k) as the image of the function
x. In other words if k = ϵ then x = ∅, so var(k) = ∅, otherwise x has a domain
{1, . . . ,m} and var(k) = {xi|i = 1 . . .m}.

Clearly, if we assume that k + (y, ψ) = (x′, φ′), we can easily see that

var(k + (y, ψ)) = {x′i|i ∈ dom(x′i)} = {xi|i ∈ dom(xi)} ∪ {y} = var(k) ∪ {y}.

In the next lemma we prove that, when a state-like pair is obtained as k + (y, ψ),
then k, y, and ψ are univocally determined.

Lemma 3.1. Suppose k1 = (x1, φ1) is a state-like pair whose domain is D1, and
(y1, ψ1) is an ordered pair. Suppose k2 = (x2, φ2) is a state-like pair whose domain
is D2, and (y2, ψ2) is an ordered pair. Finally suppose k1 + (y1, ψ1) = k2 + (y2, ψ2).
Under these assumptions we can prove that k1 = k2, y1 = y2, ψ1 = ψ2.

Proof. We define h = k1 + (y1, ψ1) = k2 + (y2, ψ2). Since h = k1 + (y1, ψ1) we can
have two possibilities:

• D1 = ∅, D′
1 = {1} and there exist two functions x′1 and φ′

1 whose domain is D′
1

such that h = (x′1, φ
′
1) ;

• there exists a positive integer m1 such that D1 = {1, . . . ,m1}, D′
1 = {1, . . . ,m1+

1} and there exist two functions x′1 and φ′
1 whose domain is D′

1 such that h =
(x′1, φ

′
1).

Similarly, since h = k2 + (y2, ψ2) we can have two possibilities:

• D2 = ∅, D′
2 = {1} and there exist two functions x′2 and φ′

2 whose domain is D′
2

such that h = (x′2, φ
′
2) ;

• there exists a positive integer m2 such that D2 = {1, . . . ,m2}, D′
2 = {1, . . . ,m2+

1} and there exist two functions x′2 and φ′
2 whose domain is D′

2 such that h =
(x′2, φ

′
2).

It follows that (x′1, φ
′
1) = h = (x′2, φ

′
2), so x

′
1 = x′2 and φ′

1 = φ′
2, and D

′
1 = D′

2.

Suppose D1 = ∅. This implies that D′
2 = D′

1 = {1}, thus D2 = ∅.
In this case k1 = ϵ = k2, y1 = x′1(1) = x′2(1) = y2, ψ1 = φ′

1(1) = φ′
2(1) = ψ2 .

Suppose there exists a positive integer m1 such that D1 = {1, . . . ,m1}. This implies
that D′

2 = D′
1 = {1, . . . ,m1 + 1}, thus D2 = {1, . . . ,m1}.

In this case for each α = 1 . . .m1 x1(α) = x′1(α) = x′2(α) = x2(α), φ1(α) = φ′
1(α) =

φ′
2(α) = φ2(α) . So k1 = (x1, φ1) = (x2, φ2) = k2; and moreover y1 = x′1(m1 + 1) =

x′2(m1 + 1) = y2, ψ1 = φ′
1(m1 + 1) = φ′

2(m1 + 1) = ψ2 .

Other useful results are the following.
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Lemma 3.2. Suppose h = (x, φ), k = (z, ψ) are state-like pairs such that h ∈ R(k).
Then, for each j ∈ dom(h) xj = zj and φj = ψj.

Proof. There exists C ∈ D such that C ⊆ dom(k), h = k/C = (z/C , ψ/C). Therefore
x = z/C and φ = ψ/C . For each j ∈ dom(h) = C xj = zj and φj = ψj .

Lemma 3.3. Suppose h = (x, φ), k = (z, ψ) are state-like pairs such that h ∈ R(k)
and for each i, j ∈ dom(k) i ̸= j → zi ̸= zj. Then, for each i ∈ dom(k), j ∈ dom(h)
zi = xj → ψi = φj.

Proof. Let i ∈ dom(k), j ∈ dom(h) and zi = xj . Clearly j ∈ dom(k), xj = zj , thus
zi = zj , i = j, φj = ψj = ψi.

Lemma 3.4. Suppose k = (x, φ) and h = (y, ψ) are state-like pairs such that for each
i ∈ dom(k), j ∈ dom(h) xi = yj → φi = ψj. Suppose (u, θ) is an ordered pair and
u /∈ var(k), u /∈ var(h). Let k′ = k + (u, θ) and h′ = h + (u, θ). Let also k′ = (x′, φ′)
and h′ = (y′, ψ′), then for each i ∈ dom(k′), j ∈ dom(h′) x′i = y′j → φ′

i = ψ′
j.

Proof. Let i ∈ dom(k′), j ∈ dom(h′) such that x′i = y′j .

Suppose i ∈ dom(k). If j /∈ dom(h) then x′i = xi ∈ var(k), y′j = u /∈ var(k) so

x′i ̸= y′j . So j ∈ dom(h) and φ′
i = φi = ψj = ψ′

j .

Suppose i /∈ dom(k). If j ∈ dom(h) then x′i = u /∈ var(h) and y′j = yj ∈ var(h), so

x′i ̸= y′j . Then obviously also j /∈ dom(h) and φ′
i = θ = ψ′

j .

Lemma 3.5. Suppose k = (x, φ) and h = (y, ϑ) are state-like pairs such that for
each i ∈ dom(k), j ∈ dom(h) xi = yj → φi = ϑj. Suppose κ = (z, ϕ) ⊑ k and
g = (w, θ) ⊑ h. Then for each i ∈ dom(κ), j ∈ dom(g) zi = wj → ϕi = θj.

Proof. There exists C ∈ D such that C ⊆ dom(k), κ = k/C = (x/C , φ/C). Therefore
dom(κ) = C ⊆ dom(k).

Similarly there exists D ∈ D such that D ⊆ dom(h), g = h/D = (y/D, ϑ/D).
Therefore dom(g) = D ⊆ dom(h).

Let i ∈ dom(κ), j ∈ dom(g), zi = wj , then i ∈ dom(k), j ∈ dom(h),

xi = (x/C)i = zi = wj = (y/D)j = yj .

Then

ϕi = (φ/C)i = φi = ϑj = (ϑ/D)j = θj .

Lemma 3.6. Suppose h = (x, φ) is a state-like pair, (y, ϕ) is an ordered pair and
define k = h+ (y, ϕ). Suppose g ∈ R(k) is such that g ̸= k. Then g ∈ R(h).
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Proof. Let D = dom(h).

Suppose m is a positive integer and D = {1, . . . ,m}. Then k = (x′, φ′) has a domain
{1, . . . ,m+1}. Moreover there exists C ∈ D such that C ⊆ {1, . . . ,m+1} and g = k/C .
Since g ̸= k we must have C ⊆ {1, . . . ,m}. We have

g = k/C = (x′/C , φ
′
/C) = ((x′/D)/C , (φ

′
/D)/C) = (x/C , φ/C) = h/C .

Now suppose D = ∅. Then k = (x′, φ′) has a domain {1}. Moreover there exists
C ∈ D such that C ⊆ {1} and g = k/C . Since g ̸= k we must have C = ∅ and
g = (∅, ∅) = h.

In both cases g ∈ R(h).

Lemma 3.7. Let x be a function such that dom(x) ∈ D, let C,D ∈ D such that
C ⊆ D ⊆ dom(x). Then we can define x/C and (x/D)/C , and we have (x/D)/C = x/C .

Proof. Define y = x/D, we have dom(y) = D and for each j ∈ D y(j) = x(j).
Moreover dom(y/C) = C = dom(x/C) and for each j ∈ dom(C) y/C(j) = y(j) =
x(j) = x/C(j).

Lemma 3.8. Let k = (x, φ) be a state-like pair, let C,D ∈ D such that C ⊆ D ⊆
dom(k). Then we can define k/C and (k/D)/C , and we have (k/D)/C = k/C .

Proof.

(k/D)/C = (x/D, φ/D)/C = ((x/D)/C , (φ/D)/C) = (x/C , φ/C) = k/C .

Lemma 3.9. Let g, h, k be state-like pairs, let g ⊑ h, h ⊑ k. Then g ⊑ k.

Proof. There exists C ∈ D such that C ⊆ dom(h), g = h/C .
There exists D ∈ D such that D ⊆ dom(k), h = k/D.

This implies that C ⊆ dom(h) = D, so g = h/C = (k/D)/C = k/C .

Since C ⊆ dom(k), g ⊑ k.

Lemma 3.10. Let g, h and k = (x, φ) be state-like pairs such that g, h ∈ R(k),
dom(g) ⊆ dom(h). Then g ∈ R(h).

Proof. There exists C ∈ D such that C ⊆ dom(k), g = k/C . And there exists D ∈ D
such that D ⊆ dom(k), h = k/D. It results C = dom(g) ⊆ dom(h) = D. Then, clearly

g = (x, φ)/C = (x/C , φ/C) = ((x/D)/C , (φ/D)/C) = (x/D, φ/D)/C = h/C .

14



Lemma 3.11. Suppose h = (x, φ) is a state-like pair, (y, ϕ) is an ordered pair and
define k = h+ (y, ϕ). Then k/dom(h) = h.

Proof. Let D = dom(h) and k = (x′, φ′). Then k/dom(h) = (x′/D, φ
′
/D) = (x, φ) = h.

We also need some notation referred to generic strings, this notation will be useful
when applied to our expressions, which are non-empty strings. If t is a string we can
indicate with ℓ(t) t’s length, i.e. the number of characters in t. If ℓ(t) > 0 then for
each α ∈ {1, . . . , ℓ(t)} at position α within t there is a character, this symbol will be
indicated with t[α]. We call ‘depth of α within t’ (briefly d(t, α)) the number which is
obtained by subtracting the number of right round brackets ‘)’ that occur in t before
position α from the number of left round brackets ‘(’ that occur in t before position α
.
The following lemma will be useful later within proofs of unique readability. Its proof
is so simple that we feel free to omit it.

Lemma 3.12. Let ϑ, φ, η be strings with ℓ(ϑ) > 0, ℓ(φ) > 0, and let t = ϑ∥φ∥η; let
also α ∈ {1, . . . , ℓ(φ)}. The following result clearly holds:

d(t, ℓ(ϑ) + α) = d(t, ℓ(ϑ) + 1) + d(φ, α).

Before we describe the process of constructing expressions for our language we
must also prove some useful lemmas related to the predicates we have defined above.

Lemma 3.13. Given i = 1 . . . p and a positive integer q, for each x ∈ Pq(Di) we have

• Setq(x),
• for each r > q ¬Setr(x)

Proof. We proceed by induction on q.

Let q = 1. We assume x ∈ P(Di), then clearly Set1(x).

Given a positive integer r, we assume Setr+1(x) and try to derive a contradiction.
Since x ̸= ∅ we can take z ∈ x, we have Setr(z) and z ∈ Di, this actually is a
contradiction. So we have proved ¬(Setr+1(x)).

Let now q be a positive integer and assume for each x ∈ Pq(Di) we have

• Setq(x),
• for each r > q ¬Setr(x).

We want to show that for each x ∈ Pq+1(Di) we have

• Setq+1(x),
• for each r > q + 1 ¬Setr(x).
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We have that x ̸= ∅, for each z ∈ x z ∈ Pq(Di), so for each z ∈ x Setq(z). Therefore
Setq+1(x).

Given a positive integer r > q+1, we assume Setr(x) and try to derive a contradic-
tion. Let z ∈ x, we have z ∈ Pq(Di) and Setr−1(z). Since r− 1 > q ¬Setr−1(z) should
hold, and we have derived a contradiction.

Lemma 3.14. Given i, j = 1 . . . p, q, r positive integers such that q ̸= r Pq(Di) ∩
Pr(Dj) = ∅.

Proof. Let’s suppose, absurdly, x ∈ Pq(Di) ∩ Pr(Dj). Suppose q < r.

Using lemma 3.14 we have both Setr(x) and ¬Setr(x). Therefore we must have
Pq(Di) ∩ Pr(Dj) = ∅.

In the case q > r we can apply the same type of reasoning.

Lemma 3.15. Given i, j = 1 . . . p such that i ̸= j and a positive integer q we have
Pq(Di) ∩ Pq(Dj) = ∅.

Proof. We proceed by induction on q.

Let q = 1. Assume P(Di) ∩ P(Dj) ̸= ∅ and let x ∈ P(Di) ∩ P(Dj).

We have x ̸= ∅, x ⊆ Di, x ⊆ Dj , so x ⊆ Di ∩ Dj , and Di ∩ Dj ̸= ∅, against our
assumptions.

In order to perform the inductive step, let q be a positive integer, we assume
Pq(Di) ∩ Pq(Dj) = ∅ and we try to show Pq+1(Di) ∩ Pq+1(Dj) = ∅.

We assume, absurdly, x ∈ Pq+1(Di) ∩ Pq+1(Dj). We have x ̸= ∅, x ⊆ Pq(Di), x ⊆
Pq(Dj). So x ⊆ Pq(Di) ∩ Pq(Dj) and Pq(Di) ∩ Pq(Dj) ̸= ∅ against our assumptions.

Lemma 3.16. Given i = 1 . . . p and a positive integer q for each x ∈ Pq(Di) and
r ⩽ q we have Setr(x) and NotEmptyr(x).

Proof. We proceed by induction on q.

Let q = 1 and let x ∈ P(Di). Clearly Set1(x) and NotEmpty1(x).

In order to perform the inductive step, let q be a positive integer, we assume for
each x ∈ Pq(Di) and r ⩽ q we have Setr(x) and NotEmptyr(x).

Let now x ∈ Pq+1(Di), we want to show that for each r ⩽ q + 1 we have Setr(x)
and NotEmptyr(x).
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Cleary Set1(x) and NotEmpty1(x) both hold true.

Given r ⩽ q + 1 such that r > 1 we want to prove Setr(x) and NotEmptyr(x).

In order to prove this we just need to prove that for each u ∈ x Setr−1(u) and
NotEmptyr−1(u).

Since x ∈ Pq+1(Di) then x ⊆ Pq(Di) and for each u ∈ x u ∈ Pq(Di). Since r−1 ⩽ q
we have indeed Setr−1(u) and NotEmptyr−1(u).

Lemma 3.17. Given i = 1 . . . p and a positive integer q for each x ∈ Pq(Di) and
r ⩽ q + 1 we have ¬Eventr(x).

Proof. We proceed by induction on q.

Let q = 1. Let x ∈ P(Di), x is a set and I think we can assume ¬Event1(x).
Moreover x ⊆ Di so for each u ∈ x u ∈ Di, for each u ∈ x ¬Event1(x), so it is false
that for each u ∈ x Event1(x), and it follows that ¬(Event2(x)).

For the inductive step, let q be a positive integer and we assume for each x ∈ Pq(Di)
and r ⩽ q+ 1 we have ¬Eventr(x). Let x ∈ Pq+1(Di), let r ⩽ q+ 2, we want to show
that ¬Eventr(x) holds.

If r = 1 since x is a set we can assume ¬Event1(x) holds.

If r > 1 we have x ⊆ Pq(Di), so for each u ∈ x u ∈ Pq(Di), and then for each
u ∈ x ¬Eventr−1(u). So it is false that for each u ∈ x Eventr−1(u), and Eventr(x) is
false.

Lemma 3.18. For each positive integer q and for each x if Eventq+1(x) then Setq(x).

Proof. For the initial step of the proof, if Event2(x) then Set1(x).

For the inductive step, let q > 1 and Eventq+1(x), then x is a set and for each u ∈ x
Eventq(u). It then follows that for each u ∈ x Setq−1(u), and then Setq(x).

Lemma 3.19. Given i = 1 . . . p and a positive integer q for each x ∈ Pq(Di) and
r > q + 1 we have ¬Eventr(x).

Proof. Let x ∈ Pq(Di) and let r > q + 1. Since r − 1 > q by lemma 3.13 ¬Setr−1(x)
and by lemma 3.18 ¬Eventr(x).

4. Computability theory

In our logic system we want to satisfy every requirement that must be desirable
with respect to the Computabilty Theory. In order to be able to understand and
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satisfy such requirements, clearly we must have at least a basic knowledge of the
Computability Theory.

We use Cutland’s book [1] as the main reference for this. The book defines the
concept of computable function: given a set A of natural numbers and a function
f : A → N, we say that f is computable when it is URM-computable. We will not
define here the concept of URM-computability, the reader can find the definition in
the mentioned book.

As suggested by the book we use the symbol C to indicate the set of the computable
functions from a subset of N to N (also called the ‘partial functions’ from N to N).

The book also provides many alternative definitions of the notion of effective
computability and affirms that ‘the remarkable result of investigation by many
researchers is the following: Each of the above proposals for a characterisation of the
notion of effective computability gives rise to the same class of functions, the class
that we have denoted with C ’.

Finally the book also states the famous ‘Church’s thesis’ in the following terms:
‘The intuitively and informally defined class of effectively computable partial functions
coincides exactly with the class C of URM-computable functions’.

If A is a subset of N we can define the characteristic function of A as the function
cA given by: if x ∈ A cA(x) = 1; if x /∈ A cA(x) = 0. Then A is said to be recursive if
cA is computable.

If A is a subset of N we can define the semi-characteristic function of A as the
function sA given by: if x ∈ A sA(x) = 1; if x /∈ A sA(x) is undefined. Then A is said
to be recursively enumerable (r.e.) if sA is computable.

A recursive set is obvioulsy also recursively enumerable.

Given a subset A of N the following statements are equivalent:

• A is r.e.;
• A = ∅ or A is the range of a total computable function;
• A is the range of a partial computable function.

Please refer to Cutland’s book for the proof of the equivalence.

We now state and prove a theorem which is important for us, but is not present in
Cutland’s text.

Theorem 4.1. Let A be a r.e. subset of N, let f be a function defined on A such that
for each x ∈ A f(x) is a r.e. subset of N. Then

⋃
x∈A f(x) is r.e..

Proof. There exists a partial computable function ξ such that A = ran(ξ). For each
x ∈ A there also exists a partial function χx such that f(x) = ran(χx).

Let’s consider the function π : N2 → N (named the Cantor’s pairing function)
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defined by

π(x, y) = (x+ y)(x+ y + 1)/2 + y .

This function is a bijection and the inverse function ζ : N → N2 is a computable
function itself (cfr. Wikipedia ‘https://en.wikipedia.org/wiki/Pairing function’).

Let’s now consider a function ϕ defined over N such that ϕ(z) is calculated as
follows: we first calculate ζ(z) = (z1, z2), then we calculate ξ(z1), if it terminates
ξ(z1) ∈ A and we can set ϕ(z) = χξ(z1)(z2).

The function ϕ is a partial computable function and we can show that⋃
x∈A f(x) = ran(ϕ).

Given y ∈
⋃

x∈A f(x) we will prove that y ∈ ran(ϕ). In fact there exists x ∈ A
such that y ∈ f(x). There exists z1 ∈ N such that x = ξ(z1), and there exists z2 ∈ N
such that y = χx(z2) = χξ(z1)(z2). There exists z ∈ N such that ζ(z) = (z1, z2) and
therefore y = ϕ(z).

Vice versa given y ∈ ran(ϕ) we want to show that y ∈
⋃

x∈A f(x). There exists
z ∈ N such that y = ϕ(z). If we set (z1, z2) = ζ(z) then y = ϕ(z) = χξ(z1)(z2). We
have that ξ(z1) ∈ A and y = χξ(z1)(z2) ∈ f(ξ(z1)).

Our reference book also explains how to apply the definition of computability
and the related ones to a domain D which is different from N. This requires the
availability of a coding.

A coding of a domain D of objects is and explicit and effective injection α : D → N.

We can actually assume that the range of α is N (and in this case α is a bijection)
or at least that ran(α) is recursive.

A partial function f : D → D is coded by the function f∗ = α ◦ f ◦ α−1, so f∗

is a partial function N → N. We say that f is computable if and only if f∗ is computable.

Given a set A ⊆ D we can define A∗ = {α(d)|d ∈ A}. We say that A is recursive
iff A∗ is recursive, and that A is recursively enumerable iff A∗ is recursively enumerable.

Given A ⊆ D we can define the characteristic function of A as the function cA
whose domain is D given by: if x ∈ A cA(x) = 1; if x /∈ A cA(x) = 0. We can also
define the semi-characteristic function of A as the function sA whose domain is A,
such that for each x ∈ A sA(x) = 1.

In relation to the former definitions, we can prove the following lemma.

Lemma 4.2. Let A ⊆ D, then

• A is recursive if and only if cA is computable;
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• A is r.e. if and only if sA is computable.

Proof. First of all we notice that given n ∈ N

• if n ∈ A∗ then α−1(n) ∈ A;
• if α−1(n) ∈ A then n ∈ A∗.

We also notice that given x ∈ D, if x /∈ A then α(x) /∈ A∗. In fact if α(x) ∈ A∗

then there exists y ∈ A such that α(x) = α(y), but since x ̸= y and α is injective we
cannot have α(x) = α(y).

Let’s assume A is recursive, we want to show that cA is computable.

We know that cA∗ is computable. Given x ∈ D

• if x ∈ A then α(x) ∈ A∗ cA(x) = 1 = cA∗(α(x));
• if x /∈ A then α(x) /∈ A∗ cA(x) = 0 = cA∗(α(x)).

Therefore in every case cA(x) = cA∗(α(x)), and then cA is computable.

Vice versa we now assume cA is computable and we want to show that A is recursive.

Given n ∈ N,

• if n /∈ ran(α) we have cran(α)(n) = 0, so cA∗(n) = 0 = cran(α(n).
• if n ∈ ran(α) we have cran(α)(n) = 1 and

◦ if n ∈ A∗ then α−1(n) ∈ A, cA∗(n) = 1 = cA(α
−1(n));

◦ if n /∈ A∗ then α−1(n) /∈ A, cA∗(n) = 0 = cA(α
−1(n)).

Clearly we can compute cA∗(n) as follows:

If cran(α)(n) = 0 then cA∗(n) = 0;

if cran(α)(n) = 1 then cA∗(n) = cA(α
−1(n)).

Let’s assume A is r.e., we wanto to show that sA is computable.

Given x ∈ D,

• if x ∈ A then α(x) ∈ A∗, x ∈ dom(sA), α(x) ∈ dom(sA∗) sA(x) = 1 = sA∗(α(x));
• if if x /∈ A then α(x) /∈ A∗ x /∈ dom(sA), α(x) /∈ dom(sA∗), sA(x) and sA∗(α(x))

are both divergent.

Therefore sA(x) can be calculated by sA∗(α(x)), and sA is computable.

Vice versa we now assume sA is computable and we want to show that A is r.e..

Given n ∈ N,

• if n /∈ ran(α) we have n /∈ A∗ = dom(sA∗), therefore sA∗(n) is divergent, and
sA(α

−1(n)) is divergent too.
• if n ∈ ran(α) we have cran(α)(n) = 1 and
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◦ if n ∈ A∗ then α−1(n) ∈ A, sA∗(n) = 1 = sA(α
−1(n));

◦ if n /∈ A∗ then α−1(n) /∈ A, sA∗(n) and sA(α
−1(n)) are both divergent.

Therefore in all cases sA∗(n) can be calculated as sA(α
−1(n)), and so sA∗ is com-

putable and A is r.e..

In the theorem 4.1 above we proved that a r.e. union of r.e. sets is still a r.e. set.
This theorem was stated for subsets of N, and we will generalize it to generic domains.

Theorem 4.3. Let D1 and D2 be two ‘domains’ to which we can apply the notions of
computability using two codings α1 : D1 → N and α2 : D2 → N. Let A be a r.e. subset
of D1, let f be a function defined on A such that for each x ∈ A f(x) is a r.e. subset
of D2. Then

⋃
x∈A f(x) is a r.e. subset of D2.

Proof. We call W the set
⋃

x∈A f(x) ⊆ D2. We’ll prove that W is r.e. by proving

that W ∗ = {α2(y)|y ∈W} is r.e.. Let’s assume that actually W ∗ =
⋃

z∈A∗ f(α
−1
1 (z))∗.

If the equality we have assumed holds, then we can consider that A∗ is a r.e.
subset of N, and that for each z ∈ A∗ α−1

1 (z) ∈ A, f(α−1
1 (z)) is a r.e. subset of D2,

f(α−1
1 (z))∗ is a r.e. subset of N. Therefore, if the equality holds, we have proved that

W ∗ is r.e. and our proof is finished.

Let’s then show that W ∗ =
⋃

z∈A∗ f(α
−1
1 (z))∗ actually holds.

Let w ∈W ∗ then there exists y ∈W : w = α2(y), and there exists x ∈ A: y ∈ f(x).
Let z = α1(x) ∈ A∗, then y ∈ f(α−1

1 (z)) and w = α2(y) ∈ f(α−1
1 (z))∗. So we can

confirm that w ∈
⋃

z∈A∗ f(α
−1
1 (z))∗.

Conversely let w ∈
⋃

z∈A∗ f(α
−1
1 (z))∗ and we want to prove that w ∈ W ∗. There

exists z ∈ A∗ such that w ∈ f(α−1
1 (z))∗. Let x = α−1

1 (z) ∈ A then w ∈ f(x)∗. Let
y = α−1

2 (w) ∈ f(x). We have y ∈W and so w = α2(y) ∈W ∗.

Typically we will be dealing with a finite or countable alphabet Σ, and the domain
to which we will have to apply the concepts of computability will be the set Σ∗ of
all the empty or finite strings with characters in the mentioned alphabet. But we
may also need to apply those concepts e.g. to (Σ∗)n. So let us examine some sets to
which we can actually apply computability notions, in order to be able to apply such
concepts wherever we need them.

First of all we consider the set N2. There is a coding π : N2 → N and this coding is
the Cantor pairing function defined by

π(k1, k2) = (k1 + k2)(k1 + k2 + 1)/2 + k2 .

So, obviously, we can apply computability notions to N2, and actually we are able
to apply them also to Nn for an arbitrary integer n > 2. In fact if we assume πn is
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a coding Nn → N, with n ⩾ 2, then we can define a function πn+1 : Nn+1 → N as
follows:

πn+1(x1, . . . , xn, xn+1) = π(πn(x1, . . . , xn), xn+1) .

And this function is actually a coding Nn+1 → N.

At this point given n domains D1, . . . , Dn such that for each i = 1 . . . n there exists
a coding αi : Di → N we can build a coding α : D1 × · · · ×Dn → N. Our coding will
be defined as follows:

α(d1, . . . , dn) = πn(α1(d1), . . . , αn(dn)) .

We said earlier that typically we will be dealing with a finite or countable alphabet
Σ, and the domain to which we will have to apply the concepts of computability will
be the set Σ∗. With respect to this, we notice that N can be itself considered as an
alphabet, so we first try to find a coding N∗ → N.

Here we notice that N∗ = {ϵ} ∪
⋃

i⩾1Ni.

We have seen that for each i ⩾ 2 πi is a coding Ni → N, so we can create a coding
γ :

⋃
i⩾1Ni → N2 as follows:

• for each x ∈ N γ(x) = (0, x);
• for each i > 1, (x1, . . . , xi) ∈ Ni γ(x1, . . . , xi) = (i− 1, πi(x1, . . . , xi)).

We now want to create a coding α : N∗ → N. We define our coding α as follows:

• α(ϵ) = 0;
• for each x ∈

⋃
i⩾1Ni α(x) = π2(γ(x)) + 1.

Given a finite or countable alphabet Σ we now want to define a coding Σ∗ → N. Of
course there exists a coding σ : Σ → N. We first want to define a coding δ : Σ∗ → N∗,
and, since Σ∗ = {ϵ} ∪

⋃
i⩾1Σ

i, we can define it as follows.

• δ(ϵ) = ϵ;
• for each i ⩾ 1 (x1, . . . , xi) ∈ Σi δ(x1, . . . , xi) = (σ(x1), . . . , σ(xi)) ∈ Ni.

At this point if α is a coding N∗ → N then γ = α ◦ δ is a coding Σ∗ → N.

We can notice that if Σ is finite then σ is not surjective, and so also δ and γ are
not surjective. Anyway ran(γ) is still recursive since given x ∈ N we can decide
whether x ∈ ran(γ). In order to do this we can calculate α−1(x) ∈ N∗, and here
we can determine if α−1(x) ∈ ran(δ), if this is true since x = α(α−1(x)) then
x ∈ ran(γ). If on the contrary α−1(x) /∈ ran(δ) then x /∈ ran(γ). In fact if x ∈ ran(γ)
then exists y ∈ Σ∗ such that x = γ(y) = α(δ(y)), so α(α−1(x)) = α(δ(y)), and
α−1(x) = δ(y) ∈ ran(δ).

Once we have a coding for Σ∗ we have it also for (Σ∗)n, where n is a positive
integer, and if Γ is another alphabet we have a coding for (Σ∗)n × (Γ∗)m, where m is
another positive integer.
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Given n domains D1, . . . , Dn and given A1 ⊆ D1, . . . , An ⊆ Dn if A1, . . . , An are
r.e. then A1 × · · · × An is also r.e.. In fact given (x1, . . . , xn) ∈ D1 × · · · ×Dn we can
compute sA1×···×An

(x1, . . . , xn) as follows: for each i = 1 . . . n we calculate sAi
(xi)

and if we obtain a result for each i then we emit the result 1.

Given a domain D and a coding α : D → N and given a function f : N → D we
can say that f is computable when α ◦ f : N → N is computable.

We can prove the following lemma:

Lemma 4.4. Given a set A ⊆ D A is r.e. if and only if A = ∅ or there exists a total
computable function f : N → D such that A = ran(f).

Proof. Let A∗ = {α(d)|d ∈ A}.

If A is r.e. then A∗ is r.e. and so A∗ = ∅ or there exists a total computable function
g : N → N such that A∗ = ran(g). If A∗ = ∅ then clearly A = ∅, otherwise since
A∗ ⊆ ran(α) we can define f = α−1 ◦ g, f is a function N → D and ran(f) = A.

In fact if d ∈ ran(f) then there exists x ∈ N: d = α−1(g(x)). We know that
g(x) ∈ A∗ and so d = α−1(g(x)) ∈ A. Conversely if d ∈ A then α(d) ∈ A∗ and there
exists x ∈ N: g(x) = α(d), d = α−1(g(x)) = f(x) ∈ ran(f).

Conversely if A = ∅ then A∗ = ∅, A∗ is r.e. and A is r.e.. If there exists a total
computable function f : N → D such that A = ran(f) then g = α ◦ f : N → N is
computable and A∗ = ran(g).

In fact if y ∈ A∗ then there exists d ∈ A: y = α(d) and there exists x ∈ N:
d = f(x), so y = α(f(x)) ∈ ran(g). Conversely if y ∈ ran(g) then there exists x ∈ N:
y = α(f(x)), and since f(x) ∈ A then y ∈ A∗.

So in the latest case too A∗ is r.e. and A is r.e..

Let D1 and D2 be two ‘domains’ to which we can apply the notions of computability
using two codings α1 : D1 → N and α2 : D2 → N. Using codings, we can define the
notion of ‘computable function’ also for a function f : D1 → D2. We say that f is
computable if and only if α2 ◦ f ◦ α−1

1 : N → N is computable. We can notice that
since the domain of α−1

1 could be a proper subset of N the mentioned function could
actually be a partial function N → N.

Using the just introduced notion, we can prove the following lemma:

Lemma 4.5. Let A be a r.e. subset of D1 and let f : D1 → D2 be a computable
function. If we define B = {f(a)| a ∈ A}, then B ⊆ D2 is r.e..

Proof. If A = ∅ then B = ∅ is r.e..

Otherwise there exists a computable function g : N → D1 such that A = ran(g).
We have f ◦ g : N → D2 and B = ran(f ◦ g).

In fact if d2 ∈ B then there exists a ∈ A such that d2 = f(a) and there exists x ∈ N
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such that a = g(x), so d2 = f(g(x)). Conversely if d2 ∈ ran(f ◦ g) then there exists
x ∈ N such that d2 = f(g(x)), so g(x) ∈ A and d2 = f(g(x)) ∈ B.

5. Premise: description of contexts

We want to be able to show that a certain set of contexts is recursive or recursively
enumerable. To this end we are going to define contexts as strings. Given a finite
or countable alphabet Σ which contains a finite or countable set of variables V, the
symbols ‘:’ and ‘,’ and doesn’t contain the symbols ‘<’ and ‘>’ we can define an
alphabet Γ = Σ ∪ {<,>}.

Let ϵ be the string ‘<>’ and let Θ(Σ,V) (henceforth Θ) be the set

{ϵ} ∪ {<< x1 : φ1 > · · · < xm : φm >> |x1, . . . , xm ∈ V, φ1 . . . φm ∈ Σ∗} .

Lemma 5.1. Let k ∈ Θ−{ϵ}, let m positive integer, x1, . . . , xm ∈ V, φ1, . . . , φm ∈ Σ∗

such that k =<< x1 : φ1 > · · · < xm : φm >>. Let also p positive integer, y1, . . . , yp ∈
V, ψ1, . . . , ψp ∈ Σ∗ such that k =<< y1 : ψ1 > · · · < yp : ψp >>. Then p = m, for
each i = 1 . . .m yi = xi and ψi = φi.

Proof. First of all, as in former parts of the paper, if t is a string we will indicate
with ℓ(t) t’s length, i.e. the number of characters in t.

Also, given α = 1 . . . ℓ(t) let t[α] indicate the character with position α inside t,
and given α, β = 1 . . . ℓ(t) with α ⩽ β let t[α, β] be the substring of t which begins at
character α and ends at character β.

For each i = 1 . . .m let φi = k[αi, µi]. For each j = 1 . . . p let ψj = k[βj , νj ].

Clearly y1 = k[3] = x1.

If ν1 > µ1 then ν1 ⩾ µ1 + 1 > α1 = 5 = β1 so ‘>’ = k[µ1 + 1] is a character in ψ1:
this cannot be true, so ν1 > µ1 is false and similarly µ1 > ν1 is false, so ν1 = µ1 and
it follows that ψ1 = φ1.

If m = 1 then k[µ1 + 2] = ‘>’. In this case if p > 1 then k[ν1 + 2] = ‘<’. Therefore
it must be p = 1 and our proof for m = 1 is finished.

Let’s consider the case m > 1. In this case given i = 1 . . .m− 1 we assume we have
proved that for each j = 1 . . . i p ⩾ j yj = xj , ψj = φj and that νi = µi. We want to
show that p ⩾ i+ 1, yi+1 = xi+1, ψi+1 = φi+1, νi+1 = µi+1.

Since i < m k[µi + 2] = ‘<’, therefore also k[νi + 2] = ‘<’ and this implies that
p ⩾ i+ 1.

We also notice that yi+1 = k[νi + 3] = k[µi + 3] = xi+1.

We also notice that βi+1 = νi + 5 = µi + 5 = αi+1.
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If νi+1 > µi+1 then νi+1 ⩾ µi+1+1 > αi+1 = βi+1 so ‘>’ = k[µi+1+1] is a character
in ψi+1: this cannot be true, so νi+1 > µi+1 is false and similarly µi+1 > νi+1 is false,
so νi+1 = µi+1 and it follows that ψi+1 = φi+1.

We have now proved that for each i = 1 . . .m p ⩾ i yi = xi, ψi = φi and νi = µi.

We have also ℓ(k) = µm + 2. If p > m then ℓ(k) > νm + 2 = µm + 2, and this is a
contradiction, therefore p = m.

Given k ∈ Θ we define dom(k) (i.e. the domain of k) as follows.

• if k = ϵ then dom(k) = ∅,
• if k ̸= ϵ then k =<< x1 : φ1 > · · · < xm : φm >> and we define dom(k) =
{1, . . . ,m} .

We define D = {∅} ∪ {{1, . . . ,m}| m is a positive integer}.

Of course, given k ∈ Θ, dom(k) ∈ D.

Given k ∈ Θ and C ∈ D such that C ⊆ dom(k) we can define k/C , i.e. the ‘restric-
tion’ of k to the domain C, as follows:

• if k = ϵ or C = ∅ then k/C = ϵ ∈ Θ (so dom(k/C) = ∅ = C),
• if k ̸= ϵ and C ̸= ∅ then k =<< x1 : φ1 > · · · < xm : φm >> and C = {1, . . . , p}
where 1 ⩽ p ⩽ m, we define k/C =<< x1 : φ1 > · · · < xp : φp >>∈ Θ (so
dom(k/C) = {1, . . . , p} = C).

We also define R(k) = {k/C | C ∈ D, C ⊆ dom(k)}.
Given another h ∈ Θ we write h ⊑ k if and only if h ∈ R(k) .

Suppose h ∈ R(k), then there exists C ∈ D such that C ⊆ dom(k), h = k/C . As we
have seen in this case dom(h) = C and k/dom(h) = k/C = h.

Given k ∈ Θ we define var(k) as follows.

• if k = ϵ then var(k) = ∅,
• if k ̸= ϵ then k =<< x1 : φ1 > · · · < xm : φm >> and we define var(k) =

{x1, . . . , xm} .

We are now going to define the ‘addition’ of a new element to a context string.

Definition 5.2. Let h ∈ Θ, x ∈ V, φ ∈ Σ∗, we define h+ < x,φ > as follows:

• if h = ϵ then h+ < x,φ >=<< x,φ >>∈ Θ;
• if h ̸= ϵ then let m positive integer x1, . . . , xm ∈ V, φ1, . . . , φm ∈ Σ∗ such that
h =<< x1 : φ1 > · · · < xm : φm >>, we define
h+ < x,φ >=<< x1 : φ1 > · · · < xm : φm >< x,φ >>∈ Θ.
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Lemma 5.3. Let h ∈ Θ, x ∈ V, φ ∈ Σ∗, let k = h+ < x,φ >. Then the following
hold true:

• dom(h) ⊆ dom(k),
• h = k/dom(h),
• h ∈ R(k),
• var(k) = var(h) ∪ {x}.

Proof. It is obvious by the definition of k that dom(h) ⊆ dom(k).

If h = ϵ then dom(h) = ∅ and k/dom(h) = ϵ = h.

if h ̸= ϵ then let h =<< x1 : φ1 > · · · < xm : φm >>, this implies
k =<< x1 : φ1 > · · · < xm : φm >< x,φ >> and clearly k/dom(h) = h.

It also follows that h ∈ R(k).

If h = ϵ then var(k) = {x} = var(h) ∪ {x}.

If h ̸= ϵ and h =<< x1 : φ1 > · · · < xm : φm >> then

var(k) = {x1, . . . , xm} ∪ {x} = var(h) ∪ {x} .

Lemma 5.4. Given k ∈ Θ − {ϵ} there exist h ∈ Θ, x ∈ V, φ ∈ Σ∗ such that
k = h+ < x,φ >. Moreover h, x and φ are univocally determined.

Proof. Let k ∈ Θ−{ϵ}, there exist a positive integerm, x1, . . . , xm ∈ V, φ1, . . . , φm ∈
Σ∗ such that k =<< x1 : φ1 > · · · < xm : φm >>.

If m = 1 then k =<< x1 : φ1 >>= ϵ+ < x1, φ1 >.

If m > 1 then k =<< x1 : φ1 > · · · < xm−1 : φm−1 >< xm : φm >>, and so
k =<< x1 : φ1 > · · · < xm−1 : φm−1 >> + < xm : φm >.

We have seen there exist h ∈ Θ, x ∈ V, φ ∈ Σ∗ such that k = h+ < x,φ >. Suppose
there also exist g ∈ Θ, y ∈ V, ψ ∈ Σ∗ such that k = g+ < y,ψ >.

Suppose h = ϵ and g ̸= ϵ, then there exist a positive integer m and y1, . . . , ym ∈ V,
ψ1, . . . , ψm ∈ Σ∗ such that g =<< y1 : ψ1 > · · · < ym : ψm >>. It follows that
k =<< x,φ >> and k =<< y1 : ψ1 > · · · < ym : ψm >< y, ψ >>, hence 1 = m + 1,
which is false. Therefore h = ϵ and g ̸= ϵ is false and similarly h ̸= ϵ and g = ϵ is false.

Let’s consider the case where h = g = ϵ. In this case << x,φ >>= k =<< y,ψ >>,
so y = x and ψ = φ.

Finally we consider the case where both h ̸= ϵ and g ̸= ϵ. There exist m positive
integer x1, . . . , xm ∈ V, φ1, . . . , φm ∈ Σ∗ such that h =<< x1 : φ1 > · · · < xm :
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φm >>. There also exist p positive integer, y1, . . . , yp ∈ V, ψ1, . . . , ψp ∈ Σ∗ such that
g =<< y1 : ψ1 > · · · < yp : ψp >>. It follows that

• k =<< x1 : φ1 > · · · < xm : φm >< x,φ >>
• k =<< y1 : ψ1 > · · · < yp : ψp >< y,ψ >>

Hence p + 1 = m + 1, p = m, for each i = 1 . . .m yi = xi, y = x, ψ = φ. Finally
g = h also holds.

Lemma 5.5. Let h ∈ Θ, x ∈ V, φ ∈ Σ∗, k = h+ < y, ϕ >. Suppose g ∈ R(k) is such
that g ̸= k. Then g ∈ R(h).

Proof. Let D = dom(h).

We first consider the case where h ̸= ϵ. In this case there exists a positive integer m
such that D = {1, . . . ,m}, and clearly dom(k) = {1, . . . ,m+1}. Since g ∈ R(k) there
exists C ∈ D such that C ⊆ {1, . . . ,m + 1} and g = k/C . Since g ̸= k we must have
C ⊆ {1, . . . ,m}. We have

g = k/C = (k/D)/C = h/C .

Let’s now consider the case where h = ϵ. In this case D = ∅ and dom(k) = {1}.
Moreover there exists C ∈ D such that C ⊆ {1} and g = k/C . Since g ̸= k we must
have C = ∅ and g = ϵ = h.

In both cases g ∈ R(h), of course.

Lemma 5.6. Let k =<< x1, φ1 > · · · < xm, φm >>∈ Θ− {ϵ}, let h ∈ R(k). If h ̸= ϵ
then there exists p = 1 . . .m such that h =<< x1, φ1 > · · · < xp, φp >>.

Proof. If h ∈ R(k) then there exists C ∈ D such that C ⊆ dom(k), h = k/C . If C = ∅
then h = ϵ, so C ̸= ∅, since dom(k) = {1, . . . ,m} there exists p = 1 . . .m such that
C = {1, . . . , p} and h =<< x1, φ1 > · · · < xp, φp >>.

6. Building the expressions of our system

We can now describe the process of constructing expressions for our language L. This
is an inductive process in which not only we build expressions, but also we associate
them with meaning, and in parallel also define the fundamental concept of ‘context’.
This process will be identified as ‘Definition 6.1’ although actually it is a process in
which we give the definitions and prove properties which are needed in order to set
up those definitions.

Within this definition we will define the expressions of our language. Such expres-
sions are finite sequences of characters of the alphabet Σ = V ∪ C ∪ F ∪ Z. In other
words they are members of Σ∗.
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Since this is a complex definition, we will first try to provide an informal idea of
the entities we’ll define in it. The definition is by induction on positive integers, we
now introduce the sets and concepts we’ll define for a generic positive integer n (this
first listing is not the true definition, it’s just to introduce the concepts, to enable the
reader to understand their role).

K(n) is the set of ‘contexts’ at step n. If we define Γ = Σ ∪ {<,>}, contexts will
be defined as members of Γ∗, and they will be strings of the form << x1, φ1 >, . . . , <
xm, φm >>, where x1, . . . , xm ∈ V and φ1, . . . , φm are expressions. The string <>
which we’ll also name ϵ is also a possibile context, and when we use the symbol ϵ with
respect to a context we actually mean <>.

For each k ∈ K(n) Ξ(k) is the set of ‘states’ bound to context k. If n > 1 and
k ∈ K(n− 1) then Ξ(k) has already been defined at step n− 1 or formerly, otherwise
it will be defined at step n.

If k =<< x1, φ1 >, . . . , < xm, φm >> is a context, a state on k is a state-like pair
σ = (x, s) where of course x is the function which associates xi to each i = 1 . . .m
and (roughly speaking) for each i = 1 . . .m si is a member of the meaning of the
corresponding expression φi .

For each k ∈ K(n) E(n, k) is the set of expressions bound to step n and context k.
And here it is important to underline that we need to ensure that E(n, k) (as a
subset of Σ∗) is a recursive set.

E(n) is the union of E(n, k) for k ∈ K(n) (this will not be explicitly recalled on
each iteration in the definition).

For each k ∈ K(n), t ∈ E(n, k), σ ∈ Ξ(k) we’ll define #(k, t, σ) which stands for
‘the meaning of t bound to k and σ’.

The following set Es(n, k) should be defined in the same way at each step, we put
here its definition, to avoid to repeat that definition each time. For each k ∈ K(n) we
define

Es(n, k) = {t|t ∈ E(n, k),∀σ ∈ Ξ(k)#(k, t, σ) is a set}.

6.1. Definition process

This section contains only definition 6.1. This definition is an inductive definition
process within which we have assumptions, lemmas etc.. Symbols like within
this definition are not intended to terminate the definition, they just terminate an
assumption or lemma etc. which is internal to the definition.

Definition 6.1. We are now ready to begin the actual definition process, so we
perform the simple initial step of our inductive process.

We define K(1) = {ϵ}, Ξ(ϵ) = {ϵ}, E(1, ϵ) = C.
Cleary when we define K(1) with ϵ we mean the string <>, while when defining
Ξ(ϵ) = {ϵ} the ϵ on the left side is <> and the ϵ on the right side is (∅, ∅).

For each t ∈ E(1, ϵ) we define #(ϵ, t, ϵ) = #(t).
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The inductive step is a bit more complex. Suppose all our definitions have been
given at step n and let’s proceed with step n + 1. In this inductive step we’ll need
some assumptions which will be identified with a title like ‘Assumption 5.1.x’.
Each assumption is a statement that must be valid at step 1, we suppose is valid
at step n and needs to be proved true at step n+1 at the end of our definition process.

The first assumptions we need are the following.

Assumption 6.1.1. K(n) ⊆ Θ.

Assumption 6.1.2. K(n) is recursive and ϵ ∈ K(n).

Assumption 6.1.3. For each k ∈ K(n) Ξ(k) ̸= ∅.

Assumption 6.1.4. If n > 1 then for each m < n K(m) ⊆ K(n).

Assumption 6.1.5. For each k ∈ K(n) E(n, k) ⊆ Σ∗.

Assumption 6.1.6. For each k ∈ K(n) E(n, k) is recursive.

Assumption 6.1.7. For each k ∈ K(n) k ∈ Θ and for each σ ∈ Ξ(k) σ is a state-like
pair and dom(σ) = dom(k).

Assumption 6.1.8. For each k ∈ K(n) k = ϵ and Ξ(k) = {ϵ} or
(n > 1 and there exist m < n, h ∈ K(m), ϕ ∈ Es(m,h), y ∈ (V − var(h)) such that
k = h+ < y, ϕ >, Ξ(k) = {σ + (y, s)|σ ∈ Ξ(h), s ∈ #(h, ϕ, σ)}).
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Assumption 6.1.9. If n > 1 then for each k ∈ K(n) : k ̸= ϵ, σ ∈ Ξ(k), h ∈ R(k) :
h ̸= k, there exists m < n such that h ∈ K(m) and it results σ/dom(h) ∈ Ξ(h).

Assumption 6.1.10. For each k ∈ K(n) each of the following predicates over E(n, k)
(where q is a positive integer and φ ∈ E(n, k)) is decidable:

• for each σ ∈ Ξ(k) Setq(#(k, φ, σ));
• for each σ ∈ Ξ(k) Eventq(#(k, φ, σ));
• for each σ ∈ Ξ(k) #(k, φ, σ) ∈ Di;
• for each σ ∈ Ξ(k) #(k, φ, σ) ∈ Pq(Di);
• if (for each σ ∈ Ξ(k) Setq(#(k, φ, σ))) then
(for each σ ∈ Ξ(k) NotEmptyq(#(k, φ, σ))).

Moreover the last predicate holds true.

Clearly assumption 6.1.10 is valid with n = 1, in fact in this case k = ϵ, E(n, k) =
E(1, ϵ) = C, Ξ(k) = {ϵ}, so φ ∈ C and #(k, φ, σ) = #(φ), and the predicates are the
following:

• Setq(#(φ));
• Eventq(#(φ));
• #(φ) ∈ Di;
• #(φ) ∈ Pq(Di);
• if (Setq(#(φ))) then (NotEmptyq(#(φ))).

We can go on with the inductive step and define

K(n)+ = {h+ < y, ϕ > |h ∈ K(n), ϕ ∈ Es(n, h), y ∈ (V − var(h))} −K(n) ,

K(n+ 1) = K(n) ∪K(n)+ .

Let k ∈ K(n)+. Then there exist h ∈ K(n), ϕ ∈ Es(n, h), y ∈ (V − var(h)) such
that k = h+ < y, ϕ >. By lemma 5.4 we know that h, ϕ, y are univocally determined.

We can assume that Ξ(k) is defined for k ∈ K(n), and we need to define this for
k ∈ K(n + 1) − K(n), i.e. for k ∈ K(n)+. If k ∈ K(n)+ there exist h ∈ K(n), ϕ ∈
Es(n, h), y ∈ (V − var(h)) such that k = h+ < y, ϕ >; and h, ϕ, y are univocally
determined. So we can define

Ξ(k) = {σ + (y, s)|σ ∈ Ξ(h), s ∈ #(h, ϕ, σ)} .
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A consequence of lemma 3.1 is the following: for each k ∈ K(n)+ and σ + (y, s) in
Ξ(k), σ, y and s are univocally determined.

To ensure the unique readability of our expressions we need the following assumption
(which is clearly satisfied for n = 1).

Assumption 6.1.11. For each t ∈ E(n)

• t[ℓ(t)] ̸= ‘(’ ;
• if t[ℓ(t)] = ‘)’ then d(t, ℓ(t)) = 1, else d(t, ℓ(t)) = 0 ;
• for each α ∈ {1, . . . , ℓ(t)} if (t[α] = ‘:’)∨ (t[α] = ‘,’)∨ (t[α] = ‘)’) then d(t, α) ⩾ 1.

We immediately prove the following.

Proof of 6.1.1. Given that K(n) ⊆ Θ we have to show that K(n+ 1) ⊆ Θ.

Let k ∈ K(n + 1), if k ∈ K(n) then k ∈ Θ, else there exist h ∈ K(n) ⊆ Θ,
ϕ ∈ Es(n, h) ⊆ Σ∗, y ∈ (V − var(h)) such that k = h+ < y, ϕ >∈ Θ.

Proof of 6.1.2. We have to show that K(n+ 1) is recursive and ϵ ∈ K(n+ 1).

We have assumed by inductive hypothesis that K(n) is recursive and that ϵ ∈ K(n).

First of all it is obvious that ϵ ∈ K(n+ 1) because K(n) ⊆ K(n+ 1).

Let k ∈ Γ∗ and let’s try to decide whether k ∈ K(n + 1). We can decide whether
k ∈ K(n), if this holds then k ∈ K(n+ 1), otherwise we know k ̸= ϵ.

At this point we can verify whether k has the form << x1 : φ1 > · · · < xm : φm >>
where x1, . . . , xm ∈ V, φ1, . . . , φm ∈ Σ∗.

In fact in order to verify that xi ∈ V we just need to verify that xi is not a character
in our alphabet that is not a variable (there are finite such characters). In order to
verify that φi ∈ Σ∗ we just need to verify that the characters in φi are not < or >.

If k has not the form << x1 : φ1 > · · · < xm : φm >> clearly k /∈ Θ and we can
decide that k /∈ K(n+ 1).

If k has the form << x1 : φ1 > · · · < xm : φm >> then k ∈ Θ− {ϵ}, so there exist
h ∈ Θ, y ∈ V, ψ ∈ Σ∗ such that k = h+ < y,ψ >, we know how to calculate h, y, ψ,
and they are univocally determined.

Now consider the following conditions

• h ∈ K(n),
• y ∈ V − var(h),
• ψ ∈ Es(n, h).
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If all these conditions hold, then k ∈ K(n + 1), else (knowing that k /∈ K(n))
k /∈ K(n+ 1).

All of the mentioned conditions are decidable. In fact K(n) is recursive and so we
can decide whether h ∈ K(n). Moreover E(n, h) is recursive, and given ψ ∈ E(n, h)
the condition ‘for each ρ ∈ Ξ(h) Set1(#(h, ψ, ρ))’ is decidable. Therefore ψ ∈ Es(n, h)
is decidable.

As regards the condition y ∈ V − var(h), we know that y is a variable, so if it
doesn’t belong to var(h) this means it belongs to V − var(h), and so we can also
decide this condition.

Therefore we have proved that K(n+ 1) is recursive.

Proof of 6.1.3. Let k ∈ K(n+ 1), we have to show Ξ(k) ̸= ∅.

If k ∈ K(n) then Ξ(k) ̸= ∅, else there exist h ∈ K(n), ϕ ∈ Es(n, h), y ∈ (V−var(h))
such that k = h+ < y, ϕ >, and Ξ(k) = {σ + (y, s)|σ ∈ Ξ(h), s ∈ #(h, ϕ, σ)}.

By the inductive hypothesis Ξ(h) ̸= ∅, let’s then take σ ∈ Ξ(h), then
Set1(#(h, ϕ, σ)) and NotEmpty1(#(h, ϕ, σ)). If we take s ∈ #(h, ϕ, σ) then σ+(y, s) ∈
Ξ(k) .

It is time to define E(n+1, k), for each k in K(n+1). Then for each t in E(n+1, k)
and σ in Ξ(k) we need to define #(k, t, σ). We begin to do this by defining some new
sets of expressions bound to context k, and for the expressions in each new set we
define the proposed value of #(k, t, σ).

For each k = h+ < y, ϕ >∈ K(n)+ we define

Ea(n+ 1, k) = {y}.

Clearly Ea(n+ 1, k) ⊆ Σ∗ and Ea(n+ 1, k) recursive.

For each t ∈ Ea(n+ 1, k), σ = ρ+ (y, s) ∈ Ξ(k) we define:

#(k, t, σ)(n+1,k,a) = s.

We notice that ϵ ∈ K(n) and define Eb(n+ 1, ϵ) = ∅.

For each k = h+ < y, ϕ >∈ K(n)− {ϵ} we define

Eb(n+ 1, k) = {t|t ∈ E(n, h), t /∈ E(n, k)}.

Clearly Eb(n+ 1, k) ⊆ E(n, h) ⊆ Σ∗ and Eb(n+ 1, k) recursive.
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For each t ∈ Eb(n + 1, k), σ = ρ + (y, s) ∈ Ξ(k) we define the proposed value of
#(k, t, σ):

#(k, t, σ)(n+1,k,b) = #(h, t, ρ).

Given k ∈ K(n) and a constant c ∈ C we can define the following set

Hc(n+ 1, k) = {(c)(φ1, . . . , φm)|φ1, . . . , φm ∈ E(n, k)} .

and we can prove it is recursive using some auxiliary lemma.

Lemma 6.1.12. Let ψ ∈ Σ∗ and let φ = (c)(ψ) ∈ Σ∗. Suppose for each r positive
integer such that 4 < r < ℓ(φ) and φ[r] = ‘,’ we have d(φ, r) > 1. Then φ ∈ Hc(n+1, k)
if and only if ψ ∈ E(n, k).

Proof. It is obvious that if ψ ∈ E(n, k) then φ ∈ Hc(n+ 1, k).

Conversely, if φ ∈ Hc(n + 1, k) then there exist a positive integer m and
ψ1, . . . , ψm ∈ E(n, k) such that φ = (c)(ψ1, . . . , ψm).

If m > 1 then let r be the first explicit occurrence of ‘,’ in (c)(ψ1, . . . , ψm). Clearly
we have d(φ, r) > 1, so it cannot be m > 1.

It follows that m = 1 then (c)(ψ) = φ = (c)(ψ1) and so ψ = ψ1 ∈ E(n, k).

Lemma 6.1.13. Let ψ ∈ Σ∗ and let φ = (c)(ψ) ∈ Σ∗. Consider the set of the positive
integers r such that 4 < r < ℓ(φ), φ[r] = ‘,’ and d(φ, r) = 1. Assume this set is not
empty and let’s name r1, . . . , rh its members (in increasing order).
Let’s also define ψ1 = φ[5, r1 − 1] (if r1 − 1 < 5 then ψ1 = ϵ where ϵ is the empty
string over the alphabet Σ).
If h > 1 then for each i = 1 . . . h − 1 we define ψi+1 = φ[ri + 1, ri+1 − 1] (if
ri+1 − 1 < ri + 1 then ψi+1 = ϵ).
Finally we define ψh+1 = φ[rh + 1, ℓ(φ)− 1] (if ℓ(φ)− 1 < rh + 1 then ψh+1 = ϵ).

With these definitions we have φ = (c)(ψ1, . . . , ψh+1) and φ ∈ Hc(n + 1, k) if and
only if for each i = 1 . . . h+ 1 ψi ∈ E(n, k).

Proof. Clearly if for each i = 1 . . . h+ 1 ψi ∈ E(n, k) then φ ∈ Hc(n+ 1, k).

Conversely, if φ ∈ Hc(n + 1, k) then there exist a positive integer m and
χ1, . . . , χm ∈ E(n, k) such that φ = (c)(χ1, . . . , χm).

If m = 1 then φ = (c)(χ1), we have d(φ, r1) = 1. Since 4 < r1 < ℓ(φ1)
χ1[r1 − 4] = φ[r1] = ‘,’, d(χ1, r1) = d(φ, r1) − 1 = 0. But this contradicts assump-
tion 6.1.11 and therefore we cannot have m = 1.

Since m > 1 we can indicate with q1, . . . , qm−1 the positions of the explicit
occurrences of ‘,’ in the representation (c)(χ1, . . . , χm) of φ.
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For each j = 1 . . .m− 1 d(φ, qj) = 1, therefore {q1, . . . , qm−1} ⊆ {r1, . . . , rh}.

Suppose there exists i = 1 . . . h such that ri /∈ {q1, . . . , qm−1}. In this case one of
these conditions will occur:

• ri < q1,
• ri > qm−1,
• m− 1 > 1 and there exists j = 1 . . .m− 2 such that qj < ri < qj+1.

If ri < q1 then 4 < ri also holds, χ1 = φ[5, q1 − 1], ℓ(χ1) = q1 − 1− 5 + 1 = q1 − 5,
for each α = 1 . . . q1 − 5 χ1[α] = φ[4 + α]. So ri − 4 ⩾ 1, ri − 4 < q1 − 4
and then ri − 4 ⩽ q1 − 5 = ℓ(χ1). Then also χ1[ri − 4] = φ[ri] = ‘,’ and
d(χ1, ri − 4) = d(φ, ri) − 1 = 0. This contradicts assumption 6.1.11 and therefore we
cannot have ri < q1.

If ri > qm−1 then ri < ℓ(φ) also holds, χm = φ[qm−1 + 1, ℓ(φ) − 1],
ℓ(χm) = ℓ(φ)−1− (qm−1+1)+1 = ℓ(φ)−qm−1−1. For each α = 1 . . . ℓ(φ)−qm−1−1
χm[α] = φ[qm−1 + α]. So ri − qm−1 ⩾ 1, ri − qm−1 < ℓ(φ) − qm−1 and then
ri − qm−1 ⩽ ℓ(φ) − qm−1 − 1 = ℓ(χm). Then also χm[ri − qm−1] = φ[ri] = ‘,’ and
d(χm, ri − qm−1) = d(φ, ri)− 1 = 0. This contradicts assumption 6.1.11 and therefore
we cannot have ri > qm−1.

Finally assume m− 1 > 1 and there exists j = 1 . . .m− 2 such that qj < ri < qj+1.
In this case χj+1 = φ[qj +1, qj+1−1], ℓ(χj+1) = qj+1−1− (qj +1)+1 = qj+1− qj −1.
For each α = 1 . . . qj+1 − qj − 1 χj+1[α] = φ[qj +α]. So ri − qj ⩾ 1, ri − qj < qj+1 − qj
and then ri − qj ⩽ qj+1 − qj − 1 = ℓ(χj+1). Then also χj+1[ri − qj ] = φ[ri] = ‘,’ and
d(χj+1, ri − qj) = d(φ, ri) − 1 = 0. This contradicts assumption 6.1.11 and therefore
we cannot have thatm−1 > 1 and there exists j = 1 . . .m−2 such that qj < ri < qj+1.

So we have to conclude that {q1, . . . , qm−1} = {r1, . . . , rh}. This means that h+1 =
m and for each i = 1 . . . h+ 1 ψi = χi ∈ E(n, k).

Lemma 6.1.14. Given k ∈ K(n) and c ∈ C Hc(n+ 1, k) is recursive.

Proof. Let φ ∈ Σ∗. If φ doesn’t begin with the four characters (c)( or doesn’t end
with the character ) then φ /∈ Hc(n+ 1, k).

Then assume we are in the case φ = (c)(ψ) where ψ ∈ Σ∗. Consider the set of the
positive integers r such that 4 < r < ℓ(φ), φ[r] = ‘,’ and d(φ, r) = 1.

If the mentioned set is empty then φ ∈ Hc(n+ 1, k) if and only if ψ ∈ E(n, k).

If the mentioned set is not empty then let’s name r1, . . . , rh its members (in
increasing order).
Let’s also define ψ1 = φ[5, r1 − 1] (if r1 − 1 < 5 then ψ1 = ϵ where ϵ is the empty
string over the alphabet Σ).
If h > 1 then for each i = 1 . . . h − 1 we define ψi+1 = φ[ri + 1, ri+1 − 1] (if
ri+1 − 1 < ri + 1 then ψi+1 = ϵ.
Finally we define ψh+1 = φ[rh + 1, ℓ(φ)− 1] (if ℓ(φ)− 1 < rh + 1 then ψh+1 = ϵ).
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With these definitions we have φ = (c)(ψ1, . . . , ψh+1) and φ ∈ Hc(n + 1, k) if and
only if for each i = 1 . . . h+ 1 ψi ∈ E(n, k).

Lemma 6.1.15. Let k ∈ K(n), c ∈ C. There exists an algorithm that given φ ∈ Σ∗

• determines if φ ∈ Hc(n+ 1, k),
• if φ ∈ Hc(n+1, k) it also identifies a positive integer m and ψ1, . . . , ψm ∈ E(n, k)

such that φ = (c)(ψ1, . . . , ψm).

Proof. See the proof of lemma 6.1.14.

Lemma 6.1.16. Given k ∈ K(n), c ∈ C, φ ∈ Hc(n + 1, k) there exist m positive
integer, ψ1, . . . , ψm ∈ E(n, k) such that φ = (c)(ψ1, . . . , ψm) and m and ψ1, . . . , ψm

are univocally determined.

Proof. It is obvious by the definition of Hc(n + 1, k) there exist m positive integer,
ψ1, . . . , ψm ∈ E(n, k) such that φ = (c)(ψ1, . . . , ψm).

Suppose there are also p positive integer and φ1, . . . , φp such that
φ = (c)(φ1, . . . , φp). Of course we want to show that p = m and for each
i = 1 . . .m φi = ψi.

To this end we consider there exists ψ ∈ Σ∗ such that φ = (c)(ψ). Consider the set
of the positive integers r such that 4 < r < ℓ(φ), φ[r] = ‘,’ and d(φ, r) = 1.

Suppose the mentioned set is empty. In this case if m > 1 then let r be the first
explicit occurrence of ‘,’ in (c)(ψ1, . . . , ψm). Clearly we would have d(φ, r) = 1, so it
cannot be m > 1. Similarly it cannot be p > 1, so m = 1 = p and φ1 = ψ = ψ1.

Now assume this set is not empty and let’s name r1, . . . , rh its members (in
increasing order).
Let’s also define χ1 = φ[5, r1 − 1] (if r1 − 1 < 5 then χ1 = ϵ where ϵ is the empty
string over the alphabet Σ).
If h > 1 then for each i = 1 . . . h − 1 we define χi+1 = φ[ri + 1, ri+1 − 1] (if
ri+1 − 1 < ri + 1 then χi+1 = ϵ.
Finally we define χh+1 = φ[rh + 1, ℓ(φ)− 1] (if ℓ(φ)− 1 < rh + 1 then χh+1 = ϵ).

We have seen in lemma 6.1.13 that we cannot have m = 1 and that since m > 1
we can indicate with q1, . . . , qm−1 the positions of the explicit occurrences of ‘,’ in the
representation (c)(ψ1, . . . , ψm) of φ.

For each j = 1 . . .m − 1 d(φ, qj) = 1, therefore {q1, . . . , qm−1} ⊆ {r1, . . . , rh}. In
the mentioned lemma we have seen that actually {q1, . . . , qm−1} = {r1, . . . , rh}. This
means that h+ 1 = m and for each i = 1 . . . h+ 1 χi = ψi ∈ E(n, k).

Similarly we obtain that h+ 1 = p and for each i = 1 . . . h+ 1 χi = φi ∈ E(n, k).

Therefore finally p = h+ 1 = m and for each i = 1 . . .m φi = χi = ψi.
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Given a constant c ∈ C if #(c) is a particular type of function then for each
k ∈ K(n) we can define a set of expressions related to c and k, and we’ll call
Ec(n+ 1, k) this set of expressions.

Let’s examine the categories of functions to which we refer.

If there exist i = 1 . . . p and a positive integer m such that #(c) is a function whose
domain is (Di)

m and whose range is Di then we define Ec(n + 1, k) as the set of the
strings (c)(φ1, . . . , φm) ∈ Hc(n+ 1, k) such that:

• φ1, . . . , φm ∈ E(n, k);
• for each j = 1 . . .m, σ ∈ Ξ(k) #(k, φj , σ) ∈ Di;
• (c)(φ1, . . . , φm) /∈ E(n, k);
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

The set Ec(n + 1, k) is recursive since given ψ ∈ Σ∗ we can determine if ψ ∈
Hc(n+1, k) and if so we can identify a positive integer u and φ1, . . . , φu ∈ E(n, k) such
that ψ = (c)(φ1, . . . , φu). As we have seen u and φ1, . . . , φu are univocally determined,
so if u ̸= m then ψ /∈ Ec(n+1, k). If u = m then, for each j = 1 . . .m, we can decide if
for each σ ∈ Ξ(k) #(k, φj , σ) ∈ Di, and we can also decide if the following conditions
hold:

• (c)(φ1, . . . , φm) /∈ E(n, k),
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

For each t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k) we define

#(k, t, σ)(n+1,k,<c>) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)).

If there exist i = 1 . . . p, a positive integer q and a positive integer m such that #(c)
is a function whose domain is (Pq(Di))

m and whose range is Pq(Di) then we define
Ec(n+ 1, k) as the set of the strings (c)(φ1, . . . , φm) ∈ Hc(n+ 1, k) such that:

• φ1, . . . , φm ∈ E(n, k);
• for each j = 1 . . .m, σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di);
• (c)(φ1, . . . , φm) /∈ E(n, k);
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

The set Ec(n+1, k) is recursive in this case too since given ψ ∈ Σ∗ we can determine
if ψ ∈ Hc(n + 1, k) and if so we can identify a positive integer u and φ1, . . . , φu ∈
E(n, k) such that ψ = (c)(φ1, . . . , φu). As we have seen u and φ1, . . . , φu are univocally
determined, so if u ̸= m then ψ /∈ Ec(n + 1, k). If u = m then, for each j = 1 . . .m,
we can decide if for each σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di), and we can also decide if the
following conditions hold:

• (c)(φ1, . . . , φm) /∈ E(n, k),
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

For each t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k) we define

#(k, t, σ)(n+1,k,<c>) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)).
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If there exist i = 1 . . . p and a positive integer m such that #(c) is a function whose
domain is (Di)

m and such that for each (d1, . . . , dm) ∈ (Di)
m #(c)(d1, . . . , dm) is

true or false, then we define Ec(n + 1, k) as the set of the strings (c)(φ1, . . . , φm) ∈
Hc(n+ 1, k) such that:

• φ1, . . . , φm ∈ E(n, k);
• for each j = 1 . . .m, σ ∈ Ξ(k) #(k, φj , σ) ∈ Di;
• (c)(φ1, . . . , φm) /∈ E(n, k);
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

The set Ec(n + 1, k) is recursive since given ψ ∈ Σ∗ we can determine if ψ ∈
Hc(n+1, k) and if so we can identify a positive integer u and φ1, . . . , φu ∈ E(n, k) such
that ψ = (c)(φ1, . . . , φu). As we have seen u and φ1, . . . , φu are univocally determined,
so if u ̸= m then ψ /∈ Ec(n+1, k). If u = m then, for each j = 1 . . .m, we can decide if
for each σ ∈ Ξ(k) #(k, φj , σ) ∈ Di, and we can also decide if the following conditions
hold:

• (c)(φ1, . . . , φm) /∈ E(n, k),
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

For each t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k) we define

#(k, t, σ)(n+1,k,<c>) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)).

If there exist i = 1 . . . p, a positive integer q and a positive integerm such that #(c) is
a function whose domain is (Pq(Di))

m and such that for each (d1, . . . , dm) ∈ (Pq(Di))
m

#(c)(d1, . . . , dm) is true or false, then we define Ec(n + 1, k) as the set of the strings
(c)(φ1, . . . , φm) ∈ Hc(n+ 1, k) such that:

• φ1, . . . , φm ∈ E(n, k);
• for each j = 1 . . .m, σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di);
• (c)(φ1, . . . , φm) /∈ E(n, k);
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

The set Ec(n+1, k) is recursive in this case too since given ψ ∈ Σ∗ we can determine
if ψ ∈ Hc(n + 1, k) and if so we can identify a positive integer u and φ1, . . . , φu ∈
E(n, k) such that ψ = (c)(φ1, . . . , φu). As we have seen u and φ1, . . . , φu are univocally
determined, so if u ̸= m then ψ /∈ Ec(n + 1, k). If u = m then, for each j = 1 . . .m,
we can decide if for each σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di), and we can also decide if the
following conditions hold:

• (c)(φ1, . . . , φm) /∈ E(n, k),
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

For each t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k) we define

#(k, t, σ)(n+1,k,<c>) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)).

Assume m is a positive integer and #(c) is a function whose domain is⋃
q⩾1(

⋃
i=1...p(Pq(Di))

m) such that for each q ⩾ 1, i = 1 . . . p, (A1, . . . , Am) ∈
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(Pq(Di))
m #(c)(A1, . . . , Am) ∈ Pq(Di). Then we define Ec(n + 1, k) as the set of

the strings (c)(φ1, . . . , φm) ∈ Hc(n+ 1, k) such that:

• φ1, . . . , φm ∈ E(n, k);
• there exist i = 1 . . . p, q = 1 . . . qmax such that for each j = 1 . . .m, σ ∈ Ξ(k)

#(k, φj , σ) ∈ Pq(Di);
• (c)(φ1, . . . , φm) /∈ E(n, k);
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

The set Ec(n+1, k) is recursive in this case too since given ψ ∈ Σ∗ we can determine
if ψ ∈ Hc(n + 1, k) and if so we can identify a positive integer u and φ1, . . . , φu ∈
E(n, k) such that ψ = (c)(φ1, . . . , φu). As we have seen u and φ1, . . . , φu are univocally
determined, so if u ̸= m then ψ /∈ Ec(n+ 1, k). If u = m then, for each i = 1 . . . p and
q = 1 . . . qmax we can decide if for each j = 1 . . .m and σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di),
and we can also decide if the following conditions hold:

• (c)(φ1, . . . , φm) /∈ E(n, k),
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

For each t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k) we define

#(k, t, σ)(n+1,k,<c>) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)).

We may also include in our language a ‘special’ constant Π whose meaning #(Π) is
a function over the domain

⋃
q⩾1(

⋃
i=1...p Pq(Di)) such that for each q ⩾ 1, i = 1 . . . p

A ∈ Pq(Di) #(Π)(A) = P(A). Then we define EΠ(n + 1, k) as the set of the strings
(Π)(φ1) ∈ HΠ(n+ 1, k) such that:

• φ1 ∈ E(n, k);
• there exist i = 1 . . . p, q = 1 . . . qmax such that for each σ ∈ Ξ(k) #(k, φ1, σ) ∈

Pq(Di);
• (Π)(φ1) /∈ E(n, k);
• (Π)(φ1) /∈ Eb(n+ 1, k).

The set EΠ(n + 1, k) is recursive since given ψ ∈ Σ∗ we can determine if ψ ∈
HΠ(n + 1, k) and if so we can identify a positive integer u and φ1, . . . , φu ∈ E(n, k)
such that ψ = (Π)(φ1, . . . , φu). As we have seen u and φ1, . . . , φu are univocally
determined, so if u ̸= 1 then ψ /∈ EΠ(n+ 1, k). If u = 1 then, for each i = 1 . . . p and
q = 1 . . . qmax we can decide if for each σ ∈ Ξ(k) #(k, φ1, σ) ∈ Pq(Di), and we can
also decide if the following conditions hold:

• (Π)(φ1) /∈ E(n, k);
• (Π)(φ1) /∈ Eb(n+ 1, k).

For each t = (Π)(φ1) ∈ EΠ(n+ 1, k) we define

#(k, t, σ)(n+1,k,<Π>) = #(Π)(#(k, φ1, σ)).

Given k ∈ K(n) and f ∈ F we can define the set Hf (n + 1, k) as follows. If f has
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multiplicity 1 then

Hf (n+ 1, k) = {f(φ1)|φ1 ∈ E(n, k)} .

If f has multiplicity 2 then

Hf (n+ 1, k) = {f(φ1, φ2)|φ1, φ2 ∈ E(n, k)} .

We can prove Hf (n+ 1, k) is recursive using some auxiliary lemma.

Lemma 6.1.17. Let f ∈ F and assume f has multiplicity 1. Let ψ ∈ Σ∗ and let
φ = f(ψ) ∈ Σ∗. Then φ ∈ Hf (n+ 1, k) if and only if ψ ∈ E(n, k).

Proof. It is obvious that if ψ ∈ E(n, k) then φ ∈ Hf (n+ 1, k).

Conversely, if φ ∈ Hf (n+ 1, k) then there exists χ ∈ E(n, k) such that φ = f(χ).

Therefore ψ = χ ∈ E(n, k).

Lemma 6.1.18. Let f ∈ F and assume f has multiplicity 2. Let ψ ∈ Σ∗ and let
φ = f(ψ) ∈ Σ∗.

Consider the set of the positive integers r such that 2 < r < ℓ(φ), φ[r] = ‘,’ and
d(φ, r) = 1. If this set has just one member r1 then we can define ψ1 = φ[3, r1 − 1]
(if r1 − 1 < 3 then ψ1 = ϵ where ϵ is the empty string over the alphabet Σ). We also
define ψ2 = φ[r1 + 1, ℓ(φ)− 1] (if ℓ(φ)− 1 < r1 + 1 then ψ2 = ϵ).

With these definitions we have that φ ∈ Hf (n+ 1, k) if and only if

• the set of the positive integers r such that 2 < r < ℓ(φ), φ[r] = ‘,’ and d(φ, r) = 1
has just one member r1,

• ψ1, ψ2 ∈ E(n, k).

Proof. If the two conditions

• the set of the positive integers r such that 2 < r < ℓ(φ), φ[r] = ‘,’ and d(φ, r) = 1
has just one member r1,

• ψ1, ψ2 ∈ E(n, k).

both hold then clearly φ = f(ψ1, ψ2) ∈ Hf (n+ 1, k).

Conversely if φ ∈ Hf (n + 1, k) then there exist χ1, χ2 ∈ E(n, k) such that
φ = f(χ1, χ2). Let’s call q1 the position of the explicit occurrence of ‘,’ in the
representation f(χ1, χ2) of φ. Clearly d(φ, q1) = 1 and q1 is a member of the set of
the positive integers r such that 2 < r < ℓ(φ), φ[r] = ‘,’ and d(φ, r) = 1.

Let’s then call r1, . . . , rh the members of the set of the positive integers r such that
2 < r < ℓ(φ), φ[r] = ‘,’ and d(φ, r) = 1. We have already seen that q1 ∈ {r1, . . . , rh}.
Suppose h > 1 and there exists i = 1 . . . h such that ri ̸= q1. In this case one of the
following conditions will occur:
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• ri < q1,
• ri > q1.

If ri < q1 then 2 < ri also holds, χ1 = φ[3, q1 − 1], ℓ(χ1) = q1 − 1 − 2 = q1 − 3,
for each α = 1 . . . q1 − 3 χ1[α] = φ[2 + α]. So ri − 2 ⩾ 1, ri − 2 < q1 − 2
and then ri − 2 ⩽ q1 − 3 = ℓ(χ1). Then also χ1[ri − 2] = φ[ri] = ‘,’ and
1 = d(φ, ri) = d(χ1, ri−2)+1, so d(χ1, ri−2) = 0. This contradicts assumption 6.1.11
and therefore we cannot have ri < q1.

If ri > q1 then ri < ℓ(φ) also holds, χ2 = φ[q1 + 1, ℓ(φ)− 1], ℓ(χ2) = ℓ(φ)− 1− q1.
For each α = 1 . . . ℓ(φ)− 1− q1 χ2[α] = φ[q1 + α]. So ri − q1 ⩾ 1, ri − q1 < ℓ(φ)− q1
and then ri − q1 ⩽ ℓ(φ)− 1− q1 = ℓ(χ2). Then also χ2[ri − q1] = φ[ri] = ‘,’.

Moreover if we define ϑ = φ[1, q1] then φ is the concatenation of ϑ, χ2 and ). Then
d(φ, ri) = d(φ, q1+(ri− q1)) = d(φ, ℓ(ϑ)+ (ri− q1)) = d(φ, ℓ(ϑ)+1)+d(χ2, (ri− q1)).
It follows that d(φ, ri) = d(φ, q1) + d(χ2, (ri − q1)), and so d(χ2, (ri − q1)) = 0. This
contradicts assumption 6.1.11 and therefore we cannot have ri > q1.

So we have to conclude that h = 1, r1 = q1, ψi = χi ∈ E(n, k).

Lemma 6.1.19. Let f ∈ F and assume f has multiplicity 2. Then Hf (n + 1, k) is
recursive.

Proof. Let φ ∈ Σ∗ and let’s see how we decide if φ ∈ Hf (n+ 1, k).

If φ doesn’t begin with the characters f( or doesn’t end with the character ) then
φ /∈ Hf (n+ 1, k).

Then assume we are in the case φ = f(ψ) where ψ ∈ Σ∗. Consider the set of the
positive integers r such that 2 < r < ℓ(φ), φ[r] = ‘,’ and d(φ, r) = 1.

If the mentioned set is empty or has not exactly one member then φ /∈ Hf (n+1, k).

If this set has just one member r1 then we can define ψ1 = φ[3, r1− 1] (if r1− 1 < 3
then ψ1 = ϵ where ϵ is the empty string over the alphabet Σ). We also define
ψ2 = φ[r1 + 1, ℓ(φ)− 1] (if ℓ(φ)− 1 < r1 + 1 then ψ2 = ϵ).

If ψ1, ψ2 ∈ E(n, k) then we can decide φ ∈ Hf (n + 1, k), otherwise φ /∈ Hf (n +
1, k).

Lemma 6.1.20. Let f ∈ F and assume f has multiplicity 2. There exists an algorithm
that given φ ∈ Σ∗

• determines if φ ∈ Hf (n+ 1, k),
• if φ ∈ Hf (n+ 1, k) it also identifies ψ1, ψ2 ∈ E(n, k) such that φ = f(ψ1, ψ2).

Proof. See the proof of lemma 6.1.19.
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Lemma 6.1.21. Let f ∈ F and assume f has multiplicity 2. Given φ ∈ Hf (n +
1, k) there exist χ1, χ2 ∈ E(n, k) such that φ = f(χ1, χ2) and χ1, χ2 are univocally
determined.

Proof. It is obvious by the definition of Hf (n+1, k) that there exist χ1, χ2 ∈ E(n, k)
such that φ = f(χ1, χ2). We have also seen in lemma 6.1.18 that the set of the positive
integers r such that 2 < r < ℓ(φ), φ[r] = ‘,’ and d(φ, r) = 1 has just one member r1.

By the same lemma if we define ψ1 = φ[3, r1 − 1] (if r1 − 1 < 3 then ψ1 = ϵ
where ϵ is the empty string over the alphabet Σ) and ψ2 = φ[r1 + 1, ℓ(φ) − 1] (if
ℓ(φ)− 1 < r1 + 1 then ψ2 = ϵ), then ψ1 = χ1, ψ2 = χ2.

We can assume there also exist ϕ1, ϕ2 ∈ E(n, k) such that φ = f(ϕ1, ϕ2). Clearly
we can apply lemma 6.1.18 also in this case and obtain ψ1 = ϕ1, ψ2 = ϕ2.

It obviously follow that ϕ1 = χ1, ϕ2 = χ2.

Lemma 6.1.22. Let f ∈ F and assume f has multiplicity 1. Then Hf (n + 1, k) is
recursive.

Proof. Let φ ∈ Σ∗ and let’s see how we decide if φ ∈ Hf (n+ 1, k).

If φ doesn’t begin with the characters f( or doesn’t end with the character ) then
φ /∈ Hf (n+ 1, k).

Then assume we are in the case φ = f(ψ) where ψ ∈ Σ∗.

In this case using lemma 6.1.17 if ψ ∈ E(n, k) we’ll decide that φ ∈ Hf (n + 1, k),
otherwise we’ll decide that φ /∈ Hf (n+ 1, k).

Lemma 6.1.23. Let f ∈ F and assume f has multiplicity 1. There exists an algorithm
that given φ ∈ Σ∗

• determines if φ ∈ Hf (n+ 1, k),
• if φ ∈ Hf (n+ 1, k) it also identifies ψ ∈ E(n, k) such that φ = f(ψ).

Proof. See the proof of lemma 6.1.22.

Lemma 6.1.24. Let f ∈ F and assume f has multiplicity 1. Given φ ∈ Hf (n+ 1, k)
there exists χ ∈ E(n, k) such that φ = f(χ) and χ is univocally determined.

Proof. It is obvious by the definition of Hf (n + 1, k) that there exists χ ∈ E(n, k)
such that φ = f(χ).

We can also assume there exists ϕ ∈ E(n, k) such that φ = f(ϕ), then obviously
ϕ = χ.

For each k ∈ K(n) and f ∈ F if f has multiplicity 2 we define Ef (n+ 1, k) as the
set of the strings f(φ1, φ2) ∈ Hf (n+ 1, k) such that:
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• φ1, φ2 ∈ E(n, k);
• for each σ ∈ Ξ(k) Af (#(k, φ1, σ),#(k, φ2, σ)) is true;
• f(φ1, φ2) /∈ E(n, k);
• f(φ1, φ2) /∈ Eb(n+ 1, k).

For instance, this means that if f is the ‘logical conjunction’ symbol ‘∧’ and it
belongs to F , φ1, φ2 belong to E(n, k), for each σ ∈ Ξ(k) both #(k, φ1, σ) and
#(k, φ2, σ) are true or false, ∧(φ1, φ2) /∈ E(n, k), ∧(φ1, φ2) /∈ Eb(n + 1, k) then
∧(φ1, φ2) belongs to E

f (n+ 1, k).

We now show that Ef (n + 1, k) is recursive. Given φ ∈ Σ∗ we can determine if
φ ∈ Hf (n+1, k). Clearly if φ /∈ Hf (n+1, k) then φ /∈ Ef (n+1, k). If φ ∈ Hf (n+1, k)
then we can identify ψ1, ψ2 ∈ E(n, k) such that φ = f(ψ1, ψ2). We have seen that
ψ1, ψ2 are univocally determined.

For f with multiplicity 2 Af (#(k, φ1, σ),#(k, φ2, σ)) can be one of the following

• Event1(#(k, φ1, σ)) and Event1(#(k, φ2, σ)),
• Set1(#(k, φ2, σ)),
• ‘something which is true’ (e.g. 1 = 1)

In every mentioned case the predicate ‘for each σ ∈ Ξ(k)
Af (#(k, φ1, σ),#(k, φ2, σ))’ is decidable, and we can also decide if the follow-
ing conditions hold

• f(φ1, φ2) /∈ E(n, k),
• f(φ1, φ2) /∈ Eb(n+ 1, k).

For each f with multiplicity 2, t = f(φ1, φ2) ∈ Ef (n+ 1, k) we define

#(k, t, σ)(n+1,k,<f>) = Pf (#(k, φ1, σ),#(k, φ2, σ)).

If f has multiplicity 1 we define Ef (n + 1, k) as the set of the strings f(φ1) ∈
Hf (n+ 1, k) such that:

• φ1 ∈ E(n, k);
• for each σ ∈ Ξ(k) Af (#(k, φ1, σ)) is true;
• f(φ1) /∈ E(n, k).
• f(φ1) /∈ Eb(n+ 1, k).

We now show that Ef (n + 1, k) is recursive. Given φ ∈ Σ∗ we can determine if
φ ∈ Hf (n+1, k). Clearly if φ /∈ Hf (n+1, k) then φ /∈ Ef (n+1, k). If φ ∈ Hf (n+1, k)
then we can identify ψ ∈ E(n, k) such that φ = f(ψ). We have seen that ψ is
univocally determined.

For f with multiplicity 1 Af (#(k, φ1, σ)) can be one of the following

• ‘something which is true’ (e.g. 1 = 1),
• Event2(#(k, φ1, σ)).
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In every mentioned case the predicate ‘for each σ ∈ Ξ(k) Af (#(k, φ1, σ)’ is decid-
able, and we can also decide if the following conditions hold

• f(φ1) /∈ E(n, k),
• f(φ1) /∈ Eb(n+ 1, k).

For each f with multiplicity 1, t = f(φ1) ∈ Ef (n+ 1, k) we define

#(k, t, σ)(n+1,k,<f>) = Pf (#(k, φ1, σ)).

Let k ∈ K(n), m a positive integer, x a function whose domain is {1, . . . ,m} such
that for each i = 1 . . .m xi ∈ V − var(k), and for each i, j = 1 . . .m i ̸= j → xi ̸= xj ,
φ a function whose domain is {1, . . . ,m} such that for each i = 1 . . .m φi ∈ E(n), and
finally let ϕ ∈ E(n). We write

E(n, k,m, x, φ, ϕ)

to indicate the following condition (where k′1 = k+ < x1, φ1 >, and if m > 1 for
each i = 1 . . .m− 1 k′i+1 = k′i+ < xi+1, φi+1 >):

• φ1 ∈ Es(n, k) ;
• if m > 1 then for each i = 1 . . .m− 1 k′i ∈ K(n) ∧ φi+1 ∈ Es(n, k

′
i);

• k′m ∈ K(n) ∧ ϕ ∈ E(n, k′m).

For each k ∈ K(n) we define He(n+ 1, k) as the set of the strings

{}(x1 : φ1, . . . , xm : φm, ϕ)

such that:

• m is a positive integer;
• x is a function whose domain is {1, . . . ,m} such that for each i = 1 . . .m xi ∈

V − var(k), and for each i, j = 1 . . .m i ̸= j → xi ̸= xj ;
• φ is a function whose domain is {1, . . . ,m} such that for each i = 1 . . .m φi ∈
E(n);

• ϕ ∈ E(n);
• E(n, k,m, x, φ, ϕ);

Let t ∈ Σ∗. If t doesn’t begin with the characters ‘{}(’ or it doesn’t end with ‘)’
then t /∈ He(n + 1, k). Let ψ ∈ Σ∗ and let t = {}(ψ). Consider the set of the positive
integers r such that 2 < r < ℓ(t), t[r] = ‘,’ and d(t, r) = 1. If t ∈ He(n + 1, k) then
this set is not empty and by contraposition if this set is empty then t /∈ He(n+ 1, k).
The following lemma will helps us to state the recursivity of He(n+ 1, k).

Lemma 6.1.25. Let ψ ∈ Σ∗ and let t = {}(ψ) ∈ Σ∗. Consider the set of the positive
integers r such that 2 < r < ℓ(t), t[r] = ‘,’ and d(t, r) = 1. Assume this set is not
empty and let’s name r1, . . . , rh its members (in increasing order).
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Let’s also define ψ1 = t[3, r1 − 1] (if r1 − 1 < 3 then ψ1 = ϵ where ϵ is the empty
string over the alphabet Σ).
If h > 1 then for each i = 1 . . . h − 1 we define ψi+1 = t[ri + 1, ri+1 − 1] (if
ri+1 − 1 < ri + 1 then ψi+1 = ϵ.
Finally we define ψh+1 = t[rh + 1, ℓ(t)− 1] (if ℓ(t)− 1 < rh + 1 then ψh+1 = ϵ).

With these definitions t ∈ He(n+ 1, k) if and only if

• for each i = 1 . . . h ℓ(ψi) ⩾ 3, ψi[2] = ‘:’; ℓ(ψh+1) ⩾ 1;
• let’s define a function x over the domain {1, . . . , h} by setting x(i) = ψi[1]; let’s
define a function φ over the domain {1, . . . , h} by setting φ(i) = ψi[3, ℓ(ψi)]; let’s
define ϕ = ψh+1 then

◦ for each i = 1 . . . h xi ∈ V − var(k), and for each i, j = 1 . . . h i ̸= j → xi ̸=
xj ,

◦ for each i = 1 . . . h φi ∈ E(n),
◦ ϕ ∈ E(n);
◦ E(n, k, h, x, φ, ϕ).

Proof. Suppose t ∈ He(n+ 1, k), then there exist

• a positive integer m;
• a function y whose domain is {1, . . . ,m} such that for each i = 1 . . .m yi ∈
V − var(k), and for each i, j = 1 . . .m i ̸= j → yi ̸= yj ;

• a function χ whose domain is {1, . . . ,m} such that for each i = 1 . . .m χi ∈ E(n);
• θ ∈ E(n);

such that E(n, k,m, y, χ, θ) and t = {}(y1 : χ1, . . . , ym : χm, θ).

Let’s indicate with q1, . . . , qm the positions of the explicit occurrences of ‘,’ in
the representation {}(y1 : χ1, . . . , ym : χm, θ) of t. For each i = 1 . . .m d(t, qi) = 1
therefore {q1, . . . , qm} ⊆ {r1, . . . , rh}.

Suppose there exists i = 1 . . . h such that ri /∈ {q1, . . . , qm}. In this case one of the
following conditions will occur:

• ri < q1,
• ri > qm,
• m > 1 and there exists j = 1 . . .m− 1 such that qj < ri < qj+1.

If ri < q1 then 4 < ri also holds, χ1 = t[5, q1 − 1], ℓ(χ1) = q1 − 1 − 4 = q1 − 5,
for each α = 1 . . . q1 − 5 χ1[α] = t[4 + α]. So ri − 4 ⩾ 1, ri − 4 < q1 − 4 and then
ri−4 ⩽ q1−5 = ℓ(χ1). Then also χ1[ri−4] = t[ri] = ‘,’ and 1 = d(t, ri) = 1+d(χ1, ri−4),
therefore d(χ1, ri − 4) = 0. This contradicts assumption 6.1.11 and therefore we
cannot have ri < q1.

If ri > qm then ri < ℓ(t) also holds, θ = t[qm + 1, ℓ(t) − 1], ℓ(θ) = ℓ(t) − 1 − qm =
ℓ(t) − qm − 1. For each α = 1 . . . ℓ(t) − qm − 1 θ[α] = t[qm + α]. So ri − qm ⩾ 1,
ri−qm < ℓ(t)−qm and then ri−qm ⩽ ℓ(t)−qm−1 = ℓ(θ). Then also θ[ri−qm] = t[ri]
= ‘,’ and 1 = d(t, ri) = d(t, qm + 1) + d(θ, ri − qm) = 1 + d(θ, ri − qm), therefore
d(θ, ri − qm) = 0. This contradicts assumption 6.1.11 and therefore we cannot have
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ri > qm.

Finally assume m > 1 and there exists j = 1 . . .m − 1 such that
qj < ri < qj+1. In this case we have also qj + 2 < ri, χj+1 = t[qj + 3, qj+1 − 1],
ℓ(χj+1) = qj+1 − 1 − (qj + 2) = qj+1 − qj − 3. For each α = 1 . . . qj+1 − qj − 3
χj+1[α] = t[qj + 2 + α]. So ri − qj − 2 ⩾ 1, ri − qj − 2 < qj+1 − qj − 2 and then
ri − qj − 2 ⩽ qj+1 − qj − 3 = ℓ(χj+1). Then also χj+1[ri − qj − 2] = t[ri] = ‘,’ and
1 = d(t, ri) = d(t, qj + 3) + d(χj+1, ri − qj − 2) = 1 + d(χj+1, ri − qj − 2). Therefore
d(χj+1, ri − qj − 2) = 0 and this contradicts assumption 6.1.11 and therefore we
cannot have that m > 1 and there exists j = 1 . . .m− 1 such that qj < ri < qj+1.

So we have to conclude that {q1, . . . , qm} = {r1, . . . , rh}. This means that h = m.

It also follows that for each i = 1 . . . h ψi = ‘yi : χi’, ψh+1 = θ. And it also follows
that for each i = 1 . . . h ℓ(ψi) ⩾ 3, ψi[2] = ‘:’; ℓ(ψh+1) ⩾ 1.

Let’s now define a function x over the domain {1, . . . , h} by setting x(i) = ψi[1] =
y(i); let’s define a function φ over the domain {1, . . . , h} by setting φ(i) = ψi[3, ℓ(ψi)] =
χ(i); let’s define ϕ = ψh+1 = θ then

• for each i = 1 . . . h xi ∈ V − var(k), and for each i, j = 1 . . . h i ̸= j → xi ̸= xj ,
• for each i = 1 . . . h φi ∈ E(n),
• ϕ ∈ E(n);
• E(n, k, h, x, φ, ϕ).

Conversely assume the following:

• for each i = 1 . . . h ℓ(ψi) ⩾ 3, ψi[2] = ‘:’; ℓ(ψh+1) ⩾ 1;
• let’s define a function x over the domain {1, . . . , h} by setting x(i) = ψi[1]; let’s
define a function φ over the domain {1, . . . , h} by setting φ(i) = ψi[3, ℓ(ψi)]; let’s
define ϕ = ψh+1 then

◦ for each i = 1 . . . h xi ∈ V − var(k), and for each i, j = 1 . . . h i ̸= j → xi ̸=
xj ,

◦ for each i = 1 . . . h φi ∈ E(n),
◦ ϕ ∈ E(n);
◦ E(n, k, h, x, φ, ϕ).

Notice that t = {}(ψ1, . . . , ψh, ψh+1) = {}(x1 : φ1, . . . , xh : φh, ϕ), so clearly t ∈
He(n+ 1, k).

Lemma 6.1.26. Given k ∈ K(n) He(n+ 1, k) is recursive.

Proof. Let t ∈ Σ∗. If t doesn’t begin with the characters ‘{}(’ or it doesn’t end with
‘)’ then t /∈ He(n+1, k). Let ψ ∈ Σ∗ and let t = {}(ψ). Consider the set of the positive
integers r such that 2 < r < ℓ(t), t[r] = ‘,’ and d(t, r) = 1. If t ∈ He(n + 1, k) then
this set is not empty and by contraposition if this set is empty then t /∈ He(n+ 1, k).

So we can consider the case of the former lemma where the just mentioned set is
not empty. And we define ψ1 = t[3, r1 − 1] (if r1 − 1 < 3 then ψ1 = ϵ where ϵ is the
empty string over the alphabet Σ).
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If h > 1 then for each i = 1 . . . h − 1 we define ψi+1 = t[ri + 1, ri+1 − 1] (if
ri+1 − 1 < ri + 1 then ψi+1 = ϵ.
Finally we define ψh+1 = t[rh + 1, ℓ(t)− 1] (if ℓ(t)− 1 < rh + 1 then ψh+1 = ϵ).

At this point we can verify the following: for each i = 1 . . . h ℓ(ψi) ⩾ 3, ψi[2] = ‘:’;
ℓ(ψh+1) ⩾ 1: if this is false then t /∈ He(n+ 1, k).

If the condition is true we can go on with our verifications and first of all we define
a function x over the domain {1, . . . , h} by setting x(i) = ψi[1]; let’s define a function
φ over the domain {1, . . . , h} by setting φ(i) = ψi[3, ℓ(ψi)]; let’s define ϕ = ψh+1.

At this point we just need to check this condition

• for each i = 1 . . . h xi ∈ V − var(k), and for each i, j = 1 . . . h i ̸= j → xi ̸= xj ,
• φ1 ∈ Es(n, k) ;
• if m > 1 then for each i = 1 . . .m− 1 k′i ∈ K(n) ∧ φi+1 ∈ Es(n, k

′
i);

• k′m ∈ K(n) ∧ ϕ ∈ E(n, k′m).

The condition is decidable. In fact E(n, k) is recursive and so are K(n), E(n, k′i) and
E(n, k′m). If the condition holds then clearly t ∈ He(n+1, k), else t /∈ He(n+1, k).

Lemma 6.1.27. Let k ∈ K(n), given t ∈ He(n+ 1, k) there exist

• a positive integer m;
• a function y whose domain is {1, . . . ,m} such that for each i = 1 . . .m yi ∈

V − var(k), and for each i, j = 1 . . .m i ̸= j → yi ̸= yj ;
• a function χ whose domain is {1, . . . ,m} such that for each i = 1 . . .m χi ∈ E(n);
• θ ∈ E(n);

such that E(n, k,m, y, χ, θ) and t = {}(y1 : χ1, . . . , ym : χm, θ).

Moreover m, y, χ, θ are univocally determined.

Proof. Since t ∈ He(n + 1, k) we are in the case of lemma 6.1.25 and we can define
r1, . . . , rh and ψ1, . . . , ψh+1 as in that lemma. As shown in the lemma the following
holds

• for each i = 1 . . . h ℓ(ψi) ⩾ 3, ψi[2] = ‘:’; ℓ(ψh+1) ⩾ 1;
• let’s define a function x over the domain {1, . . . , h} by setting x(i) = ψi[1]; let’s
define a function φ over the domain {1, . . . , h} by setting φ(i) = ψi[3, ℓ(ψi)]; let’s
define ϕ = ψh+1 then

◦ for each i = 1 . . . h xi ∈ V − var(k), and for each i, j = 1 . . . h i ̸= j → xi ̸=
xj ,

◦ for each i = 1 . . . h φi ∈ E(n),
◦ ϕ ∈ E(n);
◦ E(n, k, h, x, φ, ϕ).

As seen in the lemma it also happens that m = h and for each i = 1 . . .m
y(i) = x(i), χ(i) = φ(i), and finally θ = ϕ.

If we had identified some potentially different (p, z, η, ϑ) such that

• p is a positive integer;
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• z is a function whose domain is {1, . . . , p} such that for each i = 1 . . . p zi ∈
V − var(k), and for each i, j = 1 . . . p i ̸= j → zi ̸= zj ;

• η is a function whose domain is {1, . . . , p} such that for each i = 1 . . . p ηi ∈ E(n);
• ϑ ∈ E(n);
• E(n, k, p, z, η, ϑ);
• t = {}(z1 : θ1, . . . , zp : χp, ϑ);

we can still conclude that p = h = m and for each i = 1 . . . p z(i) = x(i) = y(i),
η(i) = φ(i) = χ(i), and finally ϑ = ϕ = θ.

For each k ∈ K(n) we define Ee(n+ 1, k) as the set of the strings

{}(x1 : φ1, . . . , xm : φm, ϕ) ∈ He(n+ 1, k)

such that:

• m is a positive integer;
• x is a function whose domain is {1, . . . ,m} such that for each i = 1 . . .m xi ∈

V − var(k), and for each i, j = 1 . . .m i ̸= j → xi ̸= xj ;
• φ is a function whose domain is {1, . . . ,m} such that for each i = 1 . . .m φi ∈
E(n);

• ϕ ∈ E(n);
• {}(x1 : φ1, . . . , xm : φm, ϕ) /∈ E(n, k);
• {}(x1 : φ1, . . . , xm : φm, ϕ) /∈ Eb(n+ 1, k).

Lemma 6.1.28. Ee(n+ 1, k) is recursive.

Proof. As we have seen in lemma 6.1.26, given t ∈ Σ∗ we can decide if t ∈ He(n+1, k)
and if we decide it is true then we also identify in the process what follows:

• a positive integer h;
• a function x over the domain {1, . . . , h} such that for each i = 1 . . . h xi ∈

V − var(k), and for each i, j = 1 . . . h i ̸= j → xi ̸= xj ;
• a function φ over the domain {1, . . . , h} such that for each i = 1 . . . h φi ∈ E(n);
• ϕ ∈ E(n)

such that E(n, k, h, x, φ, ϕ) and t = {}(x1 : φ1, . . . , xm : φm, ϕ).

Clearly we can also decide if the following conditions hold:

• {}(x1 : φ1, . . . , xm : φm, ϕ) /∈ E(n, k);
• {}(x1 : φ1, . . . , xm : φm, ϕ) /∈ Eb(n+ 1, k).

If the conditions both hold then t ∈ Ee(n+ 1, k), otherwise t /∈ Ee(n+ 1, k).

For every t = {}(x1 : φ1, . . . , xm : φm, ϕ) ∈ Ee(n+ 1, k) we define

#(k, t, σ)(n+1,k,e) = {#(k′m, ϕ, σ
′
m)| σ′m ∈ Ξ(k′m), σ ⊑ σ′m},

where k′1 = k+(x1, φ1), and ifm > 1 for each i = 1 . . .m−1 k′i+1 = k′i+(xi+1, φi+1).
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Notice that the set {#(k′m, ϕ, σ
′
m)| σ′m ∈ Ξ(k′m), σ ⊑ σ′m} is specified using a stan-

dard mathematical notation. We could specify it using a notation closer to the one of
our expressions, in this case we should define a set Q as the set of σ′m ∈ Ξ(k′m) such
that σ ⊑ σ′m, then we could write the above mentioned set as {}(σ′m : Q,#(k′m, ϕ, σ

′
m)).

Actually, it might still be a bit unclear what is the intended meaning of the expres-
sion

{}(x1 : φ1, . . . , xm : φm, ϕ).

This is the same meaning that the expression

{ϕ| x1 ∈ φ1, . . . , xm ∈ φm}

is intended to have when used in most mathematics books.

We have terminated the definition of the ‘new sets’ (of expressions bound to context
k) and the related work, we are now ready to define E(n+ 1, k) for k ∈ K(n+ 1).

First of all let C′ be the set of the constants c ∈ C for which, given k ∈ K(n), we
can define Ec(n+ 1, k).

To be precise we list here all the type of constant that belong to C′. The following
constants, and only those which are listed here, belong to C′.

• the constants c ∈ C such that #(c) is a function whose domain is (Di)
m and

whose range is Di;
• the constants c ∈ C such that #(c) is a function whose domain is (Pq(Di))

m and
whose range is Pq(Di);

• the constants c ∈ C such that there exist i = 1 . . . p and a positive integer m
such that #(c) is a function whose domain is (Di)

m and such that for each
(d1, . . . , dm) ∈ (Di)

m #(c)(d1, . . . , dm) is true or false;
• the constants c ∈ C such that there exist i = 1 . . . p, a positive integer q and a
positive integer m such that #(c) is a function whose domain is (Pq(Di))

m and
such that for each (d1, . . . , dm) ∈ (Pq(Di))

m #(c)(d1, . . . , dm) is true or false;
• the constants c ∈ C such that #(c) is a function whose domain is⋃

q⩾1(
⋃

i=1...p(Pq(Di))
m) such that for each q ⩾ 1, i = 1 . . . p, (A1, . . . , Am) ∈

(Pq(Di))
m #(c)(A1, . . . , Am) ∈ Pq(Di);

• if C includes a constant Π whose meaning #(Π) is a function over the do-
main

⋃
q⩾1(

⋃
i=1...p Pq(Di)) such that for each q ⩾ 1, i = 1 . . . p A ∈ Pq(Di)

#(Π)(A) = P(A), then Π also belongs to C′.

If k ∈ K(n)+ we have defined Ea(n+ 1, k), we also define

• E(n+ 1, k) = Ea(n+ 1, k).

If k ∈ K(n) we have defined Eb(n+1, k), Ec(n+1, k) (for each c ∈ C′), Ef (n+1, k)
(for each f ∈ F), Ee(n+ 1, k), we also define

H(n+1, k) = {E(n, k), Eb(n+1, k), Ee(n+1, k)}∪{Ec(n+1, k)|c ∈ C′}∪{Ef (n+1, k)|f ∈ F},
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E(n+ 1, k) =
⋃

A∈H(n+1,k)

A

Lemma 6.1.29. Given A,B ∈ H(n+ 1, k) A ∩B = ∅

Proof. It is obvious by definition that Eb(n+ 1, k) ∩ E(n, k) = ∅.

It is also obvious that Ee(n+1, k)∩E(n, k) = ∅ and Ee(n+1, k)∩Eb(n+1, k) = ∅.

Given c ∈ C′

• Ec(n+ 1, k) ∩ E(n, k) = ∅,
• Ec(n+ 1, k) ∩ Eb(n+ 1, k) = ∅,
• Ec(n+ 1, k) ∩ Ee(n+ 1, k) = ∅.

Given c1, c2 ∈ C′ Ec1(n+ 1, k) ∩ Ec2(n+ 1, k) = ∅.

Given f ∈ F

• Ef (n+ 1, k) ∩ E(n, k) = ∅,
• Ef (n+ 1, k) ∩ Eb(n+ 1, k) = ∅,
• Ef (n+ 1, k) ∩ Ee(n+ 1, k) = ∅.

Given f ∈ F , c ∈ C′ Ef (n+ 1, k) ∩ Ec(n+ 1, k) = ∅.

Given f1, f2 ∈ F Ef1(n+ 1, k) ∩ Ef2(n+ 1, k) = ∅.

For every k ∈ K(n + 1), t ∈ E(n + 1, k) and σ ∈ Ξ(k) we need that #(k, t, σ) is
defined.

If k ∈ K(n)+ we just need to define #(k, t, σ) for each t ∈ Ea(n+ 1, k). Obviously
we define #(k, t, σ) = #(k, t, σ)(n+1,k,a).

If k ∈ K(n), how do we define #(k, t, σ) for each t ∈ E(n + 1, k)? We have seen
that E(n+ 1, k) =

⋃
A∈H(n+1,k)A and that given A,B ∈ H(n+ 1, k) A ∩B = ∅.

Given t ∈ E(n, k) #(k, t, σ) is already defined and we don’t need to redefine it.

Given t ∈ Eb(n+ 1, k) we define #(k, t, σ) = #(k, t, σ)(n+1,k,b).

Given t ∈ Ee(n+ 1, k) we define #(k, t, σ) = #(k, t, σ)(n+1,k,e).

Given c ∈ C′, t ∈ Ec(n+ 1, k) we define #(k, t, σ) = #(k, t, σ)(n+1,k,<c>).

Given f ∈ F , t ∈ Ef (n+ 1, k) we define #(k, t, σ) = #(k, t, σ)(n+1,k,<f>).

Notice that if k ∈ K(n)+ we have not defined Eb(n+1, k), Ee(n+1, k) given c ∈ C′

we have not defined Ec(n + 1, k) and given f ∈ F we have not defined Ef (n + 1, k).
We conventionally define all of these sets as the empty set.
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Also notice that if k ∈ K(n) we have not defined Ea(n+1, k) and we conventionally
define it as the empty set.

In the last part of our definition we need to prove that all the assumptions we have
made at step n are true at step n+ 1.

Proof of 6.1.4. Let m < n + 1. If m = n then clearly K(m) = K(n) ⊆ K(n + 1).
Else m < n so K(m) ⊆ K(n) ⊆ K(n+ 1).

Proof of 6.1.5 and 6.1.6 . Let k ∈ K(n + 1), if k ∈ K(n)+ then
E(n+ 1, k) = Ea(n+ 1, k) ⊆ Σ∗.

If k ∈ K(n) then E(n+1, k) =
⋃

A∈H(n+1,k)A. Since H(n+1, k) is finite, in order to

prove that E(n+1, k) ⊆ Σ∗ we just need to prove that for each A ∈ H(n+1, k) A ⊆ Σ∗.

We actually have the following:

• E(n, k) ⊆ Σ∗,
• Eb(n+ 1, k) ⊆ Σ∗,
• Ee(n+ 1, k) ⊆ Σ∗,
• for each c ∈ C′ Ec(n+ 1, k) ⊆ Σ∗,
• for each f ∈ F Ef (n+ 1, k) ⊆ Σ∗.

Let’s now see how we prove that E(n+ 1, k) is recursive.

Let t ∈ Σ∗, we have to decide if t ∈ E(n+ 1, k). First we can decide if k ∈ K(n), if
this is false then we just need fo decide if t ∈ Ea(n+ 1, k).

If instead k ∈ K(n) holds true, we check the following conditions

• t ∈ E(n, k),
• t ∈ Eb(n+ 1, k),
• t ∈ Ee(n+ 1, k),
• the condition t ∈ Ec(n+ 1, k) (for each c ∈ C′),
• the condition t ∈ Ef (n+ 1, k) (for each f ∈ F).

If at least one of the conditions is true then we can decide t ∈ E(n+1, k), otherwise
t /∈ E(n+ 1, k).

Proof of 6.1.7. We have to show that for each k ∈ K(n + 1) k ∈ Θ and for each
σ ∈ Ξ(k) σ is a state-like pair and dom(σ) = dom(k).
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If k ∈ K(n) this is clearly true because it is precisely our assumption.

If k ∈ K(n)+ then there exist h ∈ K(n), ϕ ∈ Es(n, h), z ∈ (V − var(h)) such that
k = h+ < z, ϕ > and Ξ(k) = {ρ+ (z, s)| ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ)}.

For each σ ∈ Ξ(k) σ = ρ+(z, s) with ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ), so σ is a state-like pair.

Moreover, we can assume dom(h) = dom(ρ) = ∅ or dom(h) = dom(ρ) = {1, . . . ,m}
for a positive integer m. In the first case dom(σ) = {1} = dom(k), else

dom(σ) = dom(ρ) ∪ {m+ 1} = dom(h) ∪ {m+ 1} = dom(k) .

Proof of 6.1.8. We have to show that for each k ∈ K(n+ 1) k = ϵ and Ξ(k) = {ϵ}
or
(there exist m < n + 1, h ∈ K(m), ϕ ∈ Es(m,h), y ∈ (V − var(h)) such that
k = h+ < y, ϕ >, Ξ(k) = {σ + (y, s)|σ ∈ Ξ(h), s ∈ #(h, ϕ, σ)} ).

If k ∈ K(n) by the inductive hypothesis k = ϵ and Ξ(k) = {ϵ} or
(n > 1 and there exist m < n < n + 1, h ∈ K(m), ϕ ∈ Es(m,h), y ∈ (V − var(h))
such that k = h+ < y, ϕ >, Ξ(k) = {σ + (y, s)|σ ∈ Ξ(h), s ∈ #(h, ϕ, σ)}).

Otherwise k ∈ K(n)+ so there exist h ∈ K(n), ϕ ∈ Es(n, h), y ∈ (V − var(h)) such
that k = h+ < y, ϕ >, Ξ(k) = {σ + (y, s)|σ ∈ Ξ(h), s ∈ #(h, ϕ, σ)}.

Proof of 6.1.9. We have to show that for each k ∈ K(n + 1) : k ̸= ϵ, σ ∈ Ξ(k),
h ∈ R(k) : h ̸= k, there exists m < n + 1 such that h ∈ K(m) and it results
σ/dom(h) ∈ Ξ(h).

We first consider the case where n + 1 = 2. Here we have to show that for each
k ∈ K(2) : k ̸= ϵ, σ ∈ Ξ(k), h ∈ R(k) : h ̸= k, h ∈ K(1) and it results σ/dom(h) ∈ Ξ(h).

Let k ∈ K(2) : k ̸= ϵ, σ ∈ Ξ(k), h ∈ R(k) : h ̸= k. Clearly k ∈ K(1)+, so
there exist g ∈ K(1), ϕ ∈ Es(1, g), y ∈ V − var(g) such that k = g+ < y, ϕ >.
By lemma 5.5 we obtain that h ∈ R(g). Since g = ϵ then also h = ϵ ∈ K(1) , so
σ/dom(h) = σ/∅ = ϵ ∈ Ξ(ϵ) = Ξ(h).

Let’s now examine the case where n+1 > 2. Let k ∈ K(n+1) : k ̸= ϵ, let σ ∈ Ξ(k),
h ∈ R(k) : h ̸= k, we have to show there exists m < n+ 1 such that h ∈ K(m) and it
results σ/dom(h) ∈ Ξ(h).

As we have just proved in relation to assumption 6.1.8, there exist m < n + 1,
g ∈ K(m), ϕ ∈ Es(m, g), y ∈ (V − var(h)) such that k = g+ < y, ϕ >,
Ξ(k) = {ρ+ (y, s)| ρ ∈ Ξ(g), s ∈ #(g, ϕ, σ)} ).

This implies there exist ρ ∈ Ξ(g), s ∈ #(g, ϕ, ρ) such that σ = ρ + (y, s). By
assumption 6.1.7 and lemma 3.11 we have that σ/dom(g) = σ/dom(ρ) = ρ.
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If h = g then σ/dom(h) = σ/dom(g) = ρ ∈ Ξ(h).

Otherwise we have h ̸= g. Since k = g+ < y, ϕ >, h ∈ R(k), h ̸= k by lemma 5.5
we have that h ∈ R(g). If g = ϵ we would have h = ϵ = g, so g ̸= ϵ. This implies
that m ⩾ 2. By our inductive hypothesis we obtain there exists q < m ⩽ n such that
h ∈ K(q) and ρ/dom(h) ∈ Ξ(h). Now by lemma 3.8

σ/dom(h) = (σ/dom(g))/dom(h) = ρ/dom(h) ∈ Ξ(h).

Proof of 6.1.10. Given k ∈ K(n + 1) we have to show that a certain set of
predicates over E(n+ 1, k) are decidable.

We recall that the predicates are the following

• for each σ ∈ Ξ(k) Setq(#(k, φ, σ));
• for each σ ∈ Ξ(k) Eventq(#(k, φ, σ));
• for each σ ∈ Ξ(k) #(k, φ, σ) ∈ Di;
• for each σ ∈ Ξ(k) #(k, φ, σ) ∈ Pq(Di);
• if (for each σ ∈ Ξ(k) Setq(#(k, φ, σ))) then
(for each σ ∈ Ξ(k) NotEmptyq(#(k, φ, σ))).

And we also need to verify that the last predicate holds true.

We have seen that if k ∈ K(n)+ E(n+ 1, k) = Ea(n+ 1, k), and if k ∈ K(n)

E(n+ 1, k) =
⋃

A∈H(n+1,k)

A .

So let P be one of the predicates which we want to examine.

If k ∈ K(n)+ P is a predicate over Ea(n + 1, k), suppose we can show in this case
P is decidable over Ea(n+ 1, k).

If instead k ∈ K(n) P is a predicate over
⋃

A∈H(n+1,k)A. Suppose in this case for

each A ∈ H(n+ 1, k) we can show P is decidable over A.

If we can show the above properties for P , then P is decidable over E(n+ 1, k).

In fact given t ∈ E(n + 1, k) to decide P (t) we first decide if k ∈ K(n), if this is
false then t ∈ Ea(n+ 1, k) and we can decide P (t).

If k ∈ K(n) is true then t ∈
⋃

A∈H(n+1,k)A. For each A ∈ H(n+1, k) we can decide

if t ∈ A, this will be true for just one set A and since t ∈ A we can decide P (t).

So in order to prove the decidability of P we must prove the following:

• if k /∈ K(n) then P is decidable over Ea(n+ 1, k),
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• if k ∈ K(n) then for each A ∈ H(n+ 1, k) P is decidable over A.

There is also a predicate Q over E(n+ 1, k) which we want to prove true. In order
to prove the truthness of this predicate we must prove the following:

• if k /∈ K(n) then Q is true over Ea(n+ 1, k),
• if k ∈ K(n) then for each A ∈ H(n+ 1, k) Q is true over A.

Finally, in order to prove the decidability of all the predicates we want to declare
decidable and the truthness of the predicate Q we will proceed as follows.

• we prove that if k /∈ K(n) then for each of our predicates P P is decidable over
Ea(n+ 1, k), Q is true over Ea(n+ 1, k),

• we prove that if k ∈ K(n) then for each A ∈ H(n + 1, k) and for each of our
predicates P P is decidable over A, Q is true over A.

For the first step, let k /∈ K(n) and let’s try to prove that for each of our predicates
P P is decidable over Ea(n+ 1,k).

Since k ∈ K(n)+ there exist h ∈ K(n), ϕ ∈ Es(n, h), y ∈ (V − var(h)) such that
k = h+ < y, ϕ >, Ξ(k) = {ρ + (y, s)| ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ)}. Moreover h, y and ϕ
are clearly identifiable within k and Ea(n+ 1, k) = {y}.

Given t ∈ Ea(n+ 1, k), σ = ρ+ (y, s) ∈ Ξ(k) #(k, t, σ) = s ∈ #(h, ϕ, ρ).

We first consider the predicate ‘for each σ ∈ Ξ(k) Setq(#(k, φ, σ))’ (where q is a
positive integer).

We consider that ϕ ∈ E(n, h) and by inductive hypothesis we can decide whether
‘for each ρ ∈ Ξ(h) Setq+1(#(h, ϕ, ρ))’.

If we decide this is true then for each σ ∈ Ξ(k) there exist ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ)
such that σ = ρ + (y, s), #(k, φ, σ) = s ∈ #(h, ϕ, ρ), and since Setq+1(#(h, ϕ, ρ)) we
have Setq(#(k, φ, σ)).

So if we decide ‘for each ρ ∈ Ξ(h) Setq+1(#(h, ϕ, ρ))’ is true we can use this to
decide ‘for each σ ∈ Ξ(k) Setq(#(k, φ, σ))’ is true.

If instead we decide ‘for each ρ ∈ Ξ(h) Setq+1(#(h, ϕ, ρ))’ is false this means there
exists ρ ∈ Ξ(h) such that ¬(Setq+1(#(h, ϕ, ρ))). Since ϕ ∈ Es(n, h) we have that
#(h, ϕ, ρ) is a set and so there exists s ∈ #(h, ϕ, ρ) such that ¬(Setq(s)). If we set
σ = ρ+ (y, s) then σ ∈ Ξ(k) and #(k, φ, σ) = s so ¬(Setq(#(k, φ, σ)).

So if we decide ‘for each ρ ∈ Ξ(h) Setq+1(#(h, ϕ, ρ))’ is false we can use this to
decide ‘for each σ ∈ Ξ(k) Setq(#(k, φ, σ))’ is false too.

We now want to prove the following:

if (for each σ ∈ Ξ(k) Setq(#(k, φ, σ))) then
(for each σ ∈ Ξ(k) NotEmptyq(#(k, φ, σ))).
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We assume (for each σ ∈ Ξ(k) Setq(#(k, φ, σ))), clearly this implies
(for each ρ ∈ Ξ(h) Setq+1(#(h, ϕ, ρ))), which (by inductive hypothesis) implies
(for each ρ ∈ Ξ(h) NotEmptyq+1(#(h, ϕ, ρ))).

We can then consider that for each σ ∈ Ξ(k) there exist ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ)
such that σ = ρ + (y, s), #(k, φ, σ) = s ∈ #(h, ϕ, ρ). Since NotEmptyq+1(#(h, ϕ, ρ))
holds then NotEmptyq(#(k, φ, σ)) holds too.

Given i = 1 . . . p we now want to consider the predicate ‘for each σ ∈ Ξ(k)
#(k, φ, σ) ∈ Di’.

By the inductive hypothesis we are able to decide the predicate ‘for each ρ ∈ Ξ(h)
#(h, ϕ, ρ) ∈ P(Di)’.

If we decide the last condition is true then as seen above for each σ ∈ Ξ(k) there exist
ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ) such that σ = ρ+ (y, s), #(k, φ, σ) = s ∈ #(h, ϕ, ρ) ∈ P(Di),
therefore #(k, φ, σ) ∈ Di.

If instead we decide the mentioned condition is false, then there exists ρ ∈ Ξ(h):
#(h, ϕ, ρ) /∈ P(Di). Since #(h, ϕ, ρ) is a set and it is not empty, this means there exists
s ∈ #(h, ϕ, ρ): s /∈ Di. If we set σ = ρ+ (y, s) then σ ∈ Ξ(k) and #(k, φ, σ) = s /∈ Di,
so there exists σ ∈ Ξ(k): #(k, φ, σ) /∈ Di.

Given i = 1 . . . p and a positive integer q we now want to consider the predicate
‘for each σ ∈ Ξ(k) #(k, φ, σ) ∈ Pq(Di)’.

By the inductive hypothesis we are able to decide the predicate ‘for each ρ ∈ Ξ(h)
#(h, ϕ, ρ) ∈ Pq+1(Di)’.

If we decide the last condition is true then as seen above for each
σ ∈ Ξ(k) there exist ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ) such that σ = ρ + (y, s),
#(k, φ, σ) = s ∈ #(h, ϕ, ρ) ∈ Pq+1(Di), therefore #(k, φ, σ) ∈ #(h, ϕ, ρ) ⊆ Pq(Di).

If instead we decide the mentioned condition is false, then there exists ρ ∈ Ξ(h):
#(h, ϕ, ρ) /∈ Pq+1(Di). Since #(h, ϕ, ρ) is a set and it is not empty, this means
there exists s ∈ #(h, ϕ, ρ): s /∈ Pq(Di). If we set σ = ρ + (y, s) then σ ∈ Ξ(k) and
#(k, φ, σ) = s /∈ Pq(Di), so there exists σ ∈ Ξ(k): #(k, φ, σ) /∈ Pq(Di).

Given a positive integer q we now want to consider the predicate ‘for each σ ∈ Ξ(k)
Eventq(#(k, φ, σ))’.

By the inductive hypothesis we are able to decide the predicate ‘for each ρ ∈ Ξ(h)
Eventq+1(#(h, ϕ, ρ))’.

If we decide the last condition is true then as seen above for each σ ∈ Ξ(k) there
exists ρ ∈ Ξ(h) such that #(k, φ, σ) ∈ #(h, ϕ, ρ). Since Eventq+1(#(h, ϕ, ρ)) we have
Eventq(#(k, φ, σ)).

If instead we decide the mentioned condition is false, then there exists ρ ∈ Ξ(h):
¬(Eventq+1(#(h, ϕ, ρ))). This implies there exists s ∈ #(h, ϕ, ρ): ¬(Eventq(s)). If we
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set σ = ρ + (y, s) then σ ∈ Ξ(k) and #(k, φ, σ) = s, so ¬(Eventq(#(k, φ, σ))). This
means there exists σ ∈ Ξ(k): ¬(Eventq(#(k, φ, σ))).

Let’s now move to the second step of our proof, where we expect to prove that
if k ∈ K(n) then for each A ∈ H(n + 1, k) and for each of our predicates P P is
decidable over A.

By the inductive hypothesis (i.e. what we assumed true at level n) we can assume
that each of our predicates P is decidable over E(n,k).

Let’s now try to prove that for each of our predicates P P is decidable over
Eb(n+ 1,k).

If k = ϵ we have Eb(n + 1, k) = ∅, so our predicates are trivially decidabile over
such empty domain.

We’ll then consider the case k ̸= ϵ. Here by our assumption 6.1.8 n > 1 and there
exist m < n, h ∈ K(m), ϕ ∈ Es(m,h), y ∈ (V − var(h)) such that k = h+ < y, ϕ >,
Ξ(k) = {ρ+ (y, s)| ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ)}).

For each φ ∈ Eb(n+ 1, k), σ = ρ+ (y, s) ∈ Ξ(k) #(k, φ, σ) = #(h, φ, ρ).

We first consider the predicate ‘for each σ ∈ Ξ(k) Setq(#(k, φ, σ))’ (where q is a
positive integer).

By the inductive hypothesis we can decide if the following condition holds: ‘for
each ρ ∈ Ξ(h) Setq(#(h, φ, ρ))’.

If the just mentioned condition holds we can consider that for each σ ∈ Ξ(k) there
exist ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ) such that σ = ρ + (y, s) and #(k, φ, σ) = #(h, φ, ρ).
Since Setq(#(h, φ, ρ)) then Setq(#(k, φ, σ)) holds too.

If the mentioned condition is decided as false then there exists ρ ∈ Ξ(h):
¬(Setq(#(h, φ, ρ))). We have that for each δ ∈ Ξ(h) Set1(#(h, ϕ, δ)), so for each
δ ∈ Ξ(h) NotEmpty1(#(h, ϕ, δ)). So let s ∈ #(h, ϕ, ρ) and let σ = ρ + (y, s), then
σ ∈ Ξ(k) and #(k, φ, σ) = #(h, φ, ρ) and so ¬(Setq(#(k, φ, σ))).

We now want to prove the following:

if (for each σ ∈ Ξ(k) Setq(#(k, φ, σ))) then
(for each σ ∈ Ξ(k) NotEmptyq(#(k, φ, σ))).

We assume (for each σ ∈ Ξ(k) Setq(#(k, φ, σ))), clearly this implies
(for each ρ ∈ Ξ(h) Setq(#(h, ϕ, ρ))), which (by inductive hypothesis) implies
(for each ρ ∈ Ξ(h) NotEmptyq(#(h, ϕ, ρ))).

We can then consider that for each σ ∈ Ξ(k) there exist ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ)
such that σ = ρ + (y, s), #(k, φ, σ) = #(h, ϕ, ρ). Since NotEmptyq(#(h, ϕ, ρ)) holds
then NotEmptyq(#(k, φ, σ)) holds too.
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Given i = 1 . . . p we now want to consider the predicate ‘for each σ ∈ Ξ(k)
#(k, φ, σ) ∈ Di’.

By the inductive hypothesis we can decide the condition ‘for each ρ ∈ Ξ(h)
#(h, φ, ρ) ∈ Di’.

If the just mentioned condition holds then we consider that for each σ ∈ Ξ(k) there
exist ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ) such that σ = ρ + (y, s) and #(k, φ, σ) = #(h, φ, ρ).
Therefore clearly #(k, φ, σ) ∈ Di.

If on the contrary the mentioned condition is decided as false then there exists
ρ ∈ Ξ(h): #(h, φ, ρ) /∈ Di. We have that for each δ ∈ Ξ(h) Set1(#(h, ϕ, δ)), so for
each δ ∈ Ξ(h) NotEmpty1(#(h, ϕ, δ)). So let s ∈ #(h, ϕ, ρ) and let σ = ρ + (y, s),
then σ ∈ Ξ(k) and #(k, φ, σ) = #(h, φ, ρ) /∈ Di.

Given i = 1 . . . p and a positive integer q we now want to consider the predicate
‘for each σ ∈ Ξ(k) #(k, φ, σ) ∈ Pq(Di)’.

By the inductive hypothesis we are able to decide the predicate ‘for each ρ ∈ Ξ(h)
#(h, φ, ρ) ∈ Pq(Di)’.

If the just mentioned condition holds then we consider that for each σ ∈ Ξ(k) there
exist ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ) such that σ = ρ + (y, s) and #(k, φ, σ) = #(h, φ, ρ).
Therefore clearly #(k, φ, σ) ∈ Pq(Di).

If on the contrary the mentioned condition is decided as false then there exists
ρ ∈ Ξ(h): #(h, φ, ρ) /∈ Pq(Di). We have that for each δ ∈ Ξ(h) Set1(#(h, ϕ, δ)), so
for each δ ∈ Ξ(h) NotEmpty1(#(h, ϕ, δ)). So let s ∈ #(h, ϕ, ρ) and let σ = ρ+ (y, s),
then σ ∈ Ξ(k) and #(k, φ, σ) = #(h, φ, ρ) /∈ Pq(Di).

Given a positive integer q we now want to consider the predicate ‘for each σ ∈ Ξ(k)
Eventq(#(k, φ, σ))’.

By the inductive hypothesis we are able to decide the predicate ‘for each ρ ∈ Ξ(h)
Eventq(#(h, φ, ρ))’.

If the just mentioned condition holds then we consider that for each σ ∈ Ξ(k) there
exist ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ) such that σ = ρ + (y, s) and #(k, φ, σ) = #(h, φ, ρ).
Therefore clearly Eventq(#(k, φ, σ)).

If on the contrary the mentioned condition is decided as false then there exists
ρ ∈ Ξ(h): ¬(Eventq(#(h, φ, ρ))). We have that for each δ ∈ Ξ(h) Set1(#(h, ϕ, δ)), so
for each δ ∈ Ξ(h) NotEmpty1(#(h, ϕ, δ)). So let s ∈ #(h, ϕ, ρ) and let σ = ρ+ (y, s),
then σ ∈ Ξ(k) and #(k, φ, σ) = #(h, φ, ρ), so ¬(Eventq(#(k, φ, σ))).

Let’s now try to prove that for each of our predicates P P is decidable over
Ee(n+ 1,k).

We recall that for every t = {}(x1 : φ1, . . . , xm : φm, ϕ) ∈ Ee(n + 1, k) we have
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defined

#(k, t, σ) = {#(k′m, ϕ, σ
′
m)| σ′m ∈ Ξ(k′m), σ ⊑ σ′m},

where k′1 = k+ < x1, φ1 >, and if m > 1 for each i = 1 . . .m − 1
k′i+1 = k′i+ < xi+1, φi+1 >.

We first consider the predicate ‘for each σ ∈ Ξ(k) Setq(#(k, t, σ))’ (where q is a
positive integer).

It is clear that for each σ ∈ Ξ(k) Set1(#(k, t, σ)) holds true.

Let’s then examine the condition ‘for each σ ∈ Ξ(k) Setq+1(#(k, t, σ))’ (where q is
a positive integer).

We have ϕ ∈ E(n, k′m) so we can decide the condition ‘for each σ′m ∈ Ξ(k′m)
Setq(#(k′m, ϕ, σ

′
m))’.

If the just mentioned condition holds true then we can observe that for each σ ∈ Ξ(k)
and for each u ∈ #(k, t, σ) there exists σ′m ∈ Ξ(k′m) such that u = #(k′m, ϕ, σ

′
m), and

so Setq(u). It follows that Setq+1(#(k, t, σ)) holds true.

If on the contrary the mentioned condition is decided as false then there exists
σ′m ∈ Ξ(k′m) such that ¬(Setq(#(k′m, ϕ, σ

′
m))).

Let σ = (σ′m)/dom(k), we can apply assumption 6.1.9 to show that σ ∈ Ξ(k). In fact
k′m ̸= ϵ so n > 1, σ′m ∈ Ξ(k′m), k ∈ R(k′m), k ̸= k′m. It is also obvious that σ ⊑ σ′m.
So #(k′m, ϕ, σ

′
m) ∈ #(k, t, σ), and so there exists u ∈ #(k, t, σ) such that ¬(Setq(u)).

Finally, there exists σ ∈ Ξ(k) such that ¬(Setq+1(#(k, t, σ))).

We have seen that for each σ ∈ Ξ(k) Set1(#(k, t, σ)). So we also need to show that
for each σ ∈ Ξ(k) NotEmpty1(#(k, t, σ)).

Given σ ∈ Ξ(k), in order to show NotEmpty1(#(k, t, σ)) we have to prove there
exists σ′m ∈ Ξ(k′m) such that σ ⊑ σ′m, in this case in fact #(k′m, ϕ, σ

′
m) ∈ #(k, t, σ).

First we will show there exists σ′1 ∈ Ξ(k′1) such that σ ⊑ σ′1.

Indeed φ1 ∈ Es(n, k) so for each δ ∈ Ξ(k) Set1(#(k, φ1, δ)). So for each δ ∈ Ξ(k)
NotEmpty1(#(k, φ1, δ)) and this implies #(k, φ1, σ) ̸= ∅. So given s1 ∈ #(k, φ1, σ)
we can define σ′1 = σ + (x1, s1) and clearly σ′1 ∈ Ξ(k′1). Obviously σ ⊑ σ′1.

If m > 1 given j = 1 . . .m − 1 we can assume the existence of σ′j ∈ Ξ(k′j)

such that σ ⊑ σ′j and prove the existence of σ′j+1 ∈ Ξ(k′j+1) such that σ ⊑ σ′j+1.

Indeed φj+1 ∈ Es(n, k
′
j) so for each δ ∈ Ξ(k′j) Set1(#(k′j , φj+1, δ)). So for each

δ ∈ Ξ(k′j) NotEmpty1(#(k′j , φj+1, δ)) and this implies #(k′j , φj+1, σ
′
j) ̸= ∅. So

given sj+1 ∈ #(k′j , φj+1, σ
′
j) we can define σ′j+1 = σ′j + (xj+1, sj+1) and clearly

σ′j+1 ∈ Ξ(k′j+1). Obviously σ ⊑ σ′j ⊑ σ′j+1.
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So it is proved that there exists σ′m ∈ Ξ(k′m) such that σ ⊑ σ′m, and thus
#(k′m, ϕ, σ

′
m) ∈ #(k, t, σ).

Let’s now consider the case where for each σ ∈ Ξ(k) Setq+1(#(k, t, σ)). We want
to show that for each σ ∈ Ξ(k) NotEmptyq+1(#(k, t, σ)).

The following condition holds true:
‘for each σ′m ∈ Ξ(k′m) Setq(#(k′m, ϕ, σ

′
m))’.

Consequently the following also holds:
‘for each σ′m ∈ Ξ(k′m) NotEmptyq(#(k′m, ϕ, σ

′
m))’.

Given σ ∈ Ξ(k) we have to show NotEmpty1(#(k, t, σ)) and for each u ∈ #(k, t, σ)
NotEmptyq(u).

Since for each δ ∈ Ξ(k) Setq+1(#(k, t, δ)) then for each δ ∈ Ξ(k) Set1(#(k, t, δ))
also holds. This implies NotEmpty1(#(k, t, σ)).

Moreover given u ∈ #(k, t, σ) there exists σ′m ∈ Ξ(k′m) such that u = #(k′m, ϕ, σ
′
m),

so NotEmptyq(u) holds true.

Given i = 1 . . . p we must be able to decide the condition ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Di’.

Clearly for each σ ∈ Ξ(k) #(k, t, σ) is a set and so #(k, t, σ) /∈ Di. Since Ξ(k) ̸= ∅
the condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Di’ is false.

Given i = 1 . . . p we must be able to decide the condition ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ P(Di)’.

We have ϕ ∈ E(n, k′m) so we can decide the condition ‘for each σ′m ∈ Ξ(k′m)
#(k′m, ϕ, σ

′
m) ∈ Di’.

If this condition is true then we can prove that ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ P(Di)’
is also true.

In fact given u ∈ #(k, t, σ) we have there exists σ′m ∈ Ξ(k′m) such that
u = #(k′m, ϕ, σ

′
m) ∈ Di and so #(k, t, σ) ⊆ Di, and since #(k, t, σ) ̸= ∅,

#(k, t, σ) ∈ P(Di).

If on the contrary the mentioned condition is decided as false then there exists
σ′m ∈ Ξ(k′m) such that #(k′m, ϕ, σ

′
m) /∈ Di.

Let σ = (σ′m)/dom(k), we can apply assumption 6.1.9 to show that σ ∈ Ξ(k). In fact
k′m ̸= ϵ so n > 1, σ′m ∈ Ξ(k′m), k ∈ R(k′m), k ̸= k′m. It is also obvious that σ ⊑ σ′m.
So #(k′m, ϕ, σ

′
m) ∈ #(k, t, σ), and so there exists u ∈ #(k, t, σ) such that u /∈ Di. So

#(k, t, σ) is not a subset of Di, and so #(k, t, σ) /∈ P(Di).
Finally, there exists σ ∈ Ξ(k) such that #(k, t, σ) /∈ P(Di).

Given i = 1 . . . p and a positive integer q we must be able to decide the condition
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‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq+1(Di)’.

We have ϕ ∈ E(n, k′m) so we can decide the condition ‘for each σ′m ∈ Ξ(k′m)
#(k′m, ϕ, σ

′
m) ∈ Pq(Di)’.

If this condition is true then we can prove that ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Pq+1(Di)’ is also true.

In fact given u ∈ #(k, t, σ) we have there exists σ′m ∈ Ξ(k′m) such that
u = #(k′m, ϕ, σ

′
m) ∈ Pq(Di) and so #(k, t, σ) ⊆ Pq(Di), and since #(k, t, σ) ̸= ∅,

#(k, t, σ) ∈ Pq+1(Di).

If on the contrary the mentioned condition is decided as false then there exists
σ′m ∈ Ξ(k′m) such that #(k′m, ϕ, σ

′
m) /∈ Pq(Di).

Let σ = (σ′m)/dom(k), we can apply assumption 6.1.9 to show that σ ∈ Ξ(k). In fact
k′m ̸= ϵ so n > 1, σ′m ∈ Ξ(k′m), k ∈ R(k′m), k ̸= k′m. It is also obvious that σ ⊑ σ′m. So
#(k′m, ϕ, σ

′
m) ∈ #(k, t, σ), and so there exists u ∈ #(k, t, σ) such that u /∈ Pq(Di). So

#(k, t, σ) is not a subset of Pq(Di), and so #(k, t, σ) /∈ Pq+1(Di).
Finally, there exists σ ∈ Ξ(k) such that #(k, t, σ) /∈ Pq+1(Di).

Given a positive integer q we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Eventq(#(k, t, σ))’.

Actually for each σ ∈ Ξ(k) #(k, t, σ) is a set, so ¬(Event1(#(k, t, σ)). Therefore
the condition ‘for each σ ∈ Ξ(k) Event1(#(k, t, σ))’ is false.

Given a positive integer q we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Eventq+1(#(k, t, σ))’.

We have ϕ ∈ E(n, k′m) so we can decide the condition ‘for each σ′m ∈ Ξ(k′m)
Eventq(#(k′m, ϕ, σ

′
m))’.

If this condition is true then for each σ ∈ Ξ(k) for each u ∈ #(k, t, σ) there
exists σ′m ∈ Ξ(k′m) such that u = #(k′m, ϕ, σ

′
m), and so Eventq(u). Therefore

Eventq+1(#(k, t, σ)).

If on the contrary the mentioned condition is decided as false then there exists
σ′m ∈ Ξ(k′m) such that ¬(Eventq(#(k′m, ϕ, σ

′
m))).

Let σ = (σ′m)/dom(k), we can apply assumption 6.1.9 to show that σ ∈ Ξ(k). In fact
k′m ̸= ϵ so n > 1, σ′m ∈ Ξ(k′m), k ∈ R(k′m), k ̸= k′m. It is also obvious that σ ⊑ σ′m. So
#(k′m, ϕ, σ

′
m) ∈ #(k, t, σ), and so there exists u ∈ #(k, t, σ) such that ¬(Eventq(u)).

So ¬(Eventq+1(#(k, t, σ))).
Finally, there exists σ ∈ Ξ(k) such that ¬(Eventq+1(#(k, t, σ))).

Let’s now try to prove that for each of our predicates P and for each c ∈ C ′ P is
decidable over Ec(n+ 1,k).

§. We first consider the case where #(c) is a function whose domain is (Di)
m and
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whose range is Di, and E
c(n+1, k) is defined as the set of the strings (c)(φ1, . . . , φm) ∈

Hc(n+ 1, k) such that:

• φ1, . . . , φm ∈ E(n, k);
• for each j = 1 . . .m, σ ∈ Ξ(k) #(k, φj , σ) ∈ Di;
• (c)(φ1, . . . , φm) /∈ E(n, k);
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

We recall that for each t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k) we have defined

#(k, t, σ) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)).

It is immediately clear that the condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Di’ is true
and that the corresponding predicate over Ec(n+ 1, k) is decidable.

Given j = 1 . . . p such that j ̸= i we must be able to decide the condition ‘for each
σ ∈ Ξ(k) #(k, t, σ) ∈ Dj ’.

Since for each σ ∈ Ξ(k) #(k, t, σ) ∈ Di and Di ∩ Dj = ∅ then for each σ ∈ Ξ(k)
#(k, t, σ) /∈ Dj and we can decide the condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Dj ’ is
false.

Given j = 1 . . . p and a positive integer q we must be able to decide the condition
‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Dj)’.

For each σ ∈ Ξ(k) #(k, t, σ) ∈ Di, so #(k, t, σ) is not a set and #(k, t, σ) /∈ Pq(Dj),
therefore the condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Dj)’ is false.

We now want to decide the condition ‘for each σ ∈ Ξ(k) Setq(#(k, t, σ))’.

For each σ ∈ Ξ(k) #(k, t, σ) ∈ Di, so #(k, t, σ) is not a set and ¬(Setq(#(k, t, σ))),
therefore the mentioned condition must be false.

We now want to decide the condition ‘for each σ ∈ Ξ(k) Event1(#(k, t, σ))’.

For each σ ∈ Ξ(k) #(k, t, σ) ∈ Di, so ¬(Event1(#(k, t, σ))). Therefore the men-
tioned condition is false.

Given a positive integer q, we now want to decide the condition ‘for each σ ∈ Ξ(k)
Eventq+1(#(k, t, σ))’.

For each σ ∈ Ξ(k) #(k, t, σ) ∈ Di, so ¬(Set1(#(k, t, σ))). Therefore the mentioned
condition is false.

§. We now consider the case where there exist i = 1 . . . p, a positive integer q and
a positive integer m such that #(c) is a function whose domain is (Pq(Di))

m and
whose range is Pq(Di). In this case we defined Ec(n + 1, k) as the set of the strings
(c)(φ1, . . . , φm) ∈ Hc(n+ 1, k) such that:

• φ1, . . . , φm ∈ E(n, k);
• for each j = 1 . . .m, σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di);
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• (c)(φ1, . . . , φm) /∈ E(n, k);
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

By our definitions, for each t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k)

#(k, t, σ) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)).

It is immediately clear that the condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Di)’ is
true and that the corresponding predicate over Ec(n+ 1, k) is decidable.

Given j = 1 . . . p we must be able to decide the condition ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Dj ’.

For each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Di), so #(k, t, σ) is a set and #(k, t, σ) /∈ Dj ,
therefore the mentioned condition is false.

Given j = 1 . . . p and a positive integer r such that r ̸= q, we must be able
to decide the condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pr(Dj)’. By lemma 3.14
Pr(Dj) ∩ Pq(Di) = ∅, so for each σ ∈ Ξ(k) #(k, t, σ) /∈ Pr(Dj), and the mentioned
condition is false.

Finally, given j = 1 . . . p such that j ̸= i we must be able to decide the condition
‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Dj)’. By lemma 3.15 Pq(Dj) ∩ Pq(Di) = ∅, so for
each σ ∈ Ξ(k) #(k, t, σ) /∈ Pq(Dj), and the mentioned condition is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Setr(#(k, t, σ))’, and when this condition is decided as true we must also be
able to decide that for each σ ∈ Ξ(k) NotEmptyr(#(k, t, σ)).

We first consider the case r ⩽ q. We know that for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Pq(Di), so by lemma 3.16 for each σ ∈ Ξ(k) Setr(#(k, t, σ)) and
NotEmptyr(#(k, t, σ)).

Let’s now consider the case r > q. Here by lemma 3.13 for each σ ∈ Ξ(k)
¬Setr(#(k, t, σ)), so the condition ‘for each σ ∈ Ξ(k) Setr(#(k, t, σ))’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Eventr(#(k, t, σ))’.

We know that for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Di), so by lemmas 3.17 and 3.19
¬Eventr(#(k, t, σ)). This obvioulsy implies that our condition ‘for each σ ∈ Ξ(k)
Eventr(#(k, t, σ))’ is false.

§. We now consider the case where there exist i = 1 . . . p and a positive in-
teger m such that #(c) is a function whose domain is (Di)

m and such that for
each (d1, . . . , dm) ∈ (Di)

m #(c)(d1, . . . , dm) is true or false. In this case we defined
Ec(n+ 1, k) as the set of the strings (c)(φ1, . . . , φm) ∈ Hc(n+ 1, k) such that:

• φ1, . . . , φm ∈ E(n, k);
• for each j = 1 . . .m, σ ∈ Ξ(k) #(k, φj , σ) ∈ Di;
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• (c)(φ1, . . . , φm) /∈ E(n, k);
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

By our definitions, for each t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k)

#(k, t, σ) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)).

Clearly for each σ ∈ Ξ(k) #(k, t, σ) is true or false.

Given α = 1 . . . p we must be able to decide the condition ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Dα’.

Since for each σ ∈ Ξ(k) #(k, t, σ) is true or false, then for each σ ∈ Ξ(k)
#(k, t, σ) /∈ Dα, and so then condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Dα’ is false.

Given α = 1 . . . p and a positive integer q we must be able to decide the condition
‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Dα)’.

Given σ ∈ Ξ(k) Event1(#(k, t, σ)) and by lemma 3.17 this implies
#(k, t, σ) /∈ Pq(Dα). Therefore the condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Dα)’
is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Setr(#(k, t, σ))’, and when this condition is decided as true we must also be
able to decide that for each σ ∈ Ξ(k) NotEmptyr(#(k, t, σ)).

For each σ ∈ Ξ(k) Event1(#(k, t, σ)) so ¬Set1(#(k, t, σ)) and then also
¬Setr(#(k, t, σ)). Therefore the condition ‘for each σ ∈ Ξ(k) Setr(#(k, t, σ))’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Eventr(#(k, t, σ))’.

Clearly the condition is true for r = 1, while for r > 1 given σ ∈ Ξ(k)
¬Set1(#(k, t, σ)) and so ¬Eventr(#(k, t, σ)), so the condition is false for r > 1.

§. We now consider the case where there exist i = 1 . . . p, a positive integer q and a
positive integer m such that #(c) is a function whose domain is (Pq(Di))

m and such
that for each (d1, . . . , dm) ∈ (Pq(Di))

m #(c)(d1, . . . , dm) is true or false. In this case
we defined Ec(n + 1, k) as the set of the strings (c)(φ1, . . . , φm) ∈ Hc(n + 1, k) such
that:

• φ1, . . . , φm ∈ E(n, k);
• for each j = 1 . . .m, σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di);
• (c)(φ1, . . . , φm) /∈ E(n, k);
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

By our definitions, for each t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k)

#(k, t, σ) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)).

Clearly for each σ ∈ Ξ(k) #(k, t, σ) is true or false.
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Given α = 1 . . . p we must be able to decide the condition ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Dα’.

Since for each σ ∈ Ξ(k) #(k, t, σ) is true or false, then for each σ ∈ Ξ(k)
#(k, t, σ) /∈ Dα, and so then condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Dα’ is false.

Given α = 1 . . . p and a positive integer q we must be able to decide the condition
‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Dα)’.

Given σ ∈ Ξ(k) Event1(#(k, t, σ)) and by lemma 3.17 this implies
#(k, t, σ) /∈ Pq(Dα). Therefore the condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Dα)’
is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Setr(#(k, t, σ))’, and when this condition is decided as true we must also be
able to decide that for each σ ∈ Ξ(k) NotEmptyr(#(k, t, σ)).

For each σ ∈ Ξ(k) Event1(#(k, t, σ)) so ¬Set1(#(k, t, σ)) and then also
¬Setr(#(k, t, σ)). Therefore the condition ‘for each σ ∈ Ξ(k) Setr(#(k, t, σ))’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Eventr(#(k, t, σ))’.

Clearly the condition is true for r = 1, while for r > 1 given σ ∈ Ξ(k)
¬Set1(#(k, t, σ)) and so ¬Eventr(#(k, t, σ)), so the condition is false for r > 1.

§. We now consider the case where #(c) is a function whose domain is⋃
q⩾1(

⋃
i=1...p(Pq(Di))

m) such that for each q ⩾ 1, i = 1 . . . p, (A1, . . . , Am) ∈
(Pq(Di))

m #(c)(A1, . . . , Am) ∈ Pq(Di). In this case we defined Ec(n + 1, k) as the
set of the strings (c)(φ1, . . . , φm) ∈ Hc(n+ 1, k) such that:

• φ1, . . . , φm ∈ E(n, k);
• there exist i = 1 . . . p, q = 1 . . . qmax such that for each j = 1 . . .m, σ ∈ Ξ(k)
#(k, φj , σ) ∈ Pq(Di);

• (c)(φ1, . . . , φm) /∈ E(n, k);
• (c)(φ1, . . . , φm) /∈ Eb(n+ 1, k).

By our definitions, for each t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k)

#(k, t, σ) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)).

Clearly, by the inductive hypothesis, given t = (c)(φ1, . . . , φm) ∈ Ec(n + 1, k) for
each i = 1 . . . p and q = 1 . . . qmax we can decide if for each j = 1 . . .m and σ ∈ Ξ(k)
#(k, φj , σ) ∈ Pq(Di). There must exist i = 1 . . . p and q = 1 . . . qmax such that for
each j = 1 . . .m and σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di), and so we can determine i and q
with such requirements.

Given α = 1 . . . p we must be able to decide the condition ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Dα’.
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As we have just seen, there must exist i = 1 . . . p and q = 1 . . . qmax such that for
each j = 1 . . .m and σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di), so #(k, t, σ) ∈ Pq(Di), #(k, t, σ)
is a set and #(k, t, σ) /∈ Dα, therefore the mentioned condition is false.

Given α = 1 . . . p and a positive integer r we must be able to decide the condition
‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pr(Dα)’.

We first consider the case where r ⩽ qmax. In this case we have two subcases: the
first subcase is when for each j = 1 . . .m and σ ∈ Ξ(k) #(k, φj , σ) ∈ Pr(Dα), in this
case for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pr(Dα).
Otherwise there must exist i = 1 . . . p and q = 1 . . . qmax such that for each j = 1 . . .m
and σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di) and so #(k, t, σ) ∈ Pq(Di). Of course in this case
i ̸= α or r ̸= q.
In the case r ̸= q by lemma 3.14 Pr(Dα) ∩ Pq(Di) = ∅, so for each σ ∈ Ξ(k)
#(k, t, σ) /∈ Pr(Dα), and the condition we are discussing ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Pr(Dα)’ is false.
In the case r = q and i ̸= α by lemma 3.15 Pr(Dα) ∩ Pq(Di) = ∅, so for each
σ ∈ Ξ(k) #(k, t, σ) /∈ Pr(Dα), and the condition we are discussing ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Pr(Dα)’ is false.

Let’s now consider the case where r > qmax. Here there must exist i = 1 . . . p and
q = 1 . . . qmax such that for each j = 1 . . .m and σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di).
Clearly r ̸= q, so by lemma 3.14 Pr(Dα) ∩ Pq(Di) = ∅, so for each σ ∈ Ξ(k)
#(k, t, σ) /∈ Pr(Dα), and the condition we are discussing ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Pr(Dα)’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Setr(#(k, t, σ))’, and when this condition is decided as true we must also be
able to decide that for each σ ∈ Ξ(k) NotEmptyr(#(k, t, σ)).

We have seen that, given t = (c)(φ1, . . . , φm) ∈ Ec(n + 1, k), there must ex-
ist i = 1 . . . p and q = 1 . . . qmax such that for each j = 1 . . .m and σ ∈ Ξ(k)
#(k, φj , σ) ∈ Pq(Di), and that we can determine such i and q.

Then, given t = (c)(φ1, . . . , φm) ∈ Ec(n+ 1, k), let i = 1 . . . p and q = 1 . . . qmax be
such that for each j = 1 . . .m and σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di). We have that for
each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Di).
If r ⩽ q then by lemma 3.16 for each σ ∈ Ξ(k) Setr(#(k, t, σ)) and
NotEmptyr(#(k, t, σ)).
If instead r > q then by lemma 3.13 for each σ ∈ Ξ(k) ¬Setr(#(k, t, σ)), and then the
condition ‘for each σ ∈ Ξ(k) Setr(#(k, t, σ))’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Eventr(#(k, t, σ))’.

Given t = (c)(φ1, . . . , φm) ∈ Ec(n + 1, k), let i = 1 . . . p and q = 1 . . . qmax be such
that for each j = 1 . . .m and σ ∈ Ξ(k) #(k, φj , σ) ∈ Pq(Di). We have that for each
σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Di).
By lemmas 3.17 and 3.19 we can conclude that for each σ ∈ Ξ(k) ¬Eventr(#(k, t, σ)).
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Therefore the condition ‘for each σ ∈ Ξ(k) Eventr(#(k, t, σ))’ is false.

§. We now consider the case where c is the special constant Π whose meaning #(Π)
is a function over the domain

⋃
q⩾1(

⋃
i=1...p Pq(Di)) such that for each q ⩾ 1, i = 1 . . . p

A ∈ Pq(Di) #(Π)(A) = P(A). In this case we defined EΠ(n + 1, k) as the set of the
strings (Π)(φ1) ∈ HΠ(n+ 1, k) such that:

• φ1 ∈ E(n, k);
• there exist i = 1 . . . p, q = 1 . . . qmax such that for each σ ∈ Ξ(k) #(k, φ1, σ) ∈
Pq(Di);

• (Π)(φ1) /∈ E(n, k);
• (Π)(φ1) /∈ Eb(n+ 1, k).

By our definitions, for each t = (Π)(φ1) ∈ EΠ(n+ 1, k)

#(k, t, σ) = #(Π)(#(k, φ1, σ)).

Clearly, by the inductive hypothesis, given t = (Π)(φ1) ∈ EΠ(n + 1, k) for each
i = 1 . . . p and q = 1 . . . qmax we can decide if for each σ ∈ Ξ(k) #(k, φ1, σ) ∈ Pq(Di).
There must exist i = 1 . . . p and q = 1 . . . qmax such that for each σ ∈ Ξ(k)
#(k, φ1, σ) ∈ Pq(Di), and so we can determine i and q with such requirements.

We can also notice that, given a set B, if A ∈ P(B) then A ⊆ B, P(A) ⊆ P(B),
P(A) ∈ P(P(B)).
So if A ∈ Pq(Di) then we have two cases: if q = 1 then A ∈ P(Di) and so
P(A) ∈ P2(Di).
If q > 1 then A ∈ P(Pq−1(Di)), so P(A) ∈ P2(Pq−1(Di)), that is P(A) ∈ Pq+1(Di).
Actually in both cases P(A) ∈ Pq+1(Di).

Clearly given t = (Π)(φ1) ∈ EΠ(n + 1, k), i = 1 . . . p and q = 1 . . . qmax such
that for each σ ∈ Ξ(k) #(k, φ1, σ) ∈ Pq(Di), we have that for each σ ∈ Ξ(k)
#(k, t, σ) = P(#(k, φ1, σ)) ∈ Pq+1(Di).

Given α = 1 . . . p we must be able to decide the condition ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Dα’.

As we have just seen, there must exist i = 1 . . . p and q = 1 . . . qmax such that for
each σ ∈ Ξ(k) #(k, φ1, σ) ∈ Pq(Di), so #(k, t, σ) ∈ Pq+1(Di), #(k, t, σ) is a set and
#(k, t, σ) /∈ Dα, therefore the mentioned condition is false.

Given α = 1 . . . p and a positive integer r we must be able to decide the condition
‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pr(Dα)’.

Let t = (Π)(φ1). We first consider the case where 2 ⩽ r ⩽ qmax + 1. In this case we
have two subcases: the first subcase is when for each σ ∈ Ξ(k) #(k, φ1, σ) ∈ Pr−1(Dα),
in this case for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pr(Dα).
Otherwise there must exist i = 1 . . . p and q = 1 . . . qmax such that for each σ ∈ Ξ(k)
#(k, φ1, σ) ∈ Pq(Di) and so #(k, t, σ) ∈ Pq+1(Di). Of course in this case i ̸= α or
r − 1 ̸= q.
In the case r − 1 ̸= q by lemma 3.14 Pr(Dα) ∩ Pq+1(Di) = ∅, so for each σ ∈ Ξ(k)
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#(k, t, σ) /∈ Pr(Dα), and the condition we are discussing ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Pr(Dα)’ is false.
In the case r − 1 = q and i ̸= α by lemma 3.15 Pr(Dα) ∩ Pq+1(Di) = ∅, so for each
σ ∈ Ξ(k) #(k, t, σ) /∈ Pr(Dα), and the condition we are discussing ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Pr(Dα)’ is false.

Let’s now consider the case where r = 1 or r > qmax + 1. Here there must exist
i = 1 . . . p and q = 1 . . . qmax such that for each σ ∈ Ξ(k) #(k, φ1, σ) ∈ Pq(Di) and so
#(k, t, σ) ∈ Pq+1(Di). Clearly r ̸= q + 1, so by lemma 3.14 Pr(Dα) ∩ Pq+1(Di) = ∅,
so for each σ ∈ Ξ(k) #(k, t, σ) /∈ Pr(Dα), and the condition we are discussing ‘for
each σ ∈ Ξ(k) #(k, t, σ) ∈ Pr(Dα)’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Setr(#(k, t, σ))’, and when this condition is decided as true we must also be
able to decide that for each σ ∈ Ξ(k) NotEmptyr(#(k, t, σ)).

As we have seen given t = (Π)(φ1) ∈ EΠ(n + 1, k), i = 1 . . . p and q = 1 . . . qmax

such that for each σ ∈ Ξ(k) #(k, φ1, σ) ∈ Pq(Di), we have that for each σ ∈ Ξ(k)
#(k, t, σ) = P(#(k, φ1, σ)) ∈ Pq+1(Di).

Let’s first consider the case r ⩽ q + 1, here by lemma 3.16 we have that for each
σ ∈ Ξ(k) Setr(#(k, t, σ)) and NotEmptyr(#(k, t, σ)).

Let’s then consider the case r > q + 1, here by lemma 3.13 we have that for each
σ ∈ Ξ(k) ¬Setr(#(k, t, σ)), hence the condition ‘for each σ ∈ Ξ(k) Setr(#(k, t, σ))’ is
false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Eventr(#(k, t, σ))’.

As we have seen given t = (Π)(φ1) ∈ EΠ(n + 1, k), i = 1 . . . p and q = 1 . . . qmax

such that for each σ ∈ Ξ(k) #(k, φ1, σ) ∈ Pq(Di), we have that for each σ ∈ Ξ(k)
#(k, t, σ) = P(#(k, φ1, σ)) ∈ Pq+1(Di).

By lemmas 3.17 and 3.19 we can conclude that in both cases r ⩽ q+2 and r > q+2
for each σ ∈ Ξ(k) ¬Eventr(#(k, t, σ)). Therefore the condition ‘for each σ ∈ Ξ(k)
Eventr(#(k, t, σ))’ is false.

In order to finish our proof we have to prove that for each of our predicates P and
for each f ∈ F P is decidable over Ef (n+ 1,k).

§. We first consider the case where f has multiplicity 2. In this case we defined
Ef (n+ 1, k) as the set of the strings f(φ1, φ2) ∈ Hf (n+ 1, k) such that:

• φ1, φ2 ∈ E(n, k);
• for each σ ∈ Ξ(k) Af (#(k, φ1, σ),#(k, φ2, σ)) is true;
• f(φ1, φ2) /∈ E(n, k);
• f(φ1, φ2) /∈ Eb(n+ 1, k).
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By our definitions, for each t = f(φ1, φ2) ∈ Ef (n+ 1, k),

#(k, t, σ) = Pf (#(k, φ1, σ),#(k, φ2, σ)).

Clearly for each t ∈ Ef (n+ 1, k) and σ ∈ Ξ(k) #(k, t, σ) is true or false.

Let’s also consider the case where f has multiplicity 1. In this case we defined
Ef (n+ 1, k) as the set of the strings f(φ1) ∈ Hf (n+ 1, k) such that:

• φ1 ∈ E(n, k);
• for each σ ∈ Ξ(k) Af (#(k, φ1, σ)) is true;
• f(φ1) /∈ E(n, k).
• f(φ1) /∈ Eb(n+ 1, k).

By our definitions, for each t = f(φ1) ∈ Ef (n+ 1, k),

#(k, t, σ) = Pf (#(k, φ1, σ)).

It is also true in this case that for each t ∈ Ef (n+ 1, k) and σ ∈ Ξ(k) #(k, t, σ) is
true or false, and we can show that each of our predicate is decidable (in both cases
of multiplicity 1 and 2) using this property.

Given α = 1 . . . p we must be able to decide the condition ‘for each σ ∈ Ξ(k)
#(k, t, σ) ∈ Dα’.

Since for each σ ∈ Ξ(k) #(k, t, σ) is true or false, then for each σ ∈ Ξ(k)
#(k, t, σ) /∈ Dα, and so then condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Dα’ is false.

Given α = 1 . . . p and a positive integer q we must be able to decide the condition
‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Dα)’.

Given σ ∈ Ξ(k) Event1(#(k, t, σ)) and by lemma 3.17 this implies
#(k, t, σ) /∈ Pq(Dα). Therefore the condition ‘for each σ ∈ Ξ(k) #(k, t, σ) ∈ Pq(Dα)’
is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Setr(#(k, t, σ))’, and when this condition is decided as true we must also be
able to decide that for each σ ∈ Ξ(k) NotEmptyr(#(k, t, σ)).

For each σ ∈ Ξ(k) Event1(#(k, t, σ)) so ¬Set1(#(k, t, σ)) and then also
¬Setr(#(k, t, σ)). Therefore the condition ‘for each σ ∈ Ξ(k) Setr(#(k, t, σ))’ is false.

Given a positive integer r we must be able to decide the condition ‘for each
σ ∈ Ξ(k) Eventr(#(k, t, σ))’.

Clearly the condition is true for r = 1, while for r > 1 given σ ∈ Ξ(k)
¬Set1(#(k, t, σ)) and so ¬Eventr(#(k, t, σ)), so the condition is false for r > 1.
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Proof of 6.1.11. We need to prove that for each k ∈ K(n+ 1), t ∈ E(n+ 1, k)

• t[ℓ(t)] ̸= ‘(’ ;
• if t[ℓ(t)] = ‘)’ then d(t, ℓ(t)) = 1, else d(t, ℓ(t)) = 0 ;
• for each α ∈ {1, . . . , ℓ(t)} if (t[α] = ‘:’)∨ (t[α] = ‘,’)∨ (t[α] = ‘)’) then d(t, α) ⩾ 1.

We have seen that if k ∈ K(n)+ E(n+ 1, k) = Ea(n+ 1, k), and if k ∈ K(n)

E(n+ 1, k) =
⋃

A∈H(n+1,k)

A ,

with the following definition of H(n+ 1, k):

H(n+1, k) = {E(n, k), Eb(n+1, k), Ee(n+1, k)}∪{Ec(n+1, k)|c ∈ C′}∪{Ef (n+1, k)|f ∈ F}.

Let k ∈ K(n)+ and t ∈ Ea(n+ 1,k). There exist h ∈ K(n), ϕ ∈ Es(n, h), y ∈
V−var(h) such that k = h+ < y, ϕ >. We also have t = y, so t has just one character,
t[1] differs from ‘(’, ‘:’, ‘,’, ‘)’ and d(t, ℓ(t)) = 0.

Let k ∈ K(n) and t ∈ E(n,k), this means that t ∈ E(n). In this case we just need
to apply assumption 6.1.11.

Let k = h+ < y, ϕ >∈ K(n) − {ϵ} and t ∈ Eb(n+ 1,k). We have h ∈ K(n),
t ∈ E(n, h), so we can apply assumption 6.1.11 to finish.

Let k ∈ K(n), c ∈ C′ and t ∈ Ec(n+ 1,k). Then t ∈ Hc(n + 1, k), so there exist
φ1, . . . , φm in E(n, k) such that t = (c)(φ1, . . . , φm).

In this representation of t we see ‘explicit occurrences’ of the symbols ‘(’ , ‘)’ and ‘,’.
There are explicit occurrences of ‘,’ only when m > 1. The first explicit occurrence of
‘)’ is in position 3, and the second explicit occurrence of ‘)’ is clearly in position ℓ(t).
If m > 1 we indicate with q1, . . . , qm−1 the positions of the explicit occurrences of ‘,’.

We have d(t, 2) = 1 and also d(t, 3) = 1, moreover d(t, 5) = d(t, 3)− 1 + 1 = 1.

If m > 1 we can prove that for each i = 1 . . .m− 1 d(t, qi) = 1.

We first consider that

d(t, q1 − 1) = d(t, 4 + ℓ(φ1)) = d(t, 4 + 1) + d(φ1, ℓ(φ1)) = 1 + d(φ1, ℓ(φ1)).

If t[q1 − 1] = φ1[ℓ(φ1)] = ‘)’ then d(t, q1) = d(t, q1 − 1)− 1 = d(φ1, ℓ(φ1)) = 1 .
Else t[q1 − 1] = φ1[ℓ(φ1)] /∈ {‘(’, ‘)’} so d(t, q1) = d(t, q1 − 1) = 1 + d(φ1, ℓ(φ1)) = 1.

If m = 2 we have finished this step. Now suppose m > 2. Let i = 1 . . .m − 2 and
suppose d(t, qi) = 1. We’ll show that d(t, qi+1) = 1 also holds.

In fact

d(t, qi+1 − 1) = d(t, qi + ℓ(φi+1)) = d(t, qi + 1) + d(φi+1, ℓ(φi+1)) =

= 1 + d(φi+1, ℓ(φi+1)).

If t[qi+1 − 1] = φi+1[ℓ(φi+1)] = ‘)’ then
d(t, qi+1) = d(t, qi+1 − 1)− 1 = d(φi+1, ℓ(φi+1)) = 1.
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Else t[qi+1 − 1] = φi+1[ℓ(φi+1)] /∈ {‘(’, ‘)’} so
d(t, qi+1) = d(t, qi+1 − 1) = 1 + d(φi+1, ℓ(φi+1)) = 1.

So it is shown that for each i = 1 . . .m− 1 d(t, qi) = 1.

We now want to show that d(t, ℓ(t)) = 1.

If m = 1 then

d(t, ℓ(t)− 1) = d(t, 4 + ℓ(φ1)) = d(t, 4 + 1) + d(φ1, ℓ(φ1)) = 1 + d(φ1, ℓ(φ1)).

If m > 1 then

d(t, ℓ(t)−1) = d(t, qm−1+ ℓ(φm)) = d(t, qm−1+1)+d(φm, ℓ(φm)) = 1+d(φm, ℓ(φm)).

If t[ℓ(t)−1] = φm[ℓ(φm)] = ‘)’ then d(t, ℓ(t)) = d(t, ℓ(t)−1)−1 = d(φm, ℓ(φm)) = 1.
Else t[ℓ(t)−1] = φm[ℓ(φm)] /∈ {‘(’, ‘)’} so d(t, ℓ(t)) = d(t, ℓ(t)−1) = 1+d(φm, ℓ(φm)) =
1.

Let’s now examine the facts we have to prove. It is true that t[ℓ(t)] ̸= ‘(’. It’s also
true that t[ℓ(t)] = ‘)’ and d(t, ℓ(t)) = 1.

Now let α ∈ {1, . . . , ℓ(t)} and ( t[α] = ‘:’ or t[α] = ‘,’ or t[α] = ‘)’ ). This implies
α /∈ {1, 2, 4}.

If α ∈ {3, q1, . . . , qm−1, ℓ(t)} we have already shown that d(t, α) = 1. Otherwise
there are these alternative possibilities:

a. (m = 1) ∧ (α > 4) ∧ (α < ℓ(t)),
b. (m > 1) ∧ (α > 4) ∧ (α < q1),
c. (m > 2) ∧ (∃i = 1 . . .m− 2 : (α > qi) ∧ (α < qi+1)),
d. (m > 1) ∧ (α > qm−1) ∧ (α < ℓ(t)).

In the situation a. we have

4 < α < ℓ(t),

0 < α− 4 < ℓ(t)− 4,

1 ⩽ α− 4 ⩽ ℓ(t)− 5 = ℓ(φ1),

φ1[α− 4] = t[α],

d(t, α) = d(t, 4 + (α− 4)) = d(t, 4 + 1) + d(φ1, α− 4) =

= 1 + d(φ1, α− 4) ⩾ 2.

In the situation b. we have

4 < α < q1,
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0 < α− 4 < q1 − 4,

1 ⩽ α− 4 ⩽ q1 − 5 = ℓ(φ1),

φ1[α− 4] = t[α],

d(t, α) = d(t, 4 + (α− 4)) = d(t, 4 + 1) + d(φ1, α− 4) =

= 1 + d(φ1, α− 4) ⩾ 2.

In the situation c. we have

qi < α < qi+1,

0 < α− qi < qi+1 − qi,

1 ⩽ α− qi ⩽ qi+1 − qi − 1 = ℓ(φi+1),

φi+1[α− qi] = t[α],

d(t, α) = d(t, qi + (α− qi)) = d(t, qi + 1) + d(φi+1, α− qi) =

= 1 + d(φi+1, α− qi) ⩾ 2.

In the situation d. we have

qm−1 < α < ℓ(t),

0 < α− qm−1 < ℓ(t)− qm−1,

1 ⩽ α− qm−1 ⩽ ℓ(t)− qm−1 − 1 = ℓ(φm),

φm[α− qm−1] = t[α],

d(t, α) = d(t, qm−1 + (α− qm−1)) = d(t, qm−1 + 1) + d(φm, α− qm−1) =

= 1 + d(φm, α− qm−1) ⩾ 2.

Let k ∈ K(n), f ∈ F and t ∈ Ef (n+ 1,k). Then t ∈ Hf (n + 1, k), so if f has
multiplicity 2 there exist φ1, φ2 ∈ E(n, k) such that t = f(φ1, φ2), if f has multiplicity
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1 there exists φ1 ∈ E(n, k) such that t = f(φ1).

We first consider the case where f has multiplicity 1. Here we first want to show
that d(t, ℓ(t)) = 1.

We have

d(t, ℓ(t)− 1) = d(t, 2 + ℓ(φ1)) = d(t, 2 + 1) + d(φ1, ℓ(φ1)) = 1 + d(φ1, ℓ(φ1)).

If t[ℓ(t)− 1] = φ1[ℓ(φ1)] = ‘)’ then d(t, ℓ(t)) = d(t, ℓ(t)− 1)− 1 = d(φ1, ℓ(φ1)) = 1.
Else t[ℓ(t)−1] = φ1[ℓ(φ1)] /∈ {‘(’, ‘)’} so d(t, ℓ(t)) = d(t, ℓ(t)−1) = 1+d(φ1, ℓ(φ1)) = 1.

Let’s now examine the facts we have to prove. It is true that t[ℓ(t)] ̸= ‘(’. It’s also
true that t[ℓ(t)] = ‘)’ and d(t, ℓ(t)) = 1.

Now let α ∈ {1, . . . , ℓ(t)} and ( t[α] = ‘:’ or t[α] = ‘,’ or t[α] = ‘)’ ). This implies
α /∈ {1, 2}.

If α = ℓ(t) we have already shown that d(t, α) = 1. Otherwise clearly 2 < α < ℓ(t)
and

0 < α− 2 < ℓ(t)− 2,

1 ⩽ α− 2 ⩽ ℓ(t)− 3 = ℓ(φ1),

φ1[α− 2] = t[α],

d(t, α) = d(t, 2 + (α− 2)) = d(t, 2 + 1) + d(φ1, α− 2) =

= 1 + d(φ1, α− 2) ⩾ 2.

Let’s then consider the case where f has multiplicity 2. Here we indicate with q1
the position of the explicit occurrence of ‘,’ within t. First of all we want to prove that
d(t, q1) = 1. To this end we consider that

d(t, q1 − 1) = d(t, 2 + ℓ(φ1)) = d(t, 2 + 1) + d(φ1, ℓ(φ1)) = 1 + d(φ1, ℓ(φ1)).

If t[q1 − 1] = φ1[ℓ(φ1)] = ‘)’ then d(t, q1) = d(t, q1 − 1)− 1 = d(φ1, ℓ(φ1)) = 1 .
Else t[q1 − 1] = φ1[ℓ(φ1)] /∈ {‘(’, ‘)’} so d(t, q1) = d(t, q1 − 1) = 1 + d(φ1, ℓ(φ1)) = 1.

We then want to show that d(t, ℓ(t)) = 1. We have

d(t, ℓ(t)− 1) = d(t, q1 + ℓ(φ2)) = d(t, q1 + 1) + d(φ2, ℓ(φ2)) = 1 + d(φ2, ℓ(φ2)).

If t[ℓ(t)− 1] = φ2[ℓ(φ2)] = ‘)’ then d(t, ℓ(t)) = d(t, ℓ(t)− 1)− 1 = d(φ2, ℓ(φ2)) = 1.
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Else t[ℓ(t)−1] = φ2[ℓ(φ2)] /∈ {‘(’, ‘)’} so d(t, ℓ(t)) = d(t, ℓ(t)−1) = 1+d(φ2, ℓ(φ2)) = 1.

Let’s now examine the facts we have to prove. It is true that t[ℓ(t)] ̸= ‘(’. It’s also
true that t[ℓ(t)] = ‘)’ and d(t, ℓ(t)) = 1.

Now let α ∈ {1, . . . , ℓ(t)} and ( t[α] = ‘:’ or t[α] = ‘,’ or t[α] = ‘)’ ). This implies
α /∈ {1, 2}.

If α ∈ {q1, ℓ(t)} we have already shown that d(t, α) = 1. Otherwise there are these
alternative possibilities:

a. (α > 2) ∧ (α < q1),
b. (α > q1) ∧ (α < ℓ(t)).

In the situation a. we have

2 < α < ℓ(t),

0 < α− 2 < ℓ(t)− 2,

1 ⩽ α− 2 ⩽ ℓ(t)− 3 = ℓ(φ1),

φ1[α− 2] = t[α],

d(t, α) = d(t, 2 + (α− 2)) = d(t, 2 + 1) + d(φ1, α− 2) =

= 1 + d(φ1, α− 2) ⩾ 2.

In the situation b. we have

q1 < α < ℓ(t),

0 < α− q1 < ℓ(t)− q1,

1 ⩽ α− q1 ⩽ ℓ(t)− q1 − 1 = ℓ(φ2),

φ2[α− q1] = t[α],

d(t, α) = d(t, q1 + (α− q1)) = d(t, q1 + 1) + d(φ2, α− q1) =

= 1 + d(φ2, α− q1) ⩾ 2.

Let k ∈ K(n) and t ∈ Ee(n+ 1,k). As a consequence to t ∈ Ee(n+1, k) there exist
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• a positive integer m,
• a function x whose domain is {1, . . . ,m} such that for each i = 1 . . .m
xi ∈ V − var(k), and for each i, j = 1 . . .m i ̸= j → xi ̸= xj ,

• a function φ whose domain is {1, . . . ,m} such that for each i = 1 . . .m φi ∈ E(n),
• ϕ ∈ E(n)

such that t = {}(x1 : φ1, . . . , xm : φm, ϕ).

In this representation we see ‘explicit occurrences’ of the symbols ‘,’ and ‘:’. We
indicate with q1, . . . , qm the positions of the explicit occurrences of ‘:’ and with r1 . . . rm
the positions of the explicit occurrences of ‘,’. The only explicit occurrence of ‘)’ has
the position ℓ(t).

We want to show that for each i = 1 . . .m d(t, qi) = 1, d(t, ri) = 1 and that
d(t, ℓ(t)) = 1.

It is obvious that d(t, q1) = 1. Moreover

d(t, r1 − 1) = d(t, q1 + ℓ(φ1)) = d(t, q1 + 1) + d(φ1, ℓ(φ1)) =

= 1 + d(φ1, ℓ(φ1)).

If t[r1 − 1] = φ1[ℓ(φ1)] = ‘)’ then d(t, r1) = d(t, r1 − 1)− 1 = d(φ1, ℓ(φ1)) = 1.
Else t[r1 − 1] = φ1[ℓ(φ1)] /∈ {‘(’, ‘)’} so d(t, r1) = d(t, r1 − 1) = 1 + d(φ1, ℓ(φ1)) = 1.

If m = 1 we have shown that for each i = 1 . . .m d(t, qi) = 1, d(t, ri) = 1. Now
suppose m > 1, let i = 1 . . .m− 1 and suppose d(t, qi) = 1, d(t, ri) = 1. We show that
d(t, qi+1) = 1, d(t, ri+1) = 1.

We have qi+1 = ri + 2 and it is immediate that d(t, qi+1) = 1. Moreover

d(t, ri+1 − 1) = d(t, qi+1 + ℓ(φi+1)) =

= d(t, qi+1 + 1) + d(φi+1, ℓ(φi+1)) = 1 + d(φi+1, ℓ(φi+1)).

If t[ri+1 − 1] = φi+1[ℓ(φi+1)] = ‘)’ then
d(t, ri+1) = d(t, ri+1 − 1)− 1 = d(φi+1, ℓ(φi+1)) = 1.
Else t[ri+1 − 1] = φi+1[ℓ(φi+1)] /∈ {‘(’, ‘)’} so
d(t, ri+1) = d(t, ri+1 − 1) = 1 + d(φi+1, ℓ(φi+1)) = 1.

Furthermore

d(t, ℓ(t)− 1) = d(t, rm + ℓ(ϕ)) =

= d(t, rm + 1) + d(ϕ, ℓ(ϕ)) = 1 + d(ϕ, ℓ(ϕ)).

If t[ℓ(t)− 1] = ϕ[ℓ(ϕ)] = ‘)’ then d(t, ℓ(t)) = d(t, ℓ(t)− 1)− 1 = d(ϕ, ℓ(ϕ)) = 1.
Else t[ℓ(t)− 1] = ϕ[ℓ(ϕ)] /∈ {‘(’, ‘)’} so d(t, ℓ(t)) = d(t, ℓ(t)− 1) = 1 + d(ϕ, ℓ(ϕ)) = 1.

Let’s now examine the facts we have to prove. It is true that t[ℓ(t)] ̸= ‘(’. It’s also
true that t[ℓ(t)] = ‘)’ and d(t, ℓ(t)) = 1.

Now let α ∈ {1, . . . , ℓ(t)} and ( t[α] = ‘:’ or t[α] = ‘,’ or t[α] = ‘)’ ).

If α ∈ {q1, . . . , qm, r1, . . . , rm, ℓ(t)} we have already shown that d(t, α) = 1. Other-
wise there are these alternative possibilities:
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a. ∃i = 1 . . .m such that qi < α < ri,
b. rm < α < ℓ(t).

In the situation a. we have

qi < α < ri,

0 < α− qi < ri − qi,

1 ⩽ α− qi ⩽ ri − qi − 1 = ℓ(φi),

φi[α− qi] = t[α],

d(t, α) = d(t, qi + (α− qi)) = d(t, qi + 1) + d(φi, α− qi) =

= 1 + d(φi, α− qi) ⩾ 2.

In the situation b. we have

rm < α < ℓ(t),

0 < α− rm < ℓ(t)− rm,

1 ⩽ α− rm ⩽ ℓ(t)− rm − 1 = ℓ(ϕ),

ϕ[α− rm] = t[α],

d(t, α) = d(t, rm + (α− rm)) = d(t, rm + 1) + d(ϕ, α− rm) =

= 1 + d(ϕ, α− rm) ⩾ 2.

7. Deductive systems and proofs

In this section we will define deductive systems and proofs and we will introduce
other concepts and results related to our deductive methodology. Given a language
L = (V,F , C,#, {D1, . . . , Dn}, qmax), we begin with some preliminary definitions.

Let K =
⋃

n⩾1K(n).
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For each k ∈ K let

E(k) =
⋃

n⩾1:k∈K(n)

E(n, k) ,

Es(k) = {t|t ∈ E(k),∀σ ∈ Ξ(k) #(k, t, σ) is a set } .

Let E =
⋃

k∈K E(k); E is the set of all expressions in our language.

One expression t ∈ E(k) is a ‘sentence with respect to k’ when for each σ ∈ Ξ(k)
#(k, t, σ) is true or #(k, t, σ) is false.

We define S(k) = {t|t ∈ E(k), t is a sentence with respect to k}.

For each t ∈ E(ϵ) we define #(t) = #(ϵ, t, ϵ).

A sentence with respect to ϵ will simply be called a ‘sentence’.

At this point we can define what is a proof in our language. To define this we
need to define the notions of axiom and rule. We first notice that the symbols of our
language belong to the four disjoint sets V, C, F and Z. Let’s call Σ = V ∪ C ∪ F ∪Z
the set of all the symbols (or alphabet) of our language and Σ∗ the set of all the empty
or finite strings built with the symbols in Σ. Clearly given k ∈ K S(k) ⊆ E(k) ⊆ Σ∗.

An axiom is a set A such that

• A ⊆ S(ϵ) ⊆ Σ∗,
• A is r.e.,
• for each φ ∈ A #(φ) holds.

The property ‘for each φ ∈ A #(φ) holds’ states that axiom A is ‘sound’.

Given a positive integer n we indicate with S(ϵ)n the set of all n-tuples (φ1, . . . , φn)
for φ1, . . . , φn ∈ S(ϵ). An n-ary rule is a set R such that

• R ⊆ S(ϵ)n+1 ⊆ (Σ∗)n+1,
• R is r.e.,
• for each (φ1, . . . , φn, φ) ∈ R if #(φ1), . . . ,#(φn) hold then #(φ) holds.

The property ‘for each (φ1, . . . , φn, φ) ∈ R if #(φ1), . . . ,#(φn) hold then #(φ)
holds’ states that rule R is ‘sound’.

Both in the definition of axiom and rule we have included a requirement of
soundness.

A deductive system is built on top of our language L, and is identified by a pair
(A,R) where A is a finite set of axioms in L and R is a finite set of rules in L.
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We require that the set of the axioms and the set of the rules are finite since we
need to be able to list each of them on a piece of paper.

Given a language L, D = (A,R) deductive system in L, φ, ψ1, . . . , ψm sentences in
L, we say that (ψ1, . . . , ψm) is a proof of φ in D if and only if

• there exists A ∈ A such that ψ1 ∈ A;
• if m > 1 then for each j = 2 . . .m one of the following holds

◦ there exists A ∈ A such that ψj ∈ A,
◦ there exist an n-ary rule R ∈ R and i1, . . . , in < j such that
(ψi1 , . . . , ψin , ψj) ∈ R;

• ψm = φ.

Given D = (A,R) deductive system in L and φ sentence in L we say that φ is
derivable in D and write ⊢D φ if and only if there exist ψ1, . . . , ψm sentences in L
such that (ψ1, . . . , ψm) is a proof of φ in D.

A deductive system D = (A,R) is said to be sound if and only if for each φ
sentence in L if ⊢D φ then #(φ) holds. In the next lemma we easily prove that each
of our systems is sound.

Lemma 7.1. Let D = (A,R) be a deductive system in L. Then D is sound.

Proof. Let φ be a sentence in L. Suppose ⊢D φ. There exist ψ1, . . . , ψm sentences in
L such that (ψ1, . . . , ψm) is a proof of φ in D. We can show that for each j = 1 . . .m
#(ψj) holds.

There exists A ∈ A such that ψ1 ∈ A, so #(ψ1) holds.

If m > 1 suppose j = 2 . . .m.

If there exists A ∈ A such that ψj ∈ A then #(ψj) holds.

Otherwise there exist an n-ary rule R ∈ R and i1, . . . , in < j such that

(ψi1 , . . . , ψin , ψj) ∈ R .

Since #(ψi1), . . . ,#(ψin) all hold then #(ψj) also holds.

We now want to point out some recursivity requirements with respect to the sets
that we defined above: E(k), S(k), Es(k). We will prove these sets are recursively
enumerable.

For each k ∈ K we defined E(k) =
⋃

n⩾1:k∈K(n)E(n, k).

The set {n|n ∈ N, n ⩾ 1, k ∈ K(n)} is r.e.. In fact if we call n0 the least n ∈ N such
that k ∈ K(n) we have that the just mentioned set is actually {n|n ∈ N, n ⩾ n0},
that is a recursive and r.e. set. Since for each n in the mentioned r.e. set E(n, k) is
r.e. then E(k) is also r.e..
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Given a positive integer n and k ∈ K(n), let’s define the following sets:

S(n, k) = {φ| φ ∈ E(n, k), for each σ ∈ Ξ(k) #(k, φ, σ) is true or #(k, φ, σ) is false };
Es(n, k) = {φ| φ ∈ E(n, k), for each σ ∈ Ξ(k) #(k, φ, σ) is a set };
EDi

(n, k) = {φ| φ ∈ E(n, k), for each σ ∈ Ξ(k) #(k, φ, σ) ∈ Di}.

For each φ ∈ E(n, k) we can decide the following conditions:

• for each σ ∈ Ξ(k) #(k, φ, σ) is true or false;
• for each σ ∈ Ξ(k) #(k, φ, σ) is a set;
• for each σ ∈ Ξ(k) #(k, φ, σ) ∈ Di.

Therefore, since E(n, k) is recursive, S(n, k), Es(n, k) and EDi
(n, k) are recursive

too.

It is easy to verify that S(k) =
⋃

n⩾1:k∈K(n) S(n, k), therefore S(k) is r.e..

Similarly, it is easy to verify that Es(k) =
⋃

n⩾1:k∈K(n)Es(n, k), therefore Es(k) is
r.e..

Moreover we can define EDi
(k) = {φ| φ ∈ E(k), for each σ ∈ Ξ(k) #(k, φ, σ) ∈ Di}

Then it is easy to verify that EDi
(k) =

⋃
n⩾1:k∈K(n)EDi

(n, k), therefore EDi
(k) is

r.e..

We now want to define some possible axiom and rule and prove they are recursively
enumerable, in order to convince ourselves and the reader that we have correctly built
our system. We first need to provide some definition.

Definition 7.2. Let x ∈ V, φ ∈ E. We define

H[x : φ] = φ ∈ Es(ϵ) .

If the condition H[x : φ] holds then we define k[x : φ] = ϵ+ < x,φ >. Clearly
k[x : φ] ∈ K. In fact there exists n positive integer such that ϵ ∈ K(n) ∧ φ ∈ Es(n, ϵ),
x ∈ V − var(ϵ), so k[x : φ] = ϵ+ < x,φ >∈ K(n) ∪K(n)+ = K(n+ 1) ⊆ K.

Moreover k[x : φ] =<< x,φ >> and var(k[x : φ]) = {x}.
Let m be a positive integer. Let x1, . . . , xm+1 ∈ V, with xi ̸= xj for i ̸= j. Let

φ1, . . . , φm+1 ∈ E. We can assume to have defined H[x1 : φ1, . . . , xm : φm] and if this
holds to have defined also k[x1 : φ1, . . . , xm : φm] ∈ K, such that

k[x1 : φ1, . . . , xm : φm] =<< x1, φ1 >, . . . , < xm : φm >>

var(k[x1 : φ1, . . . , xm : φm]) = {x1, . . . , xm}

We define

H[x1 : φ1, . . . , xm+1 : φm+1] = H[x1 : φ1, . . . , xm : φm]

∧ φm+1 ∈ Es(k[x1 : φ1, . . . , xm : φm]) .
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If H[x1 : φ1, . . . , xm+1 : φm+1] then we define

k[x1 : φ1, . . . , xm+1 : φm+1] = k[x1 : φ1, . . . , xm : φm]+ < xm+1, φm+1 > .

Clearly k[x1 : φ1, . . . , xm+1 : φm+1] ∈ K. In fact there exists a positive integer n
such that k[x1 : φ1, . . . , xm : φm] ∈ K(n) and φm+1 ∈ Es(n, k[x1 : φ1, . . . , xm : φm]),
xm+1 ∈ V − var(k[x1 : φ1, . . . , xm : φm]), so k[x1 : φ1, . . . , xm+1 : φm+1] ∈ K(n) ∪
K(n)+ = K(n+ 1).

Moreover

k[x1 : φ1, . . . , xm+1 : φm+1] =<< x1, φ1 >, . . . , < xm+1 : φm+1 >>

var(k[x1 : φ1, . . . , xm+1 : φm+1]) = {x1, . . . , xm+1} .

Lemma 7.3. Let m positive integer, x1, . . . , xm ∈ V, with xi ̸= xj for i ̸= j,
φ1, . . . , φm ∈ E. Then H[x1 : φ1, . . . , xm : φm] is defined and if H[x1 : φ1, . . . , xm :
φm] holds then k[x1 : φ1, . . . , xm : φm] is also defined and belongs to K. Moreover

var(k[x1 : φ1, . . . , xm : φm]) = {x1, . . . , xm} .

Proof. This is an obvious consequence of the previous definition and has been verified,
by induction on m, in the definition itself.

Remark 7.4. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for i ̸= j.
Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. In these assumptions we can
easily see that for each i = 1 . . .m H[x1 : φ1, . . . , xi : φi] holds and so k[x1 : φ1, . . . , xi :
φi] is defined, k[x1 : φ1, . . . , xi : φi] ∈ K, var(k[x1 : φ1, . . . , xi : φi]) = {x1, . . . , xi}.

In fact this is clearly true for i = m. Given i = 2 . . .m, if we suppose this is true for
i, then we have H[x1 : φ1, . . . , xi−1 : φi−1], and so the remaining facts also hold.

In these assumptions we can define k0 = ϵ and for each i = 1 . . .m
ki = k[x1 : φ1, . . . , xi : φi]. We have k0 ∈ K, var(k0) = ∅, for each i = 1 . . .m ki ∈ K,
var(ki) = {x1, . . . , xi}. Hereafter we’ll often use this kind of simplified notation.

We can also easily see that for each i = 1 . . .m φi ∈ Es(ki−1) and ki = ki−1+ <
xi, φi >, and dom(ki) = {1, . . . , i}.

For the following definition we need to assume that the symbol ∀ belongs to the
set F of our language. This assumption applies to the remainder of this section.

Definition 7.5. Let m be a positive integer. Let φ1, . . . , φm ∈ Σ∗. Let ψ1, . . . , ψm ∈
Σ∗. Let φ ∈ Σ∗. Define

γ[ψm : φm, φ] = ∀({}(ψm : φm, φ)) .
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If m > 1 for each i = 2 . . .m suppose we have defined γ[ψi : φi, . . . , ψm : φm, φ] and
define

γ[ψi−1 : φi−1, . . . , ψm : φm, φ] = ∀({}(ψi−1 : φi−1, γ[ψi : φi, . . . , ψm : φm, φ])) .

With this we have also defined γ[ψ1 : φ1, . . . , ψm : φm, φ].

We can define a function χ on the domain (Σ∗)2m × Σ∗ such that given
(ψ1, φ1, . . . , ψm, φm) ∈ (Σ∗)2m and φ ∈ Σ∗, χ((ψ1, φ1, . . . , ψm, φm), φ) = γ[ψ1 :
φ1, . . . , ψm : φm, φ]. Clearly this function is computable since the result can be
obtained by simply concatenating the elements of the input with other symbols of
our language.

We can also observe the following.

Lemma 7.6. Let m be a positive integer, m > 1. Let φ1, . . . , φm ∈ Σ∗. Let
ψ1, . . . , ψm ∈ Σ∗. Let φ ∈ Σ∗. Then

γ[ψ1 : φ1, . . . , ψm : φm, φ] = γ[ψ1 : φ1, . . . , ψm−1 : φm−1, ∀({}(ψm : φm, φ))] .

Proof. We want to prove that for each i = 1 . . .m− 1

γ[ψi : φi, . . . , ψm : φm, φ] = γ[ψi : φi, . . . , ψm−1 : φm−1, ∀({}(ψm : φm, φ))] .

We start the proof at m− 1 and we are then going backwards by induction to 1. So

γ[ψm−1 : φm−1, ψm : φm, φ] = ∀({}(ψm−1 : φm−1, γ[ψm : φm, φ]))

= ∀({}(ψm−1 : φm−1,∀({}(ψm : φm, φ))))

= γ[ψm−1 : φm−1, ∀({}(ψm : φm, φ))]

If m = 2 our proof is finished, whilst if m > 2 given i = 2 . . .m− 1 we can assume

γ[ψi : φi, . . . , ψm : φm, φ] = γ[ψi : φi, . . . , ψm−1 : φm−1, ∀({}(ψm : φm, φ))] .

And in this case we have

γ[ψi−1 : φi−1, . . . , ψm : φm, φ] = ∀({}(ψi−1 : φi−1, γ[ψi : φi, . . . , ψm : φm, φ]))

= ∀({}(ψi−1 : φi−1, γ[ψi : φi, . . . , ψm−1 : φm−1,∀({}(ψm : φm, φ))]))

= γ[ψi−1 : φi−1, . . . , ψm−1 : φm−1,∀({}(ψm : φm, φ))] .

Given a positive integer m let’s call Rm the set

{(x1, φ1, . . . , xm, φm)| x1, . . . , xm ∈ V with xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,H[x1 : φ1, . . . , xm : φm]} .

Clearly given (x1, φ1, . . . , xm, φm) ∈ Rm k[x1 : φ1, . . . , xm : φm] ∈ K.
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Let’s also define

Qm =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm]) .

Actually Qm ⊆ (Σ∗)2m×Σ∗. Our goal is now to show that Qm is r.e. in order to be
able to show that the set {χ((x1, φ1, . . . , xm, φm), φ)| ((x1, φ1, . . . , xm, φm), φ) ∈ Qm}
is r.e. itself.

As a first remark in this proof we can notice that our set of variables V is recursive.
In fact given a string φ ∈ Σ∗ if φ has not exactly one character then it doesn’t belong
to V. If it has just one character then, since apart from the variables our alphabet
has a finite number of symbols, we can decide if φ ∈ V.

The first step in this proof is to show that Rm is r.e., i.e. the following lemma:

Lemma 7.7. For each m positive integer Rm is r.e..

Proof. In the initial step of the proof we have to show that R1 is r.e.. We have

R1 = {(x1, φ1)|x1 ∈ V, φ1 ∈ E,H[x1 : φ1]}
= {(x1, φ1)|x1 ∈ V, φ1 ∈ Es(ϵ)}
= V × Es(ϵ)

and since both V and Es(ϵ) are r.e. then R1 is r.e..

Given a positive integer m we assume Rm is r.e. and want to show that Rm+1 is r.e..

Actually

Rm+1 = {(x1, φ1, . . . , xm+1, φm+1)| x1, . . . , xm+1 ∈ V with xi ̸= xj for i ̸= j, φ1, . . . , φm+1 ∈ E,H[x1 : φ1, . . . , xm+1 : φm+1]}
= {(x1, φ1, . . . , xm+1, φm+1)| x1, . . . , xm+1 ∈ V with xi ̸= xj for i ̸= j, φ1, . . . , φm+1 ∈ E,

H[x1 : φ1, . . . , xm : φm] ∧ φm+1 ∈ Es(k[x1 : φ1, . . . , xm : φm])}
= {(x1, φ1, . . . , xm+1, φm+1)| (x1, φ1, . . . , xm, φm) ∈ Rm, xm+1 ∈ V − {x1, . . . , xm}, φm+1 ∈ Es(k[x1 : φ1, . . . , xm : φm])} .

Let’s now consider the set

Um+1 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)}×(V−{x1, . . . , xm})×Es(k[x1 : φ1, . . . , xm : φm]) .

Given (x1, φ1, . . . , xm, φm) ∈ Rm the sets {(x1, φ1, . . . , xm, φm)} ⊆ (Σ∗)2m, (V −
{x1, . . . , xm}) ⊆ Σ∗ and Es(k[x1 : φ1, . . . , xm : φm]) ⊆ Σ∗ are r.e., so the cartesian
product

{(x1, φ1, . . . , xm, φm)} × (V − {x1, . . . , xm})× Es(k[x1 : φ1, . . . , xm : φm])

is also r.e., and Um+1 ⊆ (Σ∗)2m × Σ∗ × Σ∗ is r.e..
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The set Rm+1 is a subset of (Σ∗)2m+2 which is not (necessarily) the same
of (Σ∗)2m × Σ∗ × Σ∗. In fact a member of (Σ∗)2m+2 can be expressed as
(ψ1, φ1, . . . , ψm+1, φm+1) and a member of (Σ∗)2m × Σ∗ × Σ∗ can be expressed as
((ψ1, φ1, . . . , ψm, φm), ψm+1, φm+1). Anyway we can easily map members of the first
set to the ones of the second set and vice-versa. In fact we can define a function κ over
(Σ∗)2m+2 such that κ(ψ1, φ1, . . . , ψm+1, φm+1) = ((ψ1, φ1, . . . , ψm, φm), ψm+1, φm+1),
and the function κ is computable.

Given (ψ1, φ1, . . . , ψm+1, φm+1) ∈ (Σ∗)2m+2 if (ψ1, φ1, . . . , ψm+1, φm+1) ∈ Rm+1

then κ(ψ1, φ1, . . . , ψm+1, φm+1) ∈ Um+1 and vice-versa if κ(ψ1, φ1, . . . , ψm+1, φm+1) ∈
Um+1 then (ψ1, φ1, . . . , ψm+1, φm+1) ∈ Rm+1.

As we have seen Um+1 is r.e. so its semi-characteristic function sU is com-
putable. Let’s now consider the function sU ◦ κ which is defined over (Σ∗)2m+2.
Given (ψ1, φ1, . . . , ψm+1, φm+1) ∈ (Σ∗)2m+2 if (ψ1, φ1, . . . , ψm+1, φm+1) ∈ Rm+1

then κ(ψ1, φ1, . . . , ψm+1, φm+1) ∈ Um+1 and sU (κ(ψ1, φ1, . . . , ψm+1, φm+1) = 1.
If (ψ1, φ1, . . . , ψm+1, φm+1) /∈ Rm+1 then κ(ψ1, φ1, . . . , ψm+1, φm+1) /∈ Um+1 and
sU (κ(ψ1, φ1, . . . , ψm+1, φm+1) diverges. So sU ◦ κ is actually the semicharacteristic
function of Rm+1 and it is clearly a computable function. This proves that Rm+1 is
r.e..

Now given (x1, φ1, . . . , xm, φm) ∈ Rm both {(x1, φ1, . . . , xm, φm)} and S(k[x1 :
φ1, . . . , xm : φm]) are r.e., so {(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm]) is
r.e. too, and so Qm is a r.e. subset of (Σ∗)2m × Σ∗.

We can now recall that we have defined a computable function
χ : (Σ∗)2m × Σ∗ → Σ∗. Because of lemma 4.5 we have that the set
{χ((x1, φ1, . . . , xm, φm), φ)| ((x1, φ1, . . . , xm, φm), φ) ∈ Qm} is a r.e. subset of
Σ∗.

And finally the set⋃
m⩾1

{χ((x1, φ1, . . . , xm, φm), φ)| ((x1, φ1, . . . , xm, φm), φ) ∈ Qm}

is itself a r.e. set. It seems this is not particularly significant to us because this set
is not an axiom, but we’ll see sets that are very similar to this one and that we can
use as an axiom in our deductive system.

8. Deductive methodology

We now need to introduce some other fundamental notions and results relevant to
our deductive methodology.

At the beginning of section 3 we have introduced the logical connectives. In our
deductions, expressions will make an extensive use of the logical connectives, so we
assume that all of these symbols: ¬,∧,∨,→,↔, ∀, ∃ are in our set F . For each of these
operators f Af (x1, . . . , xn) and Pf (x1, . . . , xn) are defined as specified at the beginning
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of section 3.

Lemma 8.1. For each n positive integer such that n ⩾ 2, k ∈ K(n): k ̸= ϵ there
exists m < n such that k ∈ K(m)+.

Proof. We prove this by induction on n. Clearly if k ∈ K(2) and k ̸= ϵ then k ∈
K(1)+.

Let n ⩾ 2, k ∈ K(n+1): k ̸= ϵ. Clearly if k ∈ K(n)+ our proof is finished. Otherwise
k ∈ K(n) and in this case we can apply the inductive hypothesis.

Lemma 8.2. For each n positive integer such that n ⩾ 2, k ∈ K(n): k ̸= ϵ

• there exist m < n, h ∈ K(m), ϕ ∈ Es(m,h), y ∈ (V − var(h)) such that
k = h+ < y, ϕ >, Ξ(k) = {σ + (y, s)|σ ∈ Ξ(h), s ∈ #(h, ϕ, σ)};

• for each g ∈ K(n), θ ∈ Es(n, g), z ∈ (V − var(g)) such that k = g+ < z, θ >
Ξ(k) = {σ + (z, s)|σ ∈ Ξ(g), s ∈ #(g, θ, σ)}.

Proof. The first part clearly follows from lemma 8.1. The second part holds because
we have g = h, z = y, θ = ϕ.

Lemma 8.3. For each n positive integer such that n ⩾ 2, k ∈ K(n) : k ̸= ϵ, h ∈
R(k) : h ̸= k there exists m < n such that h ∈ K(m).

Proof. We prove this by induction on n. Let k ∈ K(2): k ̸= ϵ, h ∈ R(k) :
h ̸= k. There exist m < n, g ∈ K(m), ϕ ∈ Es(m, g), y ∈ (V − var(g)) such that
k = g + (y, ϕ). In this case m = 1, so g = ϵ. By lemma 5.5 we have h ∈ R(ϵ) and so
h = ϵ ∈ K(1).

In order to perform the inductive step, let k ∈ K(n+1) : k ̸= ϵ, h ∈ R(k) such that
h ̸= k. There exist m < n + 1, g ∈ K(m), ϕ ∈ Es(m, g), y ∈ (V − var(g)) such that
k = g+(y, ϕ). By lemma 5.5 we have h ∈ R(g). If h = g ∈ K(m) our proof is finished.
Otherwise h ̸= g and g ̸= ϵ, we can apply our inductive hypothesis and obtain that
there exists q < m < n+ 1 such that h ∈ K(q).

Lemma 8.4. For each n positive integer such that n ⩾ 2, k ∈ K(n) : k ̸= ϵ, σ ∈ Ξ(k),
h ∈ R(k) : h ̸= k, there exists m < n such that h ∈ K(m) and it results σ/dom(h) ∈
Ξ(h).

Proof. We prove this by induction on n. Let k ∈ K(2): k ̸= ϵ, σ ∈ Ξ(k), h ∈ R(k) such
that h ̸= k. Clearly k ∈ K(1)+, so there exist g ∈ K(1), ϕ ∈ Es(1, g), y ∈ V − var(g)
such that k = g+ < y, ϕ >. By lemma 5.5 we obtain that h ∈ R(g). Since g = ϵ then
also h = ϵ ∈ K(1) , so σ/dom(h) = σ/∅ = ϵ ∈ Ξ(ϵ) = Ξ(h).

In order to perform the inductive step, let k ∈ K(n+1) : k ̸= ϵ, σ ∈ Ξ(k), h ∈ R(k)
such that h ̸= k . By lemma 8.1 there exists m ⩽ n such that k ∈ K(m)+. Then there
exist g ∈ K(m), ϕ ∈ Es(m, g), y ∈ (V − var(g)) such that k = g+ < y, ϕ >. Moreover

Ξ(k) = {ρ+ (y, s)| ρ ∈ Ξ(g), s ∈ #(g, ϕ, ρ)} .
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Therefore there exist ρ ∈ Ξ(g), s ∈ #(g, ϕ, ρ) such that σ = ρ + (y, s). By assump-
tion 6.1.7 and lemma 3.11 we have that σ/dom(g) = σ/dom(ρ) = ρ.

If h = g then σ/dom(h) = σ/dom(g) = ρ ∈ Ξ(h).

Otherwise we have h ̸= g. Since k = g+ < y, ϕ >, h ∈ R(k), h ̸= k by lemma 5.5
we have that h ∈ R(g). If g = ϵ we would have h = ϵ = g, so g ̸= ϵ. This implies
that m ⩾ 2. By our inductive hypothesis we obtain there exists q < m ⩽ n such that
h ∈ K(q) and ρ/dom(h) ∈ Ξ(h). Now

σ/dom(h) = (σ/dom(g))/dom(h) = ρ/dom(h) ∈ Ξ(h).

Lemma 8.5. For each n positive integer k =<< x1, φ1 > · · · < xm, φm >>∈ K(n)−
{ϵ}, for each i, j = 1 . . .m i ̸= j → xi ̸= xj.

Proof. Since K(1)− {ϵ} = ∅ the initial step is trivially verified.

Let n be a positive integer, let k =<< x1, φ1 > · · · < xm, φm >>∈ K(n+ 1)− {ϵ},
we want to verify that for each i, j = 1 . . .m i ̸= j → xi ̸= xj .

If k ∈ K(n) this is obvioulsy verified.

Otherwise k ∈ K(n)+, so there exist h ∈ K(n), ϕ ∈ Es(n, h), y ∈ (V − var(h)) such
that k = h+ < y, ϕ >.

If h = ϵ then k =<< y, ϕ >>, this implies m = 1 and we have finished.

If h ̸= ϵ then h =<< y1, ψ1 > · · · < yp, ψp >> and
k =<< y1, ψ1 > · · · < yp, ψp >< y, ϕ >>.

Clearly this implies m = p + 1. Given i, j = 1 . . .m with i ̸= j if i, j ⩽ p then
xi = yi ̸= yj = xj . If i ⩽ p and j = m then xi = yi ̸= y = xm = xj .

Lemma 8.6. For each n positive integer, k ∈ K(n), σ = (z, ξ) ∈ Ξ(k):

• if k = ϵ then z = ∅, var(σ) = ∅ = var(k);
• if k ̸= ϵ, k =<< x1, φ1 > · · · < xm, φm >> then dom(z) = {1, . . . ,m}, for each
i = 1 . . .m zi = xi, var(σ) = var(k).

Proof. The initial step is trivially verified.

Let n be a positive integer, let k ∈ K(n+1), let σ = (z, ξ) ∈ Ξ(k). If k ∈ K(n) then
we can assume the result is valid.

Otherwise k ∈ K(n)+, so there exist h ∈ K(n), ϕ ∈ Es(n, h), y ∈ (V − var(h)) such
that k = h+ < y, ϕ > and

Ξ(k) = {ρ+ (y, s)| ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ)} .

There exists ρ = (u, ν) ∈ Ξ(h), s ∈ #(h, ϕ, ρ) such that σ = ρ+ (y, s).
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If h = ϵ then k =<< y, ϕ >>, so m = 1, ρ = ϵ, dom(z) = {1}, z(1) = y. Moreover
x1 = y = z(1), var(k) = {y} = var(σ).

Otherwise let h =<< y1, ψ1 > · · · < yp, ψp >>, so
k =<< y1, ψ1 > · · · < yp, ψp >< y, ϕ >>.

Using our inductive hypothesis we can state that dom(u) = {1, . . . , p} for each
i = 1 . . . p yi = ui, var(ρ) = var(h).

It follows that dom(z) = {1, . . . , p+ 1} = {1, . . . ,m}.

For each i = 1 . . . p xi = yi = ui = zi, moreover xp+1 = y = zp+1.

It also follows that var(σ) = var(k).

Lemma 8.7. For each n positive integer, k ∈ K(n), σ = (z, ξ) ∈ Ξ(k), for each
i, j ∈ dom(σ) i ̸= j → zi ̸= zj.

Proof. Clearly in the case k = ϵ we have σ = ϵ and the result is trivially verified.

Now suppose k ̸= ϵ, k =<< x1, φ1 > · · · < xm, φm >>.

From lemma 8.5 it follows that for each i, j = 1 . . .m i ̸= j → xi ̸= xj . From
lemma 8.6 dom(z) = {1, . . . ,m}, for each i = 1 . . .m zi = xi.

It follows that for each i, j ∈ dom(σ) if i ̸= j then zi = xi ̸= xj = zj .

Lemma 8.8. For each n positive integer, k =<< x1, φ1 > · · · < xm, φm >>, h =<<
y1, ψ1 > · · · < yq, ψq >>∈ K(n)− {ϵ} if h ⊑ k then for each i ∈ dom(k), j ∈ dom(h)
xi = yj → φi = ψj.

Proof. From lemma 8.5 it follows that for each i, j ∈ dom(k) i ̸= j → xi ̸= xj .
With this we can apply lemma 5.6 and obtain that there exists p = 1 . . .m such that
h =<< x1, φ1 > · · · < xp, φp >>.

At this point for each i ∈ dom(k), j ∈ dom(h) xi = yj implies xi = xj so i = j and
φi = φj = ψj .

Lemma 8.9. For each n positive integer, h, k ∈ K(n), σ = (x, η) ∈ Ξ(k), ρ = (y, θ) ∈
Ξ(h), if ρ ⊑ σ then for each i ∈ dom(σ), j ∈ dom(ρ) xi = yj → ηi = θj.

Proof. From lemma 8.7 it follows that for each i, j ∈ dom(σ) i ̸= j → xi ̸= xj . With
this we can apply lemma 3.3 and obtain that
for each i ∈ dom(σ), j ∈ dom(ρ) xi = yj → ηi = θj .
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Lemma 8.10. For each n positive integer such that n ⩾ 2, k ∈ K(n), t ∈ E(n, k)
such that t /∈ C one of the following two alternatives holds:

• t ∈ Ea(n, k) ∪ Ee(n, k) ∪
⋃

c∈C′ Ec(n, k) ∪
⋃

f∈F E
f (n, k);

• n > 2 and there exist m positive integer such that 2 ⩽ m < n, h ∈ K(m) such
that h ⊑ k, t ∈ Ea(m,h) ∪ Ee(m,h) ∪

⋃
c∈C′ Ec(m,h) ∪

⋃
f∈F E

f (m,h) and for

each σ ∈ Ξ(k) σ/dom(h) ∈ Ξ(h) and #(k, t, σ) = #(h, t, σ/dom(h)).

Proof. Of course we begin with the case n = 2. Let k ∈ K(2), t ∈ E(2, k) such that
t /∈ C. We have K(2) = K(1) ∪K(1)+.

If k ∈ K(1)+ we have E(2, k) = Ea(2, k), so t ∈ Ea(2, k).

If k ∈ K(1) we have

E(2, k) = E(1, k) ∪ Eb(2, k) ∪ Ee(2, k) ∪
⋃
c∈C′

Ec(2, k) ∪
⋃
f∈F

Ef (2, k) .

Since k = ϵ we have E(1, k) = C, Eb(2, k) = ∅, so

E(2, k) = C ∪ Ee(2, k) ∪
⋃
c∈C′

Ec(2, k) ∪
⋃
f∈F

Ef (2, k) .

Therefore in this case we have

t ∈ Ee(2, k) ∪
⋃
c∈C′

Ec(2, k) ∪
⋃
f∈F

Ef (2, k) .

Let now n ⩾ 2 and we try to prove the result for n + 1. So let k ∈ K(n + 1),
t ∈ E(n+ 1, k) such that t /∈ C. We have K(n+ 1) = K(n) ∪K(n)+.

If k ∈ K(n)+ we have E(n+ 1, k) = Ea(n+ 1, k) so t ∈ Ea(n+ 1, k).

We now need to examine the case k ∈ K(n). Here we have

E(n+1, k) = E(n, k)∪Eb(n+1, k)∪Ee(n+1, k)∪
⋃
c∈C′

Ec(n+1, k)∪
⋃
f∈F

Ef (n+1, k) .

If t ∈ Ee(n+1, k)∪
⋃

c∈C′ Ec(n+1, k)∪
⋃

f∈F E
f (n+1, k) then our result is verified.

If t ∈ E(n, k) and we can apply our inductive hypothesis, which leads to two alter-
natives:

• t ∈ Ea(n, k) ∪ Ee(n, k) ∪
⋃

c∈C′ Ec(n, k) ∪
⋃

f∈F E
f (n, k);

• n > 2 and there exist m positive integer such that 2 ⩽ m < n, h ∈ K(m) such
that h ⊑ k, t ∈ Ea(m,h) ∪ Ee(m,h) ∪

⋃
c∈C′ Ec(m,h) ∪

⋃
f∈F E

f (m,h) and for

each σ ∈ Ξ(k) σ/dom(h) ∈ Ξ(h) and #(k, t, σ) = #(h, t, σ/dom(h)).

In the first case we observe that 2 ⩽ n < n+1, k ∈ K(n), k ⊑ k. Moreover for each
σ ∈ Ξ(k) σ/dom(k) = σ ∈ Ξ(k) and #(k, t, σ) = #(k, t, σ/dom(k)).

So in the first case our result is verified.
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Let’s examine the second case. Here 2 ⩽ m < n < n + 1, h ∈ K(m), h ⊑ k, for
each σ ∈ Ξ(k) σ/dom(h) ∈ Ξ(h) and #(k, t, σ) = #(h, t, σ/dom(h)). So everything is as
expected and our result is verified in this case too.

We have still one case to examine, which is the case of t ∈ Eb(n + 1, k). Here we
have k ̸= ϵ so by assumption 6.1.8 there exist m < n, h ∈ K(m), ϕ ∈ Es(m,h),
y ∈ (V−var(h)) such that k = h+ < y, ϕ >. Moreover by the definition of Eb(n+1, k)
we know that t ∈ E(n, h). So we can apply our inductive hypothesis, which again leads
to two alternatives:

• t ∈ Ea(n, h) ∪ Ee(n, h) ∪
⋃

c∈C′ Ec(n, h) ∪
⋃

f∈F E
f (n, h);

• n > 2 and there exist p positive integer such that 2 ⩽ p < n, g ∈ K(p) such
that g ⊑ h, t ∈ Ea(p, g) ∪Ee(p, g) ∪

⋃
c∈C′ Ec(p, g) ∪

⋃
f∈F E

f (p, g) and for each

ρ ∈ Ξ(h) ρ/dom(g) ∈ Ξ(g) and #(h, t, ρ) = #(g, t, ρ/dom(g)).

In the first case we observe that 2 ⩽ n < n + 1, h ∈ K(n), h ⊑ k, t ∈ Ea(n, h) ∪
Ee(n, h)∪

⋃
c∈C′ Ec(n, h)∪

⋃
f∈F E

f (n, h), moreover for each σ = ρ+ (y, s) ∈ Ξ(k) we
have

• #(k, t, σ) = #(h, t, ρ),
• σ/dom(h) = σ/dom(ρ) = ρ,
• therefore #(k, t, σ) = #(h, t, σ/dom(h)).

Let’s examine the second case. Here 2 ⩽ p < n < n + 1, g ∈ K(p), g ⊑ h ⊑ k,
t ∈ Ea(p, g) ∪ Ee(p, g) ∪

⋃
c∈C′ Ec(p, g) ∪

⋃
f∈F E

f (p, g). Moreover for each σ = ρ +

(y, s) ∈ Ξ(k) we have

• #(k, t, σ) = #(h, t, ρ),
• σ/dom(h) = σ/dom(ρ) = ρ,
• σ/dom(g) = (σ/dom(h))/dom(g) = ρ/dom(g),
• #(k, t, σ) = #(h, t, ρ) = #(g, t, ρ/dom(g)) = #(g, t, σ/dom(g)).

Lemma 8.11. For each n positive integer, k ∈ K(n), t ∈ E(n, k) if t ∈ C then for
each σ ∈ Ξ(k) #(k, t, σ) = #(t).

Proof. Let’s verify the result for n = 1. Here k = ϵ, for each σ ∈ Ξ(ϵ) σ = ϵ so
#(k, t, σ) = #(ϵ, t, ϵ) = #(t).

Now let’s examine the inductive step. Given k ∈ K(n+1), t ∈ E(n+1, k) such that
t ∈ C and σ ∈ Ξ(k) we want to show that #(k, t, σ) = #(t).

If k ∈ K(n)+ then t ∈ Ea(n+1, k), but since t ∈ C this cannot happen, so k ∈ K(n)+

cannot happen.

Therefore k ∈ K(n) and
t ∈ E(n, k) ∪ Eb(n+ 1, k) ∪ Ee(n+ 1, k) ∪

⋃
c∈C′ Ec(n+ 1, k) ∪

⋃
f∈F E

f (n+ 1, k).

Since t ∈ C it follows that t ∈ E(n, k) ∪ Eb(n+ 1, k).

If t ∈ E(n, k) clearly #(k, t, σ) = #(t) holds by the inductive hypothesis.

If t ∈ Eb(n + 1, k) then we have k ̸= ϵ so by assumption 6.1.8 there exist m < n,
h ∈ K(m), ϕ ∈ Es(m,h), y ∈ (V − var(h)) such that k = h+ < y, ϕ >, Ξ(k) =
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{ρ + (y, s)| ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ)}). Moreover by the definition of Eb(n + 1, k) we
know that t ∈ E(n, h).

Clearly there exist ρ ∈ Ξ(h), s ∈ #(h, ϕ, ρ) such that σ = ρ+(y, s) and #(k, t, σ) =
#(h, t, ρ). By the inductive hypothesis #(h, t, ρ) = #(t), so #(k, t, σ) = #(t).

Lemma 8.12. Let k, h ∈ K(n) such that h = ϵ or k = ϵ or (h, k ̸= ϵ and k =<<
x1, φ1 > · · · < xm, φm >>, h =<< y1, ψ1 > · · · < yq, ψq >> and for each i ∈ dom(k),
j ∈ dom(h) xi = yj → φi = ψj). Let u ∈ V − var(k): u ∈ V − var(h) and ϑ ∈ E(n),
let k′ = k+ < u, ϑ > and h′ = h+ < u, ϑ >. Since k, h ̸= ϵ there exist x′1, . . . , x

′
p ∈

V, φ′
1, . . . , φ

′
p ∈ Σ∗ such that k′ =<< x′1, φ

′
1 > · · · < x′p, φ

′
p >>, y′1, . . . , y

′
r ∈ V,

ψ′
1, . . . , ψ

′
r ∈ Σ∗ such that h′ =<< y′1, ψ

′
1 > · · · < y′r, ψ

′
r >> and for each i ∈ dom(k′),

j ∈ dom(h′) x′i = y′j → φ′
i = ψ′

j.

Proof. If both k, h = ϵ then k′ =<< u, ϑ >>= h′ and our result is verified.

If k ̸= ϵ and h = ϵ then let k =<< x1, φ1 > · · · < xm, φm >>, clearly
k′ =<< x1, φ1 > · · · < xm, φm >< u, ϑ >> and h =<< u, ϑ >>. Here we see that
for each i ∈ dom(k′), j ∈ dom(h′) x′i = y′j implies j = 1, y′j = u, x′i = u, so φ′

i = ϑ = ψ′
j .

Finally if both h, k ̸= ϵ, k =<< x1, φ1 > · · · < xm, φm >>, h =<<
y1, ψ1 > · · · < yq, ψq >> then k′ =<< x1, φ1 > · · · < xm, φm >< u, ϑ >>
and h′ =<< y1, ψ1 > · · · < yq, ψq >< u, ϑ >>. Given i ∈ dom(k′), j ∈ dom(h′) such
that x′i = y′j we have i = 1 . . .m+ 1, j = 1 . . . q + 1.

If i ⩽ m and j ⩽ q then clearly xi = x′i = y′j = yj and φ′
i = φi = ψj = ψ′

j .

If i = m+ 1 then xi = u, so yj = u and j = q + 1, so φ′
i = ϑ = ψ′

j .

Lemma 8.13. Let k, h ∈ K(n) such that h = ϵ or k = ϵ or (h, k ̸= ϵ and k =<<
x1, φ1 > · · · < xm, φm >>, h =<< y1, ψ1 > · · · < yq, ψq >> and for each i ∈ dom(k),
j ∈ dom(h) xi = yj → φi = ψj). Let κ ⊑ k and g ⊑ h then κ = ϵ or g = ϵ or

• κ, g ̸= ϵ and so h, k ̸= ϵ,
• there exist p, r positive integers such that p ⩽ m, r ⩽ q, κ =<< x1, φ1 >
· · · < xp, φp >>, g =<< y1, ψ1 > · · · < yr, ψr >> and for each i ∈ dom(κ),
j ∈ dom(g) xi = yj → φi = ψj.

Proof. Clearly we can have κ = ϵ or g = ϵ, otherwise we have κ, g ̸= ϵ, so also
(h, k ̸= ϵ and k =<< x1, φ1 > · · · < xm, φm >>, h =<< y1, ψ1 > · · · < yq, ψq >>
and for each i ∈ dom(k), j ∈ dom(h) xi = yj → φi = ψj).

By lemma 5.6 there exist p, r positive integers such that p ⩽ m, r ⩽ q,
κ =<< x1, φ1 > · · · < xp, φp >>, g =<< y1, ψ1 > · · · < yr, ψr >>.

Moreover dom(κ) ⊆ dom(k) and dom(g) ⊆ dom(h) so for each i ∈ dom(κ), j ∈
dom(g) xi = yj → φi = ψj .
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Lemma 8.14. Let k, h ∈ K(n) such that h = ϵ or k = ϵ or (h, k ̸= ϵ and k =<<
x1, φ1 > · · · < xm, φm >>, h =<< y1, ψ1 > · · · < yq, ψq >> and for each i ∈ dom(k),
j ∈ dom(h) xi = yj → φi = ψj). Let t ∈ E(n, k) ∩ E(n, h). Let σ = (x, z) ∈ Ξ(k),
ρ = (y, r) ∈ Ξ(h) such that for each i ∈ dom(σ), j ∈ dom(ρ) xi = yj → zi = rj. Then
#(k, t, σ) = #(h, t, ρ).

Proof. We prove this by induction on a positive integer n.

Let’s verify the initial step. Here we have k, h ∈ K(1). This implies h = ϵ = k. We
have t ∈ E(1, ϵ) = C. We have σ = (x, s) ∈ Ξ(ϵ), ρ = (y, r) ∈ Ξ(ϵ). Of course this
implies σ = ϵ = ρ. Then #(k, t, σ) = #(ϵ, t, ϵ) = #(h, t, ρ).

Let us see the inductive step, that is given a positive integer n we assume the result
is true for each m ⩽ n and we try to prove it for n + 1. In other words what we
are trying to prove is that for each k, h ∈ K(n + 1) such that one of the following
conditions holds

• h = ϵ
• k = ϵ
• h, k ̸= ϵ and k =<< x1, φ1 > · · · < xm, φm >>, h =<< y1, ψ1 > · · · <
yq, ψq >> and for each i ∈ dom(k), j ∈ dom(h) xi = yj → φi = ψj

and for each t ∈ E(n+1, k)∩E(n+1, h), σ = (x, z) ∈ Ξ(k), ρ = (y, r) ∈ Ξ(h) such
that for each i ∈ dom(σ), j ∈ dom(ρ) xi = yj → zi = rj we have #(k, t, σ) = #(h, t, ρ).

If t ∈ C then by lemma 8.11 #(k, t, σ) = #(t) = #(h, t, ρ).

Otherwise since k ∈ K(n + 1) and t ∈ E(n + 1, k) we can apply lemma 8.10 and
obtain these two following alternative possibilities:

• t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

c∈C′ Ec(n+ 1, k) ∪
⋃

f∈F E
f (n+ 1, k);

• n+ 1 > 2 and there exist µ positive integer such that 2 ⩽ µ < n+ 1, κ ∈ K(µ)
such that κ ⊑ k, t ∈ Ea(µ, κ) ∪ Ee(µ, κ) ∪

⋃
c∈C′ Ec(µ, κ) ∪

⋃
f∈F E

f (µ, κ) and

for each σ ∈ Ξ(k) σ/dom(κ) ∈ Ξ(κ) and #(k, t, σ) = #(κ, t, σ/dom(κ)).

Since h ∈ K(n+1) and t ∈ E(n+1, h) we can also use lemma 8.10 to obtain these
two other following alternative possibilities:

• t ∈ Ea(n+ 1, h) ∪ Ee(n+ 1, h) ∪
⋃

c∈C′ Ec(n+ 1, h) ∪
⋃

f∈F E
f (n+ 1, h);

• n+ 1 > 2 and there exist ν positive integer such that 2 ⩽ ν < n+ 1, g ∈ K(ν)
such that g ⊑ h, t ∈ Ea(ν, g) ∪Ee(ν, g) ∪

⋃
c∈C′ Ec(ν, g) ∪

⋃
f∈F E

f (ν, g) and for

each ρ ∈ Ξ(h) ρ/dom(g) ∈ Ξ(g) and #(h, t, ρ) = #(g, t, ρ/dom(g)).

So we have three possible cases to examine. The first is

• t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

c∈C′ Ec(n+ 1, k) ∪
⋃

f∈F E
f (n+ 1, k) and

• t ∈ Ea(n+ 1, h) ∪ Ee(n+ 1, h) ∪
⋃

c∈C′ Ec(n+ 1, h) ∪
⋃

f∈F E
f (n+ 1, h).

The second case is

• t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

c∈C′ Ec(n+ 1, k) ∪
⋃

f∈F E
f (n+ 1, k) and

• n+ 1 > 2 and there exist ν positive integer such that 2 ⩽ ν < n+ 1, g ∈ K(ν)
such that g ⊑ h, t ∈ Ea(ν, g) ∪Ee(ν, g) ∪

⋃
c∈C′ Ec(ν, g) ∪

⋃
f∈F E

f (ν, g) and for

each ρ ∈ Ξ(h) ρ/dom(g) ∈ Ξ(g) and #(h, t, ρ) = #(g, t, ρ/dom(g)).

Another case to examine would be the following
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• n+ 1 > 2 and there exist µ positive integer such that 2 ⩽ µ < n+ 1, κ ∈ K(µ)
such that κ ⊑ k, t ∈ Ea(µ, κ) ∪ Ee(µ, κ) ∪

⋃
c∈C′ Ec(µ, κ) ∪

⋃
f∈F E

f (µ, κ) and

for each σ ∈ Ξ(k) σ/dom(κ) ∈ Ξ(κ) and #(k, t, σ) = #(κ, t, σ/dom(κ)) and

• t ∈ Ea(n+ 1, h) ∪ Ee(n+ 1, h) ∪
⋃

c∈C′ Ec(n+ 1, h) ∪
⋃

f∈F E
f (n+ 1, h).

Anyway this case is practically equal to the second one, so we don’t need to consider
it. Finally the third case is the following.

• n+ 1 > 2 and there exist µ positive integer such that 2 ⩽ µ < n+ 1, κ ∈ K(µ)
such that κ ⊑ k, t ∈ Ea(µ, κ) ∪ Ee(µ, κ) ∪

⋃
c∈C′ Ec(µ, κ) ∪

⋃
f∈F E

f (µ, κ) and

for each σ ∈ Ξ(k) σ/dom(κ) ∈ Ξ(κ) and #(k, t, σ) = #(κ, t, σ/dom(κ)) and
• n+ 1 > 2 and there exist ν positive integer such that 2 ⩽ ν < n+ 1, g ∈ K(ν)
such that g ⊑ h, t ∈ Ea(ν, g) ∪Ee(ν, g) ∪

⋃
c∈C′ Ec(ν, g) ∪

⋃
f∈F E

f (ν, g) and for

each ρ ∈ Ξ(h) ρ/dom(g) ∈ Ξ(g) and #(h, t, ρ) = #(g, t, ρ/dom(g)).

We now examine the three different cases we have distinguished. We start with the
first one, where we have four different subcases:
t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪

⋃
c∈C′ Ec(n+ 1, k) ∪

⋃
f∈F E

f (n+ 1, k).

We start with the subcase t ∈ Ea(n+ 1, k). We must have t ∈ Ea(n+ 1, h).

If k ∈ K(n) then Ea(n + 1, k) = ∅ so k ∈ K(n)+ and there exist κ ∈ K(n), θ ∈
Es(n, κ), u ∈ (V − var(κ)) such that k = κ+ < u, θ >, Ea(n + 1, k) = {u}. Since
σ ∈ Ξ(k) there exist ξ ∈ Ξ(κ), s ∈ #(κ, θ, ξ) such that σ = ξ + (u, s),
#(k, t, σ) = #(k, t, σ)(n+1,k,a) = s.

If h ∈ K(n) then Ea(n + 1, h) = ∅ so h ∈ K(n)+ and there exist ϑ ∈ K(n), µ ∈
Es(n, ϑ), v ∈ (V − var(ϑ)) such that h = ϑ+ < v, µ >, Ea(n + 1, k) = {v}. Since
ρ ∈ Ξ(h) there exist ζ ∈ Ξ(ϑ), q ∈ #(ϑ, µ, ζ) such that ρ = ζ + (v, q),
#(h, t, ρ) = #(h, t, ρ)(n+1,h,a) = q.

Since t ∈ Ea(n+1, k) we have t = u, since t ∈ Ea(n+1, h) we have t = v, therefore
u = v.

There exists i ∈ dom(σ) such that u = xi, s = zi, there exists j ∈ dom(ρ) such that
v = yj , q = rj .

Therefore xi = u = v = yj and #(k, t, σ) = s = zi = rj = q = #(h, t, ρ).

⋄

We now consider the subcase t ∈
⋃

c∈C′ Ec(n+1, k). This implies there exists c1 ∈ C′

such that t ∈ Ec1(n+1, k). This also implies k ∈ K(n) and we have t ∈ Hc1(n+1, k).

Clearly t /∈ Ea(n+1, h)∪Ee(n+1, h)∪
⋃

f∈F E
f (n+1, h), so t ∈

⋃
c∈C′ Ec(n+1, h).

This implies there exists c2 ∈ C′ such that t ∈ Ec2(n + 1, h). Clearly we must have
h ∈ K(n) and we have also t ∈ Hc2(n+ 1, h).

As we have seen in lemmas 6.1.12 and 6.1.13 since t = (c1)(ψ) = (c2)(ψ) then
c2 = c1 and t can be written as (c1)(ψ1, . . . , ψu). Since t ∈ Hc1(n+1, k)∩Hc2(n+1, h)
then for each i = 1 . . . u ψi ∈ E(n, k) ∩E(n, h). By the inductive hypothesis it follows
immediately that for each i = 1 . . . u #(k, ψi, σ) = #(h, ψi, ρ).
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Finally it follows that

#(k, t, σ) = #(c1)(#(k, ψ1, σ), . . . ,#(k, ψu, σ))

= #(c2)(#(h, ψ1, ρ), . . . ,#(h, ψu, ρ)) = #(h, t, ρ)

⋄

We now consider the subcase t ∈
⋃

f∈F E
f (n + 1, k). This implies there exists

f1 ∈ F such that t ∈ Ef1(n + 1, k). This also implies k ∈ K(n) and we have
t ∈ Hf1(n+ 1, k).

Clearly t /∈ Ea(n+1, h)∪Ee(n+1, h)∪
⋃

c∈C′ Ec(n+1, k), so t ∈
⋃

f∈F E
f (n+1, h).

This implies there exists f2 ∈ F such that t ∈ Ef2(n + 1, h). This also implies
h ∈ K(n) and we have t ∈ Hf2(n+ 1, h).

Since t ∈ Hf1(n + 1, k) then t = f1(ψ) where ψ ∈ Σ∗. Since t ∈ Hf2(n + 1, k) then
t = f2(φ) where φ ∈ Σ∗. It follows that f2 = f1.

If f1 has multiplicity 1 then there exists ψ ∈ E(n, k) such that t = f1(ψ) and there
exists φ ∈ E(n, h) such that t = f2(φ). It follows that φ = ψ and by the inductive
hypothesis #(k, ψ, σ) = #(h, ψ, ρ) = #(h, φ, ρ). It also follows that

#(k, t, σ) = Pf1(#(k, ψ, σ)) = Pf2(#(h, φ, ρ)) = #(h, t, ρ).

If f1 has multiplicity 2 we can consider that t = f1(ψ) where ψ ∈ Σ∗ and that
t ∈ Hf1(n + 1, k), so by lemma 6.1.18 we can determine ψ1, ψ2 ∈ E(n, k) such that
t = f1(ψ1, ψ2).

We have also t = f2(ψ) where ψ ∈ Σ∗ and t ∈ Hf2(n + 1, h), so using the same
lemma we can determine that ψ1, ψ2 ∈ E(n, h) and t = f2(ψ1, ψ2).

By the inductive hypotesis #(k, ψ1, σ) = #(h, ψ1, ρ) and #(k, ψ2, σ) = #(h, ψ2, ρ),
so

#(k, t, σ) = Pf1(#(k, ψ1, σ),#(k, ψ2, σ)) = Pf2(#(h, ψ1, ρ),#(h, ψ2, ρ)) = #(h, t, ρ).

⋄

We now consider the subcase t ∈ Ee(n + 1, k) (which implies k ∈ K(n)). Clearly
t /∈ Ea(n + 1, h) ∪

⋃
c∈C′ Ec(n + 1, h) ∪

⋃
f∈F E

f (n + 1, h), so t ∈ Ee(n + 1, h), which

implies h ∈ K(n).

We have t ∈ He(n+ 1, k) and t ∈ He(n+ 1, h).

Since t = {}(ψ) for some ψ ∈ Σ∗ we can apply lemma 6.1.25.
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Consider the set of the positive integers r such that 2 < r < ℓ(t), t[r] = ‘,’ and
d(t, r) = 1. Since t ∈ He(n + 1, k) this set is not empty and let’s name r1, . . . , rp its
members (in increasing order).

Let’s also define ψ1 = t[3, r1 − 1] (if r1 − 1 < 3 then ψ1 = ϵ where ϵ is the empty
string over the alphabet Σ).
If p > 1 then for each i = 1 . . . p − 1 we define ψi+1 = t[ri + 1, ri+1 − 1] (if
ri+1 − 1 < ri + 1 then ψi+1 = ϵ.
Finally we define ψp+1 = t[rp + 1, ℓ(t)− 1] (if ℓ(t)− 1 < rp + 1 then ψp+1 = ϵ).

Since t ∈ He(n + 1, k) we have that for each i = 1 . . . p ℓ(ψi) ⩾ 3, ψi[2] = ‘:’;
ℓ(ψp+1) ⩾ 1 and we can define a function u over the domain {1, . . . , p} by setting
u(i) = ψi[1]; we can define a function ϑ over the domain {1, . . . , p} by setting ϑ(i) =
ψi[3, ℓ(ψi)]; let’s also define θ = ψp+1. With those definitions we have the following

• for each i = 1 . . . p ui ∈ V − var(k), and for each i, j = 1 . . . p i ̸= j → ui ̸= uj ,
• for each i = 1 . . . p ϑi ∈ E(n),
• θ ∈ E(n),
• E(n, k, p, u, ϑ, θ).

Since t ∈ He(n+ 1, h) we have also the following:

• for each i = 1 . . . p ui ∈ V − var(h),
• E(n, h, p, u, ϑ, θ).

We have also t = {}(ψ1, . . . , ψp, ψp+1) = {}(u1 : ϑ1, . . . , up : ϑp, θ), so as
suggested by lemma 6.1.27 we have identified the elements p, u, ϑ, θ such that
t = {}(u1 : ϑ1, . . . , up : ϑp, θ).

We have

#(k, t, σ) = {#(k′p, θ, σ
′
p)| σ′p ∈ Ξ(k′p), σ ⊑ σ′p} ,

where k′1 = k+ < u1, ϑ1 >, and if p > 1 for each i = 1 . . . p− 1
k′i+1 = k′i+ < ui+1, ϑi+1 >.

We have also

#(h, t, ρ) = {#(h′p, θ, ρ
′
p)| ρ′p ∈ Ξ(h′p), ρ ⊑ ρ′p} ,

where h′1 = h+ < u1, ϑ1 >, and if p > 1 for each i = 1 . . . p − 1
h′i+1 = h′i+ < ui+1, ϑi+1 >.

We want to show that #(k, t, σ) = #(h, t, ρ), thus we have to show

{#(k′p, θ, σ
′
p)| σ′p ∈ Ξ(k′p), σ ⊑ σ′p} = {#(h′p, θ, ρ

′
p)| ρ′p ∈ Ξ(h′p), ρ ⊑ ρ′p} .

To prove this we just need to prove the following two assertions:

• for each σ′p ∈ Ξ(k′p) such that σ ⊑ σ′p there exists ρ′p ∈ Ξ(h′p) such that ρ ⊑ ρ′p
and #(h′p, θ, ρ

′
p) = #(k′p, θ, σ

′
p);
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• for each ρ′p ∈ Ξ(h′p) such that ρ ⊑ ρ′p there exists σ′p ∈ Ξ(k′p) such that σ ⊑ σ′p
and #(k′p, θ, σ

′
p) = #(h′p, θ, ρ

′
p).

It is clearly enough to prove the first one, since the second would be proved by
simply substituting variables in the proof of the first.

Let σ′p ∈ Ξ(k′p) such that σ ⊑ σ′p, we want to find ρ′p ∈ Ξ(h′p) such that ρ ⊑ ρ′p and
#(h′p, θ, ρ

′
p) = #(k′p, θ, σ

′
p).

If p > 1 we define σ′1 = (σ′p)/dom(k′
1)
, otherwise σ′1 = (σ′p)/dom(k′

1)
holds all the same.

We should be able to prove that:

• σ′1 ∈ Ξ(k′1)
• there exists s1 ∈ #(k, ϑ1, σ) such that σ′1 = σ + (u1, s1).

If p = 1 then σ′1 ∈ Ξ(k′1) clearly holds, else we have k′p ̸= ϵ, σ′p ∈ Ξ(k′p), k
′
1 ∈ R(k′p),

k′1 ̸= k′p, so by lemma 8.4 σ′1 = (σ′p)/dom(k′
1)
∈ Ξ(k′1).

We have k′1 = k+ < u1, ϑ1 > and k′1 ∈ K(n), clearly k′1 ̸= ϵ and n ⩾ 2 also hold.
Moreover k ∈ K(n), ϑ1 ∈ Es(n, k), u1 ∈ V − var(k), so by lemma 8.2

Ξ(k′1) = {ξ + (u1, s)| ξ ∈ Ξ(k), s ∈ #(k, ϑ1, ξ)}.

Then there exist ξ ∈ Ξ(k), s ∈ #(k, ϑ1, ξ) such that σ′1 = ξ + (u1, s). Here we can
see that

(σ′1)/dom(k) = (σ′1)/dom(ξ) = ξ

and at the same time, since dom(k) ⊆ dom(k′1) ⊆ dom(k′p) = dom(σ′p),

(σ′1)/dom(k) = ((σ′p)/dom(k′
1)
)/dom(k) = (σ′p)/dom(k) = (σ′p)/dom(σ) = σ.

Therefore ξ = σ and there exists s ∈ #(k, ϑ1, σ) such that σ′1 = σ + (u1, s).

If p > 1 then for each i = 1 . . . p− 1 if i+1 < p we can define σ′i+1 = (σ′p)/dom(k′
i+1)

,

otherwise σ′i+1 = σ′p = (σ′p)/dom(k′
p)

= (σ′p)/dom(k′
i+1)

is equally true. We can observe

that with the definitions we have provided for each i = 1 . . . p σ′i = (σ′p)/dom(k′
i)
.

We should also be able to prove that for each i = 1 . . . p− 1

• σ′i+1 ∈ Ξ(k′i+1),
• there exists si+1 ∈ #(k′i, ϑi+1, σ

′
i) such that σ′i+1 = σ′i + (ui+1, si+1).

If i+1 = p then σ′i+1 ∈ Ξ(k′i+1) clearly holds, else i+1 < p and k′p ̸= ϵ, σ′p ∈ Ξ(k′p),
k′i+1 ∈ R(k′p), k

′
i+1 ̸= k′p, so by lemma 8.4 σ′i+1 = (σ′p)/dom(k′

i+1)
∈ Ξ(k′i+1).

We have k′i+1 = k′i+ < ui+1, ϑi+1 > and k′i+1 ∈ K(n), clearly k′i+1 ̸= ϵ and n ⩾ 2
also hold. Moreover k′i ∈ K(n), ϑi+1 ∈ Es(n, k

′
i), var(k

′
i) = var(k) ∪ {u1, . . . , ui},

ui+1 ∈ V − var(k′i), so by lemma 8.2

Ξ(k′i+1) = {ξ + (ui+1, s)| ξ ∈ Ξ(k′i), s ∈ #(k′i, ϑi+1, ξ)}.
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Then there exist ξ ∈ Ξ(k′i), s ∈ #(k′i, ϑi+1, ξ) such that σ′i+1 = ξ + (ui+1, s). Here
we can see that

(σ′i+1)/dom(k′
i)
= (σ′i+1)/dom(ξ) = ξ

and at the same time, since dom(k′i) ⊆ dom(k′i+1) ⊆ dom(k′p) = dom(σ′p),

(σ′i+1)/dom(k′
i)
= ((σ′p)/dom(k′

i+1)
)/dom(k′

i)
= (σ′p)/dom(k′

i)
= σ′i.

Therefore ξ = σ′i and there exists s ∈ #(k′i, ϑi+1, σ
′
i) such that σ′i+1 = σ′i+(ui+1, s).

Then we define ρ′1 = ρ+ (u1, s1), and we should be able to prove that ρ′1 ∈ Ξ(h′1).

We have E(n, h, p, u, ϑ, θ). This implies ϑ1 ∈ Es(n, h). We have h′1 = h+ < u1, ϑ1 >
and h′1 ∈ K(n), h′1 ̸= ϵ, n ⩾ 2, moreover h ∈ K(n), u1 ∈ V − var(h) and therefore

Ξ(h′1) = {ξ + (u1, s)| ξ ∈ Ξ(h), s ∈ #(h, ϑ1, ξ)}.

Since ρ ∈ Ξ(h), to prove that ρ′1 ∈ Ξ(h′1) we just need to prove that s1 ∈ #(h, ϑ1, ρ).
We know that s1 ∈ #(k, ϑ1, σ). We have ϑ1 ∈ E(n, k), ϑ1 ∈ E(n, h).

With that we can apply the inductive hypothesis and obtain that #(k, ϑ1, σ) =
#(h, ϑ1, ρ), therefore s1 ∈ #(h, ϑ1, ρ) and ρ

′
1 ∈ Ξ(h′1).

We also notice that k′1 = k+ < u1, ϑ1 >, h′1 = h+ < u1, ϑ1 >, so if we set
k′1 =<< x′1, φ

′
1 > · · · < x′m′ , φ′

m′ >> and h′1 =<< y′1, ψ
′
1 > · · · < y′q′ , ψ

′
q′ >> then by

lemma 8.12 for each α ∈ dom(k′1), β ∈ dom(h′1) x
′
α = y′β → φ′

α = ψ′
β.

Moreover we notice that σ′1 = σ+(u1, s1), ρ
′
1 = ρ+(u1, s1), and if we set σ′1 = (x′, z′),

ρ′1 = (y′, r′) then by lemma 3.4 for each α ∈ dom(σ′1), β ∈ dom(ρ′1) x
′
α = y′β → z′α = r′β.

If p > 1 then for each i = 1 . . . p − 1 we can define ρ′i+1 = ρ′i + (ui+1, si+1) and we
expect to be able to prove that ρ′i+1 ∈ Ξ(h′i+1).

We have E(n, h, p, u, ϑ, θ) and h′i+1 = h′i+ < ui+1, ϑi+1 >. This implies h′i+1 ∈ K(n),
h′i+1 ̸= ϵ and n ⩾ 2 holds too. Moreover h′i ∈ K(n), ϑi+1 ∈ Es(n, h

′
i), and, since

var(h′i) = var(h) ∪ {u1, . . . , ui}, ui+1 ∈ V − var(h′i). Therefore

Ξ(h′i+1) = {ξ + (ui+1, s)| ξ ∈ Ξ(h′i), s ∈ #(h′i, ϑi+1, ξ)}.

By inductive hypothesis we can assume that ρ′i ∈ Ξ(h′i), therefore to prove
ρ′i+1 ∈ Ξ(h′i+1) we just need to prove si+1 ∈ #(h′i, ϑi+1, ρ

′
i). We know that si+1 ∈

#(k′i, ϑi+1, σ
′
i).

As an inductive hypothesis we can also assume that

• if we set k′i =<< x′1, φ
′
1 > · · · < x′m′ , φ′

m′ >> and h′i =<< y′1, ψ
′
1 > · · · <

y′q′ , ψ
′
q′ >> then for each α ∈ dom(k′i), β ∈ dom(h′i) x

′
α = y′β → φ′

α = ψ′
β.

• if we set σ′i = (x′, z′), ρ′i = (y′, r′) then for each α ∈ dom(σ′i), β ∈ dom(ρ′i)
x′α = y′β → z′α = r′β.

We have k′i ∈ K(n), h′i ∈ K(n), ϑi+1 ∈ Es(n, k
′
i), ϑi+1 ∈ Es(n, h

′
i),

σ′i ∈ Ξ(k′i), ρ
′
i ∈ Ξ(h′i), so we can apply the inductive hypothesis and obtain that
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#(k′i, ϑi+1, σ
′
i) = #(h′i, ϑi+1, ρ

′
i). Therefore si+1 ∈ #(h′i, ϑi+1, ρ

′
i) and we have proved

ρ′i+1 ∈ Ξ(h′i+1).

In this proof that ρ′i+1 ∈ Ξ(h′i+1) we have used an inductive hypothesis which we
still haven’t proved, so we need to prove it now. What we need to prove is the following:

• if we set k′i+1 =<< x′1, φ
′
1 > · · · < x′m′ , φ′

m′ >> and h′i+1 =<< y′1, ψ
′
1 > · · · <

y′q′ , ψ
′
q′ >> then for each α ∈ dom(k′i+1), β ∈ dom(h′i+1) x

′
α = y′β → φ′

α = ψ′
β.

• if we set σ′i+1 = (x′, z′), ρ′i+1 = (y′, r′) then for each α ∈ dom(σ′i+1), β ∈
dom(ρ′i+1) x

′
α = y′β → z′α = r′β.

To prove the first item we consider that k′i+1 = k′i+ < ui+1, ϑi+1 >,
h′i+1 = h′i+ < ui+1, ϑi+1 >, ui+1 ∈ V − var(k′i), ui+1 ∈ V − var(h′i), ϑi+1 ∈ E(n). So
we can apply lemma 8.12 and the first condition is proved.

To prove the second item we consider that σ′i+1 = σ′i + (ui+1, si+1),
ρ′i+1 = ρ′i + (ui+1, si+1), ui+1 ∈ V − var(σ′i), ui+1 ∈ V − var(ρ′i). So we can apply
lemma 3.4 and the second condition is proved.

At this point we have defined ρ′p such that ρ ⊑ ρ′p and proved that ρ′p ∈ Ξ(h′p).
We have also that k′p ∈ K(n), θ ∈ E(n, k′p), h

′
p ∈ K(n), θ ∈ E(n, h′p), σ

′
p ∈ Ξ(k′p).

Moreover

• if we set k′p =<< x′1, φ
′
1 > · · · < x′m′ , φ′

m′ >> and h′p =<< y′1, ψ
′
1 > · · · <

y′q′ , ψ
′
q′ >> then for each α ∈ dom(k′p), β ∈ dom(h′p) x

′
α = y′β → φ′

α = ψ′
β.

• if we set σ′p = (x′, z′), ρ′p = (y′, r′) then for each α ∈ dom(σ′p), β ∈ dom(ρ′p)
x′α = y′β → z′α = r′β.

With that, #(h′p, θ, ρ
′
p) = #(k′p, θ, σ

′
p) follows by inductive hypothesis.

⋄

Let’s consider the second case, which as we recall is the following:

• t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

c∈C′ Ec(n+ 1, k) ∪
⋃

f∈F E
f (n+ 1, k) and

• n+ 1 > 2 and there exist ν positive integer such that 2 ⩽ ν < n+ 1, g ∈ K(ν)
such that g ⊑ h, t ∈ Ea(ν, g) ∪Ee(ν, g) ∪

⋃
c∈C′ Ec(ν, g) ∪

⋃
f∈F E

f (ν, g) and for

each ρ ∈ Ξ(h) ρ/dom(g) ∈ Ξ(g) and #(h, t, ρ) = #(g, t, ρ/dom(g)).

Initially we consider the same four different subcases of the first case:
t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪

⋃
c∈C′ Ec(n+ 1, k) ∪

⋃
f∈F E

f (n+ 1, k).

We start with the subcase t ∈ Ea(n+ 1, k). We must have t ∈ Ea(ν, g).

If k ∈ K(n) then Ea(n + 1, k) = ∅ so k ∈ K(n)+ and there exist κ ∈ K(n), θ ∈
Es(n, κ), u ∈ (V − var(κ)) such that k = κ+ < u, θ >, Ea(n + 1, k) = {u}. Since
σ ∈ Ξ(k) there exist ξ ∈ Ξ(κ), s ∈ #(κ, θ, ξ) such that σ = ξ + (u, s),
#(k, t, σ) = #(k, t, σ)(n+1,k,a) = s.

If g ∈ K(ν−1) then Ea(ν, g) = ∅ so g ∈ K(ν−1)+ and there exist ϑ ∈ K(ν−1), µ ∈
Es(ν−1, ϑ), v ∈ (V−var(ϑ)) such that g = ϑ+ < v, µ >, Ea(ν, g) = {v}. We have ρ ∈
Ξ(h) and ρ/dom(g) ∈ Ξ(g). Let η = ρ/dom(g), then there exist ζ ∈ Ξ(ϑ), q ∈ #(ϑ, µ, ζ)
such that η = ζ + (v, q), #(g, t, η) = #(g, t, η)(ν,g,a) = q.
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We have to prove that #(k, t, σ) = #(h, t, ρ), and since #(h, t, ρ) = #(g, t, η) it is
enough to prove that #(k, t, σ) = #(g, t, η).

Since t ∈ Ea(n + 1, k) we have t = u, since t ∈ Ea(ν, g) we have t = v, therefore
u = v.

Since η ⊑ ρ we can apply lemma 3.5 to show that if η = (w, δ) then for each
i ∈ dom(σ), j ∈ dom(η) xi = wj → zi = δj .

There exists i ∈ dom(σ) such that u = xi, s = zi, there exists j ∈ dom(η) such that
v = wj , q = δj .

Therefore xi = u = v = wj and #(k, t, σ) = s = zi = δj = q = #(g, t, η).

⋄

We now consider the subcase t ∈
⋃

c∈C′ Ec(n+1, k). This implies there exists c1 ∈ C′

such that t ∈ Ec1(n+1, k). This also implies k ∈ K(n) and we have t ∈ Hc1(n+1, k).

Clearly t /∈ Ea(ν, g) ∪ Ee(ν, g) ∪
⋃

f∈F E
f (ν, g), so t ∈

⋃
c∈C′ Ec(ν, g). This implies

there exists c2 ∈ C′ such that t ∈ Ec2(ν, g). Clearly we must have g ∈ K(ν − 1) and
we have also t ∈ Hc2(ν, g).

As we have seen in lemmas 6.1.12 and 6.1.13 since t = (c1)(ψ) = (c2)(ψ) then
c2 = c1 and t can be written as (c1)(ψ1, . . . , ψu). Since t ∈ Hc1(n + 1, k) ∩ Hc2(ν, g)
then for each i = 1 . . . u ψi ∈ E(n, k)∩E(ν−1, g). Clearly g ∈ K(n) and ψi ∈ E(n, g).

Let η = ρ/dom(g) ∈ Ξ(g). By lemma 8.13 we have that k = ϵ or g = ϵ or

• k, g ̸= ϵ and so k, h ̸= ϵ,
• there exist p positive integer such that p ⩽ q, g =<< y1, ψ1 > · · · < yr, ψp >>

and for each i ∈ dom(k), j ∈ dom(g) xi = yj → φi = ψj .

Since η ⊑ ρ we can apply lemma 3.5 to also show that if η = (w, µ) then for each
i ∈ dom(σ), j ∈ dom(η) xi = wj → zi = µj .

We can apply the inductive hypothesis and obtain that for each i = 1 . . . u
#(k, ψi, σ) = #(g, ψi, η).

Finally it follows that

#(k, t, σ) = #(c1)(#(k, ψ1, σ), . . . ,#(k, ψu, σ))

= #(c2)(#(g, ψ1, η), . . . ,#(g, ψu, η)) = #(g, t, η) = #(h, t, ρ)

⋄

We now consider the subcase t ∈
⋃

f∈F E
f (n + 1, k). This implies there exists

f1 ∈ F such that t ∈ Ef1(n + 1, k). This also implies k ∈ K(n) and we have
t ∈ Hf1(n+ 1, k).

Clearly t /∈ Ea(ν, g) ∪ Ee(ν, g) ∪
⋃

c∈C′ Ec(ν, g) so t ∈
⋃

f∈F E
f (ν, g). This implies

there exists f2 ∈ F such that t ∈ Ef2(ν, g). This also implies g ∈ K(ν − 1) and we
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have t ∈ Hf2(ν, g).

Since t ∈ Hf1(n + 1, k) then t = f1(ψ) where ψ ∈ Σ∗. Since t ∈ Hf2(ν, g) then
t = f2(φ) where φ ∈ Σ∗. It follows that f2 = f1.

Let η = ρ/dom(g) ∈ Ξ(g). By lemma 8.13 we have that k = ϵ or g = ϵ or

• k, g ̸= ϵ and so k, h ̸= ϵ,
• there exist p positive integer such that p ⩽ q, g =<< y1, ψ1 > · · · < yr, ψp >>
and for each i ∈ dom(k), j ∈ dom(g) xi = yj → φi = ψj .

Since η ⊑ ρ we can apply lemma 3.5 to also show that if η = (w, µ) then for each
i ∈ dom(σ), j ∈ dom(η) xi = wj → zi = µj .

If f1 has multiplicity 1 then there exists ψ ∈ E(n, k) such that t = f1(ψ) and there
exists φ ∈ E(ν − 1, g) such that t = f2(φ). It follows that φ = ψ. Clearly g ∈ K(n)
and φ ∈ E(n, g).

So we can apply the inductive hypothesis and obtain that #(k, ψ, σ) = #(g, ψ, η).
It also follows that

#(k, t, σ) = Pf1(#(k, ψ, σ)) = Pf2(#(g, φ, η)) = #(g, t, η) = #(h, t, ρ).

If f1 has multiplicity 2 we can consider that t = f1(ψ) where ψ ∈ Σ∗ and that
t ∈ Hf1(n + 1, k), so by lemma 6.1.18 we can determine ψ1, ψ2 ∈ E(n, k) such that
t = f1(ψ1, ψ2).

We have also t = f2(ψ) where ψ ∈ Σ∗ and t ∈ Hf2(ν, g), so using the same lemma
we can determine that ψ1, ψ2 ∈ E(ν − 1, g) and t = f2(ψ1, ψ2). Clearly g ∈ K(n) and
ψ1, ψ2 ∈ E(n, g).

By the inductive hypotesis #(k, ψ1, σ) = #(g, ψ1, η) and #(k, ψ2, σ) = #(g, ψ2, η),
so

#(k, t, σ) = Pf1(#(k, ψ1, σ),#(k, ψ2, σ)) = Pf2(#(g, ψ1, η),#(g, ψ2, η)) = #(g, t, η),

#(k, t, σ) = #(g, t, η) = #(h, t, ρ).

⋄

We now consider the subcase t ∈ Ee(n + 1, k) (which implies k ∈ K(n)). Clearly
t /∈ Ea(ν, g)∪

⋃
c∈C′ Ec(ν, g)∪

⋃
f∈F E

f (ν, g) so t ∈ Ee(ν, g). This implies g ∈ K(ν−1).

We have t ∈ He(n+ 1, k) and t ∈ He(ν, g).

Since t = {}(ψ) for some ψ ∈ Σ∗ we can apply lemma 6.1.25.

Consider the set of the positive integers r such that 2 < r < ℓ(t), t[r] = ‘,’ and
d(t, r) = 1. Since t ∈ He(n + 1, k) this set is not empty and let’s name r1, . . . , rp its
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members (in increasing order).

Let’s also define ψ1 = t[3, r1 − 1] (if r1 − 1 < 3 then ψ1 = ϵ where ϵ is the empty
string over the alphabet Σ).
If p > 1 then for each i = 1 . . . p − 1 we define ψi+1 = t[ri + 1, ri+1 − 1] (if
ri+1 − 1 < ri + 1 then ψi+1 = ϵ.
Finally we define ψp+1 = t[rp + 1, ℓ(t)− 1] (if ℓ(t)− 1 < rp + 1 then ψp+1 = ϵ).

Since t ∈ He(n + 1, k) we have that for each i = 1 . . . p ℓ(ψi) ⩾ 3, ψi[2] = ‘:’;
ℓ(ψp+1) ⩾ 1 and we can define a function u over the domain {1, . . . , p} by setting
u(i) = ψi[1]; we can define a function ϑ over the domain {1, . . . , p} by setting ϑ(i) =
ψi[3, ℓ(ψi)]; let’s also define θ = ψp+1. With those definitions we have the following

• for each i = 1 . . . p ui ∈ V − var(k), and for each i, j = 1 . . . p i ̸= j → ui ̸= uj ,
• for each i = 1 . . . p ϑi ∈ E(n),
• θ ∈ E(n),
• E(n, k, p, u, ϑ, θ).

Since t ∈ He(ν, g) we have also the following:

• for each i = 1 . . . p ui ∈ V − var(g),
• for each i = 1 . . . p ϑi ∈ E(ν − 1),
• θ ∈ E(ν − 1),
• E(ν − 1, g, p, u, ϑ, θ).

We have also t = {}(ψ1, . . . , ψp, ψp+1) = {}(u1 : ϑ1, . . . , up : ϑp, θ), so as
suggested by lemma 6.1.27 we have identified the elements p, u, ϑ, θ such that
t = {}(u1 : ϑ1, . . . , up : ϑp, θ).

We have

#(k, t, σ) = {#(k′p, θ, σ
′
p)| σ′p ∈ Ξ(k′p), σ ⊑ σ′p} ,

where k′1 = k+ < u1, ϑ1 >, and if p > 1 for each i = 1 . . . p− 1
k′i+1 = k′i+ < ui+1, ϑi+1 >.

Let η = ρ/dom(g) ∈ Ξ(g). We have also

#(g, t, η) = {#(g′p, θ, η
′
p)| η′p ∈ Ξ(g′p), η ⊑ η′p} ,

where g′1 = g+ < u1, ϑ1 >, and if p > 1 for each i = 1 . . . p − 1
g′i+1 = g′i+ < ui+1, ϑi+1 >.

We want to show that #(k, t, σ) = #(h, t, ρ), but #(h, t, ρ) = #(g, t, η) thus we
have to show

{#(k′p, θ, σ
′
p)| σ′p ∈ Ξ(k′p), σ ⊑ σ′p} = {#(g′p, θ, η

′
p)| η′p ∈ Ξ(g′p), η ⊑ η′p} .

To prove this we just need to prove the following two assertions:

• for each σ′p ∈ Ξ(k′p) such that σ ⊑ σ′p there exists η′p ∈ Ξ(g′p) such that η ⊑ η′p
and #(g′p, θ, η

′
p) = #(k′p, θ, σ

′
p);
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• for each η′p ∈ Ξ(g′p) such that η ⊑ η′p there exists σ′p ∈ Ξ(k′p) such that σ ⊑ σ′p
and #(k′p, θ, σ

′
p) = #(g′p, θ, η

′
p).

We begin with the first one.

Let σ′p ∈ Ξ(k′p) such that σ ⊑ σ′p, we want to find η′p ∈ Ξ(g′p) such that η ⊑ η′p and
#(g′p, θ, η

′
p) = #(k′p, θ, σ

′
p).

If p > 1 we define σ′1 = (σ′p)/dom(k′
1)
, otherwise σ′1 = (σ′p)/dom(k′

1)
holds all the same.

We should be able to prove that:

• σ′1 ∈ Ξ(k′1)
• there exists s1 ∈ #(k, ϑ1, σ) such that σ′1 = σ + (u1, s1).

If p = 1 then σ′1 ∈ Ξ(k′1) clearly holds, else we have k′p ̸= ϵ, σ′p ∈ Ξ(k′p), k
′
1 ∈ R(k′p),

k′1 ̸= k′p, so by lemma 8.4 σ′1 = (σ′p)/dom(k′
1)
∈ Ξ(k′1).

We have k′1 = k+ < u1, ϑ1 > and k′1 ∈ K(n), clearly k′1 ̸= ϵ and n ⩾ 2 also hold.
Moreover k ∈ K(n), ϑ1 ∈ Es(n, k), u1 ∈ V − var(k), so by lemma 8.2

Ξ(k′1) = {ξ + (u1, s)| ξ ∈ Ξ(k), s ∈ #(k, ϑ1, ξ)}.

Then there exist ξ ∈ Ξ(k), s ∈ #(k, ϑ1, ξ) such that σ′1 = ξ + (u1, s). Here we can
see that

(σ′1)/dom(k) = (σ′1)/dom(ξ) = ξ

and at the same time, since dom(k) ⊆ dom(k′1) ⊆ dom(k′p) = dom(σ′p),

(σ′1)/dom(k) = ((σ′p)/dom(k′
1)
)/dom(k) = (σ′p)/dom(k) = (σ′p)/dom(σ) = σ.

Therefore ξ = σ and there exists s ∈ #(k, ϑ1, σ) such that σ′1 = σ + (u1, s).

If p > 1 then for each i = 1 . . . p− 1 if i+1 < p we can define σ′i+1 = (σ′p)/dom(k′
i+1)

,

otherwise σ′i+1 = σ′p = (σ′p)/dom(k′
p)

= (σ′p)/dom(k′
i+1)

is equally true. We can observe

that with the definitions we have provided for each i = 1 . . . p σ′i = (σ′p)/dom(k′
i)
.

We should also be able to prove that for each i = 1 . . . p− 1

• σ′i+1 ∈ Ξ(k′i+1),
• there exists si+1 ∈ #(k′i, ϑi+1, σ

′
i) such that σ′i+1 = σ′i + (ui+1, si+1).

If i+1 = p then σ′i+1 ∈ Ξ(k′i+1) clearly holds, else i+1 < p and k′p ̸= ϵ, σ′p ∈ Ξ(k′p),
k′i+1 ∈ R(k′p), k

′
i+1 ̸= k′p, so by lemma 8.4 σ′i+1 = (σ′p)/dom(k′

i+1)
∈ Ξ(k′i+1).

We have k′i+1 = k′i+ < ui+1, ϑi+1 > and k′i+1 ∈ K(n), clearly k′i+1 ̸= ϵ and n ⩾ 2
also hold. Moreover k′i ∈ K(n), ϑi+1 ∈ Es(n, k

′
i), var(k

′
i) = var(k) ∪ {u1, . . . , ui},

ui+1 ∈ V − var(k′i), so by lemma 8.2

Ξ(k′i+1) = {ξ + (ui+1, s)| ξ ∈ Ξ(k′i), s ∈ #(k′i, ϑi+1, ξ)}.

Then there exist ξ ∈ Ξ(k′i), s ∈ #(k′i, ϑi+1, ξ) such that σ′i+1 = ξ + (ui+1, s). Here
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we can see that

(σ′i+1)/dom(k′
i)
= (σ′i+1)/dom(ξ) = ξ

and at the same time, since dom(k′i) ⊆ dom(k′i+1) ⊆ dom(k′p) = dom(σ′p),

(σ′i+1)/dom(k′
i)
= ((σ′p)/dom(k′

i+1)
)/dom(k′

i)
= (σ′p)/dom(k′

i)
= σ′i.

Therefore ξ = σ′i and there exists s ∈ #(k′i, ϑi+1, σ
′
i) such that σ′i+1 = σ′i+(ui+1, s).

Then we define η′1 = η + (u1, s1), and we should be able to prove that η′1 ∈ Ξ(g′1).

We have E(ν − 1, g, p, u, ϑ, θ). This implies ϑ1 ∈ Es(ν − 1, g) ⊆ Es(ν, g). We have
g′1 = g+ < u1, ϑ1 > and g′1 ∈ K(ν − 1) ⊆ K(ν), g′1 ̸= ϵ, ν − 1 ⩾ 2, moreover g ∈ K(ν),
u1 ∈ V − var(g) and therefore

Ξ(g′1) = {ξ + (u1, s)| ξ ∈ Ξ(g), s ∈ #(g, ϑ1, ξ)}.

Since η ∈ Ξ(g), to prove that η′1 ∈ Ξ(g′1) we just need to prove that s1 ∈ #(g, ϑ1, η).
We know that s1 ∈ #(k, ϑ1, σ). We have ϑ1 ∈ E(n, k), ϑ1 ∈ E(ν − 1, g) ⊆ E(n, g).

We also notice that by lemma 8.13, since g ⊑ h, k = ϵ or g = ϵ or

• k, g ̸= ϵ and so h ̸= ϵ, k =<< x1, φ1 > · · · < xm, φm >>, h =<< y1, ψ1 > · · · <
yq, ψq >> and for each i ∈ dom(k), j ∈ dom(h) xi = yj → φi = ψj ;

• there exists v positive integer such that v ⩽ q, g =<< y1, ψ1 > · · · < yv, ψv >>
and for each i ∈ dom(k), j ∈ dom(g) xi = yj → φi = ψj .

Since η ⊑ ρ we can apply lemma 3.5 to also show that if η = (w, µ) then for each
i ∈ dom(σ), j ∈ dom(η) xi = wj → zi = µj .

With this we can apply the inductive hypothesis and obtain that
#(k, ϑ1, σ) = #(g, ϑ1, η), therefore s1 ∈ #(g, ϑ1, η) and η

′
1 ∈ Ξ(g′1).

We also notice that k′1 = k+ < u1, ϑ1 >, g′1 = g+ < u1, ϑ1 >, so if we set
k′1 =<< x′1, φ

′
1 > · · · < x′m′ , φ′

m′ >> and g′1 =<< y′1, ψ
′
1 > · · · < y′q′ , ψ

′
q′ >> then by

lemma 8.12 for each α ∈ dom(k′1), β ∈ dom(g′1) x
′
α = y′β → φ′

α = ψ′
β.

Moreover we notice that σ′1 = σ+(u1, s1), η
′
1 = η+(u1, s1), and if we set σ′1 = (x′, z′),

η′1 = (y′, r′) then by lemma 3.4 for each α ∈ dom(σ′1), β ∈ dom(η′1) x
′
α = y′β → z′α = r′β.

If p > 1 then for each i = 1 . . . p − 1 we can define η′i+1 = η′i + (ui+1, si+1) and we
expect to be able to prove that η′i+1 ∈ Ξ(g′i+1).

We have E(ν − 1, g, p, u, ϑ, θ) and g′i+1 = g′i + (ui+1, ϑi+1). This implies g′i+1 ∈
K(ν − 1) ⊆ K(ν), g′i+1 ̸= ϵ and ν − 1 ⩾ 2 holds too. Moreover g′i ∈ K(ν), ϑi+1 ∈
Es(ν−1, g′i) ⊆ Es(ν, g

′
i), and, since var(g

′
i) = var(g)∪{u1, . . . , ui}, ui+1 ∈ V−var(g′i).

Therefore

Ξ(g′i+1) = {ξ + (ui+1, s)| ξ ∈ Ξ(g′i), s ∈ #(g′i, ϑi+1, ξ)}.
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By inductive hypothesis we can assume that η′i ∈ Ξ(g′i), therefore to prove
η′i+1 ∈ Ξ(g′i+1) we just need to prove si+1 ∈ #(g′i, ϑi+1, η

′
i). We know that si+1 ∈

#(k′i, ϑi+1, σ
′
i).

By inductive hypothesis we can also assume that

• if we set k′i =<< x′1, φ
′
1 > · · · < x′m′ , φ′

m′ >> and g′i =<< y′1, ψ
′
1 > · · · <

y′q′ , ψ
′
q′ >> then for each α ∈ dom(k′i), β ∈ dom(g′i) x

′
α = y′β → φ′

α = ψ′
β.

• if we set σ′i = (x′i, z
′
i) and η

′
i = (w′

i, µ
′
i) then for each α ∈ dom(σ′i), β ∈ dom(η′i)

(x′i)α = (w′
i)β → (z′i)α = (µ′i)β.

We have k′i ∈ K(n), g′i ∈ K(ν) ⊆ K(n), ϑi+1 ∈ Es(n, k
′
i), ϑi+1 ∈ Es(ν, g

′
i) ⊆

Es(n, g
′
i), σ

′
i ∈ Ξ(k′i), η

′
i ∈ Ξ(g′i), so we can apply the inductive hypothesis and obtain

that #(k′i, ϑi+1, σ
′
i) = #(g′i, ϑi+1, η

′
i). Therefore si+1 ∈ #(g′i, ϑi+1, η

′
i) and we have

proved η′i+1 ∈ Ξ(g′i+1).

In this proof that η′i+1 ∈ Ξ(g′i+1) we have used an inductive hypothesis which we still
haven’t proved, so we need to prove it now. What we need to prove is the following:

• if we set k′i+1 =<< x′1, φ
′
1 > · · · < x′m′ , φ′

m′ >> and g′i+1 =<< y′1, ψ
′
1 > · · · <

y′q′ , ψ
′
q′ >> then for each α ∈ dom(k′i+1), β ∈ dom(g′i+1) x

′
α = y′β → φ′

α = ψ′
β.

• if we set σ′i+1 = (x′, z′), η′i+1 = (y′, r′) then for each α ∈ dom(σ′i+1), β ∈
dom(η′i+1) x

′
α = y′β → z′α = r′β.

To prove the first item we consider that k′i+1 = k′i+ < ui+1, ϑi+1 >,
g′i+1 = g′i+ < ui+1, ϑi+1 >, ui+1 ∈ V − var(k′i), ui+1 ∈ V − var(g′i), ϑi+1 ∈ E(n). So
we can apply lemma 8.12 and the first condition is proved.

To prove the second item we consider that σ′i+1 = σ′i + (ui+1, si+1),
η′i+1 = η′i + (ui+1, si+1), ui+1 ∈ V − var(σ′i), ui+1 ∈ V − var(η′i). So we can apply
lemma 3.4 and the second condition is proved.

At this point we have defined η′p such that η ⊑ η′p and proved that η′p ∈ Ξ(g′p). We
have also that k′p ∈ K(n), θ ∈ E(n, k′p), g

′
p ∈ K(n), θ ∈ E(n, g′p), σ

′
p ∈ Ξ(k′p). Moreover

• if we set k′p =<< x′1, φ
′
1 > · · · < x′m′ , φ′

m′ >> and g′p =<< y′1, ψ
′
1 > · · · <

y′q′ , ψ
′
q′ >> then for each α ∈ dom(k′p), β ∈ dom(g′p) x

′
α = y′β → φ′

α = ψ′
β.

• if we set σ′p = (x′, z′), η′p = (y′, r′) then for each α ∈ dom(σ′p), β ∈ dom(η′p)
x′α = y′β → z′α = r′β.

With that, #(g′p, θ, η
′
p) = #(k′p, θ, σ

′
p) follows by inductive hypothesis.

We now examine the other side of the proof. Let η′p ∈ Ξ(g′p) such that η ⊑ η′p, we
want to find σ′p ∈ Ξ(k′p) such that σ ⊑ σ′p and #(k′p, θ, σ

′
p) = #(g′p, θ, η

′
p). Remember

that η = ρ/dom(g).

We notice that dom(g′1) ⊆ dom(g′p) = dom(η′p). So if p > 1 we can define η′1 =
(η′p)/dom(g′

1)
, otherwise η′1 = (η′p)/dom(g′

1)
holds all the same. We should be able to

prove that:

• η′1 ∈ Ξ(g′1)
• there exists s1 ∈ #(g, ϑ1, η) such that η′1 = η + (u1, s1).

If p = 1 then η′1 ∈ Ξ(g′1) clearly holds, else we have g′p ̸= ϵ, η′p ∈ Ξ(g′p), g
′
1 ∈ R(g′p),

g′1 ̸= g′p, so by lemma 8.4 η′1 = (η′p)/dom(g′
1)
∈ Ξ(g′1).
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We have g′1 = g+ < u1, ϑ1 > and g′1 ∈ K(n), clearly g′1 ̸= ϵ and n ⩾ 2 also hold.
Moreover g ∈ K(n), ϑ1 ∈ Es(n, g), u1 ∈ V − var(g), so by lemma 8.2

Ξ(g′1) = {ξ + (u1, s)| ξ ∈ Ξ(g), s ∈ #(g, ϑ1, ξ)}.

Then there exist ξ ∈ Ξ(g), s ∈ #(g, ϑ1, ξ) such that η′1 = ξ + (u1, s). Here we can
see that

(η′1)/dom(g) = (η′1)/dom(ξ) = ξ

and at the same time, since dom(g) ⊆ dom(g′1) ⊆ dom(g′p) = dom(η′p),

(η′1)/dom(g) = ((η′p)/dom(g′
1)
)/dom(g) = (η′p)/dom(g) = (η′p)/dom(η) = η.

Therefore ξ = η and there exists s ∈ #(g, ϑ1, η) such that η′1 = η + (u1, s).

We notice that dom(g′i+1) ⊆ dom(g′p) = dom(η′p). So if p > 1 then for
each i = 1 . . . p − 1: if i + 1 < p we can define η′i+1 = (η′p)/dom(g′

i+1)
, other-

wise η′i+1 = η′p = (η′p)/dom(η′
p)

= η′p)/dom(g′
p)

= (η′p)/dom(g′
i+1)

is equally true. We can

observe that with the definitions we have provided for each i = 1 . . . p η′i = (η′p)/dom(g′
i)
.

We should also be able to prove that for each i = 1 . . . p− 1

• η′i+1 ∈ Ξ(g′i+1),
• there exists si+1 ∈ #(g′i, ϑi+1, η

′
i) such that η′i+1 = η′i + (ui+1, si+1).

If i+ 1 = p then η′i+1 ∈ Ξ(g′i+1) clearly holds, else i+ 1 < p and g′p ̸= ϵ, η′p ∈ Ξ(g′p),
g′i+1 ∈ R(g′p), g

′
i+1 ̸= g′p, so by lemma 8.4 η′i+1 = (η′p)/dom(g′

i+1)
∈ Ξ(g′i+1).

We have g′i+1 = g′i+ < ui+1, ϑi+1 > and g′i+1 ∈ K(n), clearly g′i+1 ̸= ϵ and n ⩾ 2
also hold. Moreover g′i ∈ K(n), ϑi+1 ∈ Es(n, g

′
i), var(g

′
i) = var(g) ∪ {u1, . . . , ui},

ui+1 ∈ V − var(g′i), so by lemma 8.2

Ξ(g′i+1) = {ξ + (ui+1, s)| ξ ∈ Ξ(g′i), s ∈ #(g′i, ϑi+1, ξ)}.

Then there exist ξ ∈ Ξ(g′i), s ∈ #(g′i, ϑi+1, ξ) such that η′i+1 = ξ+(ui+1, s). Here we
can see that

(η′i+1)/dom(g′
i)
= (η′i+1)/dom(ξ) = ξ

and at the same time, since dom(g′i) ⊆ dom(g′i+1) ⊆ dom(g′p) = dom(η′p),

(η′i+1)/dom(g′
i)
= ((η′p)/dom(g′

i+1)
)/dom(g′

i)
= (η′p)/dom(g′

i)
= η′i.

Therefore ξ = η′i and there exists s ∈ #(g′i, ϑi+1, η
′
i) such that η′i+1 = η′i + (ui+1, s).

Then we define σ′1 = σ + (u1, s1), and we should be able to prove that σ′1 ∈ Ξ(k′1).

We have E(n, k, p, u, ϑ, θ). This implies ϑ1 ∈ Es(n, k). We have k′1 = k+ < u1, ϑ1 >
and k′1 ∈ K(n), k′1 ̸= ϵ, n ⩾ 2, moreover k ∈ K(n), u1 ∈ V − var(k) and therefore

Ξ(k′1) = {ξ + (u1, s)| ξ ∈ Ξ(k), s ∈ #(k, ϑ1, ξ)}.
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Since σ ∈ Ξ(k), to prove that σ′1 ∈ Ξ(k′1) we just need to prove that s1 ∈ #(k, ϑ1, σ).
We know that s1 ∈ #(g, ϑ1, η). We have ϑ1 ∈ E(n, k), ϑ1 ∈ E(ν − 1, g) ⊆ E(n, g).

We also notice that by lemma 8.13, since g ⊑ h, k = ϵ or g = ϵ or

• k, g ̸= ϵ and so h ̸= ϵ, k =<< x1, φ1 > · · · < xm, φm >>, h =<< y1, ψ1 > · · · <
yq, ψq >> and for each i ∈ dom(k), j ∈ dom(h) xi = yj → φi = ψj ;

• there exists v positive integer such that v ⩽ q, g =<< y1, ψ1 > · · · < yv, ψv >>
and for each i ∈ dom(k), j ∈ dom(g) xi = yj → φi = ψj .

Since η ⊑ ρ we can apply lemma 3.5 to also show that if η = (w, µ) then for each
i ∈ dom(σ), j ∈ dom(η) xi = wj → zi = µj .

With this we can apply the inductive hypothesis and obtain that
#(k, ϑ1, σ) = #(g, ϑ1, η), therefore s1 ∈ #(k, ϑ1, σ) and σ

′
1 ∈ Ξ(k′1).

We also notice that k′1 = k+ < u1, ϑ1 >, g′1 = g+ < u1, ϑ1 >, so if we set
k′1 =<< x′1, φ

′
1 > · · · < x′m′ , φ′

m′ >> and g′1 =<< y′1, ψ
′
1 > · · · < y′q′ , ψ

′
q′ >> then by

lemma 8.12 for each α ∈ dom(k′1), β ∈ dom(g′1) x
′
α = y′β → φ′

α = ψ′
β.

Moreover we notice that σ′1 = σ+(u1, s1), η
′
1 = η+(u1, s1), and if we set σ′1 = (x′, z′),

η′1 = (y′, r′) then by lemma 3.4 for each α ∈ dom(σ′1), β ∈ dom(η′1) x
′
α = y′β → z′α = r′β.

If p > 1 then for each i = 1 . . . p − 1 we can define σ′i+1 = σ′i + (ui+1, si+1) and we
expect to be able to prove that σ′i+1 ∈ Ξ(k′i+1).

We have E(n, k, p, u, ϑ, θ) and k′i+1 = k′i + (ui+1, ϑi+1). This implies k′i+1 ∈ K(n),
k′i+1 ̸= ϵ and n ⩾ 2 holds too. Moreover k′i ∈ K(n), ϑi+1 ∈ Es(n, k

′
i) and, since

var(k′i) = var(k) ∪ {u1, . . . , ui}, ui+1 ∈ V − var(k′i). Therefore

Ξ(k′i+1) = {ξ + (ui+1, s)| ξ ∈ Ξ(k′i), s ∈ #(k′i, ϑi+1, ξ)}.

By inductive hypothesis we can assume that σ′i ∈ Ξ(k′i), therefore to prove
σ′i+1 ∈ Ξ(k′i+1) we just need to prove si+1 ∈ #(k′i, ϑi+1, σ

′
i). We know that si+1 ∈

#(g′i, ϑi+1, η
′
i).

By inductive hypothesis we can also assume that

• if we set k′i = (x′i, φ
′
i) and g

′
i = (w′

i, ϕ
′
i) then for each α ∈ dom(k′i), β ∈ dom(g′i)

(x′i)α = (w′
i)β → (φ′

i)α = (ϕ′i)β;
• if we set σ′i = (x′i, z

′
i) and η

′
i = (w′

i, µ
′
i) then for each α ∈ dom(σ′i), β ∈ dom(η′i)

(x′i)α = (w′
i)β → (z′i)α = (µ′i)β.

We have k′i ∈ K(n), g′i ∈ K(p) ⊆ K(n), ϑi+1 ∈ Es(n, k
′
i), ϑi+1 ∈ Es(p, g

′
i) ⊆

Es(n, g
′
i), σ

′
i ∈ Ξ(k′i), η

′
i ∈ Ξ(g′i), so we can apply the inductive hypothesis and obtain

that #(g′i, ϑi+1, η
′
i) = #(k′i, ϑi+1, σ

′
i). Therefore si+1 ∈ #(k′i, ϑi+1, σ

′
i) and we have

proved σ′i+1 ∈ Ξ(k′i+1).

In this proof that σ′i+1 ∈ Ξ(k′i+1) we have used an inductive hypothesis which we
still haven’t proved, so we need to prove it now. What we need to prove is the following:

• if we set k′i+1 =<< x′1, φ
′
1 > · · · < x′m′ , φ′

m′ >> and g′i+1 =<< y′1, ψ
′
1 > · · · <

y′q′ , ψ
′
q′ >> then for each α ∈ dom(k′i+1), β ∈ dom(g′i+1) x

′
α = y′β → φ′

α = ψ′
β.

• if we set σ′i+1 = (x′, z′), η′i+1 = (y′, r′) then for each α ∈ dom(σ′i+1), β ∈
dom(η′i+1) x

′
α = y′β → z′α = r′β.
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To prove the first item we consider that k′i+1 = k′i+ < ui+1, ϑi+1 >,
g′i+1 = g′i+ < ui+1, ϑi+1 >, ui+1 ∈ V − var(k′i), ui+1 ∈ V − var(g′i), ϑi+1 ∈ E(n). So
we can apply lemma 8.12 and the first condition is proved.

To prove the second item we consider that σ′i+1 = σ′i + (ui+1, si+1),
η′i+1 = η′i + (ui+1, si+1), ui+1 ∈ V − var(σ′i), ui+1 ∈ V − var(η′i). So we can apply
lemma 3.4 and the second condition is proved.

At this point we have defined σ′p such that σ ⊑ σ′p and proved that σ′p ∈ Ξ(k′p). We
have also that k′p ∈ K(n), θ ∈ E(n, k′p), g

′
p ∈ K(n), θ ∈ E(n, g′p), η

′
p ∈ Ξ(g′p). Moreover

• if we set k′p =<< x′1, φ
′
1 > · · · < x′m′ , φ′

m′ >> and g′p =<< y′1, ψ
′
1 > · · · <

y′q′ , ψ
′
q′ >> then for each α ∈ dom(k′p), β ∈ dom(g′p) x

′
α = y′β → φ′

α = ψ′
β.

• if we set σ′p = (x′, z′), η′p = (y′, r′) then for each α ∈ dom(σ′p), β ∈ dom(η′p)
x′α = y′β → z′α = r′β.

With this, #(k′q, θ, σ
′
q) = #(g′q, θ, η

′
q) follows by inductive hypothesis.

⋄

Finally, let’s consider the third case, which, we recall, is the following.

• n+ 1 > 2 and there exist µ positive integer such that 2 ⩽ µ < n+ 1, κ ∈ K(µ)
such that κ ⊑ k, t ∈ Ea(µ, κ) ∪ Ee(µ, κ) ∪

⋃
c∈C′ Ec(µ, κ) ∪

⋃
f∈F E

f (µ, κ) and

for each σ ∈ Ξ(k) σ/dom(κ) ∈ Ξ(κ) and #(k, t, σ) = #(κ, t, σ/dom(κ)) and
• n+ 1 > 2 and there exist ν positive integer such that 2 ⩽ ν < n+ 1, g ∈ K(ν)
such that g ⊑ h, t ∈ Ea(ν, g) ∪Ee(ν, g) ∪

⋃
c∈C′ Ec(ν, g) ∪

⋃
f∈F E

f (ν, g) and for

each ρ ∈ Ξ(h) ρ/dom(g) ∈ Ξ(g) and #(h, t, ρ) = #(g, t, ρ/dom(g)).

We have t ∈ E(µ, κ) ∩ E(ν, g), with µ, ν < n+ 1.

We have also σ = (x, z) ∈ Ξ(k), ρ = (y, r) ∈ Ξ(h) such that for each i ∈ dom(σ),
j ∈ dom(ρ) xi = yj → zi = rj and we want to show that #(k, t, σ) = #(h, t, ρ). So we
just need to show that #(κ, t, σ/dom(κ)) = #(g, t, ρ/dom(g)).

We can have κ = ϵ or g = ϵ. Otherwise κ, g ̸= ϵ, k, h ̸= ϵ, k =<< x1, φ1 > · · · <
xm, φm >>, h =<< y1, ψ1 > · · · < yq, ψq >> and for each i ∈ dom(k), j ∈ dom(h)
xi = yj → φi = ψj . By lemma 8.13 there exist p, v positive integers such that p ⩽ m,
v ⩽ q, κ =<< x1, φ1 > · · · < xp, φp >>, g =<< y1, ψ1 > · · · < yv, ψv >> and for
each i ∈ dom(κ), j ∈ dom(g) xi = yj → φi = ψj .

If we define u = max{µ, ν} then κ, g ∈ K(u), t ∈ E(u, κ) ∩ E(u, g) and u < n+ 1.
Moreover let σ′ = σ/dom(κ), σ

′ = (x′, z′), ρ′ = ρ/dom(g), ρ
′ = (y′, r′). Since σ′ ⊑ σ and

ρ′ ⊑ ρ by lemma 3.5 we obtain that for each i ∈ dom(σ′), j ∈ dom(ρ′) x′i = y′j → z′i =

r′j .

By the inductive hypothesis we then obtain #(κ, t, σ′) = #(g, t, ρ′), and so we have
proved #(k, t, σ) = #(h, t, ρ).

Lemma 8.15. Given

• a positive integer n;
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• k ∈ K(n);
• f ∈ F such that f has multplicity 2;
• φ1, φ2 ∈ E(n, k);

such that for each σ ∈ Ξ(k) Af (#(k, φ1, σ),#(k, φ2, σ)) is true,
we have that t = f(φ1, φ2) ∈ E(n+ 1, k).

Given σ ∈ Ξ(k) we have also

#(k, t, σ) = Pf (#(k, φ1, σ),#(k, φ2, σ)) .

Proof. If t ∈ E(n, k) ∪ Eb(n + 1, k) then t ∈ E(n + 1, k), else t ∈ Ef (n + 1, k) ⊆
E(n+ 1, k).

Using lemma 8.10 we have that one of the following alternatives holds:

• t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

c∈C′ Ec(n+ 1, k) ∪
⋃

g∈F E
g(n+ 1, k);

• there exist m positive integer such that 2 ⩽ m < n + 1, h ∈ K(m) such that
h ⊑ k, t ∈ Ea(m,h) ∪ Ee(m,h) ∪

⋃
c∈C′ Ec(m,h) ∪

⋃
g∈F E

g(m,h) and for each

σ ∈ Ξ(k) σ/dom(h) ∈ Ξ(h) and #(k, t, σ) = #(h, t, σ/dom(h)).

If the first alternative holds, that is t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

c∈C′ Ec(n+

1, k) ∪
⋃

g∈F E
g(n + 1, k), then clearly t ∈ Ef (n + 1, k). This implies that

#(k, t, σ) = #(k, t, σ)(n+1,k,<f>), so in this case our proof is finished.

Otherwise it must be t ∈ Ef (m,h). This implies that there exist ψ1, ψ2 ∈ E(m−1, h)
such that t = f(ψ1, ψ2), for each ρ ∈ Ξ(h)

• Af (#(h, ψ1, ρ),#(h, ψ2, ρ)) is true;
• #(h, t, ρ) = Pf (#(h, ψ1, ρ),#(h, ψ2, ρ)).

We now consider what we have seen in lemma 6.1.18. We have t = f(ψ) with
ψ ∈ Σ∗. Since t ∈ Hf (n+1, k) the set of the positive integers r such that 2 < r < ℓ(t),
t[r] = ‘,’ and d(t, r) = 1 has just one member r1. We can define χ1 = t[3, r1 − 1] (if
r1 − 1 < 3 then χ1 = ϵ where ϵ is the empty string over the alphabet Σ). We also
define χ2 = t[r1 + 1, ℓ(t) − 1] (if ℓ(t) − 1 < r1 + 1 then χ2 = ϵ). The lemma tells us
that χ1, χ2 ∈ E(n, k), and we can notice that t = f(χ1, χ2).

Using lemma 6.1.21 we obtain that φ1 = χ1 and φ2 = χ2.

We can apply again lemma 6.1.18 using the fact that t ∈ Hf (m,h), to obtain that
χ1, χ2 ∈ E(m− 1, h) and t = f(χ1, χ2) still holds. Using lemma 6.1.21 we obtain that
ψ1 = χ1 = φ1 and ψ2 = χ2 = φ2. Therefore φ1, φ2 ∈ E(m − 1, h) ⊆ E(n, h) and for
each ρ ∈ Ξ(h) #(h, t, ρ) = Pf (#(h, φ1, ρ),#(h, φ2, ρ)).

So given σ ∈ Ξ(k) if we define ρ = σ/dom(h) ∈ Ξ(h) then

#(k, t, σ) = #(h, t, ρ) = Pf (#(h, φ1, ρ),#(h, φ2, ρ)) .

So we want to prove that

Pf (#(h, φ1, ρ),#(h, φ2, ρ)) = Pf (#(k, φ1, σ),#(k, φ2, σ)) ,
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and to prove this it is enough to prove that for each α ∈ {1, 2}

#(h, φi, ρ) = #(k, φi, σ) .

It is not difficult to prove this. In fact, by lemma 8.8, if k =<< x1, θ1 > · · · <
xu, θu >>, h =<< y1, ϑ1 > · · · < yq, ϑq >>∈ K(n) − {ϵ} since h ⊑ k then for each
i ∈ dom(k), j ∈ dom(h) xi = yj → θi = ϑj . If σ = (x, z), ρ = (y, r) then using
lemma 8.9 we obtain that for each i ∈ dom(σ), j ∈ dom(ρ) xi = yj → zi = rj . With
this we can apply lemma 8.14 and obtain that #(h, φα, ρ) = #(k, φα, σ).

Lemma 8.16. Given

• a positive integer n;
• k ∈ K(n);
• f ∈ F such that f has multplicity 1;
• φ1 ∈ E(n, k);

such that for each σ ∈ Ξ(k) Af (#(k, φ1, σ)) is true,
we have that t = f(φ1) ∈ E(n+ 1, k).

Given σ ∈ Ξ(k) we have also

#(k, t, σ) = Pf (#(k, φ1, σ)) .

Proof. If t ∈ E(n, k) ∪ Eb(n + 1, k) then t ∈ E(n + 1, k), else t ∈ Ef (n + 1, k) ⊆
E(n+ 1, k).

Using lemma 8.10 we have that one of the following alternatives holds:

• t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

c∈C′ Ec(n+ 1, k) ∪
⋃

g∈F E
g(n+ 1, k);

• there exist m positive integer such that 2 ⩽ m < n + 1, h ∈ K(m) such that
h ⊑ k, t ∈ Ea(m,h) ∪ Ee(m,h) ∪

⋃
c∈C′ Ec(m,h) ∪

⋃
g∈F E

g(m,h) and for each

σ ∈ Ξ(k) σ/dom(h) ∈ Ξ(h) and #(k, t, σ) = #(h, t, σ/dom(h)).

If the first alternative holds, that is t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

c∈C′ Ec(n+

1, k) ∪
⋃

g∈F E
g(n + 1, k), then clearly t ∈ Ef (n + 1, k). This implies that

#(k, t, σ) = #(k, t, σ)(n+1,k,<f>), so in this case our proof is finished.

Otherwise it must be t ∈ Ef (m,h). This implies that there exist ψ1 ∈ E(m− 1, h)
such that t = f(ψ1), for each ρ ∈ Ξ(h)

• Af (#(h, ψ1, ρ)) is true;
• #(h, t, ρ) = #(h, t, ρ)(m,h,<f>) = Pf (#(h, ψ1, ρ)).

Clearly ψ1 = φ1 so for each ρ ∈ Ξ(h) #(h, t, ρ) = Pf (#(h, φ1, ρ)).

Moreover given σ ∈ Ξ(k) if we define ρ = σ/dom(h) ∈ Ξ(h) then

#(k, t, σ) = #(h, t, ρ) = Pf (#(h, φ1, ρ)) .
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So we want to prove that

Pf (#(h, φ1, ρ)) = Pf (#(k, φ1, σ)) ,

and to prove this it is enough to prove that

#(h, φ1, ρ) = #(k, φ1, σ) .

It is not difficult to prove this. In fact, by lemma 8.8, if k =<< x1, θ1 > · · · <
xu, θu >>, h =<< y1, ϑ1 > · · · < yq, ϑq >>∈ K(n) − {ϵ} since h ⊑ k then for each
i ∈ dom(k), j ∈ dom(h) xi = yj → θi = ϑj . If σ = (x, z), ρ = (y, r) then using
lemma 8.9 we obtain that for each i ∈ dom(σ), j ∈ dom(ρ) xi = yj → zi = rj . With
this we can apply lemma 8.14 and obtain that #(h, φ1, ρ) = #(k, φ1, σ).

Lemma 8.17. Given

• a positive integer n;
• k ∈ K(n);
• c ∈ C such that there exist i = 1 . . . p and a positive integer m such that #(c) is

a function whose domain is (Di)
m and whose range is Di;

• φ1, . . . , φm ∈ E(n, k);

such that for each j = 1 . . .m, σ ∈ Ξ(k) #(k, φj , σ) ∈ Di,
we have that t = (c)(φ1, . . . , φm) ∈ E(n+ 1, k).

Given σ ∈ Ξ(k) we have also

#(k, t, σ) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)) .

Proof. If t ∈ E(n, k) ∪ Eb(n + 1, k) then t ∈ E(n + 1, k), else t ∈ Ec(n + 1, k) ⊆
E(n+ 1, k).

Using lemma 8.10 we have that one of the following alternatives holds:

• t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

d∈C′ Ed(n+ 1, k) ∪
⋃

g∈F E
g(n+ 1, k);

• there exist ν positive integer such that 2 ⩽ ν < n+1, h ∈ K(p) such that h ⊑ k,
t ∈ Ea(ν, h) ∪ Ee(ν, h) ∪

⋃
d∈C′ Ed(ν, h) ∪

⋃
g∈F E

g(ν, h) and for each σ ∈ Ξ(k)

σ/dom(h) ∈ Ξ(h) and #(k, t, σ) = #(h, t, σ/dom(h)).

If the first alternative holds, that is t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

d∈C′ Ed(n+
1, k) ∪

⋃
g∈F E

g(n + 1, k), then clearly t ∈ Ec(n + 1, k). This implies that

#(k, t, σ) = #(k, t, σ)(n+1,k,<c>), so in this case our proof is finished.

Otherwise it must be t ∈ Ec(ν, h). This implies that there exist ψ1, . . . , ψm ∈ E(ν−
1, h) such that t = (c)(ψ1, . . . , ψm), for each ρ ∈ Ξ(h)

• for each j = 1 . . .m #(h, ψj , ρ) ∈ Di;
• #(h, t, ρ) = #(c)(#(h, ψ1, ρ), . . . ,#(h, ψm, ρ)).

We have t = (c)(χ) with χ ∈ Σ∗. Consider the set of the positive integers r such
that 4 < r < ℓ(t), t[r] = ‘,’ and d(t, r) = 1. If this set is empty we can call χ1 = χ
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and using lemma 6.1.12, given that t ∈ Hc(n + 1, k) and t ∈ Hc(ν, h) we obtain that
χ1 ∈ E(n, k) and χ1 ∈ E(ν − 1, h).
If the mentioned set is not empty let’s name r1, . . . , ru its members (in increasing
order).
Let’s also define χ1 = t[5, r1− 1] (if r1− 1 < 5 then χ1 = ϵ where ϵ is the empty string
over the alphabet Σ).
If u > 1 then for each i = 1 . . . u − 1 we define χi+1 = t[ri + 1, ri+1 − 1] (if
ri+1 − 1 < ri + 1 then χi+1 = ϵ).
Finally we define χu+1 = t[ru + 1, ℓ(t)− 1] (if ℓ(t)− 1 < ru + 1 then χu+1 = ϵ).
Using lemma 6.1.13 we obtain t = (c)(ψ1, . . . , ψu+1) and for each i = 1 . . . u + 1
χi ∈ E(n, k), χi ∈ E(ν − 1, h).

Using lemma 6.1.16 we obtain that in the first case m = 1 and χ1 = φ1, χ1 = ψ1,
in the second case m = u + 1 and for each j = 1 . . . u + 1 χj = φj , χj = ψj . In both
cases for each j = 1 . . .m φj = ψj .

Moreover given σ ∈ Ξ(k) if we define ρ = σ/dom(h) ∈ Ξ(h) then

#(k, t, σ) = #(h, t, ρ) = #(c)(#(h, ψ1, ρ), . . . ,#(h, ψm, ρ)) .

In order to prove that #(k, t, σ) = #(c)(#(k, φ1, σ), . . . ,#(k, φm, σ)) we just need
to prove that for each j = 1 . . .m #(k, φj , σ) = #(h, ψj , ρ).

It is not difficult to prove this. In fact, by lemma 8.8, if k =<< x1, θ1 > · · · <
xu, θu >>, h =<< y1, ϑ1 > · · · < yq, ϑq >>∈ K(n) − {ϵ} since h ⊑ k then for each
i ∈ dom(k), α ∈ dom(h) xi = yα → θi = ϑα. If σ = (x, z), ρ = (y, r) then using
lemma 8.9 we obtain that for each i ∈ dom(σ), α ∈ dom(ρ) xi = yα → zi = rα.
Moreover φj = ψj ∈ E(ν − 1, h) ⊆ E(n, h). With this we can apply lemma 8.14 and
obtain that #(h, ψj , ρ) = #(h, φj , ρ) = #(k, φj , σ).

Lemma 8.18. Assume Π ∈ C. Given

• a positive integer n;
• k ∈ K(n);
• φ1 ∈ E(n, k);

such that for each σ ∈ Ξ(k) #(k, φ1, σ) ∈ P(D1),
we have that t = (Π)(φ1) ∈ E(n+ 1, k).

Given σ ∈ Ξ(k) we have also

#(k, t, σ) = #(Π)(#(k, φ1, σ)) .

Proof. If t ∈ E(n, k) ∪ Eb(n + 1, k) then t ∈ E(n + 1, k), else t ∈ EΠ(n + 1, k) ⊆
E(n+ 1, k).

Using lemma 8.10 we have that one of the following alternatives holds:

• t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

d∈C′ Ed(n+ 1, k) ∪
⋃

g∈F E
g(n+ 1, k);
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• there exist ν positive integer such that 2 ⩽ ν < n+1, h ∈ K(p) such that h ⊑ k,
t ∈ Ea(ν, h) ∪ Ee(ν, h) ∪

⋃
d∈C′ Ed(ν, h) ∪

⋃
g∈F E

g(ν, h) and for each σ ∈ Ξ(k)

σ/dom(h) ∈ Ξ(h) and #(k, t, σ) = #(h, t, σ/dom(h)).

If the first alternative holds, that is t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

d∈C′ Ed(n+

1, k) ∪
⋃

g∈F E
g(n + 1, k), then clearly t ∈ EΠ(n + 1, k). This implies that

#(k, t, σ) = #(k, t, σ)(n+1,k,<Π>), so in this case our proof is finished.

Otherwise it must be t ∈ EΠ(ν, h). This implies that there exists ψ1 ∈ E(ν − 1, h)
such that t = (Π)(ψ1)

• there exist i = 1 . . . p, q = 1 . . . qmax such that for each ρ ∈ Ξ(h) #(h, ψ1, ρ) ∈
Pq(Di);

• for each ρ ∈ Ξ(h) #(h, t, ρ) = #(Π)(#(h, ψ1, ρ)).

Moreover given σ ∈ Ξ(k) if we define ρ = σ/dom(h) ∈ Ξ(h) then

#(k, t, σ) = #(h, t, ρ) = #(Π)(#(h, ψ1, ρ)) .

In order to prove that #(k, t, σ) = #(Π)(#(k, φ1, σ)) we just need to prove that
#(k, φ1, σ) = #(h, ψ1, ρ).

It is not difficult to prove this. In fact, by lemma 8.8, if k =<< x1, θ1 > · · · <
xu, θu >>, h =<< y1, ϑ1 > · · · < yq, ϑq >>∈ K(n) − {ϵ} since h ⊑ k then for each
i ∈ dom(k), α ∈ dom(h) xi = yα → θi = ϑα. If σ = (x, z), ρ = (y, r) then using
lemma 8.9 we obtain that for each i ∈ dom(σ), α ∈ dom(ρ) xi = yα → zi = rα.
Moreover φ1 = ψ1 ∈ E(ν − 1, h) ⊆ E(n, h). With this we can apply lemma 8.14 and
obtain that #(h, ψ1, ρ) = #(h, φ1, ρ) = #(k, φ1, σ).

Lemma 8.19. Given

• a positive integer n;
• k, h ∈ K(n) such that h = ϵ or k = ϵ or (h, k ̸= ϵ and k =<< u1, η1 >

· · · < uw, ηw >>, h =<< v1, ϑ1 > · · · < vq, ϑq >> and for each i ∈ dom(k),
j ∈ dom(h) ui = vj → ηi = ϑj)

• ρ = (v, ν) ∈ Ξ(h), σ = (u, µ) ∈ Ξ(k) such that
for each i ∈ dom(σ), j ∈ dom(ρ) ui = vj → µi = νj;

• a positive integer m;
• a function x whose domain is {1, . . . ,m} such that for each i = 1 . . .m xi ∈

V − var(k), xi ∈ V − var(h), and for each i, j = 1 . . .m i ̸= j → xi ̸= xj;
• a function φ whose domain is {1, . . . ,m} such that for each i = 1 . . .m φi ∈
E(n);

• ϕ ∈ E(n);

such that

• E(n, k,m, x, φ, ϕ);
• E(n, h,m, x, φ, ϕ);
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and given t = {}(x1 : φ1, . . . , xm : φm, ϕ), we have that

for each σ′m ∈ Ξ(k′m) such that σ ⊑ σ′m there exists ρ′m ∈ Ξ(h′m) such that ρ ⊑ ρ′m
and #(h′m, ϕ, ρ

′
m) = #(k′m, ϕ, σ

′
m),

where of course

• k′1 = k+ < x1, φ1 >, and if m > 1 for each i = 1 . . .m − 1 k′i+1 = k′i+ <
xi+1, φi+1 >,

• h′1 = h+ < x1, φ1 >, and if m > 1 for each i = 1 . . .m − 1 h′i+1 = h′i+ <
xi+1, φi+1 >.

Proof. Let σ′m ∈ Ξ(k′m) such that σ ⊑ σ′m, we want to find ρ′m ∈ Ξ(h′m) such that
ρ ⊑ ρ′m and #(h′m, ϕ, ρ

′
m) = #(k′m, ϕ, σ

′
m).

If m = 1 then σ′1 is defined, else let σ′1 = (σ′m)/dom(k′
1)
. We should be able to prove

that:

• σ′1 ∈ Ξ(k′1)
• there exists s1 ∈ #(k, φ1, σ) such that σ′1 = σ + (x1, s1).

If m = 1 then σ′1 ∈ Ξ(k′1) clearly holds, else we have k′m ̸= ϵ, σ′m ∈ Ξ(k′m), k′1 ∈
R(k′m), k′1 ̸= k′m, so by lemma 8.4 σ′1 = (σ′m)/dom(k′

1)
∈ Ξ(k′1).

We have k′1 = k+ < x1, φ1 > and k′1 ∈ K(n), clearly k′1 ̸= ϵ and n ⩾ 2 also hold.
Moreover k ∈ K(n), φ1 ∈ Es(n, k), x1 ∈ V − var(k), so by lemma 8.2

Ξ(k′1) = {ξ + (x1, s)| ξ ∈ Ξ(k), s ∈ #(k, φ1, ξ)}.

Then there exist ξ ∈ Ξ(k), s ∈ #(k, φ1, ξ) such that σ′1 = ξ + (x1, s). Here we can
see that

(σ′1)/dom(k) = (σ′1)/dom(ξ) = ξ

and at the same time, since dom(k) ⊆ dom(k′1) ⊆ dom(k′m) = dom(σ′m),

(σ′1)/dom(k) = ((σ′m)/dom(k′
1)
)/dom(k) = (σ′m)/dom(k) = (σ′m)/dom(σ) = σ.

Therefore ξ = σ and there exists s ∈ #(k, φ1, σ) such that σ′1 = σ + (x1, s).

If m > 1 let i = 1 . . .m − 1, if i + 1 = m then σ′i+1 = σ′m is defined, else we can
define σ′i+1 = (σ′m)/dom(k′

i+1)
. If i+ 1 = m σ′i+1 = σ′m = (σ′m)/dom(k′

m) = (σ′m)/dom(k′
i+1)

is equally true. We can observe that with the definitions we have provided for each
i = 1 . . .m σ′i = (σ′m)/dom(k′

i)
.

We should also be able to prove that

• σ′i+1 ∈ Ξ(k′i+1),
• there exists si+1 ∈ #(k′i, φi+1, σ

′
i) such that σ′i+1 = σ′i + (xi+1, si+1).

If i + 1 = m then σ′i+1 ∈ Ξ(k′i+1) clearly holds, else i + 1 < m and k′m ̸= ϵ, σ′m ∈
Ξ(k′m), k′i+1 ∈ R(k′m), k′i+1 ̸= k′m, so by lemma 8.4 σ′i+1 = (σ′m)/dom(k′

i+1)
∈ Ξ(k′i+1).

We have k′i+1 = k′i+ < xi+1, φi+1 > and k′i+1 ∈ K(n), clearly k′i+1 ̸= ϵ and n ⩾ 2
also hold. Moreover k′i ∈ K(n), φi+1 ∈ Es(n, k

′
i), var(k

′
i) = var(k) ∪ {x1, . . . , xi},
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xi+1 ∈ V − var(k′i), so by lemma 8.2

Ξ(k′i+1) = {ξ + (xi+1, s)| ξ ∈ Ξ(k′i), s ∈ #(k′i, φi+1, ξ)}.

Then there exist ξ ∈ Ξ(k′i), s ∈ #(k′i, φi+1, ξ) such that σ′i+1 = ξ + (xi+1, s). Here
we can see that

(σ′i+1)/dom(k′
i)
= (σ′i+1)/dom(ξ) = ξ.

At the same time, if i+ 1 = m then

(σ′i+1)/dom(k′
i)
= (σ′m)/dom(k′

i)
= σ′i.

Else since dom(k′i) ⊆ dom(k′i+1) ⊆ dom(k′m) = dom(σ′m),

(σ′i+1)/dom(k′
i)
= ((σ′m)/dom(k′

i+1)
)/dom(k′

i)
= (σ′m)/dom(k′

i)
= σ′i.

Therefore ξ = σ′i and there exists s ∈ #(k′i, φi+1, σ
′
i) such that σ′i+1 = σ′i+(xi+1, s).

Then we define ρ′1 = ρ+ (x1, s1), and we should be able to prove that ρ′1 ∈ Ξ(h′1).

We have E(n, h,m, x, φ, ϕ). This implies φ1 ∈ Es(n, h). We have h′1 = h+ < x1, φ1 >
and h′1 ∈ K(n), h′1 ̸= ϵ, n ⩾ 2, moreover h ∈ K(n), x1 ∈ V − var(h) and therefore

Ξ(h′1) = {ξ + (x1, s)| ξ ∈ Ξ(h), s ∈ #(h, φ1, ξ)}.

Since ρ ∈ Ξ(h), to prove that ρ′1 ∈ Ξ(h′1) we just need to prove that s1 ∈ #(h, φ1, ρ).
We know that s1 ∈ #(k, φ1, σ). We have φ1 ∈ E(n, k), φ1 ∈ E(n, h). We have also
that for each i ∈ dom(k), j ∈ dom(h) ui = vj → ηi = ϑj and for each i ∈ dom(σ),
j ∈ dom(ρ) ui = vj → µi = νj . With this we can apply lemma 8.14 and obtain that
#(k, φ1, σ) = #(h, φ1, ρ), therefore s1 ∈ #(h, φ1, ρ) and ρ

′
1 ∈ Ξ(h′1).

We also notice that k′1 = k+ < x1, φ1 >, h′1 = h+ < x1, φ1 >, so if we set
k′1 =<< u′1, η

′
1 > · · · < u′w′ , η′w′ >>, h′1 =<< v′1, ϑ

′
1 > · · · < v′q′ , ϑ

′
q′ >> then by

lemma 8.12 for each α ∈ dom(k′1), β ∈ dom(h′1) u
′
α = v′β → η′α = ϑ′β.

Moreover we notice that σ′1 = σ + (x1, s1), ρ
′
1 = ρ + (x1, s1), and if we set

σ′1 = (u′, µ′), ρ′1 = (v′, ν ′) then by lemma 3.4 for each α ∈ dom(σ′1), β ∈ dom(ρ′1)
u′α = v′β → µ′α = ν ′β.

If m > 1 then for each i = 1 . . .m− 1 we can define ρ′i+1 = ρ′i + (xi+1, si+1) and we
expect to be able to prove that ρ′i+1 ∈ Ξ(h′i+1).

We have E(n, h,m, x, φ, ϕ) and h′i+1 = h′i+ < xi+1, φi+1 >. This implies h′i+1 ∈
K(n), h′i+1 ̸= ϵ and n ⩾ 2 holds too. Moreover h′i ∈ K(n), φi+1 ∈ Es(n, h

′
i), and, since

var(h′i) = var(h) ∪ {x1, . . . , xi}, xi+1 ∈ V − var(h′i). Therefore

Ξ(h′i+1) = {ξ + (xi+1, s)| ξ ∈ Ξ(h′i), s ∈ #(h′i, φi+1, ξ)}.

By inductive hypothesis we can assume that ρ′i ∈ Ξ(h′i), therefore to prove
ρ′i+1 ∈ Ξ(h′i+1) we just need to prove si+1 ∈ #(h′i, φi+1, ρ

′
i). We know that
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si+1 ∈ #(k′i, φi+1, σ
′
i).

As an inductive hypothesis we can also assume that

• if we set k′i =<< u′1, η
′
1 > · · · < u′w′ , η′w′ >>, h′i =<< v′1, ϑ

′
1 > · · · < v′q′ , ϑ

′
q′ >>

then for each α ∈ dom(k′i), β ∈ dom(h′i) u
′
α = v′β → η′α = ϑ′β.

• if we set σ′i = (u′, µ′), ρ′i = (v′, ν ′) then for each α ∈ dom(σ′i), β ∈ dom(ρ′i)
u′α = v′β → µ′α = ν ′β.

We have k′i ∈ K(n), h′i ∈ K(n), φi+1 ∈ Es(n, k
′
i), φi+1 ∈ Es(n, h

′
i),

σ′i ∈ Ξ(k′i), ρ′i ∈ Ξ(h′i), so we can apply lemma 8.14 and obtain that
#(k′i, φi+1, σ

′
i) = #(h′i, φi+1, ρ

′
i). Therefore si+1 ∈ #(h′i, φi+1, ρ

′
i) and we have

proved ρ′i+1 ∈ Ξ(h′i+1).

In this proof that ρ′i+1 ∈ Ξ(h′i+1) we have used an inductive hypothesis which we
haven’t proved, so we need to prove it now. What we need to prove is the following:

• if we set k′i+1 =<< u′1, η
′
1 > · · · < u′w′ , η′w′ >>, h′i+1 =<< v′1, ϑ

′
1 > · · · <

v′q′ , ϑ
′
q′ >> then for each α ∈ dom(k′i+1), β ∈ dom(h′i+1) u

′
α = v′β → η′α = ϑ′β.

• if we set σ′i+1 = (u′, µ′), ρ′i+1 = (v′, ν ′) then for each α ∈ dom(σ′i+1),
β ∈ dom(ρ′i+1) u

′
α = v′β → µ′α = ν ′β.

To prove the first item we consider that k′i+1 = k′i+ < xi+1, φi+1 >,
h′i+1 = h′i+ < xi+1, φi+1 >, xi+1 ∈ V − var(k′i), xi+1 ∈ V − var(h′i). So we can apply
lemma 8.12 and the first condition is proved.

To prove the second item we consider that σ′i+1 = σ′i + (xi+1, si+1),
ρ′i+1 = ρ′i + (xi+1, si+1), xi+1 ∈ V − var(σ′i), xi+1 ∈ V − var(ρ′i). So we can apply
lemma 3.4 and the second condition is proved.

At this point we have defined ρ′m such that ρ ⊑ ρ′m and proved that ρ′m ∈ Ξ(h′m).
We have also that k′m ∈ K(n), ϕ ∈ E(n, k′m), h′m ∈ K(n), ϕ ∈ E(n, h′m), σ′m ∈ Ξ(k′m).
Moreover

• if we set k′m =<< u′1, η
′
1 > · · · < u′w′ , η′w′ >>, h′m =<< v′1, ϑ

′
1 > · · · <

v′q′ , ϑ
′
q′ >> then for each α ∈ dom(k′m), β ∈ dom(h′m) u′α = v′β → η′α = ϑ′β.

• if we set σ′m = (u′, µ′), ρ′m = (v′, ν ′) then for each α ∈ dom(σ′m), β ∈ dom(ρ′m)
u′α = v′β → µ′α = ν ′β.

With this, #(h′m, ϕ, ρ
′
m) = #(k′m, ϕ, σ

′
m) follows by lemma 8.14.

Lemma 8.20. Given

• a positive integer n;
• k ∈ K(n);
• a positive integer m;
• a function x whose domain is {1, . . . ,m} such that for each i = 1 . . .m xi ∈
V − var(k), and for each i, j = 1 . . .m i ̸= j → xi ̸= xj;
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• a function φ whose domain is {1, . . . ,m} such that for each i = 1 . . .m φi ∈
E(n);

• ϕ ∈ E(n);

such that E(n, k,m, x, φ, ϕ),

we have that t = {}(x1 : φ1, . . . , xm : φm, ϕ) ∈ E(n+ 1, k).

Given σ ∈ Ξ(k) we have also

#(k, t, σ) = {#(k′m, ϕ, σ
′
m)| σ′m ∈ Ξ(k′m), σ ⊑ σ′m},

where k′1 = k+ < x1, φ1 >, and if m > 1 for each i = 1 . . .m − 1 k′i+1 = k′i+ <
xi+1, φi+1 >.

Proof. If t ∈ E(n, k) ∪ Eb(n + 1, k) then t ∈ E(n + 1, k), else t ∈ Ee(n + 1, k) ⊆
E(n+ 1, k).

Using lemma 8.10 we have that one of the following alternatives holds:

• t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

c∈C′ Ec(n+ 1, k) ∪
⋃

f∈F E
f (n+ 1, k);

• n + 1 > 2 and there exist p positive integer such that 2 ⩽ p < n + 1, h ∈ K(p)
such that h ⊑ k, t ∈ Ea(p, h)∪Ee(p, h)∪

⋃
c∈C′ Ec(p, h)∪

⋃
f∈F E

f (p, h) and for

each σ ∈ Ξ(k) σ/dom(h) ∈ Ξ(h) and #(k, t, σ) = #(h, t, σ/dom(h)).

If the first alternative holds, that is t ∈ Ea(n+ 1, k) ∪ Ee(n+ 1, k) ∪
⋃

c∈C′ Ec(n+

1, k) ∪
⋃

f∈F E
f (n + 1, k), then clearly t ∈ Ee(n + 1, k). This implies that

#(k, t, σ) = #(k, t, σ)(n+1,k,e), so in this case our proof is finished.

Otherwise it must be t ∈ Ee(p, h) and h ∈ K(p− 1). This implies that there exist:

• a positive integer q;
• a function y whose domain is {1, . . . , q} such that for each i = 1 . . . q yi ∈
V − var(h), and for each i, j = 1 . . . q i ̸= j → yi ̸= yj ;

• a function η whose domain is {1, . . . , q} such that for each i = 1 . . . q ηi ∈ E(p−1);
• θ ∈ E(p− 1);

such that

• E(p− 1, h, q, y, η, θ);
• {}(y1 : η1, . . . , yq : ηq, θ) /∈ E(p− 1, h).
• t = {}(y1 : η1, . . . , yq : ηq, θ).

Clearly given ρ ∈ Ξ(h) we have

#(h, t, ρ) = {#(h′q, θ, ρ
′
q)| ρ′q ∈ Ξ(h′q), ρ ⊑ ρ′q},

where h′1 = h+ < y1, η1 >, and if q > 1 for each i = 1 . . . q − 1
h′i+1 = h′i+ < yi+1, ηi+1 >.
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Consider the set of the positive integers r such that 2 < r < ℓ(t), t[r] = ‘,’ and
d(t, r) = 1. Since t ∈ He(n+ 1, k) then this set is not empty, let’s name r1, . . . , ru its
members (in increasing order).

Let’s also define ψ1 = t[3, r1 − 1] (if r1 − 1 < 3 then ψ1 = ϵ where ϵ is the empty
string over the alphabet Σ).
If u > 1 then for each i = 1 . . . u − 1 we define ψi+1 = t[ri + 1, ri+1 − 1] (if
ri+1 − 1 < ri + 1 then ψi+1 = ϵ.
Finally we define ψu+1 = t[ru + 1, ℓ(t)− 1] (if ℓ(t)− 1 < ru + 1 then ψu+1 = ϵ).

Using lemma 6.1.25, since t ∈ He(n+ 1, k) then

• for each i = 1 . . . u ℓ(ψi) ⩾ 3, ψi[2] = ‘:’; ℓ(ψu+1) ⩾ 1;
• let’s define a function z over the domain {1, . . . , u} by setting z(i) = ψi[1]; let’s
define a function χ over the domain {1, . . . , u} by setting χ(i) = ψi[3, ℓ(ψi)]; let’s
define ϑ = ψu+1 then

◦ for each i = 1 . . . u zi ∈ V − var(k), and for each i, j = 1 . . . u i ̸= j → zi ̸=
zj ,

◦ for each i = 1 . . . u χi ∈ E(n),
◦ ϑ ∈ E(n);
◦ E(n, k, u, z, χ, ϑ).

Using lemma 6.1.27 we obtain that u = m, z = x, χ = φ, ϑ = ϕ.

We can use lemma 6.1.25 another time, in fact since t ∈ Ee(p, h) we have the
following

• for each i = 1 . . . u zi ∈ V − var(h), and for each i, j = 1 . . . u i ̸= j → zi ̸= zj ,
• for each i = 1 . . . u χi ∈ E(p− 1),
• ϑ ∈ E(p− 1);
• E(p− 1, h, u, z, χ, ϑ).

And again using lemma 6.1.27 we obtain that u = q, z = y, χ = η, ϑ = θ.

It follows that q = m, y = x, η = φ, θ = ϕ and so given ρ ∈ Ξ(h) we have

#(h, t, ρ) = {#(h′m, ϕ, ρ
′
m)| ρ′m ∈ Ξ(h′m), ρ ⊑ ρ′m},

where h′1 = h+ < x1, φ1 >, and if m > 1 for each i = 1 . . .m − 1
h′i+1 = h′i+ < xi+1, φi+1 >.

Now given σ ∈ Ξ(k) we want to prove that

#(k, t, σ) = {#(k′m, ϕ, σ
′
m)| σ′m ∈ Ξ(k′m), σ ⊑ σ′m}.

If we define ρ = σ/dom(h) ∈ Ξ(h) then

#(k, t, σ) = #(h, t, ρ) = {#(h′m, ϕ, ρ
′
m)| ρ′m ∈ Ξ(h′m), ρ ⊑ ρ′m}.
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So in the end what we need to prove is that

{#(k′m, ϕ, σ
′
m)| σ′m ∈ Ξ(k′m), σ ⊑ σ′m} = {#(h′m, ϕ, ρ

′
m)| ρ′m ∈ Ξ(h′m), ρ ⊑ ρ′m}.

To prove this we just need to prove the following two assertions:

• for each σ′m ∈ Ξ(k′m) such that σ ⊑ σ′m there exists ρ′m ∈ Ξ(h′m) such that
ρ ⊑ ρ′m and #(h′m, ϕ, ρ

′
m) = #(k′m, ϕ, σ

′
m);

• for each ρ′m ∈ Ξ(h′m) such that ρ ⊑ ρ′m there exists σ′m ∈ Ξ(k′m) such that
σ ⊑ σ′m and #(k′m, ϕ, σ

′
m) = #(h′m, ϕ, ρ

′
m).

Here we want to apply lemma 8.19. This is possible since

• h, k ∈ K(n), since h ⊑ k we have h = ϵ or (h, k ̸= ϵ and k =<< u1, η1 >
· · · < uw, ηw >>, h =<< v1, ϑ1 > · · · < vq, ϑq >> and for each i ∈ dom(k),
j ∈ dom(h) ui = vj → ηi = ϑj)

• ρ ∈ Ξ(h), σ ∈ Ξ(k), since ρ ⊑ σ if ρ = (v, ν), σ = (u, µ) then by lemma 8.9
for each i ∈ dom(σ), j ∈ dom(ρ) ui = vj → µi = νj ;

• x is a function whose domain is {1, . . . ,m} such that for each i = 1 . . .m xi ∈
V − var(k), xi ∈ V − var(h) and for each i, j = 1 . . .m i ̸= j → xi ̸= xj ;

• φ is a function whose domain is {1, . . . ,m} such that for each i = 1 . . .m φi ∈
E(n);

• ϕ ∈ E(n);
• E(n, k,m, x, φ, ϕ);
• E(n, h,m, x, φ, ϕ);
• t = {}(x1 : φ1, . . . , xm : φm, ϕ).

Clearly E(n, h,m, x, φ, ϕ) holds because of E(p− 1, h,m, x, φ, ϕ). Indeed
E(p− 1, h,m, x, φ, ϕ) implies

• φ1 ∈ Es(p− 1, h) ⊆ Es(n, h) ;
• if m > 1 then for each i = 1 . . .m − 1 h′i ∈ K(p − 1) ⊆ K(n) ∧ φi+1 ∈
Es(p− 1, h′i) ⊆ Es(n, h

′
i);

• h′m ∈ K(p− 1) ⊆ K(n) ∧ ϕ ∈ E(p− 1, h′m) ⊆ E(n, h′m).

Both of our statements hold because, while we can use lemma 8.19 to prove the first
one, it is also clear that in the same lemma we could use the exact same reasoning to
be able to prove the second result.

Lemma 8.21. Let h ∈ K, ϕ ∈ Es(h), y ∈ (V − var(h)), k = h+ < y, ϕ >. We have
k ∈ K, and if ϑ ∈ S(k) then

• {}(y : ϕ, ϑ) ∈ E(h);
• ∀({}(y : ϕ, ϑ)) ∈ S(h), ∃({}(y : ϕ, ϑ)) ∈ S(h);
• ∀ ρ ∈ Ξ(h) #(h,∀({}(y : ϕ, ϑ)), ρ) = P∀({#(k, ϑ, σ)| σ ∈ Ξ(k), ρ ⊑ σ});
• ∀ ρ ∈ Ξ(h) #(h,∃({}(y : ϕ, ϑ)), ρ) = P∃({#(k, ϑ, σ)| σ ∈ Ξ(k), ρ ⊑ σ}).

Proof. Since ϕ ∈ Es(h) there is a positive integer n such that h ∈ K(n), ϕ ∈ Es(n, h).
This implies that k ∈ K(n)+ ∪K(n) = K(n+ 1) ⊆ K.
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Let ϑ ∈ S(k). There is a positive integer m such that k ∈ K(m) and ϑ ∈ E(m, k).
We define p = max{n+ 1,m}, then we have

• h ∈ K(p)
• y ∈ (V − var(h))
• ϕ ∈ Es(p, h)
• k ∈ K(p), ϑ ∈ E(p, k).

Here we can apply lemma 8.20, in fact in the statement of the lemma we can replace
n with p, k with h, m with 1, x with (1, y), φ with (1, ϕ), ϕ with ϑ. Every required
condition is satisfied, including the condition E(p, h, 1, (1, y), (1, ϕ), ϑ).

So by lemma 8.20 we have that {}(y : ϕ, ϑ) ∈ E(p+ 1, h) and for each ρ ∈ Ξ(h)

#(h, {}(y : ϕ, ϑ), ρ) = {#(k, ϑ, σ)| σ ∈ Ξ(k), ρ ⊑ σ} .

We want to show that ∀({}(y : ϕ, ϑ)) ∈ E(p + 2, h). To obtain this we can use
lemma 8.16, so we just need to show that for each ρ ∈ Ξ(h) A∀(#(h, {}(y : ϕ, ϑ), ρ))
holds.
Now A∀(#(h, {}(y : ϕ, ϑ), ρ)) is equal to

#(h, {}(y : ϕ, ϑ), ρ) is a set and for each u ∈ #(h, {}(y : ϕ, ϑ), ρ) u is true or u is
false.

Clearly #(h, {}(y : ϕ, ϑ), ρ) is a set, furthermore for each u ∈ #(h, {}(y : ϕ, ϑ), ρ)
there is σ ∈ Ξ(k) such that ρ ⊑ σ and u = #(k, ϑ, σ). Since ϑ ∈ S(k) u is true or u is
false. So A∀(#(h, {}(y : ϕ, ϑ), ρ)) holds and ∀({}(y : ϕ, ϑ)) ∈ E(p+ 2, h).

Moreover for each ρ ∈ Ξ(h)

#(h,∀({}(y : ϕ, ϑ)), ρ) = P∀(#(h, {}(y : ϕ, ϑ), ρ)) =

= P∀({#(k, ϑ, σ)| σ ∈ Ξ(k), ρ ⊑ σ}) .

and P∀({#(k, ϑ, σ)| σ ∈ Ξ(k), ρ ⊑ σ}) is clearly true or false.

Hence ∀({}(y : ϕ, ϑ)) ∈ S(h).

Similarly we can show that ∃({}(y : ϕ, ϑ)) ∈ E(p + 2, h). In fact to show this we
just need to prove that for each ρ ∈ Ξ(h) A∃(#(h, {}(y : ϕ, ϑ), ρ)) holds, and this is
proved since

A∃(#(h, {}(y : ϕ, ϑ), ρ)) = A∀(#(h, {}(y : ϕ, ϑ), ρ)) .

Moreover for each ρ ∈ Ξ(h)

#(h,∃({}(y : ϕ, ϑ)), ρ) = P∃(#(h, {}(y : ϕ, ϑ), ρ)) =

= P∃({#(k, ϑ, σ)| σ ∈ Ξ(k), ρ ⊑ σ}) .

and P∃({#(k, ϑ, σ)| σ ∈ Ξ(k), ρ ⊑ σ}) is clearly true or false.

Hence ∃({}(y : ϕ, ϑ)) ∈ S(h).
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Lemma 8.22. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for i ̸= j.
Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Let k0 = ϵ and for each
i = 1 . . .m ki = k[x1 : φ1, . . . , xi : φi]. Let φ ∈ S(km). Then for each i = 1 . . .m
γ[xi : φi, . . . , xm : φm, φ] ∈ S(ki−1).

Proof. By definition we have γ[xm : φm, φ] = ∀({}(xm : φm, φ)).

Moreover km−1 ∈ K, km = km−1+ < xm, φm >, φm ∈ Es(km−1),
xm ∈ V − var(km−1). So we can apply lemma 8.21 and obtain that
γ[xm : φm, φ] ∈ S(km−1).

If m > 1 for each i = 2 . . .m we have defined γ[xi : φi, . . . , xm : φm, φ] and we can
assume it is a member of S(ki−1), by our definitions we have also

γ[xi−1 : φi−1, . . . , xm : φm, φ] = ∀({}(xi−1 : φi−1, γ[xi : φi, . . . , xm : φm, φ])) .

We have also ki−2 ∈ K, ki−1 = ki−2+ < xi−1, φi−1 >, φi−1 ∈ Es(ki−2), xi−1 ∈
V−var(ki−2). So we can apply again lemma 8.21 and obtain that γ[xi−1 : φi−1, . . . , xm :
φm, φ] ∈ S(ki−2).

Lemma 8.23. Let X be a set, let f , g be functions whose domain is X. Then let
B = {f(x)| x ∈ X} and C = {g(x)| x ∈ X}. Suppose for each x ∈ X

• f(x) is true or f(x) is false,
• g(x) is true or g(x) is false,
• f(x) ↔ g(x).

Then the following hold

• A∀(B),
• A∀(C),
• P∀(B) ↔ P∀(C).

Proof. Clearly B is a set and for each b ∈ B there exists x ∈ X such that b = f(x),
so b is true or false. So A∀(B) holds and similarly A∀(C) holds.

Moreover, if P∀(B) holds this means that for each b ∈ B b is true, so for each x ∈ X
f(x) is true and for each x ∈ X g(x) is true. Let c ∈ C, there exists x ∈ X such
that c = g(x), g(x) is true and so c is true. So P∀(C) holds. Conversely with the same
reasoning we can prove that if P∀(C) holds then P∀(B) also holds.

Theorem 8.24. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Let φ ∈ S(k[x1 :
φ1, . . . , xm : φm]). Then γ[x1 : φ1, . . . , xm : φm, φ] ∈ S(ϵ) and

#(γ[x1 : φ1, . . . , xm : φm, φ]) ↔
↔ P∀({#(k[x1 : φ1, . . . , xm : φm], φ, σ)| σ ∈ Ξ(k[x1 : φ1, . . . , xm : φm])})

Proof. By lemma 8.22 γ[x1 : φ1, . . . , xm : φm, φ] ∈ S(ϵ).
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Let k0 = ϵ and for each i = 1 . . .m ki = k[x1 : φ1, . . . , xi : φi] as in remark 7.4.
What we need to show is:

#(γ[x1 : φ1, . . . , xm : φm, φ]) ↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km)}) .

Let’s consider that, by lemma 8.22, for each i = 1 . . .m γ[xi : φi, . . . , xm : φm, φ] ∈
S(ki−1).

In order to prove our result we try to show that for each i = m. . . 1 and for each
ρ ∈ Ξ(ki−1)

#(ki−1, γ[xi : φi, . . . , xm : φm, φ], ρ) ↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km), ρ ⊑ σ}) .

We prove this by induction on i, starting with the case where i = m. Here we need
to show that for each ρ ∈ Ξ(km−1)

#(km−1, γ[xm : φm, φ], ρ) ↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km), ρ ⊑ σ}) .

Actually, by lemma 8.21,

#(km−1, γ[xm : φm, φ], ρ) = #(km−1, ∀({}(xm : φm, φ)), ρ) =

= P∀({#(km, φ, σ)| σ ∈ Ξ(km), ρ ⊑ σ}) .

Now suppose m > 1, let i = 2 . . .m and suppose the property holds for i, we show
it also holds for i− 1. We need to prove that for each ρ ∈ Ξ(ki−2)

#(ki−2, γ[xi−1 : φi−1, . . . , xm : φm, φ], ρ) ↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km), ρ ⊑ σ}) .

By our definitions we have

#(ki−2,γ[xi−1 : φi−1, . . . , xm : φm, φ], ρ) =

= #(ki−2,∀({}(xi−1 : φi−1, γ[xi : φi, . . . , xm : φm, φ])), ρ)

By lemma 8.21

#(ki−2,∀({}(xi−1 : φi−1, γ[xi : φi, . . . , xm : φm, φ])), ρ) =

= P∀({#(ki−1, γ[xi : φi, . . . , xm : φm, φ], δ)| δ ∈ Ξ(ki−1), ρ ⊑ δ})

By the inductive hypothesis given δ ∈ Σ(ki−1) we have

#(ki−1, γ[xi : φi, . . . , xm : φm, φ], δ) ↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km), δ ⊑ σ}) .

and so

#(ki−2,∀({}(xi−1 : φi−1, γ[xi : φi, . . . , xm : φm, φ])), ρ) ↔
↔ P∀({P∀({#(km, φ, σ)| σ ∈ Ξ(km), δ ⊑ σ})| δ ∈ Ξ(ki−1), ρ ⊑ δ}) .
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So it comes to showing that

P∀({P∀({#(km, φ, σ)| σ ∈ Ξ(km), δ ⊑ σ})| δ ∈ Ξ(ki−1), ρ ⊑ δ}) ↔
↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km), ρ ⊑ σ}) .

Suppose P∀({P∀({#(km, φ, σ)| σ ∈ Ξ(km), δ ⊑ σ})| δ ∈ Ξ(ki−1), ρ ⊑ δ}).
This means that for each δ ∈ Ξ(ki−1) such that ρ ⊑ δ and for each σ ∈ Ξ(km) : δ ⊑ σ

#(km, φ, σ) holds.

Let σ ∈ Ξ(km) : ρ ⊑ σ, we need to prove #(km, φ, σ).

We define δ = σ/dom(ki−1). By lemma 8.4 δ ∈ Ξ(ki−1). Moreover δ, ρ ∈ R(σ) and
dom(ρ) = dom(ki−2) ⊆ dom(ki−1) = dom(δ). By lemma 3.10 we obtain ρ ⊑ δ. There-
fore #(km, φ, σ) holds.

Conversely suppose P∀({#(km, φ, σ)| σ ∈ Ξ(km), ρ ⊑ σ}), so that for each
σ ∈ Ξ(km) : ρ ⊑ σ #(km, φ, σ) is true. Let δ ∈ Ξ(ki−1) be such that ρ ⊑ δ and let
σ ∈ Ξ(km) be such that δ ⊑ σ. Since σ ∈ Ξ(km) and ρ ⊑ σ we have #(km, φ, σ).

This completes the proof that for each ρ ∈ Ξ(ki−2)

#(ki−2, γ[xi−1 : φi−1, . . . , xm : φm, φ], ρ) ↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km), ρ ⊑ σ}) .

We have also finished the proof that for each i = m. . . 1 and for each ρ ∈ Ξ(ki−1)

#(ki−1, γ[xi : φi, . . . , xm : φm, φ], ρ) ↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km), ρ ⊑ σ}) .

It follows that for each ρ ∈ Ξ(k0)

#(k0, γ[x1 : φ1, . . . , xm : φm, φ], ρ) ↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km), ρ ⊑ σ}) .

and clearly this can be rewritten

#(ϵ, γ[x1 : φ1, . . . , xm : φm, φ], ϵ) ↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km), ϵ ⊑ σ}) ,
#(γ[x1 : φ1, . . . , xm : φm, φ]) ↔ P∀({#(km, φ, σ)| σ ∈ Ξ(km)}) .

We now need to prove the following result, which is in some way similar to 8.21
but involves the other logical connectives. After that we will be able to discuss the
consistency and the completeness of our system.

Lemma 8.25. Let h ∈ K, φ1, φ2 ∈ S(h). Then

• ∧(φ1, φ2),∨(φ1, φ2),→ (φ1, φ2),↔ (φ1, φ2),¬(φ1) ∈ S(h);
• for each ρ ∈ Ξ(h) #(h,∧(φ1, φ2), ρ) = P∧(#(h, φ1, ρ),#(h, φ2, ρ)) ;
• for each ρ ∈ Ξ(h) #(h,∨(φ1, φ2), ρ) = P∨(#(h, φ1, ρ),#(h, φ2, ρ)) ;
• for each ρ ∈ Ξ(h) #(h,→ (φ1, φ2), ρ) = P→(#(h, φ1, ρ),#(h, φ2, ρ)) ;
• for each ρ ∈ Ξ(h) #(h,↔ (φ1, φ2), ρ) = P↔(#(h, φ1, ρ),#(h, φ2, ρ)) ;
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• for each ρ ∈ Ξ(h) #(h,¬(φ1), ρ) = P¬(#(h, φ1, ρ)) .

Proof. For each ρ ∈ Ξ(h) #(h, φ1, ρ) is true or #(h, φ1, ρ) is false; #(h, φ2, ρ) is true
or #(h, φ2, ρ) is false.

We recall that for each ρ ∈ Ξ(h) A∧(#(h, φ1, ρ),#(h, φ2, ρ)),
A∨(#(h, φ1, ρ),#(h, φ2, ρ)), A→(#(h, φ1, ρ),#(h, φ2, ρ)), A↔(#(h, φ1, ρ),#(h, φ2, ρ))
are all defined as
(#(h, φ1, ρ) is true or #(h, φ1, ρ) is false) and (#(h, φ2, ρ) is true or #(h, φ2, ρ) is
false).

Therefore A∧(#(h, φ1, ρ),#(h, φ2, ρ)), A∨(#(h, φ1, ρ),#(h, φ2, ρ)),
A→(#(h, φ1, ρ),#(h, φ2, ρ)), A↔(#(h, φ1, ρ),#(h, φ2, ρ)) are all true.

And for each ρ ∈ Ξ(h) A¬(#(h, φ1, ρ)) is true.

Then by lemmas 8.15 and 8.16

∧(φ1, φ2),∨(φ1, φ2),→ (φ1, φ2),↔ (φ1, φ2),¬(φ1) ∈ E(h) .

Moreover for each ρ ∈ Ξ(h)

#(h,∧(φ1, φ2), ρ) = P∧(#(h, φ1, ρ),#(h, φ2, ρ));

#(h,∨(φ1, φ2), ρ) = P∨(#(h, φ1, ρ),#(h, φ2, ρ));

#(h,→ (φ1, φ2), ρ) = P→(#(h, φ1, ρ),#(h, φ2, ρ));

#(h,↔ (φ1, φ2), ρ) = P↔(#(h, φ1, ρ),#(h, φ2, ρ));

#(h,¬(φ1), ρ) = P¬(#(h, φ1, ρ)) .

so

#(h,∧(φ1, φ2), ρ) is true or false;

#(h,∨(φ1, φ2), ρ) is true or false;

#(h,→ (φ1, φ2), ρ) is true or false;

#(h,↔ (φ1, φ2), ρ) is true or false;

#(h,¬(φ1), ρ) is true or false .

Therefore we get

∧(φ1, φ2),∨(φ1, φ2),→ (φ1, φ2),↔ (φ1, φ2),¬(φ1) ∈ S(h) .

8.1. Consistency

We have proved that a deductive system is sound, i.e. if we can derive a sentence φ in
our system then #(φ) holds. We now discuss the consistency of a deductive system.
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Our definition of consistency implies that the symbol ¬ with the meaning we have
associated to it in section 3 is in the set F of our language. Actually in this section
we have assumed that all of these symbols: ¬,∧,∨,→,↔, ∀, ∃ (with their meaning
defined in section 3) are in our set F , and we usually assume this since we expect in
our deductions we’ll frequently need these symbols.

A deductive system D = (A,R) is said to be consistent if and only if for each φ
sentence in L (⊢D φ) and (⊢D ¬(φ)) aren’t both true.

Lemma 8.26. Let D = (A,R) be a deductive system in L. Then D is consistent.

Proof. Suppose there exists a sentence φ such that ⊢D φ and ⊢D ¬(φ) both hold. By
the soundness property we have #(φ) and #(¬(φ)). Clearly by lemma 8.25

#(¬(φ)) = #(ϵ,¬(φ), ϵ) = P¬(#(φ)) = (#(φ) is false) .

So #(φ) would be true and false at the same time, a plain contradiction.

8.2. Completeness

Let’s now define the completeness of a deductive system and talk a bit about this.
Completeness is the converse property of soundness. A deductive system D = (A,R)
is said to be complete if and only if for each φ sentence in L if #(φ) holds then
⊢D φ. It was easy to prove the soundness of our system, unfortunately the topic of
completeness is not as easy. Clearly, if we have defined a deductive system, there is
no obvious reason to expect it is also complete.

Anyway, let’s define a set A as the set of all sentences φ such that #(φ) holds.
Assume A is an axiom in L (this is a wrong assumption, but let’s accept it for
a moment). If we define D = ({A}, ∅) then D is a deductive system in L. For
each φ sentence in L if #(φ) holds then φ ∈ A and so ⊢D φ. In other words
D is a complete deductive system. So, in the assumptions we made, a complete
deductive system exists. Anyway as we said earlier, the assumption that A is an ax-
iom is clearly wrong, and it is wrong because there is no proof or evidence that A is r.e..

Another trivial attempt we could make to define a complete system is the following.
For each sentence φ such that #(φ) holds let {φ} be an axiom in our deductive system
D. In this case for each φ sentence in L if #(φ) holds then ⊢D φ and so the system is
complete. However, even in this case we have violated a requirement in the definition of
a deductive system. In fact, there is no proof or evidence that our set of axioms is finite.

So we cannot trivially define a complete deductive system. It seems Cutland’s
book [1] has interesting material with respect to the completeness or incompleteness of
deductive systems, in chapter 8. Actually Cutland introduces a notion of ‘recursively
axiomatised formal system’ and what he names a ‘simplified version of Goedel
incompleteness theorem’. This theorem states that, given a recursively axiomatised
formal system in which all provable statements are true, in this system there is a
statement which is true but not provable (and so this system is not complete). The
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proof of this theorem is based on the fact that the set P of the provable statements
of the system is recursively enumerable (r.e.) while the set T of the true statements
of the system is not r.e.. Actually it seems to understand that Cutland refers to
recursively axiomatised formal systems ‘of arithmetic’ i.e. systems that are ‘adequate
for making statements of ordinary arithmetic’ and so include symbols like 0, 1,+, ∗,=
and the logical connectives and quantifiers.

So, given a deductive system within our logic system, if we could describe it as a
recursively axiomatised formal system of arithmetic, we would have proved that this
same system is not complete. From another point of view, given a deductive system
within our logic system, if one of the following conditions holds

• the system cannot be described as a recursively axiomatised formal system
• the language does not include arithmetic

we cannot state the incompleteness of the system.

This suggests two questions:

• can we describe a deductive system within our logic system as a recursively
axiomatised formal system?

• given a language that does not include arithmetic, under which conditions, if
any, a deductive system within our logic system is complete?

However these are non-trivial questions that I do not want to discuss in this
manuscript, they are obviously of interest in further investigation of this approach.

In the next section we will build a deductive system and then use it to prove a given
statement. This example system has many interesting and general features that can
be applied also in other contexts in proving many statements. With our logic system
we can certainly use many ideas to build powerful deductive systems and the example
helps us to understand this. Anyway, looking at this single system, we just prove one
single statement with it. We may want to prove other true statements in the same
language, we may be able to do this with the axioms and rules we have provided or,
to be able to do this, we may need to add other axioms or rules. However we will not
make any statement about the completeness or incompleteness of the system.

We can also think to an alternative definition of completeness, let’s call it
d-completeness. Given a sentence φ in L we say that φ is derivable in L if there
exists a deductive system D in L such that ⊢D φ. We define the d-completeness of a
deductive system D as follows: D is d-complete if and only if for each φ sentence in L
if φ is derivable in L then ⊢D φ.

Here we notice that if #(φ) holds then we can define A = {φ} and A is clearly
an axiom in L. If we define D = ({A}, ∅) then D is a deductive system and ⊢D φ, so
φ is derivable in L. Conversely is φ is derivable in L then by soundess #(φ) holds.
Therefore φ is derivable in L if and only if #(φ) holds, so the notion of d-completeness
is actually equivalent to the notion of completeness.
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9. Deductive methodology: further results

In this section we show some additional results, which can be referred to any
language L = (V,F , C,#, {D1, . . . , Dn}, qmax) such that all of these symbols:
¬,∧,∨,→,↔, ∀, ∃,∈,= are in our set F . For each of these operators f Af (x1, . . . , xn)
and Pf (x1, . . . , xn) are defined as specified at the beginning of section 3.

Lemma 9.1. Let m be a positive integer, x1, . . . , xm ∈ V, with xi ̸= xj for i ̸= j. Let
φ1, . . . , φm ∈ E, assume H[x1 : φ1, . . . , xm : φm], define k = k[x1 : φ1, . . . , xm : φm]
and as usual k0 = ϵ and for each i = 1 . . .m ki = k[x1 : φ1, . . . , xi : φi].
Then for each i = 1 . . .m, j = i . . .m

• xi ∈ E(kj),
• φi ∈ E(kj),
• for each σ ∈ Ξ(kj)

◦ σ/dom(ki−1) ∈ Ξ(ki−1),
◦ #(kj , xi, σ) ∈ #(ki−1, φi, σ/dom(ki−1)),
◦ #(kj , φi, σ) = #(ki−1, φi, σ/dom(ki−1)),
◦ #(kj , xi, σ) ∈ #(kj , φi, σ).

Proof. We prove our assertion by induction on j, so we begin by proving it at level i.

Since ki ∈ K there exists a positive integer n such that ki ∈ K(n), and since ki ̸= ϵ
we have n ⩾ 2. By lemma 8.1 there exists a positive integer q < n such that ki ∈ K(q)+.
So there exist h ∈ K(q), ϕ ∈ Es(q, h), y ∈ (V − var(h)) such that ki = h+ < y, ϕ >.
We have also ki = ki−1+ < xi, φi > so

xi = y ∈ Ea(q + 1, ki) ⊆ E(q + 1, ki) ⊆ E(ki) .

For each σ = ρ+ (y, s) ∈ Ξ(ki)

#(ki, xi, σ)(n+1,k,a) = s ∈ #(h, ϕ, ρ) = #(ki−1, φi, ρ).

Clearly σ/dom(ρ) = ρ, dom(ρ) = dom(h) = dom(ki−1), therefore σ/dom(ki−1) = ρ and
finally

#(ki, xi, σ) = #(ki, xi, σ)(n+1,k,a) = s ∈ #(ki−1, φi, σ/dom(ki−1)).

Since φi ∈ E(ki−1) there exists a positive integer q such that ki−1 ∈ K(q) and
φi ∈ E(q, ki−1). Since ki ∈ K there also exists a positive integer n such that
ki ∈ K(n). Let p = max{q, n}, then φi ∈ E(p, ki−1) and ki ∈ K(p).

If φi ∈ E(p, ki) then clearly φi ∈ E(ki). Otherwise, since ki = ki−1+ < xi, φi >,
φi ∈ Eb(p+ 1, ki) ⊆ E(p+ 1, ki) ⊆ E(ki).

At this point, given σ ∈ Ξ(ki), we observe that ki−1, ki ∈ K(p + 1), ki−1 ⊑ ki,
φi ∈ E(p+ 1, ki−1) ∩ E(p+ 1, ki), σ/dom(ki−1) ∈ Ξ(ki−1), σ/dom(ki−1) ⊑ σ. Here we can
apply lemma 8.14 and obtain that #(ki, φi, σ) = #(ki−1, φi, σ/dom(ki−1)).

Now, in the case i < m, let j = i . . .m− 1, we assume all of the following hold:
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• xi ∈ E(kj),
• φi ∈ E(kj),
• for each σ ∈ Ξ(kj)

◦ σ/dom(ki−1) ∈ Ξ(ki−1),
◦ #(kj , xi, σ) ∈ #(ki−1, φi, σ/dom(ki−1)),
◦ #(kj , φi, σ) = #(ki−1, φi, σ/dom(ki−1)),
◦ #(kj , xi, σ) ∈ #(kj , φi, σ),

and we try to prove the same statements for j + 1.

Since kj+1 ∈ K there exists a positive integer n such that kj+1 ∈ K(n). There exists
a positive integer q such that xi ∈ E(q, kj). Let p = max{q, n}, then kj+1 ∈ K(p) and
xi ∈ E(p, kj).

We can also observe that kj+1 = kj + (xj+1, φj+1) ∈ K(p)− {ϵ}, so

Eb(p+ 1, kj+1) = {t| t ∈ E(p, kj), t /∈ E(p, kj+1)}.

Clearly if xi ∈ E(p, kj+1) then xi ∈ E(kj+1), otherwise xi ∈ E(p, kj) and
xi /∈ E(p, kj+1), so xi ∈ Eb(p+ 1, kj+1) ⊆ E(kj+1).

We now want to show that for each σ ∈ Ξ(kj+1) σ/dom(ki−1) ∈ Ξ(ki−1) and

#(kj+1, xi, σ) ∈ #(ki−1, φi, σ/dom(ki−1)) .

We define ρ = σ/dom(kj), so (by lemma 8.4) ρ ∈ Ξ(kj) and by the inductive
hypothesis ρ/dom(ki−1) ∈ Ξ(ki−1) #(kj , xi, ρ) ∈ #(ki−1, φi, ρ/dom(ki−1)).

It is also clear that dom(ki−1) ⊆ dom(kj) ⊆ dom(kj+1) = dom(σ) and therefore
σ/dom(ki−1) = (σ/dom(kj))/dom(ki−1) = ρ/dom(ki−1) ∈ Ξ(ki−1).

Hence #(kj , xi, ρ) ∈ #(ki−1, φi, σ/dom(ki−1)) and to complete our proof
that #(kj+1, xi, σ) ∈ #(ki−1, φi, σ/dom(ki−1)) we just need to show that
#(kj+1, xi, σ) = #(kj , xi, ρ).

In order to prove this we can use lemma 8.14. In fact kj , kj+1 ∈ K(p+1), kj ⊑ kj+1,
xi ∈ E(p+ 1, kj) ∩ E(p+ 1, kj+1), σ ∈ Ξ(kj+1), ρ ∈ Ξ(kj), ρ ⊑ σ.

Since φi ∈ E(kj) there exists a positive integer q such that kj ∈ K(q) and
φi ∈ E(q, kj). Since kj+1 ∈ K there also exists a positive integer n such that
kj+1 ∈ K(n). Let p = max{q, n}, then φi ∈ E(p, kj) and kj+1 ∈ K(p).

If φi ∈ E(p, kj+1) then clearly φi ∈ E(kj+1). Otherwise, since kj+1 =
kj + (xj+1, φj+1), φi ∈ Eb(p+ 1, kj+1) ⊆ E(p+ 1, kj+1) ⊆ E(kj+1).

At this point we observe that ki−1 ⊑ kj+1, φi ∈ E(ki−1) ∩ E(kj+1), σ ∈ Ξ(kj+1),
σ/dom(ki−1) ∈ Ξ(ki−1), σ/dom(ki−1) ⊑ σ. Here we can apply lemma 8.14 and obtain that
#(kj+1, φi, σ) = #(ki−1, φi, σ/dom(ki−1)).
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Lemma 9.2. Suppose k ∈ K, t, φ ∈ E(k) and for each σ ∈ Ξ(k) #(k, φ, σ) is a set.
Then

• ∈ (t, φ) ∈ S(k);
• for each σ ∈ Ξ(k) #(k, ∈ (t, φ), σ) = P∈(#(k, t, σ),#(k, φ, σ)).

Proof. This is a trivial consequence of lemma 8.15 .

Lemma 9.3. Let m be a positive integer. Let x1, . . . , xm+1 ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm+1 ∈ E and assume H[x1 : φ1, . . . , xm+1 : φm+1].

Define k = k[x1 : φ1, . . . , xm+1 : φm+1]. Of course H[x1 : φ1, . . . , xm : φm] also
holds, we define h = k[x1 : φ1, . . . , xm : φm]. Let φ ∈ Es(h).

Then φ ∈ Es(k) and for each σ ∈ Ξ(k) σ/dom(h) ∈ Ξ(h), #(k, φ, σ) =
#(h, φ, σ/dom(h)).

Proof. Since φ ∈ E(h) there exists a positive integer q such that h ∈ K(q) and
φ ∈ E(q, h). Since k ∈ K there also exists a positive integer n such that k ∈ K(n).
Let p = max{q, n}, then φ ∈ E(p, h) and k ∈ K(p).

If φ ∈ E(p, k) then clearly φ ∈ E(k). Otherwise, since k = km+1 = km+ <
xm+1, φm+1 >= h+ < xm+1, φm+1 >, φ ∈ Eb(p+ 1, k) ⊆ E(p+ 1, k) ⊆ E(k).

Let now σ ∈ Ξ(k), by lemma 8.4 we have σ/dom(h) ∈ Ξ(h), moreover h ⊑ k, φ ∈
E(h)∩E(k), σ/dom(h) ⊑ σ. Here we can apply lemma 8.14 and obtain that #(k, φ, σ) =
#(h, φ, σ/dom(h)).

Lemma 9.4. Let c ∈ C. For each positive integer n and k ∈ K(n)

• c ∈ E(n+ 1, k);
• for each σ ∈ Ξ(k) #(k, c, σ) = #(c).

Proof. The proof is by induction on n.

For n = 1 we have k = ϵ so c ∈ E(1, ϵ) = E(n, k) ⊆ E(n + 1, k) and for each
σ ∈ Ξ(k) σ = ϵ, so #(k, c, σ) = #(ϵ, c, ϵ) = #(c).

Let n be a positive integer and k ∈ K(n+ 1) = K(n) ∪K(n)+.

If k ∈ K(n) then

• c ∈ E(n+ 1, k) ⊆ E(n+ 2, k);
• for each σ ∈ Ξ(k) #(k, c, σ) = #(c).

Otherwise k ∈ K(n)+, so there exist h ∈ K(n), ϕ ∈ Es(n, h), y ∈ (V − var(h)) such
that k = h+ (y, ϕ). By the inductive hypothesis

• c ∈ E(n+ 1, h);
• for each ρ ∈ Ξ(h) #(h, c, ρ) = #(c).
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We have c /∈ E(n + 1, k), k = h + (y, ϕ) ∈ K(n + 1) − {ϵ}, so c ∈ Eb(n + 2, k) ⊆
E(n+ 2, k) and for each σ = ρ+ (y, s) ∈ Ξ(k)

#(k, c, σ) = #(k, c, σ)(n+2,k,b) = #(h, c, ρ) = #(c) .

10. Building a deductive system

In this section we will build a deductive sytem D = (A,R), in order to be able to
show an example of proof in the next section. The deductive system we are building
can refer to any language L = (V,F , C,#, {D1, . . . , Dp}, qmax) such that all of these
symbols: ¬,∧,∨,→,↔,∀,∃,∈,= are in our set F . For each of these operators f
Af (x1, . . . , xn) and Pf (x1, . . . , xn) are defined as specified at the beginning of section 3.

We’ll now list the set of axioms and rules of our deductive system. For every
axiom/rule we first prove a result which ensures the soundness of the axiom/rule and
then define properly the axiom/rule itself.

In our proofs we’ll frequently use the following simple result.

Lemma 10.1. Let S be a set and q, r be functions over S such that for each σ ∈ S
q(σ) and r(σ) are true or false (in these assumptions q, r can be called ‘predicates over
S’). Then

A∀({q(σ)| σ ∈ S}), A∃({q(σ)| σ ∈ S})

P∀({q(σ)| σ ∈ S}) ↔ for each σ ∈ S q(σ),

P∃({q(σ)| σ ∈ S}) ↔ there exists σ ∈ S : q(σ),

A∀({q(σ)| σ ∈ S, r(σ)}), A∃({q(σ)| σ ∈ S, r(σ)})

P∀({q(σ)| σ ∈ S, r(σ)}) ↔ for each σ ∈ S if r(σ) then q(σ),

P∃({q(σ)| σ ∈ S, r(σ)}) ↔ there exists σ ∈ S : r(σ) and q(σ).

Proof. Let x1 = {q(σ)| σ ∈ S}.

Clearly x1 is a set and for each x ∈ x1 there exists σ ∈ S such that x = q(σ), so x
is true or false. So A∀(x1) and A∃(x1) both hold.

We suppose P∀(x1) and try to prove for each σ ∈ S q(σ).
Let σ ∈ S, clearly q(σ) ∈ x1, so q(σ) is true.
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Conversely we suppose for each σ ∈ S q(σ) and try to prove P∀(x1).
Let x ∈ x1, there exists σ ∈ S such that x = q(σ) is true.

We suppose P∃(x1) and try to prove there exists σ ∈ S q(σ).
There exists x in x1 such that (x is true). There exists σ ∈ S such that x = q(σ),
therefore q(σ) is true.

Conversely we suppose there exists σ ∈ S q(σ) and try to prove P∃(x1).
Clearly q(σ) ∈ x1 and q(σ) is true, so P∃(x1) is proved.

Now, to prove the remaining results, let x1 = {q(σ)| σ ∈ S, r(σ)}.

Clearly x1 is a set and for each x ∈ x1 there exists σ ∈ S such that (r(σ) and)
x = q(σ), so x is true or false. So A∀(x1) and A∃(x1) both hold.

We suppose P∀(x1) and try to prove for each σ ∈ S if r(σ) then q(σ).
Let σ ∈ S and assume r(σ), clearly q(σ) ∈ x1, so q(σ) is true.

Conversely we suppose for each σ ∈ S if r(σ) then q(σ) and try to prove P∀(x1).
Let x ∈ x1, there exists σ ∈ S such that r(σ) and x = q(σ) is true.

We suppose P∃(x1) and try to prove there exists σ ∈ S : r(σ) and q(σ).
There exists x in x1 such that x is true. So there exists σ ∈ S such that r(σ) and
x = q(σ), therefore q(σ) is true.

Conversely we suppose there exists σ ∈ S : r(σ) and q(σ) and try to prove P∃(x1).
Clearly q(σ) ∈ x1 and q(σ) is true, so P∃(x1) is proved.

Lemma 10.2. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm] and let φ,ψ ∈ S(k).

Under these assumptions we have

• ∧(φ,ψ),→ (∧(φ,ψ), φ) ,→ (∧(φ,ψ), ψ) ∈ S(k),
• γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), φ)] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), ψ)] ∈ S(ϵ).

Moreover #(γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), φ)]) and
#(γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), ψ)]) are both true.

Proof. Using theorem 8.24 and lemma 8.25 we can rewrite
# (γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), φ)]) as follows:

P∀({#(k,→ (∧(φ,ψ), φ) , σ)| σ ∈ Ξ(k)})

P∀({P→ (# (k,∧(φ,ψ), σ) ,#(k, φ, σ)) | σ ∈ Ξ(k)})

P∀({P→ (P∧ (#(k, φ, σ),#(k, ψ, σ)) ,#(k, φ, σ)) | σ ∈ Ξ(k)}).

This can be expressed as
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for each σ ∈ Ξ(k) if #(k, φ, σ) and #(k, ψ, σ) then #(k, φ, σ),

which is clearly true.

In the same way we can prove the truth of

# (γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), ψ)]) .

We can create a set A10.2 which is the union of two sets of sentences.

Let G1 be the set of all the sentences γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), φ)] such
that

• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• φ,ψ ∈ S(k[x1 : φ1, . . . , xm : φm]).

Let G2 be the set of all the sentences γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), ψ)] such
that

• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• φ,ψ ∈ S(k[x1 : φ1, . . . , xm : φm]).

Then A10.2 is the union of G1 and G2. Lemma 10.2 shows us that this set of
sentences (which is a potential axiom) is ‘sound’. In order to use A10.2 as an axiom in
our system we also need to show that A10.2 is r.e..

Lemma 10.3. A10.2 is r.e. .

Proof. Given a positive integer m and (x1, φ1, . . . , xm, φm) ∈ Rm we can notice the
following:

• k[x1 : φ1, . . . , xm : φm] ∈ K;
• S(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• {(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])2 is r.e..

So we can define the following

Qm,2 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])2 .

Clearly Qm,2 ⊆ (Σ∗)2m × (Σ∗)2 is r.e..

We can define a function χ over (Σ∗)2m × (Σ∗)2 such that for each
((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) ∈ (Σ∗)2m × (Σ∗)2

χ(((ψ1, φ1, . . . , ψm, φm), (φ,ψ))) = γ[ψ1 : φ1, . . . , ψm : φm,→ (∧(φ,ψ), φ)] .
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Now χ clearly is a computable function and so the set
{χ((x1, φ1, . . . , xm, φm), (φ,ψ))| ((x1, φ1, . . . , xm, φm), (φ,ψ)) ∈ Qm,2} is a r.e.
subset of Σ∗. And finally the set

⋃
m⩾1

{χ(((x1, φ1, . . . , xm, φm), (φ,ψ)))| (((x1, φ1, . . . , xm, φm), (φ,ψ))) ∈ Qm,2}

is itself a r.e. set. This set can obvioulsy be rewritten as follows

⋃
m⩾1

{γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), φ)]| (((x1, φ1, . . . , xm, φm), (φ,ψ))) ∈ Qm,2}

and it should be clear at this point that this set is actually our axiom G1, and so
that G1 is r.e..

In fact if ξ ∈ G1 then there exist a positive integer m, x1, . . . , xm ∈ V such that
xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E such that H[x1 : φ1, . . . , xm : φm], φ,ψ ∈ S(k[x1 :
φ1, . . . , xm : φm]) such that ξ = γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), φ)].

It follows that (x1, φ1, . . . , xm, φm) ∈ Rm and ((x1, φ1, . . . , xm, φm), (φ,ψ)) ∈ Qm,2,
so ξ ∈ {χ((y1, ψ1, . . . , ym, ψm), (ϕ, θ))| ((y1, ψ1, . . . , ym, ψm), (ϕ, θ)) ∈ Qm,2}, and so

ξ ∈
⋃
p⩾1

{χ(((y1, ψ1, . . . , yp, ψp), (ϕ, θ)))| ((y1, ψ1, . . . , yp, ψp), (ϕ, θ)) ∈ Qp,2} .

Conversely if

ξ ∈
⋃
p⩾1

{χ(((y1, ψ1, . . . , yp, ψp), (ϕ, θ)))| ((y1, ψ1, . . . , yp, ψp), (ϕ, θ)) ∈ Qp,2} ,

there exist p ⩾ 1, ((y1, ψ1, . . . , yp, ψp), (ϕ, θ)) ∈ Qp,2 such that
ξ = χ(((y1, ψ1, . . . , yp, ψp), (ϕ, θ))) = γ[y1 : ψ1, . . . , yp : ψp,→ (∧(ϕ, θ), ϕ)], so
(y1, ψ1, . . . , yp, ψp) ∈ Rp, ϕ, θ ∈ S(k[y1 : ψ1, . . . , yp : ψp]).

So y1, . . . , yp ∈ V with yi ̸= yj for i ̸= j, ψ1, . . . , ψp ∈ E,H[y1 : ψ1, . . . , yp : ψp].

And this implies ξ ∈ G1.

Similarly G2 is r.e. and so A10.2 is r.e..

Then let A10.2 ∈ A.

Lemma 10.4. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm] and let φ,ψ, χ ∈ S(k).

Under these assumptions we have
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• → (φ,ψ),→ (ψ, χ),→ (φ, χ) ∈ S(k),
• γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ)] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm : φm,→ (ψ, χ)] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm : φm,→ (φ, χ)] ∈ S(ϵ).

Moreover if

• #(γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ)]),
• #(γ[x1 : φ1, . . . , xm : φm,→ (ψ, χ)])

then #(γ[x1 : φ1, . . . , xm : φm,→ (φ, χ)]).

Proof. We can rewrite #(γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ)]) as follows:

P∀({#(k,→ (φ,ψ), σ)| σ ∈ Ξ(k)})

P∀({P→ (#(k, φ, σ),#(k, ψ, σ)) | σ ∈ Ξ(k)}).

And we can rewrite #(γ[x1 : φ1, . . . , xm : φm,→ (ψ, χ)]) as follows:

P∀({#(k,→ (ψ, χ), σ)| σ ∈ Ξ(k)})

P∀({P→ (#(k, ψ, σ),#(k, χ, σ)) | σ ∈ Ξ(k)}).

In other words for each σ ∈ Ξ(k) if #(k, φ, σ) then #(k, ψ, σ), and if #(k, ψ, σ) then
#(k, χ, σ). So, for each σ ∈ Ξ(k), if #(k, φ, σ) then #(k, χ, σ). This can be written as
follows:

P∀({P→ (#(k, φ, σ),#(k, χ, σ)) | σ ∈ Ξ(k)})

P∀({#(k,→ (φ, χ), σ)| σ ∈ Ξ(k)}),

#(γ[x1 : φ1, . . . , xm : φm,→ (φ, χ)]).

We can create a set R10.4 as the set of all 3-tuples γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ)],
γ[x1 : φ1, . . . , xm : φm,→ (ψ, χ)],
γ[x1 : φ1, . . . , xm : φm,→ (φ, χ)]


such that

• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• φ,ψ, χ ∈ S(k[x1 : φ1, . . . , xm : φm]).
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Lemma 10.4 shows us that this set (which is a potential 2-ary rule) is ‘sound’. In
order to use R10.4 as a rule in our system we also need to show that R10.4 is r.e..

Lemma 10.5. R10.4 is r.e. .

Proof. Given a positive integer m and (x1, φ1, . . . , xm, φm) ∈ Rm we can notice the
following:

• k[x1 : φ1, . . . , xm : φm] ∈ K;
• S(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• {(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])3 is r.e..

Let’s define

Qm,3 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])3 .

Clearly Qm,3 ⊆ (Σ∗)2m × (Σ∗)3 is also r.e..

We now define three functions δ1,m, δ2,m, δ3,m over (Σ∗)2m×(Σ∗)3 as follows. Given
((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) ∈ (Σ∗)2m × (Σ∗)3

δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (φ,ψ)] .

δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (ψ, χ)] .

δ3,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (φ, χ)] .

All of the three functions we have defined are computable functions from (Σ∗)2m ×
(Σ∗)3 to Σ∗. If we define a function δm over (Σ∗)2m × (Σ∗)3 as follows:

δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) =

 δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)),
δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)),
δ3,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ))


then δm is a computable function from (Σ∗)2m × (Σ∗)3 to (Σ∗)3, therefore the set

Dm = {δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ))| ((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) ∈ Qm,3}

is a r.e. subset of (Σ∗)3.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)3 and actually
this set is equal to our rule R10.4 which so is r.e. itself.

If ξ = (ξ1, ξ2, ξ3) ∈ R10.4 then there exist a positive integer m, x1, . . . , xm ∈ V, with
xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E such that H[x1 : φ1, . . . , xm : φm]; if we define
k = k[x1 : φ1, . . . , xm : φm] there also exist φ,ψ, χ ∈ S(k) such that
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• ξ1 = γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ)],
• ξ2 = γ[x1 : φ1, . . . , xm : φm,→ (ψ, χ)],
• ξ3 = γ[x1 : φ1, . . . , xm : φm,→ (φ, χ)].

This means (x1, φ1, . . . , xm, φm) ∈ Rm, φ,ψ, χ ∈ S(k[x1 : φ1, . . . , xm : φm]), so
((x1, φ1, . . . , xm, φm), (φ,ψ, χ)) ∈ Qm,3

• ξ1 = δ1,m((x1, φ1, . . . , xm, φm), (φ,ψ, χ)),
• ξ2 = δ2,m((x1, φ1, . . . , xm, φm), (φ,ψ, χ)),
• ξ3 = δ3,m((x1, φ1, . . . , xm, φm), (φ,ψ, χ)).

i.e. ξ = δm((x1, φ1, . . . , xm, φm), (φ,ψ, χ)) ∈ Dm.

Conversely if there exists p ⩾ 1 such that ξ ∈ Dp then there exists
((ψ1, φ1, . . . , ψp, φp), (φ,ψ, χ)) ∈ Qp,3 such that ξ = δp((ψ1, φ1, . . . , ψp, φp), (φ,ψ, χ)).

It follows that (ψ1, φ1, . . . , ψp, φp) ∈ Rp, φ,ψ, χ ∈ S(k[x1 : φ1, . . . , xp : φp]), so
ψ1, . . . , ψp ∈ V, ψi ̸= ψj for i ̸= j, φ1, . . . , φp ∈ E, H[ψ1 : φ1, . . . , ψp : φp].

Moreover

ξ = δp((ψ1, φ1, . . . , ψp, φp), φ, ψ, χ) =

 δ1,p((ψ1, φ1, . . . , ψp, φp), φ, ψ, χ),
δ2,p((ψ1, φ1, . . . , ψp, φp), φ, ψ, χ),
δ3,p((ψ1, φ1, . . . , ψp, φp), φ, ψ, χ)

 =

=

 γ[ψ1 : φ1, . . . , ψp : φp,→ (φ,ψ)],
γ[ψ1 : φ1, . . . , ψp : φp,→ (ψ, χ)],
γ[ψ1 : φ1, . . . , ψp : φp,→ (φ, χ)]


and so ξ ∈ R10.4.

Then let R10.4 ∈ R.

Lemma 10.6. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm].

Let i = 1 . . .m, then

• ∈ (xi, φi) ∈ S(k),
• γ[x1 : φ1, . . . , xm : φm,∈ (xi, φi)] ∈ S(ϵ),
• #(γ[x1 : φ1, . . . , xm : φm,∈ (xi, φi)]).

Proof. Using lemma 9.1 we obtain

• xi ∈ E(k),
• φi ∈ E(k),
• for each σ ∈ Ξ(k)

◦ σ/dom(ki−1) ∈ Ξ(ki−1),
◦ #(k, φi, σ) = #(ki−1, φi, σ/dom(ki−1)),
◦ #(k, xi, σ) ∈ #(k, φi, σ).

131



We have also that φi ∈ Es(ki−1), so for each σ ∈ Ξ(k) #(k, φi, σ) =
#(ki−1, φi, σ/dom(ki−1)) is a set. Therefore we can apply lemma 9.2 and obtain that
∈ (xi, φi) ∈ S(k). Consequently

γ[x1 : φ1, . . . , xm : φm, (∈)(xi, φi)] ∈ S(ϵ) .

Moreover we can rewrite #(γ[x1 : φ1, . . . , xm : φm, (∈)(xi, φi)]) as follows

P∀({#(k, (∈)(xi, φi), σ)| σ ∈ Ξ(k)}) ,

P∀({P∈(#(k, xi, σ),#(k, φi, σ))| σ ∈ Ξ(k)}) .

To show this we have to prove that for each σ ∈ Ξ(k) #(k, xi, σ) belongs to
#(k, φi, σ). But we have just seen this is true.

We can create a set A10.6 which is the set of all sentences γ[x1 : φ1, . . . , xm : φm,∈
(xi, φi)] such that

• m is a positive integer, x1, . . . , xm ∈ V, xα ̸= xβ for α ̸= β, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• i = 1 . . .m.

Lemma 10.6 shows us that this set of sentences (which is a potential axiom) is
‘sound’. In order to use A10.6 as an axiom in our system we also need to show that
A10.6 is r.e..

Lemma 10.7. A10.6 is r.e. .

Proof. Let m be a positive integer and let i = 1 . . .m. We define a function χi over
(Σ∗)2m such that for each (ψ1, φ1, . . . , ψm, φm) ∈ (Σ∗)2m

χi(ψ1, φ1, . . . , ψm, φm) = γ[ψ1 : φ1, . . . , ψm : φm,∈ (ψi, φi)] .

Now χi clearly is a computable function and so the set
{χi(x1, φ1, . . . , xm, φm)| (x1, φ1, . . . , xm, φm) ∈ Rm} is a r.e. subset of Σ∗. And
moreover the set

⋃
i=1...m

{χi(x1, φ1, . . . , xm, φm)| (x1, φ1, . . . , xm, φm) ∈ Rm}

is itself a r.e. set. And finally the set

⋃
m⩾1

(
⋃

i=1...m

{χi(x1, φ1, . . . , xm, φm)| (x1, φ1, . . . , xm, φm) ∈ Rm})

is itself a r.e. set. This set can obviously be rewritten as follows:
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⋃
m⩾1

(
⋃

i=1...m

{γ[x1 : φ1, . . . , xm : φm,∈ (xi, φi)]| (x1, φ1, . . . , xm, φm) ∈ Rm})

and it should be clear at this point that this set is actually our set A10.6.

In fact if ξ ∈ A10.6 then there exist a positive integer m, x1, . . . , xm ∈ V such that
xα ̸= xβ for α ̸= β, φ1, . . . , φm ∈ E such that H[x1 : φ1, . . . , xm : φm], i = 1 . . .m
such that ξ = γ[x1 : φ1, . . . , xm : φm,∈ (xi, φi)].

Of course this implies (x1, φ1, . . . , xm, φm) ∈ Rm, so

ξ ∈ {χi(x1, φ1, . . . , xm, φm)| (x1, φ1, . . . , xm, φm) ∈ Rm} .

And then

ξ ∈
⋃

j=1...m

{χj(x1, φ1, . . . , xm, φm)| (x1, φ1, . . . , xm, φm) ∈ Rm} ;

ξ ∈
⋃
p⩾1

(
⋃

j=1...p

{χj(x1, φ1, . . . , xp, φp)| (x1, φ1, . . . , xp, φp) ∈ Rp}) .

Conversely if

ξ ∈
⋃
p⩾1

(
⋃

j=1...p

{χj(x1, φ1, . . . , xp, φp)| (x1, φ1, . . . , xp, φp) ∈ Rp})

then there exists p positive integer, j = 1 . . . p, (x1, φ1, . . . , xp, φp) ∈ Rp such that

ξ = χj(x1, φ1, . . . , xp, φp) = γ[x1 : φ1, . . . , xp : φp,∈ (xj , φj)] .

Clearly we have x1, . . . , xp ∈ V such that xα ̸= xβ for α ̸= β, φ1, . . . , φp ∈ E such
that H[x1 : φ1, . . . , xp : φp], so ξ ∈ A10.6.

At this point let A10.6 ∈ A.

Lemma 10.8. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm] and let φ,ψ ∈ S(k).

Under these assumptions we have

• → (ψ,φ) ∈ S(k),
• γ[x1 : φ1, . . . , xm : φm, φ] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm : φm,→ (ψ,φ)] ∈ S(ϵ).

Moreover if #(γ[x1 : φ1, . . . , xm : φm, φ]) then #(γ[x1 : φ1, . . . , xm : φm,→ (ψ,φ)])
also holds.
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Proof. Suppose # (γ[x1 : φ1, . . . , xm : φm, φ]) holds. It can be rewritten as

P∀({#(k, φ, σ)| σ ∈ Ξ(k)}) .

We can rewrite # (γ[x1 : φ1, . . . , xm : φm,→ (ψ,φ)]) as

P∀({#(k,→ (ψ,φ), σ)| σ ∈ Ξ(k)}) ,

P∀({P→(#(k, ψ, σ),#(k, φ, σ))| σ ∈ Ξ(k)}) .

For each σ ∈ Ξ(k) #(k, φ, σ) holds, this implies that

P→(#(k, ψ, σ),#(k, φ, σ))

holds too, therefore

P∀({P→(#(k, ψ, σ),#(k, φ, σ))| σ ∈ Ξ(k)})

also holds and this completes the proof.

We can create a set R10.8 as the set of all pairs

(γ[x1 : φ1, . . . , xm : φm, φ], γ[x1 : φ1, . . . , xm : φm,→ (ψ,φ)])

such that

• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• φ,ψ ∈ S(k[x1 : φ1, . . . , xm : φm]).

Lemma 10.8 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R10.8 as a rule in our system we also need to show that R10.8 is r.e..

Lemma 10.9. R10.8 is r.e. .

Proof. Given a positive integer m and (x1, φ1, . . . , xm, φm) ∈ Rm we can notice the
following:

• k[x1 : φ1, . . . , xm : φm] ∈ K;
• S(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• {(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])2 is r.e..

So we can define the following

Qm,2 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])2 .

Clearly Qm,2 ⊆ (Σ∗)2m × (Σ∗)2 is r.e..
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We now define two functions δ1,m, δ2,m over (Σ∗)2m × (Σ∗)2 as follows. Given
((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) ∈ (Σ∗)2m × (Σ∗)2

δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) = γ[ψ1 : φ1, . . . , ψm : φm, φ] .

δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (ψ,φ)] .

All of the two functions we have defined are computable functions from (Σ∗)2m ×
(Σ∗)2 to Σ∗. If we define a function δm over (Σ∗)2m × (Σ∗)2 as follows:

δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) =

(
δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)),
δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)),

)
then δm is a computable function from (Σ∗)2m × (Σ∗)2 to (Σ∗)2, therefore the set

Dm = {δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ))| ((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) ∈ Qm,2}

is a r.e. subset of (Σ∗)2.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)2 and actually
this set is equal to our rule R10.8 which so is r.e. itself.

Then let R10.8 ∈ R.

Lemma 10.10. Let m be a positive integer. Let x1, . . . , xm+1 ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm+1 ∈ E and assume H[x1 : φ1, . . . , xm+1 : φm+1].

Define k = k[x1 : φ1, . . . , xm+1 : φm+1]. Of course H[x1 : φ1, . . . , xm : φm] also
holds, we define h = k[x1 : φ1, . . . , xm : φm]. Let χ ∈ S(h), t ∈ E(h), φ ∈ Es(h).

Under these assumptions

• ∈ (xm+1, φ) ∈ S(k),
• ∀({} (xm+1 : φm+1,∈ (xm+1, φ))) ∈ S(h),
• γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({} (xm+1 : φm+1,∈ (xm+1, φ))))] ∈ S(ϵ),
• ∈ (t, φm+1) ∈ S(h),
• γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φm+1))] ∈ S(ϵ),
• ∈ (t, φ) ∈ S(h),
• γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φ))] ∈ S(ϵ).

Moreover if

• #(γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({} (xm+1 : φm+1,∈ (xm+1, φ))))]) and
• #(γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φm+1))])

then #(γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φ))]).

Proof. By lemma 9.1 we obtain that xm+1 ∈ E(k).

By lemma 9.3, since φ ∈ Es(h), we obtain that φ ∈ Es(k) and for each σ ∈ Ξ(k)
σ/dom(h) ∈ Ξ(h), #(k, φ, σ) = #(h, φ, σ/dom(h)).
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By lemma 9.2 we obtain that ∈ (xm+1, φ) ∈ S(k).

By lemma 8.21 we obtain ∀({} (xm+1 : φm+1,∈ (xm+1, φ))) ∈ S(h).

Clearly this implies that

γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({} (xm+1 : φm+1,∈ (xm+1, φ))))] ∈ S(ϵ).

Furthermore we have t ∈ E(h), φm+1 ∈ Es(h), so ∈ (t, φm+1) ∈ S(h). It clearly
follows that γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φm+1))] ∈ S(ϵ).

We have also φ ∈ Es(h), so ∈ (t, φ) ∈ S(h). It follows that

γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φ))] ∈ S(ϵ).

We now assume

• #(γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({} (xm+1 : φm+1,∈ (xm+1, φ))))]) and
• #(γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φm+1))])

both hold and we try to prove #(γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φ))]).

We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({} (xm+1 : φm+1,∈ (xm+1, φ))))])

as

P∀({#(h,→ (χ,∀ ({} (xm+1 : φm+1,∈ (xm+1, φ)))) , ρ) | ρ ∈ Ξ(h)}) ,

P∀({P→ (# (h, χ, ρ) ,#(h,∀ ({} (xm+1 : φm+1,∈ (xm+1, φ))) , ρ)) | ρ ∈ Ξ(h)}) ,

P∀({P→ (# (h, χ, ρ) , P∀ ({#(k,∈ (xm+1, φ), σ) | σ ∈ Ξ(k), ρ ⊑ σ})) | ρ ∈ Ξ(h)}) ,

P∀({P→ (# (h, χ, ρ) , P∀ ({P∈ (#(k, xm+1, σ),#(k, φ, σ)) | σ ∈ Ξ(k), ρ ⊑ σ})) | ρ ∈ Ξ(h)}) .

We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φm+1))])

as

P∀({#(h,→ (χ,∈ (t, φm+1)), ρ)| ρ ∈ Ξ(h)}) ,

P∀({P→(#(h, χ, ρ),#(h,∈ (t, φm+1), ρ))| ρ ∈ Ξ(h)}) ,

P∀({P→(#(h, χ, ρ), P∈(#(h, t, ρ),#(h, φm+1, ρ)))| ρ ∈ Ξ(h)}) .
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We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φ))])

as

P∀({#(h,→ (χ,∈ (t, φ)), ρ)| ρ ∈ Ξ(h)}) ,

P∀({P→(#(h, χ, ρ),#(h,∈ (t, φ), ρ))| ρ ∈ Ξ(h)}) ,

P∀({P→(#(h, χ, ρ), P∈(#(h, t, ρ),#(h, φ, ρ)))| ρ ∈ Ξ(h)}) .

Let ρ ∈ Ξ(h) and let #(h, χ, ρ). We need to show that #(h, t, ρ) belongs to
#(h, φ, ρ).

There exists a positive integer q such that k ∈ K(q)+. So there exist g ∈ K(q), ϕ ∈
Es(q, g), y ∈ (V − var(g)) such that k = g+ < y, ϕ >. At the same time

k = km+1 = km+ < xm+1, φm+1 >= h+ < xm+1, φm+1 > .

Therefore

Ξ(k) = {δ + (y, s)| δ ∈ Ξ(g), s ∈ #(g, ϕ, δ)} =

= {δ + (xm+1, s)| δ ∈ Ξ(h), s ∈ #(h, φm+1, δ)} .

We have ρ ∈ Ξ(h), #(h, t, ρ) ∈ #(h, φm+1, ρ), so ρ+ (xm+1,#(h, t, ρ)) ∈ Ξ(k).

Let σ = ρ + (xm+1,#(h, t, ρ)) ∈ Ξ(k), clearly ρ ⊑ σ, so #(k, xm+1, σ) belongs to
#(k, φ, σ). And we have also

xm+1 = y ∈ Ea(q + 1, k) ⊆ E(q + 1, k) ,

#(k, xm+1, σ) = #(k, xm+1, σ)(q+1,k,a) = #(h, t, ρ) ,

#(k, φ, σ) = #(h, φ, σ/dom(h)) = #(h, φ, σ/dom(ρ)) = #(h, φ, ρ) .

Finally we obtain #(h, t, ρ) = #(k, xm+1, σ) belongs to #(k, φ, σ) = #(h, φ, ρ).

We can create a set R10.10 which is the set of all 3-tuples γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({} (xm+1 : φm+1,∈ (xm+1, φ))))],
γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φm+1))],
γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φ))]


such that
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• m is a positive integer, x1, . . . , xm+1 ∈ V, with xi ̸= xj for i ̸= j, φ1, . . . , φm+1 ∈
E, H[x1 : φ1, . . . , xm+1 : φm+1];

• if we define k = k[x1 : φ1, . . . , xm+1 : φm+1] and h = k[x1 : φ1, . . . , xm : φm]
then

◦ χ ∈ S(h),
◦ t ∈ E(h),
◦ φ ∈ Es(h).

Lemma 10.10 shows us that this set (which is a potential 2-ary rule) is ‘sound’. In
order to use R10.10 as a rule in our system we also need to show that R10.10 is r.e..

Lemma 10.11. R10.10 is r.e. .

Proof. Given a positive integer m and (x1, φ1, . . . , xm+1, φm+1) ∈ Rm+1 all of the
following sets are r.e.:

• E(k[x1 : φ1, . . . , xm : φm]),
• S(k[x1 : φ1, . . . , xm : φm]),
• Es(k[x1 : φ1, . . . , xm : φm]).

Therefore the following set is also r.e.:

{(x1, φ1, . . . , xm+1, φm+1)}×S(k[x1 : φ1, . . . , xm : φm])×E(k[x1 : φ1, . . . , xm : φm])

× Es(k[x1 : φ1, . . . , xm : φm]).

Let’s use this temporary definition

Q′
m+1,3 =

⋃
(x1,φ1,...,xm+1,φm+1)∈Rm+1

{(x1, φ1, . . . , xm+1, φm+1)}×S(k[x1 : φ1, . . . , xm : φm])

× E(k[x1 : φ1, . . . , xm : φm])× Es(k[x1 : φ1, . . . , xm : φm]).

With this Q′
m+1,3 is a r.e. subset of (Σ∗)2(m+1) × Σ∗ × Σ∗ × Σ∗.

We now define three functions δ1,m, δ2,m, δ3,m over (Σ∗)2(m+1) × Σ∗ × Σ∗ × Σ∗ as

follows. Given ((ψ1, φ1, . . . , ψm+1, φm+1), χ, t, φ) ∈ (Σ∗)2(m+1) × Σ∗ × Σ∗ × Σ∗

δ1,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, t, φ) =

γ[ψ1 : φ1, . . . , ψm : φm,→ (χ,∀({} (ψm+1 : φm+1,∈ (ψm+1, φ))))] .

δ2,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, t, φ) = γ[ψ1 : φ1, . . . , ψm : φm,→ (χ,∈ (t, φm+1))] .

δ3,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, t, φ) = γ[ψ1 : φ1, . . . , ψm : φm,→ (χ,∈ (t, φ))] .

All of the three functions we have defined are computable functions from
(Σ∗)2(m+1)×Σ∗×Σ∗×Σ∗ to Σ∗. If we define a function δm over (Σ∗)2(m+1)×Σ∗×Σ∗×Σ∗
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as follows:

δm((ψ1, φ1, . . . , ψm+1, φm+1), χ, t, φ) =

 δ1,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, t, φ),
δ2,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, t, φ),
δ3,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, t, φ)


then δm is a computable function from (Σ∗)2(m+1)×Σ∗×Σ∗×Σ∗ to (Σ∗)3, therefore

the set

Dm = {δm((ψ1, φ1, . . . , ψm+1, φm+1), χ, t, φ)|((ψ1, φ1, . . . , ψm+1, φm+1), χ, t, φ) ∈ Q′
m+1,3}

is a r.e. subset of (Σ∗)3.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)3 and actually
this set is equal to our rule R10.10 which so is r.e. itself.

If ξ ∈ R10.10 then there exist a positive integer m, x1, . . . , xm+1 ∈ V, with xi ̸= xj
for i ̸= j, φ1, . . . , φm+1 ∈ E such that H[x1 : φ1, . . . , xm+1 : φm+1]; if we define
k = k[x1 : φ1, . . . , xm+1 : φm+1] and h = k[x1 : φ1, . . . , xm : φm] there also exist
χ ∈ S(h), t ∈ E(h), φ ∈ Es(h), ξ1, ξ2, ξ3 ∈ Σ∗ such that

• ξ = (ξ1, ξ2, ξ3)
• ξ1 = γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({} (xm+1 : φm+1,∈ (xm+1, φ))))],
• ξ2 = γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φm+1))],
• ξ3 = γ[x1 : φ1, . . . , xm : φm,→ (χ,∈ (t, φ))].

This means that (x1, φ1, . . . , xm+1, φm+1) ∈ Rm+1, χ ∈ S(k[x1 : φ1, . . . , xm : φm]),
t ∈ E(k[x1 : φ1, . . . , xm : φm]), φ ∈ Es(k[x1 : φ1, . . . , xm : φm]), so
((x1, φ1, . . . , xm+1, φm+1), χ, t, φ) ∈ Q′

m+1,3.

Moreover

• ξ1 = δ1,m((x1, φ1, . . . , xm+1, φm+1), χ, t, φ),
• ξ2 = δ2,m((x1, φ1, . . . , xm+1, φm+1), χ, t, φ),
• ξ3 = δ3,m((x1, φ1, . . . , xm+1, φm+1), χ, t, φ).

i.e. ξ = δm((x1, φ1, . . . , xm+1, φm+1), χ, t, φ) ∈ Dm.

Conversely if there exists p ⩾ 1 such that ξ ∈ Dp then there exists
((ψ1, φ1, . . . , ψp+1, φp+1), χ, t, φ) ∈ Q′

p+1,3 such that
ξ = δp((ψ1, φ1, . . . , ψp+1, φp+1), χ, t, φ).

Since ((ψ1, φ1, . . . , ψp+1, φp+1), χ, t, φ) ∈ Q′
p+1,3 we have (ψ1, φ1, . . . , ψp+1, φp+1) ∈

Rp+1, χ ∈ S(k[ψ1 : φ1, . . . , ψp : φp]), t ∈ E(k[ψ1 : φ1, . . . , ψp : φp]),
φ ∈ Es(k[ψ1 : φ1, . . . , ψp : φp]).

It follows that ψ1, . . . , ψp+1 ∈ V, ψi ̸= ψj for i ̸= j, φ1, . . . , φp+1 ∈ E,
H[ψ1 : φ1, . . . , ψp+1 : φp+1].
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Moreover

ξ = δp((ψ1, φ1, . . . , ψp+1, φp+1), χ, t, φ) =

 δ1,p((ψ1, φ1, . . . , ψp+1, φp+1), χ, t, φ),
δ2,p((ψ1, φ1, . . . , ψp+1, φp+1), χ, t, φ),
δ3,p((ψ1, φ1, . . . , ψp+1, φp+1), χ, t, φ)

 =

=

 γ[ψ1 : φ1, . . . , ψp : φp,→ (χ, ∀({} (ψp+1 : φp+1,∈ (ψp+1, φ))))],
γ[ψ1 : φ1, . . . , ψp : φp,→ (χ,∈ (t, φp+1))],
γ[ψ1 : φ1, . . . , ψp : φp,→ (χ,∈ (t, φ))]


and so ξ ∈ R10.10.

Then let R10.10 ∈ R.

Lemma 10.12. Let x1 ∈ V, φ1 ∈ E and assume H[x1 : φ1]. Define k = k[x1 : φ1].
Let ψ ∈ S(k) and φ ∈ S(k) ∩ S(ϵ). Under these assumptions we have

• → (ψ,φ) ∈ S(k),
• γ[x1 : φ1,→ (ψ,φ)] ∈ S(ϵ),
• ∃ ({}(x1 : φ1, ψ)) ∈ S(ϵ),
• → (∃ ({}(x1 : φ1, ψ)) , φ) ∈ S(ϵ).

Moreover if #(γ[x1 : φ1,→ (ψ,φ)]) then #(→ (∃ ({}(x1 : φ1, ψ)) , φ)).

Proof. Suppose #(γ[x1 : φ1, (→)(ψ,φ)]). We have

P∀({#(k,→ (ψ,φ), σ)| σ ∈ Ξ(k)}) ,

P∀({P→(#(k, ψ, σ),#(k, φ, σ))| σ ∈ Ξ(k)}) .

In turn #(→ (∃ ({}(x1 : φ1, ψ)) , φ)) can be rewritten as

#(ϵ,→ (∃ ({}(x1 : φ1, ψ)) , φ) , ϵ) ,

P→(#(ϵ, ∃ ({}(x1 : φ1, ψ)) , ϵ),#(ϵ, φ, ϵ)) ,

P→(#(∃ ({}(x1 : φ1, ψ))),#(φ)) ,

P→(P∃({#(k, ψ, σ)| σ ∈ Ξ(k)}),#(φ)) .

In order to prove the last statement, we suppose there exists σ ∈ Ξ(k) such that
#(k, ψ, σ). This implies #(k, φ, σ), but we need to show that #(φ) holds.

To perform this step we can use lemma 8.14. In fact there exists a positive integer
q such that ϵ, k ∈ K(q), φ ∈ E(q, ϵ) ∩ E(q, k). Moreover ϵ ⊑ k, ϵ ∈ Ξ(ϵ), σ ∈ Ξ(k),
ϵ ⊑ σ so by lemma 8.14 #(k, φ, σ) = #(ϵ, φ, ϵ) = #(φ).
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We can create a set R10.12 as the set of all pairs(
γ[x1 : φ1,→ (ψ,φ)],
→ (∃ ({}(x1 : φ1, ψ)) , φ)

)
such that x1 ∈ V, φ1 ∈ E, H[x1 : φ1], ψ ∈ S(k[x1 : φ1]) and φ ∈ S(k[x1 : φ1])∩S(ϵ).

Lemma 10.12 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R10.12 as a rule in our system we also need to show that R10.12 is r.e..

Lemma 10.13. R10.12 is r.e. .

Proof. Given (x1, φ1) ∈ R1 all of the following sets are r.e.:

• S(k[x1 : φ1]),
• S(k[x1 : φ1]) ∩ S(ϵ),
• {(x1, φ1)} × S(k[x1 : φ1])× (S(k[x1 : φ1]) ∩ S(ϵ)).

Let’s use this temporary definition

Q′
1,2 =

⋃
(x1,φ1)∈R1

{(x1, φ1)} × S(k[x1 : φ1])× (S(k[x1 : φ1]) ∩ S(ϵ)) .

With this Q′
1,2 is a r.e. subset of (Σ∗)2 × Σ∗ × Σ∗.

We now define two functions δ1,1, δ2,1 over (Σ∗)2 × Σ∗ × Σ∗ as follows:

δ1,1((ψ1, φ1), ψ, φ) = γ[ψ1 : φ1,→ (ψ,φ)] ,

δ2,1((ψ1, φ1), ψ, φ) =→ (∃ ({}(ψ1 : φ1, ψ)) , φ) .

The two functions we have defined are both computable functions from (Σ∗)2×Σ∗×
Σ∗ to Σ∗. If we define a function δ1 over (Σ∗)2 × Σ∗ × Σ∗ as follows

δ1((ψ1, φ1), ψ, φ) =

(
δ1,1((ψ1, φ1), ψ, φ),
δ2,1((ψ1, φ1), ψ, φ)

)
,

then δ1 is a computable function from (Σ∗)2 × Σ∗ × Σ∗ to (Σ∗)2, therefore the set

D1 = {δ1((ψ1, φ1), ψ, φ)|((ψ1, φ1), ψ, φ) ∈ Q′
1,2}

is a r.e. subset of (Σ∗)2, and D1 is equal to our set R10.12 which so is r.e. itself.

Then let R10.12 ∈ R.

Lemma 10.14. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm] and let φ,ψ1, ψ2 ∈ S(k).
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Under these assumptions we have → (φ,ψ1),→ (φ,ψ2),→ (φ,∧(ψ1, ψ2)) ∈ S(k).

Moreover, if

#(γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ1)]), #(γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ2)])

then

#(γ[x1 : φ1, . . . , xm : φm,→ (φ,∧(ψ1, ψ2))]) .

Proof. We need to show

#(γ[x1 : φ1, . . . , xm : φm,→ (φ,∧(ψ1, ψ2))]) ,

that is

P∀({#(k,→ (φ,∧(ψ1, ψ2)), σ)| σ ∈ Ξ(k)}) ,
P∀({P→(#(k, φ, σ),#(k,∧(ψ1, ψ2), σ))| σ ∈ Ξ(k)}) ,
P∀({P→(#(k, φ, σ), P∧(#(k, ψ1, σ),#(k, ψ2, σ)))| σ ∈ Ξ(k)}) . (10.1)

But we have

#(γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ1)]) ,

P∀({#(k,→ (φ,ψ1), σ)| σ ∈ Ξ(k)}) ,
P∀({P→(#(k, φ, σ),#(k, ψ1, σ))| σ ∈ Ξ(k)}) .

And we have

#(γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ2)]) ,

P∀({#(k,→ (φ,ψ2), σ)| σ ∈ Ξ(k)}) ,
P∀({P→(#(k, φ, σ),#(k, ψ2, σ))| σ ∈ Ξ(k)}) .

So for each σ ∈ Ξ(k) if #(k, φ, σ) holds true then both #(k, ψ1, σ) and #(k, ψ2, σ)
hold. This implies 10.1 holds true in turn.

We can create a set R10.14 which is the set of all 3-tuples γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ1)],
γ[x1 : φ1, . . . , xm : φm,→ (φ,ψ2)],
γ[x1 : φ1, . . . , xm : φm,→ (φ,∧(ψ1, ψ2))]


such that

• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• φ,ψ1, ψ2 ∈ S(k[x1 : φ1, . . . , xm : φm]).
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Lemma 10.14 shows us that this set (which is a potential 2-ary rule) is ‘sound’. In
order to use R10.14 as a rule in our system we also need to show that R10.14 is r.e..

Lemma 10.15. R10.14 is r.e. .

Proof. Given a positive integer m and (x1, φ1, . . . , xm, φm) ∈ Rm we can notice the
following:

• k[x1 : φ1, . . . , xm : φm] ∈ K;
• S(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• {(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])3 is r.e..

Let’s define

Qm,3 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])3 .

Clearly Qm,3 ⊆ (Σ∗)2m × (Σ∗)3 is also r.e..

We now define three functions δ1,m, δ2,m, δ3,m over (Σ∗)2m×(Σ∗)3 as follows. Given
((θ1, φ1, . . . , θm, φm), (φ,ψ1, ψ2)) ∈ (Σ∗)2m × (Σ∗)3

δ1,m((θ1, φ1, . . . , θm, φm), (φ,ψ1, ψ2)) = γ[θ1 : φ1, . . . , θm : φm,→ (φ,ψ1)] .

δ2,m((θ1, φ1, . . . , θm, φm), (φ,ψ1, ψ2)) = γ[θ1 : φ1, . . . , θm : φm,→ (φ,ψ2)] .

δ3,m((θ1, φ1, . . . , θm, φm), (φ,ψ1, ψ2)) = γ[θ1 : φ1, . . . , θm : φm,→ (φ,∧(ψ1, ψ2))] .

All of the three functions we have defined are computable functions from (Σ∗)2m ×
(Σ∗)3 to Σ∗. If we define a function δm over (Σ∗)2m × (Σ∗)3 as follows:

δm((θ1, φ1, . . . , θm, φm), (φ,ψ1, ψ2)) =

 δ1,m((θ1, φ1, . . . , θm, φm), (φ,ψ1, ψ2)),
δ2,m((θ1, φ1, . . . , θm, φm), (φ,ψ1, ψ2)),
δ3,m((θ1, φ1, . . . , θm, φm), (φ,ψ1, ψ2))


then δm is a computable function from (Σ∗)2m × (Σ∗)3 to (Σ∗)3, therefore the set

Dm = {δm((θ1, φ1, . . . , θm, φm), (φ,ψ1, ψ2))| ((θ1, φ1, . . . , θm, φm), (φ,ψ1, ψ2)) ∈ Qm,3}

is a r.e. subset of (Σ∗)3.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)3 and actually
this set is equal to our set R10.14 which so is r.e. itself.

Then let R10.14 ∈ R.
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Lemma 10.16. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm] and let φ,ψ ∈ S(k).

Under these assumptions we have

• → (φ,∧ (ψ,¬(ψ))) ,¬(φ) ∈ S(k),
• γ[x1 : φ1, . . . , xm : φm,→ (φ,∧ (ψ,¬(ψ)))] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm : φm,¬(φ)] ∈ S(ϵ).

Moreover if #(γ[x1 : φ1, . . . , xm : φm,→ (φ,∧ (ψ,¬(ψ)))]) then
#(γ[x1 : φ1, . . . , xm : φm,¬(φ)]).

Proof. We can rewrite #(γ[x1 : φ1, . . . , xm : φm,→ (φ,∧ (ψ,¬(ψ)))]) as

P∀({#(k,→ (φ,∧ (ψ,¬(ψ))) , σ)| σ ∈ Ξ(k)}) ,

P∀({P→ (#(k, φ, σ),#(k,∧ (ψ,¬(ψ)) , σ)) | σ ∈ Ξ(k)}) ,

P∀({P→ (#(k, φ, σ), P∧ (#(k, ψ, σ),#(k,¬(ψ), σ))) | σ ∈ Ξ(k)}) ,

P∀({P→ (#(k, φ, σ), P∧ (#(k, ψ, σ), P¬(#(k, ψ, σ)))) | σ ∈ Ξ(k)}) .

This can be expressed as ‘for each σ ∈ Ξ(k) either #(k, φ, σ) is false or both
#(k, ψ, σ) and (#(k, ψ, σ) is false) are true’.

Since #(k, ψ, σ) cannot be both true and false at the same time we have that ‘for
each σ ∈ Ξ(k) #(k, φ, σ) is false’. This is formally expressed as

P∀({P¬(#(k, φ, σ))| σ ∈ Ξ(k)}) ,

P∀({#(k,¬(φ), σ)| σ ∈ Ξ(k)}) ,

which we can finally rewrite as #(γ[x1 : φ1, . . . , xm : φm,¬(φ)]).

We can create a set R10.16 which is the set of all pairs

(γ[x1 : φ1, . . . , xm : φm,→ (φ,∧ (ψ,¬(ψ)))], γ[x1 : φ1, . . . , xm : φm,¬(φ)])

such that

• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• φ,ψ ∈ S(k[x1 : φ1, . . . , xm : φm]).

Lemma 10.16 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R10.16 as a rule in our system we also need to show that R10.16 is r.e..
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Lemma 10.17. R10.16 is r.e..

Proof. Given a positive integer m and (x1, φ1, . . . , xm, φm) ∈ Rm we can notice the
following:

• k[x1 : φ1, . . . , xm : φm] ∈ K;
• S(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• {(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])2 is r.e..

Let’s define

Qm,2 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])2 .

Clearly Qm,2 ⊆ (Σ∗)2m × (Σ∗)2 is also r.e..

We now define two functions δ1,m, δ2,m over (Σ∗)2m × (Σ∗)2 as follows. Given
((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) ∈ (Σ∗)2m × (Σ∗)2

δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (φ,∧ (ψ,¬(ψ)))] .

δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) = γ[ψ1 : φ1, . . . , ψm : φm,¬(φ)] .

All of the two functions we have defined are computable functions from (Σ∗)2m ×
(Σ∗)2 to Σ∗. If we define a function δm over (Σ∗)2m × (Σ∗)2 as follows:

δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) =

(
δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)),
δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)),

)
then δm is a computable function from (Σ∗)2m × (Σ∗)2 to (Σ∗)2, therefore the set

Dm = {δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ))| ((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) ∈ Qm,2}

is a r.e. subset of (Σ∗)2.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)2 and actually
this set is equal to our set R10.16 which so is r.e. itself.

Then let R10.16 ∈ R.

Lemma 10.18. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm] and let φ,ψ ∈ S(k).

Under these assumptions we have

• ¬ (∧(φ,ψ)) ,→ (φ,¬(ψ)) ∈ S(k),
• γ[x1 : φ1, . . . , xm : φm,¬ (∧(φ,ψ))] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm : φm,→ (φ,¬(ψ))] ∈ S(ϵ).
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Moreover if #(γ[x1 : φ1, . . . , xm : φm,¬ (∧(φ,ψ))]) then
#(γ[x1 : φ1, . . . , xm : φm,→ (φ,¬(ψ))]).

Proof. We can rewrite #(γ[x1 : φ1, . . . , xm : φm,¬ (∧(φ,ψ))]) as

P∀({#(k,¬ (∧(φ,ψ)) , σ)| σ ∈ Ξ(k)}) ,

P∀({P¬(#(k,∧(φ,ψ), σ))| σ ∈ Ξ(k)}) ,

P∀({P¬(P∧(#(k, φ, σ),#(k, ψ, σ)))| σ ∈ Ξ(k)}) .

We can rewrite #(γ[x1 : φ1, . . . , xm : φm,→ (φ,¬(ψ))]) as

P∀({#(k,→ (φ,¬(ψ)), σ)| σ ∈ Ξ(k)}) ,

P∀({P→(#(k, φ, σ),#(k,¬(ψ), σ))| σ ∈ Ξ(k)}) ,

P∀({P→(#(k, φ, σ), P¬(#(k, ψ, σ)))| σ ∈ Ξ(k)}) .

Thus if #(γ[x1 : φ1, . . . , xm : φm,¬ (∧(φ,ψ))]) we have that ‘for each σ ∈ Ξ(k) it is
false that #(k, φ, σ) and #(k, ψ, σ) are both true’.

In other words for each σ ∈ Ξ(k) (#(k, φ, σ) is false) or (#(k, ψ, σ) is false).

In other words for each σ ∈ Ξ(k) P→(#(k, φ, σ), P¬(#(k, ψ, σ))).

The last condition clearly implies #(γ[x1 : φ1, . . . , xm : φm,→ (φ,¬(ψ))]).

We can create a set R10.18 which is the set of all pairs

(γ[x1 : φ1, . . . , xm : φm,¬ (∧(φ,ψ))], γ[x1 : φ1, . . . , xm : φm,→ (φ,¬(ψ))])

such that

• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• φ,ψ ∈ S(k[x1 : φ1, . . . , xm : φm]).

Lemma 10.18 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R10.18 as a rule in our system we also need to show that R10.18 is r.e..

Lemma 10.19. R10.18 is r.e..

Proof. Given a positive integer m and (x1, φ1, . . . , xm, φm) ∈ Rm we can notice the
following:

• k[x1 : φ1, . . . , xm : φm] ∈ K;
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• S(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• {(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])2 is r.e..

Let’s define

Qm,2 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])2 .

Clearly Qm,2 ⊆ (Σ∗)2m × (Σ∗)2 is also r.e..

We now define two functions δ1,m, δ2,m over (Σ∗)2m × (Σ∗)2 as follows. Given
((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) ∈ (Σ∗)2m × (Σ∗)2

δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) = γ[ψ1 : φ1, . . . , ψm : φm,¬ (∧(φ,ψ))] .

δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (φ,¬(ψ))] .

All of the two functions we have defined are computable functions from (Σ∗)2m ×
(Σ∗)2 to Σ∗. If we define a function δm over (Σ∗)2m × (Σ∗)2 as follows:

δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) =

(
δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)),
δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ)),

)
then δm is a computable function from (Σ∗)2m × (Σ∗)2 to (Σ∗)2, therefore the set

Dm = {δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ))| ((ψ1, φ1, . . . , ψm, φm), (φ,ψ)) ∈ Qm,2}

is a r.e. subset of (Σ∗)2.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)2 and actually
this set is equal to our set R10.18 which so is r.e. itself.

Then let R10.18 ∈ R.

Lemma 10.20. Let m be a positive integer. Let x1, . . . , xm+1 ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm+1 ∈ E and assume H[x1 : φ1, . . . , xm+1 : φm+1].

Define k = k[x1 : φ1, . . . , xm+1 : φm+1]. Of course H[x1 : φ1, . . . , xm : φm] also
holds, we define h = k[x1 : φ1, . . . , xm : φm]. Let χ ∈ S(h), φ ∈ S(k).

Under these assumptions we have

• ∀({}(xm+1 : φm+1, φ)) ∈ S(h),
• ¬ (∀({}(xm+1 : φm+1, φ))) ∈ S(h),
• → (χ,¬ (∀({}(xm+1 : φm+1, φ)))) ∈ S(h),
• γ[x1 : φ1, . . . , xm : φm,→ (χ,¬ (∀({}(xm+1 : φm+1, φ))))] ∈ S(ϵ),
• ¬(φ) ∈ S(k),
• ∃({}(xm+1 : φm+1,¬(φ))) ∈ S(h),
• → (χ, ∃({}(xm+1 : φm+1,¬(φ)))) ∈ S(h),
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• γ[x1 : φ1, . . . , xm : φm,→ (χ,∃({}(xm+1 : φm+1,¬(φ))))] ∈ S(ϵ).

Moreover if #(γ[x1 : φ1, . . . , xm : φm,→ (χ,¬ (∀({}(xm+1 : φm+1, φ))))]) then

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,∃({}(xm+1 : φm+1,¬(φ))))]) .

Proof. We can rewrite #(γ[x1 : φ1, . . . , xm : φm,→ (χ,¬ (∀({}(xm+1 : φm+1, φ))))])
as

P∀({#(h,→ (χ,¬ (∀({}(xm+1 : φm+1, φ)))) , ρ)| ρ ∈ Ξ(h)}) ,

P∀({P→ (#(h, χ, ρ),#(h,¬ (∀({}(xm+1 : φm+1, φ))) , ρ)) | ρ ∈ Ξ(h)}) ,

P∀({P→ (#(h, χ, ρ), P¬ (#(h,∀ ({} (xm+1 : φm+1, φ)) , ρ))) | ρ ∈ Ξ(h)}) ,

P∀({P→ (#(h, χ, ρ), P¬ (P∀({#(k, φ, σ)| σ ∈ Ξ(k), ρ ⊑ σ}))) | ρ ∈ Ξ(h)}) .

We can furtherly express this as

‘for each ρ ∈ Ξ(h) P→ (#(h, χ, ρ), P¬ (P∀({#(k, φ, σ)| σ ∈ Ξ(k), ρ ⊑ σ})))’,
‘for each ρ ∈ Ξ(h) if #(h, χ, ρ) then it is false that P∀({#(k, φ, σ)| σ ∈ Ξ(k), ρ ⊑

σ})’,
‘for each ρ ∈ Ξ(h) if #(h, χ, ρ) then it is false that (for each σ ∈ Ξ(k) such that

ρ ⊑ σ #(k, φ, σ) holds)’,
‘for each ρ ∈ Ξ(h) if #(h, χ, ρ) then (there exists σ ∈ Ξ(k) such that ρ ⊑ σ and

#(k, φ, σ) is false)’.

We can rewrite #(γ[x1 : φ1, . . . , xm : φm,→ (χ,∃({}(xm+1 : φm+1,¬(φ))))]) as

P∀({#(h,→ (χ,∃({}(xm+1 : φm+1,¬(φ)))) , ρ)| ρ ∈ Ξ(h)}) ,

P∀({P→ (#(h, χ, ρ),#(h,∃({}(xm+1 : φm+1,¬(φ))), ρ)) | ρ ∈ Ξ(h)}) ,

P∀({P→ (#(h, χ, ρ), P∃({#(k,¬(φ), σ)| σ ∈ Ξ(k), ρ ⊑ σ})) | ρ ∈ Ξ(h)}) ,

P∀({P→ (#(h, χ, ρ), P∃({P¬(#(k, φ, σ))| σ ∈ Ξ(k), ρ ⊑ σ})) | ρ ∈ Ξ(h)}) .

This can be furtherly rewritten as

‘for each ρ ∈ Ξ(h) P→ (#(h, χ, ρ), P∃({P¬(#(k, φ, σ))| σ ∈ Ξ(k), ρ ⊑ σ})) ’,
‘for each ρ ∈ Ξ(h) if #(h, χ, ρ) then P∃({P¬(#(k, φ, σ))| σ ∈ Ξ(k), ρ ⊑ σ}) ’,
‘for each ρ ∈ Ξ(h) if #(h, χ, ρ) then (there exists σ ∈ Ξ(k) such that ρ ⊑ σ and

#(k, φ, σ) is false)’.

The last condition is clearly ensured by our hypothesis.
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We can create a set R10.20 which is the set of all pairs(
γ[x1 : φ1, . . . , xm : φm,→ (χ,¬ (∀({}(xm+1 : φm+1, φ))))],
γ[x1 : φ1, . . . , xm : φm,→ (χ,∃({}(xm+1 : φm+1,¬(φ))))]

)
such that

• m is a positive integer, x1, . . . , xm+1 ∈ V, with xi ̸= xj for i ̸= j, φ1, . . . , φm+1 ∈
E, H[x1 : φ1, . . . , xm+1 : φm+1];

• if we define k = k[x1 : φ1, . . . , xm+1 : φm+1] and h = k[x1 : φ1, . . . , xm : φm]
then χ ∈ S(h), φ ∈ S(k).

Lemma 10.20 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R10.20 as a rule in our system we also need to show that R10.20 is r.e..

Lemma 10.21. R10.20 is r.e..

Proof. Given a positive integer m and (x1, φ1, . . . , xm+1, φm+1) ∈ Rm+1 all of the
following sets are r.e.:

• S(k[x1 : φ1, . . . , xm : φm]),
• S(k[x1 : φ1, . . . , xm+1 : φm+1]).

Therefore the following set is also r.e.:

{(x1, φ1, . . . , xm+1, φm+1)}×S(k[x1 : φ1, . . . , xm : φm])×S(k[x1 : φ1, . . . , xm+1 : φm+1]) .

Let’s use this temporary definition

Q′
m+1,2 =

⋃
(x1,φ1,...,xm+1,φm+1)∈Rm+1

{(x1, φ1, . . . , xm+1, φm+1)}×S(k[x1 : φ1, . . . , xm : φm])

× S(k[x1 : φ1, . . . , xm+1 : φm+1])).

With this Q′
m+1,2 is a r.e. subset of (Σ∗)2(m+1) × Σ∗ × Σ∗.

We now define two functions δ1,m, δ2,m over (Σ∗)2(m+1)×Σ∗×Σ∗ as follows. Given

((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ) ∈ (Σ∗)2(m+1) × Σ∗ × Σ∗

δ1,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ) =

γ[ψ1 : φ1, . . . , ψm : φm,→ (χ,¬ (∀({}(ψm+1 : φm+1, φ))))] .

δ2,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ) =

γ[ψ1 : φ1, . . . , ψm : φm,→ (χ,∃({}(ψm+1 : φm+1,¬(φ))))] .

All of the two functions we have defined are computable functions from (Σ∗)2(m+1)×
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Σ∗ × Σ∗ to Σ∗. If we define a function δm over (Σ∗)2(m+1) × Σ∗ × Σ∗ as follows:

δm((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ) =

(
δ1,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ),
δ2,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ)

)
then δm is a computable function from (Σ∗)2(m+1)×Σ∗×Σ∗ to (Σ∗)2, therefore the

set

Dm = {δm((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ)|((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ) ∈ Q′
m+1,2}

is a r.e. subset of (Σ∗)2.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)2 and actually
this set is equal to our rule R10.20 which so is r.e. itself.

If ξ ∈ R10.20 then there exist a positive integer m, x1, . . . , xm+1 ∈ V, with xi ̸= xj
for i ̸= j, φ1, . . . , φm+1 ∈ E such that H[x1 : φ1, . . . , xm+1 : φm+1]; if we define
k = k[x1 : φ1, . . . , xm+1 : φm+1] and h = k[x1 : φ1, . . . , xm : φm] there also exist
χ ∈ S(h), φ ∈ S(k), ξ1, ξ2 ∈ Σ∗ such that

• ξ = (ξ1, ξ2),
• ξ1 = γ[x1 : φ1, . . . , xm : φm,→ (χ,¬ (∀({}(xm+1 : φm+1, φ))))],
• ξ2 = γ[x1 : φ1, . . . , xm : φm,→ (χ,∃({}(xm+1 : φm+1,¬(φ))))].

This means that (x1, φ1, . . . , xm+1, φm+1) ∈ Rm+1, χ ∈ S(k[x1 : φ1, . . . , xm : φm]),
φ ∈ S(k[x1 : φ1, . . . , xm+1 : φm+1]), so ((x1, φ1, . . . , xm+1, φm+1), χ, φ) ∈ Q′

m+1,2.

Moreover

• ξ1 = δ1,m((x1, φ1, . . . , xm+1, φm+1), χ, φ),
• ξ2 = δ2,m((x1, φ1, . . . , xm+1, φm+1), χ, φ).

i.e. ξ = δm((x1, φ1, . . . , xm+1, φm+1), χ, φ) ∈ Dm.

Conversely if there exists p ⩾ 1 such that ξ ∈ Dp then there exists
((ψ1, φ1, . . . , ψp+1, φp+1), χ, φ) ∈ Q′

p+1,2 such that
ξ = δp((ψ1, φ1, . . . , ψp+1, φp+1), χ, φ).

Since ((ψ1, φ1, . . . , ψp+1, φp+1), χ, φ) ∈ Q′
p+1,2 we have (ψ1, φ1, . . . , ψp+1, φp+1) ∈

Rp+1, χ ∈ S(k[ψ1 : φ1, . . . , ψp : φp]), φ ∈ S(k[ψ1 : φ1, . . . , ψp+1 : φp+1]).

It follows that ψ1, . . . , ψp+1 ∈ V, ψi ̸= ψj for i ̸= j, φ1, . . . , φp+1 ∈ E,
H[ψ1 : φ1, . . . , ψp+1 : φp+1].

Moreover

ξ = δp((ψ1, φ1, . . . , ψp+1, φp+1), χ, φ) =

(
δ1,p((ψ1, φ1, . . . , ψp+1, φp+1), χ, φ),
δ2,p((ψ1, φ1, . . . , ψp+1, φp+1), χ, φ)

)
=

=

(
γ[ψ1 : φ1, . . . , ψp : φp,→ (χ,¬ (∀({}(ψp+1 : φp+1, φ))))],
γ[ψ1 : φ1, . . . , ψp : φp,→ (χ,∃({}(ψp+1 : φp+1,¬(φ))))]

)
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and so ξ ∈ R10.20.

Then let R10.20 ∈ R.

Lemma 10.22. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm] and let φ,ψ, χ ∈ S(k).

Under these assumptions we have

• → (∧(φ,ψ), χ),→ (φ,→ (ψ, χ)) ∈ S(k),
• γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), χ)] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm : φm,→ (φ,→ (ψ, χ))] ∈ S(ϵ).

Moreover if #(γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), χ)]) then
#(γ[x1 : φ1, . . . , xm : φm,→ (φ,→ (ψ, χ))]).

Proof. We assume #(γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), χ)]) which can be rewritten

P∀({#(k,→ (∧(φ,ψ), χ), σ)| σ ∈ Ξ(k)})

P∀({P→(#(k,∧(φ,ψ), σ),#(k, χ, σ))| σ ∈ Ξ(k)})

P∀({P→(P∧(#(k, φ, σ),#(k, ψ, σ)),#(k, χ, σ))| σ ∈ Ξ(k)}) .

Of course we now try to show #(γ[x1 : φ1, . . . , xm : φm,→ (φ,→ (ψ, χ))]) which in
turn can be rewritten

P∀({#(k,→ (φ,→ (ψ, χ)), σ)| σ ∈ Ξ(k)})

P∀({P→(#(k, φ, σ),#(k,→ (ψ, χ), σ))| σ ∈ Ξ(k)})

P∀({P→(#(k, φ, σ), P→(#(k, ψ, σ),#(k, χ, σ)))| σ ∈ Ξ(k)}) .

Let σ ∈ Ξ(k), suppose #(k, φ, σ) and #(k, ψ, σ), then we have #(k, χ, σ) and this
completes the proof.

We can create a set R10.22 which is the set of all pairs

(γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), χ)], γ[x1 : φ1, . . . , xm : φm,→ (φ,→ (ψ, χ))])

such that

• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],
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• φ,ψ, χ ∈ S(k[x1 : φ1, . . . , xm : φm]).

Lemma 10.22 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R10.22 as a rule in our system we also need to show that R10.22 is r.e..

Lemma 10.23. R10.22 is r.e..

Proof. Given a positive integer m and (x1, φ1, . . . , xm, φm) ∈ Rm we can notice the
following:

• k[x1 : φ1, . . . , xm : φm] ∈ K;
• S(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• {(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])3 is r.e..

Let’s define

Qm,3 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])3 .

Clearly Qm,3 ⊆ (Σ∗)2m × (Σ∗)3 is also r.e..

We now define two functions δ1,m, δ2,m over (Σ∗)2m × (Σ∗)3 as follows. Given
((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) ∈ (Σ∗)2m × (Σ∗)3

δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (∧(φ,ψ), χ)] .

δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (φ,→ (ψ, χ))] .

All of the two functions we have defined are computable functions from (Σ∗)2m ×
(Σ∗)3 to Σ∗. If we define a function δm over (Σ∗)2m × (Σ∗)3 as follows:

δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) =

(
δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)),
δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)),

)
then δm is a computable function from (Σ∗)2m × (Σ∗)3 to (Σ∗)2, therefore the set

Dm = {δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ))| ((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) ∈ Qm,3}

is a r.e. subset of (Σ∗)2.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)2 and actually
this set is equal to our set R10.22 which so is r.e. itself.

Then let R10.22 ∈ R.

Lemma 10.24. Let φ,ψ, χ ∈ S(ϵ). We have

• → (φ,→ (ψ, χ)) ∈ S(ϵ),
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• → (∧(φ,ψ), χ) ∈ S(ϵ).

Moreover if #(→ (φ,→ (ψ, χ))) then #(→ (∧(φ,ψ), χ)).

Proof. Suppose #(→ (φ,→ (ψ, χ))) holds. It can be rewritten

P→(#(φ),#(→ (ψ, χ))) ,

P→(#(φ), P→(#(ψ),#(χ))) .

In turn, #(→ (∧(φ,ψ), χ)) can be rewritten

P→(#(∧(φ,ψ)),#(χ)) ,

P→(P∧(#(φ),#(ψ)),#(χ)) .

Suppose #(φ) and #(ψ) both hold, we need to show that #(χ) holds. This is
granted by

P→(#(φ), P→(#(ψ),#(χ))) .

We can create a set R10.24 which is the set of all pairs(
→ (φ,→ (ψ, χ)),
→ (∧(φ,ψ), χ)

)
such that φ,ψ, χ ∈ S(ϵ).

Lemma 10.24 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R10.24 as a rule in our system we also need to show that R10.24 is r.e..

Lemma 10.25. R10.24 is r.e.

Proof. Clearly S(ϵ) is .r.e. and so is S(ϵ)3.

Let’s define two functions δ1,1, δ2,1 over (Σ∗)3 as follows:

δ1,1(φ,ψ, χ) = → (φ,→ (ψ, χ)) ,

δ2,1(φ,ψ, χ) = → (∧(φ,ψ), χ) .
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The two functions we have defined are both computable functions from (Σ∗)3 to
Σ∗. If we define a function δ1 over (Σ∗)3 as follows

δ1(φ,ψ, χ) =

(
δ1,1(φ,ψ, χ),
δ2,1(φ,ψ, χ)

)
,

then δ1 is a computable function from (Σ∗)3 to (Σ∗)2, therefore the set

D1 = {δ1(φ,ψ, χ)|(φ,ψ, χ) ∈ S(ϵ)3}

is a r.e. subset of (Σ∗)2, and D1 is equal to our set R10.24 which so is r.e. itself.

Then let R10.24 ∈ R.

11. Example of a proof

As an example of proof, we want to prove a form of the Bocardo syllogism. In
Ferreirós’ referenced paper ([4]), on paragraph 3.1, the syllogism is expressed as
follows:

Some A are not B. All C are B. Therefore, some A are not C.

Suppose A, B and C represent sets, the statement we actually want to prove is the
following:

If ( (there exists x ∈ A such that x /∈ B) and (for each y ∈ C y ∈ B) ) then
(there exists z ∈ A such that z /∈ C).

In order to formalize this, we will use a language (V,F , C,#, {D1, . . . , Dp}, qmax)
which must be as follows

V = {x, y, z},

F = {¬,∧,∨,→,↔, ∀, ∃,∈,=},

C = {A,B,C},

where A,B,C are constants each representing a set.

Moreover, we do not need the additional sets {D1, . . . , Dp} so we can set p = 0 and
we also set a conventional value of 1 for qmax.

At this point we suppose we can formalize the statement as

→
(
∧
(

∃ ({} (x : A,¬ (∈ (x,B)))) ,
∀ ({} (y : C,∈ (y,B)))

)
,∃ ({} (z : A,¬ (∈ (z, C))))

)
. (Th1)
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We’ll soon see a proof of this statement and of course if we can show a proof of a
statement then we have also proved the statement is a sentence in our language.

First of all we need the following lemma, that can be applied to any language
which includes all the symbols ¬,∧,∨,→,↔, ∀, ∃,∈ in the set F , and therefore it can
also be applied to our current language.

Lemma 11.1. Let m be a positive integer, x1, . . . , xm ∈ V, with xi ̸= xj for i ̸= j. Let
A1, . . . , Am ∈ C such that for each i = 1 . . .m #(Ai) is a set. Let D ∈ C such that #(D)
is a set. We have H[x1 : A1, . . . , xm : Am]. If we define k = k[x1 : A1, . . . , xm : Am]
then for each i = 1 . . .m

• ∈ (xi, D) ∈ S(k),
• for each σ ∈ Ξ(k) #(k, ∈ (xi, D), σ) = P∈(#(k, xi, σ),#(D)).

Proof. We first consider that A1 ∈ E(ϵ) and #(A1) is a set, so A1 ∈ Es(ϵ) and
H[x1 : A1]. Let k1 = k[x1 : A1].

If m > 1 then for each i = 1 . . .m− 1 we suppose H[x1 : A1, . . . , xi : Ai] holds and
we define ki = k[x1 : A1, . . . , xi : Ai].
Clearly by lemma 9.4 Ai+1 ∈ E(ki) and for each ρ ∈ Ξ(ki) #(ki, Ai+1, ρ) = #(Ai+1)
is a set.
So Ai+1 ∈ Es(ki), which implies H[x1 : A1, . . . , xi+1 : Ai+1] (and we can define
ki+1 = k[x1 : A1, . . . , xi+1 : Ai+1]).

This proves that H[x1 : A1, . . . , xm : Am] holds.

Let i = 1 . . .m. Using lemma 9.1 we obtain that xi ∈ E(k).

MoreoverD ∈ E(k) and for each σ ∈ Ξ(k) #(k,D, σ) = #(D) is a set. By lemma 9.2
we have

• ∈ (xi, D) ∈ S(k),
• for each σ ∈ Ξ(k) #(k, ∈ (xi, D), σ) = P∈(#(k, xi, σ),#(D)).

In order to provide a proof of statement Th1 we’ll make use of a deductive system
which includes all the axioms and rules listed in section 10.

Using the former lemma we can derive H[x : A] and we can define h = k[x : A].
Moreover ∈ (x,B) ∈ S(h), so ¬(∈ (x,B)) ∈ S(h).

We also have H[x : A, y : C] and we define ky = k[x : A, y : C].
We have ∈ (y,B) ∈ S(ky) and by lemma 8.21 ∀({}(y : C,∈ (y,B))) ∈ S(h).

Thus ∧ (¬(∈ (x,B)),∀({}(y : C,∈ (y,B)))) also belongs to S(h).

Moreover H[x : A, z : A] and we define kz = k[x : A, z : A].
We have ∈ (z, C) ∈ S(kz) and by lemma 8.21 ∀({}(z : A,∈ (z, C))) ∈ S(h).

The first sentence in our proof is an instance of axiom A10.2.

γ

x : A,→

∧

 ∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,

∀({}(z : A,∈ (z, C)))

 ,∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

) . (11.1)

155



By A10.2 we also obtain

γ

[
x : A,→

(
∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,¬(∈ (x,B))

)]
. (11.2)

By 11.1, 11.2 and rule R10.4

γ

x : A,→

∧

 ∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,

∀({}(z : A,∈ (z, C)))

 ,¬(∈ (x,B))

 . (11.3)

Another instance of A10.2 is the following

γ

x : A,→

∧

 ∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,

∀({}(z : A,∈ (z, C)))

 ,∀({}(z : A,∈ (z, C)))

 . (11.4)

By axiom A10.6 we obtain

γ[x : A,∈ (x,A)]. (11.5)

By 11.5 and rule R10.8 we also get

γ

x : A,→

∧

 ∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,

∀({}(z : A,∈ (z, C)))

 ,∈ (x,A)

 . (11.6)

Since x ∈ E(h), C ∈ Es(h) etc. we can apply rule R10.10 to 11.4 and 11.6 and obtain

γ

x : A,→

∧

 ∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,

∀({}(z : A,∈ (z, C)))

 ,∈ (x,C)

 . (11.7)

By axiom A10.2

γ

[
x : A,→

(
∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
, ∀({}(y : C,∈ (y,B)))

)]
. (11.8)

By 11.1, 11.8 and rule R10.4

γ

x : A,→

∧

 ∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,

∀({}(z : A,∈ (z, C)))

 ,∀({}(y : C,∈ (y,B)))

 . (11.9)

Since x ∈ E(h), B ∈ Es(h) etc. we can apply rule R10.10 to 11.7 and 11.9 and obtain

γ

x : A,→

∧

 ∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,

∀({}(z : A,∈ (z, C)))

 ,∈ (x,B)

 . (11.10)
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By 11.10, 11.3 and R10.14

γ

x : A,→

∧

 ∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,

∀({}(z : A,∈ (z, C)))

 ,∧
(

∈ (x,B),
¬(∈ (x,B))

) . (11.11)

By R10.16

γ

x : A,¬

∧

 ∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,

∀({}(z : A,∈ (z, C)))

 . (11.12)

By R10.18

γ

[
x : A,→

(
∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,¬ (∀({}(z : A,∈ (z, C))))

)]
. (11.13)

By R10.20

γ

[
x : A,→

(
∧
(

¬(∈ (x,B)),
∀({}(y : C,∈ (y,B)))

)
,∃({}(z : A,¬(∈ (z, C))))

)]
. (11.14)

Since ∃({}(z : A,¬(∈ (z, C)))) ∈ S(h) we can apply R10.22 and obtain

γ

[
x : A,→

(
¬(∈ (x,B)),→

(
∀({}(y : C,∈ (y,B))),
∃({}(z : A,¬(∈ (z, C))))

))]
. (11.15)

Using lemma 11.1 we obtain that ∈ (y,B) ∈ S(k[y : C]) and ∈ (z, C) ∈ S(k[z : A]).

By lemma 8.21 we obtain that ∀({}(y : C,∈ (y,B))) ∈ S(ϵ) and similarly
∃({}(z : A,¬(∈ (z, C)))) ∈ S(ϵ).

We can apply rule R10.12 to 11.15 and obtain

→
(
∃ ({}(x : A,¬(∈ (x,B)))) ,→

(
∀({}(y : C,∈ (y,B))),
∃({}(z : A,¬(∈ (z, C))))

))
(11.16)

Finally, by R10.24, we obtain

→
(
∧
(

∃ ({}(x : A,¬(∈ (x,B)))) ,
∀({}(y : C,∈ (y,B)))

)
,∃({}(z : A,¬(∈ (z, C))))

)
(11.17)

We have proved statement Th1, this also means that Th1 is a sentence in our
language.
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12. Extending our deductive system

In this section we are going to extend our deductive systems, in other words we are
going to add axioms and rules to some of the deductive sytems D = (A,R) which we
have built in section 10. We are going to do this in order to be able to show another
example of proof in the next section. Our new deductive systems can refer to any
language L = (V,F , C,#, {D1, . . . , Dp}, qmax) such that all of these symbols: N, ∗ are
in our set C, all of these symbols x, y, z, u, v, w are in our set V, all of these symbols:
¬,∧,∨,→,↔, ∀, ∃,∈,= are in our set F . For each of these operators f Af (x1, . . . , xn)
and Pf (x1, . . . , xn) are defined as specified at the beginning of section 3. Moreover we
require p ⩾ 1 and D1 = N.

The constant symbol N represents the set of natural numbers N, so that we have
#(N) = N.

The symbol ∗ that stands for the product (or multiplication) operation in the
domain N of natural numbers. Therefore #(∗) is a function defined on N× N and for
each α, β ∈ N #(∗)(α, β) is the product of α and β, in other words #(∗)(α, β) = α ·β.

Given a language L = (V,F , C,#, {D1, . . . , Dp}, qmax) as above, in section 10 we
have defined a deductive system for this language, and we assume that all the axioms
and rules we have defined for that deductive system apply to our new deductive
system. We are now going to add new axioms and rules to our new deductive system.

Lemma 12.1. H[x : N, y : N, z : N, u : N, v : N ] holds.

Proof. Follows from lemma 11.1.

Lemma 12.2. Let k ∈ K and φ,ψ ∈ E(k). Then

• = (φ,ψ) ∈ S(k)
• for each σ ∈ Ξ(k) #(k,= (φ,ψ), σ) = (#(k, φ, σ) = #(k, ψ, σ)) .

Proof. It’s a simply a case of lemma 8.15.

Lemma 12.3. Let k ∈ K and let φ,ψ ∈ E(k). Assume for each σ ∈ Ξ(k) #(k, φ, σ) ∈
N and #(k, ψ, σ) ∈ N, then

• (∗)(φ,ψ) ∈ E(k)
• for each σ ∈ Ξ(k) #(k, (∗)(φ,ψ), σ) = (#(k, φ, σ) ·#(k, ψ, σ)) .

Proof. It’s simply a case of lemma 8.17.

Lemma 12.4. Let k ∈ K and let φ ∈ E(k), then

• ∈ (φ,N) ∈ S(k),
• for each σ ∈ Ξ(k) #(k,∈ (φ,N), σ) = P∈(#(k, φ, σ),N).
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Proof. It’s a simply a case of lemma 8.15.

Lemma 12.5. Let k = k[x : N, y : N, z : N, u : N, v : N ], φ ∈ E(k) such that for each
σ ∈ Ξ(k) #(k, φ, σ) ∈ N then

• = (y, φ) ∈ S(k)
• = (z, ∗(y, v)) ∈ S(k)
• = (z, ∗(φ, v)) ∈ S(k)

Moreover

#(γ[x : N, y : N, z : N, u : N, v : N,→ (∧(= (y, φ),= (z, yv)),= (z, φv))])

is true.

Proof. By lemma 9.1 y ∈ E(k) and by 12.2 = (y, φ) ∈ S(k).

Moreover by 9.1 v ∈ E(k). If we define kv = k[x : N, y : N, z : N, u : N ] then for
each σ ∈ Ξ(k) σ/dom(kv) ∈ Ξ(kv) and #(k, v, σ) ∈ #(kv, N, σ/dom(kv)) = #(N) = N.

Similarly by lemma 9.1 if we define ky = k[x : N ] then for each σ ∈ Ξ(k) σ/dom(ky) ∈
Ξ(ky) and #(k, y, σ) ∈ #(ky, N, σ/dom(ky)) = #(N) = N.

Similarly by the same lemma z ∈ E(k) and if we define kz = k[x : N, y : N ] then
for each σ ∈ Ξ(k) σ/dom(kz) ∈ Ξ(kz) and #(k, z, σ) ∈ #(kz, N, σ/dom(kz)) = #(N) = N.

By lemma 12.3 it follows that (∗)(y, v) ∈ E(k) and for each σ ∈ Ξ(k)
#(k, (∗)(y, v), σ) = (#(k, y, σ) ·#(k, v, σ)) ∈ N .

Similarly (∗)(φ, v) ∈ E(k) and for each σ ∈ Ξ(k) #(k, (∗)(φ, v), σ) = (#(k, φ, σ) ·
#(k, v, σ)) ∈ N .

By lemma 12.2 = (z, ∗(y, v)) ∈ S(k) and = (z, ∗(φ, v)) ∈ S(k).

Clearly it follows that → (∧(= (y, φ),= (z, yv)),= (z, φv)) ∈ S(k) and we can
rewrite

# (γ[x : N, y : N, z : N, u : N, v : N,→ (∧(= (y, φ),= (z, yv)),= (z, φv))])

as follows

P∀({#(k,→ (∧(= (y, φ),= (z, yv)),= (z, φv)) , σ)| σ ∈ Ξ(k)}) ,

P∀({P→(#(k,∧(= (y, φ),= (z, yv)), σ),#(k,= (z, φv), σ))| σ ∈ Ξ(k)}) ,

for each σ ∈ Ξ(k)
#(k,∧(= (y, φ),= (z, yv)), σ) is false or #(k,= (z, φv), σ).

Given σ ∈ Ξ(k) we assume #(k,∧(= (y, φ),= (z, yv)), σ) holds and want to show
that #(k,= (z, φv), σ) then holds.
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We have

P∧(#(k,= (y, φ), σ),#(k,= (z, yv), σ)) ,

P∧(#(k, y, σ) = #(k, φ, σ),#(k, z, σ) = #(k, yv, σ)) ,

P∧(#(k, y, σ) = #(k, φ, σ),#(k, z, σ) = #(k, y, σ) ·#(k, v, σ)) .

From there it follows that #(k, z, σ) = #(k, φ, σ) ·#(k, v, σ).

We have shown that #(k,= (z, φv), σ) holds, in fact it can be rewritten

#(k, z, σ) = #(k, φv, σ),

#(k, z, σ) = #(k, φ, σ) ·#(k, v, σ) .

We can create a set A12.5 which is the set of all sentences

γ[x : N, y : N, z : N, u : N, v : N,→ (∧(= (y, φ),= (z, yv)),= (z, φv))]

such that

• φ ∈ E(k[x : N, y : N, z : N, u : N, v : N ]) ,
• for each σ ∈ Ξ(k) #(k, φ, σ) ∈ N .

Lemma 12.5 shows us that this set of sentences (which is a potential axiom) is
‘sound’. In order to use A12.5 as an axiom in our system we also need to show that
A12.5 is r.e..

Lemma 12.6. A12.5 is r.e..

Proof. A12.5 is the set of all sentences

γ[x : N, y : N, z : N, u : N, v : N,→ (∧(= (y, φ),= (z, yv)),= (z, φv))]

such that φ ∈ EN(k[x : N, y : N, z : N, u : N, v : N ]).

Let’s define a function η over Σ∗ with η(φ) = γ[x : N, y : N, z : N, u : N, v : N,→
(∧(= (y, φ),= (z, yv)),= (z, φv))].

Then A12.5 is simply the set {η(φ)| φ ∈ EN(k[x : N, y : N, z : N, u : N, v : N ])}.

Since EN(k[x : N, y : N, z : N, u : N, v : N ]) is r.e. then A12.5 is also r.e..
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Then let A12.5 ∈ A.

Lemma 12.7. Let k = k[x : N, y : N, z : N, u : N, v : N ], χ ∈ S(k) then

• = ((xu)v, x(uv)) ∈ S(k)

Moreover

#(γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= ((xu)v, x(uv)))])

is true.

Proof. By lemma 9.1 u ∈ E(k). If we define ku = k[x : N, y : N, z : N ] then for each
σ ∈ Ξ(k) σ/dom(ku) ∈ Ξ(ku) and #(k, u, σ) ∈ #(ku, N, σ/dom(ku)) = #(N) = N.

Similarly by 9.1 x ∈ E(k). If we define kx = ϵ then for each σ ∈ Ξ(k)
σ/dom(kx) ∈ Ξ(kx) and #(k, x, σ) ∈ #(kx, N, σ/dom(kx)) = #(N) = N.

Similarly by 9.1 v ∈ E(k). If we define kv = k[x : N, y : N, z : N, u : N ] then for
each σ ∈ Ξ(k) σ/dom(kv) ∈ Ξ(kv) and #(k, v, σ) ∈ #(kv, N, σ/dom(kv)) = #(N) = N.

By lemma 12.3 (∗)(x, u) ∈ E(k) and for each σ ∈ Ξ(k) #(k, (∗)(x, u), σ) =
(#(k, x, σ) ·#(k, u, σ)) ∈ N.

Also by lemma 12.3 (∗)(xu, v) ∈ E(k) and for each σ ∈ Ξ(k)

#(k, (∗)(xu, v), σ) = #(k, xu, σ) ·#(k, v, σ) = (#(k, x, σ) ·#(k, u, σ)) ·#(k, v, σ) .

By lemma 12.3 (∗)(u, v) ∈ E(k) and for each σ ∈ Ξ(k) #(k, (∗)(u, v), σ) =
(#(k, u, σ) ·#(k, v, σ)) ∈ N.

Also by lemma 12.3 (∗)(x, uv) ∈ E(k) and for each σ ∈ Ξ(k)

#(k, (∗)(x, uv), σ) = #(k, x, σ) ·#(k, uv, σ) = #(k, x, σ) · (#(k, u, σ) ·#(k, v, σ)) .

Clearly it follows that for each σ ∈ Ξ(k)

#(k, (∗)(x, uv), σ) = #(k, (∗)(xu, v), σ) .

By lemma 12.2 it also follows that = ((xu)v, x(uv)) ∈ S(k) and that for each
σ ∈ Ξ(k) #(k,= ((xu)v, x(uv)), σ) is true.

Finally we observe that

# (γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= ((xu)v, x(uv)))])

can be rewritten as

P∀({#(k,→ (χ,= ((xu)v, x(uv))) , σ)| σ ∈ Ξ(k)}) ,
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P∀({P→(#(k, χ, σ),#(k,= ((xu)v, x(uv)), σ))| σ ∈ Ξ(k)}) ,

for each σ ∈ Ξ(k) #(k, χ, σ) is false or #(k,= ((xu)v, x(uv)), σ).

So we have proved it is true.

We can create a set A12.7 which is the set of all sentences

γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= ((xu)v, x(uv)))]

such that

• χ ∈ S(k[x : N, y : N, z : N, u : N, v : N ]) .

Lemma 12.7 shows us that this set of sentences (which is a potential axiom) is
‘sound’. In order to use A12.7 as an axiom in our system we also need to show that
A12.7 is r.e..

Lemma 12.8. A12.7 is r.e..

Proof. A12.7 is the set of all sentences

γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= ((xu)v, x(uv)))]

such that

• χ ∈ S(k[x : N, y : N, z : N, u : N, v : N ]) .

Let’s define a function η over Σ∗ with

η(χ) = γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= ((xu)v, x(uv)))] .

Then A12.7 is simply the set {η(χ)| χ ∈ S(k[x : N, y : N, z : N, u : N, v : N ])}.

Since S(k[x : N, y : N, z : N, u : N, v : N ]) is r.e. then A12.7 is also r.e..

Then let A12.7 ∈ A.

Lemma 12.9. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm] and let χ ∈ S(k), φ,ψ, θ ∈ E(k).

Then
#(γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (∧ (= (φ,ψ),= (ψ, θ)) ,= (φ, θ)))]).

Proof. We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (∧ (= (φ,ψ),= (ψ, θ)) ,= (φ, θ)))])
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as

P∀({#(k,→ (χ,→ (∧ (= (φ,ψ),= (ψ, θ)) ,= (φ, θ))) , σ)| σ ∈ Ξ(k)}) ,

P∀({P→(#(k, χ, σ),#(k,→ (∧ (= (φ,ψ),= (ψ, θ)) ,= (φ, θ)) , σ))| σ ∈ Ξ(k)}) ,

for each σ ∈ Ξ(k) #(k, χ, σ) is false or
#(k,→ (∧ (= (φ,ψ),= (ψ, θ)) ,= (φ, θ)) , σ).

We can rewrite #(k,→ (∧ (= (φ,ψ),= (ψ, θ)) ,= (φ, θ)) , σ) as

P→(#(k,∧ (= (φ,ψ),= (ψ, θ)) , σ),#(k,= (φ, θ), σ)) ,

P→(P∧(#(k,= (φ,ψ), σ),#(k,= (ψ, θ), σ)),#(k,= (φ, θ), σ)) ,

P→(P∧(#(k, φ, σ) = #(k, ψ, σ),#(k, ψ, σ) = #(k, θ, σ)),#(k, φ, σ) = #(k, θ, σ)) ,

(#(k, φ, σ) = #(k, ψ, σ) and #(k, ψ, σ) = #(k, θ, σ)) is false or
#(k, φ, σ) = #(k, θ, σ).

If (#(k, φ, σ) = #(k, ψ, σ) and #(k, ψ, σ) = #(k, θ, σ)) is false then
#(k,→ (∧ (= (φ,ψ),= (ψ, θ)) ,= (φ, θ)) , σ) is true.

Otherwise clearly #(k, φ, σ) = #(k, θ, σ) holds and so
#(k,→ (∧ (= (φ,ψ),= (ψ, θ)) ,= (φ, θ)) , σ) is true all the same.

We can create a set A12.9 which is the set of all sentences

γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (∧ (= (φ,ψ),= (ψ, θ)) ,= (φ, θ)))]

such that

• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• φ,ψ, θ ∈ E(k[x1 : φ1, . . . , xm : φm]),
• χ ∈ S(k[x1 : φ1, . . . , xm : φm]).

Lemma 12.9 shows us that this set of sentences (which is a potential axiom) is
‘sound’. In order to use A12.9 as an axiom in our system we also need to show that
A12.9 is r.e..

Lemma 12.10. A12.9 is r.e..

Proof. Given a positive integer m and (x1, φ1, . . . , xm, φm) ∈ Rm we can notice the
following:
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• k[x1 : φ1, . . . , xm : φm] ∈ K;
• E(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• S(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• {(x1, φ1, . . . , xm, φm)}×E(k[x1 : φ1, . . . , xm : φm])3×S(k[x1 : φ1, . . . , xm : φm])

is r.e..

So we can define the following

Qm,4 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)}×E(k[x1 : φ1, . . . , xm : φm])3×S(k[x1 : φ1, . . . , xm : φm]) .

Clearly Qm,4 ⊆ (Σ∗)2m × (Σ∗)3 × Σ∗ is r.e..

We can define a function η over (Σ∗)2m × (Σ∗)3 × Σ∗ such that for each
((ψ1, φ1, . . . , ψm, φm), (φ,ψ, θ), χ) ∈ (Σ∗)2m × (Σ∗)3 × Σ∗

η(((ψ1, φ1, . . . , ψm, φm), (φ,ψ, θ), χ)) = γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (∧ (= (φ,ψ),= (ψ, θ)) ,= (φ, θ)))] .

Now η clearly is a computable function and so the set
{η(((x1, φ1, . . . , xm, φm), (φ,ψ, θ), χ))| ((x1, φ1, . . . , xm, φm), (φ,ψ, θ), χ) ∈ Qm,4}
is a r.e. subset of Σ∗. And finally the set

⋃
m⩾1

{η(((x1, φ1, . . . , xm, φm), (φ,ψ, θ), χ))| ((x1, φ1, . . . , xm, φm), (φ,ψ, θ), χ) ∈ Qm,4}

is itself a r.e. set. It should be clear at this point that this set is actually our set
A12.9, and so that A12.9 is r.e..

Then let A12.9 ∈ A.

Lemma 12.11. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm] and let φ,ψ, χ ∈ S(k). Under these assumptions, if

#(γ[x1 : φ1, . . . , xm : φm,→ (χ, φ)]),

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (φ,ψ))])

then

#(γ[x1 : φ1, . . . , xm : φm,→ (χ, ψ)]).

Proof. We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (χ, φ)])

as

P∀({#(k,→ (χ, φ) , σ)| σ ∈ Ξ(k)}) ,
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P∀({P→(#(k, χ, σ),#(k, φ, σ))| σ ∈ Ξ(k)}) .

We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (φ,ψ))])

as

P∀({#(k,→ (χ,→ (φ,ψ)) , σ)| σ ∈ Ξ(k)}) ,

P∀({P→ (#(k, χ, σ),#(k,→ (φ,ψ) , σ)) | σ ∈ Ξ(k)}) ,

P∀({P→ (#(k, χ, σ), P→ (#(k, φ, σ),#(k, ψ, σ))) | σ ∈ Ξ(k)}) .

Finally we can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (χ, ψ)])

as

P∀({#(k,→ (χ, ψ) , σ)| σ ∈ Ξ(k)}) ,

P∀({P→(#(k, χ, σ),#(k, ψ, σ))| σ ∈ Ξ(k)}) .

If we assume both

#(γ[x1 : φ1, . . . , xm : φm,→ (χ, φ)]) ,

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (φ,ψ))])

then for each σ ∈ Ξ(k)

• #(k, χ, σ) is false or #(k, φ, σ) is true,
• #(k, χ, σ) is false or #(k, φ, σ) is false or #(k, ψ, σ) is true.

Clearly this implies #(k, χ, σ) is false or #(k, ψ, σ) is true.

Therefore in our assumptions #(γ[x1 : φ1, . . . , xm : φm,→ (χ, ψ)]) holds.

We can create a set R12.11 which is the set of all 3-tuples γ[x1 : φ1, . . . , xm : φm,→ (χ, φ)],
γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (φ,ψ))],
γ[x1 : φ1, . . . , xm : φm,→ (χ, ψ)]


such that
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• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• φ,ψ, χ ∈ S(k[x1 : φ1, . . . , xm : φm]).

Lemma 12.11 shows us that this set (which is a potential 2-ary rule) is ‘sound’. In
order to use R12.11 as a rule in our system we also need to show that R12.11 is r.e..

Lemma 12.12. R12.11 is r.e.

Proof. Given a positive integer m and (x1, φ1, . . . , xm, φm) ∈ Rm we can notice the
following:

• k[x1 : φ1, . . . , xm : φm] ∈ K;
• S(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• {(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])3 is r.e..

Let’s define

Qm,3 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])3 .

Clearly Qm,3 ⊆ (Σ∗)2m × (Σ∗)3 is also r.e..

We now define three functions δ1,m, δ2,m, δ3,m over (Σ∗)2m×(Σ∗)3 as follows. Given
((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) ∈ (Σ∗)2m × (Σ∗)3

δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (χ, φ)] .

δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (χ,→ (φ,ψ))] .

δ3,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (χ, ψ)] .

All of the three functions we have defined are computable functions from (Σ∗)2m ×
(Σ∗)3 to Σ∗. If we define a function δm over (Σ∗)2m × (Σ∗)3 as follows:

δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) =

 δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)),
δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)),
δ3,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)),


then δm is a computable function from (Σ∗)2m × (Σ∗)3 to (Σ∗)3, therefore the set

Dm = {δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ))| ((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) ∈ Qm,3}

is a r.e. subset of (Σ∗)3.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)3 and actually
this set is equal to our set R12.11 which so is r.e. itself.
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Then let R12.11 ∈ R.

Lemma 12.13. Let k = k[x : N, y : N, z : N, u : N, v : N ], χ ∈ S(k), φ ∈ E(k) such
that for each σ ∈ Ξ(k) #(k, φ, σ) ∈ N then

• = (z, xφ) ∈ S(k),
• ∃({}(w : N,= (z, xw))) ∈ S(k).

Under these assumptions if

#(γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= (z, xφ))])

then

#(γ[x : N, y : N, z : N, u : N, v : N,→ (χ,∃({}(w : N,= (z, xw))))])

is true.

Proof. By 9.1 x ∈ E(k). If we define kx = ϵ then for each σ ∈ Ξ(k) σ/dom(kx) ∈ Ξ(kx)
and #(k, x, σ) ∈ #(kx, N, σ/dom(kx)) = #(N) = N.

By lemma 12.3 it follows that (∗)(x, φ) ∈ E(k) and for each σ ∈ Ξ(k)
#(k, (∗)(x, φ), σ) = (#(k, x, σ) ·#(k, φ, σ)) ∈ N.

By 9.1 z ∈ E(k), so we can apply lemma 12.2 and obtain that = (z, xφ) belongs
to S(k).

Let h = k+ < w,N >, we have N ∈ E(k) and for each σ ∈ Ξ(k) #(k,N, σ) =
#(N) = N. So N ∈ Es(k). Moreover w ∈ (V − var(k)) so by lemma 8.21 h ∈ K.

We now want to show that = (z, xw) belongs to S(h). Since N ∈ Es(k) we have
H[x : N, y : N, z : N, u : N, v : N,w : N ]. We have

k[x : N, y : N, z : N, u : N, v : N,w : N ] = k+ < w,N >= h .

Using lemma 9.1 we obtain that z, x, w ∈ E(h). If we define hx = ϵ then for each
ρ ∈ Ξ(h) ρ/dom(hx) ∈ Ξ(hx) and #(h, x, ρ) ∈ #(hx, N, ρ/dom(hx)) = #(N) = N.

Moreover for each ρ ∈ Ξ(h) ρ/dom(k) ∈ Ξ(k) #(h,w, ρ) ∈ #(k,N, ρ/dom(k)) =
#(N) = N.

By lemma 12.3 it follows that (∗)(x,w) ∈ E(h) and for each ρ ∈ Ξ(h)
#(h, (∗)(x,w), ρ) = (#(h, x, ρ) ·#(h,w, ρ)) ∈ N.

By lemma 12.2 = (z, xw) belongs to S(h). We can now apply lemma 8.21 and obtain
that ∃({}(w : N,= (z, xw))) ∈ S(k) and for each σ ∈ Ξ(k)

#(k, ∃({}(w : N,= (z, xw))), σ) = P∃({#(h,= (z, xw), ρ)| ρ ∈ Ξ(h), σ ⊑ ρ}) .

We can rewrite

# (γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= (z, xφ))])

167



as:

P∀({#(k,→ (χ,= (z, xφ)) , σ)| σ ∈ Ξ(k)}) ,

P∀({P→(#(k, χ, σ),#(k,= (z, xφ), σ))| σ ∈ Ξ(k)}) ,

for each σ ∈ Ξ(k)

#(k, χ, σ) is false or #(k,= (z, xφ), σ).

We can rewrite

# (γ[x : N, y : N, z : N, u : N, v : N,→ (χ,∃({}(w : N,= (z, xw))))])

as:

P∀({#(k,→ (χ,∃({}(w : N,= (z, xw)))) , σ)| σ ∈ Ξ(k)}) ,

P∀({P→(#(k, χ, σ),#(k,∃({}(w : N,= (z, xw))), σ))| σ ∈ Ξ(k)}) ,

P∀({P→(#(k, χ, σ), P∃({#(h,= (z, xw), ρ)| ρ ∈ Ξ(h), σ ⊑ ρ}))| σ ∈ Ξ(k)}) ,

for each σ ∈ Ξ(k)

#(k, χ, σ) is false or P∃({#(h,= (z, xw), ρ)| ρ ∈ Ξ(h), σ ⊑ ρ}).

We now assume

# (γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= (z, xφ))])

and try to prove

# (γ[x : N, y : N, z : N, u : N, v : N,→ (χ,∃({}(w : N,= (z, xw))))]) .

Let σ ∈ Ξ(k), if #(k, χ, σ) is false then our proof is already finished. So we assume
#(k, χ, σ) is true. In this case #(k,= (z, xφ), σ) holds.

It follows that

#(k, z, σ) = #(k, xφ, σ) = #(k, x, σ) ·#(k, φ, σ) .

We have to show there exists ρ ∈ Ξ(h) such that σ ⊑ ρ and #(h,= (z, xw), ρ). We
can rewrite #(h,= (z, xw), ρ) as

#(h, z, ρ) = #(h, xw, ρ) = #(h, x, ρ) ·#(h,w, ρ) .

Let’s define ρ = σ + (w,#(k, φ, σ)). There exists a positive integer n such that
h ∈ K(n). Since h ̸= ϵ we have n ⩾ 2 and by lemma 8.1 there exists q < n such
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that h ∈ K(q)+. Then there exist g ∈ K(q), ϕ ∈ Es(q, g), α ∈ (V − var(g)) such that
h = g+ < α, ϕ > and

Ξ(h) = {δ + (α, s)| δ ∈ Ξ(g), s ∈ #(g, ϕ, δ)} .

Now we have also h = k+ < w,N > therefore

Ξ(h) = {δ + (w, s)| δ ∈ Ξ(k), s ∈ N} .

It follows that ρ ∈ Ξ(h) and moreover

#(h,w, ρ) = #(h,w, ρ)(q+1,h,a) = #(k, φ, σ) .

We have also #(h, z, ρ) = #(k, z, σ). In fact z ∈ E(h) ∩ E(k), k ⊑ h, σ ⊑ ρ and we
can use lemma 8.14. Similarly we obtain #(h, x, ρ) = #(k, x, σ). Since

#(k, z, σ) = #(k, x, σ) ·#(k, φ, σ) .

we have

#(h, z, ρ) = #(h, x, ρ) ·#(h,w, ρ) .

and then of course #(h,= (z, xw), ρ).

We can create a set R12.13 which is the set of all pairs(
γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= (z, xφ))],
γ[x : N, y : N, z : N, u : N, v : N,→ (χ, ∃({}(w : N,= (z, xw))))]

)
such that χ ∈ S(k), φ ∈ E(k) such that for each σ ∈ Ξ(k) #(k, φ, σ) ∈ N.

Lemma 12.13 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R12.13 as a rule in our system we also need to show that R12.13 is r.e..

Lemma 12.14. R12.13 is r.e..

Proof. Our set R12.13 is the set of all pairs(
γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= (z, xφ))],
γ[x : N, y : N, z : N, u : N, v : N,→ (χ, ∃({}(w : N,= (z, xw))))]

)
such that χ ∈ S(k[x : N, y : N, z : N, u : N, v : N ]), φ ∈ EN(k[x : N, y : N, z : N, u :
N, v : N ]).

We now define two functions δ1, δ2 over (Σ∗)2 as follows. Given χ, φ ∈ Σ∗

δ1(χ, φ) = γ[x : N, y : N, z : N, u : N, v : N,→ (χ,= (z, xφ))] ,
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δ2(χ, φ) = γ[x : N, y : N, z : N, u : N, v : N,→ (χ,∃({}(w : N,= (z, xw))))] .

All of the two functions we have defined are computable functions from (Σ∗)2 to
Σ∗. If we define a function δ from (Σ∗)2 to (Σ∗)2 as follows:

δ(χ, φ) =

(
δ1(χ, φ),
δ2(χ, φ)

)
then δ is a computable function from (Σ∗)2 to (Σ∗)2. We can actually rewrite R12.13

as

{δ(χ, φ)| (χ, φ) ∈ S(k[x : N, y : N, z : N, u : N, v : N ])×EN(k[x : N, y : N, z : N, u : N, v : N ]} .

Since S(k[x : N, y : N, z : N, u : N, v : N ]) and EN(k[x : N, y : N, z : N, u : N, v : N ]
are r.e. then R12.13 is r.e. itself.

Then let R12.13 ∈ R.

Lemma 12.15. Let m be a positive integer. Let x1, . . . , xm+1 ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm+1 ∈ E and assume H[x1 : φ1, . . . , xm+1 : φm+1].

Define k = k[x1 : φ1, . . . , xm+1 : φm+1]. Of course H[x1 : φ1, . . . , xm : φm] also
holds, we define h = k[x1 : φ1, . . . , xm : φm]. Let χ ∈ S(h) ∩ S(k), φ ∈ S(k).

Under these assumptions we have

• ∀({}(xm+1 : φm+1, φ)) ∈ S(h),
• → (χ,∀({}(xm+1 : φm+1, φ))) ∈ S(h),
• γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({}(xm+1 : φm+1, φ)))] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm+1 : φm+1,→ (χ, φ)] ∈ S(ϵ).

Moreover if #(γ[x1 : φ1, . . . , xm+1 : φm+1,→ (χ, φ)]) then

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({}(xm+1 : φm+1, φ)))]) .

Proof. By lemma 8.21 ∀({}(xm+1 : φm+1, φ)) ∈ S(h), and clearly all the other ‘pre-
liminary’ results hold.

We can rewrite

#(γ[x1 : φ1, . . . , xm+1 : φm+1,→ (χ, φ)])

as

P∀({#(k,→ (χ, φ) , σ) | σ ∈ Ξ(k)}) ,

P∀({P→ (# (k, χ, σ) ,#(k, φ, σ)) | σ ∈ Ξ(k)}) .

We can furtherly express this as
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‘for each σ ∈ Ξ(k) P→ (# (k, χ, σ) ,#(k, φ, σ))’,

‘for each σ ∈ Ξ(k) # (k, χ, σ) is false or # (k, φ, σ)’.

We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({}(xm+1 : φm+1, φ)))])

as

P∀({#(h,→ (χ,∀ ({} (xm+1 : φm+1, φ))) , ρ) | ρ ∈ Ξ(h)}) ,

P∀({P→ (# (h, χ, ρ) ,#(h,∀ ({} (xm+1 : φm+1, φ)) , ρ)) | ρ ∈ Ξ(h)}) ,

P∀({P→ (# (h, χ, ρ) , P∀ ({#(k, φ, σ) | σ ∈ Ξ(k), ρ ⊑ σ})) | ρ ∈ Ξ(h)}) .

We can furtherly express this as

‘for each ρ ∈ Ξ(h)
P→ (# (h, χ, ρ) , P∀ ({#(k, φ, σ) | σ ∈ Ξ(k), ρ ⊑ σ}))’,

‘for each ρ ∈ Ξ(h)
# (h, χ, ρ) is false or P∀ ({#(k, φ, σ) | σ ∈ Ξ(k), ρ ⊑ σ})’,

‘for each ρ ∈ Ξ(h) # (h, χ, ρ) is false or
for each σ ∈ Ξ(k) such that ρ ⊑ σ #(k, φ, σ)’.

Let ρ ∈ Ξ(h) and # (h, χ, ρ), let σ ∈ Ξ(k) such that ρ ⊑ σ, we want to show that
# (k, φ, σ) holds. To show this it is clearly enough to show that # (k, χ, σ) holds. To
do this we can use lemma 8.14. In fact there exists a positive integer n such that
h ∈ K(n), χ ∈ E(n, h), k ∈ K(n), χ ∈ E(n, k). Given that ρ ∈ Ξ(h), σ ∈ Ξ(k), ρ ⊑ σ
we can apply that lemma and get #(h, χ, ρ) = #(k, χ, σ), so #(k, χ, σ) is proved.

We can create a set R12.15 which is the set of all pairs(
γ[x1 : φ1, . . . , xm+1 : φm+1,→ (χ, φ)],
γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({}(xm+1 : φm+1, φ)))]

)
such that

• m is a positive integer, x1, . . . , xm+1 ∈ V, with xi ̸= xj for i ̸= j, φ1, . . . , φm+1 ∈
E, H[x1 : φ1, . . . , xm+1 : φm+1];

• if we define k = k[x1 : φ1, . . . , xm+1 : φm+1] and h = k[x1 : φ1, . . . , xm : φm]
then χ ∈ S(h) ∩ S(k), φ ∈ S(k).

Lemma 12.15 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R12.15 as a rule in our system we also need to show that R12.15 is r.e..
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Lemma 12.16. R12.15 is r.e..

Proof. Given a positive integer m and (x1, φ1, . . . , xm+1, φm+1) ∈ Rm+1 all of the
following sets are r.e.:

• S(k[x1 : φ1, . . . , xm : φm]),
• S(k[x1 : φ1, . . . , xm+1 : φm+1]),
• S(k[x1 : φ1, . . . , xm : φm]) ∩ S(k[x1 : φ1, . . . , xm+1 : φm+1]).

Therefore the following set is also r.e.:

{(x1, φ1, . . . , xm+1, φm+1)}×(S(k[x1 : φ1, . . . , xm : φm])∩S(k[x1 : φ1, . . . , xm+1 : φm+1]))

× S(k[x1 : φ1, . . . , xm+1 : φm+1]) .

Let’s use this temporary definition

Q′
m+1,2 =

⋃
(x1,φ1,...,xm+1,φm+1)∈Rm+1

{(x1, φ1, . . . , xm+1, φm+1)}

× (S(k[x1 : φ1, . . . , xm : φm]) ∩ S(k[x1 : φ1, . . . , xm+1 : φm+1]))

× S(k[x1 : φ1, . . . , xm+1 : φm+1])).

With this Q′
m+1,2 is a r.e. subset of (Σ∗)2(m+1) × Σ∗ × Σ∗.

We now define two functions δ1,m, δ2,m over (Σ∗)2(m+1)×Σ∗×Σ∗ as follows. Given

((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ) ∈ (Σ∗)2(m+1) × Σ∗ × Σ∗

δ1,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ) = γ[ψ1 : φ1, . . . , ψm+1 : φm+1,→ (χ, φ)] .

δ2,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ) =

γ[ψ1 : φ1, . . . , ψm : φm,→ (χ,∀({}(ψm+1 : φm+1, φ)))] .

All of the two functions we have defined are computable functions from (Σ∗)2(m+1)×
Σ∗ × Σ∗ to Σ∗. If we define a function δm over (Σ∗)2(m+1) × Σ∗ × Σ∗ as follows:

δm((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ) =

(
δ1,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ),
δ2,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ)

)
then δm is a computable function from (Σ∗)2(m+1)×Σ∗×Σ∗ to (Σ∗)2, therefore the

set

Dm = {δm((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ)|((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ) ∈ Q′
m+1,2}

is a r.e. subset of (Σ∗)2.
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If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)2 and actually
this set is equal to our set R12.15 which so is r.e. itself.

Then let R12.15 ∈ R.

Lemma 12.17. Let m be a positive integer. Let x1, . . . , xm+1 ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm+1 ∈ E and assume H[x1 : φ1, . . . , xm+1 : φm+1].

Define k = k[x1 : φ1, . . . , xm+1 : φm+1]. Of course H[x1 : φ1, . . . , xm : φm] also
holds, we define h = k[x1 : φ1, . . . , xm : φm]. Let χ ∈ S(h), φ ∈ S(k), ψ ∈ S(h)∩S(k).

Under these assumptions we have

• ∀({}(xm+1 : φm+1,→ (φ,ψ))) ∈ S(h),
• → (χ,∀({}(xm+1 : φm+1,→ (φ,ψ)))) ∈ S(h),
• ∃({}(xm+1 : φm+1, φ)) ∈ S(h),
• → (χ,→ (∃({}(xm+1 : φm+1, φ)), ψ)) ∈ S(h)
• γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({}(xm+1 : φm+1,→ (φ,ψ))))] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (∃({}(xm+1 : φm+1, φ)), ψ))] ∈ S(ϵ).

Moreover if #(γ[x1 : φ1, . . . , xm : φm,→ (χ, ∀({}(xm+1 : φm+1,→ (φ,ψ))))]) then

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (∃({}(xm+1 : φm+1, φ)), ψ))]) .

Proof. Clearly → (φ,ψ) ∈ S(k) and by lemma 8.21

∀({}(xm+1 : φm+1,→ (φ,ψ))) ∈ S(h).

Similarly ∃({}(xm+1 : φm+1, φ)) ∈ S(h) and all the other ‘preliminary’ results hold.

We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (χ, ∀({}(xm+1 : φm+1,→ (φ,ψ))))])

as

P∀({#(h,→ (χ,∀ ({} (xm+1 : φm+1,→ (φ,ψ)))) , ρ) | ρ ∈ Ξ(h)}) ,

P∀({P→ (# (h, χ, ρ) ,#(h,∀ ({} (xm+1 : φm+1,→ (φ,ψ))) , ρ)) | ρ ∈ Ξ(h)}) ,

P∀({P→ (# (h, χ, ρ) , P∀ ({#(k,→ (φ,ψ), σ) | σ ∈ Ξ(k), ρ ⊑ σ})) | ρ ∈ Ξ(h)}) ,

P∀({P→ (# (h, χ, ρ) , P∀ ({P→ (#(k, φ, σ),#(k, ψ, σ)) | σ ∈ Ξ(k), ρ ⊑ σ})) | ρ ∈ Ξ(h)}) .

We can furtherly express this as

‘for each ρ ∈ Ξ(h)
P→ (# (h, χ, ρ) , P∀ ({P→ (#(k, φ, σ),#(k, ψ, σ)) | σ ∈ Ξ(k), ρ ⊑ σ}))’,
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‘for each ρ ∈ Ξ(h) # (h, χ, ρ) is false or
P∀ ({P→ (#(k, φ, σ),#(k, ψ, σ)) | σ ∈ Ξ(k), ρ ⊑ σ})’,

‘for each ρ ∈ Ξ(h) # (h, χ, ρ) is false or
for each σ ∈ Ξ(k) such that ρ ⊑ σ P→ (#(k, φ, σ),#(k, ψ, σ))’,

‘for each ρ ∈ Ξ(h) # (h, χ, ρ) is false or
for each σ ∈ Ξ(k) such that ρ ⊑ σ #(k, φ, σ) is false or #(k, ψ, σ)’.

We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (∃({}(xm+1 : φm+1, φ)), ψ))])

as

P∀({#(h,→ (χ,→ (∃({}(xm+1 : φm+1, φ)), ψ)) , ρ) | ρ ∈ Ξ(h)}) ,

P∀({P→ (# (h, χ, ρ) ,#(h,→ (∃({}(xm+1 : φm+1, φ)), ψ), ρ)) | ρ ∈ Ξ(h)}) ,

P∀({P→ (# (h, χ, ρ) , P→ (#(h,∃({}(xm+1 : φm+1, φ)), ρ),#(h, ψ, ρ))) | ρ ∈ Ξ(h)}) ,
P∀({P→ (# (h, χ, ρ) , P→ (P∃ ({#(k, φ, σ) | σ ∈ Ξ(k), ρ ⊑ σ}) ,#(h, ψ, ρ))) | ρ ∈ Ξ(h)}) .

We can furtherly express this as

‘for each ρ ∈ Ξ(h)
P→ (# (h, χ, ρ) , P→ (P∃ ({#(k, φ, σ) | σ ∈ Ξ(k), ρ ⊑ σ}) ,#(h, ψ, ρ)))’,

‘for each ρ ∈ Ξ(h) # (h, χ, ρ) is false or
P→ (P∃ ({#(k, φ, σ) | σ ∈ Ξ(k), ρ ⊑ σ}) ,#(h, ψ, ρ))’

‘for each ρ ∈ Ξ(h) # (h, χ, ρ) is false or
(P∃ ({#(k, φ, σ) | σ ∈ Ξ(k), ρ ⊑ σ}) is false or #(h, ψ, ρ))’.

‘for each ρ ∈ Ξ(h) # (h, χ, ρ) is false or
((there exists σ ∈ Ξ(k) such that ρ ⊑ σ and # (k, φ, σ)) is false or #(h, ψ, ρ))’.

We now assume

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({}(xm+1 : φm+1,→ (φ,ψ))))])

and try to prove

#(γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (∃({}(xm+1 : φm+1, φ)), ψ))]) .

Let ρ ∈ Ξ(h) and # (h, χ, ρ), suppose there exists σ ∈ Ξ(k) such that ρ ⊑ σ
and # (k, φ, σ). Clearly under our assumptions #(k, ψ, σ) holds. We need to prove
#(h, ψ, ρ), and to do this we can use lemma 8.14. In fact there exists a positive integer
n such that h ∈ K(n), ψ ∈ E(n, h), k ∈ K(n), ψ ∈ E(n, k). Given that ρ ∈ Ξ(h),
σ ∈ Ξ(k), ρ ⊑ σ we can apply that lemma and get #(h, ψ, ρ) = #(k, ψ, σ), so #(h, ψ, ρ)
is proved.
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We can create a set R12.17 which is the set of all pairs(
γ[x1 : φ1, . . . , xm : φm,→ (χ,∀({}(xm+1 : φm+1,→ (φ,ψ))))],
γ[x1 : φ1, . . . , xm : φm,→ (χ,→ (∃({}(xm+1 : φm+1, φ)), ψ))]

)
such that

• m is a positive integer, x1, . . . , xm+1 ∈ V, with xi ̸= xj for i ̸= j, φ1, . . . , φm+1 ∈
E, H[x1 : φ1, . . . , xm+1 : φm+1];

• if we define k = k[x1 : φ1, . . . , xm+1 : φm+1] and h = k[x1 : φ1, . . . , xm : φm]
then χ ∈ S(h), φ ∈ S(k), ψ ∈ S(h) ∩ S(k).

Lemma 12.17 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R12.17 as a rule in our system we also need to show that R12.17 is r.e..

Lemma 12.18. R12.17 is r.e..

Proof. Given a positive integer m and (x1, φ1, . . . , xm+1, φm+1) ∈ Rm+1 all of the
following sets are r.e.:

• S(k[x1 : φ1, . . . , xm : φm]),
• S(k[x1 : φ1, . . . , xm+1 : φm+1]),
• S(k[x1 : φ1, . . . , xm : φm]) ∩ S(k[x1 : φ1, . . . , xm+1 : φm+1]).

Therefore the following set is also r.e.:

{(x1, φ1, . . . , xm+1, φm+1)} × S(k[x1 : φ1, . . . , xm : φm])

× S(k[x1 : φ1, . . . , xm+1 : φm+1])

× (S(k[x1 : φ1, . . . , xm : φm]) ∩ S(k[x1 : φ1, . . . , xm+1 : φm+1])) .

Let’s use this temporary definition

Q′
m+1,3 =

⋃
(x1,φ1,...,xm+1,φm+1)∈Rm+1

{(x1, φ1, . . . , xm+1, φm+1)}×S(k[x1 : φ1, . . . , xm : φm])

× S(k[x1 : φ1, . . . , xm+1 : φm+1])

× (S(k[x1 : φ1, . . . , xm : φm]) ∩ S(k[x1 : φ1, . . . , xm+1 : φm+1])) .

With this Q′
m+1,3 is a r.e. subset of (Σ∗)2(m+1) × Σ∗ × Σ∗ × Σ∗.

We now define two functions δ1,m, δ2,m over (Σ∗)2(m+1) ×Σ∗ ×Σ∗ ×Σ∗ as follows.

Given ((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ, ψ) ∈ (Σ∗)2(m+1) × Σ∗ × Σ∗ × Σ∗

δ1,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ, ψ) =

γ[ψ1 : φ1, . . . , ψm : φm,→ (χ,∀({}(ψm+1 : φm+1,→ (φ,ψ))))] .
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δ2,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ, ψ) =

γ[ψ1 : φ1, . . . , ψm : φm,→ (χ,→ (∃({}(ψm+1 : φm+1, φ)), ψ))] .

All of the two functions we have defined are computable functions from (Σ∗)2(m+1)×
Σ∗ × Σ∗ × Σ∗ to Σ∗. If we define a function δm over (Σ∗)2(m+1) × Σ∗ × Σ∗ × Σ∗ as
follows:

δm((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ, ψ) =

(
δ1,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ, ψ),
δ2,m((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ, ψ)

)
then δm is a computable function from (Σ∗)2(m+1)×Σ∗×Σ∗×Σ∗ to (Σ∗)2, therefore

the set

Dm = {δm((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ, ψ)|((ψ1, φ1, . . . , ψm+1, φm+1), χ, φ, ψ) ∈ Q′
m+1,3}

is a r.e. subset of (Σ∗)2.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)2 and actually
this set is equal to our set R12.17 which so is r.e. itself.

Then let R12.17 ∈ R.

Lemma 12.19. Let m be a positive integer. Let x1, . . . , xm+1 ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm+1 ∈ E and assume H[x1 : φ1, . . . , xm+1 : φm+1].

Define k = k[x1 : φ1, . . . , xm+1 : φm+1]. Of course H[x1 : φ1, . . . , xm : φm] also
holds, we define h = k[x1 : φ1, . . . , xm : φm]. Let φ ∈ S(k), ψ ∈ S(h) ∩ S(k).

Under these assumptions we have

• ∀({}(xm+1 : φm+1,→ (φ,ψ))) ∈ S(h),
• ∃({}(xm+1 : φm+1, φ)) ∈ S(h),
• γ[x1 : φ1, . . . , xm : φm, ∀({}(xm+1 : φm+1,→ (φ,ψ)))] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm : φm,→ (∃({}(xm+1 : φm+1, φ)), ψ)] ∈ S(ϵ).

Moreover if #(γ[x1 : φ1, . . . , xm : φm, ∀({}(xm+1 : φm+1,→ (φ,ψ)))]) then

#(γ[x1 : φ1, . . . , xm : φm,→ (∃({}(xm+1 : φm+1, φ)), ψ)]) .

Proof. Clearly → (φ,ψ) ∈ S(k) and by lemma 8.21

∀({}(xm+1 : φm+1,→ (φ,ψ))) ∈ S(h).

Similarly ∃({}(xm+1 : φm+1, φ)) ∈ S(h) and all the other ‘preliminary’ results hold.

We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,∀({}(xm+1 : φm+1,→ (φ,ψ)))])
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as

P∀({#(h,∀ ({} (xm+1 : φm+1,→ (φ,ψ))) , ρ) | ρ ∈ Ξ(h)}) ,

P∀(P∀ ({#(k,→ (φ,ψ), σ) | σ ∈ Ξ(k), ρ ⊑ σ}) | ρ ∈ Ξ(h)}) ,

P∀({P∀ ({P→ (#(k, φ, σ),#(k, ψ, σ)) | σ ∈ Ξ(k), ρ ⊑ σ}) | ρ ∈ Ξ(h)}) .

We can furtherly express this as

‘for each ρ ∈ Ξ(h) P∀ ({P→ (#(k, φ, σ),#(k, ψ, σ)) | σ ∈ Ξ(k), ρ ⊑ σ})’,

‘for each ρ ∈ Ξ(h)
for each σ ∈ Ξ(k) such that ρ ⊑ σ P→ (#(k, φ, σ),#(k, ψ, σ))’,

‘for each ρ ∈ Ξ(h)
for each σ ∈ Ξ(k) such that ρ ⊑ σ #(k, φ, σ) is false or #(k, ψ, σ)’.

We can rewrite

#(γ[x1 : φ1, . . . , xm : φm,→ (∃({}(xm+1 : φm+1, φ)), ψ)])

as

P∀({#(h,→ (∃({}(xm+1 : φm+1, φ)), ψ), ρ) | ρ ∈ Ξ(h)}) ,

P∀({P→ (#(h,∃({}(xm+1 : φm+1, φ)), ρ),#(h, ψ, ρ)) | ρ ∈ Ξ(h)}) ,
P∀({P→ (P∃ ({#(k, φ, σ) | σ ∈ Ξ(k), ρ ⊑ σ}) ,#(h, ψ, ρ)) | ρ ∈ Ξ(h)}) .

We can furtherly express this as

‘for each ρ ∈ Ξ(h)
P→ (P∃ ({#(k, φ, σ) | σ ∈ Ξ(k), ρ ⊑ σ}) ,#(h, ψ, ρ))’,

‘for each ρ ∈ Ξ(h)
(P∃ ({#(k, φ, σ) | σ ∈ Ξ(k), ρ ⊑ σ}) is false or #(h, ψ, ρ))’.

‘for each ρ ∈ Ξ(h)
((there exists σ ∈ Ξ(k) such that ρ ⊑ σ and # (k, φ, σ)) is false or #(h, ψ, ρ))’.

We now assume

#(γ[x1 : φ1, . . . , xm : φm,∀({}(xm+1 : φm+1,→ (φ,ψ)))])

and try to prove

#(γ[x1 : φ1, . . . , xm : φm,→ (∃({}(xm+1 : φm+1, φ)), ψ)]) .

Let ρ ∈ Ξ(h), suppose there exists σ ∈ Ξ(k) such that ρ ⊑ σ and # (k, φ, σ). Clearly
under our assumptions #(k, ψ, σ) holds. We need to prove #(h, ψ, ρ), and to do this
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we can use lemma 8.14. In fact there exists a positive integer n such that h ∈ K(n),
ψ ∈ E(n, h), k ∈ K(n), ψ ∈ E(n, k). Given that ρ ∈ Ξ(h), σ ∈ Ξ(k), ρ ⊑ σ we can
apply that lemma and get #(h, ψ, ρ) = #(k, ψ, σ), so #(h, ψ, ρ) is proved.

We can create a set R12.19 which is the set of all pairs(
γ[x1 : φ1, . . . , xm : φm,∀({}(xm+1 : φm+1,→ (φ,ψ)))],
γ[x1 : φ1, . . . , xm : φm,→ (∃({}(xm+1 : φm+1, φ)), ψ)]

)
such that

• m is a positive integer, x1, . . . , xm+1 ∈ V, with xi ̸= xj for i ̸= j, φ1, . . . , φm+1 ∈
E, H[x1 : φ1, . . . , xm+1 : φm+1];

• if we define k = k[x1 : φ1, . . . , xm+1 : φm+1] and h = k[x1 : φ1, . . . , xm : φm]
then φ ∈ S(k), ψ ∈ S(h) ∩ S(k).

Lemma 12.19 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R12.19 as a rule in our system we also need to show that R12.19 is r.e..

Lemma 12.20. R12.19 is r.e..

Proof. Given a positive integer m and (x1, φ1, . . . , xm+1, φm+1) ∈ Rm+1 all of the
following sets are r.e.:

• S(k[x1 : φ1, . . . , xm : φm]),
• S(k[x1 : φ1, . . . , xm+1 : φm+1]),
• S(k[x1 : φ1, . . . , xm : φm]) ∩ S(k[x1 : φ1, . . . , xm+1 : φm+1]).

Therefore the following set is also r.e.:

{(x1, φ1, . . . , xm+1, φm+1)} × S(k[x1 : φ1, . . . , xm+1 : φm+1])

× (S(k[x1 : φ1, . . . , xm : φm]) ∩ S(k[x1 : φ1, . . . , xm+1 : φm+1])) .

Let’s use this temporary definition

Q′
m+1,2 =

⋃
(x1,φ1,...,xm+1,φm+1)∈Rm+1

{(x1, φ1, . . . , xm+1, φm+1)}×S(k[x1 : φ1, . . . , xm+1 : φm+1])

× (S(k[x1 : φ1, . . . , xm : φm]) ∩ S(k[x1 : φ1, . . . , xm+1 : φm+1])) .

With this Q′
m+1,2 is a r.e. subset of (Σ∗)2(m+1) × Σ∗ × Σ∗.

We now define two functions δ1,m, δ2,m over (Σ∗)2(m+1)×Σ∗×Σ∗ as follows. Given

((ψ1, φ1, . . . , ψm+1, φm+1), φ, ψ) ∈ (Σ∗)2(m+1) × Σ∗ × Σ∗

δ1,m((ψ1, φ1, . . . , ψm+1, φm+1), φ, ψ) =

γ[ψ1 : φ1, . . . , ψm : φm,∀({}(ψm+1 : φm+1,→ (φ,ψ)))] .
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δ2,m((ψ1, φ1, . . . , ψm+1, φm+1), φ, ψ) =

γ[ψ1 : φ1, . . . , ψm : φm,→ (∃({}(ψm+1 : φm+1, φ)), ψ)] .

All of the two functions we have defined are computable functions from (Σ∗)2(m+1)×
Σ∗ × Σ∗ to Σ∗. If we define a function δm over (Σ∗)2(m+1) × Σ∗ × Σ∗ as follows:

δm((ψ1, φ1, . . . , ψm+1, φm+1), φ, ψ) =

(
δ1,m((ψ1, φ1, . . . , ψm+1, φm+1), φ, ψ),
δ2,m((ψ1, φ1, . . . , ψm+1, φm+1), φ, ψ)

)
then δm is a computable function from (Σ∗)2(m+1)×Σ∗×Σ∗ to (Σ∗)2, therefore the

set

Dm = {δm((ψ1, φ1, . . . , ψm+1, φm+1), φ, ψ)|((ψ1, φ1, . . . , ψm+1, φm+1), φ, ψ) ∈ Q′
m+1,2}

is a r.e. subset of (Σ∗)2.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)2 and actually
this set is equal to our set R12.19 which so is r.e. itself.

Then let R12.19 ∈ R.

Lemma 12.21. Let m be a positive integer. Let x1, . . . , xm ∈ V, with xi ̸= xj for
i ̸= j. Let φ1, . . . , φm ∈ E and assume H[x1 : φ1, . . . , xm : φm]. Define k = k[x1 :
φ1, . . . , xm : φm] and let φ,ψ, χ ∈ S(k).

Under these assumptions we have

• → (∧(φ,ψ), χ),→ (φ,→ (ψ, χ)) ∈ S(k),
• γ[x1 : φ1, . . . , xm : φm,→ (φ,→ (ψ, χ))] ∈ S(ϵ),
• γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), χ)] ∈ S(ϵ).

Moreover if #(γ[x1 : φ1, . . . , xm : φm,→ (φ,→ (ψ, χ))]) then
#(γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), χ)])

Proof. We assume #(γ[x1 : φ1, . . . , xm : φm,→ (φ,→ (ψ, χ))]) which can be rewrit-
ten

P∀({#(k,→ (φ,→ (ψ, χ)), σ)| σ ∈ Ξ(k)})

P∀({P→(#(k, φ, σ),#(k,→ (ψ, χ), σ))| σ ∈ Ξ(k)})

P∀({P→(#(k, φ, σ), P→(#(k, ψ, σ),#(k, χ, σ)))| σ ∈ Ξ(k)}) ,

‘for each σ ∈ Ξ(k) #(k, φ, σ) is false or (#(k, ψ, σ) is false or #(k, χ, σ))’.

We now try to show #(γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), χ)]) which in turn can
be rewritten

P∀({#(k,→ (∧(φ,ψ), χ), σ)| σ ∈ Ξ(k)})

179



P∀({P→(#(k,∧(φ,ψ), σ),#(k, χ, σ))| σ ∈ Ξ(k)})

P∀({P→(P∧(#(k, φ, σ),#(k, ψ, σ)),#(k, χ, σ))| σ ∈ Ξ(k)}) ,

‘for each σ ∈ Ξ(k) it is false that (#(k, φ, σ) and #(k, ψ, σ)) or #(k, χ, σ)’.

Let σ ∈ Ξ(k), let’s also keep in mind that #(k, φ, σ) is false or #(k, ψ, σ) is false
or #(k, χ, σ). If #(k, φ, σ) is false then it is false that (#(k, φ, σ) and #(k, ψ, σ)).
Similarly if #(k, ψ, σ) is false then it is false that (#(k, φ, σ) and #(k, ψ, σ)). Finally
if #(k, χ, σ) holds then it holds itself and what we wanted to show is true.

We can create a set R12.21 which is the set of all pairs

(γ[x1 : φ1, . . . , xm : φm,→ (φ,→ (ψ, χ))], γ[x1 : φ1, . . . , xm : φm,→ (∧(φ,ψ), χ)])

such that

• m is a positive integer, x1, . . . , xm ∈ V, xi ̸= xj for i ̸= j, φ1, . . . , φm ∈ E,
H[x1 : φ1, . . . , xm : φm],

• φ,ψ, χ ∈ S(k[x1 : φ1, . . . , xm : φm]).

Lemma 12.21 shows us that this set (which is a potential 1-ary rule) is ‘sound’. In
order to use R12.21 as a rule in our system we also need to show that R12.21 is r.e..

Lemma 12.22. R12.21 is r.e..

Proof. Given a positive integer m and (x1, φ1, . . . , xm, φm) ∈ Rm we can notice the
following:

• k[x1 : φ1, . . . , xm : φm] ∈ K;
• S(k[x1 : φ1, . . . , xm : φm]) is r.e.;
• {(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])3 is r.e..

Let’s define

Qm,3 =
⋃

(x1,φ1,...,xm,φm)∈Rm

{(x1, φ1, . . . , xm, φm)} × S(k[x1 : φ1, . . . , xm : φm])3 .

Clearly Qm,3 ⊆ (Σ∗)2m × (Σ∗)3 is also r.e..

We now define two functions δ1,m, δ2,m over (Σ∗)2m × (Σ∗)3 as follows. Given
((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) ∈ (Σ∗)2m × (Σ∗)3

δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (φ,→ (ψ, χ))] .

δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) = γ[ψ1 : φ1, . . . , ψm : φm,→ (∧(φ,ψ), χ)] .
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All of the two functions we have defined are computable functions from (Σ∗)2m ×
(Σ∗)3 to Σ∗. If we define a function δm over (Σ∗)2m × (Σ∗)3 as follows:

δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) =

(
δ1,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)),
δ2,m((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)),

)
then δm is a computable function from (Σ∗)2m × (Σ∗)3 to (Σ∗)2, therefore the set

Dm = {δm((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ))| ((ψ1, φ1, . . . , ψm, φm), (φ,ψ, χ)) ∈ Qm,3}

is a r.e. subset of (Σ∗)2.

If we now consider the set
⋃

m⩾1Dm then this is a r.e. subset of (Σ∗)2 and actually
this set is equal to our set R12.21 which so is r.e. itself.

Then let R12.21 ∈ R.

13. Another proof

For each x, y natural numbers we say that x divides y if there exists a natural number
α such that y = xα.

In our example we want to show that for each x, y, z natural numbers if x divides
y and y divides z then x divides z.

Of course, we first need to build an expression in our language to express this. To
build that expression we must add to our language a constant symbol N to represent
the set of natural numbers N, so that we have #(N) = N.

And we need to add another constant symbol in our language. This is the symbol ∗
that stands for the product (or multiplication) operation in the domain N of natural
numbers. Therefore #(∗) is a function defined on N × N and for each α, β ∈ N
#(∗)(α, β) is the product of α and β, in other words #(∗)(α, β) = α · β.

The set F of operators is the same we have assumed in our former example, so it
must contain all of these symbols: ¬,∧,∨,→,↔,∀,∃,∈,=.

So, in order to formalize our statement and a proof of it, we will use a language
(V,F , C,#, {D1, . . . , Dp}, qmax) which must be as follows

V = {x, y, z, u, v, w}.

F = {¬,∧,∨,→,↔, ∀,∃,∈,=},

C = {N, ∗};
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Moreover, we need to include the set N of natural numbers in our additional sets,
so let p = 1 and D1 = N, and we also set a conventional value of 1 for qmax.

At this point, the statement we wish to prove is the following:

γ

[
x : N, y : N, z : N,→

(
∧
(

∃({}(u : N,= (y, ∗(x, u)))),
∃({}(v : N,= (z, ∗(y, v))))

)
,∃({}(w : N,= (z, ∗(x,w))))

)]
. (Th1)

Let k = k[x : N, y : N, z : N, u : N, v : N ]. By lemma 9.1 u ∈ E(k). If we
define ku = k[x : N, y : N, z : N ] then for each σ ∈ Ξ(k) σ/dom(ku) ∈ Ξ(ku) and
#(k, u, σ) ∈ #(ku, N, σ/dom(ku)) = #(N) = N.

Similarly by 9.1 x ∈ E(k). If we define kx = ϵ then for each σ ∈ Ξ(k)
σ/dom(kx) ∈ Ξ(kx) and #(k, x, σ) ∈ #(kx, N, σ/dom(kx)) = #(N) = N.

By lemma 12.3 it follows that (∗)(x, u) ∈ E(k) and for each σ ∈ Ξ(k)
#(k, (∗)(x, u), σ) = (#(k, x, σ) ·#(k, u, σ)) ∈ N.

The first sentence in our proof is an instance of axiom A12.5.

γ[x : N, y : N, z : N, u : N, v : N,→ (∧(= (y, xu),= (z, yv)),= (z, (xu)v))] (13.1)

The following also hold:

• ∧(= (y, xu),= (z, yv)) ∈ S(k).

By A12.7 we obtain

γ[x : N, y : N, z : N, u : N, v : N,→ (∧(= (y, xu),= (z, yv)),= ((xu)v, x(uv)))]
(13.2)

The following also hold:

• = (z, (xu)v) ∈ S(k),
• = ((xu)v, x(uv)) ∈ S(k).

By 13.1, 13.2 and rule R10.14

γ

[
x : N, y : N, z : N, u : N, v : N,→

(
∧
(

= (y, xu),
= (z, yv)

)
,∧

(
= (z, (xu)v),
= ((xu)v, x(uv))

))]
. (13.3)

The following also hold:

• z ∈ E(k),
• (xu)v ∈ E(k),
• x(uv) ∈ E(k).

By axiom A12.9

γ

[
x : N, . . . , v : N,→

(
∧
(

= (y, xu),
= (z, yv)

)
,→

(
∧
(

= (z, (xu)v),
= ((xu)v, x(uv))

)
,= (z, x(uv))

))]
.

(13.4)
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The following also hold:

• = (z, x(uv)) ∈ S(k).

By 13.3, 13.4 and rule R12.11

γ

[
x : N, y : N, z : N, u : N, v : N,→

(
∧
(

= (y, xu),
= (z, yv)

)
,= (z, x(uv))

)]
. (13.5)

The following also hold: (∗)(u, v) ∈ E(k) and for each σ ∈ Ξ(k)
#(k, (∗)(u, v), σ) = (#(k, u, σ) ·#(k, v, σ)) ∈ N (cfr lemma 12.7).

By 13.5 and rule R12.13

γ

[
x : N, y : N, z : N, u : N, v : N,→

(
∧
(

= (y, xu),
= (z, yv)

)
,∃({}(w : N,= (z, xw)))

)]
. (13.6)

The following also holds: ∃({}(w : N,= (z, xw))) ∈ S(k) (cfr lemma 12.13).

By 13.6 and rule R10.22

γ

[
x : N, y : N, z : N, u : N, v : N,→

(
= (y, xu),→

(
= (z, yv),
∃({}(w : N,= (z, xw)))

))]
. (13.7)

Let h = k[x : N, y : N, z : N, u : N ]. By lemma 9.1 u ∈ E(h). If we define
hu = k[x : N, y : N, z : N ] then for each ρ ∈ Ξ(h) ρ/dom(hu) ∈ Ξ(hu) and
#(h, u, ρ) ∈ #(hu, N, ρ/dom(hu)) = #(N) = N.

Similarly by 9.1 x ∈ E(h). If we define hx = ϵ then for each ρ ∈ Ξ(h)
ρ/dom(hx) ∈ Ξ(hx) and #(h, x, ρ) ∈ #(hx, N, ρ/dom(hx)) = #(N) = N.

By lemma 12.3 it follows that (∗)(x, u) ∈ E(h) and for each ρ ∈ Ξ(h)
#(h, (∗)(x, u), ρ) = (#(h, x, ρ) ·#(h, u, ρ)) ∈ N.

Still by 9.1 y ∈ E(h) and by lemma 12.2 = (y, xu) ∈ S(h).

By 13.7 and rule R12.15

γ

[
x : N, y : N, z : N,u : N,→

(
= (y, xu), ∀

(
{}

(
v : N,→

(
= (z, yv),
∃({}(w : N,= (z, xw)))

))))]
. (13.8)

We now want to prove that ∃({}(w : N,= (z, xw))) ∈ S(h). We start by defining
g = h+ < w,N >.

We have N ∈ E(h) and for each ρ ∈ Ξ(h) #(h,N, ρ) = #(N) = N. So N ∈ Es(h).
Moreover w ∈ (V − var(h)) so by lemma 8.21 g ∈ K.

We now want to show that = (z, xw) belongs to S(g). Since N ∈ Es(h) we have
H[x : N, y : N, z : N, u : N,w : N ]. We have

k[x : N, y : N, z : N, u : N,w : N ] = h+ (w,N) = g .
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Using lemma 9.1 we obtain that z, x, w ∈ E(g). If we define gx = ϵ then for each
σ ∈ Ξ(g) σ/dom(gx) ∈ Ξ(gx) and #(g, x, σ) ∈ #(gx, N, σ/dom(gx)) = #(N) = N.

Moreover for each σ ∈ Ξ(g) σ/dom(h) ∈ Ξ(h) #(g, w, σ) ∈ #(h,N, σ/dom(h)) =
#(N) = N.

By lemma 12.3 it follows that (∗)(x,w) ∈ E(g) and for each σ ∈ Ξ(g)
#(g, (∗)(x,w), σ) = (#(g, x, σ) ·#(g, w, σ)) ∈ N.

By lemma 12.2 = (z, xw) belongs to S(g). We can now apply lemma 8.21 and obtain
that ∃({}(w : N,= (z, xw))) ∈ S(h).

To sum up we have = (y, xu) ∈ S(h), = (z, yv) ∈ S(k),
∃({}(w : N,= (z, xw))) ∈ S(h) ∩ S(k).

By 13.8 and rule R12.17

γ

[
x : N, y : N, z : N, u : N,→

(
= (y, xu),→

(
∃({}(v : N,= (z, yv))),
∃({}(w : N,= (z, xw)))

))]
. (13.9)

Using lemma 7.6, we can rewrite 13.9 as

γ

[
x : N, y : N, z : N,∀

(
{}

(
u : N,→

(
= (y, xu),→

(
∃({}(v : N,= (z, yv))),
∃({}(w : N,= (z, xw)))

))))]
. (13.10)

Let κ = k[x : N, y : N, z : N ]. We have proved that
∃({}(w : N,= (z, xw))) ∈ S(h) and ∃({}(v : N,= (z, yv))) ∈ S(h).

We also need to prove that ∃({}(w : N,= (z, xw))) ∈ S(κ)
and ∃({}(v : N,= (z, yv))) ∈ S(κ).

In order to prove ∃({}(w : N,= (z, xw))) ∈ S(κ) we redefine g as κ+ < w,N >.

We have N ∈ E(κ) and for each ρ ∈ Ξ(κ) #(κ,N, ρ) = #(N) = N. So N ∈ Es(κ).
Moreover w ∈ (V − var(κ)) so by lemma 8.21 g ∈ K.

We now want to show that = (z, xw) belongs to S(g). It follows from lemma 11.1
that H[x : N, y : N, z : N,w : N ]. We have

k[x : N, y : N, z : N,w : N ] = κ+ < w,N >= g .

Using lemma 9.1 we obtain that z, x, w ∈ E(g). If we define gx = ϵ then for each
σ ∈ Ξ(g) σ/dom(gx) ∈ Ξ(gx) and #(g, x, σ) ∈ #(gx, N, σ/dom(gx)) = #(N) = N.

Moreover for each σ ∈ Ξ(g) σ/dom(κ) ∈ Ξ(κ) #(g, w, σ) ∈ #(κ,N, σ/dom(κ)) =
#(N) = N.

By lemma 12.3 it follows that (∗)(x,w) ∈ E(g) and for each σ ∈ Ξ(g)
#(g, (∗)(x,w), σ) = (#(g, x, σ) ·#(g, w, σ)) ∈ N.

By lemma 12.2 = (z, xw) belongs to S(g). We can now apply lemma 8.21 and obtain
that ∃({}(w : N,= (z, xw))) ∈ S(κ).

In order to prove ∃({}(v : N,= (z, yv))) ∈ S(κ) we redefine g as κ+ < v,N >.

We have N ∈ E(κ) and for each ρ ∈ Ξ(κ) #(κ,N, ρ) = #(N) = N. So N ∈ Es(κ).
Moreover v ∈ (V − var(κ)) so by lemma 8.21 g ∈ K.
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We now want to show that = (z, yv) belongs to S(g). It follows from lemma 11.1
that H[x : N, y : N, z : N, v : N ]. We have

k[x : N, y : N, z : N, v : N ] = κ+ < v,N >= g .

Using lemma 9.1 we obtain that z, y, v ∈ E(g). If we define gy = k[x : N ] then for
each σ ∈ Ξ(g) σ/dom(gy) ∈ Ξ(gy) and #(g, y, σ) ∈ #(gy, N, σ/dom(gy)) = #(N) = N.

Moreover for each σ ∈ Ξ(g) σ/dom(κ) ∈ Ξ(κ) #(g, v, σ) ∈ #(κ,N, σ/dom(κ)) =
#(N) = N.

By lemma 12.3 it follows that (∗)(y, v) ∈ E(g) and for each σ ∈ Ξ(g)
#(g, (∗)(y, v), σ) = (#(g, y, σ) ·#(g, v, σ)) ∈ N.

By lemma 12.2 = (z, yv) belongs to S(g). We can now apply lemma 8.21 and obtain
that ∃({}(v : N,= (z, yv))) ∈ S(κ).

Then if we apply rule R12.19 to 13.10 we obtain

γ

[
x : N, y : N, z : N,→

(
∃({}(u : N,= (y, xu))),→

(
∃({}(v : N,= (z, yv))),
∃({}(w : N,= (z, xw)))

))]
. (13.11)

We have also ∃({}(u : N,= (y, xu))) ∈ S(κ), so if we apply rule R12.21 we finally
obtain

γ

[
x : N, y : N, z : N,→

(
∧
(

∃({}(u : N,= (y, xu)))
∃({}(v : N,= (z, yv)))

)
, ∃({}(w : N,= (z, xw)))

)]
. (13.12)

14. Expression with mixed orders

We mentioned in the introduction that in our system we can express statements in
which both quantifiers over individuals and quantifiers over sets of individuals occur.
We made the simple example of the following statement:

for each subset X of N and for each x ∈ N we have x ∈ X or x /∈ X .

Let’s see how we can map the statement within our system. In our language we
need two constants: N whose meaning is the set of natural numbers, Π which has
a predefined meaning of a function that produces the power set of the provided
argument.

The set F of operators is the same we have assumed in our other examples, so it
must contain all of these symbols: ¬,∧,∨,→,↔, ∀, ∃,∈,=.

So, in order to formalize our statement and a proof of it, we will use a language
(V,F , C,#, {D1, . . . , Dp}, qmax) which must be as follows

V = {x,X}.

F = {¬,∧,∨,→,↔, ∀, ∃,∈,=},
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C = {N,Π};

Moreover, we need to include the set N of natural numbers in our additional sets,
so let p = 1 and D1 = N, and we also set a conventional value of 1 for qmax.

Since N ∈ P(N), N belongs to the domain of Π.

With this setup, we can express the statement as follows

γ[x : N,X : Π(N),∨(∈ (x,X),¬(∈ (x,X)))] .

Let’s now verify this is an expression of our language.

First of all we want to verify that H[x : N,X : Π(N)] holds.

Clearly N ∈ Es(ϵ) so H[x : N ] holds.

In order to show that H[x : N,X : Π(N)] is true we have to show that
Π(N) ∈ Es(k[x : N ]).

We have N ∈ E(k[x : N ]) and for each σ ∈ Ξ(k[x : N ]) #(k[x : N ], N, σ) =
#(N) = N ∈ P(N).

So we can apply lemma 8.18 and obtain that Π(N) ∈ E(k[x : N ]) and for each
σ ∈ Ξ(k[x : N ]) #(k[x : N ],Π(N), σ) = #(Π)(#(k[x : N ], N, σ)) = P(N).

Therefore Π(N) ∈ Es(k[x : N ]) holds and H[x : N,X : Π(N)] holds.

Let now k = k[x : N,X : Π(N)], we try to show that ∈ (x,X) ∈ S(k).

Using lemma 9.1 we obtain that x,X ∈ E(k).

Moreover, let h = k[x : N ], then for each σ ∈ Ξ(k), σ/dom(h) ∈ Ξ(h) and
#(k,X, σ) ∈ #(h,Π(N), σ/dom(h)) = P(N). Therefore #(k,X, σ) is a set, we can
apply lemma 9.2 and obtain that ∈ (x,X) ∈ S(k).

As a consequence of this ∨(∈ (x,X),¬(∈ (x,X))) ∈ S(k) and finally

γ[x : N,X : Π(N),∨(∈ (x,X),¬(∈ (x,X)))] ∈ S(ϵ) .

15. Further study

Of course, further investigations about our approach to logic can be performed. We
have mentioned in section 8.2 the topic on the completeness or incompleteness of our
deductive systems. Then we have introduced some example of a deductive system.
Some questions that I have not investigated in depth are the following:

• can we describe a deductive system within our logic system as a recursively
axiomatised formal system?
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• given a language that does not include arithmetic, under which conditions, if
any, a deductive system within our logic system is complete?

Another interesting (and not extremely easy) topic is about comparing the
expressive power of our system with the one of standard logic systems.

Another topic to consider is substitution. First-order logic features the notion of
‘substitution’ (see e.g. Enderton’s book [2]). Under appropriate assumptions, we can
apply substitution to a formula φ and obtain a new formula φx

t , by replacing the
free occurrences of the variable x by the term t. In our approach we could be able to
define a similar notion, with the difference that for us t could be a generic expression.
I have somehow studied how the topic of substitution could be applied to this type of
system, but with respect to a former version of my system. I am rather confident that
general substitution mechanisms can be introduced for this type of logic, but I’m not
sure how much work this would require. After all I suppose the introduction of general
substitution mechanisms could be considered as not being properly a core topic about
this approach, since for instance we can use simplified substitution mechanisms.

Finally, let’s also briefly talk about paradoxes. A paradox is usually a situation
in which a contradiction or inconsistency occurs, in other words a paradox arises
when we can build a sentence φ such that both φ and ¬(φ) can be derived. Since our
system is consistent it shouldn’t be possible to have true paradoxes in it. If we have
proved the consistency of our system, what can we do more than this to exclude that
the system is vulnerable to paradoxes?

It could anyway not be wrong to discuss some of the most known paradoxical
arguments to ask ourselves if our system could be vulnerable to one of them.

We begin with Russell’s paradox. Assume we can build the set A of all those sets
X such that X is not a member of X. Clearly, if A ∈ A then A /∈ A and conversely
if A /∈ A then A ∈ A. We have proved both A ∈ A and its negation, and this is the
Russell’s paradox.
It seems in our system we cannot generate this paradox since building a set is permitted
only if you rely on already defined sets. When trying to build set A in our language
we could obtain something like this:

{}(¬(∈ (X,X)), X) .

However it is clear this isn’t a legal expression in our language, since in our language
if you want to build a context-independent expression using a variable X, then you
have to assign a domain to X.

Finally we want to examine the liar paradox. Let’s consider how the paradox is
stated in Mendelson’s book.

A man says, ‘I am lying’. If he is lying, then what he says is true, so he is not lying.
If he is not lying, then what he says is false, so he is lying. In any case, he is lying
and he is not lying.
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Mendelson classifies this paradox as a ‘semantic paradox’ because it makes use of
concepts which need not occur within our standard mathematical language. I agree
that, in his formulation, the paradox has some step which seems not mathematically
rigorous.

We’ll try to provide a more rigorous wording of the paradox.

Let A be a set, and let δ be the condition ‘for each x in A x is false’. Suppose δ is
the only member of A. In this case if δ is true then it is false; if on the contrary δ is
false then it is true.

The explanation of the paradox is the following: simply δ cannot be the only item
in set A. In fact, suppose A has only one element, and let’s call it φ. This implies δ is
equivalent to ‘φ is false’ so it seems acceptable that δ is not φ.

Another approach to the explanation is the following.

If δ is true then for each x in A x is false, so δ is not in A. By contraposition if δ is
in A then δ is false.

Moreover if δ is false and the uniqueness condition ‘for each x in A x = δ’ is
true then δ is true, thus if δ is false then ‘for each x in A x = δ’ is false too. By
contraposition if ‘for each x in A x = δ’ then δ is true.

Therefore if δ is the only element in A then δ is true and false at the same time.
This implies δ cannot be the only item in A.

On the basis of this argument I consider the liar paradox as an apparent paradox
that actually has an explanation. What is the relation between our approach to logic
and the liar paradox?

Standard logic isn’t very suitable to express this paradox. In fact first-order logic is
not designed to construct a condition like our condition δ (= ‘for each x in A x is false’),
and moreover, it is clearly not designed to say ‘δ belongs to set A’. These conditions
aren’t plainly leading to inconsistency, so it is desirable they can be expressed in a
general approach to logic. And our system permits to express them. The paradox isn’t
ought to simply using these conditions, it is due to an assumption that is clearly false,
and the so-called paradox is simply the proof of its falseness.

Related to the liar paradox is the Cretan ‘paradox’, which is actually not a proper
paradox, but is perhaps even more ‘unsettling’ and we quote again Mendelson in this
regard: ([5]).

The Cretan “paradox”, known in antiquity, is similar to the Liar Paradox. The Cretan
philosopher Epimenides said, “All Cretans are liars”. If what he said is true, then, since
Epimenides is a Cretan, it must be false. Hence, what he said is false. Thus, there must
be some Cretan who is not a liar. This is not logically impossible, so we do not have
a genuine paradox. However, the fact that the utterance by Epimenides of that false
sentence could imply the existence of some Cretan who is not a liar is rather unsettling.

188



If we try to put this argument in a more formal statement, it still refers to a
sentence δ of the type ‘for each x in A x is false’, where this time A is the set of all the
statements made by a Cretan and δ is a member of A. Here if δ is true then it is false, so
we have to conclude that δ is false, hence there exists x ∈ A such that x is true. As no-
ticed by Mendelson, it can be unsettling to accept this just because δ is a member of A.

We can still use an argument we have shown above with respect to the liar paradox:
If δ is true then for each x in A x is false, so δ is not in A. By contraposition if δ is
in A then δ is false. And another formulation is the following: δ is false or δ is not in A.

Let A be a set of true/false statements (think to an actual list of statements) and
δ be the statement ‘for each x in A x is false’. We know from the discussion on the
liar paradox that if A has just one element then δ cannot belong to A.

In the case of the Cretan paradox we have that δ could belong to A and there
is not a constraint that A has just one element. Is it possible in this case that δ
belongs to A? The basic problem is that δ, if it belongs to A, makes a reference
to itself and this can lead us to suspect that δ in this case is not something well defined.

We could therefore conclude that also in this case it cannot be accepted that δ
belongs to A. In this case we could ‘resolve’ the problem by using axioms like

¬(∈ (∀({}(x : ψ,¬(x))), ψ)) ,

for each expression ψ that represents a set.

If instead we accept the possibility that δ belongs to A it is evident that we must
also accept that if δ belongs to A then it is false, in fact if it were true then it would
not belong to A.

As a conclusion, with respect to paradoxes, we cannot state that our system is
designed to prevent for sure every possible form of paradox, for instance it doesn’t
prevent anyone to conceive something which is unsettling or contradictory. Anyway
although I have made some assessments on the matter, I currently have no reason to
suppose that the system is subject to some paradox.

References

[1] N.J. Cutland, Computability, Cambridge University Press, 1980.
[2] H. Enderton, A Mathematical Introduction to Logic - Second Edition, Academic

Press, 2001 (first edition 1972).
[3] W. Ewald, The Emergence of First-Order Logic, The Stanford Encyclopedia

of Philosophy (Spring 2019 Edition), Edward N. Zalta (ed.). Retrieved from
https://plato.stanford.edu/entries/logic-firstorder-emergence/

[4] J. Ferreirós, The road to modern logic - an interpretation, The Bulletin of Sym-
bolic Logic, Volume 7, Number 4, Dec. 2001.

[5] E. Mendelson, Introduction to Mathematical Logic - Fourth Edition, Chapman
& Hall, 1997 (first edition 1964).

189


