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Abstract

While causal models are introduced very much like a formal logical system,
they have not yet been taken to the level of a proper logic of causal reason-
ing with structural equations. In this paper, we furnish causal models with
a distinct deductive system and a corresponding model-theoretic semantics.
Interventionist conditionals will be defined in terms of inferential relations in
this logic of causal models.
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1 Introduction

Causal models have become a powerful framework in formal epistemology and
knowledge representation. They are used to study actual causation, causal expla-
nation, discovery of causal structures, and conditionals (see, e.g., Pearl (2009),
Woodward (2003), Halpern (2016), Briggs (2012), and Schulz (2011)). We focus
on deterministic causal models with structural equations in this paper.

From a logical point of view, it is striking that deterministic causal models are
introduced very much like a formal logical system. Yet, there are some notewor-
thy differences. While the semantics of interventionist conditionals uses model-
theoretic concepts, we do not have a model-theoretic semantics for inferences in a
causal model. Nor do we have a system of natural deduction that allows us to cap-
ture such inferences. Halpern (2000) and Briggs (2012) devised axiomatizations
of interventionist conditionals using causal models. These axiomatizations, how-
ever, do not give us a logic of causal reasoning for drawing inferences from a set of
structural equations. They define a logic of conditionals, but not a logic of causal
reasoning with structural equations as premises.1 The notion of a structural equa-
tion itself has a syntactic flavor, but its “official definition” in Halpern (2000) and
Halpern and Pearl (2005) is a semantic one.

1For an investigation of the relation between conditionals based on causal models and condition-
als based on possible worlds, see Halpern (2013) and Huber (2013).
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Let us briefly explain and exemplify causal reasoning with structural equations.
Suppose T stands for the proposition that a rock is thrown against the window,
while B says that the window breaks. Take then the following structural equation:

B = T.

This equation tells us that throwing a rock may cause the window to break. If T is
given, we can infer B from it, and this inference has a causal meaning. Potential
causes of an event are on the right-hand side of a structural equation, while effects
are on the left-hand side. The notion of a structural equation stands for a nonsym-
metric determination of a variable by the values of certain other variables. And
this nonsymmetry is supposed to mirror the nonsymmetry of causal relations. If C
is a cause of E, then we cannot infer from this that E is also a cause of C. This
contrasts with the symmetry of the biconditional↔ and the identity predicate = in
classical logic. In the absence of causal loops, a structural equation represents an
asymmetric determination.

In light of a structural equation being nonsymmetric, we can distinguish between
two types of inferences with structural equations. First, inferences from causes to
effects, and second, inferences from effects to causes. The latter type of inference
is commonly called abductive. Our logic of causal reasoning is forward-directed
in the sense that it is only about inferences from causes to effects.

The logic of causal reasoning in this paper centers on a syntactic notion of a struc-
tural equation. We consider the equality symbol of such an equation a distinct
logical symbol, and introduce natural deduction rules for it. These rules are sup-
plemented by a model-theoretic semantics. We introduce the notion of a causal
model as a set of structural equations, and describe the interpretation of such a
model. The present logic of causal reasoning thus allows us to explain the notions
of a structural equation and a causal model in a standard logical format. Once we
have introduced the inference rules and the semantics of the new logical symbol
of nonsymmetric determination, knowledge of causal models requires little more
than knowledge of classical logic.

Why devise a logic of causal reasoning – from causes to effects – using structural
equations? First, from a logical point of view, it seems worth exploring whether
or not the framework of causal models may be represented in standard logical for-
mat. Second, propositional causal models become simpler and easier accessible.
Third, some ambiguities in the representation of deterministic causal models in
Pearl (2009) and Halpern (2000) are resolved. Finally, a syntactic account of struc-
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tural equations seems more in line with the representation of such equations in
automated systems and human cognition.

One word on the arity of variables in a causal model is in order. We begin with
propositional causal models, which are restricted to binary variables. This restric-
tion will be lifted in Section 10 using concepts from many-sorted first-order logic.

2 A Simple Example

Let us illustrate the motivation for a logic of causal reasoning with a simple and
well-known example (Halpern and Pearl 2005, p. 861):

Example 1. Suzy & Billy Throw Rocks at a Bottle
“Suzy and Billy both pick up rocks and throw them at a bottle. Suzy’s rock gets
there first, shattering the bottle. Since both throws are perfectly accurate, Billy’s
would have shattered the bottle had it not been preempted by Suzy’s throw.”

Halpern and Pearl (2005, pp. 861-864) suggest modeling the example using five
endogenous variables:

• S T : Suzy throws her rock.

• BT : Billy throws his rock.

• S H: Suzy’s rock hits the bottle.

• BH: Billy’s rock hits the bottle.

• BS : the bottle shatters.

The following causal network represents the dependences among these variables:

S T S H

BT BH

BS

Figure 1: Causal network for the Suzy & Billy Throw Rocks at a Bottle Example.
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We have the following structural equations:

• S H = S T .

• BH = BT ∧ ¬S H.

• BS = S H ∨ BH.

All variables are understood as binary. The two classical truth values form the
range of all variables. A structural equation of the form A = ϕ means that the truth
value of A is determined by the truth value of ϕ. If ϕ is true, then A must be so.
If ϕ is false, then A must be false. These determinations have a causal meaning: ϕ
is a sentences about the causes of A. The other direction of determination, from A
to ϕ, has a different meaning: if we infer ϕ from A, we go from a given effect to
potential causes of this effect. As is standard, we call such an inference abductive.
Inferences from causes to effects, by contrast, are called forward-directed here.
Recall that our logic of causal reasoning aims to capture only the latter type of
inferences.

Abductive inferences play a major role in Pearl (2009), but are less important when
we analyse actual causation in a deterministic setting (see, e.g., Halpern (2016)).
Suppose we know the above structural equations, but have no information as to
which events actually occur. These equations then enable us to make a few straight-
forward observations: if Suzy throws her rock, the bottle will shatter. Likewise if
Billy throws his. If Suzy or Billy throws a rock, the bottle will shatter as well. If
the bottle shatters, we may infer that Suzy or Billy have thrown a rock, but this
inference is of the abductive type. As just explained, our logic of causal reason-
ing aims to respect the nonsymmetry of a structural equation in the sense that it is
confined to causal inferences from causes to effects.

Understanding the structural equations above requires little more than proposi-
tional logic. When writing a research paper on actual causation, it would therefore
be helpful to instruct the reader along the following lines. We can understand the
equations in the sense of classical, propositional logic, with one important qual-
ification: whenever we use a structural equation for an inference, we infer the
left-hand side from the right-hand side, but not the other way around. Even the
consequences of an intervention on a variable can be represented by corresponding
inferences. Instead of the structural equations of the original causal model, we use
the equations of the submodel induced by the intervention. We will explain the
notions of an intervention and a submodel in Section 8.

5



3 Structural Equations

What is a structural equation? Let us recall the original definition of a causal model
in Pearl (2009, p. 203):

A causal model is a triple M = ⟨U,V, F⟩, where

(i) U is a set of background variables, (also called exogenous), that
are determined by factors outside the model;

(ii) V is a set {V1,V2, . . . ,Vn} of variables, called endogenous, that
are determined by variables in the model – that is, variables in
U ∪ V; and

(iii) F is a set of functions { f1, f2, . . . , fn} such that each fi is a map-
ping from (the respective domains of) Ui ∪ PAi to Vi, where
Ui ⊆ U and PAi ⊆ V \ Vi and the entire set F forms a map-
ping from U to V . In other words, each fi in

vi = fi(pai, ui), i = 1, . . . , n,

assigns a value to Vi that depends on (the values of) a select set
of variables in V ∪ U, and the entire set F has a unique solution
V(u).

This notion of a causal model contains syntactic and semantic elements. U and V
are sets of variables, while F is a set of functions. A function is a semantic entity
in the sense of formal logic since functions serve as interpretations of function
symbols. Variables, by contrast, are syntactic entities since they can be interpreted.

Condition (ii) of the above definition suggests that the functions in F define struc-
tural equations of the form vi = fi(pai, ui). By using the phrase ‘in other words’,
Pearl seems to say that we can switch back and forth between functions in F and
structural equations. But this is not entirely correct for the following reasons. If F
is a set of functions – understood as mappings from a domain to a codomain – then
we do not know which of these functions is supposed to determine which variable.
So, it seems more accurate to say that F is a sequence of functions such that the i-th
element of this sequence determines the value of variable Vi. In fact, the notation
{ f1, . . . , fn} suggests that F is understood as a totally ordered set.
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However, some ambiguities remain, even if it is made explicit which function in
F determines which variable. Take, for example, the structural equation for the
variable S H in the above causal scenario:

S H = S T.

Suzy’s rock hits the bottle if Suzy throws her rock. The function fS H – understood
as a mapping from the domain of S T to the domain of S H – is as follows:

{⟨T,T ⟩, ⟨F, F⟩}.

This notation assumes that functions are represented by binary many-to-one rela-
tions, as is standard (Halmos 1974). Such a relation assigns every object of its
domain a unique object of its codomain. The problem is that fS H does not tell us
what the parent variable of S H is. Suppose, for example, we change the causal
model such that Suzy’s rock hits the bottle if Billy throws his rock, while the other
equations remain unchanged. Instead of S H = S T , we have:

S H = BT.

Then, BT is the parent variable of S H. Such an alternate causal model yields
different causal judgments since it does not verify the same interventionist condi-
tionals as the original model. However, we still obtain fS H = {⟨T,T ⟩, ⟨F, F⟩}. The
function fS H remains unchanged. It is therefore not entirely correct to say that the
set F of functions contain the same information as a set of structural equations of
the form vi = fi(pai, ui) do. Nor is it entirely correct to say that a causal model
M = ⟨U,V, F⟩ has a unique directed graph that represents the causal structure of
M.2 While these observations may seem pedantic, they are made for a reason. We
take a closer look at the relationship between syntactic and semantic elements of
causal models in order to devise a deductive system for structural equations.

The account of causal models in Halpern (2000) and Halpern and Pearl (2005) is
more explicit about the relation between syntactic and semantic components of a
causal model. LetU be the set of exogenous variables andV the set of endogenous
variables. R(X) is the range of variable X. For each endogenous variable X of the
causal model, there is a function that maps the Cartesian product of the ranges of
all variables (but X) onto the range of the variable X (Halpern 2000, p. 318n):

2Subsequent to defining the notion of a causal model M = ⟨U,V, F⟩, Pearl (2009, p. 203) seems
to make this claim.
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A causal model over signature S is a tuple T = ⟨S,F ⟩ where F as-
sociates with each variable X ∈ V a function denoted FX such that
FX : (×U∈UR(U)) × (×Y∈V\{X}R(Y)) 7→ R(X). FX tells us the value of
X given the values of all the other variables in U ∪ V. We think of
the functions FX as defining a set of (modifiable) structural equations,
relating the values of the variables.

For this notion of a causal model, it is well defined which function is supposed
to agree with which variable. The function FX must have the same value as the
variable X. However, there remains an ambiguity concerning the parent variables
of a given variable. Suppose the cardinality of the setU∪V is n. Then, FX assigns
every (n−1)-tuple of (×U∈UR(U))× (×Y∈V\{X}R(Y)) a unique object in R(X). Each
element of such an (n−1)-tuple stands for a possible value of a certain variable in
U ∪V \ {X}. But we do not know which element of a given (n−1)-tuple interprets
which variable. In our rock-throwing example, we do not know whether the first
element of the tuple ⟨T, F,T, F,T ⟩ stands for the truth value of S T or for the truth
value of BT , or for the truth value of any of the other variables. So, (n−1)-tuples
of (×U∈UR(U)) × (×Y∈V\{X}R(Y)) must be understood against the background of
some total order of the variables inU∪V. Then, such tuples can be understood as
possible interpretations of the variables inU∪V\{X}. And the notion of a solution
of a set of structural equations (defined by functions FX) is well defined. In fact,
this seems to be the intended meaning of a set of structural equations – defined by
functions FX – in Halpern (2000) and Halpern and Pearl (2005).

With some minor clarifications added, Halpern (2000) and Halpern and Pearl (2005)
thus give us a well-defined notion of a structural equation. But this notion seems
unnecessarily complex. It also seems unnecessarily semantic, at least if we view
the general notion of an equation from the vantage point of logic. The seman-
tic notion of a structural equation lacks a well-defined syntactic counterpart, even
though concrete causal models are commonly represented with syntactic structural
equations. From a logical point of view, it seems worth exploring if we can fur-
nish causal models with a distinct deductive system and a distinct model-theoretic
semantics. This is the objective of the present paper.

Notice, finally, that it is often computationally not feasible to represent a structural
equation in terms of a mapping of the Cartesian product of the ranges of variables
onto the range of another variable if we were to literally represent this mapping as
a set of ordered pairs. A syntactic representation of a structural equation in terms
of some method of determining its values seems more in line with the working of
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automated system and human cognition. To give a simple example, if a structural
equation uses the mathematical function of addition, we do not literally represent
addition as a set of ordered pairs.

4 Propositional Causal Models

Let us now develop a general account of causal models that will serve as foundation
for the present logic of causal reasoning. In spirit, we very much follow Halpern
(2000) and Halpern and Pearl (2005). The main difference to these accounts is that
we define the notion of a structural equation in a syntactic manner. Two further
differences are noteworthy. First, our formalism does not require any distinction
between exogenous and endogenous variables. Second, interventions are defined
for arbitrary Boolean formulas, not only for conjunctions of atomic formulas.3

Causal models represent law-like relations between events. Some events occur and
so are actual, other events do not occur and so are non-actual. Any event occurs
or does not. We represent events by propositional variables. The truth value of the
propositional variables denotes whether or not an event occurs. A being true means
that the corresponding event occurs, while A being false means that the event in
question does not occur.

Let P be a set of propositional variables such that every member of P represents
a distinct event. LP is a propositional language whose logical symbols are the
Boolean connectives. It is defined recursively in the standard way: (i) Any A ∈ P
is a formula. (ii) If ϕ is a formula, then so is ¬ϕ. (iii) If ϕ and ψ are formulas, then
so are ϕ ∨ ψ and ϕ ∧ ψ. (iv) Nothing else is a formula.

We explain the notion of a structural equation in a syntactic fashion. Let A be a
propositional variable of LP, and ϕ be a formula of that language. Then,

A = ϕ

is a structural equation based on LP. Nothing else is a structural equation. The
intended meaning of such an equation is that the truth value of ϕ determines that of
A. This determination has a causal meaning: it goes from causes to an effect. We
shall come to see at a later stage how this directedness of a structural equation is

3The latter generalization has already been realized in Briggs (2012). We agree with Briggs
(2012) on the general strategy for defining such interventions and corresponding conditionals.
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expressed in the formalism. Since LP is a propositional language, A = ϕ is not a
formula of LP.

Definition 1. Causal Model (binary variables)
Let M be a set of structural equations, based on the language LP. For an LP

sentence ϕ, Var(ϕ) is the set of propositional variables that occur in ϕ. M is a
causal model iff it satisfies two conditions:

(1) For any A ∈ P, there is at most one σ ∈ M such that σ has the logical form
A = ϕ.

(2) If A = ϕ is a member of M, then there is no ϕ′ such that (i) ϕ and ϕ′ are
(classically) logically equivalent, and (ii) Var(ϕ′) ⊂ Var(ϕ).

In brief, a causal model M is a set of structural equations such that every proposi-
tional variable inLP has at most one occurrence on the left-hand side of a structural
equation in M. Further, no structural equation in M must have vacuous occurrences
of a propositional variable. We call the occurrence of a variable in an equation
A = ϕ vacuous iff the value of this variable never makes a difference to the value
of ϕ and A. For example, in the equation S H = S T ∧ (BT ∨¬BT ), the variable BT
occurs vacuously.

There remains to define the notions of a parent variable and a causal graph of M.
We say that the propositional variable A is a parent variable of the propositional
variable B – and write (A, B) ∈ PAM – iff there is σ ∈ M such that σ has the
logical form B = ϕ and A occurs in ϕ. A being a parent variable of B means that
the value of A determines the value of B. Note that we have excluded vacuous
determinations by condition (2) of the above definition of a causal model. To give
an example, B = A ∨ ¬A cannot be a member of a causal model M according to
this condition.

The causal graph GM of M is the ordered pair ⟨P, PAM⟩. So, the directed edges of
GM are given by the ordered pairs (A, B) of variables such that A is a parent of B.
The causal model M is called acyclic iff GM is a directed acyclic graph. (In such a
graph, there is no directed path that starts and ends at one and the same node.) Note
that the above definition of a causal model does not exclude cycles. All subsequent
definitions and theorems apply to both cyclic and acyclic causal models.
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5 Natural Deduction

In this section, we set forth a system of natural deduction for reasoning with struc-
tural equations. Suppose Γ is a set of Boolean formulas in the language LP. Fur-
ther, suppose M is a set of structural equations based on the language LP. Which
formulas can be derived from Γ and M? We aim to answer this question by devising
a system of natural deduction that defines a relation Γ ⊢M ϕ.

Obviously, our system needs to include the inference rules of the Boolean connec-
tives: negation, disjunction, and conjunction, including rules for the introduction
and elimination of a contradiction ⊥. We assume the reader is familiar with some
formulation of these rules.

So, there remains the logical symbol = of nonsymmetric determination. This is
the genuinely novel logical symbol of causal models. Fortunately, reasoning with
structural equations is static in the following sense: we normally do not infer a new
structural equation from a given set of structural equations. In light of this, there
is no need for an introduction rule of the logical symbol =. Another reason for not
having such a rule will be given at the end of this section.

Which elimination rules best capture our inferences from a set of structural equa-
tions? Let us start with a simple proposal:

A = ϕ ϕ

A
.

In words, if A = ϕ is a member of M and ϕ can be derived, then A. In addition to
this rule, we need an inference rule for deriving ¬A:

A = ϕ ¬ϕ

¬A
.

However, this pair of inference rules fails to break the symmetry between the left-
hand and the right-hand side of a structural equation. We could still draw infer-
ences from effects to causes, and so go against the direction of causation. To give
an example, let M be the structural equations of the rock-throwing example from
Section 2. Our premise set Γ is given by {BS } (which says that the bottle shatters).
Then, lets start a subderivation with the assumption ¬S T ∧ ¬BT (which says that
Suzy does not throw her rock and Billy does not throw his either). From this as-
sumption, we can derive ¬BS (which means that the bottle does not shatter). This
conclusion contradicts the single member of our premise set Γ = {BS }. By Nega-
tion Introduction, we can therefore infer ¬(¬S T ∧¬BT ). From this, we can derive
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S T ∨ BT , which says that Suzy or Billy throws a rock. Clearly, we have inferred
a sentence about potential causes from a sentence about an effect. The above rules
fail to express the nonsymmetry of structural equations.

Therefore, we need to impose further constraints on the application of the above
rules. Let Var(Γ) be the set of propositional variables that occur in at least one
formula of Γ, our set of premises. Then, we require that a structural equation
A = ϕ can only be used if A has no occurrences in any formula of Γ:

A = ϕ ϕ

A
[A < Var(Γ)] (= Elim1)

A = ϕ ¬ϕ

¬A
[A < Var(Γ)]. (= Elim2)

This simple constraint on the application of the inference rules for = does the trick.
It blocks inferences from effects to causes, but allows causal reasoning from causes
to effects. To resume our running example, suppose once more Γ = {BS } (which
means that the bottle shatters). Then, the constraint [A < Var(Γ)] disallows using
the structural equation BS = S H ∨ BH in whatever derivation from the premise
set {BS }. For Var(Γ) = {BS } and BS occurs on the left-hand side of the structural
equation in question. Hence, there is no way to infer S T ∨BT from BS . Abductive
inferences – which go from effects to causes – are blocked, as desired.

It is worth noting that the constraint [A < Var(Γ)] translates the operation of an
intervention into the language of natural deduction. Recall that an intervention
on a contextualized causal model ⟨M, u⃗⟩ by X⃗ = x⃗ assigns a specific value to the
variable X – for all X that are a member of X⃗ – such that any assignment by the
function FX is overruled.4 Put simply, the structural equation defined by FX be-
comes irrelevant once we intervene on X. In a similar vein, the structural equation
A = ϕ becomes irrelevant if we make an assumption about A in the premise set
Γ. This set thus expresses an intervention on certain variables in P, which may
well be logically complex in the sense of containing disjunctions and conjunctions.
We will define interventionist conditionals using the notion of an interpreted causal
model in Section 8.

Let LC be the logic whose inference rules are given by the standard natural deduc-
tion rules for Boolean connectives, extended by the rules (= Elim1) and (= Elim2).

4See Halpern and Pearl (2005, Sec. 2) or Pearl (2009, Ch. 7).
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LC simply stands for the logic of causal models. The definition of a derivation in
LC is now straightforward:

Definition 2. Γ ⊢M ϕ

Let Γ be a set of LP sentences, and let ϕ be such a sentence. M is a causal model,
based on the language LP. Let LPM be given by the set of LP sentences united
with M. We say that ϕ is derivable from Γ and M – and write Γ ⊢M ϕ – iff there is
a tree of LPM sentences that satisfies the following conditions:

(1) The topmost sentences are either in Γ ∪ M or discharged by an inference in
the tree.

(2) The bottommost sentence is ϕ.

(3) Every sentence in the tree, except ϕ, is a premise of an application of an in-
ference rule of LC such that the conclusion of this application stands directly
below that sentence.

We write Γ ⊢M ϕ instead of M,Γ ⊢ ϕ in order to emphasize that M and Γ contain
different types of premises. Alternatively, we could also write ⟨M,Γ⟩ ⊢ ϕ. The next
step is to introduce the semantics of LC.

Let us finally resume the discussion of an introduction rule for the equality symbol.
If such a rule was available, we could derive new structural equations from a given
set of such equations. Why is this not desirable? Following Halpern and Pearl
(2005, p. 847), we take a structural equation to represent a “distinct mechanism (or
law) in the world”. We further assume that such mechanisms are elementary in the
sense that the causal model does not provide us with any information about any
submechanisms. The structural equations of a causal model are thus comparable to
atomic sentences in truth-value semantics: as atomic sentences are used to explain
the semantics of logically complex sentences, so are structural equations used to
analyse complex causal inferences and judgements.

6 Semantics

Recall that a structural equation A = ϕ in M simply pairs a propositional variable
A with a propositional formula. We can therefore define the semantics of structural
equations in terms of the semantics of propositional logic. As is well known, the
semantics of a propositional language centers on the notion of an assignment of
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truth values to the propositional variables. A value assignment v : P 7→ {T, F}
maps the set P of propositional variables to the set of truth values. This in mind,
we define what it is for a valuation v to satisfy a structural equation:

v |= A = ϕ iff, v |=Cl A iff v |=Cl ϕ. (Def v |= A = ϕ)

In simpler terms, the valuation v satisfies the structural equation A = ϕ iff both
sides of the equation have the same truth value on v. Notably, at this stage, the
semantics of = does not differ from the semantics of the standard biconditional↔
of classical logic. |=Cl stands for the satisfaction relation in classical propositional
logic.

The satisfaction relation for sets that contain propositional formulas and structural
equations can now be defined in the standard way. Let ∆ be a set of formulas such
that any δ ∈ ∆ is either an LP formula or a structural equation based on LP.

v |= ∆ iff, for all δ ∈ ∆, v |= δ. (Def v |= ∆)

It seems as if we could define the relation of logical entailment in a straightforward
manner as well:

∆ |= ϕ iff, for all v s.t. v |= ∆, v |= ϕ.

However, this relation of logical entailment fails to capture the nonsymmetry of
the equality symbol in a structural equation. For a valuation v satisfies a structural
equation A = ϕ iff v satisfies A ↔ ϕ. The two formulas have the same truth
conditions.

How can we express the nonsymmetric determination of the equality symbol =
within a relation of entailment? Recall that we view the premise set Γ – with regard
to the relation Γ ⊢M ϕ – as expressing an intervention on the propositional variables
that have occurrences in Γ. Once we intervene on a variable A, the structural equa-
tion determining A – if there is one – becomes irrelevant for the determination of
A. Hence, we can say that a possibly complex intervention Γ on the causal model
M turns M into a set MΓ:

MΓ = {σ | σ ∈ M, σ ≡ A = ϕ, and A < Var(Γ)}. (Def MΓ)

MΓ is the subset of M such that A = ϕ is in MΓ iff A does not occur in any formula
of Γ. Using this operation on a set M of structural equations, we can define the
relation of entailment for our logic LC:
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Definition 3. Γ |=M ϕ

Let Γ be a set of LP sentences and let ϕ be such a sentence. M is a set of structural
equations, based on the language LP. We say that ϕ is entailed by Γ and M – and
write Γ |=M ϕ – iff, for all valuations v such that v |= Γ ∪ MΓ, v |= ϕ.

Notice that the nonsymmetry of = comes into play through an intervention on M,
which is expressed by the operation of turning a set M of structural equations into
a set MΓ of such equations. MΓ is obtained from M by eliminating all structural
equations that determine a variable that occurs in a formula of Γ. The union of Γ
and MΓ plays a role that is analogous to the notion of a submodel in Pearl (2009,
p. 204). This will become more obvious when we define interventions on inter-
preted causal models in Section 8.

7 Soundness and Completeness

The relation Γ |=M ϕ of entailment is aimed to capture the relation Γ ⊢M ϕ of
derivability. Or shall we say that the derivability relation for causal models is
aimed to capture the entailment relation? More important than this question of
priority is that semantics and proof theory are in harmony with one another. We
show soundness and completeness in this section. Let Γ be a set of LP sentences,
M be as introduced above, and let ϕ be an LP sentence.

Theorem 1. Soundness
If Γ ⊢M ϕ, then Γ |=M ϕ.

Soundness can be proven by induction on the number of inferences in a derivation,
as is standard. The inductive step for the inference rules (= Elim1) and (= Elim1)
is analogous to the inductive step for (→ Elim) in proofs of soundness in classical
logic. Details are spelled out in the appendix.

Theorem 2. Completeness
If Γ |=M ϕ, then Γ ⊢M ϕ.

The proof in the appendix exploits two facts. First, a structural equation A = ϕ is
satisfied by a truth value interpretation v iff A ↔ ϕ is satisfied by v, where↔ has
its classical meaning. Second, propositional classical logic whose logical symbols
are the Boolean connectives is complete.
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8 Interventionist Conditionals

So far, we have dealt with uninterpreted causal models, which are given by a set M
of structural equations. Let us now extend this analysis to interpreted causal mod-
els. Such models are needed to study causal relations in concrete causal scenarios.
A given causal scenario is about specific events some of which occur, while others
may not occur. Obviously, we can represent information as to which events occur
by a set of literals. This gives rise to the notion of an interpreted causal model:

Definition 4. Interpreted Causal Model ⟨M,V⟩
⟨M,V⟩ is an interpreted causal model iff M is a causal model and V a classically
consistent set of literals, both of which are given in the language LP.

Recall that a formula is called a literal iff it is an atom or the negation of an
atomic formula. We say that a set V of literals is complete – relative to LP – iff
every propositional variable of P occurs in exactly one formula of V . If ⟨M,V⟩
is an interpreted causal model, V may or may not be complete. All subsequent
definitions, therefore, apply to completely and partially interpreted causal models.
While the premises of the inference relation ⊢M behave like interventions, the set
V represents what is often referred to as observations.

We thus define the interpretation of a causal model M in terms of a set of literals,
thereby assigning a set of syntactic entities a semantic role. This strategy is in-
spired by Carnap’s notion of a state description in Carnap (1947) and the notion of
a Hintikka set, first expounded in Hintikka (1955). The main benefit of this strat-
egy is simplicity in the subsequent definitions. Moreover, a set of literals proves
more handy and notationally simpler than an interpretation function when we study
concrete causal scenarios (see, e.g., Andreas and Günther (2021)).

What does it mean that an interpreted causal model ⟨M,V⟩ satisfies a Boolean for-
mula ϕ? We define this relation in terms of an entailment relation that encompasses
both forward-directed and abductive causal reasoning:

⟨M,V⟩ |= ϕ iff for all v s.t. v |= M ∪ V, v |= ϕ. (Def ⟨M,V⟩ |= ϕ)

v stands for a classical propositional valuation, as explained in Section 6. For
the expert reader, it may be worth noting that the notion of an interpreted causal
model ⟨M,V⟩ is a syntactic generalization of a causal model M in a context u⃗,
abbreviated by ⟨M, u⃗⟩ in Halpern and Pearl (2005). The former notion is more
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general than the latter since there is no restriction on which variables are given a
direct interpretation.

The next step is to define the crucial notion of an interventionist conditional. Let
α and γ be two Boolean formulas of LP. What does it mean to say that γ would
be true if α were for an interpreted causal model ⟨M,V⟩? To get started, let us first
deal with uninterpreted causal models ⟨M,V⟩ where V is empty. (We simply take
an uninterpreted causal model as a limiting case of an interpreted causal model.)
Then, we can define the truth conditions of the conditional ‘if α were true, γ would
be’ in terms of an entailment relation:

⟨M, ∅⟩ |= [α]γ iff α |=M γ.

To generalize this account of conditionals for interpreted causal models ⟨M,V⟩, we
need to understand how an intervention by α changes the interpretation V . Roughly
speaking, intervening by α means to change the values of some variables such that
α becomes true, and then see what happens. The operations of changing values and
seeing what happens can be understood logically and experimentally. If there is a
mismatch between experimental outcomes and logical predictions, we may have to
change the model. The intervention by a disjunction α may be understood via a set
of conjunctive interventions, each of which verifies α.5

The crucial question is which variables determined by V may change their values
as a consequence of an intervention by α? Which other variables need to be kept
fixed? The notion of a causal graph GM of M (explained and defined in Section
4) helps answer this question. If a variable is a descendant of a variable in α or
occurrent in α, then its value may change due to the intervention by α. If, by
contrast, a variable does not occur in α and is not a descendant of any variable in
α, we need to keep its value fixed. In symbols:

Vα = {l ∈ V | Var(l) ∩ (Des(Var(α)) ∪ Var(α)) = ∅}. (Def Vα)

Vα is the core of the interpretation V that remains unmodified in an intervention by
α. For the intervention by α does not causally affect any variable interpreted by
Vα. As is obvious, Des(Var(α)) designates the set of descendants of the variables
that occur in α.6 We can now define an interventionist conditional in terms of the
entailment relation |=M:

5This approach is pursued in Briggs (2012).
6The definition of Des(Var(α)) is inspired by Brigg’s (2012) account of interventionist condi-

tionals. This is not to say that the present account of interventionist conditionals itself coincides with
the one given in Briggs (2012).

17



Definition 5. ⟨M,V⟩ |= [α]γ
Let ⟨M,V⟩ be an interpreted causal model in the languageLP. α and γ are formulas
of this language. We say that the conditional ‘if α were true, γ would be’ is true in
⟨M,V⟩ – and write ⟨M,V⟩ |= [α]γ – iff Vα, α |=M γ.

Or, equivalently:

⟨M,V⟩ |= [α]γ iff Vα, α ⊢M γ.

Equivalence between the two definitions follows from soundness and completeness
concerning the relations ⊢M and |=M.

We have thus defined interventionist conditionals in terms of a relatively simple
inferential relation. On the side of the premises, we have a set Vα of literals (which
represents the interpretation of non-descendant variables) and the antecedent α it-
self. The conditional ‘if α were true, γ would be’ holds true iff we can infer the
consequent γ from these premises. This inference relation is defined semantically
and syntactically.

Let us briefly apply the present account of interventionist conditionals to our run-
ning example. V = {S T, BT, S H,¬BH, BS }. What happens if Suzy does not throw
her rock? Let α ≡ ¬S T . Then, Vα = {BT }. And for the premise set Γ = Vα ∪ {α},
MΓ = {S H = S T, BH = BT ∧ ¬S H, BS = S H ∨ BH}. Obviously, Vα, α |=M BS
and Vα, α ⊢M BS . So, the bottle still shatters, even if Suzy does not throw her rock.

9 Comparison with the Standard Account

The expert reader familiar with the standard account of causal models will be inter-
ested in whether or not the present account of interventionist conditionals remains
truthful to the definition of such conditionals in Halpern (2000) and related work.
There, the semantics of interventionist conditionals is roughly explained as follows
(p. 320):

[Y⃗ ← y⃗]X(u⃗) = x can be interpreted as “in all possible solutions to the
structural equations obtained after setting Yi to yi, i = 1, . . . , k and the
exogenous variables to u⃗, random variable X has value x”.

While this explanation is confined to conditionals with a consequent of the logical
form X(u⃗) = x, its generalization to arbitrary Boolean formulas is straightforward.
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As for the relation between interventionist conditionals in the standard account and
the present account, we can prove the following proposition:

Proposition 1. Let T = (S,F ) be a causal model over signature S, where F is a
set of structural equations, as defined in Halpern (2000). Let all variables of the
causal model be binary ones. u⃗ is a vector that represents an assignment to the
exogenous variables. Let M be a set of syntactic structural equations such that
each equation has a unique semantic representation by a member in F . V is a set
of literals that syntactically represents the assignment given by vector u⃗. α is a
conjunction of literals such that this conjunction represents the assignment Y⃗ ← y⃗.
γ is an arbitrary Boolean formula. Then, if T |= [Y⃗ ← y⃗]γ, then ⟨M,V⟩ |= [α]γ.

We prove this proposition in the appendix. Does the other direction of the proposi-
tion also hold? That is, can we show that, if ⟨M,V⟩ |= [α]γ, then the “correspond-
ing” semantic causal model T verifies the “corresponding” conditional [Y⃗ ← y⃗]γ?
For this to be shown, further assumptions need to be made. First, we need to
assume that the antecedent α is a literal or a conjunction of literals. Second, V
represents the assignment of the root variables, but does not represent any further
assignments. (A root variable is one that does not have ancestors.) In requiring
that V is an assignment to the root variables, we assume that the set of exogenous
variables simply equals the set of root variables in a causal model. (A variable
X is called exogenous in the standard account iff there is no semantic structural
equation Fx such that this equation determines its value.) On these assumptions,
we can show that T |= [Y⃗ ← y⃗]γ follows from ⟨M,V⟩ |= [α]γ, given the obvious
translations from the syntactic account of causal models into the semantic one. The
proof is analogous to the proof of Proposition 1. Notice, however, that the other
direction of Proposition 1 cannot be shown for conditionals with a disjunction in
the antecedent since the semantics in Halpern (2000) does not allow for such con-
ditionals.

Conditionals with a disjunction in the antecedent are available in the account by
Briggs (2012), though. Allowing for such conditionals comes at a price in her
account: substituting a given antecedent α with a logically equivalent antecedent
α′ may change the truth value of the respective conditional. For instance, in our
running example, we have [BT ]BS , but not [BT ∧ (BS ∨ ¬BS )]BS . Briggs is
willing to pay this price, and so are we. If one thinks this price is too high, one
should simply disallow disjunctions in the antecedent.

A similar problem arises with our inference relation Γ ⊢M ϕ: we may have Γ ⊢M ϕ,
but not Γ ∪ {A ∨ ¬A} ⊢M ϕ since the premises of the inference relation ⊢M behave
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like interventions. Again, if one thinks this is counterintuitive, one should restrict
the logical form of the premises admitted in the relation ⊢M such that disjunctions
are excluded. The problem could also be addressed by requiring that, for a given
premise set Γ, there is no Γ′ such that Γ and Γ′ are classically logically equivalent
and Var(Γ′) ⊂ Var(Γ).

10 Non-Binary Variables

So far, we have studied propositional causal models. In such a model, all variables
are binary. Let us now lift this restriction, and define causal models with non-binary
variables. For this to be achieved, some elements of first-order logic are needed.
What is a non-binary variable in a first-order language? Which causal scenarios
require non-binary variables? Let us study a simple and well-known example. A
tower of a certain height casts a shadow. The length of the shadow causally depends
on the height of the tower and the angle of the sun rays. These quantities may be
represented by first-order functions. More precisely, they can be represented by the
values of unary functions for certain arguments:

• a: tower

• b: sun rays

• c: shadow

• h(a): height of the tower

• n(b): angle between sun rays and surface of the earth

• l(c): length of the shadow.

The values of these functions are governed by the following equation (in which cot
stands for the trigonometric function of cotangent):

l(c) = cot(n(b)) · h(a).

This equation can be read as a structural equation. For we think that the length of
the shadow causally depends on the height of the tower and the angle of the sun
rays, but not vice versa. So, let us take the equation as a structural equation in the
technical sense of causal models. Also, let M be the causal model that contains
only this equation.
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On this reading, l(c), n(b), and h(a) are the variables of M. It is important to note
that the variables of a causal model in a first-order language are not variables in the
sense of first-order logic at all. The variables of a deterministic causal model are
rather ground terms with occurrences of a function symbol. That is, they are terms
(in the sense of first-order logic) which do not contain any variables (in the sense
of first-order logic) but at least one function symbol. For clarification, we shall also
speak of causal variables when referring to the variables of a causal model.

It is important to note that not all ground terms in a first-order theory about a
causal scenario have a causal role. Take the ground terms for natural numbers.
These terms do neither causally determine other variables nor are they causally
determined. Likewise, we do not want to understand the constant symbols for
tower, shadow, and sun rays as causal variables. Is the tower a cause of its height?
This does not seem correct. Nor is it correct to say that all ground terms with
an occurrence of a function symbol are causal variables. The value of 2 + 2, for
example, is not causally determined, and so 2+2 should not be considered a causal
variable. Hence, choices are to be made as to which ground terms of a first-order
theory are considered variables in the sense of the envisioned causal model. Causal
modeling is an art (Halpern and Hitchcock 2010).

When working with a concrete causal model, we may want to say that a certain
causal variable has a certain value. For propositional causal models, we can sim-
ply assert A if we want to say that the variable A has the Boolean value T . For
non-binary causal variables, a direct statement about its value has the logical form
f (c) = c′, where c and c′ are individual constants. Note that the equation symbol
in such a sentence does not have a causal meaning. If we say that the tower has a
certain height, expressed by a rational number and a unit of length, we are thereby
not implying that a rational number causally determines the height of the tower.
Our logical account of causal models with non-binary variables must therefore dis-
tinguish between two equality symbols, one with a causal meaning and another
without such a meaning. Let us adopt := for the equality symbol with a causal
meaning. The above structural equation must then be rewritten as follows:

l(c) := cot(n(b)) · h(a).

If the causal model contains non-causal mathematical equations, these need to be
written with the standard equality symbol =, not with :=.

Each causal variable in a causal model has a well-defined range of values. We can
take this into account by working with many-sorted first-order logic. The distinc-
tive feature of this logic is that we have several domains of interpretation instead of
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a single domain. The different domains correspond to different sorts. Any constant
symbol must be of a certain sort.

The formation of atomic formulas is constrained by sorts: if R is a predicate of type
⟨σ1, . . . , σn⟩, then R(t1, . . . , tn) is a formula iff, for all i (1 ≤ i ≤ n), ti is a term of
sort σi. In what follows, let D(σi) be the domain of interpretation of sort σi. The
type of a function f is of the form ⟨σ1, . . . , σn⟩ 7→ σ j. That is, such a function is
a mapping of the set D(σ1) × . . . × D(σn) onto the set D(σ j). Obviously, if f is of
the form ⟨σ1, . . . , σn⟩ 7→ σ j, then f (t1, . . . , tn) is a term iff, for all i (1 ≤ i ≤ n), ti
is a term of sort σi. The term f (t1, . . . , tn) itself is of sort σ j.

The semantics of many-sorted first-order logic generalizes the semantics of first-
order logic in a straightforward manner. An interpretation of a many-sorted lan-
guage must respect that each constant c is of a certain sort σi such that c is in-
terpreted in the domain D(σi). Likewise, for predicates, function symbols, and
variables.7

Many-sorted first-order logic has been argued to be reducible to standard first-
order logic. The precise meaning of this reduction is not obvious, though.8 In any
case, it seems obvious that many-sorted logic allows us to define the range of non-
binary causal variables in a relatively straightforward manner. Suppose f (t1, . . . tn)
is a ground term and a causal variable of a causal model. Let f be of the sort
⟨σ1, . . . , σn⟩ 7→ σ j. Then, D(σ j) is the range of the causal variable f (t1, . . . tn).

We are now in a position to generalize our account of propositional causal models
to causal models with non-binary variables. Let L be a many-sorted language of
first-order logic. Further, letV be a set of ground terms of L. The members ofV
are considered variables of the respective causal model. A structural equation is a
sentence of the logical form

t := t′

where t and t′ are ground terms. Moreover, t ∈ V and t′ must have at least one
occurrence of a ground term inV. No other formulas are structural equations of L
with the setV of causal variables. Note that a structural equation thus defined has
no occurrences of quantifiers or first-order variables.

Definition 6. Causal Model (non-binary variables)
Let M be a set of structural equations, based on the language L with the set V of

7See Enderton (2001, Sect. 4.3) for a textbook account of many-sorted first-order logic.
8See Barrett and Halvorson (2017) for a detailed discussion.
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causal variables. For an L term t, Var(t) is the set of causal variables that occur in
t. M is a causal model iff it satisfies two conditions:

(1) For any t ∈ V, there is at most one σ ∈ M such that σ has the logical form
t := t′.

(2) If t := t′ is a member of M, then there is no t′′ such that (i) t′ = t′′ on all
interpretations of the language L and (ii) Var(t′′) ⊂ Var(t′).

In brief, a causal model based on L is a set of structural equations such that any
term ofV occurs at most once on the left-hand side of an equation in M. Further,
no structural equation in M must have vacuous occurrences of a causal variable.

Note that a structural equation in a causal model thus defined has no occurrences of
quantifiers or first-order variables. Causal models with non-binary may or may not
be embedded into full first-order reasoning. In this paper, we merely describe the
core of causal reasoning with non-binary variables which is based on a fragment of
many-sorted first-order logic. Inference rules for quantifiers do not belong to this
fragment.

As for the elimination rule of :=, we adopt:

t := t′ t′ = t′′

t = t′′
[t < Var(Γ)] (Elim :=)

where Γ is the respective set of premises. This inference rule captures the interplay
of reasoning about non-causal equality statements and structural equations. There
is no need for an introduction rule of := for reasons explained in Section 5. Var(Γ)
is the set of causal variables of M that occur in at least one premise in Γ.

This is the only genuinely causal inference rule needed in our account of causal
models with non-binary variables. All the other infer rules are adopted from clas-
sical logic. At the very least, we need the introduction and elimination rules for the
non-causal equality symbol =. Once the set of classical inference rules is speci-
fied, the definition of Γ ⊢M ϕ in Section 5 can be generalized to causal models with
non-binary variables in a straightforward manner. For lack of space, we leave this
to the reader.

It remains to specify the semantics of causal models with non-binary variables.
Recall that we defined the semantics of propositional structural equations A = ϕ

in terms of classical interpretations of a propositional language. Likewise, we can
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define the semantics of a structural equation t := t′ in terms of classical interpre-
tations. Let I be a classical, model-theoretic interpretation of L. Then, equation
t := t′ is true on I iff t and t′ designate the same object on the interpretation I.

Note, furthermore, that the set MΓ (used above in the definition of |=M) remains
well defined in the present setting of non-binary variables. MΓ is simply the set of
structural equations of M such that no causal variable of M occurs in any sentence
of Γ. Since V is a set of ground terms, we can even represent an interpretation of
M by a set V of literals in a manner analogous to the propositional case. Then, the
set Vα – which represents the core of V that remains unchanged in an intervention
by α – remains well defined too.

Since MΓ remains well defined, we can easily generalize the definition of Γ |=M ϕ

in Section 6 to causal models with non-binary variables. We merely need to replace
classical Boolean interpretations of LP with model-theoretic interpretations of L.
Likewise, the proofs of soundness and completeness for causal reasoning with bi-
nary variables require only minor modifications to be generalized to the non-binary
case. We leave this as an exercise to the reader.

11 Conclusion

The meaning of the equality symbol in a structural equation is nonsymmetric. The
right-hand side of such an equation is thought to causally determine the left-hand
side, but not vice versa. We have shown how this nonsymmetry can be captured by
inference rules in a system of natural deduction. Thereby, we have furnished causal
models with a distinct deductive system. This system has been supplemented by a
model-theoretic semantics. Finally, we have defined interventionist conditionals in
terms of inferential relations using the deduction system for causal models.

The present logic of causal models has been worked out completely for structural
equations with binary variables. Then, we have shown how this logic can be taken
to the level of causal models with non-binary variables. Accounts of explanation
and causation in science may benefit from our logical investigation of causal mod-
els.
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Appendix A Proofs

Theorem 1. Soundness
If Γ ⊢M ϕ, then Γ |=M ϕ.

Proof. Soundness can be proven by induction on the number of inferences in a
derivation, as is standard. Suppose Γ ⊢M ϕ.

Induction basis: suppose the number of inferences is zero. Since ϕ ∈ LP, this
implies that ϕ ∈ Γ. So, the derivation consists of a single formula which is a
member of Γ. By the definition of |=M, Γ |=M ϕ iff, for all truth value interpretations
v, if v |= Γ ∪ MΓ, then v |= ϕ. Since ϕ ∈ Γ, it holds that, if v |= Γ ∪ MΓ, then v |= ϕ.
Hence, Γ |=M ϕ.

Induction step. Suppose we have a derivation of n inference steps. Let Γ′ be the
union of Γ and the set of assumptions that are not in Γ and so far undischarged.
By the induction hypothesis, we know that, for all so far derived sentences ψ, it
holds that Γ′ |=M ψ. We need to show that, for any application of an inference rule
of LC, if the next inference consists in inferring δ, then we have Γ′ |=M δ. For
the inference rules of the Boolean connectives (including ⊥), this demonstration
does not differ from the corresponding inductive step in the soundness proof for a
natural deduction system of classical propositional logic. We can therefore focus
on the inductive step for the inference rules (= Elim1) and (= Elim2).

Suppose the next inference step (following the n-th step in the derivation) has the
form

A = ψ ψ

A
[A < Var(Γ)].

We need to show that, for all valuations v, if v |= Γ′ ∪ MΓ, then v |= A. Since
there are no inference rules for the derivation of a formula of the type A = ψ, the
equation A = ψ is a member of M. Because of the condition A < Var(Γ), it must
even hold that A = ψ is a member in MΓ. By the induction hypothesis, (i) Γ′ |=M ψ.
Suppose v is a valuation such that v |= Γ′ ∪ MΓ. Since the equation A = ψ is a
member in MΓ, this implies that v |= A = ψ. Hence, by the semantics of =, (ii) A
and ψ have the same truth value on the valuation v. Further, we can infer from (i)
that (iii) v |= ψ. So, ψ is true on v. Obviously, (ii) and (iii) imply that A is true on v.
In symbols, v |= A. Thus, we have shown that, for all valuations v, if v |= Γ′ ∪ MΓ,
then v |= A. This concludes the inductive step for the inference rule (= Elim1). The
demonstration of the inductive step for (= Elim2) is analogous.
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Note finally that at the end of the derivation, when the last inference step has been
completed, Γ′ = Γ. All assumptions that are not in Γ must have been discharged.
Therefore, by complete induction on the number of inference steps, Γ |=M ϕ. □

Theorem 2. Completeness
If Γ |=M ϕ, then Γ ⊢M ϕ.

Proof. Suppose Γ |=M ϕ. Hence, by definition of the entailment relation |=M, for
all valuations v such that v |= Γ ∪ MΓ, v |= ϕ. Let M′Γ be the set that we obtain
from MΓ by replacing every structural equation A = ψ in MΓ by the classical
biconditional A ↔ ψ. Since the truth conditions of = do not differ from the truth
conditions of ↔, Γ |=M ϕ implies (i) Γ ∪ M′Γ |=Cl ϕ. Further, let M′′Γ be set the
set that we obtain from M′Γ by replacing every biconditional A ↔ ψ in M′Γ by
(A ∨ ¬ψ) ∧ (¬A ∨ ψ). In symbols, (A ∨ ¬ψ) ∨ (¬A ∨ ψ) ∈ M′′Γ iff A ↔ ψ ∈ M′.
Since (A∨¬ψ)∧ (¬A∨ψ) and A↔ ψ are satisfied by the same classical valuations
v, (i) implies (ii) Γ ∪ M′′Γ |=Cl ϕ. By completeness of classical propositional logic,
this implies that Γ ∪ M′′Γ ⊢Cl ϕ. Since classical propositional logic with just the
logical symbols ∨,∧, and ¬ is complete, Γ∪M′′Γ ⊢Cl ψ holds, even if ⊢Cl is defined
in terms of the inference rules of the Boolean connectives (including ⊥). So, (iii)
there is a derivation of ϕ from Γ ∪ M′′Γ using only the classical inference rules of
the Boolean connectives (including ⊥).

Now, we can show that Γ ⊢M (A ∨ ¬ψ) ∧ (¬A ∨ ψ) for all A = ψ ∈ MΓ. Let us first
show that (iv) Γ ⊢M A ∨ ¬ψ if A = ψ ∈ MΓ. This can be done by the following
derivation:

...
ψ ∨ ¬ψ

[ψ]1 A = ψ
(= Elim1)

A (∨ Intro)
A ∨ ¬ψ

[¬ψ]1
(∨ Intro)

A ∨ ¬ψ
1 (∨ Elim)

A ∨ ¬ψ

Note that ψ ∨ ¬ψ can be derived from the empty premise set using only inference
rules of LC, which is indicated by the vertical dots on the left-hand side. Anal-
ogously, we can show (v) ⊢M ¬A ∨ ψ if A = ψ ∈ M. From (iv) and (v) we can
infer ⊢M (A ∨ ¬ψ) ∧ (¬A ∨ ψ) if A = ψ ∈ M. Thus, we have shown that (vi)
Γ ⊢M (A ∨ ¬ψ) ∧ (¬A ∨ ψ) for all A = ψ ∈ MΓ.

Recall that we have shown that (iii) there is a derivation of ϕ from Γ ∪ M′′Γ using
only the inference rules of the Boolean connectives (including ⊥). By (vi), we
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know that we can transform this derivation into a derivation of ϕ from Γ and M in
the logic LC. The transformation goes as follows: instead of taking the sentences
(A∨¬ψ)∧(¬A∨ψ) in M′′Γ as premises, we derive these sentences from the structural
equations in M using the inference rules of LC, as just demonstrated. Hence, Γ ⊢M

ϕ. □

Proposition 1. Let T = (S,F ) be a causal model over signature S, where F is a
set of structural equations, as defined in Halpern (2000). Let all variables of the
causal model be binary ones. u⃗ is a vector that represents an assignment to the
exogenous variables. Let M be a set of syntactic structural equations such that
each equation has a unique semantic representation by a member in F . V is a set
of literals that syntactically represents the assignment given by vector u⃗. α is a
conjunction of literals such that this conjunction represents the assignment Y⃗ ← y⃗.
γ is an arbitrary Boolean formula. Then, if T |= [Y⃗ ← y⃗]γ, then ⟨M,V⟩ |= [α]γ.

Proof. Suppose T |= [Y⃗ ← y⃗]γ. Since u⃗ is a vector assigned to exogenous vari-
ables and since V translates this assignment, all propositional variables that occur
in the literals in V are root variables. (A root variable is one that does not have
ancestors.) Now, if we set Yi to yi (i = 1, . . . , k), this means replacing the structural
equations for the variables in Y⃗ by certain value assignments. The other structural
equations of the original causal model remain in place. Let M′ be the set of struc-
tural equations X = ϕ such that X is not an element in Y⃗ , which means that there is
no intervention on X. It holds that T |= [Y⃗ ← y⃗]γ iff all solutions of the submodel
of T after the intervention by Y⃗ ← y⃗ in the context u⃗ satisfy γ. Since we assume
T |= [Y⃗ ← y⃗]γ, we can infer from this that (i) all solutions of the submodel of T
after the intervention by Y⃗ ← y⃗ in the context u⃗ satisfy γ.

Since all members of V concern exogenous variables and since all occurrences of
a variable in α are of the endogenous type, it holds that all variables that occur
in a literal in V are non-descendants of all variables that occur in α. Hence, (ii)
Vα = V . Since all members of V concern exogenous variables (for which there
is no structural equation in F ) and since α represents the intervention Y⃗ ← y⃗,
(iii) MΓ′ = M′ for Γ′ = Vα ∪ {α}. Because of (ii) and (iii), (i) translates – in the
propositional setting of our syntactic account – to the claim that all valuations of P
that satisfy M′ ∪Vα ∪ {α} are such that they verify γ. Using definitions 3 and 5, we
can infer from this that ⟨M,V⟩ |= [α]γ. □
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